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1 Introduction

In clinical trials, equal allocation for assignment of subjects to competing treatment
arms has long been advocated by the medical practitioners to reflect the view of
equipoise at the outset of the trial. But continuing the view of equipoise Rosenberger
and Lachin (2002) balances the allocation among the treatments without making
any distinction between the superior and inferior treatments. Such lack of distinction
among treatments under consideration is naturally questionable from ethical point
of view and suggests continuous monitoring coupled with dynamic allocation. A
dynamic allocation procedure allows the experimenter to evaluate the treatments at
intermediate stages of the trial and skews the allocation in favour of the treatment
doing better of the trial based on the available data. If the available allocation and
response data are used for the allocation of every incoming subject, the allocation is
termed a response-adaptive allocation.

Most of the response-adaptive designs, available in the literature, are developed
for two treatment trials and only a few are available for multiple treatments. Further,
almost all the available response-adaptive designs are either for binary, categorical
or conventional continuous (often termed “linear”) treatment responses. But angu-
lar responses are the natural outcomes in the context of several biomedical studies
(e.g. in orthopedics, ophthalmology, sports medicine). The usual (i.e. linear) contin-
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uous probability distributions are, therefore, inappropriate to capture periodicity in
a bounded domain Fisher (1993). Naturally, applying an allocation design for linear
continuous responses for circular response trials is not only inappropriate but may
lead to fallacious results. Despite several occurrences of circular data in clinical tri-
als, application of response-adaptive allocation designs in trials involving circular
responses has attracted less attentionAtkinson andBiswas (2014). Further, designing
a clinical trial should not only focus on the ethical requirements (i.e. assigning higher
number of subjects to the eventually better treatment) but efficiency issues (e.g. mak-
ing precise inference on treatment efficacy) are also equally important. Considering
both the ethical and efficiency requirements within the same framework, Biswas
et al. (2015) and Biswas et al. (2017) developed a two-treatment allocation design
for circular response clinical trials, which is one of the earliest contributions in this
class of allocation designs and is commonly known as an optimal response-adaptive
allocation. But clinical trials may involve multiple treatments, and defining ethical
and efficiency concerns in the presence of several treatments is met with different
challenges. In the current work, we define appropriate ethics and efficiency measures
assuming multiple treatments and derive an optimal allocation design by weighing
such requirements in a sensible way. In Sect. 2, we develop the ethics and efficiency
requirements for circular response models and considering a constrained optimiza-
tion problem, derive the optimal target proportion. We provide the response-adaptive
randomization to target the optimal proportion in practice along with related large
sample results in Sect. 3. Small sample performance of the proposed design is inves-
tigated and compared with the “gold standard” equal allocation in detail in Sect. 4. In
Sect. 5, we redesign a real clinical trial with circular outcome adopting the proposed
allocation design. Some related and relevant issues are finally discussed in Sect. 6.

2 The Proposed Allocation Design

Consider a clinical trial with t (>2) competing treatments, where the patient outcome
is circular in nature. Unlike linear responses , circular responses cannot be compared
directly and hence identifying a “better” patient response requires further considera-
tion. In fact, circular responses are periodic in nature and hence in circular set-up, the
responses 20◦ and 340◦ are identical in effect. Consequently, fallacious conclusions
may be reached if such responses are analysed using existing methods. To avoid
such impediment, the comparison among circular treatment responses is made with
respect to a preferred direction, which is treated as a reference point. In general, a
preferred direction should be chosen by practitioners as per the requirement of the
study. A preferred direction can be chosen in multiple ways. For example, in medical
studies related to shoulder movement, it is usually seen that a perfect shoulder allows
90◦ of internal rotation (Jain et al. 2013), and the preferred direction should be taken
as 90◦ in that context. However, preferred direction can also be data driven.
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Once a preferred direction is set, intuitively, a treatment is promising if it pro-
duces responses near the preferred direction. Therefore, if μ0 is set as the preferred
direction in a clinical trial, the quality of a response is determined by an appropriate
distance from the preferred direction.Due to the periodic nature of circular responses,
the linear deviation of the responses from the preferred direction yields little or no
sense. We, therefore, use a circular distance measure Jammalamadaka and SenGupta
(2001) defined by smaller of the two arc lengths between the preferred angle and the
response angle along the circumference of an unit circle. Analytically, the circular
distance between an arbitrary circular response ψ and preferred direction μ0 can
be expressed as d(ψ,μ0) = min(ψ − μ0, 2π − ψ − μ0) (see, Jammalamadaka and
SenGupta (2001), for example). The distance d is a linear quantity having no period-
icity and hence can be ordered conventionally. However, we have kept the preferred
direction at 0◦, throughout the work for the sake of brevity.

Since the aim of the current work is to develop allocation designs considering
both ethics and efficiency, we need appropriate measures of both. For ethics, we
introduce a clinically meaningful threshold “c”, the distance above which is regarded
as a treatment failure. Specifically, an observed response ψ is regarded beneficial if
d(ψ, 0) ≤ c. Therefore, if we consider a hypothetical non-randomized clinical trial
with t treatments and nk assignments to treatment k, the expected total number of
benefited subjects is

t∑

k=1

nk P{d(Yk, 0) ≤ c}

where Yk represents the responses to treatment k. Naturally, a higher value of the
above or equivalently a lower value of H(n1, n2, . . . nt ) =

∑t
k=1 nk P{d(Yk, 0) > c}

is desirable from an ethical perspective.
However, to measure the efficiency, we consider A optimality ((Silvey, 1980))

based on the large sample dispersion matrix of (d(μ̃1, 0), d(μ̃2, 0), . . . , d(μ̃t , 0))T ,

where μ̃k is an estimator ofμk under the non-randomized allocation. The large sample

dispersion matrix takes the form Diag( σ2
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efficiency measure, where a lower value indicates higher precision of estimators.

Thus, we suggest to obtain the optimal proportion ρk =
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for some h > 0. Application of standard optimization techniques ((Bazaraa et al.,
2006)) expresses the optimal proportion as

ρk =
σk√
γk∑t

k=1
σk√
γk

, k = 1, 2, . . . t.

where γk = P{d(Yk, 0) > c}.

3 Implementation of the Allocation Design in Practice

The optimal target allocation function ρk is naturally a function of the parameters
of the response distribution, and hence implementation requires knowledge of such
unknown quantities. But these unknown parameters (say, θ) are never known in
advance. Hence, we suggest to design the trial adaptively; that is, we suggest to
use the currently available response and allocation data to estimate θ. In adaptive
allocation, initially n0 subjects are allocated to each of the t treatment arms, then
responses from tn0 subjects are obtained and based on that information the allocation
probability for (tn0 + 1)th subject is calculated. Naturally, this initial allocation n0
is kept lower to assign more subjects adaptively.

Suppose δk,i is the treatment indicator taking the values 1 or 0 accordingly as the
i th subject is assigned treatment k or not, andFi indicates the information contained
in the allocation-and-response data obtained up to and including the i th subject.
Then, the (i + 1)th subject is assigned to treatment k with probability

P(δk,i+1|Fi ) = ρk(̂θ
(i)),

where ρk(̂θ
(i)) is a strongly consistent estimator of ρk based on the available data up

to and including the ith subject. In practice, we use sequentially updated maximum
likelihood estimators and plug it into the allocation function at every stage to calculate
the allocation probabilities.

Since for any allocation design, primary concern is ethics, we study the behaviour
of the observed proportion of allocation to different treatments. If we denote the
number of allocations by the proposed design to treatment k out of n assignments
by Nkn = ∑n

i=1 δk,i , the observed allocation proportion to treatment k is simply Nkn
n .

Then under certain widely satisfied restrictions Hu et al. (2004) on the response
distribution and continuity of ρk(θ1, θ2, . . . , θk) in each of its arguments for every
k = 1, 2, . . . , t , we have the following result.

Result: As n → ∞
Nkn

n
→ ρk(θ)

almost surely for each k = 1,2, …t
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4 Performance Evaluation

4.1 Performance Measures

Performance of any allocation design needs to be assessed in the light of both ethics
and optimality. An allocation function exhibits strong ethical perspective if it allo-
cates higher number of patients to the better performing treatment arm. In this context,
the expected allocation proportions (EAPs), defined by E( Nkn

n ), k = 1, 2, . . . , t , can
be regarded as a measure of ethics, where the higher the value of EAP for better
performing treatment arm is the indicator for ethical impact of the allocation design.
Again to measure efficiency, we use the power of a relevant test of equality of treat-
ment effects. But the concerned test is not a simple adaptation of the usual test of
homogeneity for linear responses. In fact, for circular responses if μk is the mean
direction associated with the kth treatment, then treatments j and k are equally effec-
tive if d(μk, 0) = d(μ j , 0) or equivalently if μk = μ j ( mod 2π) or μk = 2π − μ j (

mod 2π).However, the distance functions are linear in nature, and hence as an alter-
native, we consider testing the null
H0 : d(μ1, 0) = d(μ2, 0) = · · · d(μt , 0) against the alternative H1 : at least one
inequality in H0.

Assuming treatment 1 as experimental and others as existing, we define the
contrast-based homogeneity test statistic

Tn = (Hd̂)T
[
H�̂d̂H

T
]−1

(Hd̂),

where

d̂
t×1 =

⎛

⎜⎜⎜⎝

d(μ̂1, 0)
d(μ̂2, 0)

...

d(μ̂t , 0)

⎞

⎟⎟⎟⎠ ,

H ¯t−1×t =

⎡

⎢⎢⎢⎣

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
. . .

...

1 0 0 · · · −1

⎤

⎥⎥⎥⎦ ,

�̂d̂ is the estimated dispersionmatrix of d̂ t×1, and μ̂k is a strongly consistent estimator
of μk based on n observations, generated through the proposed adaptive allocation
design. Naturally, larger value of Tn indicates departure from the null hypothesis and
hence a right tailed test based on Tn is appropriate to test H0 against H1.



152 T. Mukherjee et al.

4.2 Simulation Studies

In order to evaluate performance of the proposed optimal allocation design, we
consider three treatments, namely 1, 2 and 3, and keep treatment 1 as the superior
one (i.e. having minimum circular distance from preferred direction 0◦) followed
by treatments 2 and 3. Specifically, we assume that the response distribution for
treatment j is von Mises with mean direction μ j and concentration κ j , j = 1, 2, 3.
Naturally, μ1 is kept closest to 0◦. However, the concentration parameters κ1,κ2

and κ3 are varied accordingly. Three sets of concentration parameters are considered
separately. First, all treatment arms are assumed to have equal concentrations, then
higher concentration is assigned to the superior treatment arms and finally higher
concentration is assigned to inferior treatment arm. Considering different configu-
rations of (μ1,μ2,μ3) and (κ1,κ2,κ3), we conduct a simulation study with 25,000
iterations. The simulation is carried out for both the choices n = 60 and n = 240. For
n = 240, the initial equal allocation n0 is kept as 10, and for n = 60 the same is kept
at 3. However for evaluation, the threshold value is fixed at c = 30◦

Since the power of the concerned test under equal allocation is often considered
as a benchmark, the power under the proposed optimal allocation is compared with
that of equal allocation, where each treatment is assigned with equal probability. The
details of expected allocation proportion (EAP) and power are reported in Tables1
and 2. The performance figures in Tables 1 and 2 indicate that the allocation function
successfully assigns a larger number of subjects to the superior treatment armkeeping
the power almost as good as that of equal allocation. Also, the corresponding standard

Table 1 Expected allocation proportion and power for n = 60
μ1,μ2,μ3, κ1, κ2, κ3 EAP(SD) Power

1 2 3 Proposed Equal

(5, 5, 5, 2.0, 2.0, 2.0) 0.333(0.09) 0.333(0.09) 0.333(0.09) 0.050 0.050

(5, 10, 15, 2.0, 2.0, 2.0) 0.345(0.09) 0.331(0.07) 0.322(0.08) 0.141 0.118

(5, 15, 25, 2.0, 2.0, 2.0) 0.348(0.07) 0.332 (0.07) 0.318(0.08) 0.324 0.814

(5, 30, 45, 2.0, 2.0, 2.0) 0.366 (0.07) 0.323(0.08) 0.310 (0.09) 0.833 0.810

(5, 45, 60, 2.0, 2.0, 2.0) 0.370(0.07) 0.318(0.07) 0.311 (0.08) 0.975 0.097

(5, 75, 90, 2.0, 2.0, 2.0) 0.377 (0.07) 0.311 (0.07) 0.313(0.07) 1.000 1.000

(5, 5, 5, 1.0, 2.0, 2.0) 0.434(0.07) 0.288 (0.07) 0.280(0.06) 0.05 0.05

(5, 10, 15, 1.0, 2.0, 2.0) 0.439(0.08) 0.282 (0.07) 0.277 (0.08) 0.070 0.090

(5, 30, 45, 1.0, 2.0, 2.0) 0.462 (0.08) 0.275 (0.08) 0.261(0.08) 0.420 0.248

(5, 45, 60, 1.0, 2.0, 2.0) 0.472 (0.07) 0.267(0.07) 0.260 (0.07) 0.778 0.664

(5, 75, 90, 1.0, 2.0, 2.0) 0.474 (0.07) 0.262(0.07) 0.263 (0.07) 0.993 0.969

(5, 5, 5, 2.0, 2.0, 1.0) 0.292(0.07) 0.280 (0.07) 0.424(0.07) 0.050 0.050

(5, 15, 25, 2.0, 2.0, 1.0) 0.311(0.08) 0.276(0.08) 0.411(0.07) 0.203 0.112

(5, 30, 45, 2.0, 2.0, 1.0) 0.311(0.07) 0.276(0.06) 0.414(0.07) 0.530 0.269

(5, 45, 60, 2.0, 2.0, 1.0) 0.317(0.08) 0.267(0.06) 0.411(0.07) 0.800 0.634

(5, 75, 90, 2.0, 2.0, 1.0) 0.317(0.07) 0.268(0.07) 0.419(0.07) 0.985 0.991
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Table 2 Expected allocation proportion and power for n = 240
μ1,μ2,μ3, κ1, κ2, κ3 EAP(SD) Power

1 2 3 Proposed Equal

(5, 5, 5, 2.0, 2.0, 2.0) 0.333(0.04) 0.333(0.05) 0.333(0.04) 0.050 0.050

(5, 10, 15, 2.0, 2.0, 2.0) 0.342(0.04) 0.334(0.04) 0.323(0.04) 0.339 0.355

(5, 15, 25, 2.0, 2.0, 2.0) 0.352(0.03) 0.331(0.04) 0.316(0.04) 0.816 0.855

(5, 30, 45, 2.0, 2.0, 2.0) 0.365(0.05) 0.323(0.04) 0.311(0.04) 1.000 1.000

(5, 5, 5, 1.0, 2.0, 2.0) 0.458(0.04) v.272(0.05) 0.278(0.05) 0.050 0.050

(5, 10, 15, 1.0, 2.0, 2.0) 0.468(0.05) 0.269(0.05) 0.262(0.04) 0.130 0.060

(5, 30, 45, 1.0, 2.0, 2.0) 0.491(0.04) 0.258(0.05) 0.249(0.04) 0.987 0.944

(5, 45, 60, 1.0, 2.0, 2.0) 499(0.04) 0.252(0.05) 0.247(0.04) 1.000 1.000

(5, 5, 5, 2.0, 2.0, 1.0) 0.270(0.04) 0.266(0.04) 0.458(0.07) 0.050 0.050

(5, 15, 25, 2.0, 2.0, 1.0) 0.283(0.04) 0.268(0.05) 0.447(0.05) 0.597 0.510

(5, 30, 45, 2.0, 2.0, 1.0) 0.294(0.04) 0.260(0.05) 0.445(0.04) 0.983 0.982

(5, 45, 60, 2.0, 2.0, 1.0) 0.299(0.05) 0.255(0.04) 0.445(0.05) 1.000 1.000

deviations, measuring the allocation fluctuation (reported in the parenthesis in the
tables), remain significantly lower irrespective of the chosen sample sizes. All these
facts make the proposed optimal allocation rule a competent one.

We further have studied the performance of the proposed allocation design con-
sidering four treatments based on limiting allocation proportion (LAP) by varying
the threshold value c. LAP essentially indicates the theoretical limiting proportion
of number of subjects allocated to a certain treatment arm to the total number of
subjects available. The mean direction parameters for treatments 1, 2 and 3 are kept
at 5◦, 15◦ and 25◦, respectively, and mean direction for treatment 4; i.e. μ4 is varied
from 25◦ to 160◦. Thus, treatments 1, 2 3 and 4 can be regarded as ordered from
superior to inferior. Naturally for a sensible allocation design limiting allocation pro-
portion to treatment 1 should increase as μ4 drifts away from 25◦. In Fig. 1, we plot
LAP to treatment 1 (i.e. the superior treatment) for varying μ4 and various choices
of (κ1,κ2,κ3,κ4). The plot in Fig. 1 is found to be in agreement with the anticipated
behaviour of LAP across various choices of c and (κ1,κ2,κ3,κ4)

5 Redesigning a Real Clinical Trial: SICS Trial

Now to evaluate the proposed procedure from a real clinical perspective, we consider
a real trial on small incision cataract surgery (Bakshi 2010). We take into account
three competing treatments, namely snare technique (see Basti 1993), irrigating vec-
tis technique (see Masket 2004) and torsional phacoemulsification (seeMackool and
Brint 2004) based on 19, 18 and 16 observations, respectively. Responses corre-
sponding to each treatment are circular in nature, and hence the trial is appropriate to
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(c) κ1 = 1, κ2 = 1, κ3 = 2, κ4 = 2 (d) κ1 = 2, κ2 = 2, κ3 = 1, κ4 = 1

(a) κ1 = 2, κ2 = 2, κ3 = 2, κ4 = 2 (b) κ1 = 1, κ2 = 1, κ3 = 1, κ4 = 1

Fig. 1 Limiting allocation proportion von Mises response for four treatments

judge the performance of the proposed allocation. The responses obtained from these
three types of surgical interventions, namely snare, irrigating vectis and torsional
phacoemulsification techniques, are assumed to follow von Mises with parameters
(μs,κs), (μv,κv) and (μt ,κt ), respectively, and rationale behind such assumption
is verified by Watson’s goodness of fit test Mardia and Jupp (2004). In the light
of this three independent competing treatments, the proposed allocation design is
redesigned with the following parameter choices, estimated from the available data
points.
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Table 3 Allocation to different treatment arms

Treatment EAP(SD)

Proposed Actual

Snare 0.250(0.07) 0.358

Irrigating vectis 0.201(0.08) 0.339

Torsional phacoemulsification 0.548(0.08) 0.301

For the snare technique, parameters are estimated as μ̂s = 20.67◦, κ̂s = 1.59;
for irrigating vectis, these estimates are μ̂v = 52.71◦, κ̂v = 1.27; for torsional pha-
coemulsification, the estimates of the parameters are μ̂t = 2.29◦, κ̂t = 4.99, respec-
tively. As far as distance from preferred direction is concerned, torsional phacoemul-
sification appears to be much better than its competitors followed by snare’s tech-
nique. In addition, torsional phacoemulsification has significantly higher concentra-
tion over others. Thus, the treatment clearly emerges as the best one. From Tables
3 and 4, we find that the proposed optimal allocation design produces about 23%
higher EAP to the superior treatment torsional phacoemulsification and reduced the
EAP for the other treatments as compared to the original allocation. This naturally
shows the ethical impact of the proposed optimal response-adaptive allocation and
hence makes the proposed allocation desirable in real clinical trial.

6 Concluding Remarks

The current work develops an optimal treatment allocation design for multiple arms
byminimizing total number of treatment failures subject to fixed precision. Although
essence of the proposed design is based on ethical point of view, the optimality
of inference of treatment effect detection is not compromised. In fact, it is well
competing with equal allocation design. However, no covariate effect is studied here,
which is left for future consideration.
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