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Abstract Liquid-phase synthesis processes of sulfide-based solid electrolytes can
be classified into two categories: suspension processes and solution processes. In
the solution process, the precursors of sulfide-based solid electrolytes form homoge-
nous solutions. This chapter summarizes the preparation of sulfide-based solid elec-
trolytes by the solution process. The development of argyrodite solid electrolytes
via precursor solution is also shown as a reprehensive of liquid-phase synthesized
sulfide-based solid electrolyte with a high conductivity of more than 10−3 S cm−1 at
25 °C.
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1 Preparation of Solid Electrolyte via Homogeneous
Solution

As described above, liquid-phase synthesis processes can be categorized into two
categories: suspension processes [1–20] and solution processes [21–38].

Suspension processes are conducted by stirring the starting materials in organic
solvents in which they have low solubility and the precursor particles of solid elec-
trolytes are suspended in the solvents as shown in Chap. 6 “Suspension Process”. In
the solution process, the precursors of sulfide-based solid electrolytes form homoge-
nous solutions. This process is mainly conducted via a dissolution-precipitation
process in which solid electrolytes prepared by solid-state or mechanochemical tech-
niques are dissolved into solvents. Some papers report the preparation of precursor
solutions of sulfide-based solid electrolytes solely by a liquid-phase process. Table 1
summarizes the preparation of sulfide-based solid electrolytes by the solution
process. Polar solvents such as amides [22–25], alcohols [21, 26–30, 36–38], and
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Table 1 Sulfide-based solid electrolytes prepared via homogeneous precursor solution

Electrolyte Starting
material

Solvent Pre-treatment Conductivity/S
cm−1

Refs.

Li3.25Ge0.25P0.75S4 Li2S,
GeS2,
P2S5

Hydrazine Solid phase 1.8 × 10−4 [22]

Li3PS4 Li2S,
P2S5

NMF Mechanochemical 2.6 × 10−6 [23]

Li3PS4 Li2S,
P2S5

NMF,
hexane

- 2.3 × 10−6 [25]

Amorphous Li3PS4 Li2S,
P2S5, S

DEGDME - 2.8 × 10−5 [33]

Li6PS5Cl Li2S,
P2S5,
LiCl

EtOH Mechanochemical 1.9 × 10−4 [36, 37]

Li6PS5Cl Li2S,
P2S5,
LiCl

EtOH Mechanochemical 6.0 × 10−4 [26]

Li6PS5Br Li2S,
P2S5,
LiBr

EP + EtOH - 3.4 × 10−5 [27]

Li6PS5Br Li2S,
P2S5,
LiBr

THF +
EtOH

- 3.1 × 10−3 [38]

Li6PS5BH4 Li2S,
P2S5,
LiBH4

THF +
EtOH

- 1.3 × 10−4 [28]

Li4SnS4 Li2S,
SnS2

Water Solid phase 1.4 × 10−4 [31]

Li4SnS4 Li2S,
SnS2

MeOH Solid phase 8.9 × 10−5 [29]

Amorphous
LiI-Li4SnS4

Li2S,
SnS2, LiI

MeOH Solid phase 4.1 × 10−4 [29]

Na3PS4 Na2S,
P2S5

NMF - 2.6 × 10−6 [39]

Na3SbS4 Na2S,
Sb2S3, S

MeOH Solid phase 2.3 × 10−4 [21]

Na3SbS4 Na2S,
Sb2S3, S

Water Solid phase 2.6 × 10−4 [21]

Na3SbS4 Na2S,
Sb2S3, S

Water - 1.2 × 10−3 [40]

NaI-Na3SbS4 Na2S,
Sb2S3,
S, NaI

MeOH Solid phase 7.4 × 10−4 [30]

(continued)
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Table 1 (continued)

Electrolyte Starting
material

Solvent Pre-treatment Conductivity/S
cm−1

Refs.

Na3SbS4-Na4SnS4 Na2S,
Sb2S3,
SnS2, S

Water Solid phase 3.0 × 10−4 [32]

water [31, 32] are generally utilized for the solution process. The first report was
made by Wang et al. in 2012 [22]; Li3.25Ge0.25P0.75S4 thin film with a conductivity
of 1.82× 10−4 S cm−1 was prepared by dissolving the solid electrolyte in hydrazine
to form a homogenous solution and subsequent drying at 240 °C. According to
a study by Teragawa and Tatsumisago et al., Li2S-P2S5 solid electrolyte having a
conductivity of 2.6 × 10−6 S cm−1 at room temperature was prepared using N-
methylformamide (NMF) [23–25]. Sulfide-based solid electrolytes can be dissolved
more stably in basic amide solvents than other solvents. Park and Jung et al. demon-
strated that a LiI-Li4SnS4 solution was obtained by dissolving Li4SnS4 synthesized
by the solid-phase method and LiI in methanol [29]. Amorphous LiI-Li4SnS4 solid
electrolytes with a high conductivity of 4.1× 10−4 S cm−1 were synthesized without
side reactions because of the high stability of SnS44− to oxide ions in nucleophilic
solvents.

2 Precursor Solution of Argyrodite Solid Electrolytes

Argyrodite-type solid electrolytes Li6PS5X (X= Cl, Br) have been reported to show
high conductivity [41–44]. Recently, they were found to be particularly suitable
for the solution process [36–38]. Thus, the focus here is on Argyrodite-type solid
electrolytes. Some tips on the preparation of Argyrodite-type solid electrolytes are
discussed.

Yubuchi et al. produced an ethanol solution of Li6PS5Cl by dissolving
mechanochemically prepared Li6PS5Cl in anhydrous ethanol [36, 37]. Argyrodite
Li6PS5X electrolytes with high ionic conductivities were also synthesized fromLi2S,
P2S5, and LiX solely via solution processing using a mixture of tetrahydrofuran
and ethanol as the solvent [38]. Scheme 1 shows a schematic illustration of the
liquid-phase synthesis of argyrodite-type Li6PS5Br and a picture of the obtained
precursor solution. The concentrations of Li6PS5Br were 5-10 wt%. Figure 1a shows
theRaman spectrum for the THF-EtOHprecursor solution of Li6PS5Br andLi6PS5Br
solid electrolyte particles prepared by liquid-phase or mechanochemical processes.
Raman bands originating from the PS43− unit were detected at around 420 cm−1 in
all the samples, indicating that THF and EtOH did not kinetically decompose the
PS43− unit. Figure 1b presents XRD patterns of Li6PS5Br solid electrolyte particles
prepared with different processes and heat treatment temperatures. All the samples
consisted of mainly lithium-ion conducting argyrodite Li6PS5Br crystals, along with
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Scheme 1 Schematic illustrations of liquid-phase synthesis of Li6PS5Br with both EtOH and THF

Fig. 1 a Raman spectra and b XRD patterns of Li6PS5Br prepared by liquid-phase process and
mechanochemical processes and c the conductivities at 25 °C of the green compacts of the argyrodite
electrolytes prepared by different heat treatment temperatures

a small amount of LiBr crystals. The crystallinity of Li6PS5Br was increased by
heat treatment at 550 °C. The Li6PS5Br prepared by liquid-phase process and heat
treatment at 550°C was confirmed to have the argyrodite structure (a= 9.9641(2) Å,
F3m, (216)) from the powderXRDpattern and theRietveld refinement analysis tech-
nique. Figure 1c shows the conductivities of green compacts (powder compressed
pellets) of the solution-synthesized Li6PS5Br. Conductivities of over 10−3 S cm−1

were achieved by heat treatment at 400-550°C. The sintered body at 550 °C showed
a high ionic conductivity of 3.1× 10−3 S cm−1, which is comparable to the conduc-
tivity ofLi6PS5Br prepared by the solid-phasemethod. These results show that liquid-
phase synthesis is a viable candidate for replacing conventional synthetic techniques.
Figure 2 summarizes the temperature dependence of the conductivities of liquid-
phase prepared solid electrolytes including both suspension and solution processes.
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Fig. 2 Arrhenius plots of
sulfide-based solid
electrolytes prepared by the
liquid-phase process. The
green compacts were
prepared by pressing the
obtained powder at room
temperature. The sintered
body was obtained by heat
treatment of the pellet. [1, 6,
18, 29, 38, 45]

Li7P3S11
Ref. 43 Li7P2S8 I 

Ref. 18

LiI-Li4SnS4
Ref. 29 

Li3PS4 (THF)
Ref. 1

Li3PS4 (EA)
Ref. 6

Li6PS5Br (HT550oC)
green compact 

Ref. 38

Li6PS5Br (550oC)
sintered body Ref. 38

25

Argyrodite Li6PS5Br shows higher conductivity than the other solid electrolytes
prepared by a liquid-phase process.

Rosero-Navarro et al. reported that the morphology of precipitated particles is
controllable by the addition of dispersant [26]. The addition of dispersant produced
homogeneous and submicron-sized Li6PS5Cl particles while the same conditions
without dispersant produced aggregates a few microns in size.

The generation mechanism of the sulfide-based solid electrolytes via solution
has not been fully clarified yet. Deeper insight into the mechanism will enable the
production of other kinds of sulfide-based solid electrolytes in the future.
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