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Abstract The article dwells on the interval extension of the bisection approach for
solving nonlinear equations with interval-valued parameters, i.e. the ones that might
have values from the specified bounds. It is shown that such a procedure allows
to obtain an interval of possible values for equation root that is entirely determined
by the equation parameters inaccuracy and does not depend on any other factor. The
proposed interval bisection method can be easily implemented. All the differences
from the traditional bisection approach for solving equations have a clear meaning.
The simple stopping rule is proposed. It is shown that considering the interval nature
of equation parameters makes it possible to finish the iterative process of equation
solving earlier in full accordance with known information on the equation parame-
ters. The proposed approach keeps the important bisection method property—all the
intermediate estimates of the bounds of the root’s possible values interval include
the exact boundaries. The article provides an illustrative example of how to use the
interval bisection.
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1 Introduction

Many problems in data processing require solving nonlinear equations to obtain the
desired result: parametrical identification, fitting data using a specific model, some
cases of indirect measurements, etc. In most cases, the data to be processed aren’t
accurate and, consequently, the equations to be solved have uncertain parameters.
That’s the reason why the roots of such equations cannot be found precise: we
alwayswill face the residual uncertainty inherited from the inaccurateness of equation
parameters. So, the trials to interpret the roots estimates as quantities, which values
are only corrupted with round-off errors and errors caused by using an iterative
numerical algorithm of equation solving, aren’t correct—if we solve the required
equation analytically, calculate the roots directly using corresponding expressions
and don’t allow round-off errors to occur, then it still does not make the root estimate
absolutely accurate. If we don’t consider this circumstance, then we overestimate the
preciseness of our knowledge on obtained results which in turn leads to an increase
in the risks of making erroneous decisions in the future. As en example, we can
consider the root of the function f (x, a, b) = a · x + b, where values of a and
b aren’t known accurately. If we know that the value of a is inside the interval Ia
= [1; 2] and the value of b is inside the interval Ib = [−2; −1] then the root of
the function f is inside Ix = [0.5; 2]. Applying any numerical method to solve the
equation f (x, a, b) = 0 considering the uncertainty of a and b will bring us to
the interval wider than the mentioned interval Ix . So, these bounds for the equation
root’s possible value are the accurate limits that can be reached for some combination
of values a from Ia and b from Ib.

This paper discusses the interval bisectionmethod for solving nonlinear equations
in which parameters are known approximately—in practice, usually, all we know is
the interval of possible values of these parameters.

2 Solving Nonlinear Equations for Indirect Measurements

All the data that we encounter in real-world conditions are uncertain—from world
constants to measurement results. In some cases, we can neglect this uncertainty in
our calculations and reasoning, but, in other cases, we cannot because of the big
price we will pay: decisions made without taking into account the uncertainty of
source data may be ill-founded. The absolute accurateness is the distortion of reality,
and, in practice, we always need to know the quality of our results. The natural
scientific area, in which there are the regulatory requirements to accompany each
result with individual characteristics of its uncertainty, is metrology and science on
measurements. So, the most relevant example of applications where we deal with
equations with inaccurate parameters is the case of indirect measurements when we
calculate the value of interest from the measurement results of the related quantities
connected with it with the known dependence. Without loss of generality, we can
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consider the problem of solving indirect measurements equations to illustrate the
approach proposed and describe details.

Many quantities cannot be measured directly for various reasons. In these cases,
indirect measurements can be used. Firstly, the mathematical model is constructed
and tested that describes the interconnection between quantities measured directly
and values to be found out. After performing all corresponded measurements, the
necessary values are computed as the root of the equation or the solution of the equa-
tions system relating the participating quantities. The calculation of the result is an
essential part of the indirect measurements and should be taken into account during
metrological characteristics estimation. It should be metrologically verified like any
other measurement procedure or conversion. Indeed, as it was mentioned earlier,
all results of calculations with uncertain data are always inaccurate too—the uncer-
tainty inherited from the input data cannot be overcome. The only thing that can be
performed is to analyze how the uncertainty transforms during the computations and
to estimate the value of the final calculations results error.

To date, there are many approaches and methods to support metrologically
computations—including solving equations with inaccurate parameters (usually
being direct measurement results). These methods can be grouped into two big
sets: methods that use randomization (Monte Carlo approach [1], the Cauchy deviate
method [2, 3] and related techniques) andmethods that perform automatic analysis of
the computational algorithm by overloading the operations performed during calcu-
lations—assuming a linear approximation (automatic differentiation of first order
[4, 5] as the most valuable approach, finite differences and complex step derivatives
estimates [6, 7] and similar techniques for sensitivity analysis) and in the common
case (interval arithmetic [8, 9] and its extensions and modifications like affine arith-
metic [10, 11] or others [12, 13] joined with random variables processing approaches
like probability boxes framework [14, 15]). All of these techniques were developed
for the wide class of computational problems with inaccurate input data and can be
used in computational metrology.

Numerous different methods are developed and used to search the roots of
nonlinear equations. The most popular of them are Newton and Newton–Raphson
methods, secant method, bisection method, etc [16]. The first three methods need the
initial guess as a first estimation of the root, and the last-mentioned one needs the
interval of root localization. If the initial guess is unsuccessful, then the iterative
process can diverge, and no root can be obtained at all. In many cases, it is impos-
sible to determine if the guess is acceptable or not before the iterative process starts. In
constrast, the bisection method guarantees that the final result of root estimation will
be got and supposes a very simple procedure to test if the initial localization interval
is acceptable or not.

We should consider the additional sides of the issue to determine what method
for solving equations from the listed above is better for metrological practice. So for
this, we analyze the details of the metrological supporting the corresponding compu-
tational procedures.Approaches for processing initial data uncertainty using random-
ization might cause the situation when the Newton, Newton–Raphson, and secant
methods will diverge—so, we should recognize corresponded iterations during
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the Monte Carlo method execution or similar approaches applying and should stop
timely and throw out the wrong results from consideration. This complicates the
procedure of root finding. The same situation may occur if we use operator over-
loading—the procedure that converges being executed with individual numbers as
input variables may begin to diverge if it is executed with intervals or interval-valued
quantities like probability boxes. Thus, this can bring us to an unacceptable situ-
ation if the equation to be solved is the equation of indirect measurements—we
will not obtain any measurement result at all because of the computational proce-
dure. To address these shortcomings, we suggest using the bisection method that
always ensures the final result obtaining. Besides, supporting the bisection with one
of the discussed approaches for estimating uncertainty inherited from the initial data
doesn’t bring us to the iterative process divergence. So, combining the bisection
method with any kind of procedure of metrological supporting is the preferable way
to solve nonlinear equations of indirect measurements.

This paper presents the interval version of the bisection method for solving
nonlinear equations with interval-valued parameters that are commonplace in metro-
logical practice. The proposed method is fully in line with metrological requirements
that is an advantage in comparison with traditionally used approaches [17, 18]. The
way is proposed for taking into account the uncertainty of initial data during equation
solving and reasonably set the moment to stop the iteration process.

3 The Interval Bisection

Let �xT = (x1, x2, x3, ..., xn) be the direct measurement results, and f (y, �x) = 0
be the equation that connects these measurands with quantity y that is supposed
to be measured indirectly. Let �x1, �x2, �x3, ..., �xn be the absolute errors of
x1, x2, x3, ..., xn correspondingly, and let it be known that their maximum possible
values satisfy the restrictions: |�xi | < �i , i = 1, 2, …n.

The traditional bisection method [19] ignores that quantities x1, x2, x3, ..., xn
are inaccurate and treats themas the only possible values of parameters of the equation
to be solved.Let the interval I1 = [a, b] be the localizationbounds for y. Inmetrology
during indirect measurements, we usually face equations representing zeros of the
monotonic functions f . So we have the only root because, for one set of direct
measurement results, we must have the only one corresponding value of the indirect
measurement. If the values f (a, �x) and f (b, �x) have different signs, then interval
I will contain the only root. For problems from other fields, we should start with
such an interval of values of argument y that will provide different signs of function
f values obtained at the interval’s left and right bounds. Then, we can be sure that
not less than one root is inside this interval.

For each step of bisection, the current interval of root localization is divided into
two equal parts, and the one that contains the root is chosen. To determine what half
should be preferred, the sign of value f (0.5 · (a + b), �x) in the middle of interval
I should be calculated. The obtained narrowed interval is new localization bounds
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for equation root, and then the new iteration starts, and all described operations are
repeated. So, let the localization interval for i-th iteration step be Ii = [ai , bi ]. If
f (ai , �x) · f (0.5 · (ai + bi ), �x) > 0, then ai+1 = 0.5 · (ai + bi ), bi+1 = bi . If
f (0.5 · (ai + bi ), �x) · f (bi , �x) > 0, then ai+1 = ai , bi+1 = 0.5 · (ai + bi ). The
interval Ii+1 = [

ai+1, bi+1
]
is the localization interval for the next iteration.

The situation stops to be unambiguous if taking into account the information on
the uncertainty of initial data. Since some iteration, we will not be able to determine
exactly the sign of the value f (0.5 · (ai + bi ), �x) because of the influence of uncer-
tainty of direct measurement results �x acting as equality parameters. So, we will not
be able to decide what half of the current localization interval contains the root of
the equation to be solved: for some possible values of �x, it will be in the left half,
and for other possible values – in the right half.

The solution allowing to overcome this obstacle is to use one of the methods
discussed in the previous section of the paper that provides each calculation of the
function f (y, �x)with its individual uncertainty estimate� f (y, �x). Then wewill be
able to determine the moment when the traditional bisection method faces at current
iteration i such center ci = 0.5 ·(ai + bi ) of the current root localization interval Ii =
[ai , bi ] that satisfies the condition� f (ci , �x) > | f (ci , �x)|. This inequality indicates
the situation described above when we cannot choose half of the localization interval
for the next bisection iteration. Really, if it holds, then there are no reasons to consider
the value f (ci , �x) differing from zero. The equivalent form of the inequality is
0 ∈ ( f (ci , �x) ± � f (ci , �x)), so we see that any positive or negative values f (ci , �x)
lying inside the interval determining by mentioned inequality could be formed by
distorting the true value equal to zero by measurement errors. In this paper, we
suggest using the moment when the analyzed inequality holds as the transition to the
second stage of the modified bisection method.

So, the following simple algorithm can describe the first stage of the proposed
approach.
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On the second stage of the interval bisection, we need to narrower the last obtained
interval Ii = [ai , bi ] of root localization that provides the unambiguous sign of
function f at its bounds:

� f (ai , �x) < | f (ai , �x)| and � f (bi , �x) < | f (bi , �x)|

Thegoal of each iteration of the second stage of the proposedmethod is to narrower
these bounds to such an interval Ii+1 = [

ai+1, bi+1
]
that ensures holding the condi-

tion Ii+1 ⊆ Ii and guarantees at the same time that the sign of function f (y, �x) at
y = ai+1 and y = bi+1 isn’t ambiguous:

� f (ai+1, �x) < | f (ai+1, �x)| and � f (bi+1, �x) < | f (bi+1, �x)|.

Surprisingly, the traditional bisection approach can be easily applied for this
purpose. We can reformulate the problem to be solved in the following manner:

• to find the root’s minimum possible value, we need to solve equation
� f (ymin, �x) = | f (ymin, �x)| for ymin within the localization interval [ai , ci ];

• to find the root’s maximum possible value, we need to solve equation
� f (ymax, �x) = | f (ymax, �x)| for ymax within the localization interval [ci , bi ].

Here, as before, ci := 0.5 · (ai + bi ) is the center of interval Ii that is obtained on
the last iteration of the first stage of interval bisection.

Thus, at every new iteration, we need to examine the left and right bound of the
interval that localizes the equation root separately. To finish the iterative process, we
propose the following rule. It is rational to stop improving the interval estimating
when the interval length refining on the next iteration is less than the given constant
ε > 0:

‖Ii‖ − ‖Ii+1‖ < ε.

Solving the metrological problems, the uncertainty bounds for the obtained root’s
value should be rounded – this circumstance is the natural opportunity to determine
the best moment to stop the interval bisection method. If the rounded bounds of the
interval of root localization obtained on the previous iteration are the same as the
rounded bounds of the interval of root localization obtained on the current iteration,
then we should finish. The rounding is suggested to be performed in a metrological
sense.

The algorithm of the second stage of the interval bisection is the following.



The Interval Method of Bisection for Solving the Nonlinear … 379

4 Illustrating Example

To make the proposed ideas of the interval bisection method clearer, let us examine
some function f (y, �x) = exp(x1 · y) + x2 · y depending on the variable of our
interest y and a set of parameters �x that are known with uncertainty. Let us find the
root of the equation f (y, �x) = 0 using the discussed approach.

From the physical sense, this equation models the environmental pollution caused
by the point source. The parameters �x describe the characteristics of the environment
and the pollution. From the mathematical viewpoint, this problem is equivalent to
calculating the standard Lambert W-function [20].

The values �xT = (x1, x2) aren’t known exactly. All we know about values �x is that
x1 ∈ [−0.11, −0.09] and x2 ∈ [−5.05, −4.95]. So, (x1, x2) = (−0.10, −5.00)
and (�x1, �x2) = (0.01, 0.05). Let us try as the start root’s localization interval the
interval I0 = [a0, b0] = [0, 1]. These bounds satisfy the condition of the bisection
method applicability condition: f (a0, �x) · f (b0, �x) < 0.

The entire iterative process that corresponds to using the interval bisection for the
mentioned equation is presented in Fig. 1. We can see that, as a result, we obtain
further unimprovable interval estimation of the root that cannot be narrower because
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Fig. 1 Intervals of root localization for different stages of the proposed algorithm

Fig. 2 Illustration of the first stage of the interval bisection algorithm

of the uncertainty of the solved equation parameters. Figure 1 also illustrates that,
during the first stage of the interval bisection method, this approach reproduces the
traditional scheme of the bisection and that the second stage essence is in narrowing
the last localization interval obtained at the first stage.
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Fig. 3 Results of the first stage of the interval bisection algorithm and the transition to the second
stage

In Fig. 2, the results of the first stage execution of the proposed method are
illustrated. The stop condition is satisfied on the 4th iteration when we cannot, for
the first time, determine the sign of the function f in the center of the root localization
interval. So, we go to the second part of the method.

The results obtained on the several iterations of the second stage of interval bisec-
tion are illustrated in Figs. 3, 5, and 6. We can see how the left and right bounds
of the localization interval are refined. For convenience, in Figs. 3, 5, and 6, the
independent indexing of iterations is used: index j = 0 corresponds to the beginning
of the second stage of interval bisection when dealing with the localization interval
obtained on the last iteration of the method’s first stage.

In Fig. 6, we see the final iteration of the proposed approach. It corresponds to
the stopping rule taken from the metrological nature of the solving problem: if we
round the uncertainty bounds of the root’s estimate at the current iteration, then the
new iteration will not bring the refining, and we should finish. The obtained bounds
are [0.172, 0.219].

5 Conclusions

In this paper, the interval extension of the bisection method is proposed for solving
nonlinear equations with inaccurate parameters. A simple and effective algorithm is
presented that brings with the guarantee to the root estimation. The clear stopping
rules are proposed that naturally follow from the problem and allow to finish the
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Fig. 4 Results of the first iteration of the second stage of the interval bisection algorithm

Fig. 5 Results of the second iteration of the second stage of the interval bisection algorithm

iterative process of equation solving earlier in full correspondence with known initial
data on the equation to be solved. The proposed approach remains the important
property of the bisection method—all the intermediate interval estimates of the root
possible values contain the exact bounds.
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Fig. 6 Final results of the interval bisection algorithm
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