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1 Introduction

The log-logistic distribution, henceforth referred to as LLD, is a well-known life
distribution that finds widespread application in different fields such as survival
analysis, hydrology, economics, and networking.

It has been used in regression models for survival data (see Bennet 1983) and also
as a parametric model for events whose failure rate increases initially and decreases
later, for example, the mortality rate from cancer following diagnosis or treatment.
Its application can also be seen in the field of hydrology for modeling precipitation
and stream flow rates. For example, to analyze Canadian precipitation data Shoukri
et al. (1988) showed that LLD is a suitable choice whereas Fahim and Smail (2006)
used LLD formodeling streamflow rates. The LLD is also known as Fisk distribution
in the field of economics where it has been utilized to describe the distribution of
wealth or income (see Fisk 1961). In the field of computer science and networking,
LLD has been used as a more accurate probabilistic model (see Gago-Benítez et al.
2013 for details).

The LLD is very similar in shape to the log-normal distribution but has the added
advantage of being mathematically more tractable because of its closed form dis-

S. Ghosh (B)
Department of Mathematical Statistics and Actuarial Science, University of the Free State,
Bloemfontein, South Africa
e-mail: shyamalmath2012@gmail.com

P. Majumder
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
e-mail: priyankamjmdr@gmail.com

M. Mitra
Department of Mathematics, Indian Institute of Engineering Science and Technology,
Howrah, India
e-mail: murarimitra@yahoo.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. K. Laha (ed.), Applied Advanced Analytics, Springer Proceedings in Business
and Economics, https://doi.org/10.1007/978-981-33-6656-5_14

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6656-5_14&domain=pdf
mailto:shyamalmath2012@gmail.com
mailto:priyankamjmdr@gmail.com
mailto:murarimitra@yahoo.com
https://doi.org/10.1007/978-981-33-6656-5_14


158 S. Ghosh et al.

tribution function and its quite flexible hazard rate function. It is a good alternative
to the Weibull, whose hazard rate function is either increasing or decreasing, i.e.,
monotonic, depending on the value of its shape parameter. As such, the use of the
Weibull distributionmay be inappropriate where the course of the disease is such that
mortality reaches a peak after some finite period and then slowly declines. Addition-
ally, the LLD is also connected to extreme value distributions. As showed by Lawless
(1986), the Weibull distribution has paramount importance in reliability theory as
it is the only distribution that belongs to two families of extreme value distribu-
tions, each of which has essential qualities for the study of proportional hazard and
accelerated failure times. Thus, the LLD possesses the nice characteristic of being a
representative of both these families.

A random variable (r.v.) X is said to have the LLD with shape parameter α and
scale parameter γ, written as LLD(α, γ), if its probability density function (pdf) is
given by

f (x;α, γ) = αγ(γx)α−1

(1 + (γx)α)2
, x ≥ 0, (α > 0, γ > 0). (1.1)

Just as one gets the log-normal and log-Pearson distributions from normal and Pear-
son distribution, LLD is obtained by taking the logarithmic transformation of the
logistic distribution. The LLD is also a special case of the ‘kappa distributions’
introduced by Mielke and Johnson (1973). Another interesting fact is that LLD can
also be obtained from the ratio of two independent Stacy’s generalized gamma vari-
ables (see Malik 1967; Block and Rao 1973). Even though different properties of
this distribution have been explored intensely by many researchers, the stochastic
comparisons of their extreme order statistics have not been studied so far. This is the
primary motivation behind the present work.

But first, a few words about order statistics which occupy a place of remarkable
importance in both theory and practice. It play a vital role in many areas including
reliability theory, economics, management science, operations research, insurance,
hydrology, etc., and have received a lot of attention in the literature during the last
several decades [(see, e.g., the two encyclopedic volumes by Balakrishnan and Rao
(1998a, b)]. Let X1:n ≤ · · · ≤ Xn:n represent the order statistics corresponding to the
n independent random variables (r.v.’s) X1, . . . ,Xn.

It is a well-known fact that the kth order statistic Xk:n represents the lifetime of a
(n − k + 1)-out-of-n systemwhich happens to be a suitable structure for redundancy
that has been studied by many researchers. Series and parallel systems, which are the
building blocks of many complex coherent systems, are particular cases of a k-out-
of-n system. A series system can be regarded as a n-out-of-n system, while a parallel
system is a 1-out-of-n system. In the past two decades, a large volume of work has
been carried out to compare the lifetimes of the series and parallel systems formed
with components from various parametric models; see Fang and Zhang (2015), Zhao
and Balakrishnan (2011), Fang and Balakrishnan (2016), Li and Li (2015), Torrado
(2015), Torrado and Kochar (2015), Kundu and Chowdhury (2016), Nadarajah et al.
(2017), Majumder et al. (2020) and the references therein.
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Here, we investigate comparison results between the lifetimes of series and par-
allel systems formed with LLD samples in terms of different ordering notions such
as stochastic order, hazard rate order, reversed hazard rate order, and likelihood ratio
order. These orders are widely used in the literature for fair and reasonable com-
parison (see Shaked and Shanthikumar 2007). The rest of the paper is presented as
follows. Preliminary definitions and useful lemmas can be found in Sect. 2. In Sect. 3,
we discuss the comparison of lifetimes of parallel systems with heterogeneous LLD
components. We also study the comparison in the case of the multiple-outlier LLD
model. In Sect. 4, ordering properties are discussed for the lifetimes of series systems
with heterogeneous LLD components.

Throughout this article, ‘increasing’ and ‘decreasing’ mean ‘nondecreasing’ and

‘nonincreasing,’ respectively, and the notation f (x)
sign= g(x) implies that f (x) and

g(x) are equal in sign.

2 Notations, Definitions, and Preliminaries

Here, we review some definitions and various notions of stochastic orders and
majorization concepts.

Definition 1 (Shaked and Shanthikumar 2007) Let X and Y be two absolutely con-
tinuous r.v.’s with cumulative distribution functions (cdfs) F(·) and G(·), survival
functions F̄(·) and Ḡ(·), pdfs f (·) and g(·), hazard rates hF (·) and hG(·), and reverse
hazard rate functions rF(·) and rG(·), respectively.
(i) If F̄(x) ≤ Ḡ(x) for all x ≥ 0, then X is smaller than Y in the usual stochastic

order, denoted by X ≤st Y .
(ii) If Ḡ(x)/F̄(x) is increasing in x ≥ 0, then X is smaller than Y in the hazard rate

order, denoted by X ≤hr Y .
(iii) If G(x)/F(x) is increasing in x ≥ 0, then X is smaller than Y in the reversed

hazard rate order, denoted by X ≤rh Y .
(iv) If g(x)/f (x) is increasing in x ≥ 0, then X is smaller than Y in the likelihood

ratio order, denoted by X ≤lr Y .

From Shaked and Shanthikumar (2007), it is well established that

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y

and
X ≤lr Y =⇒ X ≤rh Y =⇒ X ≤st Y

but the opposite implications do not hold in general. Also, X ≤hr Y � X ≤rh Y .
The notion ofmajorization is a key concept in the theory of stochastic inequalities.

Let (x(1), x(2), . . . , x(n)) denote the components of the vector x = (x1, x2, . . . , xn)
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arranged in ascending order. Let I n be a subset of the n-dimensional Euclidean space
R

n, where I ⊆ R and x = (x1, x2, . . . , xn) be a vector in I n.

Definition 2 The vector x is said to be majorized by the vector y, denoted by x
m� y,

if
j∑

i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . , n − 1

and
n∑

i=1

x(i) =
n∑

i=1

y(i).

In addition, the vector x is said to be weakly supermajorized by the vector y,
denoted by x �w y, if

j∑

i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . , n.

Clearly,

x
m� y =⇒ x �w y. (2.1)

Definition 3 A real-valued function φ : R
n → R is said to be Schur-convex (Schur-

concave) on R
n if x

m� y implies φ(x) ≤ (≥)φ(y) for all x, y ∈ R
n.

An extensive and comprehensive review on majorization can be found in Marshall
et al. (2011).

We now introduced somewell-known results whichwill be used in the subsequent
sections to prove our main theorems.

Lemma 1 A real-valued function ψ on In has the property

ψ(x) ≤ ψ(y) whenever x �w y

if and only if ψ is decreasing and Schur-convex on In.

Lemma 2 (Schur–Ostrowski criterion). A continuously differentiable function φ :
I n → R is Schur-convex (Schur-concave) if and only if φ is symmetric and

(xi − xj)

(
∂φ(x)
∂xi

− ∂φ(x)
∂xj

)
≥ (≤)0

for all i 	= j and x ∈ I n.

The following two lemmas are easy to establish.
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Lemma 3 For x ≥ 0, the function κ(x) := (1 + xα)−1 is decreasing in x for any
α > 0 and convex in x for 0 < α ≤ 1. Also, the function τ (x) := 1 − κ(x) is concave
in x for 0 < α ≤ 1.

Lemma 4 For x ≥ 0, the function ϕ(x) := −αxα−1(1 + xα)−3 is increasing in x for
0 < α ≤ 1.

3 Order Relations for Parallel Systems

This section considers stochastic comparisons between the lifetimes of parallel sys-
tems whose components arise from two sets of heterogeneous LLD samples with a
common shape parameter but different scale parameters and vice versa.

Let Xγi for i = 1, . . . , n be n independent nonnegative r.v.’s following LLD(α, γi)
with density function given by (1.1). Let the lifetime of the parallel system formed
from Xγ1 ,Xγ2 , . . . ,Xγn be X

γ
n:n. Then, its distribution and density functions are given

by

Fγ
n:n(x) =

n∏

i=1

Fγi (x), f γ
n:n(x) =

n∏

i=1

Fγi (x)
n∑

i=1

rFγi
(x),

and the corresponding reversed hazard rate function is

rγ
n:n(x) = f γ

n:n(x)
Fγ
n:n(x)

=
n∑

i=1

rFγi
(x).

At first, we compare two different parallel systems with common shape parameter
under reversed hazard rate ordering.

Theorem 1 For i = 1, 2, . . . , n, let Xγi and Xβi be two sets of independent r.v.’s such
that Xγi ∼ LLD(α, γi) and Xβi ∼ LLD(α,βi) where γi,βi > 0. Then for 0 < α ≤ 1,

(γ1, . . . , γn)�w(β1, . . . ,βn) =⇒ X γ
n:n ≤rh X

β
n:n.

Proof Fix x ≥ 0. The reversed hazard rate function of X γ
n:n is

rγ
n:n(x) =

n∑

i=1

αx−1 (1 + (γix)
α)

−1 = αx−1
n∑

i=1

κ(γix)

where κ(x) is defined as in Lemma 3. From Lemma 1, it is sufficient to prove that,
for every x ≥ 0, rγ

n:n(x) is decreasing in each γi and a Schur-convex function of
(γ1, . . . , γn). Now from the Proposition C.1 of Marshall et al. (2011), to demonstrate
the Schur-convexity of rγ

n:n(x), it is sufficient to prove the convexity of κ(x). Thus,
using Lemma 3 the proof follows from Definition 1.
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One can have the following corollary which is an easy consequence of the relation
(2.1).

Corollary 1 For i = 1, 2, . . . , n, let Xγi andXβi be two sets of independent r.v.’s such
that Xγi ∼ LLD(α, γi) and Xβi ∼ LLD(α,βi) where γi,βi > 0. Then for 0 < α ≤ 1,

(γ1, . . . , γn)
m� (β1, . . . ,βn) =⇒ X γ

n:n ≤rh X
β
n:n.

The above theorem ensures that for two parallel systems having independent
LLD components with common shape parameter, the majorized scale parameter
vector leads to corresponding system lifetime smaller in the sense of the reversed
hazard rate ordering. In the following theorem, we investigate whether the systems
are ordered under likelihood ratio ordering for the case n = 2.

Theorem 2 For i = 1, 2, let Xγi and Xβi be two sets of independent r.v.’s such that
Xγi ∼ LLD(α, γi) and Xβi ∼ LLD(α,βi) where γi,βi > 0. Then for 0 < α ≤ 1,

(γ1, γ2)
m� (β1,β2) =⇒ X γ

2:2 ≤lr X
β
2:2.

Proof In view of Definition 1, it is enough to show that

f β
2:2(x)
f γ
2:2(x)

= Fβ
2:2(x)

Fγ
2:2(x)

· r
β
2:2(x)
rγ
2:2(x)

is increasing in x. (3.1)

From Corollary 1, we already have Fβ
2:2(x)/F

γ
2:2(x) is increasing in x for 0 < α ≤ 1.

So, (3.1) implies that it only remains to show thatψ(x) = rβ
2:2(x)/r

γ
2:2(x) is increasing

in x. Now the reversed hazard rate function of X β
2:2 is given by

rβ
2:2(x) = αx−1

[
(1 + (β1x)

α)−1 + (1 + (β2x)
α)−1

]
.

Then, ψ(x) = κ(β1x) + κ(β2x)

κ(γ1x) + κ(γ2x)
, where κ(x) is defined as in Lemma 3. Observe that

κ′(x) = −αxα−1(1 + xα)−2 = αx−1κ(x)η(x)

where η(x) = κ(x) − 1. Differentiating ψ(x) with respect to x, we get

ψ′(x) sign= [
κ′(β1x) + κ′(β2x)

]
[κ(γ1x) + κ(γ2x)] − [κ(β1x) + κ(β2x)]

[
κ′(γ1x) + κ′(γ2x)

]

sign= [κ(β1x)η(β1x) + κ(β2x)η(β2x)] [κ(γ1x) + κ(γ2x)]

− [κ(β1x) + κ(β2x)] [κ(γ1x)η(γ1x) + κ(γ2x)η(γ2x)]
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Thus showing that ψ(x) is increasing in x, i.e., ψ
′
(x) ≥ 0 ∀ x ≥ 0, is equivalent to

proving

φ(β1,β2) = κ(β1x)η(β1x) + κ(β2x)η(β2x)

κ(β1x) + κ(β2x)

is Schur-convex in (β1, β2). Now, the function ϕ(x) defined in Lemma 4 turns out to
be κ(x)η′(x), where κ(x) and η′(x) are defined as before. We thus have

∂φ

∂β1

sign= [
κ′(β1x)η(β1x) + κ(β1x)η

′(β1x)
]
[κ(β1x) + κ(β2x)]

− [κ(β1x)η(β1x) + κ(β2x)η(β2x)]κ
′(β1x)

= κ′(β1x)κ(β2x) [η(β1x) − η(β2x)] + ϕ(β1x) [κ(β1x) + κ(β2x)] .

and

∂φ

∂β2

sign= κ(β1x)κ
′(β2x) [η(β2x) − η(β1x)] + ϕ(β2x) [κ(β1x) + κ(β2x)] .

Thus,

∂φ

∂β1
− ∂φ

∂β2

sign= [η(β1x) − η(β2x)]
[
κ′(β1x)κ(β2x) + κ′(β2x)κ(β1x)

]

+ [κ(β1x) + κ(β2x)] [ϕ(β1x) − ϕ(β2x)] .

From Lemma 4, ϕ(x) is increasing in x for 0 < α ≤ 1. This together with the obser-
vation β1 ≤ β2 and the facts that κ(x) and η(x) are decreasing functions of x yields

(β1 − β2)

(
∂φ

∂β1
− ∂φ

∂β2

)
≥ 0.

Hence, from Lemma 2 the theorem follows.

It is worth mentioning here that for α > 1 the above result may not hold, as the
next example shows.

Example 1 Let (Xγ1 , Xγ2) and (Xβ1 , Xβ2) be two sets of vectors of heterogeneous
LLD r.v.’s with shape parameter α = 1.5 and scale parameters (γ1, γ2) = (0.5, 1.5)

and (β1,β2) = (0.3, 1.7). Then obviously (γ1, γ2)
m� (β1,β2) but f

β
2:2(x)/f

γ
2:2(x) is

not monotonic as is evident from Fig. 1. Hence in Theorem 2, the restriction over α
is necessary to get the ≤lr order comparison.

Next theorem shows that the likelihood ratio order holds among two parallel
systems formed with heterogeneous LLD components where heterogeneity occurs
in terms of scale parameters.
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Fig. 1 Plot of f β
2:2(x)/f

γ
2:2(x) when α = 1.0, γ = (0.5, 1.5), and β = (0.3, 1.7)

Theorem 3 Let Xγ1 , Xγ be independent r.v.’s with Xγ1 ∼ LLD(α, γ1) and Xγ ∼
LLD(α, γ)where γ1, γ > 0. Let Yγ∗ , Yγ be independent r.v.’s with Yγ∗ ∼ LLD(α, γ∗)
andYγ ∼ LLD(α, γ)whereγ∗, γ > 0. Suppose thatγ∗ = min(γ, γ1, γ∗) then for any
α > 0,

(γ1, γ)�w(γ∗, γ) =⇒ X2:2 ≤lr Y
∗
2:2.

Proof The reversed hazard rate function of X2:2(x) has the form

r2:2(x) = αx−1
[
(1 + (γ1x)

α)−1 + (1 + (γx)α)−1
]
.

Letψ(x) = r∗
2:2(x)
r2:2(x)

= (1 + (γx)α)−1 + (1 + (γ∗x)α)−1

(1 + (γx)α)−1 + (1 + (γ1x)α)−1
. Now utilizing Eq. (3.1) and

Theorem 1, it only remains to show thatψ(x) is increasing in x, i.e.,ψ′(x) ≥ 0, ∀ x ≥
0. Now differentiating ψ(x) with respect to x and using the functions κ(x) and η(x)
defined earlier, we get

ψ′(x) sign=
[
(1 + (γ1x)

α)−1 + (1 + (γx)α)−1
] [

−(γx)α(1 + (γx)α)−2−(γ∗x)α(1 + (γ∗x)α)−2
]

−
[
(1 + (γx)α)−1 + (1 + (γ∗x)α)−1

] [
−(γx)α(1 + (γx)α)−2−(γ1x)

α(1 + (γ1x)
α)−2

]

= [
κ(γx)η(γx) + κ(γ∗x)η(γ∗x)

]
[κ(γ1x) + κ(γx)]

− [
κ(γx) + κ(γ∗x)

]
[κ(γ1x)η(γ1x) + κ(γx)η(γx)]

= κ(γ1x)κ(γ
∗x)

[
η(γ∗x) − η(γ1x)

] + κ(γ1x)κ(γx) [η(γx) − η(γ1x)]

+ κ(γx)κ(γ∗x)
[
η(γ∗x) − η(γx)

]
.

Since (γ1, γ)�w(γ∗, γ) and γ∗ = min(γ, γ1, γ∗), two cases may arise:
Case I: γ∗ ≤ γ ≤ γ1. It can be easily seen that ψ′(x) ≥ 0, using the facts κ(x) ≥
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0 ∀ x ≥ 0 and η(x) is decreasing in x.
Case II: γ∗ ≤ γ1 ≤ γ. Again utilizing the above facts, we have

ψ′(x) ≥ κ(γ1x)κ(γx)
[
η(γ∗x) − η(γ1x)

] + κ(γ1x)κ(γx) [η(γx) − η(γ1x)]

+ κ(γx)κ(γ1x)
[
η(γ∗x) − η(γx)

]

= 2κ(γx)κ(γ1x)
[
η(γ∗x) − η(γ1x)

] ≥ 0.

Thus in both the cases, one has ψ(x) is increasing in x. Hence, the theorem follows.

Nowwe establish a comparison between parallel systems based on two sets of hetero-
geneous LLD r.v.’s with common scale parameter and majorized shape parameters
according to stochastic ordering.

Theorem 4 For i = 1, 2, . . . , n, let Xαi and Xβi be two sets of independent r.v.’s with
Xαi ∼ LLD(αi, γ) and Xβi ∼ LLD(βi, γ) where αi,βi > 0. Then for any γ > 0,

(α1, . . . ,αn)
m� (β1, . . . ,βn) =⇒ X α

n:n ≤st X
β
n:n.

Proof The distribution function of X α
n:n is

Fα
n:n(x) =

n∏

i=1

Fαi (x) =
n∏

i=1

(γx)αi (1 + (γx)αi )−1 =
n∏

i=1

ζγx(αi)

where ζx(α) = xα/(1 + xα), x,α > 0. From Definition 1, we have to show that
Fα
n:n(x) is Schur-concave in (α1, . . . ,αn). Proposition E.1. of Marshall et al. (2011)

implies that it is sufficient to check the concavity of loge ζx(α), in order to establish
the Schur-concavity of Fα

n:n(x). Observe that the function loge ζx(α) is concave in α
for all γ > 0. Hence, Fα

n:n(x) is Schur-concave in (α1, . . . ,αn).

Next, we investigate whether the above result can be generalized to the case of
reversed hazard rate ordering. Consider the following example:

Example 2 LetXαi ∼ LLD(αi, γ) andXβi ∼ LLD(βi, γ) for i= 1, 2,where (α1,α2)

= (2.5, 1.5) and (β1,β2) = (1, 3) with common scale parameter γ = 2. Obviously

(α1,α2)
m� (β1,β2) but X α

2:2 �rh X
β
2:2 which can be easily verified by the plot of

corresponding reversed hazard rate functions in Fig. 2.

Next, we investigate the likelihood ratio ordering on maximum-order statistics
arising from multiple-outlier LLD samples. Here, it is pertinent to mention that a

multiple-outlier model is a set of independent r.v.’s X1,X2, . . . ,Xn such that Xi
st= X ,

i = 1, 2, . . . , p and Xi
st= Y , i = p + 1, p + 2, . . . , p + q = n where 1 ≤ p < n and

Xi
st= X means that Xi and X are identically distributed. In summary, the set of

r.v.’s X1,X2, . . . ,Xn is said to constitute a multiple-outlier model if two sets of r.v.’s
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Fig. 2 Plot of the reversed hazard rate function of X α
2:2 (continuous line) and X β

2:2 (dashed line)
when γ = 2, (α1,α2) = (2.5, 1.5) and (β1,β2) = (1, 3)

X1,X2, . . . ,Xp and Xp+1,Xp+2, . . . ,Xp+q are homogeneous among themselves and
heterogeneous between themselves. For more details on multiple-outlier models, see
Balakrishnan (2007).

The following two theorems present versions of Theorems 2 and 3 in the context
of multiple-outlier models.

Theorem 5 Let X1,X2, . . . ,Xn be independent r.v.’s following the multiple-outlier
LLD model such that Xi ∼ LLD(α, γ1) for i = 1, 2, . . . , p and Xj ∼ LLD(α, γ2) for
j = p + 1, p + 2, . . . , n with γ1, γ2 > 0. Let Y1,Y2, . . . ,Yn be another set of inde-
pendent r.v.’s following the multiple-outlier LLD model such that Yi ∼ LLD(α,β1)
for i = 1, 2, . . . , p and Yj ∼ LLD(α,β2) for j = p + 1, p + 2, . . . , n with β1,β2 >
0. Then for 0 < α ≤ 1,

(γ1, . . . , γ1,︸ ︷︷ ︸
p

γ2, . . . , γ2︸ ︷︷ ︸
q

)
m� (β1, . . . ,β1,︸ ︷︷ ︸

p

β2, · · · ,β2︸ ︷︷ ︸
q

) =⇒ X γ
n:n ≤lr Y

β
n:n where p + q = n.

Proof In view of Theorem 2, an equivalent form of (3.1) for this model enables us
to complete the proof by simply showing that rβ

n:n(x)/rγ
n:n(x) is increasing in x. Here,

the reversed hazard rate of Y β
n:n is

rβ
n:n(x) = αx−1

[
p(1 + (β1x)

α)−1 + q(1 + (β2x)
α)−1

]

where p + q = n. Then,

ψ(x) = rβ
n:n(x)
rγ
n:n(x)

= pκ(β1x) + qκ(β2x)

pκ(γ1x) + qκ(γ2x)
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where κ(x) is defined as in Lemma 3. Note that, for x ≥ 0

ψ′(x) sign= [
pκ(γ1x) + qκ(γ2x)

] [
pκ′(β1x) + qκ′(β2x)

]

− [
pκ(β1x) + qκ(β2x)

] [
pκ′(γ1x) + qκ′(γ2x)

]

sign= [
pκ(β1x)η(β1x) + qκ(β2x)η(β2x)

] [
pκ(γ1x) + qκ(γ2x)

]

− [
pκ(β1x) + qκ(β2x)

] [
pκ(γ1x)η(γ1x) + qκ(γ2x)η(γ2x)

]

where η(x) is defined as in the proof of Theorem 2. To show ψ(x) is increasing in x,
i.e.,

pκ(β1x)η(β1x) + qκ(β2x)η(β2x)

pκ(β1x) + qκ(β2x)
≥ pκ(γ1x)η(γ1x) + qκ(γ2x)η(γ2x)

pκ(γ1x) + qκ(γ2x)
,

it is sufficient to show that the functionφ(β1,β2) = pκ(β1x)η(β1x) + qκ(β2x)η(β2x)

pκ(β1x) + qκ(β2x)
is Schur-convex in (β1, β2).
Now, differentiating φ(β1,β2) with respect to β1, we obtain

∂φ

∂β1

sign= [
κ′(β1x)η(β1x) + κ(β1x)η

′(β1x)
] [
pκ(β1x) + qκ(β2x)

]

− [
pκ(β1x)η(β1x) + qκ(β2x)η(β2x)

]
κ′(β1x)

= qκ′(β1x)κ(β2x) [η(β1x) − η(β2x)] + ϕ(β1x)
[
pκ(β1x) + qκ(β2x)

]

where ϕ(x) is as defined in Theorem 2. By interchanging β1 and β2, we obtain

∂φ

∂β2

sign= pκ(β1x)κ
′(β2x) [η(β2x) − η(β1x)] + ϕ(β2x)

[
pκ(β1x) + qκ(β2x)

]
.

Now,

∂φ

∂β1
− ∂φ

∂β2

sign= [η(β1x) − η(β2x)]
[
qκ′(β1x)κ(β2x) + pκ′(β2x)κ(β1x)

]

+ [
pκ(β1x) + qκ(β2x)

]
[ϕ(β1x) − ϕ(β2x)]

Since β1 ≤ β2 and κ(x) and η(x) are decreasing in x and ϕ(x) is increasing in x, we
have, for 0 < α ≤ 1

(β1 − β2)

(
∂φ

∂β1
− ∂φ

∂β2

)
≥ 0.

Hence, φ(β1,β2) is Schur-convex in (β1,β2) and consequently the theorem follows.

Theorem 6 Let X1,X2, . . . ,Xn be independent r.v.’s following the multiple-outlier
LLD model such that Xi ∼ LLD(α, γ1) for i = 1, 2, . . . , p and Xj ∼ LLD(α, γ) for
j = p + 1, p + 2, . . . , n with γ1, γ > 0. Let Y1,Y2, · · · ,Yn be another set of inde-
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pendent r.v.’s following the multiple-outlier LLD model such that Yi ∼ LLD(α, γ∗)
for i = 1, 2, . . . , p and Yj ∼ LLD(α, γ) for j = p + 1, p + 2, . . . , n with γ∗, γ > 0.
Suppose that γ∗ = min(γ, γ1, γ∗) then for any α > 0,

(γ1, . . . , γ1,︸ ︷︷ ︸
p

γ, . . . , γ︸ ︷︷ ︸
q

)
w� (γ∗, . . . , γ∗,︸ ︷︷ ︸

p

γ, . . . , γ︸ ︷︷ ︸
q

) =⇒ r∗
n:n(x)
rn:n(x)

is increasing in x,

where p + q = n.

Proof The reversed hazard function of Xn:n is

rn:n(x) = α

x

[
p

1 + (γ1x)α
+ q

1 + (γx)α

]
where p + q = n.

Let ψ(x) = r∗
n:n(x)
rn:n(x)

= q(1 + (γx)α)−1 + p(1 + (γ∗x)α)−1

q(1 + (γx)α)−1 + p(1 + (γ1x)α)−1
. To show ψ(x) is increas-

ing in x, we consider

ψ
′
(x)

sign=
[

p

1 + (γ1x)α
+ q

1 + (γx)α

] [ −q(γx)α

(1 + (γx)α)2
+ −p(γ∗x)α

(1 + (γ∗x)α)2

]

−
[

q

1 + (γx)α
+ p

1 + (γ∗x)α

] [ −q(γx)α

(1 + (γx)α)2
+ −p(γ1x)α

(1 + (γ1x)α)2

]

= [
qκ(γx)η(γx) + pκ(γ∗x)η(γ∗x)

] [
pκ(γ1x) + qκ(γx)

]

− [
qκ(γx) + pκ(γ∗x)

] [
pκ(γ1x)η(γ1x) + qκ(γx)η(γx)

]

= p2κ(γ1x)κ(γ
∗x)

[
η(γ∗x) − η(γ1x)

] + pqκ(γ1x)κ(γx) [η(γx) − η(γ1x)]

+ pqκ(γx)κ(γ∗x)
[
η(γ∗x) − η(γx)

]
.

Now using the facts that η(x) is decreasing in x, κ(x) ≥ 0 ∀ x > 0 and γ∗ =
min(γ, γ1, γ∗), it is easy to show the following: If γ∗ ≤ γ ≤ γ1, thenψ′(x) ≥ 0 ∀ x >
0. Also, if γ∗ ≤ γ1 ≤ γ, we have

ψ′(x) ≥ p2κ(γ1x)κ(γx)
[
η(γ∗x) − η(γ1x)

] + pqκ(γ1x)κ(γx) [η(γx) − η(γ1x)]

+ pqκ(γ1x)κ(γx)
[
η(γ∗x) − η(γx)

]

= npκ(γx)κ(γ1x)
[
η(γ∗x) − η(γ1x)

] ≥ 0.

Thus in both the cases, ψ′(x) ≥ 0 ∀ x > 0 and the theorem follows.

Observe that if (γ1, γ)�w(γ∗, γ) where γ∗ = min(γ, γ1, γ∗) then the parallel sys-
tem formed by LLD(α, γ1) and LLD(α, γ) has the smaller lifetime than the system
formed with LLD(α, γ∗) and LLD(α, γ) in the reverse hazard rate sense for any
shape parameter α > 0. Using this fact together with the result in Theorem 1.C.4. of
Shaked and Shanthikumar (2007), one can get the following result.
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Theorem 7 Let X1,X2, . . . ,Xn be independent r.v.’s following the multiple-outlier
LLD model such that Xi ∼ LLD(α, γ1) for i = 1, 2, . . . , p and Xj ∼ LLD(α, γ) for
j = p + 1, p + 2, . . . , n with γ1, γ > 0. Let Y1,Y2, . . . ,Yn be another set of inde-
pendent r.v.’s following the multiple-outlier LLD model such that Yi ∼ LLD(α, γ∗)
for i = 1, 2, . . . , p and Yj ∼ LLD(α, γ) for j = p + 1, p + 2, . . . , n with γ∗, γ > 0.
Suppose that γ∗ = min(γ, γ1, γ∗) then for any α > 0,

(γ1, . . . , γ1,︸ ︷︷ ︸
p

γ, . . . , γ︸ ︷︷ ︸
q

)
w� (γ∗, . . . , γ∗,︸ ︷︷ ︸

p

γ, . . . , γ︸ ︷︷ ︸
q

) =⇒ Xn:n ≤lr Y
∗
n:n where p + q = n.

4 Order Relations for Series System

In this section, our main aim is to compare two series systems formed with inde-
pendent heterogeneous LLD samples either having common shape parameter but
different scale parameters or conversely.

Let X γ
1:n denote the lifetime of the series system formed with n independent non-

negative r.v.’sXγ1 ,Xγ2 , . . . ,Xγn , where eachXγi ∼ LLD(α, γi). Then, its survival and
density functions are given by

F̄γ
1:n(x) =

n∏

i=1

F̄γi (x), f γ
1:n(x) =

n∏

i=1

F̄γi (x)
n∑

i=1

hFγi
(x),

and the corresponding hazard rate function is

hγ
1:n(x) = f γ

1:n(x)
F̄γ
1:n(x)

=
n∑

i=1

hFγi
(x).

The following theorem shows that under a certain condition on the shape param-
eter, one can compare the lifetimes of two series systems with independent LLD
components according to hazard rate ordering.

Theorem 8 For i = 1, 2, . . . , n, let Xλi and Xβi be two sets of independent r.v.’s with
Xγi ∼ LLD(α, γi) and Xβi ∼ LLD(α,βi) where γi,βi > 0. Then for 0 < α ≤ 1,

(γ1, . . . , γn)
m� (β1, . . . ,βn) =⇒ X γ

1:n ≤hr X
β
1:n.

Proof Fix x ≥ 0. The hazard rate function of X γ
1:n is

hγ
1:n(x) =

n∑

i=1

αx−1(γix)
α(1 + (γix)

α)−1 =
n∑

i=1

αx−1τ (γix)
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where τ (x) is as defined in Lemma 3 and is concave in x for 0 < α ≤ 1. It follows
from Proposition C.1. of Marshall et al. (2011) that

∑n
i=1 τ (γix) is Schur-concave.

This completes the proof.

From the theory of stochastic ordering, we have≤rh =⇒ ≤st . Thus from the above
theorem, it is clear that the result is also valid in the sense of stochastic ordering.
The next question that arises naturally is whether the comparison can be extended to
likelihood ratio ordering, i.e., if a version of Theorem 3 for comparison in the sense
of likelihood ratio ordering is valid in the context of series systems. The following
example gives the answer in the negative.

Example 3 LetXγi ∼ LLD(α, γi) andXβi ∼ LLD(α,βi) for i = 1, 2where the scale
parameters are (γ1, γ2) = (0.5, 1.5) and (β1,β2) = (0.3, 1.7), respectively. Now the
plot of f β

1:n(x)/f
γ
1:n(x) for the common shape parametersα = 0.5 andα = 1.5 is given

in Figs. 3a, b, respectively. Obviously in both the cases, (γ1, γ2)
m� (β1,β2) holds but

X γ
2:2 �lr X

β
2:2 since in both the cases f

β
1:2(x)/f

γ
1:2(x) is not a monotonic function.

Now we consider series systems having heterogeneous LLD components with com-
mon scale parameter and different shape parameters (which are also majorized) and
investigate similar results.

Theorem 9 For i = 1, 2, . . . , n, let Xαi and Xβi be two sets of independent r.v.’s with
Xαi ∼ LLD(αi, γ) and Xβi ∼ LLD(βi, γ) where αi,βi > 0. Then for any γ > 0,

(α1, . . . ,αn)
m� (β1, . . . ,βn) =⇒ X α

1:n ≥st X
β
1:n.

Proof The survival function of X α
1:n is

F̄α
1:n(x) =

n∏

i=1

F̄αi (x) =
n∏

i=1

(1 + (γx)αi )−1 =
n∏

i=1

υγx(αi)

where υγx(αi) = (1 + (γx)αi )−1. To establish the result, it is enough to show that
F̄α
1:n(x) is Schur-concave in (α1, . . . ,αn). Observe that the function loge υλx(α) is

concave in α for all γ > 0. Then, an argument similar to that of Theorem 4 yields
the result.
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Fig. 3 Plot of f β
1:2(x)/f

γ
1:2(x)whenα = 0.5 (Sub-Fig. a) andα = 1.5 (Sub-Fig. b) for = (0.5, 1.5),

and fi = (0.3, 1.7)

In this type of series system model when we compare further, the following
example illustrates that no such comparison can be made in the sense of hazard rate
ordering.

Example 4 Figure4 illustrates that stochastic comparison between lifetimes of two
series systems X α

1:2 and X
β
1:2 with LLD components having common scale parameter

γ = 1 and majorized shape parameters (α1,α2) = (2.5, 1.5) and (β1,β2) = (1, 3)
is not ordered in the sense of hazard rate ordering.
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