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Preface

Several nature-inspired metaheuristic methods have been developed in the past few
years and can be categorized into Evolutionary Optimization and Swarm Intelligence
methods. The notable examples of Evolutionary Optimization methods are Genetic
Algorithms, Evolutionary Strategy, and Differential Evolution. The Swarm Intelli-
genceMethods areAntColonyOptimization, Particle SwarmOptimization,Artificial
Bee Colony, Grey Wolf Optimizer, and krill herd. Besides biology, there are other
sources of inspiration for thesemethods, such as art-inspiredmethods (e.g., Harmony
Search and Interior Search) and socio-inspiredmethods (e.g., Cohort Intelligence and
League Championship Algorithm). These methods can efficiently handle uncon-
strained problems; however, their performance is severely affected when applied
to solve constrained problems. So far, several variations of penalty-based methods,
feasibility-based methods, as well as repair-based approaches have been developed.
In addition, several problem-specific heuristics have also been developed. The perfor-
mance of the penalty-based methods is necessarily driven by the choice of the
penalty parameter which necessitates a significant number of preliminary trials. The
feasibility-based approaches are computationally quite intensive as iterative compar-
ison among the available solution is required and then the solution closer to the
feasible region is accepted. Furthermore, the repair approaches necessitate the func-
tion to be evaluated along with the constraints and then the solution is modified. This
approach may become tedious with an increase in constraints. The development of
strong, robust, and generalized constraint handling techniques is verymuchnecessary
to efficiently solve complex real-world problems. This edited book intends to provide
a platform to discuss the state-of-the-art developments associated with generalized
constraint handling approaches/techniques for the metaheuristics and/or the appli-
cations being addressed. The book also intends to discuss the core ideas, underlying
principles, mathematical formulations, experimentations, solutions, and reviews and
analysis of the different constraint handling approaches. It may provide guidelines
to the potential researchers about the choice of such methods for solving a particular
class of problems at hand. The contributions of the book may further help to explore
new avenues leading toward multidisciplinary research discussions.

Every chapter submitted to the book has been critically evaluated by at least two
expert reviewers. The critical suggestions by the reviewers helped and influenced
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the authors of the individual chapter to enrich the quality in terms of experimenta-
tion, performance evaluation, representation, etc. The book may serve as a valuable
reference for the researchers working in the domain of metaheuristics for solving
constrained problems.

The book is divided into two sections. The review of state-of-the-art constraint
handling methods, testing, validation, etc., are discussed in Section I. The applica-
tions of themetaheuristics incorporatedwith different constraint handling techniques
are discussed in Section II of the book.

Section I: Constraint Handling Methods, Validation,
and Reviews

Chapter “The Find-Fix-Finish-Exploit-Analyze (F3EA) Meta-Heuristic Algorithm
with an Extended Constraint Handling Technique for Constrained Optimization”
presents a constrained version of Find-Fix-Finish-Exploit-Analyze (F3EA) meta-
heuristic algorithm. The epsilon (E) constrained handling technique is employed to
handle constraints within the body of F3EA metaheuristic algorithms and hence the
method is referred to as EF3EA. The performance and efficiency of the approach
are validated by solving nine well-known constraint benchmark functions and engi-
neering design optimization problems. The algorithm is compared with eight other
contemporary algorithms, which include SAFFa, COPSO, ISR, ATMES, SMES,
ECHT-EP2, HCOEA, and αSimplex. The solutions highlighted that the EF3EA
outperformed all of them. The chapter also underscores the prominent characteristics
and steps of the F3EA, such as Find step introducing a new individual selectionmech-
anism via imitating the military radar detection rationale; the Fix step exhibits how
the reality of the target monitoring process can be transformed to a single variable
constrained optimization problem to obtain a local search operator; the Finish step
generates new solutions via a new adaptive mutation operator which is developed
through the simulation of projectile motion using Physics equations; the Exploit step
tries to take over opportunities presented by the generated potential solution and
other members of the population; finally, in Analyze step, the population is updated.

Chapter “An Improved Cohort Intelligence with Panoptic Learning Behavior
for Solving Constrained Problems” presents a modified version of Cohort Intelli-
gence (CI) algorithm referred to as CI with Panoptic Learning (CI-PL). The novel
PL approach makes every cohort candidate learn the most from the best candidate;
however, it does not completely ignore the other candidates. The PL is assisted with
a new sampling interval reduction method based on the standard deviation between
the behaviors of the candidates. The chapter presents CI-PL solutions to a variety
of well-known sets of unconstrained and constrained test problems as well as real-
world problems. The approach produced competent and sufficiently robust results
solving unconstrained, constrained test, and engineering problems. The analysis of
the algorithmic parameters has been discussed using an illustration. Itmay also layout
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possible guidelines for parameter selection for other similar problems. The chapter
also discusses associated strengths, weaknesses, and possible real-world problem
areas where the algorithm can be applied.

Chapter “Nature-Inspired Metaheuristic Algorithms for Constraint Handling:
Challenges, Issues, and Research Perspective” reviews the importance of meta-
heuristic algorithms, their classification, various constraints handling techniques,
applications, etc. The applications reviewed are associated with healthcare, data
clustering, power system problem, prediction, etc. The metaheuristics are listed
with associated strong application domains considering no-free-lunch approach. The
constraint handling techniques such as penalty-based methods have been reviewed
associated with the listed metaheuristics.

Chapter “Experimental Comparison of Constraint Handling Schemes in Particle
Swarm Optimization” highlights the performance of metaheuristics degenerates
when applied for solving constrained problems and further underscores the need
for the development of constraint handling techniques. The chapter examines the
performance ofwell-knownParticle SwarmOptimization (PSO) algorithmon several
benchmarks and constrained problems. In this work, six different penalty function-
based approaches are utilized to incorporate the effects of constraints into the PSO
algorithm, viz. variants of static penalty method, death penalty method, adaptive
penalty, annealing-based penalty function, etc. These approaches are tested for
their effectiveness by solving 12 constrained test problems. The results and asso-
ciated analysis throw light on the suitability of a particular penalty function-based
approaches for solving a certain type of constraints using PSO algorithm.

Similar to Chapter “Experimental Comparison of Constraint Handling Schemes
in Particle Swarm Optimization”, the necessity of specialized techniques as well as
algorithmic modifications for the algorithm like PSO when dealing with constrained
problems is also underscored in Chapter “Online Landscape Analysis for Guiding
Constraint Handling in Particle Swarm Optimisation”. Furthermore, it is highlighted
that the problem type necessarily decides the choice of constraint handling technique.
The pool of such techniques includes death penalty, weighted penalty, and variants of
Deb’s feasibility ranking. A landscape-aware approach is employed which exploits
the rules derived from offlinemachine learning on a training set of problem instances.
These rules drive the mechanism to prefer a specific one or switch between certain
constraint handling techniques during PSO search.

Chapter “On the use of Gradient-Based Repair Method for Solving Constrained
Multiobjective Optimization Problems—A Comparative Study” discusses the
detailed analysis of the effect of repairing infeasible solutions using the gradient
information for solving constrained multiobjective problems by employing multi-
objective evolutionary algorithms. The gradient-based repair method is combined
with a variety of classical constraint handling techniques, viz. constraint dominance
principle, penalty function, C-MOEA/D, stochastic ranking, and -constrained and
improved -constrained methods. The proposed repair approach exploits the gradient
information derived from the constraint set to systematically guide the infeasible
solution toward the feasible region. The approach is validated by solving 29 state-
of-the-art problems with equality and inequality constraints. The performance of the
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gradient repair approach is characterized by the robustness of the solutions as well
as well-diversified Pareto optimal solutions.

Chapter “MAP-Elites for Constrained Optimization” evaluates the applicability
of MAP-Elites to locate the constrained search spaces by mapping them into feature
spaces where each feature corresponds to a different constraint. The approach is
validated by solving a large set of benchmark problems with a variety of dimension-
alities. The approach is characterized by ease of adaptability to include customized
evolutionary operators. Furthermore, it does not necessarily need explicit constraint
handling techniques. Moreover, the approach preserves diversity, eases the definition
of custom tolerance levels for each constraint and illuminates the search space as it
provides additional information on the correlation between constraints and objective.
It facilitates the interpretation of results through an intuitive visualization.

Section II Applications of Constraint Handling Methods

Chapter “Optimization of Fresh Food Distribution Route Using Genetic Algorithm
with the Best Selection Technique” addresses a methodology to resolve a capaci-
tated model for the food supply chain. The model is a constrained mixed-integer
nonlinear programming problem that minimizes the total cost under overall quality
level constraints, due to the perishable nature of the products, and the other impor-
tant such as demand, capacity, flow balance, other costs, etc. The associated practical
application of the model is solved using an exact method based on the Branch-&-
Bound technique and Genetic Algorithms with different selection methods. The
selection methods chosen are tournament selection, stochastic sampling without
Replacement and Boltzmann tournament selection. The performance of each selec-
tion method is established and validated using statistical analysis. It is important to
note that the quality of the set of associated parameters is chosen using the Taguchi
method.

The optimal selection of the cutting conditions associated with any of the material
removal processes is quite important in the view of efficiency of the process and cost
reduction. This is particularly important for the multi-pass face milling operations
as it a highly complex problem both theoretically and practically. Chapter “Optimal
Cutting Parameters Selection of Multi-Pass Face Milling Using Evolutionary Algo-
rithms”, presents various evolutionary optimization techniques such asGeneticAlgo-
rithm, hybrid Simulated Annealing Genetic Algorithm are employed to minimize
the unit production cost of multi-pass face milling operations while considering
several technological constraints. These constraints are associated with machining
speed, feed rate, depth of cut, machining force, cutting power, surface roughness, etc.
Similar to Chapter “Optimization of Fresh Food Distribution Route Using Genetic
Algorithmwith theBest SelectionTechnique”, the algorithmic parameters are chosen
using Taguchi method.

Chapter “Role of Constrained Optimization Technique in the Hybrid Cooling
of High Heat Generating IC Chips Using PCM-Based Mini-channels” highlights the
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need of temperature control of the electronic components. This is because they are
becoming very important in day-to-day practices and the shrinkage of their size has
led to the reduction in the effective area available for the heat dissipation. The study
emphasizes on the transient numerical simulations on seven asymmetric IC chips kept
next to the Left-Right-Bottom-Top and Left-Right-Bottom mini-channels fabricated
on the SMPS board using the three different phase change materials. Constrained
Genetic Algorithm is used to identify the optimal temperature of the configuration.
In addition, a sensitivity analysis is also carried out to critically study the effect of
the constraints on the optimal temperature of the IC chips.

Chapter “Maximizing Downlink Channel Capacity of NOMA System Using
PowerAllocationBased onChannel CoefficientsUsing Particle SwarmOptimization
and Back Propagation Neural Network” presents an attempt made to demonstrate the
applicability of the machine learning approaches using Particle SwarmOptimization
and Back Propagation Neural Network for the power allocation in Non Orthogonal
Multiple Access (NOMA) downlink scenario. The Particle Swarm Optimization is
employed to allocate the power such that total sum rate is maximized and Back
Propagation Neural Network is used to make the results obtained using the earlier
method more efficient constructing the relationship between input and target values.
The work is practically important as NOMA is one of the entities of the 5G wireless
communication especially when dealing with the channel capacity improvement.

Chapter “Rank Reduction and Diagonalization of Sensing Matrix for Millimeter
Wave Hybrid Precoding Using Particle SwarmOptimization” highlights the need for
estimation of the channel formm-Wavewireless communication systemswith hybrid
precoding as the number of radio frequency chains is much smaller as compared to
the number of antennas. The chapter demonstrates the methodology of using Particle
Swarm Optimization to design the precoder and decoder of the Beam space channel
modelwith the prior knowledge of associatedAngle of arrival andAngle of departure.
The algorithm yielded the results with high accuracy and speed for a large number
of transmitter and receiver antennas.

Chapter “Comparative Analysis of Constraint Handling Techniques Based
on Taguchi Design of Experiments” provides a detailed analysis of the effect
of constraint handling techniques such as penalty functions, repair methods, and
decoders have on a steady-state genetic algorithm. The performance of every
approach is validated by solving several instances of the tourist trip design problem.
Importantly, the chapter gives the mapping of the knapsack problem to solve the
tourist trip design problem. The chapter in details describes the penalty functions,
repair methods, and decoders highlighting their key advantages and limitations. It is
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worth mentioning that the differences among the constraint handling techniques are
tested and validated using the Taguchi design of experiments.
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The Find-Fix-Finish-Exploit-Analyze
(F3EA) Meta-Heuristic Algorithm
with an Extended Constraint Handling
Technique for Constrained Optimization

Ali Husseinzadeh Kashan, Alireza Balavand, and Somayyeh Karimiyan

Abstract As a novel population-based evolutionary algorithm, the Find-Fix-Finish-
Exploit-Analyze (F3EA)meta-heuristic algorithm has been introduced for numerical
optimization which develops new selection operators, a new parameter-free muta-
tion operator, and a local search operator. The algorithm takes the surface of the
objective function as the battleground and mimics the F3EA targeting process of
object or installation selection for destruction in the warfare. It performs the main
steps of Find-Fix-Finish-Exploit-Analyze (F3EA) in an iterativemanner, wherein the
Find step introduces a new individual selection mechanism via imitating the military
radar detection rationale; in the Fix step, it is shown that how the reality of the target
monitoring process can be transformed to a single variable constrained optimization
problem to obtain a local search operator; In the finish step, new solutions are gener-
ated via a new adaptive mutation operator which is developed through the simulation
of projectile motion using physics equations; in the exploit step it tries to take over
opportunities presented by the generated potential solution and other members of
the population; Finally, in analyze step, the population is updated. In this chapter, an
extended epsilon constrained handling technique is used to handle constraints within
the body of F3EA meta-heuristic algorithms that is called the εF3EA. In order to
evaluate the efficiency of the F3EA algorithm, nine constraint benchmark functions
are used. In addition, the εF3EA algorithm is compared with eight other algorithms,
which included SAFFa, COPSO, ISR, ATMES, SMES, ECHT-EP2, HCOEA, and
αSimplex. Results indicate that the algorithm is the best of all on benchmark test
problem instances.
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1 Introduction

Calculation of the optimum solutions for most of the optimization problems is a
hard and complex process. In practice, these solutions are achieved by heuristics
and meta-heuristic algorithms. Metaheuristic algorithms cover a set of approximate
optimization techniques that have been developed for the past three decades. Meta-
heuristic methods find acceptable solutions in a reasonable time for engineering and
science NP-hard problems. Unlike the exact optimization algorithm, metaheuristic
algorithms do not guarantee that obtained solutions are optimum solutions, but most
of the time, near the optimum solutions, are found by them. On the other hand, an
optimization algorithm provides satisfactory results, and the same algorithm may
have poor performance in other problems [1] especially in the constrained optimiza-
tion problems. Most real-world optimization problems have constraints and usually,
their decision variables are more than classic functions that increase the dimension of
the problem. When constraints are added to the problem, the solution space has been
more limited, and feasible solution space will be changed. So, they are more complex
rather than classic optimization problems which are a challenge for meta-heuristic
algorithms in recent years [2–6]. Constrained optimization problems usually simu-
late real-world optimization problems. Different categories of algorithms have been
performed to solve the constrained optimization problem with different methods. A
constrained optimization problem with inequality constraints, equality constraints,
lower bound constraint, and upper bound constraint is shown as (1).

min f (x)

s.tgi (x) ≤ 0i = 1, . . . , q

hi (x) = 0i = q + 1, . . . ,m

li ≤ xi ≤ ui i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) is a vector of the decision variables, f (x) is an objec-
tive function, gi (x) ≤ 0, hi (x) = 0 are q inequality constraints and m − q equality
constraints,. The constraints in optimization problems increase the complexity and no
longer a combination of some solutions is not feasible. There are a lot of constrained
optimization problems in the field of engineering design [7–11]. The handling
constraints in the constrained optimization problems is very important. Because
choosing the appropriate Bound Constraint Handling Method (BCHM) makes that
the optimization algorithms achieve the most efficiency in most of the problems.
So, different methods have been proposed in the field of BCHM [12]. There are
three methods with different approaches to handling constraints in the constrained
optimization problem [13]. In the following, these methods will be explained.
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Penalty functions: One of these methods includes the penalty function method
[14, 15]. The basic idea of the penalty function is to transfer constraints to the
objective function with a penalty factor and transform the optimization problem into
an unconstrained problem [15]. According to (2), in the penalty function method, the
values of constraints violation

(
vgi , vh j , vkl

)
are added to the objective functions and

as many as the constraints violation are higher, the value of the objective function
will be increased. It is important to mention that determining the penalty factor is an
optimization problem and depends on the problem [15].

min f (x)

s.t.

gi (x) ≥ g0 ∀i, vgi = max

(
1 − gi (x)

g0
, 0

)

h j (x) ≤ h0 ∀i, vh j = max

(
h j (x)

h0
− 1, 0

)

kl(x) = k0 ∀, kvkl =
∣∣∣
∣
kl(x)

k0
− 1

∣∣∣
∣ (2)

The basic idea of the penalty function is shown in (3). According to this equation,
the value of vgi is added to f (x) when the gi (x) ≥ g0, vh j is added to f (x) when
h j (x) ≤ h0, and when kl(x) ≥ k0, vkl will be added to f (x). How adding the
penalty function to the objective function is formulated based on (2). One of the
critical challenges in the penalty function is how determining the appreciated value
of r [15]. The value of r is changed for each constrained optimization problem and
determined to appreciate the value of r can have a great impact to reach the optimum
value of decision variables.

v(x) = f (x) +
∑

∀i
ri × vgi +

∑

∀ j

r j × vh j +
∑

∀l
rl × vkl (3)

Repair methods: in this method, a generated feasible solution is replaced instead
of an infeasible solution. After generating infeasible solutions, this solution has been
repaired and replaced instead of an infeasible one.

Feasibility preserving genetic operators: in this method, the operators of the
genetic algorithm always generate feasible individuals. According to this method,
the mutation and crossover are done in a feasible area of solution space and as a
result, generated solutions are feasible.

The first idea of handle constraint was proposed in the form of the penalty function
method in the DE algorithm. There are different types of penalty functions [16]. The
death penalty, quadratic penalty, and substitution penalty. In the death penalty, a
constant large value is added to the infeasible individual that makes the value of
fitness increase. While the square of constraints violations and fitness value of the
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repaired solution is the fitness of additive quadratic penalty method. The last method
is the substitution quadratic penalty which is the combination of the death penalty
and quadratic penalty. The feasibility is not computed for the feasible individual.
Instead, the fitness values are the sum of the squared distance from the exceeded
bound and a large value [12].

In this paper, an extended epsilon constrained handling technique is proposed to
handle constraints within the body of F3EA meta-heuristic algorithm that is called
εF3EA. In the epsilon constraint method, the violation is defined as the sum of all
the constraint violations ∅(x) [17] based on the Eq. (4):

∅(x) =
∑

∀i
vgi

p +
∑

∀ j

vh j
p +

∑

∀l
vkl

p (4)

The εF3EA includes several steps of generating random solutions, initialization
of the ε level, ranking the solutions, the fix step, the Find step, the Finish step, the
Exploit step, the Analyze step, and checking stopping criteria. In generating random
solutions step, random solutions are generated with uniform distribution and create
the initial population. In the initialization of the ε level step, the ε value is defined. In
the ranking of the solutions, the population is sorted based on constraint violations
and function values. The Fix step, the Find step, the finish step, and the exploit step
are implemented based on the body of the F3EA algorithm. In the analyze step,
lexicographic order is used which will be explained. So, the proposed algorithm
will be described in Sect. 3. In Sect. 4, the results of using the proposed method
are presented on some real-world problems and will be compared with state of art
methods, aswell as the εF3EAalgorithm is examined, and the conclusion is presented
in Sect. 5.

2 Background

In the ε constraint handling method, the constraint violation is defined based on the
sum of all violations of constraint in which if violation > ε, the solution is not
feasible and the worth of this point is low. In this method, ∅(x) precedes f (x) which
means the importance of feasibility is more than the objective function value of f (x).
The ε levels have adjusted the value of precedence.

2.1 ε Constrained Method

Assume that f1, f2 are the values of the objective function and ∅1, ∅2 are constraint
violations based on solution x1 and x2. ε levels comparison for ε > 0 in ( f1, ∅1),
( f2, ∅2) are defined as (5) and (6):
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( f1,∅1) <ε ( f2,∅2) ↔
⎧
⎨

⎩

f1 < f2, if ∅1,∅2 ≤ ε

f1 < f2, if ∅1 = ∅2

∅1 < ∅2, otherwise
(5)

( f1,∅1) ≤ε ( f2,∅2) ↔
⎧
⎨

⎩

f1 ≤ f2, if ∅1,∅2 ≤ ε

f1 ≤ f2, if ∅1 = ∅2

∅1 < ∅2, otherwise
(6)

The lexicographic order is used when ε = 0, ε < 0 and ε ≤ 0 in which
constraint violation ∅(x) precedes the objective value of f (x). The ordinal compar-
isons between function values are used in the case of ε = ∞. In the constraint
handling method, the constraints transfer into objective function and a constrained
optimization problem converts into an unconstrained optimization problem using ε

level comparisons. So, constrained optimization problems can be solved by incorpo-
rating ε level comparisons. Ordinary comparisons with ε level comparisons are used
for comparing until the value of ε converges to 0. By reaching ε to 0, the feasible
solution has been reached. On the other hand, if the violation of a point is greater
than ε, the point is infeasible and its worth is low.

The ε constrained optimization method converts a constrained optimization
problem into an unconstrained one with ε level comparisons that use order rela-
tion for replacing. An optimization problem based on ε a constrained optimization
method is defined as (7):

minimize f (x)

subjectto ∅(x) ≤ ε (7)

It is obvious that by converging ε to 0, the optimal solution obtained as well as in
the penalty function method the optimal solution obtained by increasing the penalty
coefficient to infinity.

2.2 The F3EA Algorithm

In the field of population-based evolutionary algorithm, the Find-Fix-Finish-Exploit-
Analyze (F3EA) meta-heuristic algorithm has been introduced for numerical opti-
mizationwhich develops new selection operators, new parameter-freemutation oper-
ator, and a local search operator [6]. The algorithm takes the surface of the objective
function as the battleground and mimics the F3EA targeting process of object or
installation selection for destruction in the warfare. This algorithm includes five
main steps of the Find, Fix, Finish, Exploit, and Analyze step. The Find step mimics
based on the object detection process follow by military radars. In the Fix step, the
highest peak is found by a local heuristic method. In the Finish step, the intended
target is destroyed. In the Exploit step contains information gathering from the target
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area. Finally, the Analyze step relates to the results of the attack on the target
to identify more targeting opportunities [18]. In this chapter, an extended epsilon
constrained handling technique is used to handle constraints by using F3EA meta-
heuristic algorithm that is called εF3EA. In the following, the structure of εF3EA
will be explained.

3 The F3EA Adapted to Constrained Optimization

The F3EA is a stochastic direct search method based on the population. F3EA has
been successfully performed in some nonlinear, multimodal, and constrained engi-
neering design problems. The results have been shown that F3EA is fast and has
good convergence in these test functions [6]. F3EA has used the penalty function
method to solve the constrained optimization problem so far. In this paper to develop
the performance of F3EA for solving the constrained optimization problem, epsilon
constrained handling with an automatic update of ε is proposed. The algorithm of
the εF3EA is as follows:

Step 1: generating random solutions bywhich the initial population is randomly
generated.

Step 2: initialization of the ε level by which an initial ε level is generated as ε(0).
Step 3: ranking the solutions. by which the best members of the population are

selected based on the best value of the constraint violations and objective function
value, and the rank of individuals is defined by the ε level comparison.

Step 4: the Fix step. In this step, the highest peak is found by f minbnd function
which is a function for optimization in the Matlab toolbox. In order to destroy the
military tank, the projectile launch anglemust be located in the highest peak position.
So, the highest peak position is found by f minbnd as a local optimum.

Step 5: the Find step. In this step, a new solution is generated as pti (solution i at
iteration t) which temporarily considers an artificial radar and other solutions (ptj )
consider military facilities that may or may not be detected by the artificial radar.
Then the distance between pti parent solution i at iteration t and child solution j at
iteration t (ptj ) is calculated as Eq. (8):

Rt
i j = ∣

∣ f
(
pti

) − f
(
ptj

)∣∣ (8)

This equation f
(
pti

)
shows the value of the objective function of pti and f

(
pti

)

shows the value of the objective function of ptj that show in Eq. (9).

Rt
maxi j = (

f tmax − f tmin

) × u
(
pti

) × 4

√√√√

(
1 − u

(
ptj

))
exp

(
−au

(
ptj

))

u
(
pti

) , i �= j. (9)



The Find-Fix-Finish-Exploit-Analyze (F3EA) … 7

where Rt
maxi j is themaximum range and based on the above equation, if Rt

i j ≤ Rt
maxi j ,

ptj is detectable by pti . Among detectable solutions pti , one of the solutions will be
selected in the Finish step.

Step 6: theFinish step. In this step, new solutions are generated via a new adaptive
mutation operator which is developed through the simulation of projectile motion
using physics equations. Assume that pti impersonates the position of a projectile
launcher and ptj shows the position of a target facility. Et

i is generated by pti and
ptj which is considered as the explosion position of the artificial projectile launched
from pti toward ptj . How generating Et

i is shown in Eq. (10).

Et
i = pti + x

(
T t
i j

)
(
ptj − pti

)

ptj − pti
+ z

(
T t
i j

) zti j
zti j

(10)

x
(
T t
i j

)
and z

(
T t
i j

)
are the projected explosion position on the x-axis and z-axis,

respectively, which is defined as Eqs. (11) and (12):

x
(
T t
i j

) = wt
xi j T

t
i j + mt

i j

(
vt
0i j cosαt

i j − wt
xi j

)(
1 − e

−T t
i j

/
mt

i j

)
(11)

z
(
T t
i j

) = wt
zi j T

t
i j − mt

i jw
t
zi j

(
1 − e

−T t
i j

/
mt

i j

)
(12)

Based on these equations, αt
i j is a lunch angel, vt

0i j is the initial velocity of the
projectile, the mass of projectile is mt

i j , wind vector is wt
i j , and zti j is perpendicular

to the hyper-line connecting pti and ptj . In order to the further investigate the Finish
step please refer to [6].

Step 7: the Exploit step. In the Exploit step, the information gathering from
the target area is done in this step. This step utilizes the result of the Finish step
because the result of the Finish step may have premature convergence. So, cti shows
the number of changes made in pti and truncated geometric distribution [19] is used
for simulating cti as Eq. (13):

cti =
[
ln

(
1 − (

1 − (
1 − qt

i

)n)
rand(0, 1)

)

ln
(
1 − qt

i

)

]

, cti ∈ {1, 2, . . . , n} (13)

where qt
i < 1, qt

i �= 0. By the above equation, cti the number of dimensions of Et
i is

randomly selected which are assigned by Ut
i . U

t
i is the output of the Exploit step.

Step 8: Analyze step. In the Analyze step, the new solution is analyzed that way
a comparison between f

(
Ut

i

)
and f

(
pti

)
is performed and if f

(
Ut

i

)
is better than

f
(
pti

)
, f

(
Ut

i

)
will be replaced. In this step, the comparison between solutions is

based on two values of ∅(x) and f (x) value. Given that ∅(x) precedes f (x), So, at
first, the value of ∅(x) is checked and if the value of ∅(x) is zero, then the current
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solution is compared based on f (x) value. f
(
Ut

i

)
is replaced instead of Gt

best , if in
terms of violation and objective function value, f

(
Ut

i

)
is better than f

(
Gt

best

)
. The

process of replacing in this step is defined as (14) and (15):

( fi ,∅i ) <ε (Gbest ,∅best ) ↔
⎧
⎨

⎩

fi < Gbest ; i f ∅i ,∅best ≤ ε

fi < Gbest ; i f ∅i = ∅best

∅i < ∅best ; otherwise
(14)

( fi ,∅i ) ≤ε (Gbest ,∅best ) ↔
⎧
⎨

⎩

fi ≤ Gbest ; i f ∅1,∅2 ≤ ε

fi ≤ Gbest ; i f ∅1 = ∅2

∅i < ∅best , ; otherwise
(15)

In the following, the pseudocode of εF3EA will be explained based on Fig. 1.
In order to create an initial population of the F3EA, a set of random variables is

generated between the lower andupper bounds.Given that feasibility always precedes
objective function value, at first the constraint violation of the current population is
checked and then the solution is compared based on objective function value. If
the constraint violation is smaller than the epsilon value and the objective function
value is smaller than the global best, the current solution is replaced as shown in
(15), the global best solution is updated and the algorithm enters the main loop.

1- generate a set of initial random population and set initial parameters 
2- if constraint violation<epsilon threshold 
3-    if objective function value<global best value 
4-        update global best 
5- calculate 
6- while FE<FEmax 
7-     perform the fix step 
8-         if constraint violation<epsilon threshold 
9-             if objective function value<global best value 
10-                 update global best 
11-    perform the find step 
12-       calculate  and 
13-    for offspring=1:
14-        perform the finish step 
15-            calculate 
16-        perform the exploit step 
17-            perform crossover methods and generate offspring 
18-                compare offspring with their parent in analyze step 
19-                    if constraint violation<epsilon threshold 
20-                          if objective function value<global best value 
21-                              update global best 
22-    end for 
24-    update epsilon threshold 
25- check stopping criteria 
26-     if stopping criteria has not been met 
27-        return to line 7 
28-        save results 
28-     else 
29-         break 

Fig. 1 The pseudocode of εF3EA
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In the Fix step, the new solution is generated based on f minbnd [20] function
that this function is one of the classic optimization methods available in the Matlab
optimization toolbox.After generating a new solution in the Fix step, the feasibility of
the solution is checked and this solution is replaced global best if the better solution is
found based on (15). The values of Rcv

maxi j and Rof v
maxi j are calculated in the Find step.

In original paper of F3EA Rcv
maxi j is calculated for all population based on Eq. (9),

but in εF3EA approach the constraint violation (cv) and objective function value
(of v) are calculated for all solutions in population, therefore, the values of Rcv

maxi j

and Rof v
maxi j are calculated as follow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rof vmaxi j =
(
f tmax − f tmin

)
× u

(
ptobvi

)
× 4

√√
√√

(
1−u

(
ptobvj

))
exp

(
−au

(
ptobvj

))

u
(
ptobvi

) , i �= j.i f cv < ep

Rcvmaxi j =
(
cvtmax − cvtmin

)
× u

(
ptcvi

)
× 4

√√√
√

(
1−u

(
ptcvj

))
exp

(
−au

(
ptcvj

))

u
(
ptcvi

) , i �= j.i f cv > ep

(16)

According to Eq. (16), cvt
max and cvt

min are the maximum value of constraint
violation of population and the minimum value of constraint violation of population,
respectively. ptobvi is the value of the objective function of population ith and ptcvi is
the value of the constraint violation of population ith. In this approach, if constraint
violation (cv) of population ith is smaller than epsilon threshold (ep), the above
section of Eq. (16) is performed, otherwise, the bottom section is performed. Finding
detectable solutions is done in the Find step, that way if Rtof v

i j ≤ Rtof v
maxi j , p

t
j is

detectable by pti . This process is also performed based on Rcv
maxi j . Mutation is done in

the finish step. In this step to increase the exploitation power of εF3EA, the offspring
of each selected solution from the find step are generated. This idea is taken from
LCA [3]. In order to identify the number of offspring, the following Eq. (17) is used.

N0 = 2 × 0.1 × N (17)

As mentioned before in the εF3EA algorithm each solution is investigated by two
criteria of objective function value and constraint violation. This method has been
also used in the Finish step. That means all of the solutions are once compared based
on constraint violation and then are compared based on objective function value.
Thus, this process is one of the differences between εF3EA and F3EA. Generating
a new solution in the Finish step depends on pti , p

t
j . Assume that pti impersonates

the position of the projectile launcher and ptj simulates the position of a target
facility. Et

i is the position of explosion that has been thrown from pti toward ptj .

Let
[
pti , u

(
ptobvi

)]
,
[
pti , u

(
ptcvi

)]
,
[
ptj , u

(
ptobvj

)]
and

[
ptj , u

(
ptcvj

)]
. In order to

simulate the launch, it is needed to the inclination (βi j ), launch angle (βi j ), the
projectile initial velocity (v0i j ), and distance between pti and ptj . All of the Finish
stage has been explained in [6].

In the Finish step, the mutation is done based on Eq. (10) with the difference that
each parent has the number of N0 offspring. After generating Et

i in each iteration, the
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crossovermethod is done on Et
i in the exploit step. There are two kinds of crossover in

εF3EA that one of them is related to Eq. (13) and another crossover will be explained
in the following:

• To the number of population, a permutation vector was generated as (p).
• The first three members of p were chosen as x1, x2, x3 in each iteration of the

current population.
• xtap was created based on Eq. (18):

xt+1
ap =

(
x1,t .x2,t

)

x3,t
(18)

x1,t ، x2,t, and x3,t represent the first, second, and third members of the vector p in
the iteration t, respectively. Equation (18) improved the quality and diversity of the
solutions produced. In the exploit step for each parent, the N0 offspring are generated
by crossover methods and all of the offspring are compared with their parents. All of
the generated solutions are compared based on Eq. (15) in analyze step which means
at first, the constraint violation, and then the objective function value is checked. If
a solution is better than the global best, the global best is updated. Finally, the value
of epsilon becomes smaller in each iteration that the value of epsilon is calculated as
Eq. (19):

ε = ε ×
(
1 − FE

Fmax

)δ

(19)

According to Eq. (19), FE is the number of function evaluations, Fmax is the
maximum number of function evaluations and δ is a constant number and has been
considered 50. This process makes the value of epsilon is converged to zero that
means that in the initial iterations the solution with positive constraint violation is
accepted and as many as the algorithm approach the final iterations, the constraint
violation of all solution should be zero and the solution are compared based on
objective function value.

If the number of functions evaluation (FE) exceeds the maximum number of
functions evaluation (FEmax ), the algorithm is stopped.

4 Experiments

In this section, the εF3EA performs to evaluate the benchmark constrained opti-
mization problems. These benchmark functions include 13 well-studied problems
(g01–g09) of the CEC 2006 test suite [21], where we compare εF3EA with the
result of a study that has been written by Husseinzadeh Kashan [3]. In that study,
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the league champion algorithm (LCA) [22] has been compared with eight state of
the art algorithms. G01 to g09 has some features of the number of decision variables
(n), estimates the ratio between the feasible region and the entire search space (ρ),
the number of linear inequalities, the number of nonlinear inequalities, the number
of linear equalities, and the number of nonlinear equalities. In this study, the εF3EA
will be compared with eight other algorithms of SAFFa [23], COPSO [24], ISR [25],
ATMES [26], SMES [27], ECHT-EP2 [28], HCOEA [29], and αSimplex [30].

In order to solve the benchmark functions, it is necessary to explain that with
225,000 number of function evaluations, εF3EA almost finishes its search, since all
individuals converge to the global optimum with acceptable precision.

4.1 G01 Benchmark Function

According to (20), the objective function is a Quadratic function with 13 decision
variables. Estimating the ratio between the feasible region and the entire search space
(ρ) is 0.0111. The number of linear inequalities constraints is nine, this function does
not have the linear inequalities constraints, in nonlinear equalities constraints, and
nonlinear equalities constraints. Constraints of g1, g2, g3, g7, g8, and g9 are active.

Minimize f (X) = 5
4∑

d=1

xd − 5
4∑

d=1

x2d −
13∑

d=5

xd

subject to:

g1(X) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(X) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(X) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(X) = −8x1 + x10 ≤ 0

g5(X) = −8x2 + x11 ≤ 0

g6(X) = −8x3 + x12 ≤ 0

g7(X) = −2x4 − x5 + x10 ≤ 0

g8(X) = −2x6 − x7 + x11 ≤ 0

g9(X) = −2x8 − x9 + x12 ≤ 0 (20)

In Table 1, BV is the best value, AV is the average value, WV is the worst value
and STD shows the standard deviation value. The results of Table 1 show that there
is no significant difference between BV, AV, WV, and STD. The best result is related
to the εF3EA, SMES, COPSO, and SAFFa algorithms.
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4.2 G02 Benchmark Function

This function is nonlinear which has 20 variables based on (21). The value of ρ is
99.8474. The number of linear inequalities constraints, linear inequalities constraints,
nonlinear equalities constraints, and nonlinear equalities constraints are 1, 1, 0, 0,
respectively. The constraint g1 is close to being active.

Minimize f (X) = −
∣∣∣∣
∣

(∑n

d=1
cos4(xd) − 2

∏n

d=1
cos2(xd)

)/√∑n

d=1
dx2d

∣∣∣∣
∣

subject to:

g1(X) = 0.75 −
n∏

d=1

xd ≤ 0

g2(X) =
n∑

d=1

xd − 0.75n ≤ 0 (21)

where n = 20 and 0 ≤ xd ≤ 1. The best known objective value is f (X∗) =
−0.80361910412559.

The results in Table 2 show that the COPSO, ISR, αSimplex, and ECHT-EP2
have had the best value among the algorithms. Whatever the value of AV, WV, and
STD is less, it means that the performance of the algorithm is better. Accordingly,
in terms of the AV, WV, and STD, the εF3EA has had the best values among eight
other algorithms.

4.3 G03 Benchmark Function

The g03 function is Polynomial with 10 decision variables in which the value of ρ is
zero. It has only one equality nonlinear constraints. The equation of g03 is as (22):

Minimize f (X) = −(
√
n)n

n∏

d=1

xd

subject to:

h(X) =
n∑

d=1

x2d − 1 = 0 (22)

where n = 10 and 0 ≤ xd ≤ 1 (d = 1, . . . , n). The global objective value is
f (X∗) = −1.
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Given that the g03 function has less complexity compared to other benchmarks,
the difference values between functions are not significant based on the results of
Table 3. But in terms of the STD, the εF3EA has had the best performance compared
to other results in this table and it means that in all iterations, the εF3EA has reached
the optimal solution.

4.4 G04 Benchmark Function

The g04 function is quadratic with five decision variables. Estimating the ratio
between the feasible region and the entire search space (ρ) is 52.1230. There are
only six nonlinear equalities constraints. Constraints g1 and g6 are active which its
equation is based on the (23):

Minimize f (X) = 5.3578547x23 + 08356891x1x5 + 37.293239x1 − 40792.141
subject to:

g1(X) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(X) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(X) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(X) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(X) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(X) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0 (23)

With boundary conditions 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, and 27 ≤ xd ≤
45(d = 3, 4, 5). The optimum objective value is f (X∗) = −30665.539.

Table 4 shows the superior performance of all algorithms in the g04 function. The
ATMES and εF3EA have had the best performance compared to other algorithms.

4.5 G05 Benchmark Function

The G05 benchmark is a cubic function in which ρ = 0. According to (24), this func-
tion has two linear inequalities constraints and three nonlinear equalities constraints.
The equation of g05 has defined as follows:

Minimize f (X) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32

subject to:

g1(X) = −x4 + x3 − 0.55 ≤ 0

g2(X) = −x3 + x4 − 0.55 ≤ 0



16 A. H. Kashan et al.

Ta
bl
e
3

C
om

pa
ra
tiv

e
re
su
lts

of
ε
F3

E
A
w
ith

ot
he
r
al
go
ri
th
m
s
in

g0
3
pr
ob
le
m

P
ar
am

et
er
s

SA
FF

a
C
O
PS

O
IS
R

A
T
M
E
S

SM
E
S

E
C
H
T-
E
P2

H
C
O
E
A

α
Si
m
pl
ex

ε
F3

E
A

B
V

−1
.0
00
00

−1
.0
00
00
5

−1
.0
01

−1
.0
00

−1
.0
00

−1
.0
00
5

−1
.0
00

−1
.0
00
50
01

−1
.0
00
0

A
V

−0
.9
99
90

−1
.0
00
00
5

−1
.0
01

−1
.0
00

−1
.0
00

−1
.0
00
5

−1
.0
00

−1
.0
00
50
01

−1
.0
00
0

W
V

−0
.9
99
70

−1
.0
00
00
3

−1
.0
01

−1
.0
00

−1
.0
00

−1
.0
00
5

−1
.0
00

−1
.0
00
50
01

−1
.0
00
0

ST
D

7.
5E

−0
5

3.
16
E
−0

7
8.
2E

−0
9

5.
9E

−5
2.
09
E
−4

0.
00
E
+
00

1.
3E

−1
2

8.
5E

−1
4

0



The Find-Fix-Finish-Exploit-Analyze (F3EA) … 17

Ta
bl
e
4

C
om

pa
ra
tiv

e
re
su
lts

of
ε
F3

E
A
w
ith

ot
he
r
al
go
ri
th
m
s
in

g0
4
pr
ob
le
m

Pa
ra
m
et
er
s

SA
FF

a
C
O
PS

O
IS
R

A
T
M
E
S

SM
E
S

E
C
H
T-
E
P2

H
C
O
E
A

α
Si
m
pl
ex

ε
F3

E
A

B
V

−3
06
65
.5
0

−3
06
65
.5
38

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
38

−3
06
65
.5
39

−3
06
65
.5
38

−3
06
65
.5
39

A
V

−3
06
65
.2
0

−3
06
65
.5
38

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
38
7

−3
06
65
.5
39

−3
06
65
.5
38

−3
06
65
.5
39

W
V

−3
06
63
.3
0

−3
06
65
.5
38

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
39

−3
06
65
.5
38

−3
06
65
.5
39

−3
06
65
.5
38

−3
06
65
.5
39

ST
D

4.
85
E
−0

1
0

1.
1E

−1
1

7.
4E

−1
2

0
0.
00
E
+
00

5.
4E

−7
4.
2E

−1
1

1.
00
42
E
−1

1



18 A. H. Kashan et al.

h3(X) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(X) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(X) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0
(24)

With boundary conditions 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55,
and −0.55 ≤ x4 ≤ 0.55. The best known objective value is f (X∗) = 5126.49671.

In Table 5, the comparative results of all the algorithms have been shown for
solving the g05 problem. These results show that all algorithms have had good
results that except the SAFFa, the COPSO, and the SMES, other algorithms have
reached the optimal solution.

4.6 G06 Benchmark Function

The g06 is a kind of cubic function with two decision variables and two nonlinear
inequalities constraints. Estimating the ratio between the feasible region and the
entire search space is 0.0066. in this function, all constraints are active. Its equation
is based on (25):

Minimize f (X) = (x1 − 10)3 + (x2 − 20)3

subject to:

g2(X) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0 (25)

With boundary conditions 13 ≤ x1 ≤ 100, and 0 ≤ x2 ≤ 100. The optimum
objective value is f (X∗) = −6961.8139.

Given that the g05 is two dimensions function and it has only two constraints,
the comparative results are not a significant difference according to the results of
Table 7. COPSO, αSimplex, ECHT-EP2, and εF3EA have had the best values. The
values of AV and WV are similar to each other in four functions. But in terms of
STD, the COPSO is outperformed.

4.7 G07 Benchmark Function

According to (26), it is obvious that g07 has 10 decision variables and is quadratic.
The value of ρ is 0.0003. It has three linear inequalities constraints and five nonlinear
inequalities constraints. The constraints g1, g2, g3, g4, g5, and g6 are active.

Minimize f (X) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2+
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(x5 − 3)2 + 2(x6 − 1)2 + 5x27
+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(X) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(X) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(X) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(X) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(X) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(X) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(X) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0

g8(X) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0 (26)

where −10 ≤ xd ≤ 10 (d = 1, . . . , 10). The global objective value is f (X∗) =
24.3062.

According to the results of Table 7, the best performance is related to εF3EA.
Because the standard deviation of εF3EA is smaller than other algorithms that means
that the best values have been generated close to the best solution.

4.8 G08 Benchmark Function

This benchmark function is nonlinear and it has only two nonlinear inequalities
constraints. The number of variables is two and the value of ρ is equal to 0.8560.
The g08 equation is as (27):

Minimize f (X) = − sin3(2πx1) sin(2πx2)

x31(x1 + x2)

subject to:

g1(X) = x21 − x2 + 1 ≤ 0

g2(X) = 1 − x1 + (x2 − 4)2 ≤ 0 (27)

where 0 ≤ xd ≤ 10(d = 1, 2). The global objective value is f (X∗) = −0.095825.
Given that the lownumber of constraints and decision variables, the g08 is a simple

function. So, according to Table 8, there are no significant differences between the
results of algorithms, and all algorithms have found the optimal solution.
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4.9 g09 Benchmark Function

The g09 function is Polynomial and has seven decision variables. The value of ρ is
0.5121 and it has only two nonlinear inequalities constraints. The constraint g1 and
g4 are active which its equation is as (28):

Minimize f (X) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65

+7x26 + x47 − 4x6x7 − 10x6 − 8x7

subject to:

g2(X) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0

g3(X) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0

g4(X) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0 (28)

where −10 ≤ xd ≤ 10 (d = 1, . . . , 7). The global objective value is f (X∗) =
680.630057.

The results of Table 9 show that most algorithms have found the optimal solution
and SAFFa has had the worst performance. In terms of STD, the εF3EA has had the
best result among all algorithms.

5 Conclusion

In this paper, an extended epsilon constrained handling version of F3EA algorithm
was proposed to handle constraints that was called εF3EA. The F3EA algorithm
is classified into the population-based algorithm which simulates battleground and
mimics the F3EA targeting process of object or installation selection for destruction
in the warfare. The εF3EA algorithm was used for solving constraint optimization
problems with ε constraint handling techniques. In this way, this algorithm was
divided into nine steps of generating random solutions, initialization of the ε level,
ranking the solutions, the Fix step, the Find step, the Finish step, the Exploit step, the
Analyze step, and checking stopping criteria. For solving the constraint optimization
problem, The lexicographic order was used when ε > 0 in which constraint viola-
tion precedes the objective value. That way if ∅(x) ≤ ε then the objective value was
compared and if the better solution was found, it was replaced. In each iteration, the
ε value was decreased at a constant rate. With this process, in the last iterations, the
solutions without constraint violation were accepted and then in terms of objective
function values, the solutions are accepted. In order to evaluate the efficiency of the
εF3EA algorithm, nine constraint benchmark functions were used. Functions cate-
gories included three quadratic functions, two nonlinear functions, two polynomial
functions, and two cubic functions. In addition, the εF3EA algorithm was compared
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with eight other algorithms, which included SAFFa, COPSO, ISR, ATMES, SMES,
ECHT-EP2, HCOEA, and αSimplex. According to the results, the εF3EA showed the
fast convergence toward optimum solutions and it provided the appropriate results
on all benchmark functions.
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An Improved Cohort Intelligence
with Panoptic Learning Behavior
for Solving Constrained Problems

Ganesh Krishnasamy, Anand J. Kulkarni, and Apoorva S. Shastri

Abstract In this paper, we present a new optimization algorithm referred to as
Cohort Intelligence with Panoptic learning (CI-PL). This proposed algorithm is a
modified version of Cohort Intelligence (CI), where Panoptic learning (PL) is incor-
porated into CI which makes every cohort candidate learn the most from the best
candidate but at same time it does not completely ignore the other candidates. The
PL is assisted with a new sampling interval reduction method based on the standard
deviation between the behaviors of the cohort candidates. A variety of well-known
set of unconstrained and constrained test problems have been successfully solved by
using the proposed algorithm. The CI-PL approach produced competent and suffi-
ciently robust results solving unconstrained, constrained, and engineering problems.
The associated strengths, weaknesses, and possible real-world extensions are also
discussed.
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1 Introduction

Several nature-inspired optimization algorithms are in past few years. Some notable
examples are genetic algorithm (GA) [1–4], particle swarm optimization (PSO) [5,
4], ant colony optimization (ACO) [6, 7], simulated annealing (SA) and Bee Algo-
rithm (BA) [8, 9]. These algorithms usually perform well for solving unconstrained
problems. However, their performance degenerates when applied to constrained
problems.

An Artificial Intelligence (AI)-based socio-inspired optimization methodology
referred to as Cohort Intelligence (CI) was proposed byKulkarni et al. [10]. Recently,
CI has been applied for solving several optimization applications such as clustering
[11], problems from combinatorial domain such as the 0–1 Knapsack Problem [12],
traveling salesman problem [13], cyclic bottleneck problem, and large-sized combi-
natorial problems such as sea-cargo mix problem and selection of cross-border
shipper problem [14]. Recently, CI was applied for solving mechanical engineering
problems such as heat exchanger design [15], discrete and mixed variable engi-
neering problems [16] and cup forming design problems [14]. Recently several vari-
ations of CI were proposed by Patankar and Kulkarni [17]. Shastri and Kulkarni
[18] proposed Multi-Cohort Intelligence (Multi-CI) algorithm having intra and inter
group learning mechanism. In addition, CI with Cognitive Computing (CICC) was
applied for solving steganography problems by Sarmah and Kulkarni [19, 20].

The original CI discussed in above literature is based on roulette approach. It
has tendency of being trapped in a local minima and exhibited slow convergence
when solving high dimension/features problems [10, 12, 14, 21]. In this paper, a
new learning approach referred to as Panoptic Learning (PL) is introduced to replace
the roulette wheel selection approach. The PL approach is inspired from the natural
cohort learning behavior to learn from every candidate in the cohort partially in every
learning attempt as opposed to roulette wheel approach whichmakes every candidate
learn from a single candidate in a particular learning attempt. The approach of PL
makes every candidate learn the most from the best candidate but at the same time
it does not completely ignore the other candidates. The PL-based approach is better
suited to imitate the cohort learning behavior than roulette wheel-based approach.

In addition, we present a new sampling interval reduction technique based on the
standard deviation between the behaviors of candidates to replace the neighborhood
reduction method as implemented in the original CI [10, 22]. A standard deviation
approach computes the probability of the behavior selection based on all the behav-
iors in the cohort, i.e., every candidate observes all the behaviors in the cohort and
devises its own. This helps every candidate to avoid trapping into local minima as
compared to the original CI approach in which only one behavior was followed
in every learning attempt. Overall, the proposed algorithm is able to simulate the
cohort learning behavior more realistically, in which yields a faster convergence and
improved solution than original CI. Furthermore, our proposed method is simple yet
effective and does not require a tedious iterative optimization procedure compared
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to other methods. The CI-PL was validated by solving four unconstrained test prob-
lems. A penalty function approachwas incorporated in CI-PL and successfully tested
on constrained test problems.

This manuscript is organized as follows: Sect. 2 describes the framework and
formulation of the CI-PL. In Sect. 3, the solution of unconstrained, constrained, and
engineering problems using CI-PL algorithm is presented. Also, a brief discussion
on the results, the evident features, advantages, and some limitations of the CI-PL
methodology are presented in this section. The conclusions along with a note on
future directions are presented in Sect. 4 of the paper.

2 Cohort Intelligence with Panoptic Learning (CI-PL)

Consider an unconstrained problem as follows:

Minimize f (x) = f (x1, . . . , xi , . . . , xN )

Subject to Ψ lower
i ≤ xi ≤ Ψ

upper
i , i = 1, . . . , N (1)

In the context of CI-PL the objective function f (x) is considered as the
behavior of an individual candidate in each cohort with set of qualities xc =(
xc1, . . . , x

c
i , . . . , x

c
N

)
. The algorithm is described below.

The number of candidatesC are chosen, learning attempt counter n = 1, sampling
interval Ψi for each quality xi are initialized. In a cohort, the behavior f (xc) is
computed for every individual candidate c (c = 1, 2, . . . ,C). The individual tries to
improve itself by modifying its qualities. The qualities obtained will be closer to the
qualities of candidate whose behavior is best in cohort in the current learning attempt.
However, such qualities will not be solely derived from best candidate and will also
be influenced by the qualities of rest of the candidates in the cohort. Furthermore,
the shrinking of sampling interval is based on the concept of standard deviation
δi associated with a particular quality xci of all the candidates in the cohort, i.e.,

∀i δi =
√

1
C

∑C
c=1

(
xci − μc

i

)
where μc

i = ∑C
c=1

xci
C , i = 1, . . . , N . The values of C ,

t , standard deviation expansion factor γ , and convergence parameter ε are selected
depending on preliminary trials of the algorithm.

The algorithm steps are discussed below (refer Fig. 1 for flowchart).
Step 1: The selection probability of the function/behavior f ∗(xc) is as follows:

pc = 1/ f ∗(xc)
∑C

c=1 1/ f
∗(xc)

, (c = 1, . . . ,C) (2)

Step 2: The candidates generate a set of qualities xĉ = (
xĉ1, . . . , x

ĉ
i , . . . , x

ĉ
N

)
, ĉ ∈

(1, . . . ,C), which they follow in the next learning attempt. It is calculated as follows:
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Cohort behavior 
saturated/Converged?

Y 

N 

START

Initialize number of candidates in the cohort. Also, select quality variations  
and standard deviation expansion factor . 

STOP

Accept this behavior as final 
solution 

Every candidate shrinks the sampling interval based on standard deviation of 
associated with every quality .  

With the help of  PL approach every candidate selects a behavior to follow. 

In the cohort the probability associated with the behavior being followed by 
every candidate is calculated 

For every candidate  behaviors are formed by sampling the qualities from 
within the updated sampling intervals 

Every candidate follows/selects the best behavior from within its behaviors  

Fig. 1 CI-PL flowchart
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xĉ = [
p1 · · · pc−2 pc−1 pc+1 pc+2 · · · pc] ×

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

x11 · · · · · · x1N
...

. . . . .
. ...

xc−2
1 · · · · · · xc−2

N

xc−1
1 · · · · · · xc−1

N

xc+1
1 · · · · · · xc+1

N

xc+2
1 · · · · · · xc+2

N
...

. . . . .
. ...

xc1 · · · · · · xcN

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(3)

The notation ĉ indicates that the candidate selected is not known in advance.
Step 3: Every candidate c shrinks interval Ψ ĉ

i associated with every variable xĉi
to its current solution neighborhood. The shrinking of the interval Ψ ĉ

i is based on
the standard deviation as follows:

Ψ ĉ
i ∈

[
xĉi − (δi × γ ), xĉi + (δi × γ )

]
, i = 1, . . . , N (4)

where γ = standard deviation expansion factor.
Step 4: Each candidate c then samples t qualities from within the updated

interval Ψ ĉ
i and generates a set of t updated behaviors, i.e., Fc,t ={

f (xc)1, . . . , f (xc) j , . . . , f (xc)t
}
, and selects the best behavior f ∗(xc) from

within. Then the cohort with updated behaviors is as follows: FC ={
f ∗(x1

)
, . . . , f ∗(xc), . . . , f ∗(xC

)}
.

Step 5: The above procedure continues till the behavior of every candidate in the
cohort becomes almost the same for significant number of learning attempts, and
accepted as final solution.

3 Solution to Test Problems

The CI-PL algorithmwas coded inMATLAB 7.14 (R2012a) on aWindows platform
using Intel Atom CPU N450, 1.67 GHz processor, and 2 GB RAM. Every uncon-
strained and constrained test problems was solved 20 times. The required parameters
for the implementation of CI-PL for unconstrained and constrained problems are
shown in Tables 2 and 10, respectively. These parameters were derived empirically
over numerous experiments.

3.1 Optimization of Unconstrained Test Problems

The CI-PL algorithm performance was evaluated by solving four unconstrained
benchmark problems such asAckley, Rosenbrock, Sphere, andGriewank. The results
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Table 1 Performance comparison of CI-PL with other optimization algorithms

Problem RHPSO CPSO LDWPSO SQP CI CI-PL

Best
Mean
Worst

Best
Mean
Worst

Best
Mean
Worst

Best
Mean
Worst

Best
Mean
Worst

Best
Mean
Worst

Sphere 1.5000E−323
3.5078E−245
5.0380E−248

1.4356E−81
3.4213E−12
1.7103E−10

1.5387E−06
1.2102E−04
1.1486E−03

3.5657E−28
2.5749E−27
8.8173E−27

2.0000E−15
2.4900E−06
1.7780E−05

2.1081E−35
5.5536E−29
2.7768E−28

Rosenbrock 1.5606E−08
1.2061E−07
3.0398E−07

1.1856E−08
9.3949E−03
9.0066E−02

2.8453E_03
3.1101E+00
1.1050E+01

7.5595E−12
1.4352E+00
3.9866E+00

0.0000E+00
0.0000E+00
0.0000E+00

4.1213E−15
1.1893E−04
5.9315E−04

Ackley 0.0000E+00
0.0000E+00
0.0000E+00

8.8178E−16
1.5952E−08
6.3330E−07

1.3078E−04
5.9934E−03
2.5325E−02

1.5245E+01
1.9090E+01
1.9959E+01

1.2322E−07
2.0911E−07
2.6499E−07

8.8817E−16
8.8817E−16
8.8817E−16

Griewank 0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
2.1287E−10
6.4174E−09

1.6949E−02
1.7072E−01
7.2835E−01

2.8879E−09
3.5357E−01
3.6312E+00

7.3960E−03
1.7100E−02
4.9183E−02

4.5253E−13
4.8000E−03
7.4000E−03

were compared with various optimization algorithms such as Robust Hybrid PSO
(RHPSO) [23], Sequential Quadratic Programming (SQP) [24], Chaos-PSO (CPSO)
[25], Linearly Decreasing Weight PSO (LDWPSO) [25] and original CI [10].

From Tables 1 and 2, it is observed that the overall performance of CI-PL is
comparable with other optimization techniques. The best solution obtained by CI-
PL is substantially better than CI in both the cases, i.e., unimodal Sphere function
and multimodal functions such as Ackley, Rosenbrock and Griewank. From Table 2,
it can be observed that the function evaluations (FE) were improved significantly,
whereas the computational time was marginally improved in case of CI-PL. The
convergence plot for sphere function is presented in Fig. 2f along with associated
variable/quality convergence plots in Fig. 2a–e. These plots exhibited the candidates
self-supervised learning behavior and convergence on best solution.

3.2 Optimization of Constrained Test Problems

The CI-PL with penalty function method was compared with several other
constrained optimization techniques such as a self-adaptive penalty approach [26],
a dynamic penalty scheme [27], GA with penalty function approach [2], variation
of feasibility-based rule [28], HPSO [29], PSO [30], homomorphous mapping [31],
cultural algorithm [32], cultural differential evolution (CDE) [33], gradient repair
method [34] integrated into PSO [35], evolution strategies (ES) [36], differential
evolution (DE) [37], genetics adaptive search (GeneAS) [38], Lagrange multiplier
method [39], branch and bound technique and geometric programming approach
[40], modified differential evolution (COMDE) [41], and cooperative coevolutionary
differential evolution with improved augmented Lagrangian (CCiLF) [42].
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Using CI-PL algorithm incorporated with penalty function approach we have
solved the constrained test problems [33]. There are four maximization problems:
G02, G03, G12, G08, and twelve minimization problems G01, G04 to G07, G09
to G11, G13 to G15, and G24. For the linear objective function (LOF) problems,
CI-PL achieved the best known solution for G24 and achieved a feasible solution
for G10. The best result obtained for G24 was f (x) = −5.5080 with the global
optimum x = {2.3295, 3.1785} and gi (x) = {0.0000, 0.0000}. In case of G10, the
best result obtained was feasible with f (x) = 7057.70. Its global optimum was x =
{604.2, 1451.2, 5020.2, 183.7, 299.5, 217.0, 284.0, 399.4} and the values of gi (x)
are = {−0.0028, 0.0000, −0.0008, −347.3246, −917.6246, −288.9541} for the
constraints. The closeness to the best reported solution was 0.18%. Regarding the
problems with nonlinear objective function (NLOF), CI-PL found feasible solutions
in all the problems and showed robustness in all of those problems. The details of the
solutions achieved by CI-PL for the NLOF problems are provided here. In problem
G04, the best solution obtained was f (x) = −30665.5389 with x = {78.0000,
33.0000, 29.9953, 45.0000, 36.7758} and the values of gi (x) are = {−92.0000,
0.0000, −8.8405, −11.1595, 0.0000, −5.0000} for the constraints. In problem G05,
the best result obtained was f (x) = 5126.498 with x = {678.3, 1027.8, 0.1, −
0.4} and the values of gi (x) are = {−0.0343, −1.0657, 0.0001, 0.0001, 0.0001} for
the constraints. In problem G08, which is a maximization problem, the best result
obtained was f (x) = 0.095825with x= {1.2280, 4.2454} and the values of gi (x) are
= −1.7375, −0.1678} for the constraints. In problem G09, the best result obtained
was f (x) = 680.6463with x= {2.3138, 1.9583,−0.4678, 4.3512,−0.6181, 1.0377,
1.5712} and the values of gi (x) are = {0.0000, −252.7696, −145.0568, 0.0001} for
the constraints. In the problem G12, which is also a maximization problem, the best
result obtained was f (x) = 1.0000 with x= {5.0000, 5.0000, 5.0000} and the values
of gi (x) is= {−0.0625} for the constraints. In problem G15, the best result obtained
was f (x) = 961.7236 with x = {3.4360, 0.2238, 3.6254} and the values of gi (x) are
= {0.0001, 0.0000} for the constraints (Table 3).

In problem G01, the best solution obtained was f (x) = −14.9988 with x =
{1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 3.0015,
3.0021, 3.0008, 1.0000} and the values of gi (x) are= {−0.0035,−0.0050,−0.0045,
−4.9994, −4.9995, −5.0029, −0.0011, −0.0000, −0.0017} for the constraints. In
problem G01, the best result obtained was f (x) = −14.9988 with x = {1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 3.0015, 3.0021,
3.0008, 1.0000} and the values of gi (x) are = {−0.0035, −0.0050, −0.0045,
−4.9994, −4.9995, −5.0029, −0.0011, −0.0000, −0.0017} for the constraints.
In problem G02, which is a maximization problem, the best result obtained was
f (x) = 0.799 with x = {3.1141, 3.1038, 3.1327, 3.0538, 3.0696, 2.9923, 2.9595,
2.9302, 0.5249, 0.4608, 0.4896, 0.3409, 0.5213, 0.4746, 0.4718, 0.4453, 0.4264,
0.5483, 0.4561, 0.4550} and the values of gi (x) are = {0.0000, −120.0288} for
the constraints. In problem G03, which is a maximization problem, the best result
obtained was f (x) = 1.0322 with x = {0.4501, 0.4501, 0.4501, 0.4500, 0.4501}
and the values of gi (x) are = {0.0127} for the constraints. In problem G06, the
best result obtained was f (x) = −6959.0878 with x = {14.0962, 0.8454} and the
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Table 5 Statistical solutions of various algorithms

Methods Best Mean Worst Std.

Coello Coello and Becerra [32] 0.0127210 0.0135681 0.015116 8.4152e−004

Arora [47] 0.0127303 N.A. N.A. N.A.

Coello Coello [26] 0.0127048 0.0127690 0.012822 3.9390e−005

Coello Coello and Montes [48] 0.0126810 0.0127420 0.012973 5.9000e−005

He and Wang [49] 0.0126652 0.0127072 0.0127191 1.5824e−005

He and Wang [29] 0.0126747 0.0127300 0.012924 5.1985e−004

Kulkarni and Tai [50] 0.01350 0.02607 0.05270 N.A.

Behrooz et al. [42] 0.012665 0.012665 0.012665 9.87e−08

Mohamed and Sabry [41] 0.012665 0.012667 0.01271 3.09e−09

CI-PL 0.0126713 0.012758 0.0128457 2.8526e−005

values of gi (x) are = {−0.0024, −0.0001} for the constraints. In problem G07, the
best result obtained was f (x) = 24.4145 with x = {2.1405, 2.4070, 8.7451, 5.0264,
1.0057, 1.5052, 1.2874, 9.7996, 8.2563, 8.3588} and the values of gi (x) are = {−
0.0689, −0.1365, −0.2537, −0.7639, −0.3521, −6.2287, −0.3427, −49.7028} for
the constraints. In problem G11, the best result obtained was f (x) = 0.7490 with x
= {−0.7064, 0.5000} and the values of gi (x) are = {0.001} for the constraints. In
problem G14, the best result obtained was f (x) = −47.2080 with x = {= 0.8398,
0.2898, 0.2421, 0.3404, 0.2922, 0.0932, 0.0874, 0.1166, 0.2397, 0.1348} and the
values of gi (x) are = {0.0491, 0.0041, 0.0296} for the constraints.

For problems G05, G08, G12, and G24, CI-PL yielded solutions that are equal to
the best-known solutions. The best results obtained by CI-PL algorithm for problems
G01, G02, G03, G06, G07, G11, and G14 are very close to the best known solutions
which are 15.0000, 0.8036, 1.0000, −6961.8138, 24.30, 0.7500, and −47.764884,
respectively. The closeness of the obtained solutions is around 0.001% to the best
known solutions. However, for G13 problem, the difference between best results
obtained by CI-PL and best reported solution is quite high, which is around 4.7%.
This may be due to the moderated dimensionality, nonlinear equality constraints
and small feasible region. The best solutions obtained Koziel and Michalewicz [31]
are comparable with solutions obtained by CI-PL, though the algorithm in [31] was
unable to tackle problems with both nonlinear objective function and more than 6
active constraints function as in case of G01 and G07. The best solutions obtained
in G01 and G07 were −14.7184 and 24.620, respectively, against −14.9980 and
24.4145 obtained by CI-PL. The solutions obtained by CI-PL and Runarsson and
Yao [46] were comparable, except for the solution obtained for G03 by Runarsson
and Yao [46] was an optimal solution whereas the solution obtained by CI-PL was
not an optimal but feasible. Although the best solutions obtained by algorithm in
[31] and CI-PL in case of G02, G06, G10 and G13 were near about optimal but
the average solutions of obtained by the both algorithms showed a degraded perfor-
mance. In [45], the optimal solution was achieved for G06 but in case of G02, the
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solution obtained was not optimal. The results obtained by Hedar and Fukushima
[45] in G01, G02, G03, G07, and G10 were not optimal and hence it appears that
the algorithm was unable to handle problems with moderated dimensionality (n >
5). The optimal solutions were obtained by Becerra and Coello Coello [33] for G01,
G06, G07, and G10. Therefore, the algorithm in [33] appears to be able to handle
problems with active constraints (a > 6) except the problems with small feasible
region ((x%) ≈ 0) as shown through its performances for the case of G03, G05,
G11, and G13. Though a few selected problems were solved by Chootinan and Chen
[34], the solutions obtained in case of G01, G02, G03, G06, G10 were better than the
solutions obtained by CI-PL. The unavailability of the solutions to all test problems
hinders a detailed analysis of algorithm by Chootinan and Chen [34]. Therefore,
a comprehensive comparison cannot be carried out between [34] and CI-PL. The
best solutions obtained by Farmani and Wright [27] were comparable with the best
solutions of CI-PL. However, the standard deviation between the test solutions of
[27] is quite high. Therefore, this algorithm does not display the robustness and
consistency as shown by CI-PL. The solutions obtained by Deb [2] also show a high
standard deviation, therefore its less robust than CI-PL. Furthermore, the solutions
obtained by Dong et al. [43], He and Wang [29], Hu and Eberhart [30], Ray et al.
[4], Montes and Lopez-Ramirez [36], andMontes et al. [37] are comparable with the
solutions obtained by CI-PL. For NEC problems, CI-PL yielded feasible solutions
in all of them and the best solutions were achieved in two problems (G03 and G11).
CI-PL found best known solution in one of seven problems with a moderated high
dimensionality (MD). We can conclude based on the results that the performance of
CI-PL deteriorated marginally for higher dimensionality problems. For the problems
with more than 6 active constraints, CI-PL was still able to achieve feasible solution.
Finally, for problems with very small feasible region, CI-PL was able to find two
best known solutions in them.

3.3 Optimization of the Engineering Problems

Three well-studied engineering design problems were used to evaluate the perfor-
mances of our proposed algorithm. Then, we compared the performances of CI-PL
with various well-known optimization algorithms. For each problem, 20 independent
CI-PL runs were carried out.

3.3.1 Spring Design Problem

The mathematical formulation of this problem is:

Minimize f cost ({x}) = (N + 2) × d × D (5)
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Subjected to

g1{x} = 1 − N × d3

71785 × D4
≤ 0 (6)

g2{x} = 4 × d2 − D × d

12566 × (d × D3 − D4)
+ 1

5108 × D2
− 1 ≤ 0 (7)

g3{x} = 1 − 140.45 × D

N × d2
≤ 0 (8)

g4{x} = d + D

1.5
− 1 ≤ 0 (9)

0.05 ≤ D ≤ 2, 0.25 ≤ d ≤ 1.3, 2 ≤ N ≤ 15

Table 4 presents the performance comparison between CI-PL with different opti-
mization algorithms for the spring design problem. Table 5 shows the statistical
simulation results.

3.3.2 Welded Beam Design Problem

The mathematical formulation of this problem is:

Minimize: f (�y) = 1.10471y2y
2
1 + 0.04811y3y4

(
14 − y2

)
(10)

Subject to:g1(�y) = τ(�y) − 13000 ≤ 0 (11)

g2(�y) = σ(�y) − 30000 ≤ 0 (12)

g3(�y) = y1 − y4 ≤ 0 (13)

g4(�y) = 1.10471y21 + 0.04811y3y4
(
14 + y2

) − 5 ≤ 0 (14)

g5(�y) = 0.125 − y1 ≤ 0 (15)

g6(�y) = δ(�y) − 0.25 ≤ 0 (16)

g7(�y) = 6000 − Pc(�y) ≤ 0 (17)

where 0.1 ≤ y1 ≤ 2, 0.1 ≤ y2 ≤ 10, 0.1 ≤ y3 ≤ 10, 0.1 ≤ y4 ≤ 2.
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Table 7 Statistical solutions of various algorithms

Methods Best Mean Worst Std.

Coello Coello [26] 1.748309 1.771973 1.785835 0.011220

Coello Coello and Montes [48] 1.728226 1.792654 1.993408 0.074713

Coello Coello and Becerra [32] 1.724852 1.971809 3.179709 0.443131

He and Wang [49] 1.728024 1.748831 1.782143 0.012926

He and Wang [29] 1.724852 1.749040 1.814295 0.040049

Deb [2] 2.38145 2.38263 2.38355 N.A.

Siddall [51] 2.3815 N.A. N.A. N.A.

Ragsdell and Phillips [40] 2.3859 N.A. N.A. N.A.

Behrooz et al. [42] 1.724852 1.724852 1.724854 5.11E−07

Mohamed and Sabry [41] 1.724852 1.724852 1.724854 1.60E−12

CI-PL 1.724865 1.724878 1.724916 8.5554e−006

Table 6 presents the performance comparison between CI-PL with different opti-
mization algorithms for theWelded BeamDesign Problem. The statistical simulation
results are summarized in Table 7. From Table 6, we can observe that our algorithm
is able to achieve a comparable best solution compared with other algorithms. In
addition, CI-PL achieved a very small standard deviation for its solution as shown
in Table 7.

3.3.3 Pressure Vessel Design Problem

The mathematical formulation of this problem is:

Minimize:

f (�y) = 0.6624y1y3y4 + 1.7781y2y
2
3 + 3.1661y21y4 + 19.84y21y3 (18)

Subject to:

g1(�y) = −y1 + 0.0193y3 ≤ 0 (19)

g2(�y) = −y2 + 0.00954y3 ≤ 0 (20)

g3(�y) = −πy23 y
2
4 − 4

3
πy23 + 1296000 ≤ 0 (21)

g4(�y) = y4 − 240 ≤ 0
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Table 9 Statistical solutions of various algorithms

Methods Best Mean Worst Std.

Sandgren [52] 8129.8000 N.A. N.A. N.A.

Kannan and Kramer [39] 7198.0428 N.A. N.A. N.A.

Deb [38] 6410.3811 N.A. N.A. N.A.

Coello Coello [26] 6288.7445 6293.8432 6308.1497 7.4133

Coello Coello and Montes [48] 6059.9463 6177.2533 6469.3220 130.9297

He and Wang [49] 6061.0777 6147.1332 6363.8041 86.4545

He and Wang [29] 6059.7143 6099.9323 6288.6770 86.2022

Behrooz et al. [42] 6059.7143 6059.7143 6059.7143 1.01E−11

Mohamed and Sabry [41] 6059.7143 6059.7143 6059.7143 3.62E−10

CI-PL 6080.5357 6089.5990 6093.5516 2.07046

where 1×0.0625 ≤ y1 ≤ 99×0.0625, 1×0.0625 ≤ y2 ≤ 99×0.0625, 10 ≤ y3 ≤
200, and 10 ≤ y4 ≤ 200.

As stated in [1] the variables y1 and y2 are discrete values which are integer
multiples of 0.0625 inch. Hence, the upper and lower bounds of the ranges of y1 and
y2 are multiplied by 0.0625 as shown.

Table 8 presents the performance comparison between CI-PL with different opti-
mization algorithms for the pressure vessel Design Problem and their statistical
simulation results are shown in Table 9. From Tables 8 and 9, it can be seen that the
best solution found by CI-PL is comparable with other algorithms.

3.4 Discussion

The CI-PL varies from the original CI [10] in learning approach as well as the reduc-
tion of the sampling interval. The PL approach helps to generate a set of qualities
that it may follow in the subsequent learning attempt. In the original CI approach, the
chances of any candidate to select the better set of qualities will increase according to
the associated probability stake pc, which is directly proportional to the quality of the
behavior f (xc). However, in the CI-PL approach, the behavior f

(
xc[?]

)
which every

candidate may follow tends to be closer to the best candidate in the cohort. In other
words, it may totally prevent any candidate from selecting worse qualities as may be
the case in roulette wheel approach. Therefore, it may attain a better set of qualities
andhence improvedbehavior. Thismay furthermake theCI-PLalgorithm to reach the
optimal solution in comparatively fewer number of learning attempts than the original
CI. The reduction of sampling interval in this paper is based on the standard deviation
between the qualities of the candidates. It is important to mention here that all the
candidates tend to arrive at the optimum solution simultaneously. As they approach
the optimum solution, their behaviors and qualities start getting similar. In the initial
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Table 10 The summary of CI-PL solutions details

Problem Solutions
Best
Avg.
Worst

Standard
deviation

Avg. no. of
function
evaluations

Avg.
comp.
time
(s)

Closeness
to the best
reported
solution
(%)

Variations
t

Expansion
factor γ

G01 −14.99880
−14.99600
−14.99080

0.00128 13600 13.363 8.00e−005 40 25.0

G02 0.7991
0.7875
0.7832

0.00264 11600 12.279 5.62e−003 40 20.0

G03 1.0322
1.0322
1.0322

0.00000 4250 0.849 0.0322 25 15.0

G04 −30665.538
−30665.533
−30665.525

0.00242 8250 6.839 3.26e−008 25 23.7

G05 5126.498
5126.760
5127.104

0.11171 3375 2.279 0 25 15.0

G06 −6959.08786
−6903.17034
−6637.47132

59.51767 15800 1.252 3.91e−004 100 30.0

G07 24.4145
24.6753
25.0526

0.10659 9375 8.902 4.46e−003 25 20.0

G08 0.095825
0.095825
0.095825

0.000000 1500 0.895 0 25 17.5

G09 680.6463
680.7735
680.9530

0.04841 8125 5.208 2.38e−005 25 17.5

G10 7057.70
7462.90
8897.40

313.4418 8375 3.987 1.18e−003 25 21

G11 0.7490
0.7490
0.7490

0.000000 2800 1.395 1.33e−003 35 15.0

G12 1.00000
1.00000
1.00000

0.00000 625 1.239 0 25 15.0

G13 0.0565
0.0937
0.3034

0.0233 1875 1.686 0.0472 25 15.0

(continued)
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Table 10 (continued)

Problem Solutions
Best
Avg.
Worst

Standard
deviation

Avg. no. of
function
evaluations

Avg.
comp.
time
(s)

Closeness
to the best
reported
solution
(%)

Variations
t

Expansion
factor γ

G14 −47.2080
−46.2879
−44.5988

0.39807 10000 16.628 9.25e−003 25 25.0

G15 961.7236
962.2494
962.8885

0.20784 3875 5.574 8.91e−006 25 25.0

G24 −5.5080
−5.5080
−5.5080

0.00000 4000 1.566 0 25 35.0

Spring
design
problem

0.0126713
0.0127580
0.0128457

0.00002 3500 1.225 4.73e−004 25 20.0

Welded
beam
design
problem

1.724865
1.724878
1.724916

8.5554e−006 5000 2.701 7.53e−006 25 25.0

Pressure
vessel
design
problem

6080.5357
6089.5990
6093.5516

2.07046 7500 2.588 3.43e−006 50 20.0

learning attempts when the candidates’ behaviors are marginally different, thus, the
standard deviation among the candidates could be large signifying a wider sampling
interval to search the improved qualities. As their behaviors start getting similar, the
standard deviation reduces and it results in a smaller sampling interval to search for
an improved solution. This method ensures a faster convergence. From Tables 1 and
2, the solutions to the test problems was marginally improved when compared with
other algorithms for the benchmark unconstrained test problems such as Sphere func-
tion, Ackley function, Rosenbrock function, and the Griewank function. A smaller
standard deviation of CI-PL compared with CI highlights the improved robustness of
the algorithm. In addition, the computational cost, i.e., function evaluations (FE) and
computational time was marginally improved. As an illustration, the convergence of
the candidates is presented in Fig. 2a–e for sphere function along with the solution
convergence plot in Fig. 2f. The reduction of sampling interval for all candidates
for one quality is shown in Fig. 2g. In Fig. 2h the standard deviation between the
qualities of all candidates in cohort is shown. In the early learning attempts, the stan-
dard deviation was large enough because the candidates had different initialization
points. Another point worth mentioning about this approach is that for each learning
attempt, although a candidate learns themost from the best candidate, it also learns in
some proportion from the other candidates of cohort. This approach ensures that the
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(a) Convergence of Candidates for Quality 1 

 (c) Convergence of Candidates for Quality 3 

 (e) Convergence of Candidates for Quality 5 

(b) Convergence of Candidates for Quality 2 

(d) Convergence of Candidates for Quality 4 

(f) Convergence of objective function f(x)
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Fig. 2 Convergence of qualities, objective function, sampling interval and reduction of standard
deviation for 5 variable (qualities) sphere function
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cohort may not get stuck in local minima. Furthermore, in the original CI approach,
the sampling interval associated with every quality was expanded to the original one
when no change in the candidates’ solution was observed for a considerable number
of learning attempts. In CI-PL, such approach is not required. This was because PL
makes every candidate to follow the qualities that are closer to the qualities of the
candidate whose behavior is best in cohort in the current learning attempt.

CI approach with penalty function approach was also applied to several
constrained test problems [50, 53] incorporated into it. It is evident from the results
presented inTable 3 throughTable 10, that theCImethodologywith panoptic learning
approach is capable of successfully solving problems with equality and inequality of
constraints. The results also exhibited competitive performance when compared with
the existing algorithms. Referring to Table 10, it is clear that the standard deviation
highlighted the robustness with reasonable number of function evaluations and CPU
time as well as closeness to the best reported solutions so far.

The parameters: number of candidates C , numbers of variations in the behavior t ,
and standard deviation expansion factor γ were chosen using preliminary trials of the
algorithm. It is worth mentioning that during the development of the CI algorithm
with PL approach several other variations were tried without much success. For
example, in the first case, every candidate learn only from the best candidate for the
current learning attempt. While, in the second case, all candidates of cohort learn
from the other candidate whose behavior was similar with them. In the third case,
the candidates learn from another candidate whose behavior was most different from
them. In first case, it was observed that the cohort got stuck in the local minima if the
cohort only followed a particular candidate for a large number of learning attempts
who was heading toward the local minima. In the second case, groups were formed
in cohort where some candidates converged to one solution and others converged to
some other solutions. Both the solutions obtained by the groups of cohort were not
optimum and hence optimum solution was hardly ever found using this case. In the
third case, the candidates of cohort oscillated about the optimum solution without
ever reaching the solution.

4 Conclusions and Future Directions

The paper has validated the CI-PL methodology by solving well-known uncon-
strained, constrained, and engineering problems. The PL-based approach resembles
the natural cohort learning behavior and is better suited to imitate the cohort learning
behavior than roulette wheel-based approach [10]. The ability of proposed CI-PL
algorithm has been demonstrated by solving several unconstrained, constrained, and
engineering problems. Comparable if not better results exhibited its ability to solve
the constrained problems efficiently with acceptable computational cost and robust-
ness. The algorithm proposed here exhibited few limitations also. In addition to
the advantages, few limitations are also observed. The computational performance
was dependent on several parameters. A self-adaptive scheme can be developed for
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the estimation of these parameters. To make the CI-PL more generalized and to
further improve its performances a new method can be developed in which it would
weigh the individual qualities of every candidate based on their merit and not just
the whole behavior. In addition, the constraint handling technique may be further
improved/developed using a multi-criteria optimization approach [4, 54].
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Abstract Because of getting the efficient and accurate results in the field of opti-
mization problem solving, researchers are taking much attentiveness in heuristic and
metaheuristic approaches. Through utilizing the experimentation strategy Heuristic
algorithms help in generating the accurate results to every problem. The response
time of metaheuristic algorithms are much higher as compared with others. Various
nature-based metaheuristic algorithms are easily accessible. And because of their
effective applications and high power they are being widely used in various litera-
tures like in a field of their applications, analysis, comparison, and algorithms. But
still knowing its wide sights it is also called as “black box” because some time
metaheuristic algorithms perform better and sometime results are too low on are
given optimization problems. Metaheuristics are said to be most efficient for solving
constraints in optimization problems. Metaheuristic algorithms can be categorized
over various classes for separating them between different searching patterns and
describe how the algorithm copy a specific phenomenal performance in the search
area, diverse classification explored. The main focus of this chapter is to get the light
over various constraints handling techniques, Importance ofmetaheuristic algorithms
in constraint handling, and metaheuristic classification approach with proper flow
diagram. In this paper, we have highlighted various interesting metaheuristic Algo-
rithms and their application areas in different field. This chapter targets to review all
metaheuristics applications in different fields like healthcare, data clustering, power
system problem, optimization problem, and prediction process. Further taxonomy
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1 Introduction

In many ways’ optimization algorithms [7] can be categorized. Out of which one
way is to study the nature of the algorithm which can be called as stochastic or
deterministic algorithm. The deterministic type of algorithms trails, difficult proce-
dures and uses various consequences for getting the value of variables and functions.
Whereas stochastic algorithms are purely unplanned in their nature. Other different
optimization algorithms can be studied by mixing the stochastic and deterministic
algorithm together. The mixer of both algorithms can be called as hybrid algorithm.
The deterministic can be classified as classical methods, whereas on the other hands
stochastic algorithms can be classified as heuristic andmetaheuristic. These heuristic
and metaheuristic algorithms are taking much attention of researcher nowadays in
their fields. The word “heuristic,” is of Greek origin, which means to discover or to
find [13]. The definition of this term, given by author [4], is as follows- heuristic
means various schemes used for problem solving processes in machine and man,
readily accessible information to control. The trial and error method used for solving
roots of quadratic equations can be one of the examples for heuristics. Other exam-
ples related to heuristics may include drawing a picture to visualize the problem,
examining a concrete example, instead of the abstract one and many others.

In terms of mathematics, the “heuristic” means the procedures for getting the
solutions which can be practically better and adequately best as compared to clas-
sical methods which are too slow or not so feasible. The best way to understand this
can be explained with the help of example, in place of listing down all promising
solution to some particular problem and checking the solutions one by one, heuristic
approaches make guesses based over practice to slim down the users’ solutions. The
word “meta” is also Greek origin, whose meaning is “beyond.” So the word “meta-
heuristic” [15], stands for a set of procedures theoretically categorized above the
heuristics in the way that they guide their design. Many researchers use these both
terms “heuristic” and “metaheuristic” interchangeably. It is noted that metaheuristic
algorithms are of higher level as compared to heuristic algorithms. Hence help in
providing us with better and efficient results. Ideally talking, the most appropriate
solution for any assumed optimization problem can be solved by brute force, where
all the possible users’ solutions in the entire solution space are counted and are further
monitored by monotonous trial and error process. But this monotonous strategy is
not much successful when there are much bigger number of decision variables. Some
conformist methods can also be used for solving various optimization problems that
may include augmented Lagrangian and the conjugate gradient methods. But these
methods, in terms of iterative modification approaches come up with various limi-
tations, especially when there exist several local optima in the solution space. The
gradient methods become unstable and complicated when there is a multiple peak of
objective or cost function. To evade such problems, metaheuristic algorithms again
its importance. The metaheuristic algorithms can be characterized into four main
classes which are evolutionary algorithms, physics-based algorithms, swarm-based
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algorithms, and human-based algorithms. Unlike gradient methods derives the solu-
tions based on previous solution or from some derivative information, metaheuristic
algorithms produce the solution by merging multiple good solutions that are stored
in memory to get the best result for the problem.

The two main elements [14] that set up the foundation for flow of algorithms
in any metaheuristic algorithms are exploitation and exploration. The word explo-
ration stands for global search in a general manner. As related to algorithm it means
exploring each solution chosen by the user for providing the result. Whereas word
exploitation stands for local search which in algorithm means fine study over the
explored solution. This stage is as important as previous one because in this stage
preferred solution to handle the problems are identified at this stage.While designing
metaheuristic algorithms, it is very important to take care among both the phase’s,
i.e., exploitation and exploration.

Different algorithms [21] are used these days for solving optimization problems.
Among all, nature inspired optimization algorithms are currently being used and
are in trend these days for solving various optimization problems. In our chapter,
mainly nature inspired Metaheuristic algorithms are to be discussed. Moreover, the
use of recent natural inspired algorithms for achieving more efficient and effective
results is also the part of this novel. The nature inspired optimization algorithms
[24] work more efficiently for handling the constraints of optimization problems and
providing us with much feasible solutions. Constraints can make an easy problem
hard and hard problems even harder. Surprisingly, in the past only little research
efforts have been devoted to the development of efficient and effective constraint-
handling techniques in contrast to the energy invested in the development of new
methods for unconstrained optimization. Different constraints handling techniques
are also the part of this chapter and our main work is to handle different constraint-
handling techniques for solving various optimization problems using metaheuristic
algorithms.

2 Motivation

Metaheuristics is a framework that consists of group of algorithmic structures whose
purpose is to find the nearest optimal solutions with the help of integration of clev-
erness and various search processes. As metaheuristics algorithms are much easier
and flexible they are used for solving various optimization problems. In the begin-
ning, for solving various optimization problems, genetic algorithms were used. But
these days various new and trending algorithms are being developed which are either
inspired from man-made process or from natural phenomena. Various Metaheuristic
algorithms which were used earlier are: artificial bee colony, particle swarm opti-
mization, ant colony optimization, andmanymore. Various metaheuristic algorithms
which have gained their importance these days are: elephant herding optimization,
crow search algorithm, lion optimization algorithm, grasshopper optimization, and
many more. Moreover, enthusiasm to do work in the respective field is given by
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its numerous wonderful applications such as in the field of solving various opti-
mization problems like in health care [51], power system and many others. In this
novel work, researchers are putting their best efforts for understanding the concept of
constraints handing using metaheuristic techniques [9]. Comparison among various
latest metaheuristic algorithms in different fields is also the part of this chapter.

3 Background Study

In this section, we explicate the introduction to the Constraint handling techniques,
Importance of metaheuristic algorithms in constraint handling and metaheuristic
classification approach with proper flow diagram. Various interesting metaheuristic
Algorithms and their application areas in different field are also presented in this
section.

3.1 Constraint Handling Techniques

An enormous bulk of problems in the field of engineering and science is framed
as the part of optimization problem which further consists of a set of constraints
categorized as inequality and equality sets. These problems are very hard to solve
not because of their high nonlinearity problems, but also due to very challenging
search domains bounded by various constraints [18]. The choice for choosing the
appropriate optimization algorithm and the various ways for handling the constraint
plays are very important role. For every problem, it is not possible to achieve efficient
algorithm.Even sometimes for a given problem, efficient algorithmworks in different
ways for handling various constraints which may lead accuracy and efficiency in
results.

Various different constraints handling techniques [8] are being listed out till now,
which can be ranged from traditional methods to refined adaptive methods and
further more stochastic ranking. There are lots of methods that help in converting the
constrained optimization problem into an unconstrained by revising its objectives to
make it easily approachable. Themain advantage of this conversion from constrained
to unconstrained help in lowering the search domain and problem becomes much
smooth to be solved [5]. In addition to this conversion many more parameters are
being included for handling the problem and getting the proper set of results. In
many cases, this conversion works astonishingly well if appropriate values are used,
and further the transformed unconstrained problem can be resolved excellently with
the help of different optimization methods. In this section, several methods [23] and
their function for handling constraints are being discussed. Some of them are listed
as feasibility method, ε -constrained method, static penalty method, dynamic penalty
method, and stochastic ranking [19].
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a. Static Penalty and Dynamic Penalty Methods

Static Penalty
The approach [19] proposed by researchers defines levels of violation of the
constraints (and penalty factors associated with them):

fitness(�x) = f (�x) +
m∑

i=1

(
Rk,i × max

[
0, gi (�x)

]2)
(1)

where Rk,i are the penalty coefficients used, m is total the number of constraints, f(x)
is the unpenalized objective function, and k = 1, 2,…, l, where l is the number of
levels of violation defined by the user.

Criticism to Static Penalty

• It may not be a good idea to keep the same penalty factors, along the entire
evolutionary process.

• Penalty factors are, in general, problem-dependent.
• The approach is simple, although in some cases the user may need to set up a high

number of penalty factors.

Dynamic Penalty
Within this category, we will consider any penalty [43] function in which the current
generation number is involved in the computation of the corresponding penalty
factors (normally the penalty factors are defined in such a way that they increase
over time, i.e., generations).

An example of this sort of approach is the following: The approaches have been
evaluated at generation t using:

fitness(�x) = f (�x) + (C × t)α × SVC(β, �x) (2)

where C, α, and β are constants defined by the user (C = 0.5, α = 1 or 2, and β =
1 or 2).

SVC(β, x) is defined as:

SVC(β, �x) =
n∑

i=1

Dβ

i (�x) +
p∑

j=1

Dj (�x) (3)

And

Di (�x) =
{

0 gi (�x) ≤ 0
|gi (�x)| otherwise 1 ≤ i ≤ n
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Dj (�x) =
{
0 −ε ≤ h j (�x) ≤ ε

|hi (�x)| otherwise 1 ≤ j ≤ p (4)

This dynamic function increases the penalty as we progress through generations.

Criticism to Dynamic Penalty

• Some researchers have argued that dynamic penalties work better than static
penalties.

• In fact, many EC researchers consider dynamic penalty as a good choice when
dealing with an arbitrary constrained optimization problem.

• Note, however, that it is difficult to derive good dynamic penalty functions in
practice as it is difficult to produce good penalty factors for static functions.

b. Barrier Function Method

Lagrangian multipliers help in solving the equality constraints [25] but to deal with
inequality constraints was very difficult and challenging task. One way to overcome
such difficulty was to use barrier function and the logarithmic barrier functions
together. The formula to generate it is written as below.

L(x) = −μ

N∑

j=1

log
[−ψ j (x)

]
(5)

Here the range of μ > 0 can vary during iterations (t).

c. Feasibility Criteria

In this technique author had categorized three feasible selection mechanisms [33],
which are discussed as below:

• Among all the feasible solution and infeasible solution one of each is being
selected.

• When two feasible solutions are compared with each other, solutions which have
lower objective value will be taken into account for getting the right solution.

• When two infeasible solutions are compared, the one with lower degree of
constraint violation will be chosen.

The degree of the violation of constraints can be stated by the penalty term as
given below:

P(x) =
M∑

i=1

|φi (x)| +
N∑

j=1

max
{
0, ψ j (x)

}2
. (6)

Such rules can be considered as fitness ranking and preference of low constraint
violation.
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d. Stochastic Ranking

Stochastic ranking [34] is another technique for constraint handling which gains its
importance very rapidly. In this technique, control parameter is pre-defined and is
bonded to the range between 0 < pf < 0 by the user to check the balance among
feasibility and infeasibility solution. In this method no penalty parameter is used. On
the basis of relative value and the sum of constraint violations the choice between
solutions is being performed. With the help of bubble sort ranking of solution can
be done.

Steps involved in this method are, first, to make a uniformly distributed variable
denoted by “u” and compare that variable with pre-defined constant denoted by “pf.”
If after comparison we get u < pf (when solution are feasible), interchange if f (xj) >
f (xi). But if both the solution is infeasible, interchange if P(xj) > P(xi).

The ranking is done using the constant “ps,” which is given below.

ps(x) = po pf + pv(1 − pf), (7)

“po” stands for number of chances that a user can win, which on further depends
on objective value. Whereas “pv” is the number of chances to win the particular
solution, which depends upon the violation of the constraints. “ps” is the ranking
constant used for getting the appropriate results for various equations.

Advantages:

• The motivation of stochastic ranking comes from the need for balancing objective
and penalty functions directly and explicitly in optimization.

• Ranking is achieved by a bubble-sort-like procedure using stochastic ranking
• The ε-Constrained Approach

Another technique for handling constraintswas developed known as ε-constrained
method [19]. This method contains twomain steps: limit relaxation and lexicograph-
ical ordering. Two solutions, i.e., xi and xj are compared and ranked with f (xi) its
objective values. The equation can be written as:

{ f (xi ), P(xi )} ≤ ε{ f (xi ), P(xi )}, (8)

Advantages:

The ε constrained method provides a transformation method, that help in converting
algorithms for unconstrained problems with algorithms for constrained problems
using the ε level comparison.
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3.2 Objective of the Research

In this section, objectives have been discussed that are the part of this chapter.

• To study and analysis of the different metaheuristic algorithms for optimizing the
research problems.

• To apply the metaheuristic classification approach to various constraint handling
techniques.

• To explore and apply the new generation metaheuristic optimization methods in
various research areas.

3.3 The Importance of Metaheuristic Algorithms
in Constraint Handing

For solving various problems related to optimization, over the last decades, many
algorithms were trending. Algorithms [17] used for solving the diverse constrained
engineering optimization problems are mainly based on two methods either numer-
ical linear and nonlinear programming. Butwhen talking about the constraints related
to multiple or sharp peaks at that time it becomes difficult for gradient search to
achieve the goals. Such type of drawbacks in gradient search hasmotivated researcher
to rely more over metaheuristic algorithms which are based on the replications and
copying the performance of the natural behavior of various humans for solving hard
and complex optimization problems. The main idea used in metaheuristic algorithms
is that they put together rules and randomness to emulate natural phenomena [30].
Many nature inspiredmetaheuristic algorithms [37] used these days have proved their
excellence and efficiency. The algorithms have proved best for handling constraints
of optimization problems and achieving the feasible solution.Or else, several solution
efforts may be fruitless and restrictions may be violated.

Metaheuristic is usedmore oftenly for solving the problem related tometaheuristic
computing that mainly uses various heuristic rules for solving various computa-
tional problems. A Metaheuristic is a model that uses various heuristic methods for
solving complex and hard problems. In simple words, metaheuristic looks like an
algorithmic framework which are basically used for evaluating efficient results for
various complex or hard optimization problems. Some properties [41] that can be
used to define metaheuristic are as follows:

• They help in guiding us the strategies for exploration procedure.
• They are not a problem specific.
• They are not deterministic in nature, but can be counted as approximate.
• Techniques used in this field may range from local search processes to complex

learning processes.
• Themain goal is to get an efficient optimal solution by exploring the search space.
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Metaheuristic basically uses high-level approaches for exploring search spaces
with the help of diverse methods. Metaheuristic may consist of various assorted
classifications which are being constructed over exploitation and exploration, the
two metaphors used for search procedures.

The classification based onmeta heuristics is based on two things, i.e., population-
based meta heuristics and other is trajectory-based meta heuristic. The population-
based metaheuristics algorithm produces the population, which is improved from
the previous population with the help of various advanced search iteration. The new
advance population is the best solution that we get from either whole population or
from a portion of it [48]. As comparedwith a trajectory-based algorithm, it starts with
the single solution and at each instance new best solution is achieved and is compared
to its efficiency. The results of trajectory-based algorithm are more exploitation as
compared to population based whose results are more exploration in nature. The
metaheuristics algorithm can be classified as local search, where minor modification
can lead to much efficient results than the previous one.

Researchers [35] have distributed meta heuristics into two parts, i.e., nature
inspired and non-nature inspired. Nature inspired metaheuristics algorithms are
further classified into following types which are: physics based, swarm intelligence,
bio inspired and many more that are characterized on the basis of their behavior,
social, emotions, etc.

The taxonomy [44] used formetaheuristicmainly usesmethods for objective func-
tion usage, use of memory and memory less and neighborhood structures. However
the classification of,meta heuristics can be performed either by nature-inspired and
non-nature-inspired or Population-based and trajectory based.

Lots of surveys in the past have been done on metaheuristic. The main purpose of
these surveys is to get the information related to its applications, its algorithms, its
analysis and its comparisons. These Metaheuristic algorithms are said to be a black
box at some time they are good at solving the optimization problems in one domain
and not in another domain [6]. A comprehensive survey has been done in 2019 to get
an idea for metaheuristics based upon research (till now 1222 has been done) over
past 33 years. The main ways to achieve the size of study directed in this particular
area. There are a few more terms that can be used for in comparison with meta
heuristics are evolutionary computing, local minima versus global minima, swarm
intelligence, neighborhood search, and few others [19].

4 Study of Novel Metaheuristic Algorithms

In this section, we discussed about the related work, which is best presenting the
findings of metaheuristic algorithms in the different fields like health care, data
clustering, power system problem, optimization problem, and prediction process.
Further taxonomy [50] about metaheuristic algorithms is also the part of the section.
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4.1 Related Work

Best findings about the various roles and the impact of metaheuristic algorithms [2]
are discussed below.

4.1.1 Metaheuristic Algorithms in Field of Health Care

Beloufa et al. [10] proposed that the disease diabetes can be diagnosed with the help
of various techniques used by artificial intelligences. In order to enhance performance
of ABC algorithm a mutation operator is added. Further, to improve the variety of
ABC without any compromise with solution quality, another operator of a genetic
algorithm is used, if the current best solution cannot be modernized. The main func-
tion of this updated ABC algorithm is to work for creating and amend automatically
in association operations and regulation directly from data. With the help of UCI
machine learning diabetes dataset can be used. Capability of the given method is
based on the specificity standards, cataloging rate and sensitivity with the help of 10-
fold cross-validation technique. Classification rate is 84.21% and at the time when
compared with the prior research it looked more capable for the same problem.

Subanya et al. [45] stated that the motive of this paper was to establish the finest
element subset with better classification correctness by using a metaheuristic algo-
rithm in cardiovascular disease diagnosis. In order to obtain the best characteristics
in disease detection, artificial bee colony (ABC) algorithm is used. Support Vector
Machine (SVM) classification can be used to calculate the suitability of ABC. The
performance of the concerned algorithm is validated against the Cleveland Heart
disease dataset which received from the VCI machine learning repository. Artificial
bee colony (ABC) algorithm and Support Vector Machine (SVM) in comparison to
Feature selection doing better.

Dash, S. et al. [12] explained about the main purpose of the maps is to choose
primary values of population and amend inclusion coefficient so that enlarge popu-
lations and get a better exploration procedure to attain overall optima ignoring the
local optima. In choosing most appropriate features from Naive Bayesian stochastic
algorithm and search space algorithm, various estimation techniques for learning
algorithm is applied over various features like stability, generalization and accu-
racy. The performance of other chaotic models has been lowered in comparison to
chaos-based logistic model.

4.1.2 Data Clustering Using Metaheuristic Algorithms

Karaboga et al. [29] explained that Artificial Bee Colony (ABC) algorithm is newly
established optimization algorithms. There is another important device is Clustering
analysis, which can be used in different applications and also used to recognize the
similar groups of entities according to their elements. The working of the artificial



Nature-Inspired Metaheuristic Algorithms … 65

bee Colony algorithm and Particle Swarm Optimization (PSO) compared with each
other. Artificial Bee Colony algorithm is mainly used for data clustering. There are
different data sets by UCI Machine Learning Repository which is used to express
the outcome of different techniques. ABC algorithm is one of the most adaptive
algorithms which are used in the field multivariate data clustering.

Chander et al. [11] presented the adaptive directive operative fractional lion algo-
rithm. All the solutions which are produced by the proposed algorithm depend upon
the Adaptive Directive Fractional Lion Algorithm. The new MKWLI function can
be used for assessing the accurate value. The dynamic directive operative searching
algorithm is used for upgrading the performance of the Female Lion algorithm.
Therefore, to figure out the accurate cluster core reiteration the most effective and
suggested algorithm is the Adaptive Directive Operative Fractional Lion Algorithm.

4.1.3 Impact of Metaheuristic Algorithms for Predicting System

Kumar et al. [31] stated online repurchase intentions of purchaser and for this, arti-
ficial bee colony algorithm and other different techniques of machine learning are
selected to achieve this purpose. Artificial Bee Colony Algorithm is used to know
about the consumer repurchase reasons by way of feature selection of customer and
shopping complex peculiarity for the prediction model.

Jaafari et al. [26] described the expansion and affirmation of different hybrid
models and adaptive neuro-fuzzy inference system (ANFIS) which is used for clear
prediction of wildfire possibilities. After inspecting a set of descriptive alterable
elements like (elevation, temperature, slope, land use, aspect, rainwater, soil order,
wind speed consequence, human settlements distance to roads) discover spatial
database discovered with the help of 32 fire events. On the basis of the power of
spatial organization among all sets and according to the possibility of wildfire each
set of variables allocated weights by using the frequency ratio model. The purpose
of the weights is to use for providing guidance to different mixture models such as
ANFIS-FA and ANFIS-GA.

4.1.4 Role of Metaheuristic Algorithms for Solving Optimization
Problems

Jayabarathi, T et al. [27] described that the inventor of metaheuristic algorithm was
Xin-She Yang, who made these algorithms in 2010 and further altered and used for
various optimization problems in engineering field. The author has explained in this
novel about the study of BA, few sample real-world optimization, its elements and
instructions for the upcoming study.

Majhi et al. [32] explained some efforts in the explorative activities in a CSA
through space transform search (STS) procedure in their work. The name of the
suggested algorithm is STS-CSA. An STS-CSA algorithm is used to merge space
transformation search technique and determine a result of current search space and
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at the same time is used to alter search space for discovering the way out of global
optimum solution. STS-CSA has been assessed through standard IEEE CEC 2017
benchmark operations for resolving the optimization problems performance. For the
checking of efficiency of the suggested algorithm real-world engineering problems
are corroborated to resolve practical problems. Further author had described that
the study shows complication measure, statistical measure, and convergence inves-
tigation provides that suggested method is effective and consistent for resolving
optimization problems.

Shirke et al. [42] stated about the Crow Search algorithm that crows are very
clever as they hide their food in different hiding places and used according to their
requirements. The outcomes of the CSA’s prove that there is need of capacity for
resolving engineering-related optimization problems. In order to resolve different
engineering design problems CSA is efficient for solving these problems.

Delalic et al. [22] stated the application from the behavior of elephants, which is
knownas elephant herding algorithm.This algorithm is rapidly gaining its importance
these days. For testing the efficiency, the EHO algorithm is applied to some instance
of TSPLIB and the result boosts up with more efficient and accurate performance as
compared with any other algorithm.

Johari et al. [28] presented a variety of applications in which several optimization
problems are being solved by Firefly algorithm. Optimization is a technique which
is used to formulate best results with the help of minimum and maximum parameters
is included in the problem. The performance of the firefly’s algorithm is used in
different optimization problem like multi-objective, chaotic, and discrete. The Fire-
flies algorithm mainly used in the field of Engineering and Computer Science for
resolving optimization problems. For obtaining superior results some other updated
procedures also used for better results. Fireflies algorithm gives better and efficient
performance and results as compared to other metaheuristic algorithms.

Feng et al. [16] described that in a study or research by using different techniques
there are different elements involved such as converging speed, searching ability,
and exploitation ability. While testing the performance of different algorithm tech-
niques in different sets, the study shows that result of EGOA founds better than
metaheuristic algorithms. EGOA algorithm is used in different engineering prob-
lems. Further elaborating EGOA in bin packing problem used EGOA algorithm, at
the same time other metaheuristic algorithms also used for the same problem, but
after checking the results it was found that the results coming from EGOA are much
better from other algorithms.

4.1.5 Effectively Handling the Power System Problems Using
Metaheuristic Methods

Sambariya et al. [38] presented the working of the bat algorithm (BA) the working of
this algorithm is based on fuzzy logic-based power system stabilizer which is used to
improved small-signal stability. In bat algorithm technique suggested optimization
is measured by objective function which is based on square minimization which
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helps to guarantee the nonlinear model’s stability. This BA FPSS is rapidly used in
IEEE ten machine thirty-nine-bus system models and after obtaining the results it is
compared with a robust fuzzy controller. For checking the excellence performance
between BAFPSS and FPSS the test is conducted in four different models in which
fault locations are different.

Sayed et al. [25] stated that to resolve the multifarious engineering problems,
metaheuristic algorithms are rapidly used as optimization algorithms. On the basis
of the behavior of the crows, CSA is used in present days. This model considers
exciting features and when it applies to make multi-model its exploration tactics
founds high difficulties. The study of upgrading version of CSA is representing
which is used to resolve energy optimization problems. In the updated form of CSA
some changes are made in his old features, i.e., random perturbation and another
one is awareness possibilities. By adopting all such modifications the new modified
algorithm is enhanced the convergence to difficult high multi-model optima. This
modified version of CSA is used in different optimization problems for checking
its performance and the results received from current approach is highly efficient as
compared to other different techniques.

4.2 Taxonomy of Various Metaheuristic Approaches

A figure above represents the taxonomy [20] of metaheuristic algorithms. Various
Metaheuristic approaches are explained below (Fig. 3.1).

1. Evolution-based algorithm

Evolutionary algorithm is based on general population-based Metaheuristic algo-
rithm which is a subsection of mutative computation. The technique used in EA
algorithm is based on the biological evolution like selection, reproduction, mutation,
and recombination. Some EA-based algorithm is mentioned as under:-

• Genetic algorithms: Genetic algorithm contains a natural section process which
refers to a larger class of evolutionary algorithms. In order to make high-quality
solutions and problems which depends upon biologically inspired operators [40]
like crossover, transformation, and selection, genetic algorithm are the type of
algorithmwhich aremostly used. On the basis of theDarwin’s theory of evolution,
genetic algorithm presents by John Holland in 1960 and further completed by his
student in 1989.

• Evolution Stragery: Evolution Strategies based on the nature inspired search and
optimization methods and these evolutionary algorithms are used in recombi-
nation, selection, and mutation which are useful for better results for making a
solution to the population of individuals containing candidate [33].

• Biogeography-based optimizer: The Biogeography optimization algorithm is the
type of Metaheuristic algorithm which develop a function through recurrence
and speculative improving candidate solutions with the help of quality evaluation
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Fig. 1 Taxonomy of metaheuristic algorithms [20]

and fitness function. This algorithm optimizer includes different alterations and
without having any presumption regarding the problem and used in a large range
of problems. BBO does not want descent of the function and is not differentiating
the function as compared to classic optimization procedures like quasi-newton
methods requires gradient of the function. The main purpose of using BBO is to
optimized multilayered real-valued functions [39]. BBO is used to generate new
candidate solutions and also managing old candidate solutions. This technique
uses a simple formula to integrate both the solutions.

2. Physics-based algorithm

This algorithm is used to represent how to solve optimization problems through these
inspirations. These inspirations created through physics [47] and its assertion in the
solutions and its progress with time. There are different algorithms which are based
upon physics are given as under:-

• Simulating annealing: Simulated annealing is a physics-based metaheuristic tech-
niquewhich is used to obtain better results through a global optimization problem.
This technique uses some nearest points to position x and with this possibility,
the algorithm selects with the condition that it will stay with x or shift to x and
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with the progress of the algorithm the process of shifting one point to new which
unite to zero. In this technique annealing procedure is used by global time varying
element T [1].

• Gravitational search algorithm: The base of this algorithm is gravitation. There is
a great impact of the arrangement of variables of swarm-based algorithm into the
global optimization capability [3]. Gravitational search algorithm convergence
point is decided by gravitational stability.

• Black hole algorithm: In the metaheuristic techniques black hole is a newly
generated bio-based approach. Like other bio inspired algorithms this is also
a population-based Metaheuristic algorithm. This algorithm [46] is used to solve
problems in different areas such as data, image processing, engineering, computer
vision, and data mining. This approach deals with complete research on the black
hole technique and its applications.

3. Swarm-based algorithm

Swarm-based algorithm consists of an artificial group of simple agents so basically
it contains a system which includes decentralized and behavior of self-organized
system. Several swarm-based algorithms described as below:-

• Crow search algorithm: Crow Search Algorithm works as an evaluator. CSA
technique used vigilant behavior of crows. In this approach, there are limitations
and decision factor and also relates to betterment of six constrained [34] structure
plan. Crows are protective of their food and also notice the incompetent behavior
of each other so that save their food from others.

• Dragonfly algorithm: Dragonfly algorithm is derived from the imitate behavior
of dragonfly. Dragonflies usually move from one place to another in the search
of their foods and migration. Swarming based on both static and dynamic. In
case of dynamic, dragonfly unites with a group and join together in one path.
The DA technique core center is based on the swarming behaviors of dragonfly.
The behavior of swarming is related toMetaheuristic optimization phases that are
exploitation and exploration [49].

• Artificial bee colony: In this approach, bees are divided into different groups,
namely, employed bees, scouts, and onlookers. Food sources are according to the
number of employed bees in a colony. The scout bees [36] are those bees whose
food source has been deserted. Onlookers select the food sources, according to
the dance of employed bees.

• Cuckoo search: This algorithm was proposed by Suash Deb and Xin she Yang.
Basically, this algorithm is based upon the cuckoo species put their eggs in the
nests very carefully from other birds. Any host bird who finds the eggs, which are
not their own, they discarded the nest and eggs or make a new nest to some other
place. This technique is also used in different optimization problems [43].

4. Human-based algorithm
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Human-based genetic algorithm (HBGA) is the type genetic algorithm which
considers the human suggestions in the process of development. In other words,
human-based algorithm utilizes the functions of genetic algorithm through humans.
Some HB algorithms are mentioned as under:

• Water cycle algorithm: This process [16] is also called H20 which described the
incessant movement of water. Precipitation, evaporation, and surface run off all
are the phases which consider in the cycle. Based upon the water cycle study, this
algorithm also gives good results in global optimization solution which includes
exploitation and exploration phases same as in swarm optimization algorithm and
provides new addition in Metaheuristic approaches.

• Sine, cosine algorithm: In this method [9], with the help of numerical method
which is based upon cosine functions,multiple candidate solutions generatewhich
varies to find the best solutions.

5. Comparison of different optimization algorithms in different research field

Constraints handlingOptimization problem are themain concern these days, which is
gaining its sight so rapidly. Various natural inspired algorithms are being used which
copies their behavior from the nature and are being implemented in the algorithms for
getting the best results. In this table survey has been done over various optimization
algorithms on the basis of their research field (Table 1).
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Table 1 Comparison of different optimization algorithms in different research field

Author and reference Name of the
optimization
technique

Research domain Purpose

Beloufa et al. [10] Artificial Bee
Colony
Algorithm

Diabetes disease • Design of fuzzy
classifier for diabetes
disease

• The performances are
evaluated through
classification rate,
sensitivity, and
specificity

Sreeram et al. [24] Bat Algorithm Hybrid bat algorithm • Bat algorithm
developed different
techniques

• In addition, to give
better results in
different problems,
several modified
versions have been
developed

Delalic et al. [22] Elephant
Herding
Algorithm

Traveling salesman
problem

• This algorithm is
rapidly gaining its
importance these days

• EHO algorithm is
applied to some
instance of TSPLIB

Kumar et al. [31] Artificial Bee
Colony
Algorithm

Prediction of online
consumer repurchase
intention

• The main purpose is to
find out online
repurchase intentions
of purchaser and for
this; artificial bee
colony technique is
used

Majhi et al. [32] Crow Search
Algorithm

Optimization problems • An STS-CSA
algorithm is used to
merge space
transformation search
technique and
determine a result of
current search space

• STS-CSA has been
assessed through
standard IEEE CEC
2017 benchmark
operations

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Sambariya et al. [38] Bat Algorithm Power System Stabilizer
for Multi machine Power
System

• The working of this
algorithm is based on
fuzzy logic-based
power system
stabilizer which is used
to improved small
signal stability

Hegazy et al. [20] Salp Swarm
Algorithm

Feature selection • In this technique
efforts are made for
betterment of basic
SSA structure so that
increase of better
results and
convergence rate

• Another new variable,
i.e., weight, introduced
for best problem
solution

Jayabarathi et al. [27] Bat Algorithm Different Engineering
Applications

• Bat Algorithm is used
to solve various
optimization problems

Saremi et al. [39] Grasshopper
Optimization
Algorithm

Theory and application • Grasshopper
optimization algorithm
(GOA) deals in
difficult problems in
structural optimization

• It is based on the
actions of grasshopper
belongs to swarms to
figure out the
optimization problems

Shankar et al. [41] Elephant
Herding
Algorithm

Efficient image
encryption scheme

• Adaptive Elephant
Herding Optimization
(AEHO) algorithm is
adapting the most
beneficial solution for
encryption techniques

• In signcryption method
encryption and digital
signature process
combines as a whole

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Sayed [43] Crow Search
Algorithm

Survey over crow search
algorithm

• The basic purpose of
this chapter is to
research deeply about
the applications of
CSA

• Study of exposition of
the CSA investigates in
different structures

Karaboga et al. [29] Artificial Bee
Colony
Algorithm

Novel clustering
approach

• In the field of data
clustering optimization
problem ABC
algorithm have proved
to be better in
providing accuracy of
the result

Dash et al. [12] Firefly
Algorithm

Parkinson’s disease
diagnosis

• The main purpose of
the maps is to choose
primary values of the
population

• Enlarge populations
and get a better
exploration procedure
to attain overall optima
ignoring the local
optima

Hassanien et al. [14] Elephant
Herding
Algorithm

Intelligent human
emotion recognition

• Elephant herding
optimization (EHO)
deals with arousal and
dominance

• Discrete Wavelet
transforms which
earlier used for feature
extraction and to
eradicate artifacts EEG
data were
pre-processed

• EHO and SVR are
linked with each other
to evaluate prediction
performance

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Arora et al. [7] Crow Search
Algorithm

Unconstrained Function
Optimization and
Feature Selection

• On the basis of the
result, it is found that
GWOCSA
performance in
handling feature
selection problem is
highly recommended
to solve real-world
complex problems as
compared to other
techniques

Kilic et al. [30] Lion
Optimization
Algorithm

Neuro fuzzy inference
system

• The lion optimization
algorithm gives better
results in standard
deviation, training time
metrics, good, and bad

• IALO algorithm
performs higher than
ALO techniques

• Duration of training
has been decreasing up
to 80%

Hussien et al. [23] Whale
Optimization
Algorithm

Feature selection • A new binary version
of the whale
optimization algorithm
is introduced for
choosing an optimal
subset for decease in
dimensions and finds a
solution for
classification problem

• Updated technique is
based upon sigmoid
transfer function
(S-shape)

Feng et al. [16] Grasshopper
Optimization
Algorithm

Bin packing problem • EGOA algorithm used
in different
Engineering problems

Jaafari et al. [26] Firefly
Algorithm

Prediction modeling of
wildfire probability

• Used for clear
prediction of wildfire
possibilities

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Bas et al. [9] Social Spider
Algorithm

Continuous optimization
task

• The new binary
version of the social
spider algorithm is
applied for the solution
of binary problems

• Presently, there is a
lack of focal point in
binary version

• Most important part of
binary version is
transfer function which
has further separated in
two parts, i.e.,
V-shaped and S-shaped

Heidari et al. [8] Grasshopper
Optimization
Algorithm

Hybrid multilayer
perceptron neural
network

• GOA is used for
multilayer assumption

• The technique used in
GOA is very promising
to solve optimization
problems with its
updated efficient
machinery

• The GOA multilayer
perception model used
in different datasets
such as orthopaedic
patients, coronary
heart disease and
breast cancer

Mohammed et al. [36] Whale
Optimization
Algorithm

0–1 knapsack problem • This is the enhanced
optimization algorithm
which applied to
resolving multiple and
single dimensional
problems

Selvi et al. [40] Lion
Optimization
Algorithm

Message broadcasting
system in VANET

• Lion optimization
algorithm (LOA) based
upon the
characteristics of lions

Shirke et al. [42] Crow Search
Algorithm

Evaluation of
Optimization in Discrete
Applications

• To resolve different
engineering design
problems

• CSA is efficient for
solving optimization
and provide better
results

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Thalamala et al. [46] Social Spider
Algorithm

Data classifier • Used for data
classification where
the entire spider has
the prototypes for each
database instance

• Another algorithm
named single
prototype social spider
optimization is
generated for
classification of data
which helps to
decrease the solution
space dimensions

Johari et al. [28] Firefly
Algorithm

Optimization problem • Several optimization
problems are being
solved by Firefly
algorithm

• Fireflies algorithm is
used in different
optimization problem
like multi-objective,
chaotic, discrete, etc.

Subanya et al. [45] Artificial Bee
Colony
Algorithm

Feature selection for
Cardiovascular Disease
Classification

• The main function of
this updated ABC
algorithm is to work
for creating and amend
automatically
association operations
and regulation directly
from data

Wang et al. [47] Whale
Optimization
Algorithm

Multi-resource allocation • Comparison between
WOA and IWOA
shows that IWOA
performance is
superior to WOA

Chander et al. [11] Lion
Optimization
Algorithm

Data clustering • All the solutions which
are produced by the
proposed algorithm
depend upon the
adaptive directive
fractional lion
algorithm

(continued)
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Table 1 (continued)

Author and reference Name of the
optimization
technique

Research domain Purpose

Hichem et al. [21] Grasshopper
Optimization
Algorithm

Feature selection
problem

• Grasshopper
optimization technique
is applied for feature
subset problem

• Feature selection is a
process which applies
to optimization,
classification
perfection by
searching a small
subset of features from
the actual group of
features

• To check the
performance in feature
selection problems,
both Swarm algorithm
and Grasshopper
methods are compared

Sayed et al. [25] Crow Search
Algorithm

Power system problem • This model considers
exciting features and
when it applies to
make multi-model its
exploration tactics
founds high difficulties

• Based on the behaviors
of the crows

Mezura-Montes et al.
[34]

Whale
Optimization
Algorithm

Feature selection • This method is
designed for getting
the greatest feature
subset that is helpful in
the increase of the
perfection of the
classification

5 Conclusion

This chapter studies vital problems regarding metaheuristics and new submissions
for possible research opportunities and provides open challenge for population-based
and nature-based optimization algorithms. During the scrutinization of these vital
issues, the first step is to make a brief comparison between the latest updated Meta-
heuristic algorithms. In this study it has been noticed thatmostly in the newgeneration
algorithm, problem of huge numbers of parameters is the main drawback for meta-
heuristic algorithms. For getting the best results within a prescribed time period,
various parameters used by Metaheuristic algorithms should be tuned specifically
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for the optimization work. The main purpose of some Metaheuristic algorithms like
SOS, GWA, TLBO, and SSO is to utilize less number of parameters. At the same
time, another serious problem for Metaheuristic algorithms is the shortage of local
search techniques that can attain local optima. One of the most important points for
Metaheuristic algorithms’ performance is to make stability between both phases, i.e.,
exploitation and exploration. To provide a technique for solving huge and complex
troubles within a limited time through metaheuristic algorithm which is an essential
advantage as it is very difficult for exact algorithms to achieve better results in limited
time. In addition to this, they executed easily andwhile solving optimization problem
there is no necessity for background knowledge and ground truth. It has come to the
notice that after the successful achievement of metaheuristic algorithms, search for
making new metaheuristic algorithm will enlarge in the future. Some quality level
must be fixed in this area so that metaheuristic performed more objectively and
recognized the deficiencies. Besides this, another thing which is importantto chaotic
versions of metaheuristic algorithms provide remarkable performance.
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Experimental Comparison of Constraint
Handling Schemes in Particle Swarm
Optimization

Mehdi Rostamian, Ali R. Kashani, Charles V. Camp, and Amir H. Gandomi

Abstract Nature-inspired optimization algorithms have been designed for uncon-
strained problems.However, real-world optimization problems usually dealwith a lot
of limitations, either boundary of design variables, or equality/inequality constraints.
Therefore, an extensive number of efforts have been made to make these limita-
tions understandable for the optimization algorithms. Here, a more important fact
is that those constraint handling approaches affect the algorithms’ performances
considerably. In this study, some of the well-known strategies are incorporated into
particle swarm optimization algorithms (PSO). The performance of the PSO algo-
rithm is examined through several benchmarks, constrained problems, and the results
discussed comprehensively.

1 Introduction

Real-world optimization problems are often very complicated, with many decision
variables and practical limitations on the range of feasible solutions [10, 14, 15, 17,
26, 27]. These complexities result in optimization problems that are non-convex,
discontinuous, have high dimensionality, and pose many challenges in developing
algorithms that converge to the optimal global solution. Metaheuristic algorithms are
designed for unconstrained optimization problems, so it is crucial to developmethods
to account for constraints [6, 11–13, 16, 25, 32]. Most metaheuristic optimization
algorithms are based on two crucial phases: 1-diversification, and 2-intensification.

Diversification focuses on exploring the entire search space, often in random and
chaotic ways making the algorithm capable of overcoming difficulties related to
the discontinuity of the solution space. On the other hand, intensification tends to
focus the search on regions identified by the best solutions. Therefore, one of the
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most critical features of any constraint handling scheme is limiting the influence of
infeasible solutions while preserving the stability of the algorithm.Many constrained
optimization problems often have the optimal solution located near the boundaries
of search space, so any constraint handling approach needs to enable an algorithm
to explore the boundaries effectively.

Much research has been devoted to developing efficient methods for handling
the constraints in both single- and multi-objective algorithms. Homaifar et al. [22]
and Hoffmeister and Sprave [21] proposed methods based on a static penalty func-
tion in which a constant penalty term is added to the objective function value. In
this approach, for any violated constraint, a penalty term is added to the objective
function. The resulting optimization algorithm then attempts to decrease the penalty
value while also finding the global optima. Morales and Quezada [33] proposed
another version of the static penalty function method called the death penalty where
a predetermined large value is set as the objective function for infeasible solutions.
Joines and Houck [24], Kazarlis and Petridis [28], and Petridis et al. [35] developed
a dynamic penalty function where the penalty term is increased with the iteration
of the algorithm. Another iteration-dependent penalty function was proposed by
Carlson and Shonkwiler [4] based on simulated annealing called annealing penalty
function. In this way, in the course of iterations, the temperature decreases resulting
in a higher penalty. Coit and Smith [7], and Gen and Cheng [18] proposed adaptive
penalty function methods for handling the constraints by permitting algorithms to
explore beyond the feasible search space to some level by adjusting the penalty term
during the search. Other researchers have introduced a variety of hybrid methods
such as lagrangian multipliers by Adeli and Cheng [1], a hybrid interior-lagrangian
penalty-based approach by Myung and Kim [34], and the application of fuzzy logic
by Le [30]. Deb [9] proposed a method based on the separation of constraints and
objectives. This method is based on a pair-wise comparison of solutions in every
iteration. In this context, a tournament selection operator was proposed to compare
every candidate solution with the following strategy: 1—any feasible solution over-
come the infeasible solution, 2—between two feasible solutions, the fitter solution
is the winner, 3—between two infeasible solutions, the one with lower constraint
violation is preferred.

The impact of constraint handling methods on the efficiency of algorithms
was also the subject of several most recent studies. Li et al. [31] explored the
effect of different constraint handling strategies on the performance of evolutionary
multi-objective algorithms. In this way, three constraint handling approaches as
constrained-domination principle, self-adaptive penalty, and adaptive tradeoff model
combined with nondominated sorting genetic algorithm II for solving 18 test prob-
lems. Jamal et al. [23] explored three constraint handling methods (i.e., ε-Level
comparison, superiority of feasible solutions, and penalty function) for matrix adap-
tation evolutionary strategy to solve CEC-2010 benchmark constrained problems.
Biswas et al. [3] tackled the problem of optimal power flow solutions using differen-
tial evolution algorithms. In this study three different constraint handling approaches
were utilized as follows: 1—superiority of feasible solutions (SF), 2—self-adaptive
penalty (SP), and 3—an ensemble of these two constraint handling techniques (SF
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and SP). Ameca-Alducin et al. [2] explored the efficiency of four constraint handling
schemes (i.e., stochastic ranking, ǫ-constrained, penalty, and feasibility rules) for
differential evolution algorithm to handle dynamic constrained optimization prob-
lems. Zou et al. [37] developed a new constraint handling method for solving the
combined heat and power economic dispatch using an improved genetic algorithm.
Datta et al. [8] proposed a novel constraint handling approach based on individual
penalty approach in which all the constraints were scaled adaptively without a need
for specific information from the problem. The proposed approach was examined
through solving 23 benchmark test problems and two engineering problems using a
hybrid evolutionary algorithm.

In this paper,wepresented a reviewof sixwell-knownpenalty function approaches
for constraint handling. Each of these schemes is incorporated into a particle swarm
optimization (PSO) algorithm to evaluate their effectiveness and efficiency for a set
of benchmark constrained optimization problems.

2 Particle Swarm Optimization

Kennedy and Eberhart [29] developed the particle swarm optimization (PSO) algo-
rithm based on the behaviors of bird flocks in searching for food. In this context,
the PSO algorithm searches the solution space with a population of particles. Each
particle in the swarm represents a potential solution to the optimization problem. The
PSO algorithm changes the position of the particles within the search space with the
aim of finding more appropriate solutions. PSO determines the position of particles
within the search space by two primary qualities; position and velocity. In PSO, each
particles’ position changes iteratively based on its current position and velocity given
as:

Xt+1
i = Xt

i + V t+1
i (1)

where Xt+1
i is the updated position of the i-th particle, Xt

i is the current position, and
V t+1
i is the velocity. A targeted search is conducted by a particle movement using a

velocity term. Each particles’ velocity connected to two important achievements in
each iteration: the particles’ position relative to the global best-found solution Pg and
to its own best solution Pi. Clerc and Kennedy [5] proposed updating the velocity
term as

V t+1
i = χ

[
V t
i + C1r1

(
Pi − Xt

i

) + C2r2
(
Pg − Xt

i

)]
(2)

where V t+1
i and V t

i are the new velocity and old velocity of the i-th particle, respec-
tively, C1 and C2 control the relative attraction to Pi and Pg, respectively, r1 and
r2 are random numbers within [0,1], and χ < 1 is the constriction factor that
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makes convergence rating slower and provides a better exploration of solution space
(diversification).

Choosing appropriate values for parameters in the PSO algorithm is vital to
obtaining the best performance. In Eq. (2), the values of χ, C1, and C2 impact
how each particle will be attracted to its best position and the global best position.
Clerc and Kennedy [5] proposed the following values: C1 = C2 = 2.05 and χ =
0.72984.

3 Constraint Handling Approaches

In general, an optimization problem for the objective function f (x) can be described
as

Minimize f (x) (3)

subject to

hi (x) = 0, i = 1, 2, 3, . . . ,m (4)

g j (x) ≤ 0, j = 1, 2, 3, . . . , p (5)

where x is a vector of design variables, h and g are equality and inequality constraints,
respectively, m and p are the number of equality and inequality constraints,
respectively.

In this study, six different penalty function-based approaches are utilized to incor-
porate the effects of constraints into the PSO algorithm. Penalty function-based tech-
niques are utilized to transform a constrained problem into an unconstrained one. In
this way, the optimization algorithm generates a potential solution without consid-
ering its feasibility. At the next step, the constraints are checked, and a penalty value,
based on the degree of violations of each constraint, is added to the objective function
value. The penalty functions considered in this study are:

1. A simple static penalty function approach proposed by Homaifar et al. [22] is
used to compute the penalized objective function F(x) as

F(x) = f (x) +
p∑

i=1

Ri, j gi (x)
2 (6)

where Ri,j is the penalty coefficient, p is the number of constraints, and j = 1, 2, …,
l, where l is the number of levels of a violation defined by the user. In this study, we
used the same constant penalty coefficients for all the constraints.
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2. The static penalty function method proposed by Hoffmeister and Sprave [21] is
defined as

F(x) = f (x) +
√√√√

p∑

i=1

δ(−gi (x))gi (x)
2 (7)

where

δ(x) =
{
1i f x > 0
0i f x ≤ 0

(8)

3. The death penalty function proposed byMorales and Quezada [33] for updating
the objective value is given as

F(x) =
⎧
⎨

⎩

f (x) i f x is f easible

K −
s∑

i=1

(
K
p

)
otherwise

(9)

where K is a large constant, s is the number of satisfied constraints, and p is the
total number of constraints.

4. The adaptive penalty function approach proposed by Coit and Smith [7] is
utilized to alter the penalty term based on the feedback taken from the evolution
process. The penalized objective function is

F(x) = f (x) + (
B f easible − Ball

) p∑

i=1

(
gi (x)

NFT (t)

)k

(10)

where Bfeasible is the best known feasible objective function at generation t,
Ball is the best known (unpenalized) objective function at generation t, k is a
constant that adjusts the “severity” of the penalty, and NFT is the so-called
Near Feasibility Threshold, which is defined as the threshold distance from the
feasible region as

NFT = NFT0
1 + λ × t

(11)

where NFT0 is an upper bound for NFT, and λ is a constant which guarantees
a search of the whole region between NFT0 and zero.
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5. The dynamic penalty function developed by Joines and Houck [24] is defined
as

F(x) = f (x) + (C × t)α
p∑

i=1

|gi (x)|β (12)

where C, α, and β are constants defined by the user.

6. The annealing-based penalty function method developed by Joines and Houck
[24] is defined as

F(x) = f (x) + exp

(

(C × t)α
p∑

i=1

|gi (x)|β
)

(13)

These methods labeled from 1 to 6 are referred to in all tables and figures as
Homaifar, Hoffmeister, Death, Adaptive, Dynamic, and Annealing, respectively.

4 Numerical Simulation

In this section, we incorporate the above-mentioned constraint handling approaches
into a PSO algorithm to solve several benchmark problems. In all the cases, the
particle population size is 50, and the number of iterations is 1,000. Metaheuristic
optimization algorithms search the solution space stochastically to find the global
minimum. Therefore, we evaluated the performance of each constraint handling
approach based on the best, mean, and standard deviation (STD) of solutions over
a series of 50 independent runs. The best-found solutions are highlighted in bold in
their relevant tables.

In all cases, parameter values for each constraint handling method are held
constant. For the Homaifar approach, the constant penalty coefficient is 1013 for all
the constraints. In the Death method, the K value is 109. In the Adaptive approach
NFT0, λ, and K are equal to 10, 2, and 2, respectively. In the Dynamic scheme, α,
β, and C are equal to 2, 1, and 0.5, respectively. In the Annealing method, α, β, and
C are equal to 1, 1, and 0.05, respectively.

4.1 Test Problems Series 1

In the following section, we solved five single-objective constrained benchmark
optimization problems as follows (Wikipedia website [36]: 1—Rosenbrock function
constrained with a cubic and a line, 2—Rosenbrock function constrained to a disk,
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3—Mishra’s Bird function, 4—Townsend function (modified), and 5—Simionescu
function. Table 1 lists the objective function and constraints for each problem.

Table 2 lists the best-found solutions to the benchmark functions for each
constraint handing method. Table 3 gives values for the mean ± STD of the 50
independent runs for each case. Table 4 lists the values of the constraints for the best
solution for each case. The results in Table 4 indicate that none of the algorithms can
satisfy the F1 constraints. Also, only two methods were successful in meeting all the
F3 constraints. In all the remaining functions, all the constraints are satisfied.

For function F1, the values of the constraint violations recorded by Hoffmeister,
Death, Dynamic, and Annealing are negligible. Since the Annealing constraint
handing method produced both the best solution and the lowest constraint violations,
it is considered the best method for function F1. However, the Hoffmeister method
has the lowest mean value over multiple runs. For function F2, the Hoffmeister
method produced the best solution and had the lowest mean value. Function F3
posed more of a challenge than the other functions. In this case, the Homaifar and
Death methods were able to solve the problem, and recorded similar best and mean
values; however, the Death method recorded a slightly lower STD. Results from F4
simulations showed that the Death penalty function method found the lowest best
value, while the Dynamic method had the lowest mean value. For the F5 function, all
the methods except Dynamic found equal best values; however, the Adaptive method
had the lowest STD value.

4.2 Test Problems Series 2

In this section, more complicated optimization problems with numerous constraints
and design variables are considered to evaluate the performance of constraint
handling approaches better. To this end, we selected some benchmark optimiza-
tion problems presented by Dr. Abdel-Rahman Hedar on his official website [19,
20]. Table 5 lists the objective functions and constraints for the selected optimization
problems.

Numerical simulations are conducted on these functions using PSO with previ-
ously mentioned constraint handling schemes. Tables 6 and 7 tabulate the results for
the best solution, and themean± STDover a series of independent runs, respectively.
Table 8 provides constraint values from the best solution found using each constraint
handling method. The results listed in Table 8 show that for functions G1 to G4, the
Homaifar, Death, Adaptive, and Dynamic methods meet all the constraints success-
fully. A comparison of the best results for G1 shows that the Death method found the
lowest objective function value and had a lower mean value than the other successful
methods. For the G2 function, the Adaptive method found the highest objective func-
tion value and had the best mean and STD values. Results for the G4 function, show
the lowest objective function value was recorded by the Adaptive method, while the
associated mean and STD values are comparable with other successful methods. For
the G6 function, the only approach that satisfied both constraints is the Adaptive
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Table 2 Best results for 1st case

Constraint handling scheme F1 F2 F3

Homaifar 0.00214 2.17430e−29 −48.40602

Hoffmeister 2.57235e−22 1.97215e−31 −97.05423

Death 3.24207e−25 2.61868e−25 −48.40602

Adaptive 0.00032 5.85779e−28 −104.14808

Dynamic 1.00000 1 −105.09690

Annealing 2.49045e−26 6.24514e−23 −106.76454

Constraint handling scheme F4 F5

Homaifar −3.37179 −0.15625

Hoffmeister −3.36867 −0.15625

Death −3.36720 −0.15625

Adaptive −3.37183 −0.15625

Dynamic −2.36984 0.84375

Annealing −3.36916 −0.15625

method. The G7 function seemed to be a challenging problem; in that, none of the
methods could satisfy all the constraints. In the G8 function study, all the methods
except for the Hoffmeister and Annealing methods satisfied the constraints effec-
tively. Among the successful approaches, the Dynamic method had higher best and
mean values, while the other methods reached similar best values. A comparison of
the mean values of the remaining successful methods demonstrated that Homaifar
and Death very close, while Homaifar had a lower STD value. The results listed in
Table 8 for the G9 function show that all the methods, except Annealing, were able
to satisfy all the constraints. In contrast, the Hoffmeister method found the lowest
best objective function value and had the lowest mean and STD values.

5 Summary

In this study, the performance of six popular penalty function-based constraint
handling methods is explored. A PSO algorithm was selected as the testbed for this
study because of its robustness and ability to handle complex optimization problems.
Each of the six penalty function methods was incorporated into a PSO algorithm.
Twelve benchmark optimization problems were solved to examine the effectiveness
of each of the six constraint handling approaches. For each of the constraint handling
method and objective function (total of 72 cases), the best solution was reported, and
the mean and standard deviation were computed a series of 50 independent runs.
For each method, the values of constraint were reported for the best solution. In
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Table 6 Best results for 2nd case

Constraint handling
scheme

G1 G2 G4 G6

Homaifar −18.7552 −0.4398 −33,233.6511 −6,313.0662

Hoffmeister −29.5263 −Inf −35,202.9264 −8,840.8022

Death −75.6721 −0.4282 −33,257.6403 −6,854.7599

Adaptive −30.0434 −0.4527 −33,813.9574 −1,643.5994

Dynamic −16.3929 −0.1928 −32,955.7715 3.3224e+06

Annealing −383.9712 −Inf −34,320.3859 −7,988.8455

Constraint handling
scheme

G7 G8 G9

Homaifar 129.5706 −0.0958 732.8192

Hoffmeister 44.7292 −1,541.5176 693.7655

Death 144.4177 −0.0958 721.4620

Adaptive −3,381.3957 −0.0958 788.6190

Dynamic 1.4013e+07 −0.0860 888.7828

Annealing 1.4870e+07 −1,558.5455 539.2907

general, the results indicated the Homaifar and Adaptive methods provide satisfac-
tory performance, while the Hoffmeister and Annealing methods were unsuccessful
in satisfying the constraints in all the cases.
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Table 8 Constraint values for the best solution for 2nd case

ID Constraints Homaifar Hoffmeister Death Adaptive Dynamic Annealing

G1 g1 −6.8015 4.1138 −6.6545 −6.1299 −0.6733 178.9962

g2 −6.2117 5.9941 −5.8829 −4.4511 −0.5364 178.1315

g3 −5.7446 17.8150 −5.2382 −4.3265 −0.3819 184.7554

g4 −0.5743 −0.5907 −0.4075 −2.5022 −5.3720 91.1861

g5 −2.4217 11.0694 −0.8515 −2.6834 −5.2472 97.8100

g6 −3.0717 11.7691 −0.7883 −2.1008 −5.1138 96.9394

g7 −1.0595 −0.3005 −0.2981 −1.7997 −0.4049 90.5813

g8 −1.5135 11.1074 −0.7523 −1.7912 −0.2567 97.5370

g9 −1.4735 12.3086 −0.8344 −0.4050 −0.1208 95.2121

G2 g1 −0.3483 0.7500 −0.0000 −0.1744 −11.3301E08 0.7500

g2 −105.5281 −150.0000 −110.2935 −110.6437 −66.9536 −150.0000

G4 g1 −91.2519 −88.8924 −91.6257 −91.7387 −91.2396 −89.5925

g2 −0.7481 −3.1076 −0.3743 −0.2613 −0.7604 −2.4075

g3 −6.7130 −0.6636 −7.1186 −6.8308 −6.1124 −2.4804

g4 −13.2870 −19.3364 −12.8814 −13.1692 −13.8876 −17.5196

g5 −0.7500 4.0644 −0.9254 −0.1964 −0.2006 3.9898

g6 −4.2500 −9.0644 −4.0746 −4.8036 −4.7994 −8.9898

G6 g1 −0.3505 53.2423 −0.0577 −0.7250 0.2726 23.0374

g2 25.6657 −25.0682 26.3706 −0.2570 9.3178 −19.2648

G7 g1 −50.6637 −28.2747 −45.0462 −124.5271 −33.2748 −69.9097

g2 −90.9175 −121.4250 −110.7612 −35.9301 −119.0130 19.4864

g3 11.3410 11.9677 10.8961 −4.9997 3.5965 12.7076

g4 −122.8382 −118.8054 −113.1044 −23.8555 −131.0416 −71.6281

g5 −12.2697 −6.8061 −23.6437 0.9809 3.7317 −13.6003

g6 62.6469 23.7481 61.9868 −1.1412 38.4242 12.4138

g7 32.7484 8.5404 31.1607 −83.0901 10.2969 −36.6248

g8 −43.8874 −17.1694 −41.5682 −52.4224 −33.2774 14.8685

G8 g1 −1.7375 0.9996 −1.7375 −1.7390 −1.8584 1.0000

g2 −0.1678 16.9969 −0.1678 −0.1671 −0.1101 17.0000

G9 g1 −115.6328 −104.0385 −107.5731 −2.3858 −68.4760 6212.5453

g2 −286.1398 −262.3689 −276.4030 −253.1911 −269.3198 −200.5948

g3 −213.0346 −187.6622 −215.3880 −170.7742 −185.4042 195.7844

g4 −35.5948 −45.7608 −30.0437 −8.4887 −14.5741 69.3815
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Online Landscape Analysis for Guiding
Constraint Handling in Particle Swarm
Optimisation

Katherine M. Malan

Abstract Many real-world optimisation problems are constrained in multiple ways.
As with other metaheuristics, particle swarm optimisation (PSO) algorithms do not
naturally handle constrained search spaces. When PSO is used to solve a constrained
problem, then the algorithm has to be modified to incorporate an appropriate con-
straint handling technique. Previous studieswith evolutionary algorithms have shown
that the choice of the most appropriate constraint handling technique depends on the
features of the problem being solved. This study investigates whether this is also
the case with PSO. Results are presented to show that there is performance com-
plementarity between different constraint handling techniques when used with a
traditional global best PSO algorithm. A landscape-aware approach is then imple-
mented that uses rules derived from offline machine learning on a training set of
problem instances. The rules are used to automatically switch between constraint
handling techniques during PSO search. The switching is based on landscape infor-
mation collected from the particles during search and requires no additional sam-
pling or function evaluations. Results show that the proposed approach of switching
techniques performs better than using any one of the individual constraint handling
techniques. It is also shown that landscape-aware switching outperforms random
switching, illustrating the value of using landscape features to guide the choice of
constraint handling technique for PSO.

Nomenclature

εDFR Takahama and Sakai’s [26] modification of Deb’s feasibility
ranking (constraint handling technique)

x Multidimensional solution to the problem
φ(x) Function combining constraint violations into a single value

D Dimension of the problem instance
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f (x) Objective function
FE Number of function evaluations

gi (x) Inequality constraint function i
h j (x) Equality constraint function j

OLA_limit Size of search history archive (parameter of LA approach)
SW_ f req Switching frequency (parameter of LA approach)

25_IZ Proportion of solutions in the top 50% percentile for both
fitness and violation (fitness landscape metric)

4_IZ Proportion of solutions in the top 20% percentile for both
fitness and violation (fitness landscape metric)

CHT Constraint handling technique
DFR Deb’s feasibility ranking (constraint handling technique)
DP Death penalty (constraint handling technique)
FsR Feasibility ratio (fitness landscape metric)
FVC Fitness violation correlation (fitness landscape metric)
LA Landscape aware (constraint handling technique)

NCH No constraint handling (constraint handling technique)
PSO Particle swarm optimisation

RFB× Ratio of feasible boundary crossings (fitness landscapemetric)
WP Weighted penalty (constraint handling technique)

1 Introduction

Most real-world optimisation problems have constraints, but metaheuristics in their
original form were not designed to handle constraints. To address this, a number of
constraint handling techniques have been proposed to be used with metaheuristics
[3, 18] and these can be broadly categorised into penalty, repair, feasibility ranking
and multi-objective approaches.

As with other metaheuristics, when PSO algorithms are used to solve complex
constrained problems, one of these constraint handling approaches has to be chosen
to assist the algorithm in finding good feasible solutions. We know from theory
[29, 30] and experience that there can be nobest algorithm for solving all optimisation
problems. The challenge is rather in selecting the most appropriate algorithm for a
given set of problems with similar properties. In a similar vein, it has been shown
that no single constraint handling technique is the best in all cases when used with
evolutionary algorithms [16] and that some properties of search landscapes seem to
favour particular constraint handling approaches.

The field of fitness landscape analysis [14] has recently gained momentum in the
evolutionary computation community with regular tutorials, workshops and special
sessions dedicated to this topic at all themajor evolutionary computation conferences.
In the continuous optimisation domain, advances have been made in using landscape
analysis to select algorithms [1, 15, 19], but all of these studies have been restricted
to unconstrained (or only bound constrained) problems.
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Recently, a landscape-aware approach to constraint handling was proposed for
the differential evolution algorithm [13]. The purpose of this study is to investi-
gate whether a similar approach will be effective in the context of particle swarm
optimisation. Firstly, experiments are conducted to compare the performance of
commonly used constraint handling techniques when used with a traditional global
best PSO. Results are presented to show that there is performance complementar-
ity between different constraint handling techniques. Secondly, a landscape-aware
switching approach is applied in the context of PSO. Rather than introducing a new
constraint handling technique, the approach utilises commonly used techniques, but
selects techniques based on the landscape features experienced by the swarm during
the search.

2 Particle Swarm Optimisation and Constraint Handling

Particle swarm optimisation (PSO) [5, 10] is a stochastic population-based optimi-
sation technique. Starting with a random swarm of solutions, called particles, the
positions of particles in the search space are adjusted at each iteration of the algo-
rithm. The adjustment has random elements, but is largely determined by the distance
to the best solution found in the neighbourhood of the particle and the distance from
the best solution found by the particle itself during the search process. This section
describes the traditional global best PSO model, which is used as the base algorithm
in the experimentation. It then defines constrained continuous optimisation problems
in general and constraint handling techniques that have been proposed for PSO in
the literature.

2.1 Traditional Global Best PSO

The traditional global best PSO model (gbest PSO for short) [5, 10] determines the
multidimensional position of a particle, xi , at time step t + 1 by adding a multidi-
mensional step size (called the velocity of the particle), vi , at time step t + 1, to the
position of the particle at time t , using the equation:

xi (t + 1) = xi (t) + vi (t + 1). (1)

The velocity at time step t + 1 is given as:

vi (t + 1) = w · vi (t) + c1 · r1(t) � (yi (t) − xi (t)) + c2 · r2(t) � (ŷ(t) − xi (t)),
(2)

where w is the inertia weight (introduced by Shi and Eberhart [23]), vi (t) is the
velocity of particle i at time stamp t , c1 and c2 are the cognitive and social acceleration
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constants, respectively, r1(t), r2(t) ∼ U (0, 1)D where D is the dimension of the
problem,� denotes element-by-element vectormultiplication, yi (t) refers to particle
i’s personal best position and ŷ(t) refers to the global best position at time step t ,
being the best solution from the set of personal best positions of all particles.

Equation2 shows that the position of a particle is influenced by three terms: the
particle’s previous velocity, the relative position of the personal best particle and the
relative position of the swarm’s global best particle. The global best is the fittest of
all particles’ personal bests. The behaviour of the gbest PSO is influenced by the
relative weights of these three terms, set using the constantsw, c1 and c2. The choice
of values of these constants has to be made together to ensure convergence of the
swarm [28]. Although the optimal choice of parameters is problem dependent, a
common choice that works reasonably well for many problems is 0.7298 for w and
1.496 for both acceleration constants [6].

2.2 Constrained Continuous Optimisation

A constrained continuous minimisation problem can be expressed in algebraic form
as follows:

Minimise f (x), x = (x1, x2 . . . , xn) ∈ R
n, (3)

subject to
gi (x) ≤ 0, i = 1, . . . , p,
h j (x) = 0, j = 1, . . . , q, and

(4)

mink ≤ xk ≤ maxk, for k = 1, . . . , n, (5)

where f (x) is the objective function to be minimised, x is an n-dimensional solution
to the problem with boundary constraints (5), and gi (x) and h j (x) are the inequality
and equality constraints, respectively. Equality constraints are typically re-expressed
as inequality constraints for some small error margin ε, such as 10−4 as follows:

|h j (x)| − ε ≤ 0, j = 1, . . . , q. (6)

The feasible set consists of the solutions that satisfy all the inequality constraints
gi (x) and the equality constraints h j (x) to within ε.

To quantify the extent of constraint violation of a solution, the constraints can be
combined into a single value as follows [17]:

φ(x) =
∑p

i=1 Gi (x) + ∑q
j=1 Hj (x)

p + q
(7)

where

Gi (x) =
{
gi (x) if gi (x) > 0
0 if gi (x) ≤ 0

(8)
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and

Hj (x) =
{ |h j (x)| if |h j (x)| − ε > 0
0 if |h j (x)| − ε ≤ 0.

(9)

2.3 Constraint Handling with PSO

Someof the earliest approaches to constraint handlingwithPSO included a strategyof
preserving feasibility [8], a penalty-based approach [20] and feasibility ranking [21].
Coath and Halgamuge [2] compared the first of these two techniques with PSO on
benchmark problems and concluded that the choice of constraint handling method
is problem dependent.

Since then, a number of other constraint handling approaches have been proposed
with PSOs. In 2015, Jordehi [9] published a survey on constraint handling techniques
used with PSO. He claimed that the most common approach was Deb’s feasibil-
ity ranking approach [4], followed by static penalty and death penalty approaches
and that other approaches, such as multi-objective approaches, were rarely used
with PSO.

Takahama and Sakai [26] proposed a modification to Deb’s feasibility ranking
with an ε tolerance that reduces over time. The basic idea is that a solution that
violates the constraints within the current tolerance is regarded as feasible. This
has the effect of the search being mostly guided by fitness at the beginning of the
search (when ε is large), but the constraints increasingly being taken into account as
the search progresses (and ε reaches 0). The approach was applied with differential
evolution (called εDEg) [27] and won the CEC 2010 Competition on Constrained
Real-Parameter Optimization [17].

3 Performance Complementarity of Constraint Handling

When there are a number of alternative algorithmic solutions to a problem, algorithm
selection refers to the process of selecting the most appropriate algorithm for a
given problem. An essential feature of the success of algorithm selection is the
existence of performance complementarity between algorithms [11]—whendifferent
algorithms have different strengths, these strengths can be exploited so that the best
algorithm can be selected for each problem. This section investigates whether there is
performance complementarity between constraint handling techniques (CHTs)when
used with PSO.
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3.1 Constraint Handling Approaches

To test the relative performance of different CHTs, the following five approaches
were implemented with gbest PSO (as described in Sect. 2.1) with 50 particles, c1 =
c2 = 1.496, and w = 0.7298:

1. No constraint handling (NCH): This approach considers only the fitness value
when comparing solutions.

2. Death penalty (DP): The death penalty approach rejects infeasible solutions. In
PSO terms, this means that the global best and personal best particles are only
replaced by feasible solutions with better fitness. Usually, with a death penalty
approach, the swarm would be initialised with feasible solutions [9], but this is
not always practically possible. Because many of the problems in this study have
equality constraints, the swarmwas initialised randomly, and could therefore con-
tain infeasible solutions. Infeasible global or personal best particles were replaced
with the first feasible solutions found by the swarm.

3. Weighted penalty (WP): A weighted penalty approach combines the fitness and
constraints into a single objective function, effectively converting the problem
into an unconstrained problem. When the problem is a minimisation problem,
both of these objectives are minimised. The approach used in this study was to
apply a static weighting of 50% to both the fitness and the constraint violation,
where the constraints are combined as in Eq.7.

4. Deb’s feasibility ranking (DFR): This approach compares solutions using the
following rules:

– A feasible solution is preferred to an infeasible one.
– Two feasible solutions are compared based on fitness.
– Two infeasible solutions are compared by their level of constraint violation.

In the context of PSO, the above rules are applied to decide whether the global
best and personal best particles should be replaced.

5. Takahama and Sakai’s [26] modification of Deb’s feasibility ranking (denoted
εDFR): This approach uses Deb’s rules, but the decision of whether a solution is
feasible or not depends on a tolerance level of ε. The approach used for adapting
ε was as follows [25]: ε is set to zero at a cutoff number of function evaluations,
FEc. Before this point, ε was defined as

ε = φ(xθ ) ×
(

1 − FEi

FEc

)cp

, (10)

where xθ is the θ -th solution in the swarm ordered by violations φ(x) from lowest
to highest, FEi is the current number of function evaluations, and cp is a parameter
to control the speed of reducing relaxation of constraints. Following [25], FEc was
set to 80% of the computational budget, θ was set to 0.8 × swarm size and cp
was set to 5.



Online Landscape Analysis for Guiding Constraint Handling … 107

3.2 Problem Instances and Performance Ranking

The IEEE CEC 2010 Special Session on Constrained Real-Parameter Optimiza-
tion [17] defined a set of 18 problems for comparing algorithm performance. The
problems have different objective functions and numbers of inequality and equality
constraints and are scalable to any dimension. For most problems, the constraints are
rotated to prevent feasible patches that are parallel to the axes.

The CEC 2010 problem suite was used in this study as a basis for comparing
the performance of different constraint handling techniques applied to PSO. As in
the competition, the problems were solved in 10 and 30 dimensions, resulting in 36
problem instances.

Each version of PSO was run 30 times on each problem instance with a compu-
tational budget of 20000 × D function evaluations. The success rate of an algorithm
on a problem instance was defined as the proportion of feasible runs out of 30, where
a feasible run was defined as a run that returned a feasible solution within the given
budget. The performance between algorithms on the same problem instance was
compared using the CEC 2010 competition rules [24]:

– If two algorithms had different success rates, the algorithmwith the higher success
rate was the winner.

– If two algorithms had the same success rate > 0, the algorithm with the better
mean objective value of the feasible runs was the winner.

– If two algorithms had a success rate = 0, the algorithm with the lowest mean
violation was the winner.

Table1 shows results of two example problem instances to illustrate the perfor-
mance ranking. On problem instance C09 in 10D, WP achieved the highest success
rate of 0.6 (18 of the 30 runs resulted in feasible solutions) and is given the rank of 1.
εDFR is ranked 2, with a success rate of 0.267. NCH, DP and DFR all had a success
rate of 0 and so are compared based on the mean violation, achieving ranks of 3,
4 and 5, respectively. On the second example problem, C07 in 30D, all five CHTs
achieved a success rate of 1 (all 30 runs finding feasible solutions). The performance
is therefore compared based on the mean fitness, resulting in a rank of 1 for εDFR
and 5 for WP.

3.3 Results

Figure1 shows the quartiles of ranks of the five CHTs on all 36 problem instances,
with the median values as black lines. All approaches had amaximum rank of 5 and a
minimum rank of 1. This indicates that each approach achieved the best performance
(rank 1) on at least one instance, but also the worst performance (rank 5) on at least
one instance. Over all the problem instances, WP was the best performing approach,
followed by εDFR, DFR, DP and NCH as the worst performing approach. Table2
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Table 1 Ranking of PSO constraint handling techniques on two problem instances

Success rate Mean fitness
(feasible runs)

Mean violation Algorithm rank

CEC 2010 problem C09 in 10 dimensions

NCH 0 n/a 5.308 3

DP 0 n/a 278.491 4

WP 0.600 0.000 0.000 1

DFR 0 n/a 289.129 5

εDFR 0.267 0.000 0.002 2

CEC 2010 problem C07 in 30 dimensions

NCH 1 4.401 0.000 3

DP 1 4.109 0.000 2

WP 1 7.973 0.000 5

DFR 1 5.121 0.000 4

εDFR 1 1.816 0.000 1

Fig. 1 Distribution of the performance ranks of constraint handling approaches with gbest PSO
over the CEC 2010 problem set in 10 and 30 dimensions. The median is indicated as a black line

shows the mean ranks with the number of times that each approach was the best
performing and the worst performing.

These results show that there is performance complementarity between the
approaches when used with PSO. Although WP is the best approach overall, it is
only the best performing in one-third of the cases. For the other two-thirds of the
instances, one of the other approaches performed better than WP. When faced with
a new problem to solve, one may be inclined to use a weighted penalty approach,
because it performed the best on average. However, there is a chance that it may per-
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Table 2 Performance of five constraint handling approaches on the CEC2020 problem suite in 10
and 30 dimensions (36 problem instances)

Strategy Mean rank Best performing Worst performing

NCH 3.72 7 instances (19%) 20 instances (56%)

DP 3.69 1 instances (3%) 8 instances (22%)

WP 2.00 12 instances (33%) 1 instance (3%)

DFR 3.25 5 instances (14%) 5 instances (14%)

εDFR 2.25 9 instances (25%) 2 instances (6%)

form badly on the new instance. To reduce this chance, a landscape-aware approach
aims to choose the best approach as the features of the problem are revealed to the
search algorithm.

4 Landscape Analysis of Constrained Search Spaces

Malan et al. [12] introduced violation landscapes as a complementary view to fitness
landscapes for analysing constrained search spaces. A violation landscape is defined
in the same way as a fitness landscape, except that the level of constraint violation
replaces the fitness function. In this study, the constraints were combined into a single
function as defined in Eq.7 to define the violation landscape.

To illustrate the concepts of fitness and violation landscapes, consider the CEC
2010 problem C01, defined with two inequality constraints:

Minimize: f (x) = −
∣
∣
∣
∣
∣
∣

∑D
i=1 cos

4(zi ) − 2
∏D

i=1 cos
2(zi )

√∑D
i=1 i z

2
i

∣
∣
∣
∣
∣
∣
, z = x − o, x ∈ [0, 10]D

Subject to: g1(x) = 0.75 −
D∏

i=1

zi ≤ 0, g2(x) =
D∑

i=1

zi − 7.5D ≤ 0,

(11)

where o is a predefined D-dimensional constant vector.
Figure2 plots the fitness function, while Fig. 3 plots the aggregated level of con-

straint violation.Theviolation landscape shows that there is a large connected feasible
region in the centre (plotted in black). The fitness landscape shows that the optimal
solution in terms of fitness is positioned at approximately (1, 1). However, from the
violation landscape, it can be seen that this point is in infeasible space.

Visualising the fitness and violation landscapes alongside each other provides
insight into the nature of the search challenge, but is obviously not possible for
higher dimensional problems. Fitness landscape analysis techniques [14] have been
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Fig. 2 Fitness landscape of CEC 2010 C01 benchmark function in two dimensions
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Fig. 3 Violation landscape of CEC 2010 C01 benchmark function in two dimensions

used extensively to analyse search spaces and a similar approach can be used to
analyse violation landscapes.

Given a fitness and violation landscape, metrics can be defined for characterising
the search space and providing insight into the problem. The following previously
proposed metrics [12] were used in this study:

1. The feasibility ratio (FsR) estimates the proportion of feasible solutions in the
search space. Given a sample of n solutions, FsR is defined as FsR = n f

n , where
n f denotes the number of feasible solutions in the sample. For problem C01 in
2D (illustrated in Fig. 3), the FsR is approximately 0.85.

2. The ratio of feasible boundary crossings (RFB×) quantifies the level of disjoint-
edness of the feasible regions. Given a walk through the search space result-
ing in a sequence of n solutions, x1, x2, . . . , xn , the string of binary values
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b = b1, b2, . . . , bn is defined such that bi = 0 if xi is feasible and bi = 1 if xi
is infeasible. RFB× is then defined as

RFB× =
∑n−1

i=1 cross(i)

n − 1
(12)

where

cross(i) =
{
0 if bi = bi+1

1 otherwise.
(13)

For problem C01 in 2D, based on random walks of 400 steps with a maximum
step size of 0.5 (5% of the range of the problem) in both dimensions, the RFB×
value is approximately 0.04. This means that only 4 out of every 100 steps cross
a boundary between feasible and infeasible space, indicating that the feasible
solutions are joined in a common area (as opposed to disjointed).

3. Fitness violation correlation (FVC) quantifies the correlation between the fitness
and violation values in the search space. Based on a sample of solutions with
resulting fitness-violation pairs, the FVC is defined as the Spearman’s rank cor-
relation coefficient between the fitness and violation values. For problem C01 in
2D, the FVC metric is negative, indicating that the fitness and violation values
decrease in opposite directions.

4. The ideal zone metrics, 25_IZ and 4_IZ, quantify the proportion of solutions that
have both good fitness and low violation. Given a scatterplot of fitness-violation
pairs of a sample of solutions for a minimisation problem, the “ideal zone” (IZ)
corresponds with the bottom left corner where fitness is good and violations are
low. Metric 25_IZ is defined as the proportion of points in a sample that are below
the 50% percentile for both fitness and violation, whereas 4_IZ is defined as the
proportion of points in a sample that are below the 20% percentile for both fitness
and violation. For problem C01 in 2D, both the 4_IZ and 25_IZ metrics are zero,
indicating that the points that are the fittest are not the points that are feasible.

The premise of this study is that the landscape metrics defined above can be
used to guide the choice of appropriate constraint handling techniques. Consider for
example a search algorithm trying to solve the two-dimensional problem illustrated in
Figs. 2 and 3. Aweighted penalty approach will translate into searching the penalised
landscape illustrated in Fig. 4, which will guide the search algorithm to an infeasible
solution. In contrast, Deb’s feasibility ranking approach will be more effective on
this problem as it switches between the fitness and violation landscapes, depending
on whether the current solutions are feasible or not. Experiments on this problem
confirmed that Deb’s feasibility ranking was able to solve this problem, whereas a
weighted penalty approached failed to find a feasible solution.



112 K. M. Malan

 0
 2

 4
 6

 8
 10 0

 2
 4

 6
 8

 10

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

Fig. 4 Penalised fitness landscape of CEC 2010 C01 benchmark function in two dimensions

5 Landscape-Aware Constraint Handling

This section describes the approach used for landscape-aware (LA) constraint han-
dling that was previously proposed in the context of the differential evolution algo-
rithm [13]. The approach involves an offline training phase and an online adaptive
phase.

5.1 Offline Training Phase

Using a training set of benchmark problem instances, the process is as follows:

1. Landscape characterisation of training data: The training instances are charac-
terised in terms of the landscape metrics described in Sect. 4. These metrics are
calculated based on random samples of the search space of each problem instance.

2. Performance analysis of constituent CHTs: Using the same base search algorithm,
experiments are run on the training instances to measure the relative performance
of the constituent CHTs. A class is associated with each instance indicating the
best performing CHT on that instance.

3. Derivation of rules for selecting constraint handling approaches: Using a classi-
fication algorithm on the training data, rules are derived for predicting the best
performing CHT based on the landscape metrics.

5.2 Online Adaptive Phase

A landscape-aware approach is implemented using the rules derived in the offline
training phase. Landscape metrics are calculated using the solutions encountered by
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the algorithm in the recent history of the search. No additional sampling or function
evaluations is performed—the sample used for the landscape analysis is simply the
stored recent history of the PSO search.

The CHT is changed at set intervals to the technique that is predicted to be the best
by the rules, given the landscape features as experienced by the search algorithm.
There are two parameters that control the LA constraint handling approach:

– Size of the search history archive (OLA_limit): A search history is stored for
each particle in the swarm. The combined search history of all particles forms the
sample for performing the online landscape analysis. The parameter, OLA_limit ,
defines the number of solutions stored for each particle as the search history. The
total size of the archive, therefore, equals OLA_limit× the swarm size.

– The switching frequency (SW_ f req): The switching of CHTs is performed after
a set number of iterations of the search algorithm. Every SW_ f req iteration, the
landscape characteristics are calculated on the search history (sample of solutions
in the archive) and a CHT is chosen using the rules.

A large search history archive (OLA_limit) implies a larger sample for computing
the online landscapemetrics for choosing the CHT,whereas reducing the OLA_limit
implies using landscape features from more recent search history. A large SW_ f req
will result in a more frequent re-evaluation of the landscape metrics and switching
between CHTs.

6 Experimental Results

This section describes the experiments for testing the LA constraint handling
approach with a global best PSO.

6.1 Experimental Setup

The CEC 2010 benchmark suite [17] was used as the basis for forming six problem
instances at 5, 10, 15, 20, 25 and 30 dimensions (D), resulting in 108 problem
instances. Two-thirds of these instances were randomly selected as the training set
(72 instances) and the remaining one-third of the instances (36) were set aside for
testing the online adaptive constraint handling.

6.1.1 Landscape Characterisation of Training Data

Each training problem instance was characterised as a feature vector of five metrics:
FsR, RFB×, FVC, 25_IZ, and 4_IZ. The metrics were calculated from samples of
200 × D solutions for each instance, generated using multiple hill climbing walks
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based on fitness only. Each walk started at a random initial position. Random neigh-
bouring solutionswere sampled fromaGaussian distributionwith the current position
as mean and a standard deviation of 5% of the range of the domain of the problem
instance. Awalk was terminated if no better neighbour could be found after sampling
100 random neighbours.

6.1.2 Performance Analysis of Constituent CHTs

The three best performing techniques identified in Sect. 3, namely WP, εDFR, and
DFR, were selected as the constituent CHTs for the landscape-aware approach. The
performance of these three approaches on the training set instances was contrasted
using the same approach as in Sect. 3 to allocate a best performing CHT class to each
problem instance.

6.1.3 Derivation of Rules

The training set consisting of the landscape feature vector with best performing CHT
class was then used to derive decision trees for predicting under which landscape
scenarios each constraint handling technique would perform the best. The C4.5 algo-
rithm [22] (implemented in WEKA [7] as J48) was used to induce the models. The
following rules were extracted from the trees:

1. WP is predicted to be the best when (FsR> 0 AND FVC> −0.0266 ANDRFBx
> 0.081) OR (FsR = 0 AND FVC > 0.3704).

2. FR is predicted to be the best when FsR = 0 AND 4_IZ ≤ 0.005 AND 25_IZ >

0.163.
3. εDFR is predicted to be the best when (FsR > 0 AND RFBx ≤ 0.0005) OR (FsR

= 0 AND 4_IZ > 0.005 AND FVC ≤ 0.37).

6.1.4 Online LA Constraint Handling:

TheLAapproachwas implementedwithOLA_limit = 2 × D, so for a 10-dimensional
problem, themaximumsample size for the online landscape analysiswas 20 solutions
for each particle (1000 for a swarm size of 50). The search history was modelled as
a queue of solutions for each particle, with the oldest information being discarded as
the limit was reached and new data was added. The switching frequency (parameter
SW_ f req) was set to 30 × D, implying that a CHT was chosen every 300 iterations
for a 10-dimensional problem.
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6.2 Results

The effectiveness of the LA approach was tested by comparing the performance
against the constituent CHTs on the testing set (remaining one-third of problem
instances not used in the offline training phase to derive the rules). A random switch-
ing approach was included in the experiment to measure the benefit of randomly
choosing between the three constituent CHTs without considering the landscape
information. All approaches used the same base PSO algorithm as defined in Sect. 3.
In summary, the five approaches included in the experiment were

1. WP: Weighted penalty strategy as described in Sect. 3.
2. DFR: Deb’s feasibility ranking strategy as described in Sect. 3.
3. εDFR: Feasibility ranking with an ε as described in Sect. 3.
4. RD: Random switching between the above three strategies at the same frequency

as LA.
5. LA: Landscape-aware switching based on landscape information collected by the

swarm using rules from the offline training phase.

Thirty independent runs of each version of PSO were executed and the perfor-
mances were ranked using the CEC 2010 competition rules as outlined in Sect. 3.
The results are given in Table3.

As before, WP and εDFR performed similarly on average, achieving mean ranks
of 2.75 and 2.86, respectively, while DFR performed the worst overall with a rank
of 4.11. DFR was the best performing algorithm on only three instances while WP
and εDFR were the best on 8 instances each. The LA approach outperformed all
of the constituent strategies, achieving a mean rank of 2.06. LA was also the best
performing strategy on more instances than any of the other approaches (one third)
and was the only strategy that was the worst performing on none of the instances.

The LA approach was able to out-perform the constituent strategies by choos-
ing the strategy that was predicted to be the best for each problem instance being
solved. The RS strategy performed better than DFR, but worse than the other two
constituent strategies, indicating that there was no benefit to switching randomly
between constituent strategies in this case.

Table 3 Performance of five constraint handling approaches on the test set (SW_ f req = 30 × D,
OLA_limit = 2 × D)

Strategy Mean rank Best performing Worst performing

WP 2.75 8 instances (22%) 4 instances (11%)

DFR 4.11 3 instances (8%) 23 instances (64%)

εDFR 2.86 8 instances (22%) 3 instances (8%)

RS 3.06 5 instances (14%) 6 instances (17%)

LA 2.06 12 instances (33%) 0 instances (0%)
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Table 4 Data from a sample run of the LA approach on problem C02 in 5D

Iteration Online landscape metrics Selected
strategy

FsR RFBx FVC 25_IZ 4_IZ

150 0 0 −0.081 0.288 0.014 εDFR

300 0 0 −0.46 0.186 0 FR

1050 0.118 0.102 0.26 0.376 0 WP

6.3 Illustrative Run of Landscape-Aware Approach

To illustrate how the LA approach works, Table4 shows some of the data extracted
from a sample run on problem C02 in 5D. The table gives the values of the landscape
metrics calculated from the sample of solutions in the swarm history at iterations
150, 300 and 1050. At the end of iteration 150, the landscape metrics show that the
particles in the swarm had not yet encountered any feasible solutions (FsR = 0).
Also, the FVC was a negative value, indicating that the fitness and violation values
in the search history were negatively correlated. Considering the selection rules on
page 14, the strategy predicted to perform the best with this profile of values was
εDFR, which was the strategy selected by the LA algorithm.

By iteration 300, the 4_IZ value had dropped from 0.014 to 0. With this change,
the FR strategy was predicted to be the best. The LA algorithm, therefore, selected
FR as the strategy. At iteration 1050, the landscape metrics indicated that feasible
solutions had been encountered by the swarm (with FsR = 0.118). Also, the FVC
had changed to a positive value. With this landscape profile, WP was predicted to be
the best performing strategy.

In this way, the LA approach switches between strategies depending on the fea-
tures of the landscape as experienced by the swarm’s recent search history.

7 Conclusion

Before metaheuristics can be effectively applied to solving real-world problems in
general, they need adaptive ways of handling constraints. It is argued that adap-
tive techniques are needed because the best approach is problem dependent. This
study presented results to show that there is performance complementarity between
different constraint handling techniques when used with PSO. A dataset of bench-
mark problem instances was generated consisting of metrics for characterising the
landscape features with class labels identifying the best performing constraint han-
dling technique. In an offline phase, machine learning was used to derive rules for
selecting constraint handling techniques based on landscape features. An online
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landscape-aware approach was implemented by using these rules as a basis for
switching between techniques using the swarm history as the sample for computing
the features.

Results show that there is value in utilisingdifferent constraint handling techniques
with PSO and in selecting techniques based on the features of the search landscapes.
Future work will include deriving general high-level rules for constraint handling
selection that can apply to different search strategies and problem representations.
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On the use of Gradient-Based Repair
Method for Solving Constrained
Multiobjective Optimization
Problems—A Comparative Study

Victor H. Cantú, Antonin Ponsich, and Catherine Azzaro-Pantel

Abstract In this chapter, we study the effect of repairing infeasible solutions
using the gradient information for solving constrained multiobjective problems
(CMOPs) with multiobjective evolutionary algorithms (MOEAs). For this purpose,
the gradient-based repair method is embedded in six classical constraint-handling
techniques: constraint dominance principle, adaptive threshold penalty function
(ATP), C-MOEA/D, stochastic ranking, ε-constrained and improved ε-constrained.
The test functions used include classical problems with inequality constraints (CFs
and LIRCMOPs functions) as well as six recent problems with equality constraints.
The obtained results show that the gradient information coupledwith a classical tech-
nique is not computationally prohibitive and can make the given classical technique
much more robust. Moreover, in highly constrained problems, like those involving
equality constraints, the use of the gradient for repairing solutions may not only be
useful but also necessary in order to obtain a good approximation of the true Pareto
front.
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EQC Equality constrained function suite
F Feasible region

f(x) Objective vector
g(x) Inequality constraint vector
HV Hypervolume indicator
h(x) Equality constraint vector

I Feasibility ratio
IGD Inverted generational distance indicator

LIRCMOP Large-infeasible regions function suite
MOEA Multiobjective evolutionnary algorithm

MOEA/D Multiobjective evolutionnary algorithmbased on decomposition
PF Pareto-optimal front
PS Pareto-optimal set
R

n n-dimensional Euclidean space
R

n+ Non-negative orthant of R
n

S Search space
SR Stochastic ranking method
w Weight vector
x Decision (variable) vector
z∗ Ideal objective vector

znad Nadir objective vector

1 Introduction

The formulation of many real-world engineering problems involve the simultaneous
optimization of several conflicting criteria, frequently with a set of constraints that
need to be fulfilled. These problems can be statedmathematically as constrainedmul-
tiobjective optimization problems (CMOPs), and their solution consists of providing
a finite number of well-distributed efficient solutions so that the decision-makers can
make the right choice according to their experience.

Regarding the methods for solving these problems, multiobjective evolutionary
algorithms (MOEAs) have drawn the attention of researchers due to their work-
ing mode that enables them to provide an approximation of the Pareto set in one
single run. These population-based algorithms may work mainly under three dif-
ferent paradigms: (1) in dominance-based algorithms, the Pareto dominance rela-
tionship is used to establish a ranking among candidate solutions (e.g., [1, 2]); (2)
decomposition-based algorithms divide the original multiobjective problem into a
collection of scalar optimization subproblems, which are solved in a collaborative
way (e.g., [3]), and (3) quality-indicator-based algorithms search to optimize one or
several performancemetrics (e.g. [4]).Nonetheless, like themajority ofmetaheuristic
techniques, MOEAs lack constraint-handling mechanisms in their canonical design.
Consequently, a range of constraint-handling techniques have been proposed in the
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literature, aiming to guide the search to promising constrained regions. The work-
ing principle of these techniques is variable, for instance, some repair infeasible
solutions to some extent, others enable infeasible individuals to survive with a cer-
tain probability or by means of a relaxation on the constraints, while others prefer
feasible solutions over infeasible ones all along the evolutionary process. Besides,
constraint-handling techniques that were originally proposed for tackling single-
objective problems have been adapted to consider multiple objectives, this is the case
for techniques like penalty function [5] or ε-constrained method [6]. Even though a
number of works have been devoted to the study of constraint-handling techniques
within MOEAs, this issue still constitutes an active research area as the applicability
of these techniques for solving highly constrained real-world optimization problems
is limited by their efficiency for constraint handling.

Of special interest to our study stands the gradient-based repair method [7]. Pro-
posed by Chootinan and Chen in 2005 in a single-objective optimization framework,
thismethod uses the gradient information of constraints to repair infeasible solutions.
It was employed to solve the single-objective constrained problems proposed in CEC
2006 and CEC 2010 competitions, obtaining encouraging results [8–10]. However,
to the best of our knowledge, this method has not been explored for the solution of
CMOPs.

Therefore, in this work, the gradient-based repair method is considered to solve
CMOPs. A comparative study is carried out to demonstrate the benefits of using this
repair strategy, when combined with six well-known constraint-handling methods,
namely constraint dominance principle (CDP), Adaptive Threshold Penalty function
(ATP), C-MOEA/D, stochastic ranking, ε-constrained and improved ε-constrained.
Two recent benchmarks used in many related works are considered, namely CF
[11] and LIRCMOP functions [12], as well as six problems containing equality
constraints.

The remainder of this chapter is organized as follows. Section 2 presents some
definitions relevant to this work as well as a general background on constrained mul-
tiobjective optimization. Section 3 develops and briefly discusses the six constraint-
handling techniques studied in this work, in addition to the gradient-based repair
method. The experimental methodology and the computational results are described
in Sects. 4 and 5, respectively. Finally, conclusions and perspectives for future work
are drawn in Sect. 6.

2 Related Background

2.1 Basic Concepts

We study a constrained multiobjective optimization problem (CMOP) of the form:
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minimize f(x), (1)

subject to gi (x) ≤ 0, i = {1, . . . , p}
h j (x) = 0, j = {1, . . . , q}
li ≤ xi ≤ ui , i = {1, . . . , n}.

where x = [x1, x2, . . . , xn]T is a n-dimensional vector of decision variables (either
discrete or continuous), f(x) = [ f1(x), f2(x), . . . , fk(x)]T is a k-dimensional vector
of (conflicting) objective functions to be minimized1, p is the number of inequality
constraints and q is the number of equality constraints. The functions gi and h j may
be linear or non-linear, continuous or not, real-valued functions. Each variable xi
has upper and lower bounds, ui and li , respectively, which define the search space
S ⊆ R

n . Inequality and equality constraints define the feasible region F ⊆ S.
In multiobjective optimization, in order to compare two feasible solutions x, y ∈

F , the Pareto dominance relation must be defined: A solution x is said to dom-
inate a solution y, denoted by x ≺ y, if and only if x is at least as good as y in
all objectives (∀i ∈ {1, . . . , k}, fi (x) ≤ fi (y)) and better in at least one objective
(∃ j ∈ {1, . . . , k}, fi (x) < fi (y)).

The set of all incomparable (non-dominated) solutions is known as the Pareto
Optimal Set (PS), and is formally defined as

PS := {x∗ ∈ F : �x ∈ F , x ≺ x∗}. (2)

The image of these non-dominated vectors is collectively known as the Pareto Opti-
mal Front (PF ) or True Pareto Front (true PF), expressed as

PF := {f(x∗) : x∗ ∈ PS}. (3)

Throughout this chapter, we use the term true PF interchangeably with PF . Further,
since thePSmay contain an infinite number of solutions, themultiobjective problem
is limited to determine a finite number of Pareto-optimal solutions that represents a
good approximation of the PF in terms of both convergence and diversity.

The ideal objective vector z∗ ∈ R
k is obtained byminimizing each objective func-

tion individually subject to the constraints, in this manner, each component of the
ideal vector can be represented as z∗

i = min{ fi (x) : x ∈ F }. This ideal (utopian)
point constitutes a reference point, and is especially useful in some scalarizing func-
tions used within decomposition-based MOEAs.

The nadir objective vector znad ∈ R
k constitutes an upper bound of the Pareto-

optimal front. It is defined in the objective space as znadi = max{ fi (x) : x ∈ PS}. It is
used, along with the ideal point, for performing an objective normalization as shown
in (7).

In the context of constrained optimization, theoverall constraint violation is useful
to evaluate the degree of infeasibility of a solution x. It is defined as

1For the case of maximization, a negative sign is just added to the objective function.
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φ(x) :=
p∑

i=1

max{0, gi (x)}α +
q∑

j=1

∣∣h j (x)
∣∣α . (4)

where α takes a positive value, in this work α = 1. Note that equality constraints
can be transformed into inequality constraints as: ∀ j ∈ {1, . . . , q}, ∣∣h j (x)

∣∣ − ε ≤ 0,
where ε is a small real-valued tolerance, in this work ε = 1e − 4.

The feasibility ratio (I ) indicates the ratio of feasible solutions belonging to an
approximation archive A to the PF , it can be represented as

I (A) :=
∣∣A f

∣∣
|A| (5)

where A f is a subset of A containing only feasible solutions ({A f ∈ A : A f ∈ F }),
and |·| stands for the cardinality of the given set.

2.2 Decomposition-Based Approach

In this chapter, a decomposition-based algorithm is considered as the search engine,
namely MOEA/D [13]. In this algorithm, the original CMOP (1) is represented as
a number of scalar optimization problems using of a scalarizing function u, each
subproblem using a different target direction or weight vector w ∈ R

k+ such that∑k
j=1 w j = 1. This transformation can be represented as

minimize u(f ′(x);w) (6)

with the same constraints as in (1). In this work, we perform an objective normaliza-
tion such that

f ′(x) := f(x) − z∗

znad − z∗ . (7)

where z∗, znad ∈ R
k are the ideal and nadir points found so far. The Augmented

Achievement Scalarizing Function (AASF) [14, 15] employed here is defined as

uaas f (f ′;w) := max
i

{ f ′
i

wi

}
+ α

k∑

i=1

{ f ′
i

wi

}
(8)

where α should take a small value. In this work α = 1e − 3. It should be noted that
using a decomposition-based algorithm allows considering some constraint-handling
techniques that were originally proposed on a single-objective framework, so that the
utility function umay be regarded as the objective function to beminimized. Besides,
in MOEA/D the original optimization problem is divided into a number of scalar
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optimization subproblems equal to the number of individuals in the population, that
is, each individual is assigned to solve a specific subproblem according to its weight
vector associated. Also, the optimization procedure is performed in a collaborative
way, since the population is divided into neighbourhoods which can share a given
solution if a given neighbour advances in its search with it. In this work, we use
Differential Evolution algorithm in its classical version DE/rand/1/bin as the
search operator.

2.3 Constraint-Handling Strategies within MOEAs

In the past decade, the development of constraint-handling strategies for the solution
of CMOPs has drawn considerable interest from the evolutionarymultiobjective opti-
mization (EMO) community. It must be emphasized that, commonly, most MOEAs
are adapted for treating CMOPs through the constraint dominance principle (CDP,
explained in detail in the next section) [2], however, the disadvantages of this strat-
egy, well known for single-objective optimization, is also evident in multiobjective
optimization, where diversity among solutions is important in order to achieve a good
approximation to the true Pareto front.

Consequently, with the purpose of tackling the drawbacks of CDP for NSGA-II,
the Infeasibility-Driven Evolutionary Algorithm (IDEA) [16] proposes the use of
a parameter α standing for the ratio of infeasible solutions to survive in the popu-
lation. A constraint violation function is used as an additional objective and then,
non-dominated ranking is applied to infeasible and feasible individuals separately.
In this way, the new population (containing N individuals) holds, at most, α · N
best-ranked infeasible solutions. Besides, in a dominance-based framework also, a
parameterless adaptive penalty function has been proposed in [17], in which a modi-
fied objective function is computed considering a “distance”measure and an adaptive
penalty function. These two components of the new objective function are tailored
aiming to guide the search towards feasible regions first, and then, infeasible individ-
uals’ information is used to explore promising infeasible regions. In addition, in [18],
the authors propose adaptations of the CDP and Stochastic Ranking (SR)methods for
working inMOEA/D-DE. The proposed SRmultiobjective version selects a solution
according to the utility function value with probability p f , otherwise the CDP is con-
sidered. Results show that MOEA/D-CDP outperformsMOEA/D-SR for the studied
problems. Another decomposition-based algorithm adapted for solving CMOPs is
proposed in [19], by means of a function that combines the overall constraint viola-
tion and the number of active constraints. The mean value of this function, weighted
by the ratio of feasible individuals in the population, allows computing a threshold
on the allowed constraint violation. Solutions below this threshold are considered as
feasible and compared in terms of their scalarizing function. In [6] the ε-constraint
method [20] within MOEA/D is explored in which the ε level is now defined using
a normalized constraint violation and an additional ε-comparison rule is proposed
accounting for slightly infeasible promising solutions. Further, in [12], anothermodi-
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fication to the original ε level function is presented, to be employedwithinMOEA/D.
This ε function enables the ε level to increase/decrease depending on the ratio of
feasible solutions in the population so that the search is strengthened in both feasi-
ble and infeasible regions throughout the optimization. More recently, a two-stage
procedure (called, Push and Pull) was proposed [21]. In the first stage (push stage),
the algorithm explores the unconstrained search space, which allows the population
to get across infeasible disconnected regions, and then, in the pull stage, original
constraints are considered along with the improved ε constraint to gradually pull
the population towards feasible regions. Stagnation of the identified ideal and nadir
points determines the switching point between the “push” and “pull” phases. Nev-
ertheless, it must be highlighted that this constraint-handling method has only been
tested for LIRCMOP test problems, which contain only inequality constraints and
some true Pareto fronts are identical to their counterparts in the unconstrained prob-
lems. In [22], diversity preservation in the population is explicitly handled through
a modification of MOEA/D-CDP. When two solutions are compared, if at least one
of them is infeasible, the similarity measure is computed based on the angle of their
corresponding objective vectors with respect to the ideal point. Similar solutions are
compared according to their overall constraint violation, otherwise the scalarizing
function value is used as the comparison criterion. In [23], the original CMOP is
modified considering the overall constraint violation as an additional objective. Two
weight vector sets are generated, accounting for infeasible and feasible solutions,
respectively, in order that infeasible individuals are well distributed along the Pareto
front, and may lead the search to promising regions. In [24], the authors use a modi-
fied ε-constraint strategy in a decomposition-based framework. The feasibility ratio
and theminimum constraint violation value of the current population are employed in
order to compute the ε level at each generation. Also, the scaling factor F within DE
is adjusted dynamically in order to promote local search in late generations. Finally,
MOEA/D is modified in [25] so that two solutions (one feasible and one infeasible)
are assigned to each weight vector. This strategy is used to consider an individual
on each side of the feasibility boundary. During the selection phase, an offspring
solution is compared, considering the scalarizing function and the overall constraint
violation. For the two-objective problem, dominance is used to select two surviving
individuals among the three considering whether all solutions are non-dominated.
Thus, a solution with a high constraint value is discarded, while a solution survives
if it dominates the two others.

3 A Portfolio of Constraint-Handling Strategies

In this section, the six constraint-handling techniques employed in this work are
presented and discussed inmore detail. It can be appreciated that they constitute easy-
to-implement and simple constraint-handling techniques. Also, even if some original
methods have been proposed to tackle only problemswith inequality constraints, they
can be easily adjusted for considering equality constraints as well.
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3.1 CDP

This constraint-handling technique establishes the superiority of feasible solutions
over infeasible ones. Proposed byDeb in [26], the feasibility rules (also called lexico-
graphical order) consist in a binary tournament selection according to the following
criteria:

1. Any feasible solution is preferred to any infeasible solution.
2. Among two feasible solutions, that with better objective function value is pre-

ferred.
3. Among two infeasible solutions, thatwith smaller constraint violation is preferred.

Deb’s feasibility rules represent an easy-to-implement, parameter-free technique to
handle constraints. Their extension to CMOPs, called the constraint dominance prin-
ciple (CDP), reformulates condition 2 by a dominance-based comparison, and thus
is stated as “among two feasible solutions, that which dominates the other is pre-
ferred”, where a diversity operator is used if no solution dominates the other. In a
decomposition-based algorithm, the utility function is used for condition 2.

Further, due to its simplicity and its overall good performance, the CDP method
is usually the first constraint-handling technique tested for treating a given problem
within MOEAs. However, one of the main drawbacks of this method appears when
dealing with problems with a reduced and disconnected feasible region: since any
feasible solution is preferred over an infeasible one, once the algorithmhas converged
to a feasible region, it might be difficult to escape from there to explore the rest of
the search space, i.e., once the constraints are fulfilled, the algorithm is likely to get
trapped prematurely in some subregion of the search space.

3.2 ATP (Adaptive Threshold Penalty)

This adaptive threshold penalty function (called ATP by the authors in [5]) is particu-
larly adapted to be usedwithinMOEA/D. It uses a threshold value, τ , for dynamically
controlling the amount of penalty. The threshold value τ is then defined as

τ = Vmin + 0.3(Vmax − Vmin) (9)

where Vmin = min{φ(xi )},∀i ∈ P and Vmax = max{φ(xi )},∀i ∈ P , and P repre-
sents a given neighborhood in MOEA/D. Then, according to ATP method, the new
scalarizing function u is defined as

u(f ′(x);w) =
{
u(f ′(x);w) + s1φ2(x), if φ(x) < τ,

u(f ′(x);w) + s1τ 2 + s2(φ(x) − τ), otherwise

where s1 and s2 are two scaling parameters.
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3.3 C-MOEA/D

This constraint-handling method separates the objective function and the violation of
constraints, and proposes a violation threshold allowing for a relaxation of constraints
under which solutions are considered as feasible [19]. Once the relaxation is carried
out and therefore feasible and infeasible solutions have been identified, the constraint
dominance principle is employed for the selection step. The violation threshold, ϕ,
proposed by the authors is calculated as follows:

ϕ =

|C |∑
j=1

φ(x j )

|C | · IG(C). (10)

The first part of the right term designates the average overall constraint violation
of the current population C and IG is the feasibility ratio at generation G of the
evolutionary algorithm.

3.4 SR

Stochastic ranking (SR) [27] has been proposed as an attempt to balance the relative
weights of the objective and the constraint violation that occurs in penalty functions.
In this method, the population is sorted following a probabilistic procedure: two
individuals are compared according to their objective function with a probability p f ,
otherwise, the overall constraint violation is used for comparisons. Once the popula-
tion has been sorted by SR, a part of the population assigned with the highest rank is
selected for recombination. In this way, the search is directed by the minimization of
the objective function and by feasibility concepts at the same time. Since this method
was designed in a single-objective framework, its generalization to a multiobjective
problem is not straightforward even when aggregation functions are considered as in
decomposition-based algorithms. One attempt of using SR for multiobjective opti-
mization is introduced in [18]. In the present study, the same implementation is
considered. Nevertheless, it must be emphasized that no actual ranking of the pop-
ulation is performed at all, but instead a stochastic comparison between the parent
and the offspring: the comparison is performed firstly according to their scalarizing
functionwith a probability p f , otherwise, the constraint dominance principle is used.

3.5 ε-Constrained

This method integrates a relaxation of constraints up to a so-called ε level, under
which solutions are regarded as feasible [20]. Once the feasible and infeasible solu-
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tions are identified, feasibility rules are employed for selecting the survival indi-
viduals. This technique has proven to be especially efficient in highly constrained
problems, such as those involving equality constraints, as it promotes the exploration
of regions that would be impossible to reach by simple feasibility rules. The authors
of [20] proposed a dynamic control of ε level, according to

ε(0) = φ(xθ ) (11)

ε(t) =
{

ε(0)(1 − t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the best θ th individual (in terms of constraint violation) in the first
generation, cp is a parameter to control the decreasing speed of the ε level and Tc
represents the generation after which the ε level is set to 0, and then feasibility rules
are considered. Note that CDP is used instead of feasibility rules for the solution of
CMOPs.

3.6 Improved ε-Constrained

In [12], another function for controlling the ε level is proposed, aiming to tackle some
drawbacks found in the previous ε-constrained method. For instance, in problems
with large feasible regions, all population might be feasible and thus the value for
ε(0) becomes zero. This would be equivalent to using CDP (with its drawbacks) all
along the evolutionary process. The proposed function for ε level permits increasing
its value if the feasible ratio is above a given threshold (α parameter), according to

ε(0) = φ(xθ ) (12)

ε(t) =

⎧
⎪⎨

⎪⎩

ε(t − 1)(1 − ρ), if It (C) < α and t < Tc,

φmax (1 + ρ), if It (C) ≥ α and t < Tc,

0, t ≥ Tc

where xθ has the same meaning as in Eq. 11, It (C) is the ratio of feasible individuals
of the current population C at generation t , parameter ρ is to control the speed of
reducing the ε level (it ranges between 0 and 1), parameter α controls the searching
preference between the feasible and infeasible regions and φmax is the maximum
overall constraint violation found so far.
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3.7 Gradient-Based Repair

This constraint-handling method uses the gradient information derived from the
constraint set to systematically repair infeasible solutions, in otherwords, the gradient
of constraint violation is used to direct infeasible solutions towards the feasible region
[7]. The vector of constraint violations 
C(x) is defined as:


C(x) = [
g1(x), . . . ,
gp(x),


h1(x), . . . , 
hq(x)]T
(13)

where 
gi (x) = max{0, gi (x)} and
h j (x) = h j (x). This information, additionally
to the gradient of constraints ∇C(x), is used to determine the step 
x to be added
to the solution x, according to

∇C(x)
x = −
C(x) (14)


x = −∇C(x)−1
C(x) (15)

Although the gradient matrix ∇C is not invertible in general, the Moore–Penrose
inverse or pseudoinverse ∇C(x)+ [28], which gives an approximate or best (least
square) solution to a system of linear equations, can be used instead in Eq. (15).
Therefore, once the step 
x is computed, the infeasible point x moves to a less
infeasible point x + 
x. This repair operation is performed with a probability Pg
and repeated Rg times while the point is infeasible, for each individual.

In this work, this repair-based method is combined with any of the six previ-
ously mentioned constraint-handling techniques in order to highlight the effect it
may have on the performance level of MOEAs for solving CMOPs. In our imple-
mentation, the computation of the gradient∇C(x) is done numerically using forward
finite differences for all problems. Also, it is worth noting that only non-zero ele-
ments of 
C(x) are repaired, thus, the gradient is only computed for constraints
that are being violated. Note that this procedure can produce situations where some
variables lie outside their allowed variation range. In [7], two inequality constraints
are added for each variable, accounting for their bounds. However, due to the associ-
ated computational burden in real-world optimization problems where the number of
variables may be high, these additional constraints are not considered here. Instead,
an additional repair process, performed at each iteration, sets the variable value to
the violated bound if necessary.
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4 Experimental Methodology

4.1 Test Problems

We investigated the performance of the six above-mentioned constraint-handling
techniques, and particularly, the effect of embedding the gradient-based repair
method within each of these techniques. For this purpose, we carried out a com-
prehensive study over 29 test problems which include inequality constraints: ten
constrained function (CF) test problems [11], fourteen CMOPs with large infeasible
regions (LIRCMOPs) [12], as well as six problems with equality constraints (named
here EQC) [29–32], amongwhich the last one is a real-world CMOPwith application
in process engineering.

The reason for the choice of CF and LIRCMOP function suites is related to the
interesting features they present (numerous local optima, disconnected Pareto fronts,
and inequality constraints that are difficult to satisfy), but also due to the fact that
several recent works have studied these problems [21, 24, 25, 33], and thus our
results can be compared to those obtained with state-of-the-art algorithms.

4.2 Performance Indicators

To assess the performance of the different algorithms, we use the inverted genera-
tional distance indicator (IGD) [34] as well as the hypervolume indicator (HV) [35].
Again, the choice of using these two performance indicators is made in order to offer
the reader comparable results to that of state-of-the-art algorithms.

The IGD indicates how far the discretizedPareto-optimal front is from the approxi-
mation set, i.e. it is the average distance from each reference point to its nearest solu-
tion in the approximation set. This non-Pareto compliant indicator measures both
convergence and diversity. A smaller value of IGD indicates a better performance of
the algorithm. To generate the reference set for CF and LIRCMOP test suites, 1000
points are sampled uniformly from the true PF for two-objective problems; whereas
10000 points are sampled uniformly from the true PF for three-objective problems.
With respect to the EQC test suite, the number of points sampled from the true PF
varies for each problem, depending on the data available.

Concerning the HV, it is the only performance indicator known to be Pareto-
compliant [36]. A large HV value shows that a given solution set approximates the
Pareto-optimal front well in terms of both convergence and diversity in the objec-
tive space. The k-dimensional reference vector for the HV computation is set to
[1.1, 1.1, . . . , 1.1]T in the normalized objective space [0, 1]k , for all problems. To
obtain the ideal and nadir points for the real-world problem (EQC6), five indepen-
dent runs using jDE with ε-constrained method coupled with gradient-based repair
were performed for each single-objective problem, setting the number of function
evaluations to 500 000, in order to obtain the extreme points.
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4.3 Experimental Settings

The detailed parameter settings for the experiments carried out here are summarized
below.

1. MOEA/D parameters. Scalarizing function: augmented achievement (AASF),
probability of choosing parents locally: δ = 0.9, neighborhood size: T = 0.1N ,
maximum number of replacements nr = 2. To maintain diversity, the crowding
distance is used if the external archive containsmore solutions than the population
size (N ).

2. DE parameters. CR = 1, F = 0.5. With polynomial mutation parameters: pm =
1/n, ηm = 20.

3. Population size (N ). For CFs, N = 200 for two-objective problems, N = 300 for
three-objective problems. For LIRCMOPs, N = 300. For EQCs, N = 100 for
two-objective problems, N = 300 for three-objective problems.

4. Number of function evaluations (NFE). For CFs, NFE = 1e5 for two-objective
problems, NFE = 1.5e5 for three-objective problems. For LIRCMOPs, NFE =
1.5e5. For EQCs, NFE = 1e5 for two-objective problems, NFE = 1.5e5 for
EQC4 and NFE = 0.5e5 for EQC5. Also, for the gradient-based repair method,
each computation of the gradient of constraints counts is counted as 1 function
evaluation.

5. Parameter settings of constraint-handling techniques (are set identical to that
proposed in the related articles):

– ATP: s1 = 0.01, s2 = 20.
– Stochastic ranking: p f = 0.05.
– ε-constrained: θ = 0.2N , cp = 5, Tc = 0.2Tmax .
– Improved ε-constrained: θ = 0.05N , ρ = 0.1, α = 0.95, Tc = 0.8Tmax .
– Gradient-based repair: Pg = 1, Rg = 3, step size for finite differences: 1e − 6.

For each problem, 31 independent runs were performed. The algorithms previously
presented were implemented in MATLAB R2019a and the computational experi-
ments were performed with a processor Intel Xeon E3-1505M v6 at 3.00 GHz and
32 Go RAM.

5 Results and Discussion

The results obtained with the six above-mentioned algorithms (CDP-MOEA/D,
ATP-MOEA/D,C-MOEA/D, SR-MOEA/D, ε-MOEA/Dand Improved ε-MOEA/D)
without and with gradient-based repair are analysed through the mean and standard
deviation values of each performance indicator (see Tables 1 to 6). The overall com-
putational time (in seconds) for performing the 31 runs is displayed in each table
presenting the IGD values. Binary comparisons are carried out for each constraint-
handling technique in order to show the effect of repairing infeasible solutions using
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the gradient information. Then, statistical tests are performed for each comparison
over the 31 runs, according to the Wilcoxon rank-sum test with p < 0.05. Signif-
icantly better results are represented in boldface. At the bottom of each table, a
summary of these statistical tests is displayed, where I, D and S represent the num-
ber of instances for which the gradient-based repair process, respectively, achieves
statistically inferior (I), equivalent (no significant difference, D) or statistically supe-
rior (S) results when comparedwith the original techniquewithout repair. Finally, the
results regarding the feasibility ratio indicator of the last population (IF ) (i.e., that at
the last generation, not that in the external archive) are presented in Table 6 for EQC
test problems. We considered only to present the IF for these problems since some
canonical algorithms have difficulties for obtaining feasible solutions when tackling
problems with equality constraints. Note that no statistical test is implemented for
this indicator, as a high value of this indicator does not necessarily mean a good
approximation to the PF .

5.1 CF Test Problems

Tables 1 and 2 highlight that the overall performance of the gradient-based repair is
satisfactory for CF test problems, i.e., globally, the coupling of the gradient-based
repair method produces at least as good solutions as the canonical method. More
precisely, considering the statistical results presented in Tables 1 and 2 as a whole,
it can be stated that the use of the gradient-based repair significantly improves the
canonical algorithm in 37.5% of the instances, and significantly deteriorates the
canonical algorithm only in 5.8% of the cases. Besides, with respect to the compu-
tational times, it can be observed from Table 1 that no additional cost is to be paid
for using this gradient-based repair, that is, the computation of the pseudoinverse
of the gradient that might be a priori time-consuming, is offset by the fact that less
generations needed (since the halt condition for the algorithm is the number of func-
tion evaluations). It is noteworthy, consequently, that when the repair of infeasible
solutions is taken into account, the evolutionary process is somewhat accelerated, in
regarding the number of generations needed to converge to the PF .

However, it should be emphasized thatmost CF functions constitute difficult prob-
lems for all the studied techniques, even when the gradient-based repair is included.
The cause of these difficulties arises not only from the constraints but also from the
objective functions which involve a significant number of locally optimal fronts. To
develop this, let us consider CF5 function. Figure 1 illustrates the convergence diffi-
culty observed when trying to approximate the true Pareto front using C-MOEA/D
for this problem. Note that all solutions in Figure 1 constitute feasible solutions.
Also, Figures 1 and 2 (right) show that the true Pareto front of the constrained prob-
lem differs only in its lower part ({ f1 ∈ R : 0.5 < f1 ≤ 1}) from the unconstrained
true Pareto front. The similarity between both figures regarding the poor conver-
gence tends to confirm that the lack of convergence observed in Figure 1 may not be
attributable to difficulties in fulfilling the constraints, but to difficulties in escaping
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Fig. 1 Pareto front approximation of the median run considering HV of CF5 function. C-MOEA/D
without (left) and with (right) gradient-based repair
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Fig. 2 Pareto front approximation of the median run considering HV of unconstrained functions
CF3 (left) and CF5 (right)

from local optima. This could also explain the high percentage of cases (56.7%)
where there is no significant difference while using the repair method. Figure 2 (left)
displays the same phenomenon for problem CF3.

5.2 LIRCMOP Test Problems

These problems contain large infeasible regions as well as disconnected feasible
regions (islands), which means difficulties for the search algorithm, as the search
might be stuck in a suboptimal island enclosed by infeasible regions. The results
obtained are presented in Tables 3 and 4. For this test suite, it can be appreciated that
the use of the gradient-based repair significantly improves the performance of the
six constraint-handling techniques.
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Fig. 3 Pareto front approximation of the median run considering HV of LIRCMOP4 function.
SR-MOEA/D without (left) and with (right) gradient-based repair

Problems LIRCMOP1-4 present large infeasible regions and theirPF are situated
on their constraint boundaries. For these problems, each algorithm in their canonical
form is able to find at least a part of the true PFs, however, because of the constrained
search spaces, they are not capable of identifying the whole PF . That is, the search
is stressed in some parts of the Pareto front, in particular those that are found first and
which are difficult to move away from. In addition, the incorporation of the gradient-
based repair encourages the algorithm to continue searching promising regions even
once some Pareto-optimal solutions have been found. Because the true Pareto fronts
are surrounded by infeasible regions, new solutions proposed from Pareto-optimal
solutions found so far are likely to be slightly infeasible, and thus easily repaired
using the constraints’ gradient information. Figure 3 illustrates this phenomenon for
LIRCMOP4 function. It can be observed from Tables 3 and 4, that the repair process
significantly improves every canonical algorithm for all the problems under study.

Problems LIRCMOP5-8 have infeasible regions that may be difficult to cross
when approaching the true PFs. These problems are particularly difficult for all the
constraint-handling techniques studied here (with the exception of the improved
ε-constrained), none of them is able to reach the PF , as they get stuck in subopti-
mal fronts which are bounded by constraints. When gradient-based repair is used,
every algorithm, however, approaches the true PFs efficiently. Figures 4 and 5 show
clearly how the gradient-based repair permits the individuals to pass over the infea-
sible region to attain the true PFs. Note that the regions dividing the true PFs and
the obtained approximations (left Figures 4 and 5), constitute infeasible regions.
Similar to problems LICRMOP1-4, the gradient-based repair significantly improves
every canonical algorithm for all these problems. Furthermore, even the improved
ε-constrained method, that has been designed to be well-suited for this kind of prob-
lems, exhibits a significant enhancement with the use of this repair.

Problems LIRCMOP9-12 contain, in addition to large infeasible regions, con-
straints that divide the PFs into a number of disconnected segments. Once more,
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Fig. 4 Pareto front approximation of the median run considering HV of LIRCMOP5 function.
CDP-MOEA/D and ATP-MOEA/D without (left) and with (right) gradient-based repair
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Fig. 5 Pareto front approximation of the median run considering HV of LIRCMOP7 function.
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the results show that the repair of constraints presents overall good performance for
these problems.

LIRCMOP13-14 functions consist of three-objective problems, where the PFs are
situated in the boundaries of their constraints. The numerical results show that each
algorithmembeddedwith the gradient-based repair obtained a good approximation of
the true PFs, and in fact, virtually the highest possible HV values (for LIRCMOP13,
14: ≈ 7.50e − 01 and ≈ 7.55e − 01, respectively) are obtained for every algorithm
in every run (according to the diversity criterion used: crowding distance). It must be
highlighted that even the methods with a bad performing canonical form (i.e., ATP,
SR, CDP), achieve an excellent performance (better than that of canonical improved
ε-method) once the repair of infeasible solutions is carried out.

5.3 EQC Test Problems

The results obtained for EQC problems are presented in Tables 5 and 6. For Problem
EQC6 in Table 5, the “—” means no information is available. The results accord-
ing to the IGD and HV metrics show that the implementation of the gradient-based
repair significantly outperforms the canonical constraint-handling methods for all
problems. Besides, the repair of infeasible solutions for problems with equality con-
straints seems to be necessary in order to obtain acceptable quality solutions, or even
more, feasible solutions. For these problems, the mean feasibility ratio of the final
population over the 31 runs is also presented in Table 6.

Problem EQC1 [29] has only two equality constraints, however, none of the six
constraint-handling techniques studied here is capable of approaching the whole
Pareto front. For these canonical techniques, it seems that the exploration is stopped to
some extent once a feasible non-dominated solution is found, due to their inability of
escaping froma subregion enclosed by equality constraints. In contrast, if the repair of
infeasible solutions is carried out, the exploration is pursued all along the evolutionary
process and in this way, each one of the six techniques approximates the Pareto front
obtaining the maximum HV value (≈ 9.09e − 01). It must be emphasized that even
the ATP method, which was unable to find a single feasible solution in its canonical
form, now converges to the true PF. Figure 6 plots the Pareto front of the median run
according to the HV indicator for CDP and ε-constrained methods, without and with
the implementation of the gradient-based repair.

Problems EQC2-3 [30] are modifications of the ZDT1 problem containing only
one equality (quadratic) constraint, which only considers two variables out of the 30
decision variables. ProblemEQC2 is solved by every algorithmwhen considering the
repair of infeasible solutions, obtaining a converged well-distributed approximation
of the PF . According to the numerical results of the IGD/HV indicators, the use
of the constraints’ gradient information is much more important than the choice of
the canonical algorithm used. Concerning the problem EQC3, it constitutes a more
difficult problem as the true Pareto front is disconnected. Even though the gradient-
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Fig. 6 Pareto front approximation of the median run considering HV of EQC1 function. CDP-
MOEA/D and ε-MOEA/D without (left) and with (right) gradient-based repair

based repair method improves the performance of the algorithms, the disconnected
segment of the PF is difficult to be obtained in all cases.

Problems EQC4-5 [30] involve three-objective functions, with only three decision
variables, and one and two equality constraints, respectively. For these problems,
the same issue observed for problems EQC1-3 concerning diversity, is presented.
As above stated, the canonical constraint-handling techniques lack the capacity of
continuing exploring other regions different from those found first corresponding
to a specific part of the true PF. They get bounded in equality constrained-search
space regions. This phenomenon is displayed in Figure 7 (left) for problem EQC5.
The gradient-based repair of infeasible solutions improves the canonical methods
so that newly proposed individuals may survive and explore in a smooth way these
equality-constrained search spaces, with the possibility of visiting promising regions,
as observed in Figure 7 (right) for problem EQC5. The numerical results show that
every algorithm, when embedded with the gradient-based repair, achieves the best
possible approximation of the true PF, for the population size and diversity criterion
used. It must be highlighted that even the methods that exhibited a poor performance
in their canonical form, like ATP or SR, have now an excellent performance once
the repair process is carried out.
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ProblemEQC6 [31, 32] is the so-calledWilliams–Otto process optimization prob-
lem in chemical engineering. It involves ten decision variables and six equality con-
straints, and thus can be considered as the most difficult problem treated here (with
respect to constraint satisfaction). The formulation considered involves the maxi-
mization of two objectives: the net present value (NPV) and the profit before taxes
(PBT). It is observed from Table 6 that, none of the canonical constraint-handling
method is able to find any single feasible solution in any run, not even the CDP
method which priority is to search for feasible solutions all along the evolutionary
process. The satisfaction of six equality constraints involving ten decision variables
seems to be a very difficult task for these algorithms. But once again, the gradient
information of constraints permits to find the Pareto-optimal front. A revisited for-
mulation of this problem was used elsewhere for problem solution [32, 37]: at each
evaluation of the objective function, all equality constraints are satisfied by solving a
system of non-linear equations. This methodology, although computationally inten-
sive, has proven to be efficient for solving the problem. For comparison purposes,
we have implemented this solution strategy and it showed CPU times approximately
30 times higher than those reported with the repair performed here. Besides, that
reformulation methodology cannot be applied as a general-purpose method (Fig. 8).

6 Conclusions

This work has presented a comparative study evidencing the effect of using the con-
straints’ gradient information to repair infeasible solutions when solving CMOPs.
This strategy has been embedded with six constraint-handling schemes classically
used within MOEA/D: constraint dominance principle, adaptive threshold penalty
function (ATP), C-MOEA/D, stochastic ranking, ε-constrained and improved ε-
constrained. The use of the constraints’ gradient for repairing infeasible solutions
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without (left; no feasible solution found) and with (right) gradient-based repair

significantly enhances the canonical algorithms under the test problems suites studied
(CF, LIRCMOP and EQC). These instances allowed to explore the performance of
these algorithms under different landscapes of the search space: functions containing
a significant number of local optima (both in the objective space and in the constrained
search space), which may be bounded by inequality constrained regions which may
produce islands in the search space or disconnected true Pareto fronts enclosed by
infeasible regions, but as well equality constrained regions, which yield particular
difficulties to reach the wholePF . The obtained results have shown that the gradient
information of constraints can make the canonical constraint-handling method much
more robust, enabling the population to get across infeasible regions and promoting
diversity on the construction of the Pareto front approximation. Besides, the results
observed in EQC test problems allow us to conclude that the repair of infeasible
individuals is particularly useful for problems with narrow feasible spaces, as those
produced by equality constraints, in which canonical methods do not work prop-
erly. That is, equality-constrained spaces might be very difficult to reach by simply
search operators like DE or SBX, i.e., proposed individuals are likely to be infeasible
even if feasible individuals participate to create new offspring, thus the exploration
is somewhat stopped in specific parts of the Pareto front (or suboptimal fronts) and
the MOEA cannot efficiently evolve because of the lack of new promising solutions,
despite the constraint-handling technique used. The repair procedure considered here
repairs those promising infeasible solutions so that the multiobjective algorithm can
continue constructing awell-distributed approximation of the Pareto front.Moreover,
when the computation of the gradient is performed the computational time does not
significantly increase compared to that of canonical algorithms, at least for problems
containing up to 30 decision variables.

The approach will now be extended to larger size instances where equality and
inequality constraints may be present simultaneously, so that limited cases (if any),
for the use of the gradient-based repair may be identified. Also, to complement
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the present study, the gradient’s repair within a dominance-based or indicator-based
MOEA will also be explored. We think this work may encourage the research on
the use of mathematical properties that can be exploited in order to enhance the
population and guide it towards promising regions. Finally, we consider that this
study could extend the field of applicability ofmultiobjective evolutionary algorithms
to a wider range of real-world optimization problems.

Acknowledgements The first author gratefully thanks the Mexican Council of Science and Tech-
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MAP-Elites for Constrained
Optimization

Stefano Fioravanzo and Giovanni Iacca

Abstract Constrained optimization problems are often characterized by multiple
constraints that, in the practice, must be satisfied with different tolerance levels.
While some constraints are hard and as such must be satisfied with zero-tolerance,
othersmay be soft, such that non-zero violations are acceptable.Here,we evaluate the
applicability of MAP-Elites to “illuminate” constrained search spaces by mapping
them into feature spaces where each feature corresponds to a different constraint.
On the one hand, MAP-Elites implicitly preserves diversity, thus allowing a good
exploration of the search space. On the other hand, it provides an effective visualiza-
tion that facilitates a better understanding of how constraint violations correlate with
the objective function. We demonstrate the feasibility of this approach on a large set
of benchmark problems, in various dimensionalities, and with different algorithmic
configurations. As expected, numerical results show that a basic version of MAP-
Elites cannot compete on all problems (especially those with equality constraints)
with state-of-the-art algorithms that use gradient information or advanced constraint
handling techniques. Nevertheless, it has a higher potential at finding constraint
violations versus objectives trade-offs and providing new problem information. As
such, it could be used in the future as an effective building-block for designing new
constrained optimization algorithms.

1 Introduction

Several real-world applications, for instance, in engineering design, control systems
and health care, can be described in the form of constrained continuous optimization
problems, i.e., problems where a certain objective/cost function must be optimized
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within a certain search space, subject to some problem-dependent constraints. With-
out loss of generality, these problems can be formulated as

minimize
x∈D

f (x)

subject to: gi (x) ≤ 0, i = 1, 2, . . . ,m

h j (x) = 0, j = 1, 2, . . . , p

where (1) x ∈ D ⊆ R
n is a candidate solution to the problem, being n the problem

dimensionality, and D the search space, typically defined in terms of bounding box
constraints lbk ≤ xk ≤ ubk ∀k ∈ {1, 2, . . . , n}, where lbk and ubk are the lower and
upper bound, respectively, for each kth variable; (2) f (x) : Rn → R is the objective
function; (3) gi (x) and h j (x) (both defined as:Rn → R) are, respectively, inequality
and equality constraints. A summary of the aforementioned symbols, as well as the
symbols used in the rest of the paper, is reported in Table1.

Table 1 List of symbols used in the paper (symbols in boldface indicate vectors)

Symbol Meaning

n Problem dimensionality (no. of variables)

N Number of features (i.e., no. of tolerance levels)

lbk Lower bound of kth variable (k = 1, 2, . . . , n)

ubk Upper bound of kth variable (k = 1, 2, . . . , n)

D Search space (⊆ R
n)

f (x) Objective function calculated in x

gi (x) ith inequality constraint calculated in x (i = 1, 2, . . . ,m)

h j (x) jth equality constraint calculated in x ( j = 1, 2, . . . , p)

x Candidate solution (∈ R
n)

x′ Candidate solution (∈ R
n)

b′ Feature descriptor calculated in x′ (∈ R
N ), i.e., constraint

violations within each of the N predefined tolerance levels

P() Associative map <feature descriptor, performance>

X() Associative map <feature descriptor, solution>

P(b′) Best performance associated to the feature descriptor b′ (it can
be empty)

X(b′) Best solution associated to the feature descriptor b′ (it can be
empty)

p′ Performance calculated in x′, i.e., p′ = f (x′)
g Current number of iterations (1, 2, . . . , I )

I Number of function evaluations (NFEs)

G Number of function evaluations (NFEs) for map initialization
(G < I )
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In the past three decades, a large number of computational techniques have been
proposed to solve efficiently this class of problems, amongwhich EvolutionaryAlgo-
rithms (EAs) [17] have shown great potential due to their general applicability and
effectiveness. So far, most of the research in the field has focused on how to improve
the feasible results obtained by EAs, for instance, developing ad hoc evolutionary
operators, specific constraint repair mechanisms, or constraint handling techniques
(CHTs). However, in various real-world applications it could be desirable, or at least
acceptable, to consider also infeasible solutions. This could be obtained for instance
by defining different tolerance levels for each constraint, so to reason on the effect
of relaxing a certain constraint (and, if so, how much to do that) in order to obtain
an improvement on the objective function, and therefore find different trade-offs in
terms of constraint violations versus objective [25]. Despite these application needs,
to date little research effort has been put on how to allow EAs to identify, rather than
a single optimal solution, a diverse set of solutions characterized by different trade-
offs of this kind. In this sense, the most notable exceptions that explicitly addressed
this problem—although with contrasting results—have focused on multiobjective
approaches, where the constraint violations were considered as additional objectives
to be minimized [5, 10, 26, 33, 35], or surrogate methods [2].

In this paper, our goal is to evaluate the applicability of the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) [3, 19], an EA recently introduced in
the literature in the context of robotic tasks, for tackling these problems, specifically
to provide trade-off solutions in constrained optimization. Differently from conven-
tional EAs, MAP-Elites conducts the search by mapping the highest-performing
solutions found during the search (elites) into another multi-dimensional discretized
space, defined by problem-specific features (the latter space is separate from the
original search space, and typically of a lower dimensionality). These features are
uncorrelated to the actual objective function, and describe some domain-specific
properties of the candidate solutions. By means of this mapping, the algorithm “illu-
minates” the search space by showing the potential value of each area of the feature
space, and the corresponding trade-off between the objective and the features of
interest.

The functioningofMAP-Elites is simple and intuitive. First, themulti-dimensional
feature space is discretized into a multi-dimensional grid, where each bin (i.e., a cell
in the grid, which is, in general, a hyper-rectangle) represents a different “niche”.
Then, an EA-like search is performed by means of selection and variation (mutation
and crossover), but instead of keeping a population of solutions that may or may not
be diverse, MAP-Elites explicitly maintains diversity by keeping in each niche one
elite, which identifies the best solution characterized by the corresponding feature
values. At the end of the optimization procedure, a full map of possible solutions is
provided (rather than a single optimal solution, as in conventional single-objective
EAs), each characterized by different features. This map is shown in the form of a
multidimensional heatmap, which allows for an easy visual inspection of how the
objective function changes across the feature space.

In order to apply MAP-Elites to constrained optimization, the main idea we pro-
pose here is to define the feature space based on a discretization of the constraint
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violations. It is worth noting that in practical applications the discretization has a
concrete, domain-dependent meaning: it can be seen as a set of tolerance levels,
which as we mentioned can be different for each constraint. With this approach, we
are able to produce a visual representation of the objective values in the feature space
(in this case, space of constraint violations), thus uncovering possible correlations
between the constraints and the objective. Thanks to this visualization, it is indeed
easy to understand “where”, with respect to the boundaries of the constraints, the
best solutions lie. It also is easy to inspect the best overall solution, and check if the
algorithm was able to produce particularly interesting solutions violating some of
the constraints. As said, this insight can be helpful in cases where the violation of
some constraints (within a certain tolerance level) can be an acceptable trade-off for
a better overall performance.

As we will see in detail in the paper, despite its simplicity the proposed approach
has various advantages: (1) it can be easily adapted/extended to include custom
evolutionary operators; (2) it does not necessarily need explicit CHTs, but it can also
include them; (3) it implicitly preserves diversity; (4) it allows the user to easily define
custom tolerance levels, different for each constraint; (5) it “illuminates” the search
space as it provides additional information on the correlation between constraints
and objective, which might be of interest in practical applications; (6) it facilitates
the interpretation of results through an intuitive visualization.

The rest of the paper is structured as follows. In Sect. 2, we will briefly summarize
the most recent works on MAP-Elites and constrained optimization. Then, Sect. 3
describes the basic MAP-Elites algorithm and how it can be applied to constrained
optimization. In Sect. 4, we describe the experimental setup (benchmark and algorith-
mic settings), followed by the analysis of the numerical results, reported in Sect. 5.
Finally, Sect. 6 concludes this work and suggests possible future developments.

2 Related Work

The study of MAP-Elites and, more in general, EAs explicitly driven by novelty [12,
18, 24] or diversity [4, 20], rather than the objective alone, is a relatively new area
of research in the Evolutionary Computation community. Among these algorithms,
MAP-Elites [3, 19] has attracted quite some attention in the field, due to its simplic-
ity and general applicability. Since its introduction in 2015, MAP-Elites has been
mostly used as a means to identify repertoires of different agent behaviors, e.g., in
evolutionary robotics setups. Various examples of applications to maze navigation,
legged robot gait optimization, and anthropomorphic robot trajectory optimization
can be found in [1, 3, 4, 19, 23, 30–32]. More recently, MAP-Elites has been applied
also to Workforce Scheduling and Routing Problem (WSRP) [29] and Genetic Pro-
gramming [6]. To the best of our knowledge, no prior work exists on the explicit use
of MAP-Elites for solving constrained optimization problems.

Evolutionary constrained optimization is, on the other hand, a much more mature
area of research: hundreds of papers have shown in the past three decades various
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algorithmic solutions and real-world problems where EAs were successfully applied
to constrained optimization. Summarizing all the recent advances in this area would
be impossible, and is obviously outside the scope of this paper. A thorough survey
of the literature is performed, for instance, in [13], to which we refer the interested
reader for a comprehensive analysis of the state of the art updated to 2016. Another
interesting study, published at the end of 2018 by Hellwig and Beyer [9], covers all
the aspects related to benchmarking EAs for constrained optimization, including a
thorough analysis of the most important benchmark suites available in the literature.
Among these, theCEC2010 benchmark [15] has attracted in the past fewyears a large
body of works that showed how to solve its functions efficiently, and is often used
nowadays for benchmarking new algorithms. Currently, the state-of-the-art results on
this benchmark have beenobtained by εDEag, an ε constrainedDifferential Evolution
algorithm with an archive and gradient-based mutation proposed by Takahama and
Sakai [28], followed by ECHT-DE, another variant of Differential Evolution that
includes an ensemble of four constraint handling techniques, proposed byMallipeddi
and Suganthan [14]. These two works are also good examples of two of the most
successful recent trends in the field, which use of gradient-based information (if
available, or at least approximable), and the combination of multiple CHTs into a
single evolutionary algorithm.

3 Methodology

The basic version of MAP-Elites, as introduced in [3, 19], is shown in Algorithm
1. In the pseudocode, x and x′ are candidate solutions (i.e., n-dimensional vectors
defined in the search space D); b′ is a feature descriptor, which is a location in a
user-defined discretized feature space, corresponding to the candidate solution x′,
(i.e., an N -dimensional vector of user-defined features that characterize x′, typically
with N < n); p′ is the performance of the candidate solution x′ (i.e., the scalar value
returned by the objective function f (x′); the function itself is assumed to be a black-
box, that is its mathematical formulation, if any, is unknown to the algorithm);P is a
<feature descriptor, performance>map (i.e., an associative table that stores the best
performance associated to each feature descriptor encountered by the algorithm); X
is a <feature descriptor, solution> map (i.e., an associative table that stores the best
solution associated to each feature descriptor encountered by the algorithm);P(b′) is
the best performance associated to the feature descriptor b′ (it can be empty); X(b′)
is the best solution associated to the feature descriptor b′ (it can be empty).

Following the pseudocode, the algorithm first creates the two maps P and X,
which are initially empty. Then, a loop of I iterations (i.e., function evaluations) is
executed. For each of the first G iterations, G solutions are randomly sampled in
the search space D, which are used for initializing the two maps P and X. Then,
starting from the iteration G + 1, a solution x is randomly selected from the current
map X, and a randomly modified copy of it, x′, is generated. The feature descriptor
b′ and performance p′ associated to this new, perturbed solution are then evaluated.
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Algorithm 1MAP-Elites algorithm, taken from [19]
P ← ∅,X ← ∅
for g = 1 → I do

if g < G then
x′ ← random_solution()

else
x ← random_selection(X)

x′ ← random_variation(x)
b′ ← feature_descriptor(x′) 
 for constrained optimization, b′ is a

vector of constraint violations
p′ ← performance(x′)
if P(b′) = ∅ ∨ P(b′) > p′ then

P(b′) ← p′
X(b′) ← x′

return P and X

At this point, the two maps P and X are updated: if the performance associated
to b′, P(b′), is empty (which can happen if this is the first time that the algorithm
generates a solution with that feature descriptor), or if it contains a value that is
worse than the performance p′ of the newly generated solution (in Algorithm 1, we
assume a minimization problem, therefore we check the condition P(b′) > p′), the
new solution x′ and its performance p′ are assigned to the elements of the maps
corresponding to its feature descriptor b′, namely P(b′) and X(b′). Once the loop
terminates, the algorithm returns the two mapsP andX, which can be later analyzed
for further inspection and post-processing.

It can be immediately noted how simple the algorithm is. With reference to the
pseudocode, in order to apply MAP-Elites to a specific problem the following meth-
ods must be defined:

• random_solution(): returns a randomly generated solution;
• random_selection(X): randomly selects a solution from X;
• random_variation(x): returns a modified copy of x;
• feature_descriptor(x): maps a candidate solution x to its representation in the
feature space, b;

• performance(x): evaluates the objective function corresponding to the candidate
solution x.

The first three methods are rather standard, i.e., they can be based on general-purpose
operators typically used in EAs. However, it is possible to customize them according
to the specific need. For instance, the basic version MAP-Elites randomly selects at
each iteration one solution, and applies onlyGaussianmutation operator; on the other
hand, the algorithm can be easily configured to use a different selection mechanism
(e.g., an informed operator that introduces some selection pressure/bias) or select
multiple solutions at each iteration so to apply a recombinationoperator (crossover) or
some other search mechanism such as a local search.Wewill see in Sect. 4 the details
of three different algorithm configurations that we have used in our experimentation.
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As for what concerns feature_descriptor(x) and performance(x), these are obvi-
ously problem-dependent: the first one, being dependent on how the user defines the
features of interest and the corresponding feature space; the latter, being dependent
on the specific objective function at hand.

The application of MAP-Elites to constrained optimization is then quite straight-
forward: here, we map each constraint of a constrained optimization problem to a
different feature in the feature space explored by MAP-Elites, such that each candi-
date solution is associated to a feature descriptor that is basically a vector of constraint
violations. In this specific case then, the user does not necessarily have to define any
additional feature, but the features themselves are already part of the problem defini-
tion. Leaving aside the algorithmic details (selection and variation) and parameters
(the only two parameters of the algorithm are the total and initial number of itera-
tions, respectively, I and G, which can be easily set by the user based on computing
resources and/or time constraints), the only input required from the user is the dis-
cretization of the features (constraint violations) space.

An intuitiveway of discretizing this space is to define, for each constraint, a certain
number of tolerance levels, i.e., amounts of constraint violation used as discretization
steps. These can be easily expressed in absolute terms (based on the values of gi (x)
and h j (x) in case of violations), or normalized w.r.t. known minimum and maxi-
mum violations. A simple example of discretization steps is {0, ε, 2ε, . . . }, where
ε is a user-defined parameter. However, as we will show in Sect. 4, also non-linear
discretization is possible. In general, the discretization strategy should be based on
domain knowledge and defined in such a way that solutions whose violations are
equivalent, from a practical point of view, are grouped in the same bin. This would
allow to “illuminate” the relation between objective function and constraint viola-
tions in a significant, meaningful way. Finally, we must note that while in general a
different set of tolerance levels can be defined for each constraint (especially if these
are expressed in absolute terms), if all constraints have the same codomain (or, if
they are normalized), the same tolerance levels can be used for all of them.

4 Experimental Setup

We evaluated the performance of the proposed approach on the benchmark functions
defined for the CEC 2010 Competition on Constrained Real-Parameter Optimization
[15]. This benchmark presents 18 problems with different landscape characteristics,
subject to a varying number (up to four) of equality and/or inequality constraints.
To assess the scalability of MAP-Elites, we tested these problems in 10 and 30
dimensions. All the details of the experimental setup were set according to the CEC
indications [15], with the main parameters listed in Table2.

As for the discretization steps, the selected values correspond to having each fea-
ture discretized into 5 bins, namely: {0}, (0, 0.0001], (0.0001, 0.01], (0.01, 1.0] and
(1.0, inf). This last aspect deserves attention, since as we have seen in Sect. 3 this
is what allows the application of MAP-Elites to constrained optimization. Here, we
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Table 2 Parameters used in the experimental setup

Parameter Value

Number of benchmark problems 18 {C1, C2, . . . , C18}

Number of dimensions (n), for each problem 10D and 30D

Number of runs, for each
problem/dimensionality

25

NFEs, per run I = 2.0e5 for 10D

I = 6.0e5 for 30D

NFEs for map initialization, per run G = 2000

Discretization steps for every feature {0, 0.01, 0.0001, 1}

have defined as discretization steps the three tolerance levels defined in [15], i.e.,
0.0001, 0.01, and 1.0 (see Sect. 5), in addition to an explicit step corresponding to
zero-tolerance (corresponding to solutions with gi (x) ≤ 0 and h j (x) = 0, respec-
tively for inequality and equality constraints).

The features used inMAP-Elites follow the same order as they appear in the corre-
sponding problem definition, with inequality constraints considered before equality
constraints. Since the problems contained in the CEC 2010 benchmark have a vari-
able number of equality/inequality constraints, we define a variable-sized feature
space, where for each problem there are as manyMAP-Elites features as constraints.
For visualization purposes, we represent themapP(b′) obtained in each run ofMAP-
Elites in the form of a multi-dimensional heatmap, as explained in [3, 19]. The color
represents the objective value corresponding to the solution contained in each bin.
The first axis (abscissa) corresponds to the first constraint violation, the second axis
(ordinate) corresponds to the second constraint violation, and so on for the third and
fourth constraints. Feature dimensions are “nested” such that the feature space is first
discretized along the 1st and 2nd axes (so to obtain a 2D grid of bins), while the fol-
lowing features (if any) are represented by an “inner” (1D or 2D) discretization inside
each bin in the “outer” grid. Obviously, this visualization procedure can be easily
extended to handle more than four constraints, although the visual interpretability of
the results tends to decrease with the number of features shown in the heatmap.

It should be noted that according to the CEC 2010 benchmark definition [15], a
solution x is considered feasible iff gi (x) ≤ 0 ∀i ∈ {1, 2, . . . ,m} and |h j (x)| − ε ≤
0 ∀ j ∈ {1, 2, . . . , p}, where ε is the equality constraint tolerance, set to 0.0001.
Otherwise, the solution is considered infeasible. From what we have just discussed,
it follows then that feasible solutions in the sense of the CEC 2010 definition can
be found: (1) for what concerns inequality constraints, in the first bin ({0}) along
each feature dimension; (2) for what concerns equality constraints, in the first two
bins ({0}, (0, 0.0001]). In plain terms, this means that we can easily identify feasible
solutions found by MAP-Elites by simply looking at the lower-left corner of the
heatmap, while solutions with increasing constraint violations are found scanning
the heatmap (and each inner bin in case of more than two constraints) towards the
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Fig. 1 Final heatmaps found in a single run of MAP-Elites on C1, Configuration 1 (left), C2,
Configuration 1 (center), C16, Configuration 3 (right) in 10D. The three benchmark functions
are characterized, respectively, by 2I, 2I-1E, and 2I-2E, where ‘I’ and ‘E’ stand for inequality
and equality constraints, respectively. In each heatmap, the color of each bin is proportionate to
the objective value corresponding to the solution present in it (assuming minimization, the lower
the better), while the red bin indicates the solution with the best objective value (regardless its
feasibility). It can be observed that the maps allow to “illuminate” the search space of each problem,
identifying various trade-off solutions in terms of objective value versus constraint violations, such
as solutions with a high performance but with some violated constraints. Note that in case of 3 or 4
constraints, the discretization along the first two (outer) dimensions of the heatmap is indicated by
a thicker black line, while the discretization along the “nested” (inner) dimensions are indicated by
a thinner black line

upper right side. Some examples of heatmaps obtained by MAP-Elites are shown in
Fig. 1.

As for the evolutionary operators (selection and variation, as shown in Algorithm
1), we defined three different algorithmic settings. In all cases, selection is performed
according to a uniform distribution over the current map. Variation is instead applied
according to the following configurations:

• Configuration 1: mutation (σ = 0.1), without crossover
• Configuration 2: mutation (σ = 0.5), without crossover
• Configuration 3: mutation (σ = 0.1), with crossover.

In all three cases, mutation is implemented by applying to the selected solution (with
probability 0.5 for each variable) a Gaussian mutation with μ = 0 and the given
value of σ . Boundary constraints are handled according to a toroidal mechanism:
given a decision variable x constrained to the interval [a, b], if the corresponding
mutated variable x ′ exceeds the upper bound b (i.e., x ′ = b + ζ ), x ′ is transformed
into x ′ = a + ζ , ζ > 0. Similarly, if x ′ = a − ζ , x ′ is transformed into x ′ = b − ζ ,
ζ > 0.

In Configuration 3, at each iteration, two solutions are randomly selected from the
current map, after which uniform crossover (with probability 0.5 for each variable)
is applied by swapping the corresponding variables from the two parents. Then,
the first of the two offspring generated by crossover undergoes Gaussian mutation,
as in Configurations 1 and 2, and is evaluated in terms of feature descriptor and
performance, as shown in Algorithm 1.
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The entire experimental setup was implemented in Python 3,1 and the experi-
mentation was performed on a Ubuntu 18.10 workstation, with a CPU Intel Core
i9-7940X @3.10 GHz and 64 GB DDR4.

5 Numerical Results

We present here the results obtained on the experimental setup described in Sect. 4.
In Tables3, 4, 5, 6, 7 and 8, we report the results for all the CEC 2010 functions in 10
and 30 dimensions, for the three algorithm settings described above.2 In the tables,
we report the results as suggested in [15], where for each function we show:

1. The objective value corresponding to the best, worst and median solution3 (over
25 runs) obtained at the end of the computational budget; next to each objective
value, we show in parenthesis the no. of violated constraints corresponding to
each of these three solutions.

2. The number of violated constraints at the median solution, c = (c1, c2, c3)
(where each element ci , i = 1, 2, 3 represents the number of violations higher
than three tolerance levels set to 1, 0.01, and 0.0001, respectively), and the cor-
responding mean violation v̄, calculated as

v̄ =
∑m

i=1 Gi (x) + ∑p
j=1 Hj (x)

m + p
(1)

where Gi (x) = gi (x) if gi (x) > 0 (otherwise zero), and Hj (x) = |h j (x)| if
|h j (x)| − ε > 0 (otherwise zero), being ε is the equality constraint tolerance
(as seen earlier, 0.0001).

3. The average objective value (over 25 runs) of the final solutions obtained at the
end of the budget, and its std. dev.

4. The Feasibility Rate (FR), that is, for each function, the ratio between the number
of runs during which at least one feasible solution was found within the budget,
and the total number of runs (in our case, 25).

For reference, we report in Tables9 and 10 the results for all the CEC 2010 func-
tions after I = 2.0e5 and I = 6.0e5 NFEs, respectively for 10D and 30D, obtained
by εDEag [28], the best algorithm on the CEC 2010 benchmark.

From the tables, we can observe that in all three configurations, MAP-Elites
solves with 100% FR C1, C7, C8, C14, C15 in 10D, i.e., all the functions with

1Code available at: https://github.com/StefanoFioravanzo/MAP-Elites.
2The complete set of numerical results and the final heatmaps for each problem and dimensionality
are available as Supplementary Material at: https://bit.ly/2BQIR8B.
3The final solutions are sorted according to these three criteria: (1) feasible solutions are sorted in
front of infeasible solutions; (2) feasible solutions are sorted according to their objective value; (3)
infeasible solutions are sorted according to their mean value of constraint violation, calculated as
in Eq. (1).

https://github.com/StefanoFioravanzo/MAP-Elites
https://bit.ly/2BQIR8B
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inequality constraints only (except C13, that is, however, the only function with
inequality constraints only whose volume of the feasible region is approximately
zero); in 30D, it also finds feasible solutions on C18 in 100% of the runs in all
configurations (92% in 10D for Configuration 3). The peculiarity of this function
is that despite it has one equality constraint, the volume of its feasible region is
non-zero. The only other functions on which a non-zero FR is obtained, although
not in all configurations and dimensionalities, are C2, C9, C10, C16, C17. Except
C10 that has 1 “rotated” equality constraint, all other functions have only separable
constraints, which could explain why in some cases even by Gaussian mutation only
(which acts independently on each variable) it is possible to reach the feasible region.
Overall, among the 3 configurations Configuration 3 has the highest FR across all
the tests, while it results that an excessively high value of σ in Gaussian mutations
(as in Configuration 2) is detrimental.

From these observations, we can conclude that the basic MAP-Elites algorithm
we have used in our experimentation is not able to solve efficiently either problems
with non-separable equality constraints, or with an approximately zero-volume fea-
sible region. This is not surprising though, as the algorithm is only based on simple
genetic operators (Gaussian mutations and uniform crossover in our case) that do
not use any information about the constraints. In contrast, εDEag [28] encapsulates
highly efficient CHTs and uses gradient information about constraints that allows the
algorithm to reach a 100% FR on all functions in 10D and 30D (except, respectively,
for the two algorithms, C12 in 30D, and C11-C12 in both 10D and 30D), as reported
in the original papers.

This comparison encourages though the idea to explore in the future the possibility
to include into the MAP-Elites scheme at least one dedicated technique for better
handling equality constraints, such as the ε constrained method, initially introduced
in [27] and since then used in most of the state-of-the-art algorithms for constrained
optimization. Notably, the strength of this method is that it guides the search by
allowing ε level comparisons with a progressively shrinking relaxation (defined by
the ε parameter) of the constraint boundaries.

Considering the objective values, similar considerations can be drawn: limiting
the analysis on the functions with 100%FR, it results thatMAP-Elites is less efficient
at finding optimal values than εDEag [28]. In all casesMAP-Elites is several orders of
magnitudeworse than εDEag, except C1 in 10Dwhere instead the configuration with
crossover finds a better optimal value.4 Once again, this conclusion is not surprising
and is also in line with what was observed by Runarsson and Yao [22], who identified
the reason for the sometimes poor results obtained by multi-objective approaches
(such as [10, 26, 33, 35]): in fact, when applied to constrained optimization, the
Pareto ranking leads to a “bias-free” search that is not able to properly guide the
search towards (and within) the feasible region. In other words, allowing the search
to spend too many evaluations in the infeasible region makes it harder to find feasible

4 We refer the interested reader to the Supplementary Material online, where we show a detailed
report of the MAP-Elites results focused on a fitness-based rank, rather than the rank based on the
sorting criteria described in the text. These results are omitted here for brevity.
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solutions, but also to find feasible solutions with optimal values of the objective
function. This might be the case also of MAP-Elites, where some form of bias (such
as the ε constrained method) might be needed.

6 Conclusions

In this paper, we have explored the use of MAP-Elites for solving constrained con-
tinuous optimization problems. In the proposed approach, each feature in the feature
space explored by MAP-Elites corresponds, quite straightforwardly, to the violation
of each constraint, discretized according to user-defined steps (tolerance levels). In
this way, the algorithm allows to “illuminate” the search space and thus uncover
possible correlations between the constraints and the objective. The visualization of
MAP-Elites also gives users the possibility to focus on different solutions charac-
terized by different values of constraint violations. We have tested this approach on
a large number of benchmark problems in 10 and 30 dimensions, characterized by
up to four equality/inequality constraints. Our numerical results showed that while
MAP-Elites obtains results that are not particularly competitive with the state-of-
the-art on all problems (especially those with equality constraints), it is still able to
provide new valuable, easy-to-understand information that can be of great interest
for practitioners. Additionally, the algorithm can be easily implemented and applied
without any specific tuning to various real-world problems, for instance, in engineer-
ing design, where different tolerance levels can be defined depending on the specific
constraints.

Since our goal was to evaluate the performance of the basic MAP-Elites on con-
strained optimization, the proposed approach is purposely quite simplistic, but clearly
it can be extended in various ways. First of all, the basic MAP-Elites algorithm we
used in this work (as shown inAlgorithm 1 can be replacedwith somemore advanced
variants recently proposed in the literature. In particular, the version of MAP-Elites
based on centroidal Voronoi tessellation (CVT-MAP-Elites) [31] can be used instead
of the basic one in order to scale the algorithm to a larger number of constraints.
In order to better handle the unbounded feature spaces (thus avoiding the need for
an explicit “upper” bin, (1.0, inf) in our case), the “expansive” MAP-Elites variants
introduced in [30] can be employed instead, which are able to expand their bounds
(in the feature space) based on the discovered solutions. Other possibilities will be to
use the “directional variation” operator introduced in [32], that exploits inter-species
(or inter-elites) correlations to accelerate the search, add, most of all, specific con-
straint handling techniques (especially for handling equality constraints, which as
we have seen is the main weakness of this approach) [7, 14]. It is also worth con-
sidering the use of surrogate models, such as in [34], in order to further speed up
the search and guide it towards the feasible region, still allowing the algorithm to
keep infeasible solutions as part of the map. Another improvement can be obtained
by using an explicit Quality Diversity measure [1, 4, 20, 21], so to enforce at the
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same time a better coverage of the feature space and a further improvement in terms
of optimization results. It is also possible to hybridize the basic MAP-Elites algo-
rithm with local search techniques (such that MAP-Elites explores the feature space
and local search is applied within one bin to further refine the search), or to devise
memetic computing approaches based on a combination of MAP-Elites and other
metaheuristics, such as CMA-ES, that has been recently applied successfully also to
constrained optimization [8, 11, 16].

Finally, on the application side, it will be interesting to evaluate the applicability
of this approach on combinatorial constrained optimization problems, which can be
obtained by simply modifying the variation operators, or multi-objective constrained
optimization,which can be obtained by adding a Pareto-dominance check, as recently
shown in the context of robotic experiments [23].
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Optimization of Fresh Food Distribution
Route Using Genetic Algorithm
with the Best Selection Technique
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Abstract All along the food supply chain, managers face the challenge of making
important cost-optimized decisions relating to transportation and storage conditions.
An efficient management of food products requires the consideration of their perish-
able nature to solve the safety problem, and logistics efforts in minimizing the total
cost while maintaining the quality of food products above acceptable levels. This
paper addresses a methodology to resolve a capacitated model for food supply chain
(FSC). The model is a constrained mixed integer nonlinear programming problem
(MINLP) that computes the cost of quality internally for a three echelon FSC, tomini-
mize the total cost under overall quality level constraints, due to the perishable nature
of the products, and the other constraints of demand, capacity, flow balance, and cost.
The practical application of themodel is demonstrated using two approaches: an exact
method based on the Branch & Bound technique, and a Genetic Algorithm solution
method. Then, we propose a comparison of different GA selection strategies, such
as Tournament, Stochastic Sampling without Replacement, and Boltzmann tourna-
ment selection; the performance of each selection method is studied using paired
“T-Test” of statistical analysis. The results of computational testing are reported
and discussed, and implications and insights for managers are provided by studying
instances of practical and realistic size. It was evident that the tournament selection
is more likely to produce a better performance than the other selection strategies.
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List of Acronyms

B&B Branch and Bound
COQ Cost of Quality
CPU Central Processing Unit
FSC Food Supply Cain
GA Genetic Algorithm
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
PAF Prevention-Appraisal-Failure
PSO Particle Swarm Optimization
QL Quality Level
RBF Radial Basis Function
SA Simulated Annealing
SC Supply Chain

1 Introduction

This paper addresses the problem of supply chain performance measurement in a
food supply chain (FSC) design. The term food supply chain (FSC) has been coined
to describe the activities dedicated to manufacturing food products from production
to distribution of final products to the consumer [1]. As any other supply chain, the
FSC is formed by a network of entities such as producers, processors, and distributors
dedicated to deliver superior consumer value at less cost. But there are relevant char-
acteristics that make the FSC different and more complex to manage, especially the
wide range of decisions that must be taken in food supply chain, related to quality and
safety, given the perishable nature of food products. A general production–distribu-
tion network comprises three echelons: production, distribution, and customer. The
FSC network design problem consists of selecting the facilities to open in order to
minimize total costs and then, maximize customer service and overall quality levels.
Product quality degradation is often incorporated in the modeling of supply [2].
Therefore, we find in literature a number of studies that deal with the optimization
of specifics which has a practical value to prevent food quality degradation, such as
cost, time, and storage conditions of fresh food during transportation. For example,
de Keizer et al. [2] presents a MILP model to design a logistics network for distribu-
tion of perishable products, taking into consideration product quality decay and its
heterogeneity. The quality decay was based on a time–temperature model, and also
other environmental conditions like humidity. Themodel was tested for various small
and large instances for cut flowers logistics network. Li and O’Brien [3] proposed a
model to improve supply chain efficiency and effectiveness based on profit, lead-time
performance, and waste elimination. Zhao and Lv [4] proposed a multi-echelon and
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multi-product agri-food supply chain network to minimize the production and trans-
portation costs. The model is a mixed integer programming (MIP) problem that was
solved through a particle swarm optimization (PSO) approach. Tsao [5] proposed a
fresh food supply chain network. He developed a model to determine the optimal
service for agricultural productmarketing corporations. The author proposed an algo-
rithm to solve the nonlinear problem, provides numerical analysis to illustrate the
proposed solution procedure, and discusses the effects of various system parameters
on the decisions and total profits. A real case of an agricultural product supply chain
in Taiwan is used to verify the model. Wang et al. [6] developed a multi-objective
vehicle routing model for perishable food distribution route dealing with the mini-
mization of total cost and maximization of the freshness state of delivered products.
The author used fuzzy method for determining a quantified food safety risk indicator
to support operational decisions and to be valuable as a component of a HACCP
system. Nakandala [7] developed a methodology to assess fresh food supply chain
to optimize the total cost while maintaining a required quality level. The applica-
tion of the proposed total cost model was demonstrated using three approaches of
Genetic Algorithm, Fuzzy Genetic Algorithm, and Simulated Annealing. The author
suggested that all three approaches are adoptable but the FGA provided a better
performance than the other two approaches of GA and SA based on the performance
evaluation. Zhang and Chen [8] developed amodel for the vehicle routing problem in
the cold chain logistics for a multi-food product. The objective was to minimize the
delivery cost that includes transportation cost, cooling cost, and penalty cost under
the constraints of time and loading weight and volume. A genetic algorithm (GA)
method was proposed to resolve the model, and the experiments showed that the GA
method can provide sound solutions with good robustness and convergence charac-
teristics in a reasonable time span. Aramyan et al. [9] presented a conceptual model
for agri-food supply chain including four performance measuring: efficiency, flexi-
bility, responsiveness, and food quality and applied it in the tomato supply chain. Bag
and Anand [10] employed ISM methodology to design sustainable network for food
processing network in India. This methodology aims at including the environmental
and social aspects in the supply chain of food sector. Boudahri et al. [11] devel-
oped a mathematical model to solve the location-allocation problem for a chicken
meat distribution center, while minimizing the total logistics costs and respecting
vehicle and slaughterhouses capacity. LINGO optimization solver version12.0 has
been used to get the solution to the problem. Doganis [12] presented a complete
framework that can be used for developing nonlinear time series for short shelf-life
food products and applied it successfully to sales data of fresh milk. The method
is a combination of two artificial intelligence technologies: the radial basis function
(RBF) and a specially designed genetic algorithm (GA). Entrup [13] developed a
mixed integer linear programming approach, considering the shelf life in production
planning, applied to yogurt production. To solve the model, the author used Branch
and Bound procedures that were implemented using ILOG’s OPL Studio 3.6.1 as a
modeling environment and its incorporated standard optimization software CPLEX
8.1. Ekşioğlu [14] developed a production and distribution planning problem in a
dynamic two-stage supply chain considering the perishability and limited shelf life
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of the products. But this model does not consider transportation costs. The aim of
this work presented in the paper is to develop a GA-based procedure to resolve the
FSC-COQ model, and to quantify the effect of different parameters on total cost
and further compare it with solution found by CPLEX solver. The remainder of this
paper is organized as follows: in the next section, the capacitated FSC-COQ problem
is formulated and discussed. Next, in Sect. 3, we provide a comprehensive explana-
tion of the proposed GA methodology for optimizing the total cost through the FSC
followed by a presentation of the computational results obtained to show the perfor-
mance of the GA using actual data versus results obtained with CPLEX software. In
Sect. 4, we propose a comparison between different selection techniques for the GA
algorithm. Section 5 presents a conclusion and the paper finishes with suggestions
for further research.

2 The Capacitated FSC-COQ Model

The food supply chain design problem discussed in this paper is an integrated multi-
echelon single product system. This generic supply chain is based on production
facilities, storage facilities, transportation, and retailers. Our modeling approach
consists of one objective function that attempts to minimize the total cost. The
design task involves the choice of facilities production sites and storage facilities
to be opened, and transportation equipment to be chosen to satisfy the customer
demand with minimum cost. The following sets are defined: P, set of production
sites (p ∈ P); D, set of storage facilities (d ∈ D); Y, set of transportation vehicles (y
∈ Y ); R, set of retailers (r ∈ R). The model constants are demr,t , demand at retailer
r in period t; ap,t , p roduction capacity for production sites; bd,t , storage capacity
for storage facilities; g1d , cooling cost for storage facility d per period; g2d , cost for
storing one product for one period in storage facility d; Pp,t , cost for producing one
product unit in production site (p ∈ P) in period t, fd,r,y , Cost for transporting one
product per period from storage facility to retailer r; �qd , Quality degradation in
one period for products stored in storage facility d; �qd,y , quality degradation for
products transported from storage facility d to retailer r by transportation vehicle
y. It is worth noting that quality degradation of food products changes according to
product characteristics and storage conditions. In general, degradation of food prod-
ucts is dependent on storage time, storage temperature, and various constants such as
activation energy, and gas constant. The model variables are Wp,d,t , flow quantities
from production sites p to storage facility d in period t; Wd,r,t , flow quantities from
storage facility d to retailer r in period t; αp, fraction defective at storage facility;
βd , inspection error rate after storage process; Z p,t , binary variable which equals 1
if production site p is selected, 0 otherwise; Od,r,t , binary variable which equals 1
if transportation equipment is selected in period t, 0 otherwise; Xd,t , binary variable
which equals 1 if storage facility d is selected in period t, 0 otherwise. The objective
function consists of minimizing the total cost of the food supply chain, where the
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total cost is the sum of operational costs, the food quality costs, and the transportation
costs.

According to the classical PAF model, the cost of quality calculated through a
logistics chain is the sum of the costs of prevention, evaluation, internal and external
failure costs, as shown in (1):

COFQ = CP + CA + CI F + CEF (1)

Table 1 shows the expressions of the different cost categories calculated for our
FSC model.

The optimization model of the FSC-COQ is formulated as follows:
Min

∑

t

∑

p

Pp,tWp,d,t Z p,t +
∑

t

∑

d

g2d,kWp,d,t Xd,t +
∑

t

∑

p

fd,rWd,r,t Od,r,t

+ COFQ(Wp,d,t ,Wd,r,t , Z p,t , Xd,t , Od,r,t , αp, βd) (9)

Subject to:

∑

t

Wd,r,t ≥ demr,t ; ∀r ∈ R,∀t ∈ T (10)

∑

t

Wp,d,t ≥
∑

t

Wd,r,t ; ∀d ∈ D (11)

∑

t

Wp,d,t ≤
∑

p

ap,t Z p,t (12)

∑

t

Wd,r,t ≤
∑

d

bd,t Xd,t (13)

FQL ≥ l Rt (14)

Zk,t ∈ {0.1} ∀t ∈ T (15)

Od,r,t ∈ {0.1} ∀t ∈ T (16)

Xd,t ∈ {0.1} ∀t ∈ T (17)

0 ≤ α p ≤ 1 ∀p ∈ P (18)

0 ≤ βd ≤ 1 ∀d ∈ D (19)
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In the formulated model (9)–(19), the objective function (9) aims to minimize the
total costs. The first term of (9) is the total production costs, the second term is the
storage cost and the sum of these two terms is the operational costs. The third term is
the transportation cost. The fourth term represents the total COFQ for the network.
The parameters for the COFQ function are shown in the Appendix. Constraint (10)
enforces that demand at retailer is not exceeded, constraint (11) makes sure that the
number of food products going through storage facility equals the number of food
products transported to retailers, constraint (12) reflect that capacity at producers is
not exceeded, and constraint (13) enforces that capacity at storage facilities is not
exceeded. Constraint (14) is the quality level constraint; thus, the quality of the food
products delivered at each retailer must meet the minimum required quality level
calculated by

FQL =
∑

d

∑
p

∑
y

(
1 − �qd,y

)
Wd,r,t

(
1 − αp

)(
1 − �qd

)
Z p,t Xd,t Od,r,t∑

d Wd,r,t Xd,t
(20)

which represents the proportion of good products relative to all products transported
to final customers.

Constraints (15), (16), and (17) are non-negativity constraints for decision
variables. The remaining constraints (18) and (19) are feasible ranges of model
variables.

3 Solution Procedures

The formulated FSC-COQ model (9)–(19) is a constrained mixed integer nonlinear
programming problem (MINLP). The complexity of the solution is NP-hard, because
of the difficulty of nonlinear problems (NLP), and the combinatorial nature of mixed
integer programming (MIP). We propose two procedures for solving the FSC-COQ
model. One is the exact algorithm which includes the branch and bound method.
For this method, we use the standard optimization software CPLEX 12.6 to solve a
FSC-COQ with a small number of production sites, storage sites, and transportation
vehicles. In the second solution procedure, we use an evolutionary algorithm for
larger test instance. Existing literature that compares different algorithms for Supply
Chain Network Design has demonstrated that genetic algorithm (GA) performs other
metaheuristics as it can handle greater problems with less computational time. The
GA proposed for this problem was coded in Python 3.4.1, and all test runs were
performed on a 1.70 GHz Intel® core™ i5 PC with 4 GB RAM.
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3.1 Genetic Algorithm-Based Optimization

GA simulates the survival of the fittest among individuals over consecutive genera-
tions throughout the solution of a problem [15]. Thus, only individuals who are able
to adapt to constraints generated by the natural environment can survive and generate
offspring to ensure the sustainability of the species. On the other hand, unsuitable
individuals are automatically discarded. Selection makes it possible to have individ-
uals more and more adapted during the generations. In a similar way, in optimization
problems, genetic algorithms are based on the principle of selecting the most appro-
priate individual or candidate solution, which is represented by a chromosome or
string of characters. Each individual represents a point in the search space. The pseu-
docode of the genetic algorithm developed for our FSC-COQ model is given in the
following Algorithm 1. We consider the following notations for genetic operators:
Pop_size: population size,Max_iter: maximum iterations, Pc: Crossover probability,
Pm: mutation probability.

Algorithm 1. Genetic Algorithm for FSC-COQ
Step 1. Set the initial values of parameters used to generate GA instances, Pop_size, 
Pc, Pm and Max_iter.
Step 2. Generate an initial population of chromosomes which represents a feasible 
solution 
Step 3. Calculate the fitness function 'COFQ' to evaluate each chromosome of the 
current population
Step 4. Select the best fitness of the decision variables of the current population via 
stochastic remainder selection without replacement method.
Step 5. While Max_iter is not reached, start the reproduction
Step 6. For j < Pop_size:
Randomly select a sequence of P (N)

if random_value1 < Pc :
Apply the standard crossover and produce two children
if random_value2 < Pm :
Apply the mutation

Copy the obtained ascending into the new population
Evaluation of the objective functions of all the chromosomes of the new population, 
return to step 3.
Step 7. Increment j until meeting the stopping criteria: Max_iter and maximum 
number of iterations without improvement.
Step 8. End While

3.2 Taguchi Calibration for GA Parameters

The effectiveness of optimization approaches and the quality of the convergence
process in GA depends on the specific choices and combinations of parameter values
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Table 2 Considered levels
for each factor of AG

Factors Level (1) Level (2) Level (3)

Popsize 20 50 100

Max_iter 100 150 200

Pc 0.2 0.4 0.7

Pm 0.1 0.4 0.7

Penalty 5000 6500 8000

of genetic operators. The Taguchi method is a powerful tool for the design of high-
quality systems. It is firstly advanced by a Japanese quality control expert named
Genechi Taguchi in the 1960s. This approach is based on optimal designs that provide
the maximum amount of information with minimal testing, exploring factors that
influencemean and variance. In addition, knownby its robustness, allows tominimize
the impact of the noise factor that cannot be controlled by the designers and to find
the best level of the controllable factors, and this, by using a lot of notions whose
controlled factor, orthogonal table, noise factor, signal-to-noise (S/N) ratio, etc. The
main idea of this methodology is to find factors and levels and to get the appropriate
combination of these factors and levels by the method of design of experiments. To
solve this problem, the Taguchi method uses a quality loss function to calculate the
deviation between experimental value and expected value. This loss function can
be transformed into a S/N ratio. Taguchi recommends the use of the S/N ratio to
measure the quality characteristics deviating from the desired values. Usually, there
are three categories of quality characteristics in the analysis of the S/N ratio, i.e., the
lower-the-better, the-higher-the-better, and the-nominal-the better. The S/N ratio for
each level of process parameters is computed based on the S/N analysis. Regardless
of the category of the quality characteristic, a greater S/N ratio corresponds to a better
quality characteristic. In this order of ideas, 27 sets of experiments were performed
based on the distribution of the orthogonal table, and three levels were assigned to
each factor, as shown in Table 2.

Figure 1 shows a graph of the main effects created on “Minitab 19” by plotting
the average of the characteristics for each factor level.

Moreover, as regards the calibration of the optimization approach in question, the
four factors considered above must be adjusted such as shown in Table 3.

3.3 Experimental Study

3.3.1 Test Instances

In this section, we illustrate this modeling approach by use of a small instance
with three production sites, three storage sites, and three transport vehicles. The
resulting problem instance has 30 constraints and 18 decision variables. As described
in solution procedure section, we use both the standard solver CPLEX 12.6 and the
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Fig. 1 Main effects graph for S/N ratio for AG

Table 3 Optimal parameters of AG

Methodology Pop_size Max_iter Pc Pm Penalty

AG 100 150 0.4 0.4 6500

AG algorithm to solve this small instance. Moreover, we study a larger test instance
with a variety of network sizes as shown in Table 4, to demonstrate that the developed
AG procedure is able to handle the trade-offs between all cost categories. We note
that the larger the population size, the longer computation time it takes. For solving
the small instance, we fix a limit of 4 h for the solution time for the CPLEX solver.

Table 4 Test problems Test problem Problem size
|P|×|D|×|Y|

Number of
constraints

Number of
decision
variables

1 3 × 3 × 3 30 18

2 5 × 5 × 5 44 28

3 10 × 10 × 10 79 53

4 15 × 15 × 15 114 78

5 20 × 20 × 20 149 103

6 25 × 25 × 25 184 128
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3.3.2 Performance of the AG

We demonstrate in this section how the Genetic Algorithm performs CPLEX. We
measure the performance by solution quality and computational time inCPUseconds.
Table 5 reports the computational time required for each solution procedure over
different test problems.

We observe that GA performs better, even for small problem size. The CPU time
calculated for GA procedure is for 500 iterations, which means that solutions are
generated extremely fast. On the other hand, CPLEX requires important computa-
tional time even for only one iteration, as it can no longer solve large-size problems.
We conclude that managers should use GA for real size problems that requires less
computational time. Next, we compare the quality solutions of GA-based procedure
and CPLEX. For this purpose, we study the average gaps between GA and CPLEX
for two scenarios:

Scenario 1

We investigate the impact of the quality degradation for products in storage facility
�qd on total cost curve, by changing this parameter randomly, while keeping the
parameters α p (which is internal decision variable in our model) and Δqd,y constant.
Table 6 give computational results for two levels of �qd . The results show that the
greater the �qd , the slower is the total quality level which minimizes the total cost.
Thismeans thatwe need to investmore in prevention activities especially, the variable
cost for prevention of poor quality after a failed storage process, and internal failure
costs generated by bad products. We need also to maintain initial product quality, for
example:

• by performing regular analyses to assess quality and strict food safety practices,
• by respecting soil conditions, harvest time, and also by avoiding process losses,

contamination in process causing loss of quality, and
• by considering fraction defective when selecting storage facilities, in order to

avoid food waste and decisions based solely on higher initial quality product that
leads to higher purchasing costs, to meet the quality requirements at minimum
cost.

Table 5 Solution time of
CPLEX and GA

Test problem Solution time in CPU (s)

CPLEX AG (150 iterations)

1 1.75 78.26

2 17.34 110.20

3 10 min 26 221.90

4 3 h 28 min 58 282.43

5 – 387.46

6 – 532.39
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Table 6 Performance of AG against CPLEX for different �qd

QL Δqd, y CPLEX AG Gap (%)

Total cost ($) for �qd = 0.03

0.948 0.005 29622.84 29821.75 0.67

0.94 0.01 16993.48 17043.50 0.29

0.93 0.02 14031.70 14092.56 0.43

0.92 0.04 17453.86 17455.56 0.009

0.87 0.08 24298.18 24594.23 1.21

0.85 0.1 27720.34 28694.64 3.5

0.76 0.2 44831.14 45791.02 2.14

0.67 0.3 61941.94 63619.92 2.7

0.57 0.4 79052.74 79496.63 0.56

0.48 0.5 96163.54 96635.91 0.49

0.38 0.6 113274.34 113790.58 0.45

0.28 0.7 130385.14 135132.38 3.64

0.192 0.8 147495.94 150076.03 1.74

Avg GAP 1.37

Total cost ($) for �qd = 0.3

0.7 0.005 26663.47 27460.85 2.99

0.68 0.01 17680.65 18017.55 1.9

0.66 0.03 14230.12 14338.44 0.76

0.65 0.04 14464.921 15496.10 0.2

0.63 0.08 20404.12 21132.55 3.5

0.61 0.1 22873.72 23233.76 1.57

0.54 0.2 35221.72 36807.02 4.5

0.48 0.3 47569.72 48258.12 1.44

0.41 0.4 59917.72 61951.41 3.39

0.34 0.5 72265.72 74686.52 3.34

0.27 0.6 84613.72 86271.18 1.95

0.2 0.7 96961.72 100009.11 3.14

0.137 0.8 109309.72 116371.18 6.46

Avg GAP 2.71

From this scenario 1, the average gaps between GA and CPLEX are 1.37 and 2.71%
for �qd = 0.03 and �qd = 0.3. It means that GA performs better when �qd

is smaller. And according to results obtained in Table 4, which demonstrate that
solutions are generated extremely fast with GA, we conclude that GA is therefore
suitable for integration in IT-based decision support systems.
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Table 7 The relative transportation cost for different temperature levels

Temperature (°C) 2 4 6 8 10

Shelf life (days) 34 29 24 19 14

Quality degradation �q 11 13 16 20 27

Relative transportation cost (rcy) 1 0.88 0.77 0.65 0.54

Scenario 2

We study in this second scenario, the impact of transportation cost fd,r,y on total cost
curve and the quality level achieved. We consider fd,r,y = γ × rcy where we vary
the parameter γ between 0, 15, and 1, and rcy is the relative transportation cost given
by the values reported in Table 7. The results are reported in Table 8.

For the second scenario, the average gap changes proportionally over the trans-
portation cost factor γ. The lower is γ, the smaller is the average GAP too. This
is due to the reduction of the total cost for lower transportation cost factor, while
maintaining the quality level achieved by the food supply chain. We conclude that
GA performs better when γ is smaller.

Table 8 Performance of AG against CPLEX for different γ

Total cost ($)

γ T (°C) CPLEX AG Gap (%)

1 2 29551.42 30313.76 2.58

4 32829.58 33637.76 2.46

6 37830.82 37974.13 0.38

8 44531.14 45445.24 2.05

10 56376.70 58544.32 3.84

Avg 2.26

0.6 2 29071.42 30078.02 3.46

4 32407.18 32791.60 1.19

6 37461.22 37691.86 0.62

8 44219.14 44636.62 0.94

10 56117.50 57310.13 2.13

Avg 1.77

0.15 2 28531.42 29057.65 1.84

4 31931.98 32344.87 1.29

6 37045.42 37093.51 0.13

8 43868.14 44616.83 1.71

10 55825.90 57075.80 2.24

Avg 1.5
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3.3.3 Evaluation of AG Selection Strategies

In this section, we investigate the performance of GA with two selection strategies
for solving the FSC-COQmodel, in which our objective is to find the optimal quality
level that minimizes the total cost. In the above, we used stochastic technique in the
selection phase. Choosing a right selection technique is a very critical step in GA,
since if not chosen correctly, it may lead to convergence of the solution to a local
optimum. There are various selection strategies for AG algorithm presented in Gold-
berg (1989) [15]: deterministic sampling, remainder stochastic sampling without
replacement, remainder stochastic sampling with replacement, stochastic sampling
without replacement, stochastic sampling with replacement, and stochastic tourna-
ment. In our study,we compare tournament selection and stochastic samplingwithout
replacement. We present first a remainder of the operating mode of each technique:

i. Stochastic sampling without replacement

The stochastic selection without replacement is based on the concept that the fitness
of each chromosome should be reflected in the incidence of this chromosome in the
reproductive pool. The stochastic rest selection technique involves calculating the
relative physical form of a chromosome, which is the ratio between the physical form
associated with an individual and the average physical form, say mi = f i/f moy. The
integer part ofmi is used to select a parent deterministically, for the rest the algorithm
applies the roulette selection. For example, if the mi value of an individual is 2.3,
then individual is selected twice as a parent because the whole party is 2. The rest
of the parents are chosen stochastically with a probability proportional to the party
fractional of its scaled value. If the stochastic selection of the remainder is performed
without replacement, the fractional parts of the expected occurrence value are treated
as probabilities. A fractional part ei is calculated as follows:

ei = f (s)∑
f (s)/popsi ze

(21)

Fractions of ei are treated as probabilities that each string has copies in subse-
quent generations. According toGoldberg (1988), the strategy of stochastic sampling
without replacement is an improved method of the roulette wheel selection.

ii. Tournament selection

The principle of this technique is to make a meeting between several pairs of indi-
viduals randomly selected from the population, then choose among these pairs the
individual who has the best quality of adaptation who will be the winner of the tour-
nament and will be reproduced in the new population. The procedure is iterated until
the new population is complete. This tournament selection technique allows individ-
uals of lower quality to participate in the improvement of the population. There are
different ways to implement this technique: An individual can participate in multiple
tournaments, multiple tournaments can be created with multiple participants, and so
on.
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Algorithm 2. Tournament selection algorithm
Set the values of parameters Pop_size, Pc, Pm and Max_iter.
Set tournament size t=15

Step 4 of algorithm 1
While j<t
Begin Pick t random individuals from Pop_size 
Calculate fitness value of these individuals 
Select the best and store in new vectors
Loop until all spots are filled

The calibration of the tournament selection parameters is performed following
the Taguchi technique with the same parameters of the Genetic Algorithm presented
previously. Similarly, 27 sets of experimentswere performedbasedon the distribution
of the orthogonal table, and three levels were assigned to each factor, as shown in
Table 9.

Figure 2 shows the graph of the main effects created on Minitab by plotting the
average of the characteristics for each factor level.

Table 10 summarizes the selected levels of each factor to control and optimizes
the tournament selection technique.

We report in Table 11 the best results obtained for 13 quality levels, and for 3, 5,
and 10 problem size, run with the two selection techniques.

It is clearly shown that, for small size problems, GA with stochastic selection
gives the highest solution quality, (i.e., minimum total cost) for most quality levels
tested. For large problem size, the tournament technique is able to achieve optimal
solution for all quality levels tested. However, as the size of test problems increases,
the quality of solution reduces. According to Fig. 3, we can see that the percentage of
deviation from the optimal solution is less than 1% for small size, and 2% for large
size for stochastic selection. While tournament selection does not give any deviation
from the optimal solution for small instances (0%), and less than 1% for large size
problems. We conclude that tournament selection gives better results than stochastic
selection for all sizes of problems.

The performance of both optimization selection method is also related to other
main factors, namely convergence curve. Figure 4 corresponds to the convergence

Table 9 Considered levels
for each factor of tournament
selection

Factors Level (1) Level (2) Level (3)

Pop_size 20 50 100

Max_iter 100 150 200

Pc 0.2 0.4 0.7

Pm 0.1 0.4 0.7

Penalty 5000 6500 8000

T 5 10 15

S 2 5 10
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Fig. 2 Main effects graph for S/N ratio for tournament

Table 10 Optimal Parameters of tournament selection

Methodology Pop_size Max_iter Pc Pm t s

Tournament 600 500 0.7 0.2 15 2

Table 11 Results of the best solution for 3, 5, and 10 problem size

Size = 3 Size = 5 Size = 10

Ql S T S T S T

0.96 27,546 27,936 29,151 29,073 30,131 29,105

0.94 20,266 20,428 20,356 18,546 20,665 20,275

0.93 15,754 15,741 15,804 15,741 16,089 15,746

0.92 17,485 17,470 17,520 17,470 17,835 17,470

0.88 24,384 24,384 24,465 24,384 25,364 24,392

0.86 24,477 27,842 27,929 27,847 28,645 27,842

0.76 34,480 45,129 45,317 45,163 47,465 45,129

0.67 54,481 62,416 62,502 62,416 64,494 62,416

0.57 81,261 79,703 79,724 79,703 84,800 79,703

0.48 98,461 96,991 97,056 96,991 102,564 96,991

0.38 115,754 114,278 114,371 114,278 117,431 114,312

0.28 133,085 131,565 131,677 131,567 139,481 131,565

0,19 150,331 148,852 148,873 148,852 155,309 148,852
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curve of the proposed GA selection methods: tournament and stochastic. It is clearly
shown that as the computation time and the number of generations increase, the
convergence curve of the tournament selection algorithm reaches the lowest level (at
the 5th iteration) compared to Stochastic selection.

iii. Boltzmann tournament selection

The notion of Boltzmann distribution is borrowed from Simulated Annealing and
adapted to Genetic Algorithm practice to escape the problem of premature conver-
gence, asymptotic or otherwise. Specifically, a Boltzmann tournament selection
procedure is implemented in order to give stable distributions within a popula-
tion of structures that are near Boltzmann. This selection technique selection has
been proposed as an alternative to obtain niching-like behavior in a tournament
scheme [15]. It was primarily used in simulated annealing (SA) algorithm to accept
or reject solutions after the process of neighborhood exploration. Kirkpatrick [16]
and Cerny [17] firstly introduced SA optimization approach; in Boltzmann selec-
tion, the temperature that controls the rate of selection is decreased gradually and
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the selection pressure increases because it is inversely proportional to temperature.
Initially, the temperature is high and selection pressure is low. The temperature is
decreased gradually and the selection pressure increases. This results in a reduction
of the research space with maintaining the diversity in population. Boltzmann tour-
nament is aiming to find a global optimum. The selection of an individual is done
with Boltzmann probability that is given by (22)

P(�E) = e−(si−s j)/T (22)

where �E is the difference of energy between two values (Si and Sj) of the objec-
tives function (fitness in GA) and the level of the current temperature, P(�E) is
the acceptance probability, and T is the temperature level, and the minus sign in the
exponent is necessary because a minimization is performed. Similarly, to the ther-
modynamics properties where the possibility to change between two energy states is
very high at high temperatures. With Boltzmann selection method, the acceptance of
bad solutions at high temperature can be taken as number close to one. Nevertheless,
as the system is cooled, this probability decreases to zero [18].

4 Results of Statistical Tests

The performance was tested for ten runs of COFQ for each of the selection tech-
niques. For this experiment, the crossover and mutation probabilities are 0.7 and 0.2,
respectively. We use the size 2 for Tournament selection, the population size is 120,
200, and 300. Penalty cost is fixed at 5000 $, temperature is 1750, and cool rate is 0.9.
The maximum number of iterations is fixed at 100. The result is to find the optimal
total cost of food quality. In order to determine which selection technique provides
the best solution, we perform a statistical analysis using paired sample T-Test. We
use the statistical software package IBM SPSS statistics version 23 to analyze the
data. The following Table 12 shows the obtained experiment results of the three
selection strategies presented above. As the population size of the algorithm has a
considerable impact on the solution quality, we propose to investigate different “Pop
size”. Hence, paired T-test will be conducted to analyse these collected data.

The paired-Samples T-test procedure is based on the verification of two contrary
hypothesis. The first one is called the null hypothesis (H0) that could be stated as
the mean of each observation is the same. As for the second one, the alternative
hypothesis (HA) is simply the opposite of H0. We define the hypothesis to work with
as follows.

Hypothesis
H0: μ1 = μ2 = μ3 (i.e., all the selection strategies give the same results)

HA: at least one selection strategy is different from the above.
Significance is set at 0.05 (95% confidence).
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Table 12 Examples of obtained results with different costs

Solutions

O [1, 0, 0] [0, 1, 0] [0, 1, 0] [0, 1, 0] [1, 0, 0]

X [1, 0, 0] [0, 1, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0]

Z [1, 0, 0] [0, 1, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0]

Wpd [1300, 0, 0] [0, 1300, 0] [0, 1302, 0] [0, 0, 1303] [1301, 0, 0]

Wdr [1200, 0, 0] [0, 1201, 0] [0, 1201, 0] [0, 0, 1200] [1200, 0, 0]

Ql 93% 93% 93% 93% 93%

Min cost ($) 14031.56 14037.61 14048.01 14048.96 14045.76

CEF ($) 3422.16 3186.8 3425.01 3422.16 3422.16

CIF ($) 216.95 216.95 217.28 217.44 217.11

CA ($) 3186.8 3092.65 3191.7 3194.15 3189.25

CP ($) 3092.65 3092.65 3097.4 3099.78 3095.03

Operational cost ($) 273.0 273.0 273.42 273.63 273.21

2760.0 2762.3 2762.3 2760.0 2760.0

Transport cost ($) 1080.0 1080.9 1080.9 1081.8 1089.0

Measurements are taken from the sameprogramwith different selection strategies;
we have to verify if these techniques give the same results. In this case, if the average
difference between themeasurements is equal to 0, then the null hypothesis holds. On
the other hand, if their impact on the obtained results is similar, the average difference
is not 0 and the null hypothesis is rejected and the alternative Ha is accepted. To
conduct the T-Test analysis, we need to calculate some descriptive statistics for each
observation such as mean, standard error, and standard deviation. Table 13 shows all
data needed in the next step.

Table 14 gives the mean, standard deviation, and mean standard error of each
selection technique.

Subsequently, we have to pair the selection techniques together in three combi-
nations:

• Pair 1: Tournament and stochastic selection
• Pair 2: Tournament and Boltzmann selection
• Pair 3: Boltzmann and stochastic selection.

Based on these data, we can now conduct the analysis to verify the difference
between each observation. Consequently, for each pair, we evaluate the value of “t”
by the following (23):

t = x̄ − μ

s/
√
n

(23)

where x̄ : the mean, N: the number of samples that are taken into consideration “N
= 10”, μ: the standard error mean, and s: the standard deviation.
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Table 13 Statistical results of the three selection techniques

Test N° Boltzmann Tournament Stochastic

Popsize 120 1 14036.71 14031.56 14088.77

2 14067.02 14052.36 14077.42

3 14036.76 14156.19 14106.83

4 14059.26 14037.66 14093.87

5 14059.91 14046.86 14118.93

6 14057.56 14071.96 14095.67

7 14042.81 14052.36 14085.02

8 14048.01 14075.47 14148.13

9 14065.51 14052.36 14058.41

10 14031.56 14078.36 14089.33

Popsize 200 1 14054.92 14036.76 14109.57

2 14065.86 14031.56 14073.07

3 14064.47 14052.36 14069.67

4 14041.96 14052.36 14107.47

5 14031.56 14031.56 14134.33

6 14031.56 14031.56 14107.77

7 14036.76 14031.56 14042.81

8 14034.26 14031.56 14058.41

9 14049.71 14031.56 14039.81

10 14041.96 14031.56 14057.12

Popsize 300 1 14048.06 14031.56 14123.44

2 14031.56 14031.56 14048.06

3 14042.81 14031.56 14101.87

4 14041.96 14031.56 14074.21

5 14043.66 14031.56 14102.47

6 14039.66 14052.36 14060.97

7 14031.56 14042.81 14042.26

8 14036.76 14049.61 14059.26

9 14045.01 14031.56 14152.03

10 14043.66 14031.56 14116.13

The following tables recapitulate the output of the paired T-test analysis for each
population size of GA program. This table provides relevant information about the
studied measurement presented above; in other words, it contains the mean, stan-
dard deviation, and standard error mean differences of the pairs, for instance, the
value of the first row (pair 1: Boltzmann Tournament − Tournament) is 14050.51
− 14065.51 = −15. The additional columns help us to make a decision about the
measurements (with degrees of freedom 9), using these outputs we will be able to
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Table 14 Paired sample T-test

N Mean Std. deviation

Statistic Std. error

Popsize 120 Boltzmann 10 14050.51 4.10 12.98

Tournament 10 14065.51 11.22 35.47

Stochastic 10 14096.24 7.70 24.36

Popsize 200 Boltzmann 10 14045.30 4.08 12.90

Tournament 10 14036.24 2.74 8.65

Stochastic 10 14080.00 10.27 32.48

Popsize 300 Boltzmann 10 14040.47 1.76 5.57

Tournament 10 14036.57 2.65 8.39

Stochastic 10 14088.07 11.54 36.49

choose the best selection technique. As an example, for the population size of 200,
the average optimum solution given by tournament selection is less than the one given
by stochastic selection: 43.76 $ −31.88 SD. Moreover, there is a strong evidence
that tournament is better than stochastic, since the obtained P-value is 0.002 which is
less than our chosen significance level α = 0.05. Therefore, we can conclude that the
average optimal tournament selection and stochastic costs are significantly different.
The last column of this table shows that the probability to get the result by chance is
0.7% for pair 1 of Popsize 300. From the above tables, we can aggregate in Fig. 5 the
given P-values in order to discuss the results of this statistical analysis. We report in
Table 15 the paired T-Test for various population sizes.

As we can see in Fig. 5, larger population sizes give lesser p-values. For pop size
120, there no significant difference betweenBoltzmann and Tournament selection, so
the null hypothesis is true. However, for the second and the third pairs, p is less than
5% which means that the H0 is rejected and there is a significant difference between
stochastic selection method and the other ones. When pop size is fixed at 200, we
can see that tournament performs better than Boltzmann and stochastic selection
techniques. The same conclusion can be made for pop size fixed at 300. Moreover,

-2.00%

3.00%

8.00%

120 200 300

P value

BOLTZMANN - TOURNAMENT BOLTZMANN - STOCHASTIC
STOCHASTIC - TOURNAMENT

Fig. 5 Aggregated P-values
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in this case, the P-values are smaller and variability decreased, for example, the
average optimal cost at pop size 200 pair 1 (Boltzmann–Tournament) decreased
from 9.06$–12.52SD to 6.9$–6.36SD.

5 Conclusion

In this paper, we presented a model for optimizing the food supply chain, especially
for fresh products. The model is a MINLP problem that demonstrates the importance
of managing FSC to maintain the quality and safety of food products, and provides
managers with a practical tool for making cost-optimized decisions. The proposed
resolution procedure based on genetic algorithms proved more efficient in terms of
speed of execution as well as the quality of the results compared to the solver. The
calculation of the difference between the two approaches gave a GAP of 1.37%
and of 2.71% for a quality degradation equal to 3% and 30%, respectively, which
means that the performances of developed AG are better compared to the solver,
especially for low values of quality degradation. We also addressed the issue of
selection strategy to be chosen in Genetic Algorithm optimization approach. We
demonstrate that tournament selection is the best selection technique compared to
stochastic samplingwithout replacement andBoltzmann tournament using the results
obtained by T-test statistical analysis. Future research can be conducted to investigate
hybrid algorithms that combine two metaheuristics.

Appendix

See Tables 16 and 17.

Table 16 Parameters for the COFQ function

CAf ix Fixed costs for inspection after storage

CAvar Variable costs for inspection at the end of storage

Cpvar Variable costs for prevention activities

CI F f i x Fixed internal failure costs

Cs Loss generated by food products shipped from production sites to meet quality
requirements

−
CEF Cost per defective products intended to waste disposal for treatment
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Table 17 Food supply chain
network parameters

Parameter Value Parameter Value

Pp,t 0.21 CI F f i x 2.5

g2d 2.3 �qd 0.03

fd,r,y 0.9 �qd,y 0.02

g1d 3.2 Cs 2.7

Cpvar 2.5
−

CEF 150

αp 0.2 demr,t 500

CAfix 1.8 ap,t 1450

CAvar 2.5 bd,t 1450

βd 0.2 l Rt [1–98%]

t 1 p 3

d 3 y 3

r 3 CI F f i x 2.5
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Optimal Cutting Parameters Selection
of Multi-Pass Face Milling Using
Evolutionary Algorithms

Ghita Lebbar, Abdelouahhab Jabri, Abdellah El Barkany,
Ikram El Abbassi, and Moumen Darcherif

Abstract Over decades, particular attention was devoted to the optimal selection of
the cutting conditions associated with the material removal processes, particularly
for the multi-pass face milling operations considered as a highly complex problem
both theoretically and practically. The machining conditions in the milling opera-
tions consist commonly of cutting speed, depths of cut, and feed rate. Researches in
this field are of huge interest due to their considerable importance for the Computer-
Aided Process Planning (CAPP) on one hand and the large impact of those vari-
ables on the quality of machining products, the operational costs, and the machining
efficiency on the other hand. In this paper, various evolutionary optimization tech-
niques are proposed to minimize the unit production cost of multi-pass face milling
operations while considering technological constraints. The proposed optimization
tools are based initially on the Genetic Algorithm (GA) with two different selection
strategies, namely stochastic and tournament selections. And secondly, on theHybrid
SimulatedAnnealingGenetic Algorithm (SAGA). The integration target of the simu-
lated annealing (SA) based local search strategy with the genetic search is to prevent
accurately the trap of GAs in premature convergence. Parameters of these three opti-
mization approaches are then calibrated using Taguchi design of experiment (DEO)
L27 orthogonal arraymethod. Finally, different case studies are considered in order to
adequately show the effectiveness of the proposed mechanisms. The comparison of
the obtained results with the suggested literature approaches; show the effectiveness
of the proposed SAGA for selecting optimal cutting parameters of the multi-pass
face milling operation.
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Nomenclature

ap Approach distance
D Tool diameter (mm)
B Width of cut
L Length of the workpiece (mm)
Z Number of machining teeth of the tool
e Arbitrary distance to avoid possible accidents and damages
h1 and h2 Constants related to tool travel and approach/depart time
Ctotal Unit production cost
Cm Machining cost
Cl Machine idle cost
Cr Replacement cost
Ct Tool cost
Cri Unit cost for the ith rough pass ($/part)
Cs Unit cost for the finish pass ($/part)
k0 Overhead costs per unit time ($/min)
kt Cost of tool material ($/edge)
Lr Length of the travel of the cutter
Lf Length of machining travel measured from the first to the last contact

between the tool and the workpiece
n Number of rough passes
Vri and Vs Machining speed (m/min) of rough and finish passes, respectively
fri and fs Feed per tooth (mm/tooth) of rough and finish passes, respectively
dri and ds Cutting depth (mm) of rough and finish passes, respectively
Tm Machining time
Tl Machine idling time
Tr Tool changing time
Tp Loading and unloading time (min/part)
Ti Idle tool motion time (min)
Tr Tool exchange time (min)
Ttc Tool changing time required for each edge (min/edge)
Tri Tool life for the ith rough pass (min)
Ts Tool life for the final finish pass
Fri and Fs Machining force of rough and finish passes, respectively (N)
Pri and Ps Machining power of rough and finish passes, respectively (kW)
Rs Surface roughness (μm)

1 Introduction

Material removal process cost represents a very huge part of the global component
manufacturing charges. Thereby, an important concern associated with the reduction
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of that overall cost consists of the control and optimization of cutting conditions in the
machining systems. Among the material removal process that has been investigated
to a certain extent, the milling operation is considered as the most crucial given its
operational significance introduced by its ability to generate complex forms surface
with a desirable precision and a good surface quality.

Multi-pass milling operation consists of several rough passes and one finish pass,
it is commonly used to remove that cannot be subtracted in a single pass. Each pass
can be affected by various parameters, as illustrated in Fig. 1, ranging from the cutting
speed (V) and feed rate (f) to the depth of cut (d) condition. An appropriate selecting
of those cutting parameters is indispensable to assure necessities concerningmachine
parts quality, machining cost as well as machining systems productivity.

Despite the efforts conducted by researches to determine the optimal cutting
parameters, the literature in this area is still limited. However, a large part of the
published works in this direction is devoted to the turning processes. The slow
progress in developing constrained optimization for milling systems is explained
by the high complexity of their cutting mechanisms on one hand and the consis-
tency of the applied constraint on the other. Due to this lack of investigation, this
paper introduces various meta-heuristic algorithms basing on the genetic search to
minimize the unit production cost subject to practical constraint while finding the
optimal cutting conditions is the main target. The first technique is lying on the GAs
procedure with different selection implementations. Whereas in the second, a hybrid
simulated annealing genetic algorithm is suggested. Moreover, to calibrate the algo-
rithms input parameters, a design of experiment technique is used in this research
study.

Fig. 1 Example of Face
milling operation
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The remainder of this paper is organized as follows: the next section reports the
main published works related to the considered issue. A mathematical model is then
given in Sect. 3. Proposed solution algorithms approaches are described in Sect. 4.
Parameters calibration of the suggested tools is then studied in Sect. 5. Section 6
reports case studies and obtained results. Finally, conclusion and some possible
future research areas are carried out.

2 Literature Review of the Machining Operations
Optimization

It is worth emphasizing that currently, different optimization approaches have been
proposed to solve the multi-pass machining operations starting from geometric
programming and graphical tools to exact and meta-heuristic techniques. With this
in mind, some contemporary works linked to the optimization of the multi-pass
machining operations are holistically presented. In earlier studies, Petropoulos [1]
developed a new non-linear programming technique, namely geometric program-
ming with the aim to optimize the unit cost in turning operations subject to select the
optimalmachining conditions. Later, Shin and Joo [2] proposed a conventional differ-
ential and a dynamic programming method to determine the optimum of machining
turning conditions with the consideration of practical constraints and variation of
machining idle time. Gupta et al. [3] developed an integer programming to find the
optimal subdivision of depth of cut in multi-pass turning by adding the minimum
costs of individual rough passes and the finish pass. Tolouei-Rad and Bidhendi [4]
used a new approach based on feasible directions method to find optimummachining
parameters for milling operations. It starts with an initially feasible vector and via
an iterative scheme; the intermediate vectors improving the objective function are
produced. Sönmez et al. [5] proposed a dynamic programming method to select
the optimum machining parameters for multi-pass milling operations. Based on the
maximum production rate criterion, the authors funded the optimal values through
a geometric programming technique. A modified GA was presented by [6] to opti-
mize milling process parameters. Genetic algorithm was similarly proposed by [7]
to optimize the machining parameters for multi-pass milling operations. Regarding
single pass machining operations, Wang et al. [8] introduced deterministic graph-
ical programming based on the criteria typified by the minimum production time.
With the progress of intelligent computing, more bright algorithms have been intro-
duced to machining parameters such as the Artificial Neural Network (ANN) that
was suggested by [9] for modeling and simulating the milling process. An and Chen
[10] proposed an integer programming method for optimal selection of machining
parameters in multi-pass face milling process. Based on genetic algorithm (GA) and
simulated annealing (SA), a hybrid approach GSA was developed by [11] to select
the optimal machining parameters for plain milling process. Correspondingly, Wang
et al. [12] suggested a parallel genetic simulated annealing to minimize machining
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cost of multi-pass milling operations. Multi-pass milling operations such as plain
milling and face milling was also considered by [13] using an optimization tech-
nique based on tribes to select the optimum machining parameters. Moreover, Saha
et al. [14] proposed a binary-coded GA to minimize the cost of unit production to
obtain adequate machining parameters of multi-pass face milling. António et al. [15]
proposed a binary-coded and integer-coded genetic algorithm by substituting the
depth of cut (d) with a sequence of depths of cut. The solution was obtained based
on an elitist procedure. Krimpenis and Vosniakos [16] used a GA to optimize rough
milling operations for sculptured surfaces and select process parameters such as feed
rate, cutting speed, width of cut, raster pattern angle, spindle speed, and number of
machining slices of variable thickness.

Several studies had been focused on the optimization of important cutting process
parameters using hybrid techniques. For instance, Öktem [17] studied the surface
roughness using ANN and GA in order to provide the best combinations of cutting
parameters. Mahdavinejad et al. [18] also studied the effect of milling parameters
on the surface roughness of Ti-6Al-4V using a hybrid optimization approach by
combining the immune algorithm with ANN. Rao and Pawar [19] used an Arti-
ficial Bee Colony (ABC) algorithm to minimize production time of a multi-pass
milling process. Yang [20] proposed a fuzzy particle swarm optimization (FPSO)
combined with a methodology for distribution of the total stock removal. Zhou et al.
[21] also applied fuzzy particle swarm optimization algorithm (PSO) to select the
machining parameters for milling operations. Zarei et al. [22] proposed a Harmony
Search (HS) algorithm to predict optimal cutting parameters for a multi-pass face
milling operation. Yang et al. [23] developed an efficient fuzzy global and personal
best-mechanism-based multi-objective particle swarm optimization (F-MOPSO) to
minimize production time and cost andmaximize profit rate ofmulti-pass facemilling
problem. Fratila and Caizar [24] applied the Taguchi method for the design of exper-
iments (DOE), to optimize the cutting parameters in face milling when machining
AlMg3 (ENAW5754) with HSS (high speed steel) tool. A novel hybrid optimization
approach based on differential evolution algorithm and receptor editing property of
immune system was proposed by Yildiz et al. [25] to optimize machining parame-
ters in milling operations. Qu et al. [26] suggested a non-dominated sorting genetic
algorithm (NSGAII) to determine and validate the optimum machining parame-
ters in milling thin-walled plates. Recently, Shaik et al. [27] developed a multi-
objective approach to minimize simultaneously vibration amplitudes all through the
operations as well as surface roughness average values of the workpiece. A new
population-based meta-heuristic algorithm called chaotic imperialist competitive
algorithm (CICA) is proposed by [28] to select machining parameters optimiza-
tion of multi-pass face milling processes. Chen et al. [29] proposed a multi-objective
integrated optimization model for minimizing energy footprint and production time
and select optimal via a multi-objective Cuckoo Search algorithm.

Even though some excellent improvements have been attained, these problems
still require in-depth investigations owing to the complexity of the issue and the
inconsistency between parameters and targets.
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3 Mathematical Formulation of Face Milling Process

The mathematical model of face milling operation considered in this paper is based
on the researchworks of [14, 15, 20]. As illustrated in Fig. 2, in themulti-passmilling
operations, the total stock removal is divided into multiple rough passes “n” and one
finish pass. The length of the travel of the cutter is calculated as:

Lr = L + ap + e (1)

Given that B is the width of cut and D represents the diameter of the tool,
the approach distance for symmetrical milling and the length of cutting in finish
machining are defined as:

ap = D

2
−

√(
D

2

)2

−
(
B

2

)2

(2)

L f = L + D + e (3)

3.1 Objective Function

The minimum total production cost is used as objective function which is based on
machining time, machine idling time, and tool changing time. The actual machining
time (min) is estimated using:

Fig. 2 Multi-pass milling scheme according to [15]
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Tm =
n∑

i=1

tmri + tms (4)

where, tmri and tms denote the machining time of one rough pass “i” and a final finish
pass, that is:

tmri = πDLr

1000Vri fri Z
(5)

tms = πDL f

1000Vs fs Z
(6)

where, Vs and Vri represent the machining speed (m/min) for roughing and finishing
passes, fri and fs denote the feed per tooth (mm/tooth) for rough and finish passes.
And Z is the number of machining teeth of the tool.

Considering that h1 and h2 are related to tool travel and depart time. Machine
idling time is calculated by summing the loading and unloading operations Tp and
idle tool motion time Ti . It can be expressed as:

Tl = Tp + Ti = Tp + (
h1L f + h2

) + n(h1Lr + h2) (7)

During the machining operation, the tool life is constantly consumed. A tool
exchange is needed and the corresponding time of this operation is given by the
following equation:

Tr = Z

(
Ttc

n∑
i=1

tmri

tri
+ Ttc

tms

ts

)
(8)

where:

tri =
(

CvKvDqv

Vrid
xv

ri f
xv

ri W
sv Z pv

)1/ l

(9)

ts =
(

CvKvDqv

Vsd
xv
s f xv

s W sv Z pv

)1/ l

(10)

where, Ttc denotes the tool changing time required for each edge; tri and ts are the
tool life for rough and finish pass. Cv, Kv, xv, yv, sv, qv, pv, represent the constants
associated with the tool and the material of the workpiece. The tool cost is then
calculated as follows:

Ct = Z

(
Kt

n∑
i=1

tmri

tri
+ Kt

tms

ts

)
(11)
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Finally, the total production cost of face milling operation represents the sum of
machining cost Cm, machine idle cost Cl, tool replacement cost Cr and tool cost Ct ,
as a result, the unit production cost can be calculated as:

Ctotal = Cm + Cl + Cr + Ct (12)

where:

Cm = K0Tm (13)

Cl = K0Tl (14)

Cr = K0Tr (15)

The total cost can be written as follows:

Ctotal =
n∑

i=1

Cri + Cs + K0Tp (16)

where:

Cri = tmri

(
K0 + Z

K0T tc

tri
+ Z

Kt

tri

)
+ K0(h1Lr + h2) (17)

Cs = tmri

(
K0 + Z

K0T tc

ts
+ Z

Kt

ts

)
+ K0(h1Ls + h2) (18)

where Cri ($/part) is the unit cost for the ith rough pass and Cs ($/part) is the unit
cost for the finish pass.

3.2 Machining Constraints

For each parameter of this machining operation, there is permissible range of values
to be selected. These limitations are expressed by Eqs. 19–24:

Vmin ≤ Vri ≤ Vmax (19)

Vmin ≤ Vs ≤ Vmax (20)

fmin ≤ fri ≤ fmax (21)
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fmin ≤ fs ≤ fmax (22)

dmin ≤ dri ≤ dmax (23)

dmin ≤ ds ≤ dmax (24)

where, Vmin and Vmax are the minimum and maximum machining speed, fmin and
fmax denote the minimum and maximum feed rate and dmin and dmax denote the
minimum and the maximum depth of cut. Furthermore, as multi-pass operations
consist of multiple passes of rough passes and a final finish pass. Obviously, the total
stock to remove (dt) should be the sum of the cutting depths of rough passes and the
final depth of cut. This constraint must be expressed by the following equation:

dt =
n∑

i=1

dri + ds (25)

In order to prevent damage to the cutting tool produced by repeated impact
that causes dimensional errors. Machining force must be lower than the maximum
machining force permitted by the machine and the cutting tool. Using the model
proposed by [30], the constraints imposed on cutting force for rough and final passes
are expressed as:

Fri = CuKuWsu Z pu dxu
ri f

yu
ri

Dqu
≤ Fmax (26)

Fs = CuKuWsu Z pu dxu
s f yus

Dqu
≤ Fmax (27)

where, Cu, Ku , Pu, qu , Su, xu , yu are constants; Fri is the machining force in the
ith rough operation; Fs represents the machining force for the finish pass; and Fmax

represents the maximum available machining force.
The cutting power should not exceed the maximum power allowed for machine

tool spindle during machining process. The power consumed in face milling for both
rough and finish passes are given by the following equations:

Pri = CλKλWsλ Z pλdxλ

ri f
yλ

ri

Dqλ
≤ Pmax (28)

Ps = CλKλWsλ Z pλdxλ
s f yλ

s

Dqλ
≤ Pmax (29)
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where, Cλ, K λ, Pλ, Qλ, Sλ, xλ and yλ are constants; Fri is the machining power in
the ith rough operation; Ps is themachining power for the finish pass; Pmax represents
the maximum available machining.

Another important constraint is related to surface roughness that represents the
product quality. The surface roughness depends essentially on feed rate and it must
meet the roughness requirement, the following equations give the actual surface
roughness in the ith finish operation and the actual surface roughness for the final
finish pass Rs :

Rri = 0.0321
f 2s
re

≤ Rrmax (30)

Rs = 0.0321
f 2s
re

≤ Rsmax (31)

where, re is the nose radius of the machining edge, Rrmax and Rsmax are the surface
roughness requirement for rough and final finish passes, respectively.

The tool life should not be shorter than the tool replacement life. In the model
proposed by [30], tool life is inversely and exponentially dependent on cutting speed,
depth of cut and feed, is adopted. Since, TR denotes the tool life requirement pre-
specified by user, the tool life for the ith rough pass tri and the tool life for the final
finish pass ts are calculated as follow:

tri =
(

CvKvDqv

Vrid
xv

ri f
xv

ri W
sv Z pv

)1/ l

≥ TR (32)

ts =
(

CvKvDqv

Vsd
xv
s f xv

s W sv Z pv

)1/ l

≥ TR (33)

4 Proposed Solution Algorithms

• Genetic algorithms based research

Initiated in the 1970s, the genetic algorithms (AGs) represent stochastic search tools
that solve a wide range of combinatorial optimization problems. They are inspired
by the biological mechanism of reproduction and natural selection. Based on the
durability of the most promising intuition, AGs allow to efficiently finding a new
generation with a better cost function. Starting from the basic principle of AGs,
the evolutionary process is simulated through a population of solutions representing
individuals; each individual is endowed with a genotype consisting of one or more
chromosomes. These are made up of a set of elements, which can take on several
values. In these so-called evolutionary algorithms, three fundamental operators are
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involved, ranging from selection, which eradicates the least promising solutions, to
crossover and mutation, which gives rise to new competing solutions by exploring
the state space. In addition, to implement a genetic algorithm, four pieces of data
are needed that corresponds practically to the size of the population (Pop_Size), the
probability of crossover (Pc), the probability of mutation (Pm), and the total number
of generations (Max_iter).

The genetic algorithm starts with a step called genesis in which an initial popu-
lation of Pop_Size of individuals is generated. For each generated individual, a
cost function is computed in order to define the adaptation score of the individ-
uals during the selection process. These individuals evolve through the application
of the crossover according to a probability Pc. Subsequently, the children obtained
undergo an inversion at the gene level with a probability of mutation Pm. These
three phases of evolution allow with a high chance of producing a new population
better than the previous generation. With each new generation, the new populations
become stronger and a loop is made until the assessment considers that the solution
is not yet optimal. The main operators will be presented, in detail, in the following
sections.

Selection operator: it represents a decisive heuristic in the implementation of
the genetic mechanism to direct evolution and guide research by determining the
candidate solutions supposed to be themost promising for the generation of offspring.
Different selection techniques have emerged to eliminate chromosomes leading to
poor quality children. In our research work, the stochastic Universal Sampling and
the Tournament selection strategies are adopted.

• StochasticUniversal Sampling selection: It is used to improve the fitness propor-
tionate by reducing selection Bias and embedding the gene pool to be conquered
by only a small amount of fittest members of the population.

• Tournament selection: It consists of randomly selecting two individuals and
selecting the best in terms of performance by comparing their adaptation function.
Individuals who participate in a tournament are handed over or removed from the
population, depending on the user’s choice. This technique has the advantage of
allowing the user to create tournaments with many participants or to highlight
those who win the tournaments, which will promote the durability of their genes.

Crossover operator: It tends to increase the strength of the current population
by randomly dividing individuals into hermaphrodite pairs. It is used to create new
combinations of component parameters to form two descendants with character-
istics from both parents. This operator is executed with a probability Pc, called
crossover probability. Several crossing techniques have been used in the literature,
in our research work; the Two Cut-Points Crossover is used and implemented as
follows: two cut-off points are randomly selected for each ascendant. The genes at
the ends are inherited directly from parents to children. The missing part is then
completed by copying from left to right and in the same order of genes, the residual
genes from string 2 to new string 1 and from string 1 to new string 2, respectively.

Mutation operator: Mutation is the third operator used in the process of genetic
research; it is applied to preserve genetic diversity from one generation to the next
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by allowing the generation of points in regions that are of no interest. The mutation
is carried out with a probability Pm, called the probability of mutation. Several
mutation techniques have been introduced in the literature. In this research work, we
use a reciprocal exchange mutation in which a gene at one position is removed and
implanted at the position of the second gene chosen with a probability of mutation.

The final step of the GAs lies in the termination condition that plays an important
role in assessing the quality of the individuals obtained. In this study, the execution
stopswhen the algorithmmakes n iterationswithout improvement in the best solution.
The GAs procedure is shown in Algorithm 1.

Algorithm 1 : The GA based search algorithm 
• Initialize : Pop_Size, Pc, Pm, Max_iter; 
• Generate randomly the initial population Pop_Size (n);  
• Calculate the fitness function for each chromosome of the current population; 
• Select by tournament or stochastic selection strategies the best fitness of the current 

population; 
• As long as the maximum number of iterations has not been reached:  
• i=1 
• For i  < Pop_Size : 

•  Select randomly two individuals of P(N) 
•  if α ≤Pc : 
•           Apply standard two-cut point’s crossover and produce two children’s 
•           if β ≤ Pm : 
•           Apply mutation 
• Copying the ascendants obtained in the new population P(n+1) 
• Evaluate the fitness of all chromosomes of the new fi(P(n+1)) population 

• i=i+1 
• Until i = Max-iter ( until maximum number of iteration is reached without improvement) 
• End while 

5 Simulated Annealing Genetic Algorithm (SAGA)
Procedure

AlthoughGAhas several advantages over traditional techniques, the successful appli-
cation of this algorithm depends on the population size and the diversity of individual
solutions in the search space. If its diversity cannot be maintained before the global
optimum is reached, itmay converge to a local optimum that avoids the global targeted
convergence. This genetic phenomenon called premature convergence is due to the
fact that a good individual dominates the space of several generations, afterwards it
risks invading the whole population and preventing a stable and balanced evolution.

To achieve effective research, genetic diversity must be preserved by maintaining
a balance between exploiting the best solutions and exploring areas of interest. Typi-
cally, in order to achieve global convergence, there is a trend toward hybrid algorithms
combining the strengths of the local and the global methods.

Simulated annealing (SA) is an efficient local approach inspired by the analogy
with the annealing of metals in metallurgy. It consists of performing a movement
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according to a distribution probability that depends on the quality of the different
neighbors based on the Metropolis algorithm. In the original Metropolis scheme,
the probability of a physical system possessing energy E, when thermodynamic
equilibrium is reached at a temperature T, is proportional to the Boltzmann–Gibbs
factor. Under these conditions, at the implementation level of the process, a primary
solution S is randomly generated, the transition from the current solution S to an
adjacent solution S* depends on the probability P of the abovementioned Boltzman-
Gibbs distribution. Indeed, this transition is accepted if the following condition is
fulfilled:

P = min
{
1, e

− f
T

}
≥ � (34)

where, f denotes the difference between the objective function of the two states,
� is a random number generated in the interval [0, 1] and T is the current control
parameter in the process.

f = fi − fworst (35)

A hybrid method can be effective or ineffective depending on the selection of
its components. In order to design a successful hybrid method, the strengths and
weaknesses of each candidate method must be mastered. In this research work, a
hybrid simulated annealing genetic algorithm is proposed, the choice of sequential
hybridization of genetic algorithms and simulated annealing is dictated by a great
mastery of the assets and defects of each of these optimization tools. Thus, this
integration not only prevents premature convergence, but also overcomes the main
drawback of SA consisting of its stopping when no neighboring point can improve
the current solution. Indeed, this disadvantage can only be overcome if the process
can be repeated from several randomly generated starting points through a commonly
used measurement, or if the starting solutions are provided by a genetic algorithm.

In the last decade, several researchers attempted to combineGA and SA to provide
a more robust optimization method that has both good convergence control and effi-
cient stability. In their paper, Chen and Flann [31] proved that the hybrid of GA
and SA can perform better for ten difficult optimization problems than either GA
or SA separately. Sirag and Weisser [32] proposed a unified thermodynamic genetic
operator to solve ordering problems. The unified operator is applied to the conven-
tional GA operation of crossover and mutation to yield offspring. This operator can
ensure greater population diversity at high temperature and less population diver-
sity at low temperature. Mahfoud and Goldberg [33] also introduced a GA and SA
hybrid. Their hybrid runs SA procedures in parallel, which uses mutation as the SA
neighborhood operator and incorporates crossover to reconcile solutions across the
processors. Similarly, hybrid method of GA and SA was also used by Varanelli and
Cohoon [34]. In addition, Chen et al. [35] also proposed a hybrid method, which
maintains one solution per Processing Element (PE). Each PE accepts a visiting
solution from other PEs for crossover and mutation. For the selection process, the
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SA cooling schedule and system temperature were used to decide whether the newly
generated individual was accepted or not. In this method, they used the local selec-
tion of SA to replace the conventional selection process of GA. Hiroyasu et al. [36]
proposed an algorithm involving several processes. In each process SA is employed.
The genetic crossover is used to exchange information between individuals at fixed
intervals.

The SAGA procedure is established in two stages: In the first one, a set of descen-
dants is produced by applying different genetic research operators. In other words,
after crossover and mutation for a couple of individuals, a new population is created.
While in the second one, the obtained new population is accepted or rejected to pass
to the next generation according to the Metropolis criterion formulated previously.
Individuals with higher fitness values have a greater probability of surviving into the
next generation. Those with less fitness values are not necessarily discarded. Four
parameters (f best, f worst, Tn, f i) are involved to describe this selection process, f best
represents the best fitness value of two parents, f worst is the worst fitness value of
two parents, f i denotes the fitness value of one offspring (i = 1, 2) and Tn is the
controlling temperature. Starting from a high temperature value, a state search is
performed at each level with a number of iterations designated as Markov chain
length. This length represents the number of movements performed for a fixed value
of temperature that decreases logarithmically with time.When the algorithm reaches
very low temperatures, the most probable states are in principle excellent solutions
to the optimization problem. Since 0 < Cool_rate < 1 is the cooling rate parameter,
the annealing program is therefore defined as follows:

Tn+1 = Cool_rate ∗ Tn (36)

Without omitting to point out that the replacement of the old population takes place
if f best is better than f worst through Boltzmann’s probability. This process is repeated
iteratively until the maximum number of iterations is reached and the overall optimal
value is obtained. The specific steps of the proposed SAGA cooperative approach
are illustrated in the Algorithm 2 and Fig. 3.
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Fig. 3 Flowchart of the proposed SAGA algorithm
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Algorithm 2 : The proposed SAGA algorithm
• Initialize : Pop_Size, Pc, Pm, Max_iter, Cool_rate, Temp=T0 ;
• Generate randomly the initial population Pop_Size (n); 
• Calculate the fitness function for each chromosome of the current population;
• Select by tournament or stochastic selection strategies the best fitness of the current

population;
• As long as the maximum number of iterations has not been reached: 
• i=1
• For i  < Pop_Size :

• Select randomly two individuals of P(N)
• if α ≤ Pc:
• Apply standard two-cut point’s crossover and produce two children’s
• If β ≤ Pm :
• Apply mutation
• Copying the ascendants obtained in the new population P(n+1)
• Evaluate the fitness of all chromosomes of the new fi(P(n+1)) population
• Saving the best and worst encountered solutions encountered:

f _newbest = min [f]
f _newworst= max [f]

• if _newbest   < f _oldbest:
Population_Temp = New_Population [f _newbest:]

• else if f _newbest   == f _oldbest:
i=i+1

• else if f_newbest  > f _oldbest:
Calculate X= exp [- (f _newbest  - f _oldbest) / Temp]
Si X ≥ Ω :
Population_Temp=New_Population [f_newbest:]
New_Population [: f_ newworst ]= Population_Temp
P (n+1) = New_Population
Slow cooling of the temperature:

Temp = Cool_rate *Temp
• If the stop criterion is met, stop the SAGA procedure and return the best configuration of 

the unit production cost found, otherwise go to step 5.
• End while

For both the procedures, the penalty function is adopted to penalize the chromo-
somes who violate the constraints. The more the constraints are violated, the heavier
the penalty will be done. Consequently, the objective function will be small and the
unfeasible results have more chance to be eradicated from the solution space. Basing
on the objective function the probability of selection is calculated as follows:

Penalty = fworst − f j∑Pop_si ze
j=1

(
fworst − f j

)
/Pop_si ze

(38)

where, fworst is the maximum value of objective function and f j is the value of
objective function of the current element.
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6 Algorithms Parameters Calibration: Design
of Experiment of Taguchi

The strength and effectiveness of optimization approaches depend largely on the
proper selection of parameters. With this in mind, a selection methodology called
“design of experiments” has been used to optimize the parameters of the genetic
proposed processes. Generally, this technique aims to identify and establish the links
between input variables of the process and a quantity of interest, called the response.
Several types of experimental designs have been developed to parameterize and
manage the impact of variables on the response variation; they differ in their corre-
sponding levels and the interference between them. The Taguchi approach represents
one of the most adopted design-of-experiment methods in the literature. Developed
by [37] in the 1960s, this approach aims to minimize the impact of the noise factor,
that cannot be controlled by designers, and find the best level of controllable factors
by using a number of concepts. Including the signal-to-noise (SNR) ratio, which
is an indicator of variation used to measure the existing variation in order to iden-
tify control factors that reduce variability. There are three categories of performance
characteristics for studying the signal-to-noise ratio, namely: smaller better, nominal
better, and larger better. Since this study addresses a minimization problem, the
signal-to-noise ratio should be measured using the lowest value, as shown below:

S

N
= −10log10

(
1

n

n∑
i=1

1

y2i

)
(39)

where, n and y represent the number of observations and the response variable,
respectively.

Execution of the experimental trials was based on L27 Taguchi’s orthogonal array,
and three levels were assigned to each factor whether for the SAGA or the GA with
tournament and stochastic selection strategies as illustrated in Tables 1 and 2.

Regarding the GA tool, four factors, including population size, maximum number
of iterations, probability of crossover, and probability of mutation are defined as crit-
ical control factors. It is worth mentioning that tournament and stochastic selections

Table 1 Considered levels of GAs factors (tournament and stochastic selection)

Considered levels of GAs factors (tournament and stochastic selection)

Factors Level 1 Level 2 Level 3

Pc 0.5 0.7 0.9

Pm 0.2 0.4 0.6

Max_iter 50 100 200

Pop_size 100 200 400

Penalty 1 5 10
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Table 2 Considered levels of SAGA factors

Considered levels of SAGA factors

Factors Level 1 Level 2 Level 3

Pc 0.7 0.75 0.8

Pm 0.1 0.15 0.20

Max_iter 50 100 200

Pop_size 100 200 400

Temp 500 750 900

Cool_rate 0.7 0.8 0.9

Penalty 1 5 10

are used separately, the obtained results based on Taguchi method for these two
traditional GAs are presented in Figs. 4 and 5. Results show that both cases need
high population size and high maximum iterations to reach the optimization. Results
of GA with stochastic selection method are altered with high levels of mutation
and crossovers probabilities as well as penalty cost. In contrary GA with tourna-
ment selection method needs higher values of penalty cost, crossover, and mutation
probabilities.

Concerning the proposed SAGA method, it involves various parameters namely:
population size, cooling rate, initial temperature, mutation, crossover probabilities,
and finally the maximum iterations without any best solution improvement. Basing
on the orthogonal array of Taguchi, the obtained results shown in Fig. 6, illustrate
that a higher population size and lower penalty costs are more appropriate to obtain

Fig. 4 Mean effect plot for SN ratio of GA with tournament selection parameters
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Fig. 5 Mean effect plot for SN ratio of GA with stochastic selection parameters

Fig. 6 Mean effect plot for SN ratio of SAGA parameters

the best results. In contrast, respecting the mutation probability, it has to be fixed at
the lower level and the crossover probability must not exceed 70%. Finally, the other
factors are to be fixed at the medium levels. Table 3 regroups the selected level of
each factor for the three optimization approaches.
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Table 3 Optimal parameters of the proposed optimization approaches

Optimal parameters of the proposed optimization approaches

Factors GA with tournament
selection

GA with stochastic
selection

SAGA

Pc 0.9 0.5 0.7

Pm 0.6 0.2 0.1

Max_iter 500 500 100

Pop_size 400 400 400

Temp – – 750

Cool_rate – – 0.8

Penalty 10 1 1

7 Numerical Results and Discussion

To evaluate the effectiveness of the traditional GAs with tournament and stochastic
strategies and the hybrid SAGA formachining parameters optimization ofmulti-pass
face milling, two cases of multi-pass face milling operations are studied. Data given
in Table 4 summarizes workpiece features as well as cutting tool and machining
characteristics. The considered data is the same adopted by [15, 30].

The GA and the hybrid SAGA are written in python 3.5 and runs on Intel(R)
Core(TM) i5-2430M CPU @2.4 GHz, with 4 GB of RAM. A set of parameters are
involved in the proposed algorithm.

• Comparison of the proposed SAGA with GA (tournament and stochastic
selection strategies)

From the following Tables 5 and 6, it can be seen that for the first case dt = 8 mm,
where the number of passes is considered between 2 to 3 passes, GA technique
combined to SA optimization tool is more powerful than both GA approach with
Stochastic and Tournament selections. Particularly, for the second case dt = 15 mm,
where the number of passes is considered between 4 and 7 passes. The performance
of the proposed algorithm is more proved. Since stock removal is too much large,
more rough passes are needed which means that more decision variables are taken
into consideration in the program.

The results show that optimal costs of SAGA technique are less than the tradi-
tional GA technique, moreover: GA with stochastic selection method is not enough
powerful to give better results. For number of passes of 6 and 7, GA approach with
stochastic selection cannot give satisfactory results.

The following figures report the convergence curves of the proposed SAGA and
traditional GA optimization techniques. Figures 7 and 8 illustrates that the program
takesmore than 550 iterations before satisfying constraint related to number of rough
passes and finish pass to total stock removal.Moreover, initial temperature of 750 and
cooling rate of 0.8 justify the acceptance of non-feasible solutions which represents
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Table 4 Parameters setting of face milling operations

Item Symbol Value Item Symbol Value

Workpiece L 240 (mm) Constants and
exponents

Cv 445

W 100 (mm) Kv 1

Tool D 160 (mm) xv 0.15

re 1 (mm) yv 0.35

Z 16 pv 0

Milling costs and
constraints

K0 0.5 ($/min) qv 0.2

Kt 2.5 ($/cut edge) sv 0.2

Ttc 1.5 (min/cut edge) m 0.32

Tp 0.75 (min/cut edge) Cu 534.6

h1 7 10–4 (min/mm) Ku 1

h2 0.3 (min) xu 0.9

dr,min 2.0 (mm) yu 0.74

dr,max 4.0 (mm) pu 1

ds,min 0.5 (mm) qu 1.0

ds,max 2.0 (mm) tu 1.0

fmin 0.1 (mm/touth) Cλ 0.5346

fmax 0.6 (mm/touth) KλZ 1

Vmin 50 (m/min) xλ 0.9

Vmax 300 (m/min) yλ 0.74

Tr 240 (min) pλ 0

rr,a 25.0 (μm) qλZ 1.0

rs,a 2.5 tλ 1.0

Fmax 8000

Pmax 8

the main feature of this optimization technique. It can also be seen that some worst
solutions are accepted at the 200 first generations as the temperature is high. With
lower temperature best solutions aremore likely to be accepted and the program stops
search after some iteration without improvement of minimum unit cost. In contrast,
GA traditional optimization tool performs the search in the space of solution by
accepting merely best solution as shown in Fig. 9.

• Comparison of the proposed SAGA with other procedures

In order to test the performance of the proposed SAGA, comparison is carried
out for the case of dt = 8 mm. Several optimization techniques have been used
in the same conditions, such as GA [7, 14], Genetic Search (GS) [15] and Fuzzy
Particle Swarm Optimization Algorithm (FPSO) [20]. The comparison of SAGA
with previous research works is presented in Table 7. The obtained results of the
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Fig. 7 The convergence curve of the proposed SAGA approach for dt = 8 mm

Fig. 8 The convergence curve of the proposed SAGA approach for dt = 15 mm

proposed approach are marked in bold. They show that the unit production cost
($1.59US) obtained by SAGA is smaller than those of the aforementioned compar-
ison studies. Additionally, Fig. 10 gives a comparison of obtained optimal cost with
our proposed optimization techniques and the optimal costs as presented by [20]
and the two different GA approaches. Yang et al. [20] proposed a FPSO optimization
technique where, a methodology to distribute the total stock removal is incorporated.
This figure confirms that without a methodology to distribute the total stock removal
SAGA is more powerful and gives satisfactory results for the machining parameters
optimization of multi-pass face milling.
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Fig. 9 The convergence curve of the propos dt GA approach with different selection methods for
dt = 8 mm

Table 7 Benchmark of optimal machining parameters and total cost for total depth of cut dt =
15 mm

Methods F (mm/tool) V (m/min) A (mm) Cost ($)

GA [7] 0.1 114.7 4 2.00

0.30 115.3 2

0.27 119.2 2

GS [15] 0.4 66.7 2.8 1.86

0.33 66.7 3.2

0.6 66.7 2

GA [14] 0.43 60 3.1 1.76

0.43 60 3.1

0.27 124.46 2.8

FPSO [20] 0.59 89 2.4 1.96

0.59 89 2.4

0.59 91 2.6

Current SAGA 0.41 93 3.19 1.59

0.46 93.96 2.94

0.59 92.4 1.78

Current GA with tournament selection 0.46 79.52 2.72 1.67

0.29 86.28 3.6

0.49 91.33 1.64

Current GA with stochastic selection 0.31 99.25 3.9 1.66

0.4 76.65 2.55

0.52 89.78 1.55
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Fig. 10 Benchmark of the unit cost improvement yielded by SAGA with FPSO

8 Conclusion and Perspectives

The face milling operation which involves various parameters is studied in this paper
for the purpose of minimizing the unit production cost. Three different approaches
are proposed and analyzed, namely the hybrid SAGA optimization approach and the
traditional GAwith tournament selection strategy and traditional GAwith stochastic
selection technique. The aim of the integration of the SAwith the genetic search is to
avoid the premature convergence of the genetic algorithm on one hand and overcome
themaindrawbackof theSAon the other hand. Parameters of the different approaches
are then calibrated with Taguchi method. Finally, results show that for the different
considered depth of cut, the SAGA is more powerful compared to the proposed GA
tools with different selection procedures and to some many others methodology of
total stock distribution proposed in previous published papers.

In future works, a methodology to generate feasible solutions will be integrated
into our optimization tool. Additionally, this study can be extended to optimize
others objective functions such as production time and can be also extended for
other material removal processes as turning and grinding operations.
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Role of Constrained Optimization
Technique in the Hybrid Cooling of High
Heat Generating IC Chips Using
PCM-Based Mini-channels

V. K. Mathew, Naveen G. Patil, and Tapano Kumar Hotta

Abstract Optimization has gained enormous importance in the area of electronics
to control the temperature of the high heat-generating electronic components. The
present study emphasizes the transient numerical simulations on seven asymmetric
IC chips kept next to the Left–Right-Bottom-Top (LRBT) and Left–Right-Bottom
(LRB) mini-channels fabricated on the SMPS board using the three different phase
change materials (PCMs); Suntech P116 (Tm: 49.5 °C), Paraffin wax (Tm: 44 °C),
andn-eicosane (Tm:40.5 °C).Theobjective is tominimize themaximum temperature
of the configuration (arrangement of the seven IC chips) and to maintain it below
the critical limit (≤125 °C). The results suggest that the configuration maximum
temperature has dropped by 15.33–22.2% using the n-eicosane (lower melting point
PCM). A correlation is established for the dimensionless configuration maximum
temperature excess (θ) in terms of the IC chips heat input (qo), PCM volume content
(vo), and IC chips size (δ). The optimal temperature of the configuration is identi-
fied using the GA-based constrained optimization strategy. A sensitivity analysis is
carried out to study the effect of the constraints on the optimal temperature of the
IC chips. It confirms the dependency of the IC chips temperature on their size, heat
input, and PCM volume content.
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1 Introduction

The temperature control of the electronic components is playing a very vital role
in day-to-day practices to improve their reliability. This can be accomplished using
various innovative cooling techniques. Reduction in the size of the electronic compo-
nents has led to the shrinkage in the effective area available for their heat dissipation.
The energy requirements have led to the search for alternative energy sources as well
as other energy-saving ways that can fulfill the present energy demand. Since then;
the focus on the phase change material (PCM)-based cooling has increased. The
PCMs are substances that can absorb, store, and release a large amount of thermal
energy. The exchange of energy plays a vital role, as several materials display this
phenomenon in a temperature range near to the PCM melting point. The overview
of different phase change materials, their typical applications, and the general limi-
tations of this study were given by Humphires and Griggs [1]. The thermal energy
storage is a key aspect of energy management with an emphasis on efficient energy
conservation.

2 Background Study

The analytical and experimental analysis for the temperature control of electronics
using the PCM-based heat sinks subjected to the cyclic heat load was carried by
Saha and Dutta [2]. They considered two important factors; the working cycle and
convective cooling of the chips using the PCM. They suggested that the modified
design can effectively reduce the heat flow during the cooling cycle as compared to
the heating one. Sabbah et al. [3] carried out the 3D numerical investigation on the
cooling of the electronic devices using the micro-channel heat sinks (MCHS) filled
with a mixture of PCM and slurry of water. They observed that the heat dissipa-
tion rate (100–500 W/cm2) was strongly dependent on the channel inlet and outlet
conditions, and melting temperature. Baby and Balaji [4] investigated experimen-
tally the heat transfer performance of a PCM-based plate-fin heat sink matrix under
the constant and intermittent heat loads (5–10 W) using the n-eicosane by varying
their volume fraction between 0.5 and 1. They observed around 60% temperature
in the heat sink baseline. Faraji et al. [5] carried out the numerical analysis to study
the thermal performance of n-eicosane-based heat sink for the cooling of protruding
electronic chips and observed the maximum temperature of the chip at 75 °C. They
have proposed a correlation for the dimensionless temperature of the IC chips in
terms of the PCM working time and PCM liquid fraction. The thermal management
studies of the electronic devices using the PCM embedded in a pin–fin heat sink was
carried out by Parlak and Etiz [6]. They suggested that the pin–fin heat sink has led
to an increase in the conductivity and surface area of the devices. The 3D transient
numerical simulations for the cooling of the portable electronic device were carried
out byWang and Yang [7] using the multi-fin heat sink filled with PCM. They varied
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the performance parameters such as fin number (0, 3, and 6), power input (2, 3, and
4W) and orientation (vertical/horizontal/slanted). They showed that the use of PCM
was able to control the operating temperature of the components for a longer melting
time. Baby and Balaji [8] carried out the experimental and ANN-based optimization
studies for the thermal performance of the PCM-based heat sinks. They observed
the enhancement factor of 15 using the PCM and suggested that the PCM was not
advisable at the low power level (1 kW/m2). The experimental and numerical inves-
tigations of the hybrid PCM-air heat sink was carried out by Kozak et al. [9]. They
found that the use of PCMwas justified when the accumulation of the latent heat was
very high. Ollier et al. [10] investigated experimentally and numerically the cooling
of the electronic devices using the composite materials (CNT and PCM) integrated
with silicon. These new materials can provide solutions for better thermal manage-
ment at higher heat fluxes. The multi-objective geometric optimization for the PCM
was carried out by Sridharan et al. [11] on the cylindrical heat sinks using the thermal
conductivity enhancer. The ANN-based multi-objective optimization forward model
has been used to get the optimal parameters. They observed a 13% improvement in
the performance of the heat sinks. The numerical investigation to study the heat sink
cooling in the motherboard chip of a computer with temperature-dependent thermal
conductivity was carried out by Zaretabar et al. [12]. They observed that the increase
in the airflow velocity has led to an increase in the Nusselt number and ultimately
there was an enhancement in the heat transfer coefficient. Loganathan andMani [13]
studied the fuzzy-based hybrid multi decision-making methodology adopted for the
different PCMs used for the cooling of the power electronics system. They found that
RT-80 has shown better results for the thermal management of power electronics.
Mathew andHotta [14] carried the PCM-based cooling of discrete heat sources under
the mixed convection heat transfer mode. They used the mini-channels filled with
Paraffin wax at different melt fractions and found that the conjugate heat transfer
between the IC chips and the PCMs can effectively drop the Tmax of the chips by
3–6 °C. Sharma et al. [15] conducted the numerical and optimization analysis for the
size, shape of the composite heat sinks filled with n-eicosane (ECHS). They found
that the optimal sized vertical ECHS has exhibited good results with the conven-
tional designs. Liu et al. [16] carried out the experimental investigation using the
composite PCM (n-eicosane and expanded graphite) for the electro-driven thermal
energy storage. They achieved the heat storage efficiency of C20/EG15 at 65.7%
PCM volume content. The numerical investigation for the transient cooling of the
finned heat sinks embedded with PCM was carried out by Arshad et al. [17]. They
proposed the correlation for the liquid fraction, corrected Nusselt number in terms
of the corrected Fourier number, Stefan number, and Rayleigh number. Mathew and
Hotta [18] studied the thermal management of multiple protruding IC chips mounted
on the SMPSboard under different positions of themini-channels filledwith different
PCMs. They suggested that n-eicosane can reduce the Tmax of the configuration by
5.5%. The numerical simulation and hybrid optimization (ANN-GA) strategies used
for the cooling of the IC chips was carried out by Patil andHotta [19] under the forced
convection. They suggested that the bigger size chips have led to the dissipation of
more heat (better cooling), and essentially kept at the substrate bottom. Zeng et al.
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[20] performed an experimental investigation on silver nano-wire composite PCM
(1-Tetradecanol) at different aspect ratios of the silver nano-wire. They observed
that the thermal conductivity of the composite PCM with nano-wire has increased
to 1.45 W/mK and the enthalpy content has increased to 76.5 J/g. Usman et al. [21]
carried out the experimental investigation on finned and un-finned heat sinks filled
with PCM. They showed that RT-44 has exhibited better passive thermal manage-
ment. Kannan and Kamatchi [22] conducted the experimental studies on the cooling
of the electronic devices using the thermo-siphon assisted with different PCMs. They
observed 98.9% of heat removal for acetone at 90 W.

A detailed review of the literature has been carried out on the experimental and
numerical investigations for the cooling of heat sources using the PCM-based heat
sinks under different heat transfer modes. From the intense review of the literature,
it was noticed that most of the investigations were based on the cooling of the heat
sources with direct contact, but very few studies were reported on the conjugated
heat transfer analysis with indirect contact of the chips using the PCM. The cooling
of the heat sources using the mini and micro-channels with constrained optimization
strategies are very scarce in the literature. Hence, the present work emphasizes the
numerical modeling for the cooling of the IC chips [14] using the PCM-filled mini-
channels.

3 Methodology

Time-dependent numerical investigations are carried out on the 7 asymmetric IC
chips placed on the substrate board (silicon) for the PCM-filled mini-channels under
the forced convection. The computational model considered for the present study is
shown in Fig. 1. The specifications of the substrate board, IC chips, mini-channels
(LRBT and LRB cases), and the PCM were reported in Mathew and Hotta [14].
The simulations are carried out using the commercial software ANSYS fluent V16.0
using three different phase change materials with melting point (SunTech P116—
49.5 °C, Paraffin Wax—44 °C, and n-eicosane—40.5 °C). The PCMs are then filled
inside these mini-channels as shown in Fig. 2.

The simulations are carried out for the LRBT (left, right, top, and bottom) and
LRB (left, right, and bottom) mini-channel cases. In each case of LRBT and LRB,
three different PCMs under two constant heat fluxes (50 and 25W/cm2) and with two
different PCM volume contents (100 and 50%) are considered for the analysis. This
has led to the total 24 cases as shown in Table 1. In each case, the uniform velocity
of 13 m/s is supplied at the inlet of the channel which forms the combined effect of
forced convection and PCM leading to the hybrid cooling. The velocity is selected
as per the actual rotation of the fan located in the CPU which can run at a maximum
speed of 2500 rpm. The rpm is then converted to the axial velocity of 13 m/s (Fig. 3
and Table 2).
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Fig. 1 The computational model used for the present analysis

Fig. 2 Position of the IC chips and the PCM-filled mini-channels
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Fig. 3 Mesh profile of the IC chips and the substrate board

Table 1 Different cases considered for the simulation

Volume
variation

Constant
heat flux
W/cm2

Phase change material

SunTech
P116
(49.5 °C)

Paraffin
Wax
(44 °C)

n-eicosane
(40.5 °C)

SunTech
P116
(49.5 °C)

Paraffin
Wax (44
°C)

n-eicosane
(40.5 °C)

100%
PCM
volume

50 LRBT LRBT LRBT LRB LRB LRB

25 LRBT LRBT LRBT LRB LRB LRB

50%
PCM
volume

50 LRBT LRBT LRBT LRB LRB LRB

25 LRBT LRBT LRBT LRB LRB LRB

Table 2 Properties of PCM

Sl.no Property Suntech P116 [24] Paraffin wax [23] n-eicosane [24]

1 Density (kg/m3) 760 760 769

2 Thermal conductivity
(W/mK)

0.24 0.24 0.21

3 Dynamic viscosity
(Ns/m2)

1.90 1.90 0.00355

4 Specific heat (J/kg K) 2950 2950 2460

5 Latent heat of fusion
(kJ/kg)

266 266 215

6 Melting point (°C) 49.5 44 40.5
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3.1 Numerical Framework

Numerical simulations are carried out for all the cases mentioned in Table 1. The
ANSYSV16 uses the Solidification andMeltingmodelwithmeshy zone constant (C)
= 105. The detailed methodology, governing equations, validation of the numerical
model can be found in Mathew and Hotta [14].

3.2 Boundary Conditions

The boundary conditions applied to the computational model are mentioned below.
At X = 0 (inlet), T = T∞ = 25 °C, V = 13 m/s.
At X = L (outlet), P = P∞ = 25 °C and the lateral boundary conditions are

assumed to be adiabatic: ∂T
∂y = ∂T

∂z = 0.

3.3 Grid Sensitivity Study

The grid size of the computational domain plays a vital role in the numerical analysis
and the accuracy of the solution is largely dependent on this. The grid size selected
for the study decides the accuracy and the computational cost of the analysis. In the
present study, the cut cell method is adopted in which all the cells of the components
areHexa dominant and the accuracy of the solution for this Hexa cell ismore accurate
and reliable in the computational domain. The mesh profile is shown in Fig. 3. A
mesh sensitivity analysis is carried for the different elements to evaluate the changes
in the IC chips temperature, and to choose the optimum mesh elements for which
the solution is accurate and precise. Figure 4 shows the mesh sensitivity analysis for

Fig. 4 Mesh sensitivity
study
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the different elements. This suggests that 815192 elements are deemed to be optimal
and is selected for the present study.

The detailed methodology, governing equations, and validation of the numerical
model can be found in Mathew and Hotta [14].

4 Results and Discussion

The transient analysis is conducted for a time period of 300 s under the different cases
of constant heat flux (50 and 25 W/cm2), PCM volume content (100 and 50%), and
with three different phase changematerials (Suntech P116—49.5 °C, ParaffinWax—
44 °C and n-eicosane—40.5 °C). The properties of the PCMs are mentioned in Table
2. The mini-channels are thrust inside the substrate board and around the periphery
of the IC chips; so that, the actual wiring and traces of the electrical connections
of the board are not disturbed. The mini-channels are filled with PCM which are
embedded in the substrate board and forms a pool of PCM around the IC chips.
Constant heat flux (50 and 25 W/cm2) are provided to the IC chips which results
in different volumetric heat generation. The simulations are performed using the
hybrid cooling technique with PCM filled inside the mini-channels under the forced
convection (uniform velocity of 13 m/s is supplied). The simulations are performed
for all 24 cases as mentioned in Table 1. The goal is to minimize the temperature of
the IC chips under the hybrid cooling technique using the different PCMs. The study
is also extended to determine the optimum temperature of the configuration under
the constraints of IC chip heat input, PCM volume content, and IC chip size.

4.1 IC Chip Temperature Variation Under Different Cooling
Techniques

The transient analysis is conducted for different modes of heat transfer under the
natural convection with PCM filled mini-channels (NC + PCM), forced convection
(V = 13 m/s) without the PCM-filled mini-channels (FC) and forced convection (V
= 13 m/s) with the PCM filled mini-channels (FC + PCM). Seven asymmetric IC
chips are supplied with a constant heat flux of 50 W/cm2. Figure 5 depicts the IC
chip temperature variation under different cooling techniques and it is observed that
under the natural convection with PCMfilledmini-channels there is a huge rise in the
temperature of the IC chips up to 254 °C. This temperature is reduced under the forced
convection cooling technique without the use of PCM. Under the forced convection
there is a huge reduction in the temperature of the IC chips by 130–146 °C which is
further reduced using the PCM (Suntech P116) filled mini-channels under the forced
convection cooling technique. The use of the hybrid cooling technique has reduced
the temperature of the IC chips by 5–12.5 °C in comparison to the forced convection



Role of Constrained Optimization Technique … 239

Fig. 5 IC chip temperature variation under the different cooling techniques

cooling without PCM. It indicates that for the high heat-dissipating IC chips, their
temperature ismaintained below the critical value using the hybrid cooling technique.

The present study is further extended for the hybrid cooling technique using
different PCMs, different heat fluxes, variable PCM volume content, and PCM-filled
four mini-channels (LRBT) and three mini-channels (LRB) cases.

4.2 IC Chip Temperature Variation for Different PCMs

Figure 6 represents the IC chip temperature variation supplied with a constant heat
flux of 50 W/cm2 using different PCMs. Three different PCMs; Suntech P116,
Paraffin wax, and n-eicosane are used having melting points of 49.5 °C, 44 °C, and
40.5 °C, respectively. The PCMs are filled inside the mini-channels in such a way
that, it occupies 100%volume inside all themini-channels embedded on the substrate
board. It is observed that the IC chip temperature is lowered for the n-eicosane in
comparison to Suntech P116 and Paraffin wax. It is significant to note that the PCM
gets melted at the early stage due to its lower melting point; thereby the solid PCM
turns to the mushy zone by the conjugate heat transfer from the IC chips. The same
trend is observed for the PCMs filled inside the entire four channels (LBRT) and three
channels (LBR) cases. The IC chip’s temperature dropped by 15.33%–22.2% and
8.62%–12.89% using the n-eicosane and Paraffin wax, respectively, in comparison
to Suntech P116.
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Fig. 6 IC chip temperature variation using different PCMs with q = 50 W/cm2

When the PCM is filled in all the four channels (LBRT); it forms a pool that helps
in storing a large amount of sensible heat during its melting and thereby significantly
reduces the IC chip temperature. When the storage capacity of the PCM is reduced
by the volume content from the four mini-channels to three mini-channels, there
is a rise in the temperature of the IC chips. This is mainly due to the decrease
in volume contents of the PCM and less PCM is available to absorb the IC chip
temperature through the convective heat transfer mode and conduction through the
substrate board. The same trend is observed when the constant heat flux of 25W/cm2

is supplied to the IC chips where the temperature of the IC chips is high for LRB
case in comparison to the LBRT case, as shown in Fig. 7.

Figure 8 represents the IC chips temperature and the volume fraction of the n-
eicosane filled inside the LRBT mini-channels. It is observed that the PCM in right,
left and top mini-channels has reached 60%melting while at the same time; the PCM
in the bottom mini-channel has reached 90% melting. The temperature distribution
can be observed on the substrate board with a green patch which suggests that the
heat is getting conducted from the substrate board to the PCMand also the convective
heat transfer mode plays a vital role in the PCM melting, thereby reducing the IC
chips temperature.
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Fig. 7 IC chip temperature variation using different PCM with q = 25 W/cm2

Fig. 8 Temperature contour and volume fraction for n-eicosane with q = 50 W/cm2

4.3 Variation of the IC Chip Temperature with PCM Volume

The PCM volume content is varied inside the mini-channels by considering 100 and
50% volume for the LRBT case with a constant heat flux of 50 W/cm2. The study
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Fig. 9 Variation of PCM volume content for the LRBT case with q = 50 W/cm2

is conducted for three different PCMs and the comparison of Suntech P116 and
n-eicosane is shown in Fig. 9.

It is observed that the PCMwith 50% volume content gets melted early in compar-
ison with 100% volume content for all the PCMs for the LRBT case. The interesting
fact to note is that despite the early melting of PCM, it has significantly impacted the
temperature of the IC chips. The temperature of IC chips has increased by 2–10 °C for
the 50% volume content of the PCMwhich is due to the less energy storage capacity
during the sensible heating of PCM. It suggests that the 100% volume content of
PCM is more effective in reducing the IC chip temperatures.

Figure 10 represents the temperature of the IC chips and the volume fraction of
n-eicosane for the LRBT mini-channels. It is observed that the PCM in right and
left channel has reached 70% melting and at the same time, the PCM in the top
and bottom mini-channels has reached full melting. The IC chip U7 and U4 which
have attained the maximum temperature are closer to the top mini-channels that have
assisted in PCM melting through the conduction mode of heat transfer at an early
stage.
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Fig. 10 Temperature contour and volume fraction for n-eicosane with q = 25 W/cm2

Fig. 11 IC chip temperature variation for different PCMs with 50% volume content



244 V. K. Mathew et al.

4.4 Effect of IC Chip Temperature for the LRBT and LRB
Case Using Different PCMs

Figure 11 shows the IC chip temperature variation of different PCMs with 50%
volume content for the LRBT and LRB cases. It is evident that the IC chip temper-
atures have decreased by 3.25 °C–8.13 °C for the LRBT case in comparison to the
LRB case for the heat flux of 50 W/cm2 and 25 W/cm2, respectively, which follows
the same trend as explained under Sect. 4.2.

4.5 Correlation

A correlation is put forth to study the variation of the input parameters on the temper-
ature of the IC chips. All the variables are made non-dimensional in which the inde-
pendent variables are the IC chips input heat flux (qo = q∗L∗Tamb

k f ), PCM volume

content (vo = vactual
vmin ), IC chips size (δ = t

l ), and the dependent variable is the
non-dimensional temperature (θ = Tsim−T∞

Tmax−T∞ ) and is given in Eq. (1). The Eq. (1) is
based on the transient simulations performed on all the cases as mentioned in Table
1. This equation has a coefficient of regression 0.80 and the root mean square value
of 0.03811. The equation is valid for 1225009.800 ≤ qo ≤ 9628577.029, 1 ≤ vo ≤
2, and 0.175 ≤ δ ≤ 0.350.

θ = 0.045(1 + qo)
0.2(1 + vo)

−0.003(1 + δ)−0.041 (1)

Figure 12 shows the error plot between the θcorr and θsim which suggests the
arbitration between both the values with a 15% error.

5 Constrained Optimization Using Genetic Algorithm

The transient simulations are carried out for the 24 different cases as mentioned in
Table 1 for three different PCMs Suntech P116, Paraffin wax, and n-eicosane having
melting points of 49.5 °C, 44 °C, and 40.5 °C, respectively. The study focuses on
maintaining the temperature of the IC chips below the critical temperature and also
to study the effect of input heat flux, PCM volume content, and IC chips size on the
temperature of the IC chips.

From the transient simulation and the result interpretation, it is noticed that the
velocity of air cannot be increased beyond 13 m/s which is the threshold limit for the
forced convection cooling using a fan and the heat flux supplied to the IC chips is 25
and 50 W/cm2. The PCM-based mini-channels help to bring down the temperature
of the IC chips under the forced convection as represented in Fig. 5 where the excess
use of PCM is beneficial to decrease the temperature of the IC chips but it makes the
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Fig. 12 Parity plot between θcorr and θsim

system bulky due to the high density of the PCM. Hence an optimum PCM volume is
also required in the system to keep the temperature of the IC chips below the critical
temperature. Seven asymmetric IC chips are considered with the smallest size of the
chip is U2 (5 mm × 4 mm × 1.75 mm), reducing the size of the IC chip further
will make it a flush-mounted chip which is critical from a thermal management
perspective, therefore the need of optimum size of the IC chips arises. The input heat
flux, PCM volume content, and IC chips size are the important constraint parameters
for maintaining the IC chip temperature below the critical value.

The current study is further extended in evaluating the optimum values of these
constrained parameters by conducting a nature-inspired optimization called Genetic
Algorithm (GA). The Genetic Algorithm (GA) [8] is a search-based technique that
works on the principle of genetics and natural selection. It rapidly searches for the
most possible solutions to a given problem. Hence, this method can be handy to reach
the global optimum by escaping from the local optima. Due to these merits, the GA
is employed for the present study. The detail of the genetic algorithm is reported
in Mathew and Hotta [18]. The objective function of GA is to minimize the non-
dimensional IC chip temperature given in Eq. (2) and is subjected to the constraints
1225009.800 ≤ qo ≤ 9628577.029, 1 ≤ vo ≤ 2, and 0.175 ≤ δ ≤ 0.350.

Minimize θ (2)

The MATLAB toolbox is used for minimizing the Eq. (2) with θ as a function
of qo, vo, and δ with lower bounds and upper bounds of the respective independent
variable. The optimization is simulated until the convergence has been achieved
which yields the minimum of the non-dimensional maximum temperature excess
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with the optimum values of the independent variables. The different parameters
considered for simulations are, population size= 50, cross over function= 0.8which
gives the fitness value of θ for the optimal configuration as 0.7367, as represented in
Fig. 13. The optimum values obtained for the independent variables are 1255009, 2,
and 0.35 for the input heat flux, PCMvolume content, and IC chips size, respectively.
The generation independency study is also represented in Fig. 14 which signifies

Fig. 13 Fitness value generated using GA

Fig. 14 Independency study on the number of generations
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Table 3 Sensitivity analysis of the constrained variable on θ

Variables % Variation Values θ variation θoptimum % Error

qo = 1225009 −10% 1,102,508 0.7214 0.7367 2.084

−20% 980,007 0.7046 0.7367 4.362

vo = 2 −10% 1.8 0.7369 0.7367 0.0184

−20% 1.6 0.7370 0.7367 0.0383

δ = 0.35 −10% 0.315 0.7375 0.7367 0.1081

– 20% 0.28 0.7383 0.7367 0.2193

that there is a negligible effect on the temperature of IC chips with the increase in
generations.

The optimal temperature of the IC chip obtained is 85.36 °C when the θ is
converted using the expression given under Sect. 4.5 and the temperature excess (TGA

− T∞) becomes 60.36 °C. The optimal non-dimensional values are then converted
into the corresponding input heat flux, PCM volume content, and IC chips size and
are found to be 25 W/cm2, 100%, and 10.16 mm (l) × 3.55 mm (t) (U4 chip),
respectively.

5.1 Sensitivity Analysis of the Constrained Parameters on θ

The optimum values obtained from the GA are further used to study the effect of
constrained parameter variation on the objective function. The value of the single
constrained independent variable (qo) is varied by 10% and 20% within the given
range as mentioned in Eq. (2), keeping the other two variables (vo and δ) constant,
as obtained from GA. The study is also carried for the other two variables (vo and δ)
as given in Table 3.

Table 3 shows the sensitivity analysis of the constrained variables on θ. It depicts
that the heat flux is a vital function of temperature, where there is a variation of
2–4.36% in the non-dimensional temperature due to the variation in the input heat
flux keeping the other two variables constant.

6 Conclusions

The transient analysis is performed using the hybrid cooling technique (forced
convection and PCM) on seven asymmetric IC chips for the LRBT and LRB case
with three different PCMs; Suntech P116—49.5 °C, Paraffin wax—44 °C and n-
eicosane—40.5 °C. The main objective is to maintain the temperature of the IC
chips below the critical value (125 °C). The constrained optimization strategy is
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performed using the GA on the heat flux supplied to the IC chips, PCM volume
content, and IC chips size. The following conclusions are summarized in the study.

• The hybrid cooling technique is more significant in keeping the temperature of
IC chips below the critical value.

• The IC chip’s temperature drops by 15.33%–22.2% and 8.62%–12.89% using the
n-eicosane and Paraffin wax, respectively, in comparison to Suntech P116.

• The IC chips temperature has increased by 2–10 °C for the 50% PCM volume
content which is due to the less energy storage capacity during the sensible heating
of PCM.

• It suggests that 100% of PCM volume content is more effective in reducing the
IC chip’s temperature.

• A correlation is put forth in terms of the non-dimensional temperature (θ) of the
IC chips, IC chip input heat flux (qo), PCM volume content (vo), and IC chips
size (δ).

• The constrained optimization using the GA gives rise to the optimum value of
the temperature as 85.36 °C and the optimal values of IC chips input heat flux,
PCM volume content, and IC chips size as 25 W/cm2, 100%, and 10.16 mm (l)
× 3.55 mm (t) (U4 chip), respectively.

• The sensitivity analysis for the parameters suggests that the IC chips temperature
is a strong function of their input heat flux, size, and PCM volume content.
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Maximizing Downlink Channel Capacity
of NOMA System Using Power
Allocation Based on Channel Coefficients
Using Particle Swarm Optimization and
Back Propagation Neural Network

Shailendra Singh and E. S. Gopi

Abstract One of the methods among the pool of technologies for the 5G wireless
communication is the NOMA (Non-orthogonal Multiple Access). Conventionally,
the channel between the base station and the various mobile station users are shared
based on the orthogonality principle. To increase the capacity of the channel, NOMA
has been technologically enhanced and explored for 5G standards. In this case, the
channel is shared between the users based on the difference in the transmitted power
allocated to the individual users. The Successive Interference Cancellation (SIC)
is adopted to detect the signal during the uplink and the downlink. In SIC, during
the uplink scenario, the base station usually collects and detects the symbol in the
decreasing order of the channel gain (between a particular user and the base station).
In the same order, during the downlink scenario, the SIC uses the increasing order of
the channel coefficients or gain. The power is allocated based on the corresponding
channel gain. If the channel gain is larger, then less power is allotted and vice versa.
In NOMA, the method used is Multiplexing in Power Domain and after allocation of
Power to the users, it has been changed to the problem of Constraint Optimization.
In this paper, an attempt is made to demonstrate the proposed methodology used for
power allocation and handling the given constraints in NOMA downlink scenario
using Particle Swarm Optimization (PSO) and Back propagation Neural Network
(BPNN). The experimental results have shown the importance of the proposed tech-
nique for power allocation in the Downlink NOMA scenario.

Keywords PSO · ANN · NOMA · SIC · Power allocation · Channel capacity

1 Introduction

In wireless communication systems, various multiple access methods have been the
key technologies ranging from the very first generation that is called (1G) to the
advanced fourth generation (4G) that is called LTE-Advanced. The multiple access
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technologies include Frequency Division Multiple Access (FDMA), Time Division
Multiple Access (TDMA), Code DivisionMultiple Access (CDMA) and Orthogonal
Frequency Division Multiple Access (OFDMA). In all the above methods, access to
the channel has been shared by using orthogonality in Frequency, Time and Codes,
respectively, allocated to the individual users. In the fourth generation ofmobile com-
munication systems such as long-term evolution (LTE) andLTE-Advanced,OFDMA
has been widely adopted and very much popular to achieve higher data rate. The
near future demand for mobile traffic data volume could be expected to be 500–
1,000 times larger than that in 2010. The technologies like mm wave transmission,
Full duplex, Multicarrier transmission, Non-Orthogonal Multiple Access (NOMA)
are being explored in 5G to increase the channel capacity. The working principle
behind NOMA is Power Domain Multiplexing that means access to the channel is
shared by using different Power levels allocated to the individual users, because of
Power Domain Multiplexing in NOMA, it discards the Orthogonality principle and
that helps in the improvement of the channel capacity, compared to other orthogonal
multiple access (OMA) schemes.

2 Literature Survey

How fascinatingly things are changing, lets take the brief history of cellular phone
over 50 years which itself is a milestone. The 1G based phones were big, heavy
and analogue with heavy price. The 1990s saw the second generation i.e. 2G cell
phones, embedded digitally with that we could make calls, send text messages, and
a smiling face. In 2000, the third generation, i.e. 3G, cell phones were revolution-
ized and came with an Internet browser. MIMO technology was used in the 3G cell
phones and for the data transmission packet switching was used. Now forth genera-
tion, i.e. 4G cellular system came in 2010. Methods that were used in 4G: long-term
evolution (LTE), WiMAX, internet protocols, and packet switching were the key
technologies. We could say it was a new computer or digital machine in our hands.
Now it’s time to move to a new generation, 2020 will be the fifth-generation era, i.e.
5G. It can be 100 times faster than the 4G. The downlink maximum throughput can
offer a 10–20 Gbps, which means we can easily download 2–3 HD DVD movies in
just 1s. Some technologies among others possibly used for 5G cellular networks are
millimetre-wave for 5G 24–100GHz is proposed, Massive MIMO, Beam forming
and NOMA. It is highly anticipated that the connection density would become 106
connections for a square kilometre area in future. In the typical OFDM, we have the
sub carriers, and different users are given different sets of sub carriers but in case of
NOMA, a particular sub carrier or group of sub carriers can be given to more than
one user. In [1–5], it has been observed and surveyed that all the NOMA schemes
such as Single carrier, Multi carrier, Power Domain, Cognitive radio-NOMA and
including Single Input Single Output (SISO) and Multiple Inputs Multiple Outputs
(MIMO) don’t use the multiple antennas for transmitting and receiving the particular
sub carrier or group of sub carriers, it usually combine the signals and transmit it
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through the single transmitting antenna and receives by the single receiving antenna.
While the MIMO system requires multiple antennas for transmitting and receiving
the signals, this is the main difference betweenMIMO and NOMA. In case of OMA,
if one user only needs to be served with low data rate, e.g. sensors, then OMA gives
the more data rate than it’s needed but NOMA provides a satisfactory solution for
this problem faced by OMA. Because of the availability of new power dimensions,
NOMA systems can be amalgamated with present multiple access (MA) models.
NOMA consists of two types of Multiplexing. The Code Domain Multiplexing and
other one is Power Domain multiplexing. In the NOMA the allocation of power can
be initialized or performed by implementing different methods based on the channel
conditions of users. Taking single input single output (SISO) system, the algorithm
for power allocation has been determined by the parent source for maximizing the
rate simply considering the Downlink NOMA [6]. However, most of the previously
used methods are applied to only two users. To increase its domain and reach to more
users, the proposed system is based on Pascal’s triangle for the power allocation. The
well-known French mathematician and philosopher Blaise pascal had proposed the
Pascal’s triangle method [7]. But the Power allocation in NOMA creates the prob-
lem for constrained optimization because the allocation must satisfy the distribution
according to the channel conditions, and the distributed power among the users must
be equal to the power at the base station. There are many classical methods that
have been already developed by the researchers to solve the problems of constrained
optimization. In the case of multiple input multiple output (MIMO) system, the pow-
ers are being allocated optimally to the ‘n’ number of communication channels for
maximizing the sum rate by using Karush-Kuhn-Tucker (KKT) conditions subjected
to the total power constrained and non negativity constrained. Similarly, the power
allocation in NOMA to maximize the sum-rate is also the important task having
same Power constrained like MIMO, but the power allocation is just opposite in
NOMA for channel conditions as compared with MIMO. The same KKT conditions
have proposed by the researchers to find the optimum power values by taking the
weighted sum of received rates for the individual users after applying lagrangian
Optimization [8]. The optimum power values for NOMA have also achieved by
the researchers by using Jensen’s inequality criteria to calculate Ergodic Capacity
by applying closed form lower bound and after that a scheme for power allocation
is applied to satisfy the ergodic capacity according to the requirements for all the
users just by solving a problem of convex optimization [9]. In [10], a scheme for
power allocation in NOMA called Proportional Fairness Scheduling (PFS) has dis-
cussed. Some other techniques that have proposed to allocate the power by satisfying
the given constrained are dynamic power allocation and users scheduling [11, 12].
When the conventional methods or classical methods fail or not suitable for estima-
tion then computational intelligence comes into the picture. It provides the solution
to a complex problem by imitating the human behaviour. Recognition, classification
and clustering can be done by using computational intelligence. The objective of this
paper is to allocate the power for a novel power domain (PD) NOMA using machine
learning techniques (PSO and ANN) according to the estimated channel conditions.
PSO generate the optimum solution for any kind of optimization problem by min-
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imizing or maximizing the problem [13, 14]. In this paper, we have allocated the
power such that the total sum rate is maximized so that PSO is suitable for it. Back
propagation neural network is used to make the results obtained from PSOmore effi-
cient. There are many applications like constraint satisfaction, associative storage,
Optimization, planning control and classification, for the Neural Networks that have
been designed. Because of having special characteristics like robustness, ability to
learn and massive parallelism etc. Neural networks are being preferred [15].

The further discussion in this paper is as follows. Section3 discusses about Con-
ventional Power Domain NOMA in detail. Section4 elaborates the Power allocation
algorithm and optimization with constraints. The Experiments and the Results are
presented in Sect. 5 followed by Conclusion.

3 Power Domain NOMA

In the Power Domain NOMA, different levels of power are allotted to the individual
users based on the channel conditions, it means, the channel state information (CSI)
must be required at the base station for the power allocation. If the channel is good
between the base station and the receiver, then the receiver usually detects the signal
of less strength, so the users having good channel conditions are supposed to allocate
less power values and users having poorer channel conditions are supposed to allocate
more power values. However, in case of conventional OMA, the water filling policy
is used for the power allocation. The Superposition Coding (SC) and Successive
Interference Cancellation (SIC) are the two key enabling technologies for NOMA,
keeping the generality, SC is used at the base station that permits it to transmit the
combined Superposition coded messages to all the users. SIC helps in efficiently
managing the interference at the receiver end. It has been observed that using SIC at
receiver end users rate can be improve up to Shannon limit. SIC technologymitigates
the interference from the users with poorer channel conditions.

3.1 Downlink NOMA

Let hr be the Rayleigh channel coefficient between the base station and the r th user
with r = 1, 2, 3. Figure1a illustrates the typical power domain NOMA with three
users with |h1| > |h2| > |h3| in downlink scenario. The channel link between the
base station and the 3 receivers are represented as |h1|, |h2|, |h3|, respectively, with
|h1| > |h2| > |h3|. Let the total power used to broadcast is given by P and let ai be
the fraction of the power alloted for the i th user with a1 + a2 + a3 = 1

ui = hi (
√

(a1)X1 + √
(a2)X2 + √

(a3)X3) + N (1)
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Fig. 1 a Illustration of successive interference cancellation used in power domain NOMA, b
proposed methodology for power allocation using PSO and ANN
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where N is the additive Gaussian noise with mean zero and variance σ 2. Let Xi be
the symbols associated with the i th user. The Successive Interference Cancellation
(SIC) (refer Fig. 1a) is used in the receiver section as described below. As |h1| >

|h2| > |h3|, user 1 detects X3 and is removed from the received signal. Further X2 is
detected from the remaining signal and is also removed from the remaining signal.
Finally, detect X1 from the remaining signal. Thus, the channel capacity attained
between the base station and the user 1 is computed as follows:

Cd
3 (1) = log2

(
1 + |h1|2a1P

σ 2

)
(2)

In the similar fashion, user 2 detect X3 and removed from the received signal, which
is followed by detecting X2 from the remaining signal. The channel capacity attained
between the base station and the User 2 is computed as follows:

Cd
2 (2) = log2

(
1 + |h2|2a2P

|h2|2a1P + σ 2

)
(3)

Finally, user 3 detect X3 directly, and hence channel capacity is computed as follows:

Cd
1 (3) = log2

(
1 + |h3|2a3P

|h3|2a1P + |h3|2a2P + σ 2

)
(4)

ckr is the maximum achievable rate attained by the user kth user using SIC technique,
r is the order at which the data corresponding to the kth user is the detected. The
Quality of service (QOS) is determined based on the demand of the data rate. Let the
demand rate requirement of the User 1, User 2, User 3 are, respectively, represented
as the R1, R2, R3. We would like to obtain the optimal values for a1, a2 and a3, such
that Cd

3 (1) + Cd
2 (2) + Cd

1 (3) is maximized, satisfying the constraints Cd
3 (1) > R1,

Cd
2 (2) > R2 andCd

1 (3) > R3. It is noted that the order in which the data are detected
is from weak signal to the strong signal (3, 2, 1), i.e. |h1| ≥ |h2| ≥ |h3|.

3.2 Uplink NOMA

During the Uplink, the base station receives the signal as shown below.

s = h1
√

(a1)X1 + h2
√

(a2)X2 + h3
√

(a3)X3) + N (5)

The Successive Interference Cancellation (SIC) is used in the receiver section (base
station) described below. In the case of uplink, the strongest signal is detected first,
i.e. X1 is detected first, followed by X2 and X3.
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Thus, X1 is detected first and is removed from the received signal. From the
remaining signal, the signal X2 is detected and is removed. Finally, the signal X3 is
detected from the remaining signal. The channel capacity attained between the base
station and all the users during the uplink is computed as follows:

Cu
1 (1) = log2

(
1 + |h1|2a1P

|h2|2a2P + |h3|2a3P + σ 2

)
(6)

Cu
2 (2) = log2

(
1 + |h2|2a2P

|h3|2a3P + σ 2

)
(7)

Cu
3 (3) = log2

(
1 + |h3|2a3P

σ 2

)
(8)

4 Proposed Methodology

The block diagram illustrating the proposed methodology is given in the part (b)
of Fig. 1 that is Fig. 1b. In the very first part, Particle Swarm Optimization is used
to estimate the power allocation ratio corresponding to the given magnitude of the
channel state information (CSI). Pilot signal is transmitted through the channel one
after another to the individual users and the corresponding CSI (between the base sta-
tion and the individual users are obtained). For the given CSI, power allocation ratio
is estimated using PSO that maximizes the maximum achievable channel capacity
(refer Sect. 3.1). It is also noted that the minimum achievable channel capacity of the
individual users are incorporated while using PSO.

4.1 Constrained Optimization

A plethora of classical methods existed for constraint optimisation problems, basi-
cally depend on the nature of the constraints whether they are equality or inequality
or together. Some of the methods among the pool are Lagrange’s multiplier, Penalty
Function method and augmented Lagrange method. Suitability of usage depends on
the constraints; thesementionedmethods has been useful for a problemwith inequal-
ity constraints.Methods such as gradient projection and quadratic projection are very
much useful for equality constraints differences existed between Constrained opti-
mization and unconstrained optimization because of their approaches and because
the local optima are not the intended goal. Generally, a subset of unconstrained
optimization is useful for the Constrained optimization methods [16, 17]. In this
paper, the proposed methods are Particle Swarm Optimization and Neural Network
for solving the Constrained Optimization problem. Using Particle Swarm Optimiza-
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tion (PSO) algorithm, the constraint optimization has been achieved by designing
the genuine Objective function and applying the required upper and lower bounds
on each of the Particles and after that, the selection of the desired Global bests are
considered as the Optimized Solutions [18]. In [19], Neural networks are extraordi-
narily intelligent and intuitive. To solve any problem, we need to train the network
to perform the specific task, and hence to solve nonlinear non-convex optimization
problems, we need to train the neural networks [20]. Different approaches and meth-
ods have been proposed by researchers. The first method which revolutionizes all
analysis were classical methods. The most popular and prevalent algorithm to train
the neural networks is error back propagation [21]. It has a specialty of minimizing
an error function using the steepest descent algorithm. All algorithms have their own
pros and cons and so as with the error back propagation, usually its implementation
is quite easy but it comes with a price, i.e. convergence problem etc. It has all the
disadvantages in optimization algorithms of Newtown based, which inherits slow
convergence rate and trapping in local minima [20, 21]. Over the years Researchers
have proposed different supervised learning methods such as the Step net. The till-
ing algorithms cascade-correlation algorithm and the scaled conjugate algorithm in
order to mitigate deficiencies and to enhance its applicability, global optimization
methods ate another available alternative for Newtown based methods and to learn
the deepest of the structure of the neural network. Along with the learning techniques
for ANN discussed in the above sentences, we have another widely used and flaw-

Algorithm 1 Algorithm for PSO
Inputs: Generated channel coefficients (h1, h2, h3), transmitted power (P) and noise power (σ 2)
1. Costfunction = 1

C3(1)
+ 1

C2(2)
+ 1

C1(3)
, considering a1, a2, a3 as variable or particle

2. Define parameters: number of dimension variables = n, number of iterations = it, number of
particles = N, inertia coefficient = W, personal acceleration coefficient = C1, global acceleration
coefficient = C2
3. Initialize: particle position(normalize), particle velocity, personal best position, personal best
cost, global best cost
4. for j = 1:it
for k = 1:N
particle velocity = W × (particle velocity) + C1 × (particle best position-particle position) + C2
× (global best position-particle position)
particle position = particle position+particle velocity
particle cost = cost function (particle position)
if a1 < a2 < a3
if particle cost < particle best cost
particle best position = particle position
particle best cost = particle cost
if particle best cost < global best cost
global best = particle best
end
end
end
end
Outputs: global best positions (a1, a2, a3)
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less methods to train the Neural networks with optimized structure, are the quotient
gradient system (QGS), genetic algorithms and stimulated annealing [19, 22–26].
Results achieved through neural networks are in convergence with standard results
and performance parameters using classical error back propagation algorithm for the
defined constrained optimization problem. Hence, the training of neural networks
used here is error back propagation.

4.2 Problem Formulation

The requirement is to obtain the optimal values for a1, a2, a3 such that C1(1) + C2(2)
+ C3(3) is maximized, with constraints C3(1) > R1, C2(2) > R2, C1(3) > R3. Also
a1 + a2 + a3 = 1. It is noted that the order in which the data are detected is from
strong signal to the weak signal (1, 2, 3), i.e. |h1| ≥ |h2| ≥ |h3|. In this paper, we
propose to use Particle Swarm Optimization (PSO) to optimize the power allocation
ratio a1, a2 and a3 such that it maximizes the total channel capacity in the downlink.
PSO is the optimization algorithm inspired by the natural behaviour of the birds on
identifying the path to the destination. The position of the bird is the possible solution
that minimizes or converges the cost function and the distance of the position of the
bird from the destination is the corresponding functional value. This is the analogy
used in PSO algorithm. The steps involved in the PSO based optimization for given
channel coefficients (refer algorithm in Sect. 4.1). Thus, for the given |h1|, |h2|, |h3|,
the corresponding values a1, a2 and a3 are obtained using the proposed PSO based
methodology. The experiments are repeated for various combinations of h1, h2, h3
and the corresponding optimal fractional constants a1, a2 and a3 obtained using PSO
are collected. Further in the second part (refer Fig. 1b), Back propagation Network
is used to construct the relationship between the h1, h2 and h3 as the input and the
corresponding values a1 a2 and a3 as the target values.

5 Experiments and Results

Experiments are performed by generating 200 instances of channel coefficients h1,
h2 and h3 (with variances 0.9, 0.5, 0.1, respectively) and the corresponding optimal
fractional weights a1, a2 and a3 that maximize the total channel capacity, satisfying
the constraints are obtained using Particle Swarm Optimization. Figures2, 5 and 6
illustrate how the maximization of the total channel capacity is achieved and also
showing the good convergence plot for defined objective function using Particle
Swarm Optimization. 50% of the collected instances are used as the training data to
construct the Back propagation Network to predict the optimal fractional constants
a1, a2 and a3. Figure3 shows the designed back propagation neural network having
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100 instances of each channel coefficient h1, h2 and h3 are the 3 inputs and their
corresponding optimal fractional weights a1, a2 and a3 are the targets taken from
PSO. Figure4 describing the training performance of the constructed Network. Con-
vergence plot concludes that it is fast at the training stage. Figure7 is concluding
the relationship between targets and actual Outputs and we got almost 99% regres-
sion values which means the actual outputs are completely converging to the targets.
Figure8a shows the magnitude plots of the channel coefficients corresponding to the
three users. Figure8b shows the optimal fractional constants a1, a2 and a3 obtained
using PSO and the values predicted using the trained constructed Neural Network.
Also, the Table1 shows the generated values of channel Coefficients and Tables 2 and
3 are the optimum values of Power Allocation Ratios by PSO and ANN respectively.
Tables 4 and 5 are demonstrating the values of achieved Individual Rates and Sum
Rates of the 3 users by PSO and ANN respectively. The results thus obtained act as
the proof of concept and reveal the importance of proposed technique.

Fig. 2 Illustrations on the performance of the PSO on achieving the maximum channel capacity
for the individual users in the downlink scenario (Part 1)



Maximizing Downlink Channel Capacity of NOMA System … 261

Fig. 3 Designed neural network for channel coefficients as the inputs and Power allocation ratios
as the targets and having 15 neurons in the hidden layer

Fig. 4 Performance plot of ANN showing convergence of MSE

Table 1 Generated channel coefficient

h1(0.9) h2(0.5) h3(0.1)

1.65 0.56 0.03

0.60 0.20 0.05

1.11 0.69 0.09

1.47 0.21 0.001

0.78 0.20 0.06

0.35 0.28 0.06

1.32 0.48 0.19

0.94 0.09 0.06

2.24 0.85 0.09

1.42 0.25 0.14

For P = 1000 units and σ 2 = 1 units
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Fig. 5 Illustrations on the performance of the PSO on achieving the maximum channel capacity
for the individual users achieved in the downlink scenario (Part 2)

Table 2 Optimum power allocation ratios by PSO

a1 a2 a3

0.0314 0.1731 0.7953

0.0464 0.2167 0.7368

0.0382 0.1734 0.7883

0.0140 0.0928 0.8930

0.0485 0.2208 0.7305

0.0616 0.2055 0.7328

0.0386 0.2167 0.7446

0.0224 0.1748 0.8006

0.0364 0.2370 0.7265

0.0430 0.2430 0.7139
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Fig. 6 Illustrations on the performance of the PSO on achieving the maximum channel capacity
for the individual users achieved in the downlink scenario (Part 3)

Table 3 Optimum power allocation ratios by ANN

a1 a2 a3

0.0207 0.1428 0.8408

0.0518 0.2289 0.7188

0.0344 0.1810 0.7806

0.0195 0.1582 0.8327

0.0473 0.2366 0.7188

0.0683 0.2213 0.7101

0.0336 0.1825 0.7873

0.0195 0.1775 0.8021

0.0345 0.2310 0.7260

0.0451 0.2405 0.7105
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Fig. 7 Plot for regression curves of ANN showing target and output relationship

6 Conclusion

The PSO based power allocation for the individual users of the NOMA downlink is
demonstrated.Also, it is proposed to use the constructedNeuralNetwork to obtain the
power allocation as per one obtained using the proposed PSO based techniques. The
experimental results reveal the importance of the proposed technique. The proposed
technique can be extended to an uplink scenario as well as with various noise power
and with an increasing number of users. In this paper, power allocation has been
done for only 3 users, so the PSO algorithm having three dimensional (3D) search
space has implemented for power allocation to the individual users such that the total
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Fig. 8 a Outcome of the Rayleigh distributed channel coefficients h1, h2 and h3 with variances
0.9, 0.5 and 0.1, respectively, b corresponding power allocation ratio achieved using PSO and ANN
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Table 4 Achievable rates using PSO

C3(1) C2(2) C1(3) Sum rate

6.43 2.58 0.6821 9.69

4.156 2.0121 1.078 7.23

5.5994 2.40672 1.74533 9.73

4.9847 1.8197 1.00 7.79

4.93 2.00 1.22 8.15

3.113 1.912 1.22 6.24

6.0974 2.596 1.86040 10.54

6.9580 2.957 1.7988 11.69

6.224 2.465 1.6957 10.37

5.290 1.29 1.1823 7.76

Table 5 Achievable rates using ANN

C3(1) C2(2) C1(3) Sum rate

5.84 2.83 0.72 9.39

4.27 2.01 1.10 7.38

5.42 2.56 1.72 9.72

5.39 2.24 0.001199 7.63

4.88 2.09 1.18 8.15

3.22 1.89 1.17 6.28

5.87 2.54 2.08 10.49

6.56 3.17 1.81 11.56

6.14 2.47 1.71 10.32

5.44 1.27 1.17 7.88

sum rate will be maximized. And also, because of low dimensional error surface for
the problem, the achieved results were in good agreement for Neural Network using
error back propagation. But if we increase it for more number of users, for that we
have to implement the PSO algorithmwith higher dimensions that is according to the
number of users and also increase in the number of users will give rise in dimensions
of error surface for the problem hence for training the Neural Network, different
alternatives methods can be used to achieve better results.
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Rank Reduction and Diagonalization
of Sensing Matrix for Millimeter Wave
Hybrid Precoding Using Particle Swarm
Optimization

Mayank Lauwanshi and E. S. Gopi

Abstract Millimeter wave (mmwave) wireless communication systems is a promis-
ing technology which provides a high data rate (up to gigabits per second) due to the
large bandwidth available at mmwave frequencies. But it is challenging to estimate
the channel for mmwave wireless communication systems with hybrid precoding,
since the number of radio frequency chains aremuch smaller as compared to a number
of antennas. Due to limited scattering, the Beam space channel model using Dictio-
nary matrices is proposed for mmwave channel model. There were many attempts
made to design the precoder and decoder, along with the channel estimation for
the mmwave channel model but it remains an unsolved problem. In this paper, we
demonstrate the methodology of using Particle Swarm Optimization to design the
precoder and decoder of the Beam space channel model with the prior knowledge of
Angle of Arrival (AOA) and Angle of Departure (AOD). Particle swarm optimiza-
tion is used to optimize the precoder and decoder such that the sensing matrix is
diagonalized (diagonalization method) and is a reduced rank matrix (rank reduction
method) and then the channel matrix is estimated. The results reveal the possible
direction to explore the usage of computational intelligence technique in solving the
mmwave channel model.
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1 Introduction

The 5G technology demands 10 Gbps data rate, connecting 1 million devices per
square km and 1ms round trip latency, requires 99.9999% availability and reduction
in power consumption and improvement in efficiency. One way to achieve this is
to use the unused high frequency mmwave band (6–300 GHz). The 57–64 GHz
is considered as the oxygen absorption band and 164–200 GHz is considered as
the water vapor absorption band. The remaining vast bandwidth of 252 GHz is
available in the mmwave band. The Millimetre Wave MIMO technology [1, 2], is
more suitable for Backhaul in urban environment in densely distributed small cells.
This is also suitable for high data rate, low latency connectivity between vehicles.
The conventional Sub 6 GHz MIMO assumes the model y = Hx+n, where H is the
channel matrix, x is the transmitter symbol vector, y is the received symbol vector
and n is the noise vector. Mostly, all signal processing action takes place in the
baseband. There exists a separate RF chain for each antenna. The mmwave wireless
propagation has higher propagation losses and reduced scattering. Hence the model
adopted for Sub 6 GHz MIMO is not suitable for mmwave MIMO. Beam space
channel model is more suitable for Millimeter wave. There were proposals made on
the channel estimation and Hybrid precoding.

Digital baseband precodingwith a large number of antennas is one of the baseband
approaches used for the mmwave communication, where beamforming technique
is used to increase spectral efficiency [3–5]. In digital baseband precoding, each
antenna is driven with the RF chain and multiple streams of the data are transmitted
simultaneously. Due to the large antenna, the energy consumption in the mmwave
band is very high and also the hardware for digital precoder is complex and costly
due to which it is not a suitable technique for channel estimation and precoding for
mmwave. To overcome the above hardware limitation, analog beamforming solu-
tions are proposed in [6–9]. In analog beamforming, the main idea is to vary the
phase of the transmitted signal while keeping its magnitude fixed, i.e., analog beam-
formers are used as phase shifters. The analog beamformers have reduced system
complexity because the antennas share only one RF chain. But as antennas share
only one RF chain, only a single data stream is transmitted at a time due to which
spectrum efficiency gets limited. The digital and analog beamforming techniques
are not useful for mmwave communication individually, so the compromise is made
between the spectral efficiency and hardware complexity and Hybrid beamforming
(HBF) is proposed in which both analog and digital beamformers are used.

In [10], hybrid precoding algorithm was proposed in which phase shifters with
quantized phase are required to minimize the mean-squared error of the received
signals but the work in this paper does not account for mmwave characteristics.
In [11] and [12], the hybrid precoding design problem was proposed such that the
channel is partially known at the transmitter in the system. In [13] investigation of
the hybrid precoding design is done for fully connected structure-based broadband
mmWave multiuser systems with partial availability of Channel state information.
Although the algorithms developed in [11–13] supports the transmission of multiple
streams and the hardware limitations are also overcome to great extent but they are
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not as effective as compared to the digital precoding algorithm when it comes to sys-
tem performance. In [14], hybrid precoding algorithm for mmWave communication
system was proposed. In this algorithm, quantized beam steering direction is given
importance. Also, multi-resolution codebook is designed for training the precoders
and the codebook depends on hybrid (i.e., joint analog and digital) processing to
generate different beamwidths beamforming vectors. This algorithm improves the
system performance to some extent and also overcomes the hardware limitations but
this algorithm is quite complex. So, there is a need to develop a less complex and
more effective algorithm for the channel estimation and hybrid precoder and decoder
design.

In this chapter, we propose a less complex and effective channel estimation and
hybrid precoder and decoder designing algorithm for a mmWave system based on
the computational intelligence algorithm, Particle swarm optimization. The main
assumptions which we have considered on the mmwave hardware while developing
the algorithm are (i) the analog phase shifters have constant magnitude and varying
phases, and (ii) the number of RF chains are less than the number of antennas.
Using particle swarm optimization, we are optimizing the baseband precoder and
decoder such that the sensing matrix is a diagonal matrix (Diagonalization method)
and reduced rank matrix (rank reduction method) and hence the channel matrix is
estimated.

The rest of the chapter is organized as follows. Section 2 explains the particle
swarm optimization algorithm. In Sect. 3, System model, problem formulation, and
main assumptions considered in the chapter are discussed. Section 4 presents the
methodology to solve the above problem. Here we discuss the pseudo code for the
objective functions used in PSO for the diagonalization of the matrices and reduction
of rank of the matrix and also the workflow to design the precoder and decoder and
hence to estimate channel matrix. Section 5, demonstrates the simulation results
obtained after performing the experiments, and finally the paper is concluded.

2 Particle Swarm Optimization

This section discusses the particle swarm optimization algorithm [15] which is used
to diagonalize and reduce the rank of the matrix.

To understand PSO, let’s consider the behavior of bird flocking. Suppose the birds
are searching for the food in a particular area and they do not know about the exact
location of the food. But they know how far the food is from them after each iteration.
So what should birds do to find the exact location of the food? The effective way is
to consider individual decisions along with the decisions taken by the neighbors to
find the optimal path to be followed by the birds.

According to the PSO algorithm, Initialization with random particles (solutions)
is done first and then optimum is searched by updating generations. In every iteration,
each particle is updated by two values, personal best and global best. The personal
best (pbest) value is the best solution achieved by the individual particle so far.
And the global best (gbest) value is the common experience of all the particles in
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Fig. 1 Position updation of particle using PSO

the population. It is the best value achieved so far by any of the particles in the
population.

After finding the personal best and global best, the particle updates their position
according to the following equations:

next=present+C1× rand × (pbest-present)+ C2 × rand × (gbest-present) (1)

Figure 1 shows how the position of particles (x1(t) and x2(t)) is updated based on
the value of the global best and individual personal best using the PSO algorithm.

3 Problem Formulation

3.1 Millimeter Wave System Model

The block diagram of the millimeter wave wireless communication system is shown
in Fig. 2. It consists of baseband precoder and decoder, RF precoder and decoder,
and RF chains as main blocks. From the block diagram, the baseband received signal
Y can be modeled as follows:
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Fig. 2 Illustration of the architecture of millimeter wave transceivers system

Y = √
(P)WH

BBW
H
RFHFRFFBBX + N (2)

y = √
(P)(WH

BBW
H
RF ⊗ FT

BBF
T
RF)h + n (3)

Equation (3) is the vector form of (2) which is obtained by considering input X as
identity matrix. HereH is the channel matrix and N is the gaussian noise. FBB is the
baseband precoder and FRF is the RF precoder. RF precoder is practically realized
using phase shifters. Hence the elements of the matrix FRF are having the magnitude
unity. Similarly, WBB is the baseband decoder and WRF is the RF decoder. X (with
size Ns × 1 ) is the symbol vector to be transmitted. FBB is of the size NRF × Ns .
Also the size of the matrix FRF is Nt × NRF , where Nt is the number of transmitter
antennas and NRF is the number of RF blocks. The channel matrix is of size Nr × Nt .
The size of the matrix WRF

H is NRF × Nr and the size of the matrix WBB
H is

Ns × NRF .
The channel matrix H can further be modeled as following:

H = ARHbAH
T (4)

where AR is the dictionary matrix in the receiver array antenna and AT is the dictio-
nary matrix in the transmitter array antenna as given below. The size of the matrices
AR and AT are given as Nr × G and Nt × G respectively. In this the angle θ r

i are
the angle of arrivals of the receiving antenna (Mobile station) and θd

i are the angle
of departures of the transmitting antenna (Base station).
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AR =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 · · ·
e− j2π

λ
dr cos(θ r1 ) e− j2π

λ
dr cos(θ r2 ) e− j2π

λ
dr cos(θ r3 ) · · ·

e− j2π
λ

(2dr )cos(θ r1 ) e− j2π
λ
2dr cos(θ r2 ) e− j2π

λ
2dr cos(θ r3 ) · · ·

e− j2π
λ

(3dr )cos(θ r1 ) e− j2π
λ
3dr cos(θ r2 ) e− j2π

λ
3dr cos(θ r3 ) · · ·

· · · · · · · · · · · ·
e− j2π

λ
(Nr−1)dr cos(θ r1 ) e− j2π

λ
(Nr−1)dr cos(θ r2 ) e− j2π

λ
(Nr−1)dr cos(θ r3 ) · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

AT
T =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 · · ·
e− j2π

λ
dt cos(θ t

1) e− j2π
λ
dt cos(θ t

2) e− j2π
λ
dt cos(θ t

3) · · ·
e− j2π

λ
(2dt )cos(θ t

1) e− j2π
λ
2dt cos(θ t

2) e− j2π
λ
2dt cos(θ t

3) · · ·
e− j2π

λ
(3dt )cos(θ t

1) e− j2π
λ
3dt cos(θ t

2) e− j2π
λ
3dt cos(θ t

3) · · ·
· · · · · · · · · · · ·

e− j2π
λ

(Nt−1)dt cos(θ t
1) e− j2π

λ
(Nt−1)dt cos(θ t

2) e− j2π
λ

(Nt−1)dt cos(θ t
3) · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

The matrix Hb is the matrix with elements filled up with complex numbers (with
real and imaginary part as Gaussian distributed) and is describing the multipath
channel coefficients. For each path, one particular angle of departure and the corre-
sponding angle of arrival is activated, and hence the matrixHb needs to be sparse so
that only few paths are active at a time. Substituting (4) in (3), we get the following:

y = √
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T)hb + n (5)

From (5), we conclude that the requirement is to design the precoder and the decoder
such that the sensing matrix [

√
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T)] is the diagonal

matrix (diagonalizationmethod) and the rank of the sensingmatrix is to beminimized
(rank reduction method) to estimate the sparse matrix (Hb) and hence channel matrix
(H) from (4).

4 Proposed Methodology

4.1 Diagonalization Method

Initially, we start by initializing matrices FRF and WRF as a DFT matrix, in which
only the phase of each element of the matrix is varied while magnitude is con-
stant (unity) i.e they are acting as a phase shifters only. Matrices AR and AT are
evaluated based on the specific value of θ , dr and dt . Matrices FRF, WRF, AR and
AT are considered as fixed matrices based on the above constraints while imple-
menting PSO. Matrices WBB and FBB are selected randomly and PSO algorithm is
applied. MatricesWBB and FBB are updated after every iteration until sensing matrix
[
√

(P)(WH
BBW

H
RFAR ⊗ FT

BBF
T
RFA

∗
T)] becomes diagonal matrix . Values of matrices

WBB and FBB for which sensing matrix is the diagonal matrix are considered as
the best value for baseband precoder (FBB) and decoder (WBB) matrices. Figure 3
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Fig. 3 Flowchart to illustrating the methodology for obtaining channel matrix

shows the flowchart describing the abovediscussed process for the diagonalization
of matrix.

Now substitute the obtained diagonalized matrix in the (5). Then take the inverse
of the diagonalized matrix and multiple it with ‘Y’ so as to evaluate matrix Hb and
hence the channel matrix (H) using (1.4).

4.2 Rank Reduction Method

In this method, the first four steps are the same as that of diagonalization method.
In the fifth step, minimization of the rank of the sensing matrix is done using PSO
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and corresponding values of matrices WBB and FBB are selected for which rank of
the sensing matrix is minimized. Now, from this reduced rank sensing matrix, sparse
matrix (Hb) is recovered using orthogonal matching pursuit algorithm (OMP). The
steps involved in the OMP algorithm are as follows:

• Consider the equation, y = φhb, where φ is the sensing matrix.
• Now, the column of φ that has the largest correlation or projection with “y” is
estimated.

• Then the best vector hb is estimated using the maximum projection column esti-
mated in the above step such that the least square norm is minimized.

• Then the residue or error is estimated and “y” is updated with the value of residue
and is used in the next iteration.

• Above process is repeated until the stopping criterion is achieved.

Finally, from the estimated sparse matrix(Hb), channel matrix(H) is estimated using
(4). Figure 3 shows the flowchart describing the abovediscussed process for the
reduction of rank of a matrix.

4.3 Pseudo Code

This section explains the algorithm which we have followed to get the desired output
(diagonalized matrix and reduced rank matrix).

Algorithm 1 Algorithm for diagonalization of matrix
Input: FRF,WRF, AR , AT and X ;
Randomly generate the initial population for FBB and WBB for ’M’ times;
for iteration= 1:N
for i= 1:M
Update the value of FBB andWBB using equation 1 for PSO;
(FBBnew(i),WBBnew(i)) ;
Update the cost function value;
Update the initial value of matrix FBB and WBB;
FBBini tial(i) = FBBnew(i) ;
WBBini tial(i) = WBBnew(i) ;
end for
end for
Cost function;
residual (FBB ,WBB)
temp1=WBB × WRF × AR;
temp2=FBB × FRF × AT;;
res=kron(temp1, temp2);
res1=matrix having only diagonal elements of ’res’, rest of the elements are made zero;
res2= res;
res=ratio of absolute sum of elements of (res1) to (res2);
Output: Diagonalized matrix
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Algorithm 2 Algorithm for rank reduction
Input: FRF,WRF, AR , AT and X ;
Randomly generate the initial population for FBB and WBB for ’M’ times;
for iteration= 1:N
for i= 1:M
Update the value of FBB andWBB using equation 1 for PSO;
(FBBnew(i),WBBnew(i)) ;
Update the cost function value;
Update the initial value of matrix FBB and WBB;
FBBini tial(i) = FBBnew(i) ;
WBBini tial(i) = WBBnew(i) ;
end for
end for
Cost function;
residual (FBB ,WBB)
temp1=WBB × WRF × AR;
temp2=FBB × FRF × AT;;
res=kron(temp1, temp2);
res1=Linear combination of the rows or column of res;
res2= Absolute sum of res1;
Output: Reduced rank matrix

5 Experiment and Results

In this section, the simulation experiments are performed to demonstrate the proposed
techniques (A) Diagonalization method and (B) Rank reduction method.

5.1 Diagonalization Method

RF precoder (FRF) and decoder (WRF) matrices are initialized as a DFT matrix, in
which only the phase of each element of the matrix is changing while magnitude is
constant (unity), i.e., they are acting as a phase shifters only. Dimensions of matri-
ces (FRF) and (WRF) are considered as 32 × 6 and 64 × 6, respectively. Input X is
taken as a identity matrix with dimensions 4 × 4. Dictionary matricesAR andAT are
evaluated based on the specific value of angle of departure (θ t), angle of arrival (θ r),
spacing between antennas at receiver (dr ) and spacing between antennas at transmit-
ter (dt ). While evaluating dictionary matrices resolution is taken as “4”, i.e., only “4”
different values of θ t and θ r are considered. Dimensions of AR and AT are taken as
64 × 4 and 32 × 4. Matrices FRF,WRF, AR and AT are considered as fixed matrices
based on the above constraints while implementing PSO. Now the baseband decoder
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Table 1 Simulation prameters

Parameters Name Dimension Range

θ t Angle of Departure – 0-π

θr Angle of arrival – 0-π

H Channel Matrix 64 × 32 –

Hb Sparse matrix 4 × 4 –

WBB Baseband Decoder 6 × 4 –

FBB Baseband Precoder 6 × 4 –

WRF RF Decoder 64 × 6 –

FRF RF Precoder 32 × 6 –

AR Dictionary Matrix 64 × 4 –

AT Dictionary Matrix 32 × 4 –

(WBB) and precoder (FBB)matrices are selected randomlywith dimensions 6 × 4 and
6 × 4 respectively and PSO algorithm is applied. MatricesWBB and FBB are updated
after every iteration until matrix

√
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T) becomes diag-

onal matrix. Table 1 shows the simulation parameters which are considered while
performing the experiment.

Now the obtained diagonalized matrix is substituted in (5) and its inverse is eval-
uated. Then it is multiplied by Y, so that sparse matrix Hb is evaluated and hence
channel matrix H from (4).

After performing the experiment the obtained results are as follows:
Figure 4 shows the convergence of the PSO algorithm, it shows the minimization

of the best cost as the number of iteration is increasing. Figure 5a and b shows the
diagonal sensing matrix which we get after applying the PSO algorithm. In this, the
diagonal elements (non-zero elements) are represented by the brighter color and the
off diagonal element (approximately zero values) are represented by the darker color.
Figure 5c and d shows the matrix Hb which is a sparse matrix, in which only a few
elements are non-zero and the rest of the elements are nearly zero. Figure 5e and f
shows the magnitude and phase of the 64*32 channel matrix (H ). Both magnitude
and phase are varying for different elements of the matrix. Figure 6a and b shows the
magnitude and phase of the baseband combinermatrix (WBB ). Figure 6c and d shows
that the magnitude of each element of RF Combiner matrix (WRF) is unity and only
phase is changing. Figure 6e and f shows the magnitude and phase of the baseband
precoder matrix(FBB). Figure 6g and h shows that the magnitude of elements of RF
Precoder matrix (FRF) is unity and only phase is changing.
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Fig. 4 Convergence of PSO Algorithm for diagonalization of matrix

Fig. 5 Illustration of matrices in the form of images, Diagonal sensing matrix obtained using PSO
a magnitude and b phase, sparse matrix (Hb) c magnitude and d phase, channel matrix (H) e
magnitude and f phase
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Fig. 6 Illustration of matrices in the form of images, Baseband decoder matrix (WB B ) amagnitude
and b phase, RF decoder matrix (WR F ) cmagnitude and d phase, baseband precoder matrix (FB B )
e magnitude and f phase, RF precoder matrix (FR F ) g magnitude and h phase

5.2 Rank Reduction Method

Initial steps in this method are the same as that of the diagonalization method but
the dimensions of some of the matrices are changed here. The dimension for sparse
matrix is changed to 16 × 16, and the dimension of the dictionary matrices AR

and AT are changed to 64 × 16 and 32 × 16 respectively. Now, same as in pre-
vious method, matrices FRF, WRF, AR and AT are considered as fixed matrices
and the baseband decoder (WBB) and precoder (FBB) matrices are selected ran-
domly with dimensions 6 × 4 and 6 × 4 respectively while implementing PSO. Now
matrices WBB and FBB are updated after every iteration until the rank of the matrix√

(P)(WH
BBW

H
RFAR ⊗ FT

BBF
T
RFA

∗
T) is minimized. Then the matrix Hb is estimated

using the OMP algorithm as explained in the Sect. 4.2 and hence the channel matrix
(H) is estimated using (4). Results obtained from this experiment are as follows:
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Fig. 7 Convergence of PSO Algorithm for minimization of rank of matrix

Figure 7 shows the convergence of the PSO algorithm for the minimization of the
rank of matrix, it shows the minimization of the best cost as the number of iteration
is increasing. Figure 8a and b shows the initial sensing matrix with rank 16 before
applying the PSO algorithm. Figure 8c and d shows reduced rank sensing matrix
with rank 3 obtained using PSO. Figure 8e and f shows the comparison of the sparse
matrix (Hb) obtained from both the methods and from the figure it is clear that the
matrix obtained from the rank reduction method is of higher order and is more sparse
as compared to the matrix obtained from the diagonalization method. So we can say
that the rank reduction method is better than diagonalization method for estimating
sparse matrix(Hb). Figure 8g and h shows the magnitude and phase of the 64*32
channel matrix (H ). Both magnitude and phase are varying for different elements
of the matrix. Figure 9a and b shows the magnitude and phase of the baseband
combiner matrix (WBB ). Figure 9c and d shows that the magnitude of each element
of RF Combiner matrix (WRF) is unity and only phase is changing. Figure 9e and
f shows the magnitude and phase of the baseband precoder matrix(FBB). Figure 9g
and h shows that the magnitude of elements of RF Precoder matrix (FRF) is unity
and only phase is changing.
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Fig. 8 Illustration of matrices in the form of images, Initial sensing matrix a magnitude and b
phase, reduced rank sensing matrix obtained using PSO c magnitude and d phase, sparse matrix
(Hb) e obtained from rank reduction method and f obtained from diagonalization method, channel
matrix (H) g magnitude and h phase

6 Conclusion

This chapter demonstrates the proposedmethodology to design precoder and decoder
for a given pilot signal x and corresponding y by rank reduction and diagonaliza-
tion of sensing matrix using particle swarm optimization. This helps to estimate
the sparse matrix Hb and hence channel matrix H. The precoder and decoder are
designed by considering large number of transmitter and receiver antennas (typi-
cally for Nt=32 and Nr=64). The results are obtained with high accuracy and speed,
for a large number of transmitter and receiver antennas. The rank reductionmethod is
considered as more suitable as compared to the diagonalization method on the basis
of the sparse matrixHb estimated in both the methods. The complexity of the above
proposed methodology increases if the number of transmitter and receiver antennas
are increased further. So for the future work, it would be interesting to explore other
constraint optimization techniques to overcome the above problem.
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Fig. 9 Illustration of matrices in the form of images, Baseband decoder matrix (WB B ) amagnitude
and b phase, RF decoder matrix (WR F ) c magnitude and d, baseband precoder matrix (FB B ) e
magnitude and f phase, RF precoder matrix (FR F ) g magnitude and h phase phase
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Comparative Analysis of Constraint
Handling Techniques Based on Taguchi
Design of Experiments

Misael Lopez-Sanchez, M. A. Cosío-León, and Anabel Martínez-Vargas

Abstract In this chapter, we analyze the effect that constraint-handling techniques
such as penalty functions, repairmethods, and decoders have on a steady-state genetic
algorithm running on a smartphone. We examine these techniques on one particu-
lar problem: the tourist trip design problem. This problem selects a set of points
of interest that matches tourist preferences to bring a personalized trip plan. Our
points of interest are focused on Mexico City. In order to test the differences among
the constraint-handling techniques, we apply the Taguchi design of experiments.
The results support the decision that a random decoder is the best choice to handle
constraints in the context of the tourist trip design problem.

1 Introduction

Optimization problems exist in different fields of science and engineering. They
minimize or maximize some objective(s). Most of the real-world problems have
restrictions on their variables and they must be considered to obtain a feasible solu-
tion. These problems correspond to constrained optimization.

Metaheuristics that deal with constrained optimization may create solutions that
fall outside the feasible region; therefore a viable constraint-handling strategy is
needed.

This chapter is devoted to a detailed analysis of constraint-handling techniques.
We aim to analyze their effects on the quality of solutions provided by a steady-
state genetic algorithm (SGA), solving the tourist trip design problem (TTDP) [1],

M. Lopez-Sanchez · M. A. Cosío-León · A. Martínez-Vargas (B)
Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
e-mail: anabel.martinez@upp.edu.mx

M. Lopez-Sanchez
e-mail: misael.lopez@micorreo.upp.edu.mx

M. A. Cosío-León
e-mail: ma.cosio.leon@upp.edu.mx

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. J. Kulkarni et al. (eds.), Constraint Handling in Metaheuristics and Applications,
https://doi.org/10.1007/978-981-33-6710-4_14

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6710-4_14&domain=pdf
mailto:anabel.martinez@upp.edu.mx
mailto:misael.lopez@micorreo.upp.edu.mx
mailto:ma.cosio.leon@upp.edu.mx
https://doi.org/10.1007/978-981-33-6710-4_14


286 M. Lopez-Sanchez et al.

Table 1 Constraint-handling
techniques [6]

Category Variants

Penalty functions Logarithmic

Linear

Quadratic

Repair methods Random repair method

Greedy repair method

Decoders Random decoder

Greedy decoder

an extension of the orienteering problem (OP). The TTDP selects a set of points of
interest (PoI) that matches tourist preferences to bring a personalized trip plan.

The selected methodology driving this study is the Taguchi design of experiments
(Taguchi DOE) procedure also called orthogonal array design [2]. Robust design
methods were developed by Genichi Taguchi [3] to improve the quality of manufac-
tured goods. Nowadays, it is a statistical approach that helps guide data analysis.

An additional result from this analysis is an optimal parameter vector of P∗. This
vector is an SGA configuration to achieve its best performance in solving TTDP,
considering a set of real-world instances. To do so, we take as guides works in [4, 5].
Both studies develop a description of the best practices in selecting P∗. They also
provide results on computational experiments with metaheuristics. In concordance
with results shown in [6], we propose the following hypothesis: there is an effect or
a difference (significant differences between constraint-handling techniques) on the
SGA.

The categories of constraints-handling techniques and variants analyzed in this
chapter are shown in Table1.

The approaches listed above are briefly described

• Penalty functions are the most common strategies to handle constraints. They
transform a constrained-optimization problem into an unconstrained one. This is
done by adding (or subtracting) a value (penalty) to the objective function. The
penalty depends on the amount of constraint violations in a solution [7].

• Repair methods are heuristics that move infeasible solutions to the feasible space.
However, this can lead to a loss of population diversity. Methods that place the
infeasible solutions randomly inside the feasible space result in a loss of useful
information gathered by this solution. Therefore, a balanced approach that utilizes
the useful information from the solutions and brings them back into the search
space in a meaningful way is desired [8]. The repair heuristics are specific to the
optimization problem at hand.

• Decoders use special representation mappings. They guarantee the generation of a
feasible solution at the cost of computation time. Furthermore, not all constraints
can be easily implemented by decoders. The resulting algorithm is specific to the
particular application [6].
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There are some early attempts to handle constraints on metaheuristics. For exam-
ple, authors in [8] explore constraint-handling strategies and propose two new single
parameter constraint-handling methodologies based on parent-centric and inverse
parabolic probability (IP) distribution. Their proposed constraint-handling methods
exhibit robustness in terms of performance and also success in search spaces com-
prising up to 500 variables, while locating the optimum value within an error of
10−10. The work in [9] describes the process executed by metaheuristics resolv-
ing constrained-optimization problems (COP). The lack of constrained management
algorithms discards the infeasible individuals in the process of evolution. Conse-
quently, this leads to the loss of potential information. Authors conclude that a COP
can be better solved by effectively using the potential information present in the infea-
sible individuals. The work in [10] shows a mechanism to deal with the constraints.
Such a mechanism is applied in evolutionary algorithms (EAs) and swarm intel-
ligence algorithms (SIAs) to solve a constrained non-linear optimization problem
(CNOP). A case study of a modified artificial bee colony algorithm to solve con-
strained numerical optimization problems is used by the authors. The results showed
an improvement in performance compared with classical algorithms. A different
approach for dealing with CNOP is demonstrated in [11]. Support vector machines
convert constraint problems into unconstrained ones by space mapping. Based on
the above techniques, the authors propose this new decoder approach that constructs
a mapping between the unit hypercube and the feasible region using the learned
support vector model. Recently, the work in [12] proposes the use of the ε constraint
method in the differential evolution algorithm. There, the ε level is defined based on
the current violation in the population. For every constraint, an individual ε level is
kept. Then by combining fitness and constraint violation, the infeasible solutions are
determined.

The chapter is organized as follows: Sect. 2 shows an overview of TTDP and the
knapsack problem. Section3 describes how SGA generates a personalized trip plan.
Section4 shows computational experiments, these include instance design process,
instance generation process, and Taguchi’s DOE. Section5 is devoted to results and
discussion. Finally, Sect. 6 concludes the chapter and provides direction for future
research.

2 Overview

2.1 Case Study: TTDP

TTDP selects a set of PoIs that matches with the tourist’s preferences and geograph-
ical current (or selected) location. This maximizes tourist satisfaction while con-
sidering constraints (e.g., distances among PoIs, a time required to visit each PoI,
open periods of PoIs days/hours, opening time/closing time, entrance fees, weather
conditions, and public health policies).
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Fig. 1 A solution to the
optimization model

A solution for the TTDP is decoded as a route-planning for tourists interested in
visiting multiple PoIs, so-called optimal scheduling trip plan (OSTP). In this work,
a solution for TTDP is decoded as a star type itinerary (see Fig. 1). The star type
itinerary is a solution to the knapsack problem (or rucksack problem) [13]. The
aforementioned combinatorial optimization problem deals with a set of items having
a weight and a profit. Then, a solution is a subset of those items that maximize the
sum of the profits, while keeping the summed weight within a certain capacity C .

The above is the kernel-philosophy of our mobile application called Turisteando
Ando (TA) which has embedded an SGA to maximize the tourist satisfaction when
visiting a place. TA gathers a set of PoIs from Places API by Google. As shown in
Fig. 1, those PoIs are filtered in a 30 km circle around the current tourist position (or
selected start point). TA takes into account people’s best recommendations (ratings),
reducing fear of missing out on trending places. Then it delivers a subset of PoIs that
maximize the tourist’s experience while keeping the stay time at each place. It allows
travel decision flexibility for the tourist; i.e., a tourist selects the PoIs sequence since
it does not affect the stay time from the proposed trip plan. If a tourist wants to spend
more time in a PoI, then the PoIs from the proposed trip plan can be removed. Most
of the Apps to solve the TTDP cannot offer travel decision flexibility because the
solution is a route. Then, the touristmust follow that route in the order it was designed.
Table2 summarizes characteristics of current commercial Apps including TA.
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Table 2 A comparative of TA versus relevant commercial Apps

App Internet PTP Guides Opinion iOS Ads Georef. Time
opt.

TA � � × × × × � �
Google trips
[14]

× � × � � � � ×

Minube [15] × � � � � � � ×
TripAdvisor
[16]

× × � � � � � ×

Triposo [17] × × � � � � � ×
PTP: personalized trip plan; Time opt: time optimization; Georef: geo-referential information

2.2 Knapsack Problem

The optimization model is as follows: having a set of weightsW [i], profits P[i], and
capacity C , find a binary vector x = {x[1], . . ., x[n]}. The knapsack problem (KP)
[18] is an optimization problem as follows:

Maximize P(x) =
n∑

i=1

x[i] · P[i] (1)

Considering the following restrictions:

n∑

i=1

x[i] · W [i] ≤ C (2)

x ∈ {0, 1}, i = 1, 2, . . . , n (3)

where x[i] = 1, if the i-th item is included in the knapsack, otherwise x[i] = 0.
We map the knapsack problem to solve the TTDP as follows:

• Travel time (knapsack capacity). This parameter is set by the tourist. It is defined
in days or hours. The mobile application translates periods to seconds.

• Solution size (n). It is the cardinally of the set of PoIs around the current tourist
location.

• Rating (profit). This parameter is given by Google Places API metadata. It is the
average of ratings, determined by people’s experience on each PoI.

• Time by place (weight). It is time in seconds. This data is gathered using API
Directions by MapBox. Time by place is computed as follows: the time to move
from tourist location to the PoI by two (go and back) plus stay time as Eq. (4)
shows.

T = (t · 2) + tp (4)
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where:

• T = Time by place.
• t = Transportation time.
• tp = Stay time.

3 Personalized Trip Plan Algorithm

Personalized Trip Plan Algorithm (PTPA) embedded in the mobile app includes a
SGA. Unlike a GA with a generational model, a SGA generates one or two new
descendants. After that, it chooses survivors that are inserted into the population.
That means that there are cycles instead of generations [19].

In PTPA, each individual has a subset of PoIs that represent a solution (personal-
ized trip plan). A solution is coded in three vectors (see Fig. 2):

• The first vector (the individual) keeps a selection of PoIs, a choice coded in binary.
That is, each gene indicates if a PoI is included (a bit with value 1) or not (a bit
with value 0) in the personalized trip plan.

• The second vector (the profits) holds a set of ratings of the selected PoIs. This
vector allows PTPA to evaluate each individual in the objective function described
in (1).

• The third vector (the weights) stores the time by place. That is, the time that the
tourist should spend in the round-trip to the PoI from the current location plus the
stay time. This vector is used to compute the constraint of (2).

Constraint-handling techniques are applied to deal with individuals that violate
the constraint. In this work, we apply the constraint-handling techniques described

Fig. 2 An individual in the PTPA
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in [6] as penalty functions (Ap[i], where i is the index of a particular algorithm
in this class), repair algorithms (Ar [i]), and decoders (Ad [i]). The first technique
penalizes individuals by decreasing the “goodness” of the objective function. The
second technique corrects any infeasible individual through special repair algorithms.
The third technique uses integer representation where an individual is interpreted as
a strategy that incorporates places into the solution.

We consider logarithmic, linear, and quadratic cases as penalty functions based
in the study in [6]:

Ap[1] : Pen(x) = log2

(
1 + ρ ·

(
n∑

i=1

x[i] · W [i] − C

))
(5)

Ap[2] : Pen(x) = ρ ·
(

n∑

i=1

x[i] · W [i] − C

)
(6)

Ap[3] : Pen(x) =
(

ρ ·
(

n∑

i=1

x[i] · W [i] − C

))2

(7)

In all three cases, ρ = maxi=1...n{P[i]/W [i]}.
For repair algorithms, we apply the next two approaches described in [6] and

based on Algorithm 1. They only differ in the selection procedure, i.e., the way that
a PoI is removed from the personalized trip plan

• Ar [1] (random repair). It selects a random element from the personalized trip plan.
• Ar [2] (greedy repair). All PoIs in the personalized trip plan are sorted in the
decreasing order from their profit to weight ratios. The strategy is then to always
choose the last PoI (from the list of available PoIs) for deletion.

Algorithm 1: Repair procedure [6]
Data: Individual vector (x), profits vector (P), and weights vector (W ).
Result: repaired individual (x).

1 knapsack_over f illed = False;
2 x ′ = x ;
3 if

∑n
i=1 x

′[i] · W [i] > C then
4 knapsack_over f illed = True;
5 end
6 while knapsack_over f illed do
7 i = select an item from the knapsack;
8 x ′[i] = 0;
9 if

∑n
i=1 x

′[i] · W [i] ≤ C then
10 knapsack_over f illed = Flase;
11

12 end
13 End;
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Fig. 3 The mapping between a vector (individual) and a list L in a decoder

The equation to determine the number of individuals that can be repaired in each
run is given by:

nSolutions = (nCycles · (nParents + nChildren)) · % repair (8)

where nSolutions is the number of infeasible solutions that can be repaired by a run.
nCycles is the number of cycles of the SGA. nParents is the number of parents
selected to crossover. nChildren is the number of children created at the crossover.
% repair is the percentage of infeasible solutions that can be repaired.

In the case of decoders, we use the ones mentioned in [6]. Instead of binary
representation, the decoders use integer representation (ordinal representation). Each
individual is a vector of n integers, then the i-th component of the vector is an integer
in the range from1 to n − i + 1. The ordinal representation references a list L of PoIs.
Take, for example, the list of PoIs L = (1, 2, 3, 4, 5, 6) and the vector 〈4, 3, 4, 1, 1, 1〉
shown in Fig. 3. There, the vector holds the j-th position in the list L . Then, the j-th
PoI is removed from the list L . If current total weight does not exceed the travel time
by including that j-th PoI, then that j-th PoI is part of the solution (the personalized
trip plan). As Fig. 3 suggests, the aforementioned procedure is performed until no
more PoIs can be included in the solution due to travel time. Assuming that when
mapping the vector and list L in Fig. 3, the travel time has not been exceeded, then
the following sequence of places is the solution: 4, 3, 6, 1, 2, 5.

Specifically, we apply the two decoders proposed in [6]. They are based on
Algorithm 2. They differ only in the way that the list L is built

• Ad [1] (random decoding). The list L of PoIs is created randomly.
• Ad [2] (greedy decoding). The list L of PoIs is created in the decreasing order of
their profit to weight ratios.
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Algorithm 2: Decoder procedure [6]
Data: Individual vector (x), profits vector (P), and weights vector (W ).

1 build a list L of items;
2 i = 1;
3 Weight Sum = 0;
4 Prof i t Sum = 0;
5 while i ≤ n do
6 j = x[i];
7 remove the j-th item from the list L;
8 if Weight Sum + W [ j] ≤ C then
9 Weight Sum = Weight Sum + W [ j];

10 Prof i t Sum = Prof i t Sum + P[ j];
11 end
12 i = i + 1;
13 end
14 End;

Then PTPA performs parent selection. Tournament selection is applied in all
the types of constraint-handling techniques mentioned above. It picks k individuals
randomly from the population and selects the best individual from this group. The
best individual is the parent [20]. That procedure is repeated twice.

PTPA uses a two-point crossover operator [20] for the binary representation while
applying the one-point crossover operator for the ordinal representation as suggested
in [6]. Consequently, PTFA applies a bit-flip mutation operator for the binary repre-
sentation. For ordinal representation, it undergoes a similar mutation like bit-flip but
unlike changing bits, it takes a random value (uniform distribution) from the range
[1 . . . n − i + 1] [6].

In an SGA, parents and offspring compete for survival. In this work, we apply
family competition replacement methods [19]: elitist recombination and correlative
family-based selection. For ordinal representation, PTFA performs elitist recombina-
tion. In this method, the best two of parents and offspring, go to the next generation.
On the other hand, for binary representation, PTFA undergoes correlative family-
based selection. This strategy chooses the best of the four individuals (two parents
and two offspring) as the first survivor. Then, from the remaining three individuals,
the one with the highest distance from the best becomes the second survivor [21].

When a predefined number of cycles is reached, PTFA returns the best personal-
ized trip plan as a solution. Algorithm 3 summarizes the procedures described above
to find the best-personalized trip plan.



294 M. Lopez-Sanchez et al.

Algorithm 3: Personalized trip plan
Data: Population size, crossover probability, mutation probability, and number of iterations.

Travel time, profits vector (rating), and weights vector (time by place).
Result: The best-personalized trip plan.

1 Generate population randomly;
2 repeat
3 Select two parents using a tournament selection;
4 if random_number <= crossover_probabili t y then
5 Perform two-point crossover for binary representation. Otherwise, perform one-point

crossover for ordinal representation;
6 else
7 of f spring_1 = Parent_1;
8 of f spring_2 = Parent_2;
9 end

10 Mutate the two-resulting offspring according to the type of representation;
11 Perform replacement strategy according to the type of representation;
12 until number_of_cycles > total_number_of_cycles;
13 Select the best solution from population;
14 End;

4 Computational Experiments

Design of experiments (DOE) is a procedure used to determine the influence of
one or more independent variables (factors) on a response variable (solution). In
the 1920s, Fisher first proposed the DOE with multiple factors known as Factorial
Design of Experiments. In the full factorial design, all possible combinations of a
set of factors are executed. In 1950, Taguchi proposes a different flavor on DOE, his
approach reduces costs in time and effort by evaluating several factors with the least
of experiments. This work uses a type of Taguchi DOE also called orthogonal arrays
(OA), to establish the combinations of the values that each factor can take to run the
algorithms under analysis.

The experimentswere carried out to gather data to analyze the effect of constrained
handling techniques on the quality of solutions provided byAlgorithm3. To do so, we
select a Taguchi DOE, different configurations of the Algorithm 3 are considered.
Those configurations take into account different constraint-handling mechanisms
and different values for the k value, which controls the number of individuals who
face each other in the selection tournament. We included this genetic operator in the
Taguchi DOE, since it too has a strong impact on the search process. Selection guides
the search towards promising regions of the search space. It exploits the information
represented within the population [22].

The Algorithm 3 was implemented for mobile application in Android operating
system. It was coded in Java with Android Studio (version 3.5.3 and build #A-
191.8026.42.35.6010548) integrated development environment (IDE). It was run by
a 2.0 GHzOcta-core Qualcomm Snapdragon 625 CPUwith 3 GB of RAM andMIUI
9.5 based on Android 7.1.2 Nougat as the operating system.
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Fig. 4 Pipeline of computational experiments

To carry out computational experiments, the procedures shown in the block dia-
gram in Fig. 4 were executed.

4.1 Instance Design Process

TTDP instances were designed to represent different scenarios to be analyzed. Three
sets of instances were considered, each group with defined characteristics.

A total of 90 instances were set up for the current study. These instances were
categorized into three groups (A, B, and C), each with 30 elements.

Datasets used for the KP mapped to the TTDP were collected from internet data
sources (Places API by Google, and Directions API by MapBox) that provide infor-
mation about PoIs.

The search for PoIs information is based on the tourist-location geo-referential
information. These coordinates will be used to search for the PoIs within a 30km
radius. Each group has 30 different origin coordinates. They are located in the terri-
torial area of Mexico City (Mexico) and its surroundings.

Subsequently, the types of PoIs to be included in each instance are established.
PoIs are grouped into four categories:Museum(T1), Park (T2), Zoo (T3) andHistorical
Place (T4), as well as their stay time (See Table3).

Let

M = {x |x is a museum less than 30 km radius from the tourist-location}
G = {x |x is an art gallery less than 30 km radius from the tourist-location}
Z = {x |x is a zoo less than 30 km radius from the tourist-location}
Q = {x |x is an aquarium less than 30 km radius from the tourist-location}
R = {x |x is a park less than 30 km radius from the tourist-location}
K = {x |x is an amusement park less than 30 km radius from the tourist-location}
H = {x |x is a church less than 30 km radius from the tourist-location}
I = {x |x is a city hall less than 30 km radius from the tourist-location}
S = {x |x is a tourist attraction less than 30 km radius from the tourist-location}

(9)
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Table 3 Stay time by type of place [23–26]

Place type Stay time in seconds

Museum 3600

Zoo 7200

Park 9900

Amusement Park 28,800

Historic place 1800

Group A characteristics
T1 = M ∪ G
T2 = Z ∪ Q
T3 = R ∪ K
T4 = I ∪ H

(10)

Each one of the 30 instances A1,2,...,30 has the following characteristics:

A1,2,...,30 =
4⋃

i=1

Ti (11)

Group B characteristics

T1 = (M ∩ S) ∪ (G ∩ S)

T2 = (R ∩ S) ∪ (K ∩ S)

T3 = (Z ∩ S) ∪ (Q ∩ S)

T4 = (I ∩ S) ∪ (H ∩ S)

(12)

Each one of the 30 instances B1,2,...,30 has the following characteristics:

B1,2,...,30 =
4⋃

i=1

Ti (13)

Group C characteristics:
T1 = (M ∩ S)

T2 = (R ∩ S)

T3 = (Z ∩ S)

T4 = (H ∩ S)

(14)

Each one of the 30 instances C1,2,...,30 has following characteristics:
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C1,2,...,30 =
4⋃

i=1

Ti (15)

For the instance design process, we consider worst-case scenarios for the TA
app. Therefore, we chose a city with a high number of PoIs, a reduced travel time
(a 12-hour day), and include all types (T1, T2, T3, T4) of proposed PoIs for the
instances.

4.2 Instance Generation Process

Real-world Instances of TTDP were generated by the process of search around from
the mobile app Turisteando Ando, gathering data and metadata from Places API by
Google and Directions API by MapBox, the sequence of actions to build an instance
are as follow:

1. On a 30 km radius around the current tourist-location, a request is sent to Places
API.

2. The last action on Places API will return the set of places (PoIs) along with
information describing each PoI.

3. Finally, travel time from the tourist-location to the POIs is calculated on the
Directions API by MapBox.

Each instance has four key data which are processed by the algorithm to offer an
OSTP:

• Size of instance (n): Every instance has n elements. Index (i) is a correlative
number that indicates the position of each PoI of the instance. For this study, the
index represents the order in which the information on each PoI was received from
Google data source.

• Profits (Pi ): These values are assigned by tourists once they visited a PoI. (Pi ) is
part of data gathered from Places API. It is obtained for each item (PoI) in the
knapsack. In all items, Pi ∈ R : 0 ≤ Pi ≤ 5.

• Weights (Wi ): Weights of knapsack are calculated by the Eq. (4). A request is
sent to Directions API with the intention to gather data to calculate the travel
time from the tourist-location to each PoI returned from Places API. In all items
Wi ∈ R : Wi > 0.

• Knapsack capacity C : It affixes to travel time (see Sect. 2.2). For every instance,
independently of the group to which it corresponds, the knapsack capacity value
is set to 43,200s, the equivalent of a 12-hour day.

Table4 shows the number of PoIs (n) per instance in the groups.
Strong relation exists between correlation and difficulty of problems, the latter is

greatly affected by the correlation between profits and weights. A higher correlation
implies a smaller value of the difference, and also means hardness to be resolved. So
instances in Table9 column correlation, show a low complexity.
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Table 4 Size of instances per groups

Group Number of PoIs per instance

A n ∈ Z : 400 ≤ n ≤ 450

B n ∈ Z : 230 ≤ n ≤ 240

C n ∈ Z : 180 ≤ n ≤ 185

4.3 Taguchi DOE for the Analysis of Constraint-Handling
Methods in the Quality of Solutions

The steps followed to design our experiments using the Taguchi DOE method are
detailed below.

Step 1: Identify Control Factors Influencing a Quality Solution

The control factors are those that affect the solution of the problem. The control
factors for the different experiments are listed below:

• Penalty Functions Experiments.

– k: Quantitative parameter.
– Penalty Function: Qualitative parameter.

• Repair Methods Experiments.

– Repair method: Qualitative parameter.
– k: Quantitative parameter.
– Repair percentage: Qualitative parameter.

• Decoders Experiments.

– Decoder type: Qualitative parameter.
– k: Quantitative parameter.

Step 2: Determine the Number of Levels and Their Values for All Factors

Experiments are run with different factor values, called levels. Their values remain
static once they have been chosen and determine the solution. The factor levels for
this study were selected according to the guidelines below. The collection of factors
for the experiments, with their levels, is found in Table5.

• Penalty functions experiments

– Factor 1 k: It refers to the number of individuals that compete in the parent
selection tournament.

Level 1: 2 individuals.
Level 2: 5 individuals.
Level 3: 10 individuals.
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Table 5 Factors and levels determined

Factor Level 1 Level 2 Level 3

Penalty functions experiments

k 2 5 10

Ap[i] Ap[1] Ap[2] Ap[3]
Repair methods experiments

Ar [i] Ar [1] Ar [2]
k 2 5 10

% repair 5 50 100

Decoders experiments

Ad [i] Ad [1] Ad [2]
k 2 5 10

– Factor 2 Penalty functions (Ap[i]): They are the strategies used to estimate the
penalty value for infeasible solutions. In this case, we considered three levels
that describe the growth of the penalization function on the degree of violation

Level 1: Logarithmic (Ap[1]). See Eq. (5).
Level 2: Linear (Ap[2]). See Eq. (6).
Level 3: Quadratic (Ap[3]). See Eq. (7).

• Repair methods experiments

– Factor 1Repair method (Ar [i]): It is the approach employed to repair infeasible
solutions. We examine two levels that vary in the process that selects the items
(PoIs) to remove from the knapsack.

Level 1: Random repair method (Ar [1]).
Level 2: Greedy repair method (Ar [2]).

– Factor 2 k: It refers to the number of individuals that compete in the parent
selection tournament.

Level 1: 2 individuals.
Level 2: 5 individuals.
Level 3: 10 individuals.

– Factor 3 Repair percentage (% repair ): It corresponds to the percentage of
infeasible solutions that can be repaired.

Level 1: 5%.
Level 2: 50%.
Level 3: 100%.
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• Decoders experiments

– Factor 1 Decoder (Ad [i]): This indicates the strategy used to decode solutions.
We consider two levels that vary in the order of the PoIs list that the decoder
receives.

Level 1: Random decoder (Ad [1]).
Level 2: Greedy decoder (Ad [2]).

– Factor 2 k: It refers to the number of individuals that compete in the parent
selection tournament.

Level 1: 2 individuals.
Level 2: 5 individuals.
Level 3: 10 individuals.

Step 3: Select the Orthogonal Array

Taguchi suggested a method based on orthogonal arrays. Taguchi developed a series
of arrays that he called, La(bc). There, L is a Latin Square. a is the number of rows in
an array that represent the number of tests or experiments that must be performed. b is
the number of levels atwhich each factorwill be evaluated. c is the number of columns
(levels) in the array. For penalty functions experiments, we consider the L9(32),
i.e., three-level series OA. In the case of repair methods experiments, we select the
L18(21, 32), i.e., mixed-level series OA. Finally, for decoders experiments, we chose
the L6(21, 31), i.e., mixed-level series OA. Details of selected configurations are in
the next step 4.

Step 4: Assign Factors and Interactions to the Columns of OA

Factors and their levels selected in previous steps are assigned to OA. Resulting
arrays have configurations to execute different experiments using the SGAalgorithm.
Tables6, 7, and 8 present the factors and levels for Taguchi DOE for the experiments
(penalty functions, repair methods, and decoders).

Step 5: Conduct the Experiment

The total number of instances to analyze the effect of constrained handling techniques
was 18. This is due to the rule of the Pareto principle (20/80) which states that 20%
of cases explain 80% of cases, considering the correlation metric (see Table9). By
using uniform distribution to select instances, six instances were chosen from each
group up to 18 instances (20% of the total instances). The selection procedure uses
a random number r where r ∈ Z : 1 ≤ r ≤ 30. Selected instances for experiments
and their characteristics are described in Table9. Section5 shows the results obtained
from the experiments. It reports solution fitness value ( f ), the number of PoIs in the
itinerary (n), and time in milliseconds that the SGA needed to find a solution (t).
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Table 6 Taguchi DOE application for penalty functions experiments

Run k Ap[i]
1 2 Ap[1]
2 2 Ap[2]
3 2 Ap[3]
4 5 Ap[1]
5 5 Ap[2]
6 5 Ap[3]
7 10 Ap[1]
8 10 Ap[2]
9 10 Ap[3]

Table 7 Taguchi DOE application for repair methods experiments

Run Ar [i] k % repair

1 Ar [1] 2 5

2 Ar [1] 2 50

3 Ar [1] 2 100

4 Ar [1] 5 5

5 Ar [1] 5 50

6 Ar [1] 5 100

7 Ar [1] 10 5

8 Ar [1] 10 50

9 Ar [1] 10 100

10 Ar [2] 2 5

11 Ar [2] 2 50

12 Ar [2] 2 100

13 Ar [2] 5 5

14 Ar [2] 5 50

15 Ar [2] 5 100

16 Ar [2] 10 5

17 Ar [2] 10 50

18 Ar [2] 10 100

5 Results and Discussion

This section includes steps 6 and 7 of Taguchi DOE. Step 6 comprises the analysis
of resulting data, to make conclusions from them in step 7.

In those steps, Taguchi DOE uses a logarithmic quality loss function to measure
the performance characteristics, defined as signal-to-noise ratio (SNR). It is inversely
proportional to variance, so the chosen factors should produce the maximum value of
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Table 8 Taguchi DOE application for decoder methods experiments

Run Ad [i] k

1 Ad [1] 2

2 Ad [1] 5

3 Ad [1] 10

4 Ad [2] 2

5 Ad [2] 5

6 Ad [2] 10

Table 9 Selected instances for the experiments

No User-location PoIs per instance Correlation

Latitude Longitude Museums
(T1)

Parks
(T2)

Zoos
(T3)

Historical
(T4)

Total

Group A instances

29 19.497038 −99.139048 120 120 77 120 437 0.002193

2 19.432751 −99.133114 120 120 77 120 437 0.002204

7 19.303104 −99.150506 120 120 75 120 435 0.001597

22 19.318541 −99.032161 120 120 74 118 432 0.001126

5 19.546176 −99.147456 120 120 77 120 437 0.001902

1 19.435726 −99.143893 120 120 77 120 437 0.001747

Group B instances

8 19.427061 −99.167514 102 71 5 60 238 0.001938

5 19.546176 −99.147456 100 71 5 60 236 0.001306

24 19.402627 −99.208645 99 71 5 60 235 0.001579

9 19.44645 −99.150297 100 72 5 60 237 0.002148

28 19.352401 −99.14289 96 71 5 60 232 0.001658

16 19.360845 −99.164755 102 71 5 60 236 0.001726

Group C instances

16 19.360845 −99.164755 60 60 4 60 184 0.001497

10 19.452487 −99.137261 60 60 4 60 184 0.001380

14 19.405579 −99.09965 60 60 5 60 185 0.001390

12 19.254841 −99.089113 60 60 4 60 184 0.000689

22 19.318541 −99.032161 60 60 4 60 184 0.000917

15 19.385868 −99.226543 60 60 4 60 184 0.001196
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SNR to achieve minimum variability. The reference of performance characteristics
is available in three categories to determine the SNR ratio [27]. For this work, we
selected Larger-the-Best due to the objective function shown in the Eq. (1).

Step 6: Analyze the Data

Next subsections describe resulting data from Taguchi DOE experimental configu-
rations organized in summary tables.

5.1 Summary of Results on Penalty Functions Experiments

A common challenge in employing penalty functions is in selecting an appropriate
penalty parameter (Pp). Usually, this parameter is selected by the trial-and-error
method. Work in [28] proposes a mechanism to select Pp. So implementing a mech-
anism to select Pp is a key factor to improve the effect on solutions, our experimental
results of the SGA using penalty functions techniques could not find feasible solu-
tions to solve problem like authors in [6], concluding that it is necessary to explore
the use of the abovementioned mechanism, which was not considered in this work.

5.2 Summary of Results on Repair Techniques Experiments

Table10 shows the results of using repair techniques. The running time increases
due to repair methods using time to become feasible solutions. There is an upward
trend in groups for the running time parameter.

Table11 reports the mean values and the SNR of mean values from Table10.
Configuration 15 shows the highest values on SNR. The coefficient of determination
R2 is the proportion of the variance in the dependent variable that is predictable from
the independent variable. The linear model produced has an R2 equal to 96.91%,
while the same coefficient considering the number of variables in the so-calledmodel
R ad justed is at 95.63%. The factor with biggest effect in f was repair method with
a delta value of 3.59, while the second one was% repair with 1.01, and the third one
k at 0.45 (see Table12). On Taguchi DOE, it means that the most influential factor
on f value is the repair method, and the less influential factor is k.

Figures5 and 6 have three sections. The first one includes the repair method graph.
It has the highest slope compared to k-graph and % repair . The second higher slope
is % repair , and finally, the third one is k.

The reference of performance is Larger-the-best (Table13), and considering infor-
mation in Fig. 5 the optimal vector P∗

1 is built by taking the highest value by graph:
{greedy repair, 10, 100} = {Ar [2], k = 10, % repair = 100%}. Similar behavior
was found in Fig. 6, resulting in the same P∗

1 .
p-value or probability value is, for a given statistical model, the probability that,

when the null hypothesis is true, the statistical summary would be greater than or
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Table 10 Summary of results on repair methods including groups A, B,C

Run Group A Group B Group C

f n t f n t f n t

1 23.93 5.33 23795.00 32.38 7.17 6100.50 27.12 6.00 3812.67

2 29.72 6.50 128335.00 37.97 8.33 24378.50 32.97 7.17 13373.17

3 29.87 6.67 131252.83 37.42 8.17 24207.67 32.60 7.17 13354.50

4 25.70 5.83 27947.83 31.80 7.00 7274.17 28.93 6.33 4666.00

5 30.20 6.67 127324.00 40.63 8.83 24577.17 35.80 7.83 13423.17

6 32.50 7.17 133610.17 41.37 9.00 24600.67 36.75 8.00 13336.83

7 27.08 6.33 30206.83 35.18 7.67 7605.00 29.77 6.50 4676.67

8 26.53 6.50 127708.67 43.88 9.50 25029.00 36.88 8.00 13541.83

9 33.85 7.67 130876.17 43.23 9.33 24283.17 36.78 8.00 13668.83

10 48.38 10.33 10659.17 54.87 12.00 3319.33 44.05 9.67 2192.83

11 50.15 10.67 81782.67 55.10 12.00 20523.83 45.72 10.00 11504.83

12 50.30 10.67 87429.33 55.10 12.00 20145.17 45.55 10.00 11326.83

13 49.40 10.50 10855.83 54.87 12.00 3416.67 45.57 10.00 2275.67

14 49.73 10.50 82172.83 55.33 12.00 20928.67 45.62 10.00 11689.83

15 50.97 10.83 87812.33 55.83 12.17 20630.33 45.73 10.00 11565.17

16 50.17 10.67 10872.33 55.00 12.00 3529.17 44.90 9.83 2323.33

17 48.55 10.33 82162.83 55.33 12.00 20984.83 45.77 10.00 11788.17

18 51.12 10.83 87538.33 55.35 12.00 20740.83 45.80 10.00 11616.33

Table 11 SNR in repair methods in groups A, B,C mean

Run Repair method k % repair f SNR

1 Random repair 2 5 27.811 28.8843

2 Random repair 2 50 33.550 30.5139

3 Random repair 2 100 33.294 30.4473

4 Random repair 5 5 28.811 29.1912

5 Random repair 5 50 35.544 31.0153

6 Random repair 5 100 36.872 31.3339

7 Random repair 10 5 30.678 29.7365

8 Random repair 10 50 35.767 31.0697

9 Random repair 10 100 37.956 31.5856

10 Greedy repair 2 5 49.100 33.8216

11 Greedy repair 2 50 50.322 34.0352

12 Greedy repair 2 100 50.317 34.0343

13 Greedy repair 5 5 49.944 33.9697

14 Greedy repair 5 50 50.228 34.0189

15 Greedy repair 5 100 50.844 34.1248

16 Greedy repair 10 5 50.022 33.9832

17 Greedy repair 10 50 49.883 33.9591

18 Greedy repair 10 100 50.756 34.1097
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Table 12 Repair methods response (Larger-the-best)

Level For SNR values For means

Repair
method

k % repair Repair
method

k % repair

1 30.42 31.96 31.60 33.36 40.73 39.39

2 34.01 32.28 32.44 50.16 42.09 42.55

3 32.41 32.61 42.51 43.34

Delta 3.59 0.45 1.01 16.79 1.78 3.95

Rank 1 3 2 1 3 2

Fig. 5 Response plot of repair methods effects for SNR on SGA results

equal to the actual observed results. The smallest the p-value the strongest the evi-
dence on the data.

Table14 in the first row, column seven (Repair method) the p-value is zero, denot-
ing high statistical evidence to support information on repair method values facing
the hypothesis proposed, similar result is found in the third row, column seven,
(% repair ) the p-value is 0.012. In the other case, for k there is not enough statisti-
cal evidence to support results.

The effect of repair methods in solutions is clear, (see f in Table10), which has
two groups, the second group has better results on f than the first one. As % repair
increase, the quality of solutions does too, this pattern is present in the rest of subsets
with size three in the above mentioned table. Another pattern is: the best solutions
are related to the percentage of repair being equal to 100%.
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Fig. 6 Response plot of repair methods effects for means on SGA results

Table 13 Types of problems and signal-to-ratio function [27]

Reference of performance SNR formulas Goal is to…

Smaller-the-best SN R = −10 log[ 1n
∑n

i=1 y
2
i ] Minimize the response

Nominal-the-best SN R = log μ2

σ 2 Target the response and you
want to base the S/N ratio on
means and standard deviations

Larger-the-best SN R = −10 log[ 1n
∑n

i=1
1
y2i

] Maximize the response

Table 14 Analysis of variance for SNR values

Source DF Seq SS Adj SS Adj MS F P

Repair
method

1 57.8843 57.8843 57.8843 214.39 0.000

k 2 0.6461 0.6461 0.3230 1.20 0.336

% repair 2 3.4942 3.4942 1.7471 6.47 0.012

Residual
error

12 3.2399 3.2399 0.2700

Total 17 65.2644

5.3 Summary of Results in Decoders Techniques Experiments

Decoders map from a solution space to another one in which it becomes simpler to
find a feasible solution for the SGA. Comparing decoders f values with the ones
from repair techniques, as Table15 shows, decoders have the worst performance to
solve the TTDP.
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Table 15 Summary of results in decoders in groups A, B,C

Run Group A Group B Group C

f n t f n t f n t

1 31.43 6.83 1927.17 37.02 8.17 597.00 35.57 7.83 413.67

2 31.40 7.17 1497.83 39.58 8.67 592.17 33.40 7.33 415.67

3 30.92 7.00 1497.67 39.98 8.83 596.00 32.05 7.00 416.83

4 30.17 6.67 1497.83 38.65 8.50 593.67 34.52 7.67 417.67

5 29.82 7.00 1498.33 36.48 8.00 597.50 33.48 7.33 416.00

6 31.22 7.00 1484.83 38.15 8.33 598.50 33.35 7.33 418.00

Table 16 SNR in decoder methods in groups A, B,C mean

Run Decoder method k f SNR

1 Random decoder 2 34.6722 30.7996

2 Random decoder 5 34.7944 30.8302

3 Random decoder 10 34.3167 30.7101

4 Greedy decoder 2 33.2611 30.4387

5 Greedy decoder 5 34.4444 30.7424

6 Greedy decoder 10 34.2389 30.6904

Table 17 Analysis of Variance for SNR values

Source DF Seq SS Adj SS Adj MS F P

Decoder
method

1 0.03657 0.03657 0.03657 2.24 0.273

k 2 0.02793 0.02793 0.01397 0.86 0.539

Residual
error

2 0.03260 0.03260 0.01630

Total 5 0.09710

The best solution of decoders corresponds to Taguchi’s DOE design three, having
k = 5 and a randomdecoder (Ad [1]) (see Table16). Table16 showsmean f and SNR
values. Configuration one is the second best of Taguchi’sDOEdesign. From the linear
model analysis, R2 value and R ad justed are both 100%. The largest coefficient
of the model was decoding method with 0.3065 while the strongest interaction was
k-decoder having 0.4602. On Taguchi DOE, this means that the most influential
factor on f is the decoding method, and the less influential factor is k. For decoders,
solutions are not good enough to exceed the solution values of repair methods.

Analyzing Table17 along with Table18, we found that ranking of factors have
not enough statistical evidence on data about the hypothesis, due to the short delta
showed by them. Same informationwe found onTable17, analyzing column F and P
(See Fig. 7 and Fig. 8).
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Table 18 Decoders response (Larger-the-best)

Level For SNR values For means

Decoder method k Decoder method k

1 30.78 30.62 34.59 33.97

2 30.62 30.79 33.98 34.62

3 30.70 34.28

Delta 0.16 0.17 0.61 0.65

Rank 2 1 2 1

Fig. 7 Response plot of decoders effects for SNR on SGA results

Step 7: Interpret Results

After analyzing the three families of constraint-handling techniques, we found that
the best results are provided by repair methods. However, the time to provide them
is high compared to decoder methods; thus decoders are good options in mobile
devices since they have constrained resources.

5.4 Optimal Scheduling Trip Plans Offered by SGA

Results on Table19 were obtained using the P∗
1 according to the experiments defined

in Sect. 4.2. Information on x about the sum of the weights of items in the knapsack
is included once the optimization process ended. Results show that the quality of
solutions from the SGA having a greedy repair method considerably outperforms
the other constraint-handling mechanisms analyzed here.
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Fig. 8 Response plot of decoders effects for means on SGA results

Through the x-values, we observed a recurring pattern in all experiments. In 23 out
of the 24 experiments per group, solutions found by the algorithm are near the optimal
solution; an optimal solution exists when the knapsack is full. This is based on the
sum of the weights of the items included in the knapsack (x). For example, Group A,
in 23 out of the 24 experiments, x ∈ Z : 41641.2 ≤ x ≤ 43176.0. considering that,
for any x-value, theoretically, their smallest weight of elements to be included in
the knapsack is 1800; and the knapsack capacity is C = 43200. The 23rd instance is
an atypical case that does not present such a property. However, its results have the
lowest fitness values. The before-mentioned behavior is repeated in the instance with
the same identifier by all groups. It occurs in the two remaining groups of instances.

Regarding the fitness of the solutions, in all groups, the algorithm obtains good
solutions. The mean of the fitness per group is 50.44, 49.53, and 49.11, respectively.
All groups presented atypical data. The 23rd instance presented the worst fitness for
Groups A and C. In the case of Group B, the 18th and 23rd instances performed the
worst fitness values, considering them to be atypical data for the group.

Regarding the number of PoIs (items) included in the knapsack, the mean per
group was 10.7, 10.8, and 10.7, respectively. The pattern of atypical data (worse
solutions) is the same as the case for the fitness value for groups A and B. But, Group
C does not present any atypical data in the places included in the knapsack.

Inspection of Table19 reveals that the performance of the SGA using the greedy
repairmethod is directly related to the dimensionality of the instances: the smaller the
instance (according to group classification) lengths the shorter the execution time.
In fact, the size of instances did not have profound implications in the quality of
solutions. The maximum time for one of 30 instances of Group A is about 90 s; and
for any of 30 instances of groups B and C, the maximum time is around 22 and 12s,
respectively.
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Table 19 Optimal scheduling trip plans offered by SGA using the P∗
1 , (Repair Techniques)

Instance Group A Group B Group C

f n x t f n x t f n x t

1 67.4 15 42729.6 20947 67.6 15 42843.2 11287

2 68.6 15 43066.6 22172 68 15 41765.2 11728

3 62.4 13 42883.2 87155 55 12 42370.6 21664 54.9 12 42013.2 13379

4 53.3 11 43172.8 98691 50.3 11 43080.8 20747 50.3 11 43080.8 13549

5 36.8 8 42694.8 13729

6 53.1 11 41880.3 90021 55.7 12 41735.6 23190 55.7 12 42175.6 12469

7 45.6 10 43177.2 21697 41.9 9 42288.6 13397

8 59.5 13 42994.2 89825 64.8 14 42502.8 11577

9 61.6 13 42176.8 88862 68.2 15 43012.8 11179

10 56.6 12 43156.2 90555 58.5 13 42944.4 24891

11 61.5 13 42886.2 87066 68.6 15 42828.4 22397 68.5 15 43180.2 12125

12 36 8 41084.6 84237 28.2 6 42709.2 22216

13 48.2 10 42742 90206 51 11 41811 21299 51.1 11 42770.4 12242

14 56.9 12 42796.6 86915 54.7 12 42596.6 22171

15 45.1 10 42903.8 91029 46.1 10 42127.2 21037

16 56.9 12 41641 91313

17 50.3 11 43150.8 94287 46.1 10 43164.4 22168 42 9 41944.8 13093

18 40.4 9 43163 78932 21.8 5 43036.4 22001 18.5 4 42840.8 12951

19 36 8 42400 88979 27.7 6 42301.6 24040 27.6 6 42222.4 12414

20 57.5 12 43096.8 91439 65.1 14 42859.6 21069 64.7 14 43120.6 11679

21 52 11 43176 90616 45.9 10 42733 22452 45.9 10 43174.8 13617

22 31.6 7 43093.8 23513

23 19.6 4 42428 85565 14.2 3 40272.4 25165 14.1 3 37423.4 13069

24 50.2 11 42893 98290 51.3 11 42963 11369

25 45.6 10 42491.6 92782 46.2 10 42391 22072 46.2 10 42646.6 11787

26 53 11 42783.2 94260 49.1 11 43085.2 25022 49.3 11 42950.4 13113

27 51.4 11 43030.6 91980 50.9 11 42872.2 22641 50.6 11 42900.4 12999

28 56.3 12 42860.8 94779 55.2 12 42508.2 12175

29 50.3 11 42462.8 23763 50.4 11 42379.2 12202

30 47.8 10 42760.2 96331 51.3 11 42614 20981 51.2 11 41720.2 12067

Figure9 shows that f P∗
1 of repair methods and f P∗

2 of decoders have the same
order of magnitude; as well as nP∗

1 and nP∗
2 . t P

∗
1 is almost five orders of magnitude

t P∗
2 is near to three orders of magnitude. Concluding that t P∗

1 is two orders of
magnitude larger than t P∗

2 , while the quality of solution is the same magnitude.
x P∗

1 and x P∗
2 are values that correspond to the sum of the objects’ weights that

have been included in the knapsack. Both are almost five orders of magnitude values.
If we compare OSTP by instance, the PoIs are different, because decoding handling
techniques move to SGA on non-equal space of solutions compared to the space
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Fig. 9 A logarithmic comparison of the constraint-handling techniques analyzed

explode-explored by SGA using repair methods. However OSTP, considering the
knapsack size, is full using repair methods or decoding procedures.

Information gathered from Fig. 9 comparison allows to build around which is
the technique that has greater effect on the quality of solutions. An answer is: the
TA works on mobile devices, repair, and decoding methods; t P∗

2 is two orders of
magnitude lower than t P∗

1 . Therefore, decoders are an excellent option to be imple-
mented in these before-mentioned devices (see Table20). In this study, we did not
find enough statistical evidence to select one of the analyzed methods.

Weobserve a hint of bias inOSTPgivenby theSGAusing configuration vector P∗
1 .

This bias occurs due to the way that the greedy repair method works. Table21 shows
an OSTP example. There, the highest values of the P/W value were selected by the
greedy repairmethod. In contrast, the configuration vector P∗

2 for the randomdecoder
technique has greater diversity in PoIs types than the ones from the configuration
vector P∗

1 for the greedy repair. This is due to historical places having high P/W
values (Profit (P) and Weight (W )), while random decoder does not use P/W values,
so bias related to P/W does not exist.

6 Conclusions and Future Work

Based on the results shown in this chapter, the following conclusions are drawn:
There is enough statistical evidence on data to support that the greedy repair

method is the best in terms of the quality of solutions. The greedy repair method
offers solutions that outperform the solutions given by the other methods. However,
it has a trend towards one type of PoIs on a personalized trip plan generated (see
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Table 20 Optimal scheduling trip plans offered by SGA using the P∗
2 , (Decoders)

Instance Group A Group B Group C

f n x t f n x t f n x t

1 41.0 9 42376.2 593 45.3 10 42979.2 411

2 45.2 10 42267.4 592 50.2 11 43177.8 411

3 36.5 8 42701.0 1480 41.4 9 42507.0 581 36.5 8 42705.8 428

4 31.5 7 40617.4 1453 32.2 7 42831.2 587 36.6 8 42976.4 409

5 27.7 6 42941.0 409

6 32.4 7 42220.2 1477 36.3 8 42946.6 584 37.1 8 42141.6 407

7 31.9 7 42445.6 589 32.0 7 42635.8 407

8 36.6 8 41256.8 1463 45.7 10 43147.8 407

9 35.4 8 43180.6 1484 45.4 10 42633.2 414

10 30.8 7 42581.2 1461 40.8 9 43162.2 647

11 34.7 8 42975.4 1463 40.6 9 42901.2 594 50.0 11 42974.8 409

12 24.4 6 42976.6 1423 23.2 5 43136.4 616

13 27.9 6 41789.8 1469 32.4 7 43175.2 566 36.1 8 42528.2 415

14 30.6 7 40600.0 1467 36.0 8 43170.2 595

15 27.6 6 43164.6 1474 32.4 7 42921.0 597

16 37.6 8 42054.2 1445

17 31.5 7 42407.4 1468 31.7 7 42277.8 624 32.2 7 42020.0 410

18 26.9 6 41501.0 1314 18.1 4 40845.4 594 18.3 4 43198.6 410

19 22.7 5 43148.0 1361 23.0 5 41740.8 599 23.1 5 42530.4 411

20 35.3 8 43122.6 1489 45.8 10 41736.4 597 41.0 9 42941.2 408

21 30.0 7 40930.4 1485 36.5 8 42530.2 593 32.4 7 42121.2 415

22 26.5 6 42795.8 612

23 18.2 4 42293.0 1397 14.4 3 42293.0 608 14.1 3 42501.2 403

24 31.4 7 42153.0 1484 36.1 8 42820.2 411

25 28.0 6 43049.2 1471 32.1 7 39690.4 596 32.0 7 42666.0 405

26 32.5 7 43063.0 1472 37.0 8 42745.6 598 36.5 8 42462.6 414

27 30.1 8 42217.2 1453 36.1 8 42821.2 588 32.1 7 42931.0 409

28 32.2 7 42709.0 1457 40.6 9 42776.4 411

29 36.9 8 42941.6 576 36.7 8 42888.8 417

30 32.3 7 43170.8 1481 40.2 9 42748.6 575 40.6 9 43091.6 410

Table21). In data analyzed, the P∗ vectors proposed by the Taguchi DOE, do not
confirm an effect or a significant difference between decoding techniques on the
SGA.

Although the greedy repair method offers solutions that outperform the solution
given by the other methods, considering the running time factor to offer a solution,
decoder techniques outperform greedy repair technique. The running time of the last
one is two orders of magnitude greater than decoder techniques.
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Table 21 Example of a personalized trip plan: PoI characteristics (Instance 1, Group B)

Place name Profit (P) Weight (W ) P/W

Personalized trip plan using P∗
1

San Juan de Dios Church 4.3 2032.6 0.002116

Parroquia de San Fernando 4.2 2315.8 0.001814

Rectory Our Lady of Guadalupe Queen of
Peace

4.7 2639.2 0.001781

Church of San Hipolito 4.6 2632.8 0.001747

Church of San Francisco 4.7 2739.8 0.001715

Parroquia del Inmaculado Corazón de María 4.6 2832.2 0.001624

Regina Coeli parish 4.4 2713.8 0.001621

Church of San Bernardo 4.4 2787.2 0.001579

Nuestra Señora de Loreto Church 4.3 2800.4 0.001535

Iglesia San Rafael Arcángel y San Benito Abad 4.6 3037.6 0.001514

Santuario Parroquial Nuestra Señora de los
Angeles

4.2 2803.2 0.001498

Parroquia de la Sagrada Familia 4.7 3153.2 0.001491

Parroquia Merced de las Huertas 4.4 3185.4 0.001381

Parroquia de la Santísima Trinidad y Nuestra
Señora del Refugio

4.6 3434.6 0.001399

Parroquia Coronación de Santa María de
Guadalupe

4.7 3621.8 0.001298

Personalized trip plan using P∗
2

Parroquia De La Resurrección Del Señor 4.4 4657.8 0.000945

Church of San Francisco 4.7 2739.8 0.001715

Museo Anahuacalli 4.7 7428.0 0.000633

Parroquia Francesa–Cristo Resucitado y
Nuestra Señora de Lourdes

4.7 4526.2 0.001038

Rectory Our Lady of Guadalupe Queen of
Peace

4.7 2639.2 0.001781

Museum of Torture 4.2 4201.0 0.001000

Parroquia de la Santa Cruz de la Herradura 4.6 5892.6 0.000781

Museo Jumex 4.6 5837.0 0.000788

INBA Galería José María Velasco 4.4 4454.6 0.000988

The random decoder will be implemented in TA because it offers more diverse
personalized trip plans with more diversified types of PoIs. In the solution proposed
by the random decoder, the knapsack is almost full. This has an impact on the tourist
experience since he can visit the recommended places without losing a lot of travel
time.

For future work, we propose two topics:
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Taguchi DOE, as a methodology for analysis, can gather relevant information.
However, Step 1: Identify control factors influencing quality solution has challenges
achieving its goal. Open questions in this work considering results on penalty func-
tions and decoding methods are:

• Hybrid methods on tuning could be used with the intention to know: Which are
penalty parameter Pp methods effective for penalty functions into a SGA resolving
the TTDP?

• Random decoder method by itself presents a good performance. Therefore, if a
hybrid decoder mechanism is included: Could this reduce the gap between repair
method and decoder mechanism on f -value?

Another futurework is related to the real-world instances here proposed, since they
have low complexity. However, instance 23 has characteristics that lead to the poor
performance of the SGA. Hence, it is necessary to analyze which are the challenges
imposed by this instance to the SGA.
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