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Abstract As a novel population-based evolutionary algorithm, the Find-Fix-Finish-
Exploit-Analyze (F3EA)meta-heuristic algorithm has been introduced for numerical
optimization which develops new selection operators, a new parameter-free muta-
tion operator, and a local search operator. The algorithm takes the surface of the
objective function as the battleground and mimics the F3EA targeting process of
object or installation selection for destruction in the warfare. It performs the main
steps of Find-Fix-Finish-Exploit-Analyze (F3EA) in an iterativemanner, wherein the
Find step introduces a new individual selection mechanism via imitating the military
radar detection rationale; in the Fix step, it is shown that how the reality of the target
monitoring process can be transformed to a single variable constrained optimization
problem to obtain a local search operator; In the finish step, new solutions are gener-
ated via a new adaptive mutation operator which is developed through the simulation
of projectile motion using physics equations; in the exploit step it tries to take over
opportunities presented by the generated potential solution and other members of
the population; Finally, in analyze step, the population is updated. In this chapter, an
extended epsilon constrained handling technique is used to handle constraints within
the body of F3EA meta-heuristic algorithms that is called the εF3EA. In order to
evaluate the efficiency of the F3EA algorithm, nine constraint benchmark functions
are used. In addition, the εF3EA algorithm is compared with eight other algorithms,
which included SAFFa, COPSO, ISR, ATMES, SMES, ECHT-EP2, HCOEA, and
αSimplex. Results indicate that the algorithm is the best of all on benchmark test
problem instances.
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1 Introduction

Calculation of the optimum solutions for most of the optimization problems is a
hard and complex process. In practice, these solutions are achieved by heuristics
and meta-heuristic algorithms. Metaheuristic algorithms cover a set of approximate
optimization techniques that have been developed for the past three decades. Meta-
heuristic methods find acceptable solutions in a reasonable time for engineering and
science NP-hard problems. Unlike the exact optimization algorithm, metaheuristic
algorithms do not guarantee that obtained solutions are optimum solutions, but most
of the time, near the optimum solutions, are found by them. On the other hand, an
optimization algorithm provides satisfactory results, and the same algorithm may
have poor performance in other problems [1] especially in the constrained optimiza-
tion problems. Most real-world optimization problems have constraints and usually,
their decision variables are more than classic functions that increase the dimension of
the problem. When constraints are added to the problem, the solution space has been
more limited, and feasible solution space will be changed. So, they are more complex
rather than classic optimization problems which are a challenge for meta-heuristic
algorithms in recent years [2–6]. Constrained optimization problems usually simu-
late real-world optimization problems. Different categories of algorithms have been
performed to solve the constrained optimization problem with different methods. A
constrained optimization problem with inequality constraints, equality constraints,
lower bound constraint, and upper bound constraint is shown as (1).

min f (x)

s.tgi (x) ≤ 0i = 1, . . . , q

hi (x) = 0i = q + 1, . . . ,m

li ≤ xi ≤ ui i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) is a vector of the decision variables, f (x) is an objec-
tive function, gi (x) ≤ 0, hi (x) = 0 are q inequality constraints and m − q equality
constraints,. The constraints in optimization problems increase the complexity and no
longer a combination of some solutions is not feasible. There are a lot of constrained
optimization problems in the field of engineering design [7–11]. The handling
constraints in the constrained optimization problems is very important. Because
choosing the appropriate Bound Constraint Handling Method (BCHM) makes that
the optimization algorithms achieve the most efficiency in most of the problems.
So, different methods have been proposed in the field of BCHM [12]. There are
three methods with different approaches to handling constraints in the constrained
optimization problem [13]. In the following, these methods will be explained.
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Penalty functions: One of these methods includes the penalty function method
[14, 15]. The basic idea of the penalty function is to transfer constraints to the
objective function with a penalty factor and transform the optimization problem into
an unconstrained problem [15]. According to (2), in the penalty function method, the
values of constraints violation

(
vgi , vh j , vkl

)
are added to the objective functions and

as many as the constraints violation are higher, the value of the objective function
will be increased. It is important to mention that determining the penalty factor is an
optimization problem and depends on the problem [15].

min f (x)

s.t.

gi (x) ≥ g0 ∀i, vgi = max

(
1 − gi (x)

g0
, 0

)

h j (x) ≤ h0 ∀i, vh j = max

(
h j (x)

h0
− 1, 0

)

kl(x) = k0 ∀, kvkl =
∣∣∣
∣
kl(x)

k0
− 1

∣∣∣
∣ (2)

The basic idea of the penalty function is shown in (3). According to this equation,
the value of vgi is added to f (x) when the gi (x) ≥ g0, vh j is added to f (x) when
h j (x) ≤ h0, and when kl(x) ≥ k0, vkl will be added to f (x). How adding the
penalty function to the objective function is formulated based on (2). One of the
critical challenges in the penalty function is how determining the appreciated value
of r [15]. The value of r is changed for each constrained optimization problem and
determined to appreciate the value of r can have a great impact to reach the optimum
value of decision variables.

v(x) = f (x) +
∑

∀i
ri × vgi +

∑

∀ j

r j × vh j +
∑

∀l
rl × vkl (3)

Repair methods: in this method, a generated feasible solution is replaced instead
of an infeasible solution. After generating infeasible solutions, this solution has been
repaired and replaced instead of an infeasible one.

Feasibility preserving genetic operators: in this method, the operators of the
genetic algorithm always generate feasible individuals. According to this method,
the mutation and crossover are done in a feasible area of solution space and as a
result, generated solutions are feasible.

The first idea of handle constraint was proposed in the form of the penalty function
method in the DE algorithm. There are different types of penalty functions [16]. The
death penalty, quadratic penalty, and substitution penalty. In the death penalty, a
constant large value is added to the infeasible individual that makes the value of
fitness increase. While the square of constraints violations and fitness value of the
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repaired solution is the fitness of additive quadratic penalty method. The last method
is the substitution quadratic penalty which is the combination of the death penalty
and quadratic penalty. The feasibility is not computed for the feasible individual.
Instead, the fitness values are the sum of the squared distance from the exceeded
bound and a large value [12].

In this paper, an extended epsilon constrained handling technique is proposed to
handle constraints within the body of F3EA meta-heuristic algorithm that is called
εF3EA. In the epsilon constraint method, the violation is defined as the sum of all
the constraint violations ∅(x) [17] based on the Eq. (4):

∅(x) =
∑

∀i
vgi

p +
∑

∀ j

vh j
p +

∑

∀l
vkl

p (4)

The εF3EA includes several steps of generating random solutions, initialization
of the ε level, ranking the solutions, the fix step, the Find step, the Finish step, the
Exploit step, the Analyze step, and checking stopping criteria. In generating random
solutions step, random solutions are generated with uniform distribution and create
the initial population. In the initialization of the ε level step, the ε value is defined. In
the ranking of the solutions, the population is sorted based on constraint violations
and function values. The Fix step, the Find step, the finish step, and the exploit step
are implemented based on the body of the F3EA algorithm. In the analyze step,
lexicographic order is used which will be explained. So, the proposed algorithm
will be described in Sect. 3. In Sect. 4, the results of using the proposed method
are presented on some real-world problems and will be compared with state of art
methods, aswell as the εF3EAalgorithm is examined, and the conclusion is presented
in Sect. 5.

2 Background

In the ε constraint handling method, the constraint violation is defined based on the
sum of all violations of constraint in which if violation > ε, the solution is not
feasible and the worth of this point is low. In this method, ∅(x) precedes f (x) which
means the importance of feasibility is more than the objective function value of f (x).
The ε levels have adjusted the value of precedence.

2.1 ε Constrained Method

Assume that f1, f2 are the values of the objective function and ∅1, ∅2 are constraint
violations based on solution x1 and x2. ε levels comparison for ε > 0 in ( f1, ∅1),
( f2, ∅2) are defined as (5) and (6):
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( f1,∅1) <ε ( f2,∅2) ↔
⎧
⎨

⎩

f1 < f2, if ∅1,∅2 ≤ ε

f1 < f2, if ∅1 = ∅2

∅1 < ∅2, otherwise
(5)

( f1,∅1) ≤ε ( f2,∅2) ↔
⎧
⎨

⎩

f1 ≤ f2, if ∅1,∅2 ≤ ε

f1 ≤ f2, if ∅1 = ∅2

∅1 < ∅2, otherwise
(6)

The lexicographic order is used when ε = 0, ε < 0 and ε ≤ 0 in which
constraint violation ∅(x) precedes the objective value of f (x). The ordinal compar-
isons between function values are used in the case of ε = ∞. In the constraint
handling method, the constraints transfer into objective function and a constrained
optimization problem converts into an unconstrained optimization problem using ε

level comparisons. So, constrained optimization problems can be solved by incorpo-
rating ε level comparisons. Ordinary comparisons with ε level comparisons are used
for comparing until the value of ε converges to 0. By reaching ε to 0, the feasible
solution has been reached. On the other hand, if the violation of a point is greater
than ε, the point is infeasible and its worth is low.

The ε constrained optimization method converts a constrained optimization
problem into an unconstrained one with ε level comparisons that use order rela-
tion for replacing. An optimization problem based on ε a constrained optimization
method is defined as (7):

minimize f (x)

subjectto ∅(x) ≤ ε (7)

It is obvious that by converging ε to 0, the optimal solution obtained as well as in
the penalty function method the optimal solution obtained by increasing the penalty
coefficient to infinity.

2.2 The F3EA Algorithm

In the field of population-based evolutionary algorithm, the Find-Fix-Finish-Exploit-
Analyze (F3EA) meta-heuristic algorithm has been introduced for numerical opti-
mizationwhich develops new selection operators, new parameter-freemutation oper-
ator, and a local search operator [6]. The algorithm takes the surface of the objective
function as the battleground and mimics the F3EA targeting process of object or
installation selection for destruction in the warfare. This algorithm includes five
main steps of the Find, Fix, Finish, Exploit, and Analyze step. The Find step mimics
based on the object detection process follow by military radars. In the Fix step, the
highest peak is found by a local heuristic method. In the Finish step, the intended
target is destroyed. In the Exploit step contains information gathering from the target
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area. Finally, the Analyze step relates to the results of the attack on the target
to identify more targeting opportunities [18]. In this chapter, an extended epsilon
constrained handling technique is used to handle constraints by using F3EA meta-
heuristic algorithm that is called εF3EA. In the following, the structure of εF3EA
will be explained.

3 The F3EA Adapted to Constrained Optimization

The F3EA is a stochastic direct search method based on the population. F3EA has
been successfully performed in some nonlinear, multimodal, and constrained engi-
neering design problems. The results have been shown that F3EA is fast and has
good convergence in these test functions [6]. F3EA has used the penalty function
method to solve the constrained optimization problem so far. In this paper to develop
the performance of F3EA for solving the constrained optimization problem, epsilon
constrained handling with an automatic update of ε is proposed. The algorithm of
the εF3EA is as follows:

Step 1: generating random solutions bywhich the initial population is randomly
generated.

Step 2: initialization of the ε level by which an initial ε level is generated as ε(0).
Step 3: ranking the solutions. by which the best members of the population are

selected based on the best value of the constraint violations and objective function
value, and the rank of individuals is defined by the ε level comparison.

Step 4: the Fix step. In this step, the highest peak is found by f minbnd function
which is a function for optimization in the Matlab toolbox. In order to destroy the
military tank, the projectile launch anglemust be located in the highest peak position.
So, the highest peak position is found by f minbnd as a local optimum.

Step 5: the Find step. In this step, a new solution is generated as pti (solution i at
iteration t) which temporarily considers an artificial radar and other solutions (ptj )
consider military facilities that may or may not be detected by the artificial radar.
Then the distance between pti parent solution i at iteration t and child solution j at
iteration t (ptj ) is calculated as Eq. (8):

Rt
i j = ∣

∣ f
(
pti

) − f
(
ptj

)∣∣ (8)

This equation f
(
pti

)
shows the value of the objective function of pti and f

(
pti

)

shows the value of the objective function of ptj that show in Eq. (9).

Rt
maxi j = (

f tmax − f tmin

) × u
(
pti

) × 4

√√√√

(
1 − u

(
ptj

))
exp

(
−au

(
ptj

))

u
(
pti

) , i �= j. (9)
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where Rt
maxi j is themaximum range and based on the above equation, if Rt

i j ≤ Rt
maxi j ,

ptj is detectable by pti . Among detectable solutions pti , one of the solutions will be
selected in the Finish step.

Step 6: theFinish step. In this step, new solutions are generated via a new adaptive
mutation operator which is developed through the simulation of projectile motion
using physics equations. Assume that pti impersonates the position of a projectile
launcher and ptj shows the position of a target facility. Et

i is generated by pti and
ptj which is considered as the explosion position of the artificial projectile launched
from pti toward ptj . How generating Et

i is shown in Eq. (10).

Et
i = pti + x

(
T t
i j

)
(
ptj − pti

)

ptj − pti
+ z

(
T t
i j

) zti j
zti j

(10)

x
(
T t
i j

)
and z

(
T t
i j

)
are the projected explosion position on the x-axis and z-axis,

respectively, which is defined as Eqs. (11) and (12):

x
(
T t
i j

) = wt
xi j T

t
i j + mt

i j

(
vt
0i j cosαt

i j − wt
xi j

)(
1 − e

−T t
i j

/
mt

i j

)
(11)

z
(
T t
i j

) = wt
zi j T

t
i j − mt

i jw
t
zi j

(
1 − e

−T t
i j

/
mt

i j

)
(12)

Based on these equations, αt
i j is a lunch angel, vt

0i j is the initial velocity of the
projectile, the mass of projectile is mt

i j , wind vector is wt
i j , and zti j is perpendicular

to the hyper-line connecting pti and ptj . In order to the further investigate the Finish
step please refer to [6].

Step 7: the Exploit step. In the Exploit step, the information gathering from
the target area is done in this step. This step utilizes the result of the Finish step
because the result of the Finish step may have premature convergence. So, cti shows
the number of changes made in pti and truncated geometric distribution [19] is used
for simulating cti as Eq. (13):

cti =
[
ln

(
1 − (

1 − (
1 − qt

i

)n)
rand(0, 1)

)

ln
(
1 − qt

i

)

]

, cti ∈ {1, 2, . . . , n} (13)

where qt
i < 1, qt

i �= 0. By the above equation, cti the number of dimensions of Et
i is

randomly selected which are assigned by Ut
i . U

t
i is the output of the Exploit step.

Step 8: Analyze step. In the Analyze step, the new solution is analyzed that way
a comparison between f

(
Ut

i

)
and f

(
pti

)
is performed and if f

(
Ut

i

)
is better than

f
(
pti

)
, f

(
Ut

i

)
will be replaced. In this step, the comparison between solutions is

based on two values of ∅(x) and f (x) value. Given that ∅(x) precedes f (x), So, at
first, the value of ∅(x) is checked and if the value of ∅(x) is zero, then the current
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solution is compared based on f (x) value. f
(
Ut

i

)
is replaced instead of Gt

best , if in
terms of violation and objective function value, f

(
Ut

i

)
is better than f

(
Gt

best

)
. The

process of replacing in this step is defined as (14) and (15):

( fi ,∅i ) <ε (Gbest ,∅best ) ↔
⎧
⎨

⎩

fi < Gbest ; i f ∅i ,∅best ≤ ε

fi < Gbest ; i f ∅i = ∅best

∅i < ∅best ; otherwise
(14)

( fi ,∅i ) ≤ε (Gbest ,∅best ) ↔
⎧
⎨

⎩

fi ≤ Gbest ; i f ∅1,∅2 ≤ ε

fi ≤ Gbest ; i f ∅1 = ∅2

∅i < ∅best , ; otherwise
(15)

In the following, the pseudocode of εF3EA will be explained based on Fig. 1.
In order to create an initial population of the F3EA, a set of random variables is

generated between the lower andupper bounds.Given that feasibility always precedes
objective function value, at first the constraint violation of the current population is
checked and then the solution is compared based on objective function value. If
the constraint violation is smaller than the epsilon value and the objective function
value is smaller than the global best, the current solution is replaced as shown in
(15), the global best solution is updated and the algorithm enters the main loop.

1- generate a set of initial random population and set initial parameters 
2- if constraint violation<epsilon threshold 
3-    if objective function value<global best value 
4-        update global best 
5- calculate 
6- while FE<FEmax 
7-     perform the fix step 
8-         if constraint violation<epsilon threshold 
9-             if objective function value<global best value 
10-                 update global best 
11-    perform the find step 
12-       calculate  and 
13-    for offspring=1:
14-        perform the finish step 
15-            calculate 
16-        perform the exploit step 
17-            perform crossover methods and generate offspring 
18-                compare offspring with their parent in analyze step 
19-                    if constraint violation<epsilon threshold 
20-                          if objective function value<global best value 
21-                              update global best 
22-    end for 
24-    update epsilon threshold 
25- check stopping criteria 
26-     if stopping criteria has not been met 
27-        return to line 7 
28-        save results 
28-     else 
29-         break 

Fig. 1 The pseudocode of εF3EA
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In the Fix step, the new solution is generated based on f minbnd [20] function
that this function is one of the classic optimization methods available in the Matlab
optimization toolbox.After generating a new solution in the Fix step, the feasibility of
the solution is checked and this solution is replaced global best if the better solution is
found based on (15). The values of Rcv

maxi j and Rof v
maxi j are calculated in the Find step.

In original paper of F3EA Rcv
maxi j is calculated for all population based on Eq. (9),

but in εF3EA approach the constraint violation (cv) and objective function value
(of v) are calculated for all solutions in population, therefore, the values of Rcv

maxi j

and Rof v
maxi j are calculated as follow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rof vmaxi j =
(
f tmax − f tmin

)
× u

(
ptobvi

)
× 4

√√
√√

(
1−u

(
ptobvj

))
exp

(
−au

(
ptobvj

))

u
(
ptobvi

) , i �= j.i f cv < ep

Rcvmaxi j =
(
cvtmax − cvtmin

)
× u

(
ptcvi

)
× 4

√√√
√

(
1−u

(
ptcvj

))
exp

(
−au

(
ptcvj

))

u
(
ptcvi

) , i �= j.i f cv > ep

(16)

According to Eq. (16), cvt
max and cvt

min are the maximum value of constraint
violation of population and the minimum value of constraint violation of population,
respectively. ptobvi is the value of the objective function of population ith and ptcvi is
the value of the constraint violation of population ith. In this approach, if constraint
violation (cv) of population ith is smaller than epsilon threshold (ep), the above
section of Eq. (16) is performed, otherwise, the bottom section is performed. Finding
detectable solutions is done in the Find step, that way if Rtof v

i j ≤ Rtof v
maxi j , p

t
j is

detectable by pti . This process is also performed based on Rcv
maxi j . Mutation is done in

the finish step. In this step to increase the exploitation power of εF3EA, the offspring
of each selected solution from the find step are generated. This idea is taken from
LCA [3]. In order to identify the number of offspring, the following Eq. (17) is used.

N0 = 2 × 0.1 × N (17)

As mentioned before in the εF3EA algorithm each solution is investigated by two
criteria of objective function value and constraint violation. This method has been
also used in the Finish step. That means all of the solutions are once compared based
on constraint violation and then are compared based on objective function value.
Thus, this process is one of the differences between εF3EA and F3EA. Generating
a new solution in the Finish step depends on pti , p

t
j . Assume that pti impersonates

the position of the projectile launcher and ptj simulates the position of a target
facility. Et

i is the position of explosion that has been thrown from pti toward ptj .

Let
[
pti , u

(
ptobvi

)]
,
[
pti , u

(
ptcvi

)]
,
[
ptj , u

(
ptobvj

)]
and

[
ptj , u

(
ptcvj

)]
. In order to

simulate the launch, it is needed to the inclination (βi j ), launch angle (βi j ), the
projectile initial velocity (v0i j ), and distance between pti and ptj . All of the Finish
stage has been explained in [6].

In the Finish step, the mutation is done based on Eq. (10) with the difference that
each parent has the number of N0 offspring. After generating Et

i in each iteration, the
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crossovermethod is done on Et
i in the exploit step. There are two kinds of crossover in

εF3EA that one of them is related to Eq. (13) and another crossover will be explained
in the following:

• To the number of population, a permutation vector was generated as (p).
• The first three members of p were chosen as x1, x2, x3 in each iteration of the

current population.
• xtap was created based on Eq. (18):

xt+1
ap =

(
x1,t .x2,t

)

x3,t
(18)

x1,t ، x2,t, and x3,t represent the first, second, and third members of the vector p in
the iteration t, respectively. Equation (18) improved the quality and diversity of the
solutions produced. In the exploit step for each parent, the N0 offspring are generated
by crossover methods and all of the offspring are compared with their parents. All of
the generated solutions are compared based on Eq. (15) in analyze step which means
at first, the constraint violation, and then the objective function value is checked. If
a solution is better than the global best, the global best is updated. Finally, the value
of epsilon becomes smaller in each iteration that the value of epsilon is calculated as
Eq. (19):

ε = ε ×
(
1 − FE

Fmax

)δ

(19)

According to Eq. (19), FE is the number of function evaluations, Fmax is the
maximum number of function evaluations and δ is a constant number and has been
considered 50. This process makes the value of epsilon is converged to zero that
means that in the initial iterations the solution with positive constraint violation is
accepted and as many as the algorithm approach the final iterations, the constraint
violation of all solution should be zero and the solution are compared based on
objective function value.

If the number of functions evaluation (FE) exceeds the maximum number of
functions evaluation (FEmax ), the algorithm is stopped.

4 Experiments

In this section, the εF3EA performs to evaluate the benchmark constrained opti-
mization problems. These benchmark functions include 13 well-studied problems
(g01–g09) of the CEC 2006 test suite [21], where we compare εF3EA with the
result of a study that has been written by Husseinzadeh Kashan [3]. In that study,
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the league champion algorithm (LCA) [22] has been compared with eight state of
the art algorithms. G01 to g09 has some features of the number of decision variables
(n), estimates the ratio between the feasible region and the entire search space (ρ),
the number of linear inequalities, the number of nonlinear inequalities, the number
of linear equalities, and the number of nonlinear equalities. In this study, the εF3EA
will be compared with eight other algorithms of SAFFa [23], COPSO [24], ISR [25],
ATMES [26], SMES [27], ECHT-EP2 [28], HCOEA [29], and αSimplex [30].

In order to solve the benchmark functions, it is necessary to explain that with
225,000 number of function evaluations, εF3EA almost finishes its search, since all
individuals converge to the global optimum with acceptable precision.

4.1 G01 Benchmark Function

According to (20), the objective function is a Quadratic function with 13 decision
variables. Estimating the ratio between the feasible region and the entire search space
(ρ) is 0.0111. The number of linear inequalities constraints is nine, this function does
not have the linear inequalities constraints, in nonlinear equalities constraints, and
nonlinear equalities constraints. Constraints of g1, g2, g3, g7, g8, and g9 are active.

Minimize f (X) = 5
4∑

d=1

xd − 5
4∑

d=1

x2d −
13∑

d=5

xd

subject to:

g1(X) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(X) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(X) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(X) = −8x1 + x10 ≤ 0

g5(X) = −8x2 + x11 ≤ 0

g6(X) = −8x3 + x12 ≤ 0

g7(X) = −2x4 − x5 + x10 ≤ 0

g8(X) = −2x6 − x7 + x11 ≤ 0

g9(X) = −2x8 − x9 + x12 ≤ 0 (20)

In Table 1, BV is the best value, AV is the average value, WV is the worst value
and STD shows the standard deviation value. The results of Table 1 show that there
is no significant difference between BV, AV, WV, and STD. The best result is related
to the εF3EA, SMES, COPSO, and SAFFa algorithms.
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4.2 G02 Benchmark Function

This function is nonlinear which has 20 variables based on (21). The value of ρ is
99.8474. The number of linear inequalities constraints, linear inequalities constraints,
nonlinear equalities constraints, and nonlinear equalities constraints are 1, 1, 0, 0,
respectively. The constraint g1 is close to being active.

Minimize f (X) = −
∣∣∣∣
∣

(∑n

d=1
cos4(xd) − 2

∏n

d=1
cos2(xd)

)/√∑n

d=1
dx2d

∣∣∣∣
∣

subject to:

g1(X) = 0.75 −
n∏

d=1

xd ≤ 0

g2(X) =
n∑

d=1

xd − 0.75n ≤ 0 (21)

where n = 20 and 0 ≤ xd ≤ 1. The best known objective value is f (X∗) =
−0.80361910412559.

The results in Table 2 show that the COPSO, ISR, αSimplex, and ECHT-EP2
have had the best value among the algorithms. Whatever the value of AV, WV, and
STD is less, it means that the performance of the algorithm is better. Accordingly,
in terms of the AV, WV, and STD, the εF3EA has had the best values among eight
other algorithms.

4.3 G03 Benchmark Function

The g03 function is Polynomial with 10 decision variables in which the value of ρ is
zero. It has only one equality nonlinear constraints. The equation of g03 is as (22):

Minimize f (X) = −(
√
n)n

n∏

d=1

xd

subject to:

h(X) =
n∑

d=1

x2d − 1 = 0 (22)

where n = 10 and 0 ≤ xd ≤ 1 (d = 1, . . . , n). The global objective value is
f (X∗) = −1.
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Given that the g03 function has less complexity compared to other benchmarks,
the difference values between functions are not significant based on the results of
Table 3. But in terms of the STD, the εF3EA has had the best performance compared
to other results in this table and it means that in all iterations, the εF3EA has reached
the optimal solution.

4.4 G04 Benchmark Function

The g04 function is quadratic with five decision variables. Estimating the ratio
between the feasible region and the entire search space (ρ) is 52.1230. There are
only six nonlinear equalities constraints. Constraints g1 and g6 are active which its
equation is based on the (23):

Minimize f (X) = 5.3578547x23 + 08356891x1x5 + 37.293239x1 − 40792.141
subject to:

g1(X) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(X) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(X) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(X) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(X) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(X) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0 (23)

With boundary conditions 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, and 27 ≤ xd ≤
45(d = 3, 4, 5). The optimum objective value is f (X∗) = −30665.539.

Table 4 shows the superior performance of all algorithms in the g04 function. The
ATMES and εF3EA have had the best performance compared to other algorithms.

4.5 G05 Benchmark Function

The G05 benchmark is a cubic function in which ρ = 0. According to (24), this func-
tion has two linear inequalities constraints and three nonlinear equalities constraints.
The equation of g05 has defined as follows:

Minimize f (X) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32

subject to:

g1(X) = −x4 + x3 − 0.55 ≤ 0

g2(X) = −x3 + x4 − 0.55 ≤ 0
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h3(X) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(X) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(X) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0
(24)

With boundary conditions 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55,
and −0.55 ≤ x4 ≤ 0.55. The best known objective value is f (X∗) = 5126.49671.

In Table 5, the comparative results of all the algorithms have been shown for
solving the g05 problem. These results show that all algorithms have had good
results that except the SAFFa, the COPSO, and the SMES, other algorithms have
reached the optimal solution.

4.6 G06 Benchmark Function

The g06 is a kind of cubic function with two decision variables and two nonlinear
inequalities constraints. Estimating the ratio between the feasible region and the
entire search space is 0.0066. in this function, all constraints are active. Its equation
is based on (25):

Minimize f (X) = (x1 − 10)3 + (x2 − 20)3

subject to:

g2(X) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0 (25)

With boundary conditions 13 ≤ x1 ≤ 100, and 0 ≤ x2 ≤ 100. The optimum
objective value is f (X∗) = −6961.8139.

Given that the g05 is two dimensions function and it has only two constraints,
the comparative results are not a significant difference according to the results of
Table 7. COPSO, αSimplex, ECHT-EP2, and εF3EA have had the best values. The
values of AV and WV are similar to each other in four functions. But in terms of
STD, the COPSO is outperformed.

4.7 G07 Benchmark Function

According to (26), it is obvious that g07 has 10 decision variables and is quadratic.
The value of ρ is 0.0003. It has three linear inequalities constraints and five nonlinear
inequalities constraints. The constraints g1, g2, g3, g4, g5, and g6 are active.

Minimize f (X) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2+
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(x5 − 3)2 + 2(x6 − 1)2 + 5x27
+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(X) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(X) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(X) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(X) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(X) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(X) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(X) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0

g8(X) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0 (26)

where −10 ≤ xd ≤ 10 (d = 1, . . . , 10). The global objective value is f (X∗) =
24.3062.

According to the results of Table 7, the best performance is related to εF3EA.
Because the standard deviation of εF3EA is smaller than other algorithms that means
that the best values have been generated close to the best solution.

4.8 G08 Benchmark Function

This benchmark function is nonlinear and it has only two nonlinear inequalities
constraints. The number of variables is two and the value of ρ is equal to 0.8560.
The g08 equation is as (27):

Minimize f (X) = − sin3(2πx1) sin(2πx2)

x31(x1 + x2)

subject to:

g1(X) = x21 − x2 + 1 ≤ 0

g2(X) = 1 − x1 + (x2 − 4)2 ≤ 0 (27)

where 0 ≤ xd ≤ 10(d = 1, 2). The global objective value is f (X∗) = −0.095825.
Given that the lownumber of constraints and decision variables, the g08 is a simple

function. So, according to Table 8, there are no significant differences between the
results of algorithms, and all algorithms have found the optimal solution.
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4.9 g09 Benchmark Function

The g09 function is Polynomial and has seven decision variables. The value of ρ is
0.5121 and it has only two nonlinear inequalities constraints. The constraint g1 and
g4 are active which its equation is as (28):

Minimize f (X) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65

+7x26 + x47 − 4x6x7 − 10x6 − 8x7

subject to:

g2(X) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0

g3(X) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0

g4(X) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0 (28)

where −10 ≤ xd ≤ 10 (d = 1, . . . , 7). The global objective value is f (X∗) =
680.630057.

The results of Table 9 show that most algorithms have found the optimal solution
and SAFFa has had the worst performance. In terms of STD, the εF3EA has had the
best result among all algorithms.

5 Conclusion

In this paper, an extended epsilon constrained handling version of F3EA algorithm
was proposed to handle constraints that was called εF3EA. The F3EA algorithm
is classified into the population-based algorithm which simulates battleground and
mimics the F3EA targeting process of object or installation selection for destruction
in the warfare. The εF3EA algorithm was used for solving constraint optimization
problems with ε constraint handling techniques. In this way, this algorithm was
divided into nine steps of generating random solutions, initialization of the ε level,
ranking the solutions, the Fix step, the Find step, the Finish step, the Exploit step, the
Analyze step, and checking stopping criteria. For solving the constraint optimization
problem, The lexicographic order was used when ε > 0 in which constraint viola-
tion precedes the objective value. That way if ∅(x) ≤ ε then the objective value was
compared and if the better solution was found, it was replaced. In each iteration, the
ε value was decreased at a constant rate. With this process, in the last iterations, the
solutions without constraint violation were accepted and then in terms of objective
function values, the solutions are accepted. In order to evaluate the efficiency of the
εF3EA algorithm, nine constraint benchmark functions were used. Functions cate-
gories included three quadratic functions, two nonlinear functions, two polynomial
functions, and two cubic functions. In addition, the εF3EA algorithm was compared
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with eight other algorithms, which included SAFFa, COPSO, ISR, ATMES, SMES,
ECHT-EP2, HCOEA, and αSimplex. According to the results, the εF3EA showed the
fast convergence toward optimum solutions and it provided the appropriate results
on all benchmark functions.
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