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1 Problem Statement

User response prediction is the bread and butter of an ecommerce site. Every ecom-
merce site which is popular is running a response prediction engine behind the
scenes to improve user engagement and to minimize the number of hops or queries
that a user must fire in order to reach the destination item page which best matches
the user’s query. With the dawn of artificial intelligence (AI) and machine learning
(ML), the whole merchandising process, web-commerce carousel product arrange-
ment, personalized search results and user interactions can be driven by the click
of a button. Modern-day ML platforms enable a dynamic cascade of models with
different optimization functions which can be tuned towards a user’s preference, taste
and query trajectory.

In this paper, we talk about how Unbxd search services powers its user engagement
and response prediction behind the scene using a plethora of optimized features across
multiple channels and multiple domains. Elaborate feature engineering is deployed
to understand the user’s propensity to click. The search funnel lifecycle starts with a
personalized search impression, captures a user click, progresses towards a cart and
finally materializes into an order or sale. In this scenario, click through rate (CTR)
modelling is the binary classification task of predicting whether a user would click
given a ranked ordered set of products and conversion rate (CVR) modelling entails
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Fig. 1 View of user from search engine

the binary task of predicting whether user would purchase an item given he has shown
click interest.

Figure 1 demonstrates the view of the user from a search engine’s point and the
view of the merchandizing website from the user’s point. A user might be present
in any device linked through the browser cookie or the device ID and might choose
to initiate a search or browse session for the day; however, the click through and
the conversion might potentially happen at a different device and at a different place
(work or home) during a different time of day. Hence, an intelligent search engine
must be able to stitch the user’s trajectory seamlessly and understand the feature
combinations leading up to an event for better engagement.

2 Literature Survey

As we started thinking about the bipartite query-product matching problem, we drew
lot of similarity with the query-ads domain where personalizing the click prediction
benefits both the users and the advertisers. In (Cheng & Cantu-Paz, 2010) the authors
mention that the users will be presented ads in the manner that is most relevant to
them, and the advertisers will receive clicks from users who are more engaged with
the ads. In the search domain, however, most of the times search engines are burdened
with the task of retrieval of the most relevant documents to improve precision and
recall but in the process falling short of optimizing the business metrics like average
order value, price per session, engagement rates such as click through, etc. In feature-
based query performance as mentioned in (Kumar et al., 2018), the authors analyse
user’s behavioural patterns and build models to classify queries as high engagement
queries, high sale through rate queries, thereby providing the search engine means to
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drive its business metrics other than just optimizing precision and recall per search. In
(Zhou et al., 2018), researchers at Alibaba attempted to understand the deep interest
graph of a user and the context of an ad, thereby using deep learning to model higher
order feature interactions which drive a click. They have closely modelled the user’s
historical data as a sequence model and built a network which given the current
sequence can closely predict the future interactions of the user in terms of product
affinity and personalized ads. In (Guo et al., 2017), authors mention that during
their study in a mainstream apps market, they found that people often download apps
for food delivery at meal time, suggesting a second-order interaction between app
category and time stamp.

In this paper, we talk about the search business insights that Unbxd has gathered
being one of the largest ecommerce search service providers across domains like
electronics, furniture, fashion, grocery. These insights indicate strong correlations
between user, context, category, time of day features and the performance metrics of
aquery. Starting with the business problem, we have implemented distributed models
at scale which now define our Al or ML framework. Together with our inhouse A/B
testing framework, we have demonstrated the capability of our ML models to our
clients, and the overall journey has been summarized in this paper.

3 Algorithm

The naive model we started with at Unbxd is a composition of clickability and
buyability of a product learnt over historical clicks, carts, and orders. Here, we rank
all products which are deemed relevant for a particular query in descending order of
following score.

m=60 2
orders
Score = Y | (clicks/(a ")) (1 ts/clicks) ( 1 01
core 2 |:(c icks/(ae”"))(1 + carts/clic s)( + —_— ) :|e (1)

where r = rank of the product and a and b are constants and m is lookback days which
is number of days in past we want to consider. This approach is a relatively static
approach but captures the recency of clicks, carts, and orders and can be considered
a ranking by popularity score. The composite score acts like an overall boost factor
to be overlaid on indigenous search ranking implemented in Apache Solr Search
Platform (Solr) in order to bubble up the trending products. However, this score is
not nimble enough to adapt to dynamic ranking depending on the device or browser
or query context or location or time of day.

Each impression consists of various attributes extracted from the request side
parameters such as site, query, device, user, time of day, day of week, query category,
location. This impression must be now matched with the Solr retrieved document
attributes like product category, price, keywords, reviews, related products, tokens,
etc. Hence, now the problem morphs into a bipartite graph matching algorithm with
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certain constraints and measured by the ranking loss function. Such features are
called unigram features; since they only depend on one attribute; we can also use
advanced features like query-dwell-time, time-to-first-click, time-to-first-cart, time-
to-first-order, was-autosuggest-used, Wi-Fi-connection-type-of-user as mentioned in
(Cheng & Cantu-Paz, 2010) depending on the data collection exposed through the
search APIL.

Once we have collected such unigram features, we can fit the impressions data
complete with the outcome to a logistic regression model as a binomial classification
task which then estimates the probability of click given a new impression based on
its features.

Logistic regression model: Given any input event, we assume that its outcome is
a binary variable; i.e., it is either positive or negative. The logistic regression model
calculates the probability of a positive outcome with the following function:

logit(p) = log(%> where p = 1/(1 + e‘WTX) )

Here, x denotes vector of the features extracted from the input event and w is the
vector of corresponding feature weight that we need to learn. LR model is trained
with gradient descent. Assume that we have observed a set of events X = {x;} and
their outcomes Y = {y;}. Each event x; can be represented with a set of features
{xi;}. We want to find the set of parameters w by maximizing the data likelihood
P(YIX, w). This is equivalent to minimizing the following loss function:

L=—log P(Y|X,w) =) log P(yi|xi, w) 3)
i=0

The beta coefficients of the model and ROC curve helps us understand the discrim-
inating ability of the model between the positive and negative samples and ability to
explain CTR through features.

4 Feature Selection

InFig. 2, we show the factor map of the search session that is available to a third-party
search engine. Some interesting features have been described below:

Data fields of a search session

e Outcome—click: 0/1 for non-click/click (can be cart or order depending on the
model)
e Time Series Features

— hour_of_day: int from 0 to 23, (parse format is YY-MM-DD-HH from
session_time, so 14091123 means 23:00 on Sept. 11, 2014 UTC.)
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day_of_week: 0—6 (parse format is YY-MM-DD-HH from session_time)
is_weekday: Boolean feature
is_weekend: Boolean feature

o Site Features

site_id: int

site_domain: string

site_catalog_size: int
site_daily_aggregate_clicks: int
site_daily_aggregate_impressions: int
site_daily_aggregate_carts: int
site_daily_aggregate_orders:int

e Product Features

product_category_in_serp: product category of search result page
product_id_in_serp: product id of search result page

product_pos_in_serp: product position in search result page

product_age (in terms of freshness: no of days old from the time of impression)
product_dynamic_popularity_score

product_num_stock_units

e Device Features

device_id
device_ip
device_model
device_type

e Location Features

country
pincode
region
latitude
longitude

e Query Features

query_tokens

query_length

query_refinements_in_same_session

query_entities (must have tokens, synonyms, entity recognition output—brand,
product type, model no etc.)

query_daily_aggregate_clicks

query_daily_aggregate_orders

query_daily_aggregate_carts
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e To account for position bias, we use a position-normalized statistic known as
clicks over expected clicks (COEC) as defined in Cheng & Cantu-Paz, 2010

R
COEC = RZV;OC’
> —oir, xCTR,
where the numerator ¢, is the total number of clicks received by a query-product
pair; the denominator can be understood as the expected clicks (ECs) that an average
product would receive after being impressed ir, times at rank r, and CTR, is the
average CTR for each position in the result page (up to R), computed over all queries
and products. We can obtain COEC statistic for specific query-product pairs, and this
statistic is a good predictor of click probabilities as mentioned in (Cheng & Cantu-
Paz, 2010). However, many data points are needed for this statistic to be significant
but data for specific query-product pairs can be sparse and noisy.

In consideration of efficiency and robustness, we need to filter out certain types
of features and this process is called feature pruning.

e Features with too few impressions. The simplest approach is to set a threshold on
the number of impressions and filter out features with less impressions than the
threshold. This step reduces the model size. However, one issue with this approach
is that new features may get filtered out too easily. An alternative method is to
put a threshold on the average number of impressions (averagelmps) per feature
defined as:

I total Imps + ¢ @
average Imps =
& P current Time — first Occurrence Time

where totallmps is total number of impressions received by the feature, currentTime
is time of measurement in secs, firstOccurenceTime is time when feature received
first impression and the constant ¢ insures that new features will not be filtered out
immediately.

e Features that are too old. If a feature is no longer active for a certain period, we
may want to filter it out. In a fast-changing search space, features can become
deprecated daily. Filtering such features out improves system efficiency.

e Features that have close to 0 weights. If a feature weight is close to 0, it means
that this feature does not significantly affect the prediction, and if we filter this
feature out, there should be little performance impact.

However, without expert feature engineering, exploring higher order features become
daunting and learning sophisticated feature combinations behind user behavior is crit-
ical in maximizing CTR for search systems. The wide and deep model (Tze et al.,
2016) from Google provides insights such as considering low- and high-order
feature combinations simultaneously brings additional improvement over the cases
of considering either alone. To this effect, we are in the process of implementing a
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factorization-machine-based neural network for cross product transformations of the
original feature space, but it is work in progress.

5 Business Insights

We present in this section some of the business insights our analysts have come
up with which provides the intuition behind feature-based response prediction.

Figure 3 provides the intuition that country, region, and zip code are differentiator
signals for deciding the propensity of the user to purchase.

In Figs. 4 and 5, we show that by channel (mobile, desktop) and by day of week
(weekday vs. weekend) our search sessions volumes and conversions vary. We
see that the weekday traffic post 9 am comes mostly from desktop which indicates
a user browsing or searching from workplace leading up to a lower average order
value (AOV) compared to a user logging in the weekend over mobile when the
AOV and engagement both peak, hence opening up an opportunity window for
response prediction models to promote bigger ticket items for a query during this
time and thereby maximizing conversions and AOV.

In the fourth and fifth graph Figs. 6 and 7, we compare new versus existing users
and their search volumes and conversions over various channels—social media,
email, display ads, private apps, organic search, etc. By tracking the user type and
channel, response prediction models can effectively maximize CTR and CVR.

In the sixth and seventh graphs Figs. 8 and 9, we show how location signals
and query category can be correlated. This opens up the opportunity to response
predictor models to utilize the user’s location (work or home) and the region
to optimize the search results for certain query categories. However for staple
products like laundry the business metrics remain fairly uniform as shown in
Fig. 10.

In the last graph Fig. 11 we note that behaviour in cities is markedly different than
behaviour in non-urban areas.

6 ML Architecture

Here, in Fig. 12 we present the details of the ML relevancy platform we have built
at Unbxd and how we use the platform to power our scalable distributed logistic
regression-based modelling workflow for response prediction.

Distributed LR Training Details in Spark

e The algorithm takes the following inputs:
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#Users by Device-- Weekdays vs. Weekend - desktop

Hour of Day
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Fig.4 Percentage of desktop users on weekdays versus weekend. The dots indicate conversion value
(check y-axis to the right), whereas the text is the Avg. order value. What is evident is the decrease in
desktop usage from morning to evening (work hours) on weekends compared to weekdays. Further,
the jump in conversion from weekdays to weekends is accompanied by a significant jump in Avg.
order value as well

an existing model path or it can be empty

a new set of training data on a periodical basis, where each data point represents
an impression that consists of a set of attributes, the total number of impressions
and the number of impressions with positive outcomes.

model output path to save the new model

configuration file to control the parameters.

The training algorithm proceeds as follows:

1. Read the configuration file to get all the training parameters.
2. Decay the number of data points/impressions in the existing model.
3. Fori=1,2,...,n, where n is the number of batches to split the data.

Forj=1,2, ..., m, where m is the max number of iterations to run for each batch.

1. Calculate the feature weight updating factor with a map-reduce job using only
the impressions which are part of the ith batch.

2. Apply the feature weight updates to the current model.

Check for model convergence and continue to next batch if converged.

4. Feature pruning based on the criterion mentioned above.

»

Some explanation about the algorithm:
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% of Total Users

#Users by Device-- Weekdays vs. Weekend - mobile

Hour of Day

Conversion

Weekday (group)

Weekdays

Fig.5 Percentage of mobile users on weekdays versus weekend. The dots indicate conversion value
(check y-axis to the right), whereas the text is the Avg. order value. What is evident is the increase in
mobile usage from morning to evening (work hours) on weekends compared to weekdays. Further,
the jump in conversion (or Avg. order value) from weekdays to weekends is not as strong as in
desktop

To determine a dynamic step size, we consider the number of impressions, while
calculating the feature weight updating factor. Instead of using the raw counts,
we want to weigh the recent events higher and therefore apply an exponentially
decaying weights to the number of events.

From Step 3, we know that the total number of map-reduce jobs is equal to the
product of the number of batches and the number of iterations. If a batch converges
before reaching the max number of iterations, we may have fewer jobs. If all the
feature weight updating factors are close to 0, we consider the model to have
converged with respect to the current batch of training data.

The mapper class is designed to extract features from training data, make a predic-
tion based on the current model, and output a weight updating factor for each
feature.

The reducer class is responsible for aggregating all the features stats. For each
feature, the reducer outputs the sum of weight updating factors, the total number
of events and the earliest timestamp.

The training parameters typically include the following:

num_batches: number of batches we split the data into.
max_num_iterations: maximum number of iterations we train for each batch.
decay_factor: a time decay factor we apply to the existing model.
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Fig. 12 ML architecture

7 A/B Framework

\ L E‘ron =
RERANKING

MODEL

converge_threshold: a threshold to decide model training convergence.
filtering_threshold: a threshold to filter out less frequent features.
new_feature_bonus: allows new features to pass the filtering more easily.
filter_by_total_events: whether to filter by total or average events.
param_alpha, param_beta, param_gamma: learning step size parameters.
prior: average response value.
minimum_update_threshold: filter out updating factors below this threshold.
minimum_update_events: filter out updating factors with too few events.

When any response prediction or ranking model tries to change some of the system
parameters, we need to measure its impact. How do we measure impacts of the
model? To this effect, we have designed an inhouse A/B experimentation framework
which works on these principles. Working within the space of incoming traffic and
the system parameters, we have three key concepts:

e A domain is a segmentation of traffic.
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e A layer corresponds to a subset of the system parameters or competing algorithms
which have the same optimization criterion.

e An experiment is a segmentation of traffic where zero or more system parameters
can be given alternate values that change the path how the incoming request is
processed.

Domains contains layers and layers contains experiments. Domains let us have
different partitioning of system parameters. For example, we can have a non-
overlapping domain where we can change lots of parameters that might not normally
be used together. Since a layer corresponds to subset of parameters that cannot be
changed independently, experiments within a layer cannot run together for a request.
Experiments from different layers however are free to run together on a request.
Experiment allocation within a layer is based on some diversion type available in the
request. This is to ensure stickiness with respect to that type. Diversion type can be
device ID or browser cookie or query string. Experiments that target user behaviour
would usually want that the users do not pop in and out of the experiment and there-
fore need user stickiness. Some experiments do not need user level stickiness but
would operate at query level and therefore would want stickiness at query level. We
partition the traffic space into say 1000 buckets and assign experiments within a layer
to bucket ranges. The request is mapped to a bucket using a function of the bucket
ID and layer modulus the number of buckets, e.g., f(id, layer) % 1000. Note that this
function takes layer as an argument to ensure that the experiments in different layers
are independently diverted.

The graph below, Fig. 13 shows the result of A/B experimentation between a
control group and a response prediction model group. Unbxd clearly shows an uptick
of 10% in CTR for torso and tail queries in terms of search volumes (where torso
and tail refers to terciles of search volume distribution) and AOV for an American
site where the users where shown search results ranked by the response predictor
algorithm by the probability of click.

40
35
30 /\W\W
25
20

CTR

15
10

Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

e Control Test

Fig. 13 Control versus test in A/B setting
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8 Future Work

From the above feature-based response prediction model, we have been able to both
personalize the search results for a user given a query and improve the CTR and
CVR which is the revenue tracking metrics of the search business. Through feature-
based ranking models, we have mostly captured the general trends of clickability of a
product and improved the business performance metrics by driving a higher average
order value. However, we have not explored the option of serendipity or cross learning
when it comes to surprising the user or providing related product recommendation
in the same search session. Window shopping and serendipity shopping is another
paradigm which is also known to improve engagement of a shopper and a site. In
literature, cross-selling products, “bought also bought”, “viewed also viewed” are
common basis for recommendations. In search however since user’s context is set
through a query, we cannot drift afar, but using an epsilon greedy approach or multi-
armed bandits, we can exploit our feature-based predictions and explore with a subtle
mix of random predictions. This would be the next set of ranking algorithms that we
look forward to working on in the future.
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