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Abstract A mathematical model of the problem of parametric vibrations of
viscoelastic rectangular orthotropic plates of variable thickness under periodic load
is given in the paper on the basis of the Kirchhoff–Love hypothesis in a geometrically
nonlinear statement. The mathematical model of this problem is constructed taking
into account the propagation of elastic waves. Using the Bubnov–Galerkin method,
based on a polynomial approximation of deflection and displacements, the problem
is reduced to solving systems of nonlinear integro-differential equations with vari-
able coefficients. The effects of viscoelastic properties of the material and changes
in thickness on the oscillation process are studied.
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1 Introduction

Plates and shells of variable thickness are widely introduced in various fields of
technology. This is primarily due to the requirements for strength, durability, and
design of thin-walled elements of modern structures. Along with thin-walled struc-
tural elements from traditional metal materials, structures made of composite mate-
rials are widely used; this leads to the need to consider structures with homogeneous
and inhomogeneous material properties. The study of problems for plates and shells
of variable thickness is a very difficult task and sometimes faces insurmountable
difficulties. On the one hand, this is connected with the solution of rather cumber-
some equations, which are obtained in mathematical modeling, to reflect the real
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mechanical essence of the process of this problem. And on the other hand, it is
connected with certain computational difficulties, i.e., the lack of suitable universal
numerical methods for solving the obtained equations, and as a result, unified compu-
tational algorithms. Thewidespread use of personal computers and software products
for solving similar problems of the theory of plates and shells of variable rigidity
contributes to the increasing use of numerical analysis methods.

A number of papers [1, 2] are devoted to studying the behavior of plates and
shells of constant thickness under dynamic loads in an elastic statement, and there a
detailed review of the results of these studies can be found.

In [3] derives accurately, for the first time, the nonlinear damping from a fractional
viscoelastic standard solid model by introducing geometric nonlinearity in it.

Theoretical and experimental nonlinear vibrations of thin rectangular plates and
curved panels subjected to out-of-plane harmonic excitation are investigated in [4].
Experiments have been performed on isotropic and laminated sandwich plates and
panels with supported and free boundary conditions.

Nonlinear vibrations of viscoelastic thin rectangular plates subjected to normal
harmonic excitation in the spectral neighborhood of the lowest resonances are
investigated in [5].

A review of publications devoted to the study of the behavior of plates and shells
of smoothly variable thickness shows that at present, the behavior of such structural
elements is insufficiently studied taking into account all the noted significant factors
[6–11].

Studies of parametric vibrations of thin-walled structures have become a separate
area of research in themechanics of a deformable rigid body. They are widely applied
to various mechanical systems, in particular to plates and shells.

In [12], a numerical–analytical method was proposed for studying parametric
oscillations of plates under the action of static and periodic loads.

In [13–16], the results of a study of dynamic stability of various types of plates
subjected to harmonic loading with and without nonlinearity are presented.

An analysis of the available literature showed [17–19] that there are almost no
publications devoted to the study of nonlinear vibrations and dynamic stability of
thin-walled structures such as viscoelastic plates and shells of variable thickness.
In this paper, nonlinear parametric oscillations of viscoelastic orthotropic rectan-
gular plates of variable thickness are numerically investigated. Based on the algo-
rithm for the problem solution, a program was compiled in the Delphi programming
environment.

2 Materials and Methods

Consider a viscoelastic orthotropic rectangular plate of variable thickness h =
h(x, y) with sides a and b under the action of axial dynamic loads. Let the plate
undergo dynamic loading along side a with a periodic load P(t) = P0 + P1 cos(�t)
(P0, P1 = const,� is the frequency of external periodic load). Amathematical model
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of the problem is constructed in a geometrically nonlinear statement according to
the classical Kirchhoff–Love theory. We assume that the plate has initial deflections
w0 = w0(x, y).

In this case, physical dependence between stresses σx , σy, τxy and strains
εx , εy, γxy is taken in the form [2, 20]:

σx = B11(1 − �∗
11)εx + B12(1 − �∗

12)εy, (x ↔ y, 1 ↔ 2),

τxy = 2B(1 − �∗)γxy, (1)

where �∗, �∗
i j are the integral operators with the relaxation kernels �(t) and �i j (t),

respectively:

�∗φ =
t∫

0

�(t − τ)φ(τ)dτ, �∗
i jφ =

t∫

0

�i j (t − τ)φ(τ)dτ, i, j = 1, 2,

B11 = E1

1 − μ1μ2
, B22 = E2

1 − μ1μ2
, B12 = B21 = μ1B22 = μ2B11, B = G

2
,

E1, E2 are the elastic moduli in the direction of the axes x and y; G is
the shear modulus; μ1, μ2 are Poisson’s ratios; here and hereafter, the symbol
(x ↔ y, 1 ↔ 2) indicates that the remaining relations are obtained by circular
substitution of indices.

The relationship between strains in the middle surface εx , εy, γxy and displace-
ments u, v, w in x, y, z directions, taking into account initial irregularities, is taken
in the form [2]:

εx = ∂u

∂x
+ 1

2

[(
∂w

∂x

)2

−
(

∂w0

∂x

)2
]
,

εy = ∂v

∂y
+ 1

2

[(
∂w

∂y

)2

−
(

∂w0

∂y

)2
]
,

γxy = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
− ∂w0

∂x

∂w0

∂y
(2)

Bending Mx , My and torques H with (2) have the form [2, 20]:

Mx = −h3

12

[
B11(1 − �∗

11)
∂2(w − w0)

∂x2
+ B12(1 − �∗

12)
∂2(w − w0)

∂y2

]
,

(x ↔ y, 1 ↔ 2),

H = − Bh3

3
(1 − �∗)

∂2(w − w0)

∂x∂y
. (3)

Substituting (1) and (3) into equation of motion [2]
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∂Nx

∂x
+ ∂Nxy

∂y
+ px − ρh

∂2u

∂t2
= 0,

∂Nxy

∂x
+ ∂Ny

∂y
+ py − ρh

∂2v

∂t2
= 0

∂Mx

∂x2
+ ∂2My

∂y2
+ 2

∂2H

∂x∂y
+ ∂

∂x

(
Nx

∂w

∂x
+ Nxy

∂w

∂y

)

+ ∂

∂y

(
Nxy

∂w

∂x
+ Ny

∂w

∂y

)
+ Px (t)

∂2w

∂x2
+ q − ρh

∂2w

∂t2
= 0 (4)

we get a system of integro-differential equations in partial derivatives of the form:

h

[
B11

(
1 − �∗

11
)∂εx

∂x
+ B12

(
1 − �∗

12
)∂εy

∂x
+ 2B

(
1 − �∗) ∂εxy

∂y

]

+ ∂h

∂x

[
B11

(
1 − �∗

11
)
εx+ B12

(
1 − �∗

12
)
εy
]+ 2B

∂h

∂y

(
1 − �∗)εxy − ρh

∂2u

∂t2
= 0,

h

[
B22

(
1 − �∗

22
)∂εy

∂y
+ B21

(
1 − �∗

21
)∂εx

∂y
+ 2B

(
1 − �∗) ∂εxy

∂x

]

+ 2B
∂h

∂x

(
1 − �∗)εxy + ∂h

∂y

[
B21

(
1 − �∗

21
)
εx+ B22

(
1 − �∗

22
)
εy
]− ρh

∂2v

∂t2
= 0,

D

[
B11

(
1 − �∗

11
)∂4(w − w0)

∂x4
+ (

8B
(
1 − �∗)+ B12

(
1 − �∗

12
)+ B21

(
1 − �∗

21
))

∂4(w − w0)

∂x2∂y2
+ B22

(
1 − �∗

22
)∂4(w − w0)

∂y4

]

+ ∂2D

∂x2

(
B11

(
1 − �∗

11
)∂2(w − w0)

∂x2
+ B12

(
1 − �∗

12
)∂2(w − w0)

∂y2

)

+ 2
∂D

∂x

[
B11

(
1 − �∗

11
)∂3(w − w0)

∂x3
+ (

B12
(
1 − �∗

12
)+ 4B

(
1 − �∗))∂3(w − w0)

∂x∂y2

]

+ 2
∂D

∂y

[
B22

(
1 − �∗

22
)∂3(w − w0)

∂y3
+ (

B21
(
1 − �∗

21
)+ 4B

(
1 − �∗))∂3(w − w0)

∂x2∂y

]

+ ∂2D

∂y2

(
B22

(
1 − �∗

22
)∂2(w − w0)

∂y2
+ B21

(
1 − �∗

21
)∂2(w − w0)

∂x2

)

+ 8
∂2D

∂x∂y
B
(
1 − �∗)∂2(w − w0)

∂x∂y
− ∂w

∂x

{
h

[
B11

(
1 − �∗

11
)∂εx

∂x
+ B12

(
1 − �∗

12
)∂εy

∂x

+2B
(
1 − �∗)∂εxy

∂y

]
+ ∂h

∂x

[
B11

(
1 − �∗

11
)
εx+ B12

(
1 − �∗

12
)
εy
]+ 2B

∂h

∂y

(
1 − �∗)εxy

}

− h
∂2w

∂x2
[
B11

(
1 − �∗

11
)
εx + B12

(
1 − �∗

12
)
εy
]− ∂w

∂y

{
h

[
B22

(
1 − �∗

22
)∂εy

∂y

+ B21
(
1 − �∗

21
)∂εx

∂y
+ 2B

(
1 − �∗)∂εxy

∂x

]
+ 2B

∂h

∂x

(
1 − �∗)εxy

+∂h

∂y

[
B21

(
1 − �∗

21
)
εx+ B22

(
1 − �∗

22
)
εy
]}− h

∂2w

∂y2
[
B21

(
1 − �∗

21
)
εx
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+B22
(
1 − �∗

22
)
εy
]− 4h

∂2w

∂x∂y
B
(
1 − �∗)εxy + Px (t)

∂2w

∂x2
+ ρh

∂2w

∂t2
= q (5)

The system of Eq. (5) with the corresponding boundary and initial conditions
describes the motion of a viscoelastic orthotropic rectangular plate of variable thick-
ness under the action of a periodic load P(t) = P0 + P1 cos(�t) taking into account
initial imperfections.

In calculations, the singular kernels of the Koltunov–Rzhanitsyn type [21] are
used as relaxation kernels �(t), �i j (t), i, j = 1, 2:

�(t) = Ae−βt tα−1, (0 < α < 1), �i j (t) = Ai j e
−βi j t tαi j−1,

(
0 < αi j < 1

)
(6)

Let the plate thickness change according to the following law h(x) =
1
2h0(1 + α ∗ x); i.e., a linear increase in the plate thickness is observed (Fig. 1).
Here, α∗ is a parameter characterizing the variability of the thickness; h0 is the plate
thickness corresponding to α∗ = 0.

A solution to system (5) satisfying the boundary conditions of the problem is
sought with respect to the displacements u and v, and deflection w in the form

u(x, y, t) =
N∑

n=1

M∑
m=1

unm(t)φnm(x, y), v(x, y, t) =
N∑

n=1

M∑
m=1

vnm(t)φnm(x, y),

w(x, y, t) =
N∑

n=1

M∑
m=1

wnm(t)ψnm(x, y) (7)

Substituting (7) into the system of Eq. (5) and performing the Bubnov–Galerkin
procedure, taking into account dimensionless quantities

Fig. 1 Change in plate thickness depending on parameter α∗: a α∗ = 0.2; b α∗ = 0.5
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u

h0
,

v

h0
,

w

h0
,
w0

h0
,
x

a
,
y

b
,
h

h0
, λ = a

b
, δ = b

h0
, q∗ = q

E

(
b

h0

)4

,
�

ω
,ωt

and maintaining the previous notations, the following system of basic resolving
nonlinear integro-differential equations is obtained

N∑
n=1

M∑
m=1

ak lnmünm − η1

{
N∑

n=1

M∑
m=1

{[(
1 − �∗

11

)
d1k lnm + (

1 − �∗)d2k lnm]unm
+[(1 − �∗

12

)
d3k lnm + (

1 − �∗)d4k lnm]vnm}

+
N∑

n,i=1

M∑
m, j=1

[(
1 − �∗

11

)
d7k lnmi j + (

1 − �∗
12

)
d8k lnmi j + (

1 − �∗)d9k lnmi j

](
wnmwi j − w0nmw0i j

)
⎫⎬
⎭ = 0,

N∑
n=1

M∑
m=1

bk lnm v̈nm − η2

{
N∑

n=1

M∑
m=1

{[(
1 − �∗

21

)
e1k lnm + (

1 − �∗)e2k lnm]unm
+[(1 − �∗

22

)
e3k lnm + (

1 − �∗)e4k lnm]vnm}

+
N∑

n,i=1

M∑
m, j=1

[(
1 − �∗

22

)
e7k lnmi j + (

1 − �∗
21

)
e8k lnmi j + (

1 − �∗)e9k lnmi j

](
wnmwi j − w0nmw0i j

)
⎫⎬
⎭ = 0

N∑
n=1

M∑
m=1

ck lnm ẅnm + η3

N∑
n=1

M∑
m=1

p2k lnm(1 − 2μk lnm cos�t)wnm

− η3

{
N∑

n=1

M∑
m=1

{[
�∗
11 f5k lnm + �∗

12 f6k lnm + �∗
22 f7k lnm + �∗

21 f8k lnm + �∗ f9k lnm
]
w0nm

}

− η3

⎧⎨
⎩

N∑
n,i=1

M∑
m, j=1

wnm

{[(
1 − �∗

11

)
ξ1k lnmi j + (

1 − �∗
21

)
ξ2k lnmi j

+(1 − �∗)ξ3k lnmi j

]
ui j +

[(
1 − �∗

22

)
ξ4k lnmi j + (

1 − �∗
12

)
ξ5k lnmi j +(1 − �∗)ξ6k lnmi j

]
vi j

}

+
N∑

n,i,r=1

M∑
m, j,s=1

wnm

{(
1 − �∗

11

)
g5k lnmi jrs + (

1 − �∗
12

)
g6k lnmi jrs + (

1 − �∗
22

)
g7k lnmi jrs

+(1 − �∗
21

)
g8k lnmi jrs + (

1 − �∗)g9k lnmi jrs

}(
wi jwrs − w0i jw0rs

)} = 0

unm(0) = u0nm , u̇nm(0) = u̇0nm , vnm(0) = v0nm , v̇nm (0) = v̇0nm ,

wnm (0) = w0nm , ẇnm (0) = ẇ0nm (8)

where the constant coefficients entering this systemare related to coordinate functions
and their derivatives:

p2klnm = f5klnm + f6klnm + f7klnm + f8klnm + f9klnm − 4π2λ2 p∗
klnmδ0;

μklnm = 2π2λ2 p∗
k lnm

p2klnm
δ1.

Based on the developed algorithm, a program in the Delphi algorithmic language
was compiled.
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3 Results and Discussion

Integration of system (8) was carried out using a numerical method based on the
use of quadrature formulas [17]. The calculation results for various physical and
geometric parameters are shown in graphs, Figs. 2 and 3. The dependence of the
change in thickness has the following form: h = 1 + α∗x , h0 = h(0) = const ,
where α∗ is the parameter of thickness change.

The effect of inhomogeneousmaterial properties on the plate behaviorwas studied
(Fig. 2).

As seen from the figure, an increase in parameter � =
√
E1
/
E2

determining the
degree of anisotropy (curve 1—� = 1; curve 2—� = 1.5, and curve 3—� = 2)
leads to a rapid increase in the amplitude of oscillations.

Fig. 2 Dependence of deflections on time at = 1 (1); 1.5 (2); 2 (3)

Fig. 3 Dependence of deflections on time
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In Fig. 3, various curves correspond to the results obtained by various theories.
Curve 1 corresponds to the elastic case, curve 2 to the results obtained taking
viscosity into account in shear direction only

(
A = 0.05, Ai j = 0, i, j = 1, 2

)
,

and curve 3 to the case when viscosity is taken into account in all directions(
A = Ai j = 0.05, i, j = 1, 2

)
.

The results obtained confirm the need to take into account the viscoelastic
properties of the material not only in shear direction, but in other directions as well.

4 Conclusion

A mathematical model, method, and computer program have been developed for
evaluating the parametric vibrations of a viscoelastic orthotropic rectangular plate
of variable thickness, taking into account geometric nonlinearity under the action of
periodic loads.

The effect of the change in physicomechanical and geometric parameters of
the plate material on the amplitude–time characteristics and stress–strain state is
estimated.

The method proposed in this work can be used for various types of thin-walled
structures, such as plates, panels, and shells of variable thickness.
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