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Preface

We are immensely pleased to present the proceedings of the first international con-
ference on Modeling, Machine Learning and Astronomy (MMLA), held during
November 22–23, 2019 at PES University, Bangalore. The conference was organized
by the Department of Computer Science and Engineering, PES University, in technical
collaboration with the IEEE Computer Society Bangalore Chapter and the International
Astrostatistics Association. The theory of machine learning, deep learning in particular,
has been witnessing an explosion lately in deciphering “black-box approaches”.
Optimizing deep neural networks is largely thought to be an empirical process,
requiring manual tuning of several parameters. Obtaining insights into these parameters
has gained much attention lately. The conference focused on gaining theoretical
insights into the computation and setting of these parameters and solicited original
work reflecting the influence of the theoretical framework on experimental results on
standard datasets and architectures. It is heartening to note that the conference was able
to garner valuable talking points from optimization studies, another aspect of deep
learning architectures and experiments. In this spirit, the organizers wished to bridge
metaheuristic optimization methods with deep neural networks and solicited papers that
focus on exploring alternatives to gradient descent/ascent-type methods. Papers with
theoretical insights and proofs were particularly sought after, with or without limited
experimental validation.

The conference hosted a stellar assembly of Keynote and Plenary speakers,
renowned internationally for their contributions thematic to the conference.
Pre-conference tutorials, which included a couple of hands-on sessions, attracted a lot
of interest among the young audience.

Data is at the heart of this. Astronomy is a fascinating case study as it has embraced
big data exemplified by many sky surveys. The variety and complexity of the data sets
at different wavelengths, cadences etc. imply that modeling, computational intelligence
methods and machine learning need to be exploited to understand astronomy. The
importance of data-driven discovery in Astronomy has given birth to an exciting new
field known as astroinformatics. This inter-disciplinary study brings together machine
learning theorists, astronomers, mathematicians and computer scientists, underpinning
the importance of machine learning algorithms and data-analytic techniques.

The Conference aimed to stake out unique ground as an amalgamation of the above
diverse ideas and techniques while staying true to the baseline. The conference enabled
discussion on new developments in modeling, machine learning, design of complex
computer experiments and data-analytic techniques which can be used in areas beyond
astronomical data analysis. Given the horizontal nature of MMLA, we hope we were
able to disseminate methods that are area-agnostic but currently of interest to the broad
community of science and engineering.

MMLA had three tracks: Modeling and Foundations, Machine Learning Applica-
tions and Astronomy and AstroInformatics. The three tracks attracted 63 research



articles from India and abroad, out of which 16 were eventually accepted. We enforced
a rigorous double-blind peer review system.

As volume editors, it was a privilege to be associated with the conference, which
stood out because of its unique nature. We thank the Technical Program Committee for
their dedicated efforts in reviewing the papers. We are thankful to the series editors
of the Springer Book Series on Communications in Computer and Information Science
(CCIS) for their support to bring out these proceedings of MMLA 2019. We thank all
the authors of MMLA 2019.

November 2019 Shikha Tripathi
Nithin Nagaraj

Snehanshu Saha

vi Preface
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Modeling and Foundations



Optimizing Inter-nationality of Journals:
A Classical Gradient Approach Revisited

via Swarm Intelligence

Luckyson Khaidem1, Rahul Yedida2, and Abhijit J. Theophilus3(B)

1 State University of New York at Stony Brook, Stony Brook, USA
2 North Carolina State University, Raleigh, USA

3 Center for AstroInformatics, Modeling and Simulation (CAMS), Bengaluru, India
abhijit.theo@gmail.com

Abstract. With the growth of a vast number of new journals, the de
facto definitions of Internationality has raised debate across researchers.
A robust set of metrics, not prone to manipulation, is paramount for
evaluating influence when journals claim “International” status. The Sci-
entoBASE project defines internationality in terms of publication quality
and spread of influence beyond geographical boundaries. This is acheived
through quantified metrics, like the NLIQ, OCQ, SNIP and ICR, passed
into the Cobb Douglas Production Function to estimate the range of
influence a journal has over its audience. The global optima of this range
is the maximum projected internationality score, or the internationality
index of the journal. The optimization, however, being multivariate and
constrained presents several challenges to classical techniques, such as
curvature variation, premature convergence and parameter scaling. This
study approaches these issues by optimizing through the Swarm Intel-
ligence meta-heuristic. Particle Swarm Optimization makes no assump-
tions on the function being optimized and does away with the need to
calculate a gradient. These advantages circumvent the aforementioned
issues and highlight the need for traction on machine learning in opti-
mization. The model presented here observes that each journal has an
associated globally optimal internationality score that fluctuates propor-
tionally to input metrics, thereby describing a robust confluence of key
influence indicators that pave way for investigating alternative criteria
for attributing credits to publications.

Keywords: Journal internationality score · Internationality
production function · Particle Swarm Optimization (PSO) · Gradient
descent · Machine learning

1 Introduction

There has been varying definitions of “Internationality” of peer-reviewed jour-
nals. Earlier research [1] on defining internationality claims that a journal qual-
ifies to be called “international” if certain criterion are fulfilled. Concerning the
c© Springer Nature Singapore Pte Ltd. 2020
S. Saha et al. (Eds.): MMLA 2019, CCIS 1290, pp. 3–14, 2020.
https://doi.org/10.1007/978-981-33-6463-9_1
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vast geographical distribution of readers, journals are called “international” if
their language of publication is English. According to the authors, any other
native language used for publishing research articles may lead to lesser scientific
impact and thus, low in international standards. Inclusion in the international
databases, Impact factor and journal’s editorial board members belonging to
different nations are other parameters being used for measuring internationality
as claimed by the authors.

Buchandiran [4] have reported an immense increase in articles and reviews
published between 2004 and 2009. Evidently, with increase in articles, there is
an emergence of vast number of new journals that claims to be international
despite having low influence and bare minimum citations. Internationality tag
attached to journals has often left many researchers in dilemma over how to
carve out parameters that can measure a journal’s influence in the right sense.
Hence examining parameters from the ones that are popularly used in past
years for modeling internationality of journals is an interesting and challenging
problem to work on. Problem becomes even more challenging when the known
parameters are found to be prone to opportunistic manipulations and gaming.
Hence, there seems to be an explicit need to introduce new parameters that are
robust, unbiased and can measure internationality of journal in an unambiguous
way.

2 Related Work

Most of the work done on internationality deals with computing journal’s influ-
ence by considering parameters like Impact factor, citations etc. Gunther K.
H. Zupanc [15] claims that using Journal Impact Factor to compare influence
is highly ill-suited since journals that belong to different domain may invite
different citations and hence comparing two journals of dissimilar domains by
considering just their Impact Factor is inappropriate. He claims that authors are
tempted to publish their work in high-Impact Factor journals instead of jour-
nals that are best suited for their research work. In 2015, Neelam Jangid et al.
[11,12] computed Journal Influence Score (JIS) by applying principal component
analysis (PCA) and multiple linear regression (MLR) on scientometric indica-
tors. The score is similar to the computing mechanism used in SCImago Journal
and Country Ranking (SJR). Higher the score, the more likely that a journal is
valued and accepted. JIS is a light-weight approach that uses MLR to compute
score, whereas SJR uses a iterative Page Ranking Algorithm to compute score.

Source Normalized Impact per Paper (SNIP) is a very popular indicator
introduced by Henk F. Moed [16]. It allows a fair comparison of journals that
belong to dissimilar domains. The parameter uses Citation potential of all
domains to normalize the Raw Impact per Paper of all journals. SNIP is defined
as the ratio of the journal’s citation count per paper and the citation potential in
its subject field. It aims to allow direct comparison of sources in different subject
fields. There is no single ‘perfect’ indicator of journal performance.

Different researchers across the world such as Anup Kumar Das, Sanjaya
Mishra [14] contemplated on using article-level metrics (ALM) over Journal
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Impact Factor (JIF) to assess the performance of individual scientists and
their contributions. Seyyed Mehdi et al. [13] in their research made an attempt
to study the scientific output of fifty countries in the past 12 years. A two-
dimensional map is constructed, analyzed and studied in order to measure the
‘quality’ and ‘quantity’ of research output. Clusters are generated after analysis
to represent country wise research.

3 Context of the Problem

Internationality has been extensively studied in ScientoBASE [5] where authors
have defined internationality of journal in terms of quality of publications and
in terms of spread of influence beyond defined geographical boundaries. A jour-
nal is more international when it encourages publishing scientific articles from
authors/researchers which are from different demographic regions of the world.
In order to measure journals on a scale of internationality, authors proposed
novel metrics like NLIQ (Non-Local Influence Quotient), OCQ (other citation
quotient), SNIP (Source Normalized Impact per Paper) and ICR (International
Collaboration Ratio). These parameters, while computing internationality score,
incorporates quality and influence in terms of publications and most importantly,
invalidates all illegitimate attempts by journal to boost its influence/citations
through unfair means. A brief note of these metrics is as follows. NLIQ is a
metric that computes those citations that a journal receives from other journals
of same or different domain in a specific time window. This metric captures
non-localized impact that journals spread by publishing articles that maintain
higher qualitative standards. OCQ is another parameter that find articles in a
journal which are devoid of self citations. Self citation when practised by authors
in large-scale, is often viewed as a strategy to unreasonably enhance their influ-
ence. ICR computes a ratio of authors collaborated from different nations while
contributing articles in journal under evaluation. Essentially, ICR of a journal
is high if a large portion of contributing authors in a journal are from different
nations. SNIP allows comparison of journals of dissimilar domains. Few Journals
that publish in niche areas tend to receive less number of citations as the pub-
lications are few in number. On the other hand, journal of an emerging domain
receives higher citations mainly because of its reputation and popularity. Thus
two journals from different domains cannot be compared solely on the basis of
their raw impact factor because RIP computes influence on the basis of citations
received by journals under comparison. To resolve this situation, SNIP com-
putes citation potential of every domain, and divides journal’s Raw Impact per
Paper (RIP) with citation potential resulting in a score (SNIP), that allows fair
comparison of journals from different domains.

Framework used in ScientoBASE [5] allows a fair computation of internation-
ality score of journals evaluated across varying domains. A consolidated database
consisting of parameters mentioned above, is built by using web scraping tech-
niques and passed into Cobb Douglas Production Function. In Economics, the
production function is used extensively to study the relationship of inputs with
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output and it is used for the first time in scientometrics to generate internation-
ality index for journals. The function is given by

y = A

n∏

i=1

xi
αi (1)

where y is the internationality index, xi are the 4 derived journal parameters
and αi is elasticity. For close examination of its functional form, consider a case
when 2 input parameters are used in the function (x1, x2),

y = Ax1
αx2

β (2)

Primarily, the function exhibits convex/concave properties for certain values
α, β. These elasticity determines the response of output when the input levels
are changed. There are three types of response depicted in output when inputs
to the function are changed viz-a-viz: decreasing returns to scale (DRS, when
α + β < 1), constant returns to scale (CRS, when α + β = 1) and increasing
returns to scale (IRS, when α + β > 1). Further, while experimenting with two
inputs it was observed that, for certain values of α, β, function attains largest
value of y, also called global maxima, that gave largest internationality score
to journals. Appendix A explores the conditions for α, β, under which Cobb
Douglas function is concave and achieves a global maxima, by examining the
Hessian conditions for concavity of a function. In summary, Cobb Douglas is
concave, when

α ≥ 0, β ≥ 0, α + β ≤ 1 (3)

Modeling internationality of journals is a tricky problem. As explained above, the
model of internationality [5,6,9] under the constant returns to scale constraint
guarantees a theoretical optima. This is the optima we pursue as this indicator
gives optimal internationality value for all journals which are found to have the
reliable indicators/features used in the model. Please note that the model pro-
posed is defined for three different types of constraints, CRS, DRS and IRS [5].
However, in our case, CRS constraint is chosen to solve the optimization prob-
lem. This is because the players (parameters of the model such as NLIQ) are in
perfect competition toward the common goal of optimizing the production func-
tion i.e. internationality score of journals. It is pertinent to mention here that,
the score function is split into two components with strong reasons to argue in
favor of such approach. Each component comprising of scientometric indicators
is in co-operative mode with the other so that the final internationality score
is maximized. We know, the model is a concave function under the CRS con-
straint, thereby ensuring global optima. However, there are several issues that
we intend to address here. To begin with, we need to address the fact that,
even if theoretical optima exists, convergence of Newtonian methods (Gradient
descent/ascent-fmincon in MATLAb)could be slow because of the multivariate
nature of the function. Therefore, we need an approach which simulates gradi-
ents rather than computing those. Next, an optimal weighted combination of
two components of internationality function (producing the score eventually) is
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often tedious and hard to find. Slight variations in weights could cause fluctua-
tions in the internationality score. This is not desired. Therefore, we propose an
approach where the final score is insensitive to the weights chosen in the sense
that, a range of score (devoid of wide and wild variations) is obtained. This is the
desired robust framework. Additionally, we want the solution to the optimiza-
tion problem converge fast enough to the coveted global optima i.e maximum
internationality score!

Perfect competition implies presence of a large number of parameters (sci-
entometric indicators) driving a stable market equilibrium. Perfect competition
essentially implies complete absence of inter-player competition (particularly of
interest in our case since we don’t wish parameters playing the domination game)
because each is a small entity in view of the global internationality score, such
that individual parameters (such as NLIQ, ICR) have little control or influence
over the internationality function formation and the aggregate quantity. CRS
in the usage of economics is integral to the presence of perfectly competitive
markets by ensuring equi-proportionate returns to factor (parameter) inputs.
Conversely, DRS implies that use of inputs generate less than proportionate
increase in the output. Therefore to the extent that our indicators 1 optimize
on profit or cost (Revenue which is our framework for internationality), these
should resist expansion of production beyond the point where output (journal
internationality score) grows less than proportionately to use of inputs. Since
the concept of internationality score is borrowed from production economics we
deem it necessary to interpret the objective in light of economics and therefore,
we explore the bi-objective framework under CRS constraints rather than the
DRS constraints. Therefore, the model under this particular CRS constraint pro-
vides an adequate motivation to explore the bi-objective optimization framework
where the players, the components of the internationality function are in perfect
competition with each other and ensures a Pareto front.

The above arguments augur well for exploiting PSO based optimization
framework to ensure we reach the global internationality score of journals in
robust and efficient manner. We proceed to explain the method in the next
section which further illuminates the justification for using a metaheuristic such
as PSO in place of classical Gradient ascent/descent methods. The paper is orga-
nized as follows. Section 4 describes the working of the traditional Particle Swarm
Algorithm (PSO). Section 5 elaborates the algorithmic steps of PSO. Section 6
highlights the similarities of Gradient Descent and PSO. Section 7 examines the
results and concludes the paper.

4 PSO: A Swarm Method to Simulate Gradients

The original authorship of PSO has been attributed to Kennedy, Eberhart and
Shi [2,3]. PSO simulates the collective behavior of organisms in social context
such as a bird flock or a fish school. The algorithm makes use of randomly
1 Please note parameters, indicators, features and players have been used interchange-

ably in the manuscript.
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initialized particles in an n-dimensional search space that traverse the fitness
landscape to improve a defined measure of quality. This measure of quality is an
objective function that needs to be either maximized or minimized. The particles
in an swarm iteratively improve by learning from other particles in the swarm
as well as from its own past experiences. A significant characteristic of PSO
is that it does not make any assumption of the function being optimized and
does not require any gradient calculation as in classical optimization techniques.
The advantage is that it does not bear the overhead of calculating calculating
gradient of complex objective functions in very high dimensional space. Also,
it can optimize non-differentiable functions which would not be possible with
gradient based classical optimization methods. It is worth noting that in classical
optimization algorithms such as Gradient Descent, first order derivatives of the
objective function is computed because it acts as a guiding mechanism for the
solution to converge towards an optimum. This guiding mechanism is inherently
captured in the way a swarm converges towards an optimum through social as
well as experiential learning of every individual particle in the swarm. The paper
attempts to provide theoretical insights to elucidate this subtle behavior.

5 Algorithm Description

Let f : IRn → IR be an objective function. We need to find x ∈ IRn such that the
function f(x) is minimum. PSO first initializes a swarm of size s with random
particle positions X = {x1, x2, x3, ...., xs} where xi ∈ IRn and xi ∼ U(lb, ub)n.
Here ub and lb are upper and lower bounds of the search space. Each particle is
randomly initialized with velocity values V = {v1, v2, v3, ..., vs} where vi ∈ IRn

and vi ∼ U(vmin, vmax)n. Here, vmin = −|ub − lb| and vmax = |ub − lb|. vmax

and vmin ensures that the velocity of particles are constrained within a specified
range to ensure that the values do not explode and prevent or delay convergence.
The algorithm maintains a set L = {l1, l2, ..., ln} where li ∈ IRn and gbest ∈ IRn.
li is current best observed position by particle xi and gbest is the current best
observed position by the entire swarm. Given two particle positions x and y, x is
said to be better than y if f(x) < f(y) for a minimization problem. This means
that at any iteration f(gbest) ≤ f(li) ∀ i = 1, 2, 3..., s. The particle positions at
the tth iteration are updated in the following way:

vi(t) = ω.vi(t−1) + r1.c1.(li − xi(t−1))
+ r2.c2.(gbest − xi(t−1)))

(4)

xi(t) = xi(t−1) + vi(t) (5)

ω is the inertia weight and controls the influence of the velocity from the
previous iteration to the current velocity value. c1 is the cognitive factor which
factors in the learning of individual particles from its past experiences and c2 is
the social factor that models the tendency of each particle to move towards to
the current globally best particle. The new particle positions are evaluated using
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the objective function and the set L and global best position gbest are updated
as better solutions are found. This process is repeated until a termination criteria
is met.

6 Gradient Simulation

To illustrate the simulation of gradients in Particle Swarm Optimization, it is
imperative to bring out the similarities between PSO and classical optimization
algorithms such as gradient descent. In the following subsection, the intuition
behind gradient descent algorithm will be discussed.

6.1 Gradient Descent

Gradient descent minimizes a function f : IRn → IR by first initializing a random
solution θ ∈ IRn and iteratively converges θ towards an optimum in the following
way,

θ(t) = θ(t−1) − α.
∂f

∂θ(t−1)
(6)

where α is the learning rate which controls the extent to which the solution
moves towards an optimum. Let us recall that the gradient of a function is
∂f
∂θ = limΔθ→0

f(θ+Δθ)−f(θ)
Δθ . The gradient of a function measures the rate at

which the function f changes when θ is increased by an infinitesimal value. And
hence Eq. (6) implies that the solution moves towards the direction of decreasing
gradient. The intuition here is that if ∂f

∂θ(t)
< 0 then, a minimum exists at θ > θ(t)

and if ∂f
∂θ(t)

> 0 then, a minimum exists at θ < θ(t). Therefore, the gradient
of a function at a particular point guides the solution towards a minimum in
the search space. An interesting implication is that the gradient of a function
at a point contains prior information on where an immediate optimum exists.
Provided that α is small enough, the algorithm ensures that f(θ(t)) < f(θ(t−1)).

6.2 PSO and Gradient Descent: Equivalence

As mentioned before, PSO does not assume anything about the function being
optimized and does not require any gradient calculation. And hence, PSO does
not make use of the advantage of any guiding mechanism that the gradient of a
function provides. It does not rely on any prior information where an optimum
might exists to maximize or minimize a function. To overcome this, the algorithm
focuses on collective behaviors that result from the interactions of particles or
candidate solutions with each other and also through the experience of each
individual particle. The initially randomized candidate solutions in PSO explore
the search space and estimate initial guesses on where an optimum might exists.
Then each individual particle factors in its own individual learning and also the
learning from the best performing solution or particle to update its position
in the next iteration. This particular characteristic of Swarm intelligence
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implies that each individual particle is guided by other members in the swarm.
Over multiple iteration, the particles in the swarm converge towards a global
optimum.

We know that at any iteration t, f(gbest), f(li) ≤ f(xi) ∀ i = 1, 2, 3, ..., s.
An interesting conclusion that can be drawn from this fact is that in Eq. (6),
the terms (gbest − xi) and (li − xi) indicate directions in which a function is
decreasing; meaning that the swarm iteratively moves towards an optimum as
li and gbest are updated when better solutions are discovered. This particular
characteristic of PSO is analogous to the way a candidate solution is improved in
gradient descent by moving the solution in the direction of decreasing gradient.
Over many iterations, the direction of each particle velocity converges with the
direction in which the gradient decreases. With this, we can draw the conclusion
that the velocity computed in PSO simulates the gradient of a function.

This equivalence has a fundamental connotation in the context of the Scien-
tometric problem we’re trying to solve. The internationality function of journals
is written as a production function as mentioned above. Traditionally, Matlab or
equivalent libraries (namely fmincon, a very popular routine) are used to com-
pute the optima. This is done under the assumption that the function to be
computed doesn’t suffer from curvature violations and therefore the theoretical
optima is not different from the computed ones. However, if the function con-
tinues to have additional parameters built in other than the four we have used
here, the curvature violation will be imminent. This is expected as new features
or parameters are defined by rating agencies and the metrics need to be updated
accordingly. For a typical n parameter internationality function, where n ≥ 4,
curvature violation will ensure that Newtonian methods such as fmincon will not
converge to the promised global optima even though theoretically there exists
one under the problem and constraint settings of the optimization framework
mentioned in the introduction section. Therefore, meta-heuristic methods such
as PSO need to be exploited to compute global optima efficiently. Additionally,
it is important to show that there is some equivalence between the classical and
meta-heuristic approaches to dispel any doubt regarding guesswork!

7 Results and Conclusion

Conceptualizing a framework for journal internationality is necessary for quan-
tification. Otherwise, the term is used loosely enough across communities to
serve any real purpose. The work originated by Buela et al. is extended in this
manuscript, where we intend to explore internationality of journals as a new
concept that can be used to rank and classify journals based on levels on inter-
nationality. Once the ranking framework is built, the output will then be com-
pared with standard journal rankings found in Scopus. The motivation of this
exercise is to pave way for investigating the convergence between existing rank-
ing system and our approach. Without valid and validated quality parameters,
internationality of journals holds little merit. This hypothesis led us to elaborate
investigation detailed in the manuscript. Indeed, without quality measures and
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Fig. 1. Nonlinear profile of internationality function of journals: global maxima is the
maximum internationality score.

quantifiable excellence criteria, internationality is merely a term not worthy of
serious discourse. Much of the UGC guidelines focusing on “international” pub-
lications is therefore misplaced. This is the reason internationality needs to be
studied in great detail so that a reasonable policy evolves regarding attributing
credits for publishing in “international” journals.

Therefore, a model with valid theoretical background is presented where we
observe that, a journal has a globally optimal internationality score and it may
fluctuate in a manner proportionate to fluctuations in input parameters. This is
guaranteed by the functional form of the model and a powerful tool in machine
learning, known as convex optimization. The above figure captures such fluc-
tuations and the global maximum internationality score is evident. However,
computing the score presents a different set of challenges owing to multiple
issues such as curvature violation, being stuck in local saddle points, scaling of
parameters etc. Such problems are difficult to circumvent using classical, ana-
lytical techniques. Hence, the role of machine learning, as demonstrated in the
manuscript, becomes paramount. We presented one such method, Particle swarm
optimization (see Table 1) and exhibited the efficacy of the method in dealing
with the difficulties of a complex model. The study of machine learning in Sci-
entometrics, we hope, gains traction in the coming decade as it has become a
necessary tool to analyze complex models from non-empirical standpoint. Clas-
sification of journals based on levels of internationality is another important task
of supervised machine learning that should pose challenges. However, we main-
tain that, this is an important task to accomplish in future as it depends on the
quality of machine learning algorithms and reliable data.
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Table 1. Journals and respective metrics: the indicators, OCQ, NLIQ, SNIP, ICR and
Internationality score computed by PSO: Our method handles multivariate nature of
data and model complexity quite efficiently. The scores are between 0 and 1, with 0
and 1 being the lowest and highest bounds of internationality of journals.

Journal name NLIQ ICR OCQ SNIP Int. Score

ACM Computing Surveys 0.98 0.11 0.98 1.71 0.83

Journal of the ACM 0.96 0.13 0.97 0.78 0.77

Journal of Data and Information Quality 0.83 0.11 0.89 0.17 0.58

Journal of Experimental Algorithmics 0.90 0.16 0.83 0.20 0.65

ACM Journal on Emerging Technologies in
Computing Systems

0.80 0.11 0.77 0.19 0.57

Journal on Computing and Cultural
Heritage

0.78 0.15 0.80 0.22 0.58

ACM Transactions on Autonomous and
Adaptive Systems

0.93 0.18 0.82 0.37 0.71

ACM Transactions on Accessible Computing 0.85 0.11 0.87 0.41 0.65

ACM Transactions on Architecture and
Code Optimization

0.90 0.15 0.87 0.56 0.72

ACM Transactions on Algorithms 0.95 0.22 0.82 0.50 0.76

ACM Transactions on Asian and
Low-Resource Language Information
Processing

1.00 0.13 0.83 0.15 0.66

ACM Transactions on Applied Perception 0.90 0.15 0.88 0.24 0.66

ACM Transactions on the Web 0.97 0.16 0.89 0.50 0.75

A Appendix A: Necessary and Sufficient Condition
for Concavity

Theorem 1. For any function f ∈ C2;x ∈ R; f : R2 → R is concave iff the
Hessian Matrix, H ≡ D2f(x) is negetive semi-definite ∀x ∈ U .

Proof. Here we are establishing that Cobb-Douglas function is concave under
decreasing and constant returns to scale (i.e when α + β < 1, α + β = 1 ) and
attains a global maxima when these elasticity conditions are met. We compute
the Hessian Matrix of the function and show that the matrix is negative semi-
definite when α+β < 1 and α+β = 1. This proves that Cobb Douglas is concave
only when the above conditions on elasticity are met.

The function is given by f(x1, x2) = kxα
1 xβ

2 with k, α, β > 0 for the region
x1 > 0 and x2 > 0. The Hessian Matrix (H) of the function is given by

H =
[
α(α − 1)kxα−2

1 xβ
2 αβkxα−1

1 xβ−1
2

αβkxα−1
1 xβ−1

2 β(β − 1)kxα
1 xβ−2

2

]
(7)
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First order principal minors of H are:

M1 = α(α − 1)kx1
α−2x2

β ; M ′
1 = β(β − 1)kx1

αx2
β−2 (8)

Second order principal minor is:

M2 = kαβx2α−2
1 x2

2β−2[1 − (α + β)] (9)

To prove that Hessian matrix H is negative semi-definite, we need to show M1 ≤
0, M ′

1 ≤ 0 and M2 ≥ 0. We know, for decreasing and constant returns to
scale: α + β ≤ 1, therefore

α ≤ 1, β < 1 ⇒ (α − 1) ≤ 0
⇒ M1 ≤ 0

(10)

And also,
(1 − (α + β)) ≥ 0 ⇒ M2 ≥ 0 (11)

Both conditions for concave function are satisfied by decreasing and constant
returns to scale. Therefore, Cobb Douglas is concave, when

α ≥ 0, β ≥ 0, α + β ≤ 1 (12)
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Abstract. In this paper, we have derived a formula to find combina-

torial sums of the type
n∑

r=0

rk
(
n

r

)
where k ∈ N. The formula is conve-

niently expressed as a sum of terms multiplied by certain co-efficients.
These co-efficients satisfy a recurrence relation, which is also derived in
the process of finding the above sum. Upon solving the recurrence, these
numbers turn out to be the Stirling Numbers of the first and second
kind. Here on, it is trivial to prove the mutual inverse property of both
these sequences of numbers due to linear algebra.

Keywords: Combinatorics · Stirling Numbers

1 Introduction

The inquiry into the matter started with the task to find the sum of
n∑

r=0

r

(
n

r

)
.

Using the binomial expansion -

(1 + x)n =
n∑

r=0

xr

(
n

r

)

=
(

n

0

)
+ x

(
n

1

)
+ x2

(
n

2

)
+ · · · + xn−1

(
n

n − 1

)
+ xn

(
n

n

)

Thus, we have on differentiating -

d

dx
(1 + x)n =

d

dx

[(
n

0

)
+ x

(
n

1

)
+ x2

(
n

2

)
+ · · · + xn−1

(
n

n − 1

)

+xn

(
n

n

)

=⇒ n(1 + x)n−1 =
(

n

1

)
+ 2x

(
n

2

)
+ 3x2

(
n

3

)
+ · · · + nxn−1

(
n

n

)
(1)

c© Springer Nature Singapore Pte Ltd. 2020
S. Saha et al. (Eds.): MMLA 2019, CCIS 1290, pp. 15–25, 2020.
https://doi.org/10.1007/978-981-33-6463-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6463-9_2&domain=pdf
https://doi.org/10.1007/978-981-33-6463-9_2


16 A. Bhattacharya and B. Bhattacharya

On setting x = 1 in Eq. 1, we get -
(

n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · + n

(
n

n

)
= n2n−1

=⇒
n∑

r=0

r

(
n

r

)
= n2n−1 (2)

which is our required answer. As a logical extension, one can ask what is the

sum of
n∑

r=0

r2
(

n

r

)
.

On multiplying Eq. (1) with x and then differentiating, we obtain -

nx(1 + x)n−1 = x

(
n

1

)
+ 2x2

(
n

2

)
+ 3x3

(
n

3

)
+ · · ·

+nxn

(
n

n

)

=⇒ d

dx
nx(1 + x)n−1 =

d

dx

[
x

(
n

1

)
+ 2x2

(
n

2

)
+ 3x3

(
n

3

)
+ · · ·

+nxn

(
n

n

)

=⇒ n(1 + x)n−1 + nx(n − 1)(1 + x)n−2 =

(
n

1

)
+ 22x

(
n

2

)
+ 32x2

(
n

3

)
+ · · ·

+n2xn−1

(
n

n

)
(3)

Setting x = 1 in the above equation, we get -

(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · · + n2

(
n

n

)
= n2n−1 + n(n − 1)2n−2

=⇒
n∑

r=0

r2
(

n

r

)
= n2n−1 + n(n − 1)2n−2 (4)

If we use the notation, Snk =
n∑

r=0

rk
(

n

r

)
, one can notice the pattern in

Eqs. (2) and (4) and conjecture that -

Sn3 = n2n−1 + n(n − 1)2n−2 + n(n − 1)(n − 2)2n−3

However, it turns out that it is not true because, on multiplying (3) with x
and then differentiating -

n(1 + x)n−1 + 3nx(n − 1)(1 + x)n−2 + nx2(n − 1)(n − 2)(1 + x)n−3

=
(

n

1

)
+ 23x

(
n

2

)
+ 33x2

(
n

3

)
+ · · · + n3xn−1

(
n

n

)
(5)
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On setting x = 1 in (5), we get -

Sn3 = n2n−1 + 3n(n − 1)2n−2 + n(n − 1)(n − 2)2n−3 (6)

As it can be seen, the n(n − 1)2n−2 term is padded with a co-efficient of 3.
Hence, it does not suffice that the conjecture be so straightforward. Since the
general method to find Snk would require differentiating k times, we have to
allow for co-efficients that multiply with the type of terms given above.

Thus, the task of finding the sum Snk would be reduced to finding such co-
efficients to multiply these terms with and there would be no need to differentiate
k times explicitly.

2 A General Approach

If we denote
k−1∏

i=0

(n − i) = (n)k (A.K.A the falling factorial for k ≥ 1), and

Tni = (n)i2n−i, then -

Snk =
k∑

i=1

aki(n)i2n−i =
k∑

i=1

akiTni 1 ≤ k ≤ n (7)

The aki’s are general co-efficients which are padded to Tni terms. The sub-
script aki has been chosen over ani in hindsight. The reason will be clear in the
subsequent sections.

Note that (n)n = n! and for any k > n (n)k = 0 =⇒ Tnk = 0. We can also
assume (n)0 = 1. Hence it can also be stated -

Snk =
k∑

i=1

aki(n)i2n−i =
n∑

i=1

akiTni k > n (8)

The sub-scripts in the formulae (28) and (8) have a subtlety. Once, the value
of n for the problem is fixed, the Tni’s are also fixed. The co-efficients aki however

depend on the value of k in the original sum
n∑

r=0

rk
(

n

r

)
.

Let’s say we are evaluating Sn3. The final value of the sum is obtained by
setting x = 1 in polynomial in x of (5) -

n(1 + x)n−1 + 3nx(n − 1)(1 + x)n−2 + nx2(n − 1)(n − 2)(1 + x)n−3

This can be generalised saying that the final series is obtained by setting
x = 1 in a polynomial S

(x)
nk . In the previous case, this was S

(x)
n3 . By analysing

the patterns in the previous steps, if S
(x)
n4 had to be derived, we would multiply

S
(x)
n3 with x and differentiate with respect to x. Generally -

S
(x)
n(k+1) =

d

dx

[
xS

(x)
nk

]

=⇒ S
(x)
n(k+1) = S

(x)
nk + x

d

dx
S
(x)
nk (9)
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where

S
(x)
nk =

k∑

i=1

aki(n)ixi−1(1 + x)n−i (10)

It is easy to see that every polynomial S
(x)
nk is a polynomial in x of degree

n−1 ∀ k ∈ N. This is because of recurrence relation (9) where the next polynomial
of the sequence is obtained by first multiplying the previous polynomial by x

and then differentiating. The boundary case of S
(x)
nn can be considered as well.

The last term in the sum will be -

S(x)
nn = · · · + aknn!xn−1

To find S
(x)
n(n+1), we need to multiply by x and then differentiate. Referring

to Eq. (10), it can be seen that the last term of sum for S
(x)
n(n+1) will again be

n!xn−1. However, it will be multiplied by a different co-efficient, namely a(n+1)n.
Hence, the clipping of the sum to n in (8) can be understood.

In other words, for k > n, the co-efficients akm where m > n may exist, but
they are not required to evalute the original sum.

In general, the set of co-efficients {a(k+1)1, a(k+1)2, · · · } can be expressed in
terms of {ak1, ak2, · · · } because of mixing of terms of equal powers and lowering
of the exponent on differentiation in the derivation of the next polynomial of the
sequence. The recurrence among polynomials (9) must naturally translate to a
recurrence among co-efficients. In other words, we must be able to express the
set {a(k+1)1, a(k+1)2, · · · } in terms of {ak1, ak2, · · · }.

3 Obtaining the Recurrence Relation for aki

Let us assume k ≤ n and evalute all the terms in the sequence
{ak1, ak2, · · · , akn}.

The first term of S
(x)
nk from (10) will always be n(1 + x)n−1. Due to the fact

that a11 = 1 and (9), this term will always get carried on to the next polynomial
sequence, and hence ak1 = 1 ∀ k ∈ N.

The last term is the result of differentiating k times and then multiplying by
x. It is a newly generated term in the sequence and not carried over by previous
polynomials of the sequence. Thus akk = 1 for k ≤ n.

Consider the ith term of S
(x)
nk+1 and its co-efficient a(k+1)i. Due to (9) and

(10), the contributing terms to the ith term from S
(x)
nk are -

a(k+1)i(n)ixi−1(1 + x)n−i = aki(n)ixi−1(1 + x)n−i

+ aki(n)i(1 + x)n−ix
d

dx
xi−1

+ ak(i−1)(n)i−1x
i−2x

d

dx
(1 + x)n−(i−1)

=⇒ a(k+1)i(n)ixi−1(1 + x)n−i = iaki(n)ixi−1(1 + x)n−i

+ ak(i−1)(n)ixi−1(1 + x)n−i (11)
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We can extract the recurrence relation by equating the co-efficients in (11) -

a(k+1)i = iaki + ak(i−1) (12)

The co-efficients aki satisfy the same recurrence as that of the famous Stir-
ling Numbers of the Second Kind and with the same base cases.

Hence these co-efficients must be the Stirling Numbers of the second kind.
In their more common notation, they satisfy the recurrence -

{
k + 1

i

}
= i

{
k

i

}
+

{
k

i − 1

}
(13)

4 Triangle of Stirling Numbers of the Second Kind

It is well known that
n∑

r=0

(
n

r

)
= 2n. Here the exponent in rk is k = 0.

Thus keeping in line with (28), we get -

Sn0 = a00Tn0 (14)

Since (n)0 = 1 and Tn0 = 2n, from (14), it can be seen that -

a00 = 1 (15)

For k > 0, the Tn0 = 2n term in the expression for Snk is missing. Hence -

ak0 = 0 (16)

Since for i > k, the Tni terms do not contribute to the sum as the upper
limit of the summation in (28) is k. Thus we can safely define -

aki = 0 i > k (17)

Thus we can combine (7) and (8) because of (15), (16) and (17) to generalise
-

Snk =
n∑

i=1

akiTni k ∈ N (18)

We can display these numbers in a triangular fashion (for 0 ≤ k ≤ 10) by
building the recurrence -

5 Verifying the Formula for Snk

We can confirm the validity of the method for two examples - one with k ≤ n
and another with k > n (Table 1).
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Table 1. Stirling Numbers of the Second Kind

i 0 1 2 3 4 5 6 7

k 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0

3 0 1 3 1 0 0 0 0

4 0 1 7 6 1 0 0 0

5 0 1 15 25 10 1 0 0

6 0 1 31 90 65 15 1 0

7 0 1 63 301 350 140 21 1

5.1 Case 1 - n = 5, k = 4

5∑

r=0

r4
(

5
r

)
= 04

(
5
0

)
+ 14

(
5
1

)
+ 24

(
5
2

)
+ 34

(
5
3

)
+ 44

(
5
4

)
+ 54

(
5
5

)

= 0 + (1 × 5) + (16 × 10) + (81 × 10) + (256 × 5) + (625 × 1)
= 2880

From (18), we have -

S54 =
5∑

i=0

a4iT5i

= a40T50 + a41T51 + a42T52 + a43T53 + a44T54 + a45T55

= 0 + (1 × 80) + (7 × 160) + (6 × 240) + (1 × 240) + 0
= 2880

Hence it matches!

5.2 Case 2 - n = 3, k = 6

3∑

r=0

r6
(

3
r

)
= 06

(
3
0

)
+ 16

(
3
1

)
+ 26

(
3
2

)
+ 36

(
3
3

)

= 0 + (1 × 3) + (64 × 3) + (729 × 1)
= 924
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From (18), we have -

S36 =
3∑

i=0

a6iT3i

= a60T30 + a61T31 + a62T32 + a63T33

= 0 + (1 × 12) + (31 × 12) + (90 × 6)
= 924

It matches too!

6 Another Approach

We shall derive the inverse relation i.e. Tnk in as a linear sum of Snk’s. From
this point on, we shall asume strictly k ≤ n

(1 + x)n =
n∑

r=0

xr

(
n

r

)

Differentiating k times -
[
k−1∏

i=0

(n − i)

]
(1 + x)n−k =

n∑

r=k

[
k−1∏

i=0

(r − i)

]
xr−k

(
n

r

)
(19)

The product on the LHS is just the falling factorial. One can expand the product
on the RHS as (bki’s are general co-efficients) -

k−1∏

i=0

(r − i) =
k∑

i=1

bkir
i (20)

Plugging in (20) in (19) and multiplying both sides by xk -

(n)kxk(1 + x)n−k =
n∑

r=k

k∑

i=1

bkir
ixr

(
n

r

)

=
n∑

r=0

k∑

i=1

bkir
ixr

(
n

r

)
−

k−1∑

r=0

k∑

i=1

bkir
ixr

(
n

r

)

=
k∑

i=1

bki

n∑

r=0

rixr

(
n

r

)
−

k−1∑

r=0

xr

(
n

r

)[
k∑

i=1

bkir
i

]

=
k∑

i=1

bki

n∑

r=0

rixr

(
n

r

)
−

k−1∑

r=0

xr

(
n

r

)[
k−1∏

i=0

(r − i)

]
(21)
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Plugging in x = 1 in (21) and using our defined notations -

(n)k2n−k =
k∑

i=1

bki

[
n∑

r=0

ri
(

n

r

)]
−

k−1∑

r=0

(
n

r

)[
k−1∏

i=0

(r − i)

]

=⇒ Tnk =
k∑

i=1

bkiSni −
k−1∑

r=0

(
n

r

)[
k−1∏

i=0

(r − i)

]
(22)

In the summation indexed by r on the RHS of (22), r can only take values from
{0, 1, · · · , k − 1}. The product vanishes for every value of r as i indexes from 0
to k − 1. Hence the last summation is identically zero. Ultimately -

Tnk =
k∑

i=1

bkiSni (23)

The subscripts of the terms here follow the same pattern as that of (28) but due
to different reasons. The b terms are indexed by k first because bki represents

the coefficient of ri in
k−1∏

i=0

(r − i) and the maximum power in this product is rk,

and hence the indexing.
One can also observe that (23) is simply the inverse relationship of Snk =

k∑

i=1

akiTni.

We can expect to derive, in a similar fashion, a recurrence relation for
{b(k+1)1, b(k+1)2, · · · } in terms of {bk1, bk2, · · · }.

7 Obtaining the Recurrence Relation for bki

From the definition of bki, it can be seen that the co-efficient of the lowest power

is bk1 =
k−1∏

i=1

(−1)ii = (−1)k−1(k − 1)!. Also, the co-efficient of the highest power

is bkk = 1.
We have established the base cases and can continue to establish the recurrence
relation. From (20), we have -

k∏

i=0

(r − i) =
k+1∑

i=1

b(k+1)ir
i

=⇒
k+1∑

i=1

b(k+1)ir
i = (r − k)

[
k−1∏

i=0

(r − i)

]

= (r − k)

[
k∑

i=1

bkir
i

]

=
k∑

i=1

bkir
i+1 −

k∑

i=1

kbkir
i
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k+1∑

i=1

b(k+1)ir
i =

k−1∑

i=2

bk(i−1)r
i −

k∑

i=1

kbkir
i (24)

The summation limits only differ in the boundary cases which have already
been derived. Hence, from (24), we can state a recurrence relation -

b(k+1)i = bk(i−1) − kbki (25)

Again, we discover that bki satisfy the same recurrence as that of Signed
Stirling Numbers of the First Kind and with the same base cases. As follows
from the previous argument, these must be the Signed Stirling Numbers of the
First Kind. They are called signed as some of these numbers are negative.

[
k + 1

i

]
=

[
k

i − 1

]
− k

[
k

i

]
(26)

8 Triangle of Signed Stirling Numbers of the First Kind

Setting the index k = 0 in (23) and letting i run from 0, we get -

Tn0 = b00Sn0 (27)

Since Tn0 = Sn0 = 2n, we can set b00 = 1
Also, by the recurrence relation (25), we can see that bk1 = (−1)k(k − 1)!

iff the recurrence satisfied by i = 1 is b(k+1)1 = −kbk1. Thus, bk0 = has to be
satisfied. In the later sections, this can also shown to be true by linear algebra
(Table 2).
We can again display these numbers in a triangular fashion -

Table 2. Signed Stirling Numbers of the First Kind

i 0 1 2 3 4 5 6 7

k 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 −1 1 0 0 0 0 0

3 0 2 −3 1 0 0 0 0

4 0 −6 11 −6 1 0 0 0

5 0 24 −50 35 −10 1 0 0

6 0 −120 274 −225 85 −15 1 0

7 0 720 −1764 1624 −735 175 −21 1
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9 Verifying the Formula for Tnk

It has already been stated that k ≤ n. Hence, we shall verify the formula (23)
for two cases:

9.1 Case 1 - n = 5, k = 3

T53 = 240
S51 = 80
S52 = 240
S53 = 800

b31S51 + b32S52 + b33S53 = (2 × 80) − (3 × 240) + (1 × 800)
= 240

Thus it mactches as expected.

9.2 Case 2 - n = 6, k = 4

T64 = 1440

S61 = 192

S62 = 672

S63 = 2592

S64 = 10752

b41S61 + b42S62 + b43S63 + b44S64 = (−6× 192) + (11× 672)− (6× 2592) + (1× 10752)

= 1440

This too matches as expected!

10 Proving the Inverse Nature of the Two Sequences

We shall concern ourselves only with a square sub-section of the table of Stirling
numbers (i.e. 1 ≤ k ≤ n).

Observe the formula for Tnk = (n)k2n−k = n × (n − 1) × · · · × (n −
k + 1)2n−k. This can be looked at as a polynomial in n of degree k.
The set {Tn1, Tn2, · · · , Tnn} essentially contains polynomials in n of degree
1, 2, · · · upto n. Hence, it can act as a basis for the vector space denoted by
span

({n, n2, n3, · · · , nn})
.

Similarly, the set {Sn1, Sn2, · · · , Snn} is also a set of polynomials in n and
(28) basically represents a linear transformation in the co-ordinatization of the
{Tnk} basis state.
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By using (28) and (23), we get -

Tnk =
k∑

i=1

bkiSni

=
k∑

i=1

bki

(
i∑

l=1

ailTnl

)

=
k∑

i=1

i∑

l=1

bkiailTnl

The inner sum runs from l = 1 to i. We note that i ≤ k due to the outer sum
and it does not make a difference to change the upper limit of the inner sum to
k. Since {Tnk} represents a basis state, we must have -

k∑

i=1

k∑

l=1

bkiailTnl =
k∑

l=1

δklTnl

= Tnk

With the Einstein summation convention, we can say bkiaij = δkj and that
the square matrices represented by a square-section of the two tables of the
Stirling Numbers are inverse with respect to each other.

11 Verifying the Inverse Property

Let us verify our result with a 6 × 6 sub-matrix of the two tables.

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−1 1 0 0 0 0
2 −3 1 0 0 0

−6 11 −6 1 0 0
24 −50 35 −10 1 0

−120 274 −225 85 −15 1

⎤

⎥⎥⎥⎥⎥⎥⎦
A =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 7 6 1 0 0
1 15 25 10 1 0
1 31 90 65 15 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Carrying out the matrix multiplication B × A results in the identity matrix
I6. We could have included the 00th index term in the matrices and it is trivial
to confirm that the result would have remained the same.
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Abstract. Oral squamous cell carcinoma (OSCC) remains a major death causing
oral cancer in developing countries. In recent years, tremendous development in
medical imagingdevicesmademicroscopic colour images of biopsy samples avail-
able to the researchers. Image processing and machine learning techniques can
be used to develop automatic cancer grading mechanism. In this work, automatic
OSCC classifier using Linear Discriminant Analysis combinedwith RandomSub-
space is developed and analyzed. The proposed classifiers automatically classifies
the input image in one of the four categories, namely: Normal, Grade-I, II or III.
Total 83 colour and texture features are computed from the 100 Haemotoxylin and
Eosin (H&E) stained images of oral mucosa. The overall accuracy of the proposed
classifier is 93.5% with sensitivity and specificity of 0.89 and 0.95 respectively.

Keywords: LDA · Random subspace · OSCC

1 Introduction

Oral cancer is one of the life-threatening ailments in the world. Among all the types of
oral cancers, oral squamous cell carcinoma (OSCC) is most common form of cancer
usually found in people with tobacco chewing and smoking habits [1]. Traditional way
of cancer diagnosis is highly dependent upon clinico-pathological acumen of the diag-
nosing experts [2, 3]. Furthermore, the cancer detection and grading is highly dependent
upon experts and their experience. With the progressions in the medical imaging equip-
ment, digital images of biopsy samples are now easily available. Using image processing
techniques and machine learning algorithms, it’s possible to develop an efficient auto-
matic image classifier for detecting and classifying the microscopic images into normal
and malignant lesion with different cancer grades. Computer assisted identification and
grading of the cancer can be taken as an important compliment to the pathologist’s diag-
nosis. In last decade many attempts have been made by various researchers to develop
such a system for various types of cancer. In [4] authors have suggested image analysis
for detection ofOSCCusing TissueMicroarray (TMA). Some researchers [5] used cytol-
ogy images for detecting oral cancer. Authors in [6] used image processing techniques

© Springer Nature Singapore Pte Ltd. 2020
S. Saha et al. (Eds.): MMLA 2019, CCIS 1290, pp. 26–40, 2020.
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to detect OSCC using Computed Tomography (CT) images. In this work we focus on
automatic detection and classification of OSCC which originates in stratified epithelium
of oral cavity using Hematoxylin and Eosin (H&E) stained microscopic images using
machine learning technique.

Common procedure of developing classifier involves extracting discriminating fea-
tures from the input images and feeding these features to the developed classifiers to
get the final classification. Linear discriminant analysis (LDA) is one of the recognized
classifiers explored by multiple authors to develop oral cancer classifiers. In [7], authors
have used complexity of fractal geometry at local and global level to classify the OSCC
using LDA. Their proposed system exhibit sensitivity of 63% and specificity of 67%.
The authors of [8] explored set of texture features to classify the oral sub-mucous fibrosis
(OSF) in normal and abnormal using LDA. The classifier demonstrated 88.38% accu-
racy. In [9], authors have used morphological features of segmented cells to identify
presence of dysplasia in epithelial layer of oral cavity which can be indication of the
presence of cancer. Their proposed classifier used LDA and overall accuracy seen was
46%. Staining of the biopsy lesion highlights various cellular regions by different colours
and intensity. These colour and intensity features has potential to detect abnormalities
in the lesion and the use of colour features with LDA for detection and classification of
OSCC is yet to be explored.

In this study, a novel technique of retaining the colour information while pre-
processing the microscopic images is developed and used. Further LDA classifier com-
bined with random subspace technique with colour and texture features is trained, tested
and analyzed. These features are extracted from the microscopic images of stratified
squamous epithelium (SSE). The set of input images include normal lesion, well differ-
entiated OSCC, moderately-differentiated and poorly-differentiated OSCC images [10].
The proposed classifier exhibits inclusive accuracy of 93.5%with specificity of 0.95 and
sensitivity of 0.89. The performance of suggested classifier LDA with RS using colour
and texture features is promising to be used as OSCC classifier.

The rest of the paper include the following sections: Sect. 2 describes the charac-
teristics of input images and proposed method. Section 3 presents the feature extraction
technique and Sect. 4 is about classifier. The performance measures used are described
in Sect. 5. Results and discussion are presented in Sect. 6 followed by conclusion in
Sect. 7.

2 Input Images and Methods

In this section details about the dataset preparation and peculiar characteristics of the
input images are discussed.

2.1 Input Dataset

The dataset used for this classifier are provided by healthcare global enterprises limited
(HCG) hospitals, Bangalore-Karnataka, India. Olympus CX31 microscopes is used to
capture all the images [11]. These microscopic images are RGB-Coloured and of H&E-
stained biopsy lesion of SSE.This image dataset consists of images under four categories:
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Normal sample-40, Well-differentiated (WD)-20, moderately-differentiated (MD)-30
and poorly-differentiated (PD)-10. Total 100 images captured with 10X magnification
and resolution of 960 X 720. Figure 1 (a) to (d) shows sample images of Normal, WD,
MD and PD OSCC.

Fig. 1. SampleH&E-stainedmicroscopic images of stratified epitheliumof oral cavity (a) normal,
(b) well differentiated, (c) moderately differentiated, (d) poorly differentiated (Color figure online)

OSCC is a multi-phase progression causing the disruption of the normal controlling
pathways that regulate basic cellular functions including cell division, differentiation,
and cell death. This disturbance leads to abnormal increase in number of cell surface,
shape and size of cell nucleus, disturbance in regular structure of connective tissue.
The genetic action fails in overturning the tumor spread resulting into abnormal cell
phenotype which escalates cell proliferation. It also damages cell cohesion and can
infiltrate local tissue and spread to distant sites [10]. H&E-taining highlights the cell
nucleus by staining it in purple-blue colour and cytoplasm takes pink colour. The colour
intensity varies in abnormal tissue from the normal one. Obviously, the colour details can
be used as abnormality indicating features. Similarly, the arrangement of various cellular
structures gets disturbed and become irregular in malignant lesion which is regular in
non-malignant. Thus, texture features are important and added to the feature set.

2.2 Proposed Classifier

Figure 2 shows flow diagram of proposed OSCC classifier using LDA combined with
random subspace (RS). The objective of the classifier is to classify the microscopic
images of SSE layer in Normal/ WD- /MD-/PD-OSCC categories. The input images
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are in RGB color model format. These are converted into CIE L*a*b* and HSV colour
space. After that color features are calculated from all three color modelled images.
For extracting texture features L-channel of L*a*b* color converted images. Finally
feature sampling is performed over the feature set to create feature subset as per the RS
technique. All these feature subsets are used to train multiple LDA classifiers and final
prediction is carried out by majority voting.

Fig. 2. Functional block diagram of proposed classifier

3 Feature Extraction

As mentioned in Sect. 2.1, colour features and texture features are calculated from the
input images. Feature set consist of total 83 features as shown in Table 1.

3.1 Colour Features

The available dataset consist of RGB colour model images. These images converted
into CIE L*a*b* colour space and HSV colour model. CIE L*a*b* colour space is
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perceptually linear and analogous to how human perceive the colours. Second advantage
of this conversion is, the L-plane can be used as grayscale image since it carries only
intensity information. Colour information will remain unchanged and retained in *a and
*b plane. For RGB to L*a*b* conversion reference illumination value of white light is
required representing the surrounding illuminance. As mentioned before microscopic
images are captured in artificial light in the laboratories due to which it’s difficult to
decide the white point value. To work around this problem, colour constancy is applied
to all the input images.

RGB to CIE L*a*b* conversion steps:

1) RGB image undergo colour constancy using Grey-world algorithm then converted
to L*a*b* colours.

2) RGB to CIE L*a*b* conversion is two-step process: RGB → XYZ → L∗a∗b∗
3) RGB → XYZ conversion:

⎡
⎣
X
Y
Z

⎤
⎦ =

⎡
⎣
0.412453 0.35758 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎤
⎦ ∗

⎡
⎣
R
G
B

⎤
⎦ (1)

4) For XYZ → L∗a∗b∗ conversion reference white point taken is D65 as per CIE
standards (ITU-R recommendation BT.709) [12]

HSV is another colour space resembling to human vision [13]. The three planes;
Hue, Saturation and Value carries information related to colour, depth of the colour
(Grayness) and brightness of the colour respectively.

Table 1. List of features

Type of features No. of features

Colour features RGB, CIE-L*a*b*, HSV 60

Texture features Haralick, Tamura, Laws 23

Total number of features 83

RGB to HSV conversion steps:
RGB values are divided by 255 to normalize the range from 0 → 255 to 0 → 1

1.

R′ = R

255
, G′ = G

255
, B′ = B

255
(2)

2.

Cmax = max
(
R′, G′, B′), C_min = min

(
R′, G′, B′),
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3.

� = Cmax − Cmin (3)

4.

Hue, H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

00 � = 0

600X
(
G−B

�
mod6

)
, Cmax = R

600X
(B−R

�
+ 2

)
, Cmax = G

600X
(
R−G

�
+ 4

)
, Cmax = B

(4)

5.

Saturation, S =
{
0, Cmax = 0

�
Cmax

, Cmax �= 0
(5)

6.

Value, V = Cmax

After this conversion, seven colour features from all the colour planes of RGBmodel,
L*a*b* and HSV colour space converted images are calculated. These include three
statistical features: mean, std. deviation, skewness and four Haralick features: contrast,
energy, homogeneity and correlation.

3.2 Texture Features

Haralick texture features [14], Tamura texture features [15] and Laws texture features
[16] are extracted from grey-scale images. L-channel of L*a*b* colour space converted
images is taken as grey image.

Haralick Texture Features. Haralick texture features are computed using gray level
co-occurrence matrix (GLCM). These are well known and widely used texture features.
Total 14 features were calculated from GLCM matrix prepared from grey-scale image.
These include energy, contrast, correlation, variance, homogeneity, sum of average, sum
of variance, sum of entropy, entropy, diff. of variance, diff. of entropy, correlation-I,
correlation-II, maximal correlation coefficient.

Tamura Texture Features. Tamura features are like texture features perceived by
human beings from the images. Threemain Tamura features namely coarseness, contrast
and directionality are computed from grey image. Coarseness captures local variations
in the intensity levels with respect to texture primitive elements called as texels. The con-
trast measures the global variations in the intensity level and its bias towards the black
or white in the image. It is computed using variance, σ 2 and kurtosis, α4 as Fcon = σ

αn
4

where, α4 = μ4/σ
4; μ4 = ∑

q (q − m)4 Pr(q|g); σ 2 = ∑
q (q − m)2 Pr(q|g) and m =

mean gray level g is gray level. The value of n = 0.25 is considered as best discrimi-
nating textures. Orientation information is captured by the degree of directionality. It is



32 A. Nawandhar et al.

measured using Sobel edge detector which computes first degree derivative of the image
in x and y direction in terms of edge strength, Es(x, y) = 0.5(|�x(x, y)| + |�y(x, y)|)
and directional angle, Da(x, y) = tan−1

(
�y(x, y)
�x(x, y)

)
. Finally, regularity of oriented local

edges against their directional angles gives the degree of directionality.

Laws Texture Features. The second set of texture features are Laws texture energy
features. Six convolution masks are constructed from three Laws vectors: Level (L5) =
[1 4 6 4 1], Edge (E5) = [−1−2 0 2 1], and Spot (S5) = [−1 0 2 0 −1] . The details
of the features captured is listed in Table 2. Five neighborhood region is considered
for these masks. The gray image is convolved with these masks to extract six texture
features.

Table 2. Laws texture features description

Convolution masks Feature description

L5TL5 Detects Grey level intensity in vertical and horizontal direction

E5TE5 Detects edges in vertical and horizontal direction

S5TS5 Detection of spots in vertical and horizontal direction

[(L5TE5) +
(
E5TL5

)
]/2 Average texture energy with respect to grey level intensity and

edge in vertical and horizontal direction

[(E5TS5) +
(
S5TE5

)
]/2 Average texture energy with respect to spot and edge in vertical

and horizontal direction

[(L5TS5) +
(
S5TL5

)
]/2 Average texture energy with respect to grey level intensity and

edge vertical and horizontal direction

4 Random Subspace Combined Linear Discriminant Analysis
Classifier

LDA is originally suggested by Fisher [17] for two class classification problem. Later
C R Rao [18] extended the idea for multiclass classification problems. The idea behind
LDA is to construct discriminant functions which are the optimum linear combination
of features. These functions are then used as new latent variables in place of original
feature predictors for classification.

4.1 Multiclass LDA

ConsiderD-dimensional trainingdataset,Tr = {(xD1 , y1),
(
xD2 , y2

)
, . . . , (xDi , yi)..(x

D
N ,

yN )}ofclassy = {1, 2, . . . , C}.Within-class scattermatrixSw andbetween-class scatter
matrixSb arecomputedasgiveninEq.6and7.

Sw =
∑c

i

∑
x∈ki (

x − xi)(x − xi)
′

(6)
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Sb =
∑C

i=1
mi(xi − x)(xi − x)′ (7)

where,mi =samplessizeofclassi;xismeanvectorgivenasx = 1
m

∑
i mixiandxi isthemean

foreachclass.Linear transformationφ isobtainedbysolvinggeneralizedeigenvalueprob-
lem,Swφ = λSbφ.Then in transformedspaceclassification isperformedusingEuclidean

distancemetricgivenas:d(x, x) =
√∑

i
(xi − xi)2.ThoughmulticlassLDAiseasytoimple-

mentandapromisingclassifier,itshowspoorperformancewhennumberofdatasetissmaller
thannumberofpredictorsorfeatures.

Often medical images availability is limited. A lot of parameters and factors take
part into computer aided diagnosis due to which requirement of number of feature to
be extracted from these images eventually larger than the number of samples. In current
scenario the availability of images of each category is in the range of 10 to 50 whereas
the feature set consists of 83 features.

RS technique is the solution to such situations. In RS, the training data is altered
with respect to the feature space and not the sample data. Multiple subsets of features are
prepared. The classifier is trained over all these subsets and finally combined decision
is taken to declare the classification result.

4.2 Random Subspace Technique

Continuing with the same terminology for training set, Tr = {
xD1 , x

D
2 , . . . , xi, ..xDN

}
;

where N is number of samples and each sample is a D-dimensional vector. This means
D is number of features. In RS, m randomly selected subsets of features each compris-
ing p features such that p < D are prepared. Thus, the classifier will have m feature
subsets of dimension p as its training data. So the modified training samples will be
T̃r = {

T̃ p
r1, T̃

p
r2, . . . , T̃ p

ri, ..T̃ p
rm

}
, where T̃ p

ri = {
xp1, x

p
2, . . . , xpi , ..xpN

}
is modified set of

training data comprising p features. Such m sets are prepared. Most important part in
this scheme is to decide correct values for number of feature subsets to be prepared and
number of features to be sampled for each subset. Tuning of these parameter is carried
out using grid search technique and then optimum values are selected.

Once the modified training data is prepared then LDA is trained using all these
subsets and final classification is carried out using majority voting.

5 Performance Measures

The performance of proposed RS combined LDA OSCC classifier is evaluated by well-
known performance parameters. These include receiver operating characteristic curve
(ROC), accuracy, sensitivity, specificity, F-score and Mathew’s correlation coefficient
(MCC). True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN) for each class is calculated using 4X 4 confusion matrix. These are then utilized
to calculate performance parameters. Formulas and standard definitions of performance
parameters are briefly described below.
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5.1 Accuracy

Accuracy of the classification technique depends on the number of correctly classified
samples (i.e. TP and TN) [19]. It is calculated as given below:

Accuracy = TP + TN

N
∗ 100; N = total number ofmicroscopic images. (8)

5.2 Sensitivity

It is the measure of the proportion of positive samples which are correctly classified
[19]. It is calculated as given below:

Sensitivity = TP

TP + FN
(9)

5.3 Specificity

It is a measure of the proportion of negative samples that are correctly classified [19]
and can be calculated as given below:

Specificity = TN

TN + FP
(10)

5.4 F-Score

F-score is a weighted average of precision and recall; and can be calculated as:

Precision : TP

TP + FP
, Recall = TP

TP + FN
(11)

F − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(12)

5.5 Matthew’s Correlation Coefficient (MCC)

MCC is the measure of the eminence of binary class classification. For multiclass classi-
fication problem, overall MCC calculated using ‘Macro-averaging’ scheme as described
below.

Assume i = {1, 2, 3, 4} are four classes. Samples will be classified as of one of the
class. Then 4 × 4 confusion matrix is used to calculate TP, TN, FP and FN as:

TP =
∑

i
TPi, TN =

∑
i
TNi, FP =

∑
i
FPi, FN =

∑
i
FNi (13)

Using these values inclusive MCC is calculated as shown below

MCC = TP ∗ TN − FP ∗ FN√
((TP + FN )(TP + FP)(TN + FN )(TN + FP))

(14)

For class wise analysis, ‘Macro averaging’ scheme is implemented. ‘One vs All’
strategy is used.
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5.6 Receiver Operating Characteristics Curve (ROC) and Area Under Curve
(AUC)

ROC is a plot of the false positive rate (x-axis) also referred as specificity versus the true
positive rate (y-axis) also referred as sensitivity for a number of variable threshold values
between 0.0 and 1.0 [20]. Details of sensitivity and specificity is already mentioned in
Sects. 5.2 and 5.3 respectively. Classifier with 100% correct classification ability has a
ROC curve that passes through the upper left corner with 100% sensitivity and 100%
specificity. Thus, the closer the ROC curve is to the upper left corner of the plot, the
higher the total precision of the classifier. AUC is area under ROC curve represents the
accuracy of the classifier. If it’s in the range of 90–100 than then classifier is taken as
excellent.

6 Results and Discussion

Stepwise working of proposed classifier is presented in Fig. 2 in Sect. 2.2. Aim of the
proposed classifier is to classify the microscopic images of SSE (H&E-stained) in one of
the four classes, Normal/WD/MD/PD OSCC. After feature set is computed as described
in Sect. 3, sampling of feature set is performed as per the RS-scheme explained in
Sect. 4.2. Figure 3 shows sample images of colour converted images. It is an important
step of feature extraction procedure explained in Sect. 3.

6.1 Optimizing the Classifier for Key Parameters

Two levels of hyper-parameter optimization is required for the proposed RS combined
LDA classifier. First is the regularization hyper-parameters for LDA. Secondly as per
RS scheme, number of feature subsets (m) and number of features (p) in each subset
needs to be selected such that performance of the classifier is optimized.

The optimization of regularization parameters δ and γ is carried out using Bayesian
optimization technique subject to classification loss. The optimization process is shown
graphically in Fig. 4. The optimum value for δ = 0.0483 and γ = 0.1387 are selected
with predicted classification error Er = 0.084.

Once the optimum values of δ and γ are calculated, LDA is further trained for
best suitable values of number of features per feature subset and number of subsets. To
perform this selection, grid search method is applied. LDA is trained using 10 feature
subsets randomly selected from the feature set ranging from 3 to 83 and 10-fold classi-
fication error is calculated. Selection of minimum number of feature subsets is shown
graphically in Fig. 5. It can be observed that any value between 18 to 30 subsets provides
minimum classification accuracy of 0.08 which is lesser than estimated error value for
the classifier. Finally, the subset size depictingminimum classification error was selected
as final feature subset size. It is 56 for this case as shown in Fig. 6. So, 25 feature subsets
were prepared each consisting of 56 features sampled from 83 features.
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Fig. 3. Sample images of colour conversion step of the feature extraction

6.2 Performance Analysis of the Classifier

RS combined LDA is trained and tested with 10-fold cross validation. Table 3 shows the
performance statistics of the classifier in the form of (mean ± std. dev.). The classifier
exhibits best performance PD OSCC class than rest. Overall accuracy for the classifier
is 93.5% with specificity, sensitivity, F-score and MCC of 0.95,0.89, 0.89 and 0.84
respectively. Figure 6 shows the ROC curve for the classifier. Area under curve (AUC)
for the proposed classifier is 96.92 indicates proposed classifier falls under excellent
category (Fig. 7).

6.3 Comparative Analysis

Table 4 summarizes the comparative analysis of proposed method with the existent
LDA classifier used for oral cancer classification. It can be observed that among all the
type of features proposed by other researchers, current set of features provides superior
performance for four class classification using RS.
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Fig. 4. Optimization of δ and γ

Fig. 5. Random subspace parameter optimization: optimum value for no. of subsets

Fig. 6. Random subspace parameter optimization: optimum value for features/subset
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Table 3. Performance of RS combined LDA OSCC classifier

Accuracy (%) Sensitivity Specificity F-score MCC

Normal 90.0 ± 0.63 0.89 ± 0.02 0.90 ± 0.01 0.87 ± 0.02 0.79 ± 0.02

Grade-1 97.0 ± 1.05 0.90 ± 0.02 0.99 ± 0.01 0.93 ± 0.02 0.9 ± 0.02

Grade-2 88.0 ± 0.92 0.78 ± 0.03 0.93 ± 0.01 0.81 ± 0.02 0.72 ± 0.02

Grade-3 99.0 ± 0.91 1.0 ± 0.02 0.99 ± 0.01 0.95 ± 0.02 0.94 ± 0.02

Average 93.5 0.89 0.95 0.89 0.84

Fig. 7. ROC plot of the classifier

7 Conclusion

Computer aided automatic cancer detection and grading system for OSCC can comple-
ment the pathologist’s decision and can speed up the diagnosis process. In this work,
random subspace combined LDA OSCC classifier using total 83 texture and colour fea-
tures has been developed, implemented and analyzed. Comparative analysis with other
OSCC classifier shows that the proposed method is simple to implement and efficient
with better accuracy of 93.5%, specificity 0.95 and sensitivity 0.89. Features required
for this work are easy to calculate. In future work feasibility and efficiency of the same
system can be tested and analyzed for other types of cancer with different staining.
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Table 4. Comparison of existent methods and proposed method using LDA classifier

Ref. Features No. of dataset used Performance

[9] Morphological features
of cell

Normal-9, MiD-7,
SCC- 5

Accuracy: 46%

[8] Fractal Geometry Normal-75, MiD-52,
MoD-72, SD-59,
SCC-27

Sensitivity/Specificity :
63%/67%

[8] Brownian Motion Curve Normal-83,
OSFWD-29

Accuracy: 88.89%

[7] Statistical features MiD-4, MoD-8, SD-10 Accuracy 89%

Current work Colour and texture
features

Normal-40, WD-20,
MD-30, PD-10

Accuracy 93.5%,
Sensitivity 89%,
Specificity 95%

Note: MiD = Mild Dysplasia, MoD = Moderate Displasia, SCC = Squamous cell Carcinoma,
SD = Severe Dysplasia, OSFWD = Oral Sub-mucous Fibrosys without Dysplasia
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Abstract. The increasing popularity of e-commerce websites and online review
platforms has unfortunately led to the advent of review spammers. This has, in
turn, led to many problems, both in business and in academia. One of the major
challenges in this field is the annotation of deceptive reviews. To date, different
approaches have been employed in the creation of a labelled dataset for classi-
fication tasks. Many of these works follow a general approach and do not focus
on any particular property of deceptive reviews. We believe that a fine-grained
approach would be more suitable for such a complex problem. This paper focuses
on a single property of deceptive reviews; the out-of-context property. We first
find the minimum length of review required for obtaining coherent topics. We
then propose a methodology for scoring and labelling the reviews and evaluate it
by training different classifiers. We obtain an F-measure of 93.64 using labelled
reviews obtained through the proposed methodology.

Keywords: Deceptive review · Spam review · Topic modelling · Natural
language processing · Machine learning

1 Introduction

The problem of deception in business practices is not a new one. With the advent of
online review platforms and e-commerce websites, the problem has only amplified. The
advancement of the internet at such an increasing rate1 has ensured that this problem is
only going to get worse. The deceptive reviews are termed as spam reviews and their
authors, review spammers. Companies hire spam reviewers to not onlywrite fake reviews
to promote their business, but also to defame and hinder their competition.

Opinions shared in reviews help the customer make purchase decisions. It can also
greatly influence the reputation of the product and the company. For this reason, many
businesses encourage customers to write positive reviews on their product pages. Cus-
tomer opinions also help the vendors in assessing the state of their business and in
making business decisions. Thus, a competing business can mislead both the vendors
and customers through deceptive reviews.

1 https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-
vni/white-paper-c11-738429.html.
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The task of identification of deceptive reviews finds its use in academia too. There
are many cases where researchers try to use reviews for tasks like sentiment analysis.
If the reviews used contain deceptive reviews, the results and insights obtained by these
researchers might be misleading. Therefore, the problem of review spam detection is
important and essential.

Identification of deceptive reviews has already been recognized as a complex issue
[1] where it is almost impossible for a human being to classify or label deceptive opin-
ions manually. Thus, one of the main problems in the field of spam review detection is
obtaining a reliable labelled dataset. Many research works have used techniques such
as rules and heuristics [1–4], manual labelling by humans [4], crowdsourcing [5–10],
proprietary filtering algorithms [11–13]. There is a need to identify several properties
of deceptive reviews and study them in isolation. We take a fine-grained approach and
concentrate on only one of the properties of deceptive reviews: the out-of-context prop-
erty. A review is said to be out-of-context if it is not in context with reference to the
truthful reviews. This context property is determined using topic distributions and word
distributions of the reviews.

The main contributions of this paper are divided into two parts. In the first part, we
determine the minimum length of review required for the extraction of good quality
topics. In the second part, we propose a methodology for scoring reviews using topic
modelling. This score is then used in labelling the reviews. We show the effectiveness
of the proposed methodology in the task of labelling of reviews that the model has never
seen before.

2 Related Work

The problemof detection of spam in digitalmedia is not a newone.Over the past decades,
spam in various media has been substantially studied. These include email spam [14,
15], SMS spam [16], web spam [17], Social media spam [18, 19].

Thefield of review spam is comparatively new.The earlyworks of spam reviewdetec-
tion were carried out by Jindal and Liu [1, 20]. They analyzed 5.8 million reviews from
Amazon (amazon.com). They recognized three main categories of deceptive reviews.
Type 1) Untruthful opinions or reviews which deliberately mislead the readers, Type
2) Reviews that don’t comment on the product, but those which comment on the brand
instead, Type 3) Reviews that are completely out of context and can be considered as
non-reviews. They recognized that the process of manually labelling was difficult and
tricky and they proposed to use duplicate reviews as spam reviews. Fornaciari and Poesio
[3] and Hammad et al. [2] also proposed heuristics to recognize deceptive reviews and
label them for classification.

Li et al. [4] employed 10 college students to annotate spam reviews based on 30 rules
specified in an online study. Students worked independently and if a review gathered
two out of three votes, then it was labelled as deceptive. They also found out that most of
the spam reviews had relatively low helpfulness score. The problem with this approach
is that manual labelling of reviews by humans can be highly subjective. The deceptive
reviews are written to seem like a normal review and with an intent to mislead others.
In such a scenario, manually labelling of deceptive reviews can be unreliable [21].
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Yoo and Gretzel [22] gathered 42 deceptive and 40 truthful reviews. They employed
students who had studied or had experience in marketing. The students were instructed
to write reviews through the perspective of a hotel manager.

Labelled data were also created using AMT (Amazon Mechanical Turk) which is
a crowdsourcing platform. Here, human workers were employed to write deceptive
reviews instead of labelling reviews written by others. Ott et al. [5] used AMT to create
20 deceptive reviews each for 20 different hotels in Chicago. They mined 5-star reviews
from TripAdvisor and used them as truthful reviews. This dataset contained only pos-
itive sentiment. In a later work, Ott et al. [6] created a negative sentiment dataset to
complement the positive sentiment dataset.

Harris [7] also created a deceptive review dataset through crowdsourcing and showed
that a combination of statistical assessment methods with human-based assessment pro-
vides better results than only using human-based assessors. Later, many researchers
[8–10, 23] used this technique of crowdsourcing to obtain the labelled dataset. The
crowdsourced reviews are considered as artificial reviews as the deceptive reviews were
not obtained from real review spammers.

Mukherjee et al. [11] studied the application of existingworks on real-world reviews.
They found that the artificial reviewdataset created byOtt et al. [5] had differentword dis-
tributions than real-world reviews that they obtained from TripAdvisor. They attributed
this to be the reason for the high accuracy obtained byOtt et al. [5]. A real word spammer
has an opportunity to analyze the existing reviews and this may influence their reviews.
Human workers in platforms like AMT write reviews in isolation, hence their reviews
might have completely different word distributions when compared to other reviews
from the platform.

Another source of obtaining labelled data is through filtering algorithms used by
sites like Yelp. These algorithms are said to be highly reliable. The major disadvantage
is that the algorithms are confidential. There have been efforts to study these algorithms
indirectly by using labelled datasets produced by them. Mukherjee et al. [11], Rayana
and Akoglu [12] tried to do the same. Li et al. [13] created a dataset using Dianping’s
fake review detection algorithm. They claim that Dianping’s detection algorithm has
very high precision and made use of positive and unlabelled data.

Emerson et al. [24] showed that in online learning scenarios, the classification accu-
racy is lower in contrast to offline learning scenarios. This is important as the detection
of spam reviews in real-world setting is carried out in an online learning scenario.

Due to the problem of obtaining a labelled dataset, some works employed
unsupervised learning [25–27] and semi-supervised learning techniques [4, 28].

3 Topic Modelling

Topic modelling is a type of statistical modelling technique for discovering latent or
abstract topics from a given set of documents. It is an unsupervised technique which
assumes every document to bemade up of a set of definite topics. In this paper, the context
of the reviews is determined using topic modelling. The assumption is that a review is
said to be in context with another review if they share common topics. This assumption
is used in the annotation of spam and non-spam reviews. We use two topic modelling
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techniques, namely, Latent Dirichlet Allocation and Non-negative Matrix Factorization.
They are described briefly in the following sections.

3.1 Latent Dirichlet Allocation

LDA [29, 30] is a Bayesian modelling technique which works with the bag-of-words
representation of the documents. The key assumption is that every document is generated
from a small set of topics and every topic is generated from a set of words. Before the
process, the number of topics is fixed. The further inference process is described below.

Consider a corpus with M documents and K unique words.

θi ~ Dir(α) is the topic distribution for the document i, where i ε {1, …, M} and
ϕk ~ Dir(β) is the word distribution where k, where k ε {1, …, K}.

For each word wi where i ε {1, …, M}:

a) select a topic zi ~ Multinomial(θi)
b) select a word wi ~ Multinomial(ϕk)

The model has 2 hyperparameters α and β. Higher the value of α, higher the topic
density in documents. A higher β value ensures that topics are made up of most of the
words in the vocabulary.

3.2 Non-negative Matrix Factorization

NMF is a matrix factorization technique which factorizes a document-term matrix into
two matrices W and H as specified in Eq. 1.

M = WH (1)

W contains the basis vectors which forms the topics discovered from the corpus
and H is the coefficient matrix which contains weights for topics in each document.
Both W and H contain no negative values. NMF is considered as a machine learning
algorithm where W and H are calculated through optimizing an objective function. The
optimization of objective function results in minimization of the reconstruction error.
The W and H are iteratively derived using the update rules specified in Eq. 2.

W ← W
MHT

WHHT
H ← H

WTM

WTWH
(2)

3.3 Assessing the Topic Quality

Topic quality is defined as how well the topic represents the latent semantics of a given
set of documents. Most commonly used technique in the case of probabilistic modelling
is the measure of log-likelihood of held-out set. Chang et al. [31] showed that perplexity
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(predictive likelihood) is not correlatedwith human judgement. They ran a topic intrusion
task where they extracted 5 words from a topic and added a 6th word which was not
related to that topic and shuffled these words and presented them to human judges. If
the human judges could successfully pick out the intruder word, it was concluded that
the words in the topic were logically connected. In other words, the topic was good
at describing an idea. Roder et al. [32] carried out experiments on multiple datasets
involving multiple coherence measures and concluded that topic coherence, on the other
hand, is positively correlated with human judgement.

Topic coherencemeasures generally use an external corpus such asWikipedia,Word-
Net as a reference corpus. This works well with general documents. But, the topic mod-
elling of reviews is a specialized task and an external reference corpus might not fully
capture the word co-occurrence statistics. Mimno et al. [33] have shown that the cor-
pus used to study the topics can also be successfully used to calculate the coherence
measure. They proposed UMass coherence measure which calculates log probabilities
between top word pairs. It is an asymmetrical measure which uses top words from topics
to calculate the coherence score.

CUMass = 2

N (N − 1)

∑N

i=2

∑i−1

j=1
log

P
(
wi,wj

) + ε

P(wi)
(3)

A smoothing factor ε is added to the conditional probability to avoid logarithm of
zero.

4 Finding the Minimum Length of Reviews

In this section, we find the minimum length of the review that contains enough infor-
mation for coherent topics to be extracted from them. The dataset used was collected by
[34, 35]. It contains reviews spanning from May 1996 to July 2014 from amazon.

We use two different approaches of topicmodelling in this paper. The two approaches
differ in Part-Of-Speech tagging phase. The first approach is the all-pos tag approach
which follows the normal preprocessing phases. The second approach is the non-only
approach where we only use the nouns present in the reviews. The minimum review
length is calculated for both of these approaches.

For each interval of 20 units of review length, 30 topic models were trained. The 1st
model consisting of 1 topic, each successive model consisting one more topic than the
model preceding it, with the 30th model consisting of 30 topics. The coherence score
for each interval is the arithmetic average of all the coherence scores of 30 topic models.
This procedure was carried out for all-pos-tags and noun-only approaches. The resulting
plots are is shown in Fig. 1 and Fig. 2.

For lower review lengths, coherence score is less as expected. In the case of all-pos
tags, the convergence takes place relatively quicker than noun-only approach as reviews
in noun-only approach need to be long enough to contain enough nouns to form coherent
topics. After a point, the graphs seem to flatten out. No considerable increase in topic
coherence is seen beyond this point which shows us that these reviews contain topics
which are coherent enough that good quality topics can be extracted from them. Thus,
this length can be considered as the minimum length to obtain coherent topics and only
those reviews which are greater than that point is considered for further topic modelling.
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Fig. 1. Coherence score obtained for each review length interval of 20 for all-pos tags approach.

Fig. 2. Coherence score obtained for each review length interval of 20 for noun-only approach.

5 Labelling the Reviews

For this part of the research, we used reviews from 5 different categories, namely, Baby
products, Digital music, Office products, Gourmet and Kitchen items and Pet supplies.
A review is said to be out-of-context if it does not belong to the category in which it
was originally posted. The categories which were used were themselves diverse, hence,
each category themselves were found to be made up of a small subset of topics.

As stated previously, along with the usual all-pos tags approach, we also follow
a second approach based on nouns present in the reviews. We hypothesize that nouns
can better represent the topics belonging to categories. As the reviews were taken from
a common domain (amazon.com), we expect the reviews to contain common verbs,
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adverbs etc. As a consequence, nouns may help distinguish between different categories.
Elimination of product and people names and misspelt names is carried out before using
the reviews for noun-only approach. This is to ensure that the corpus is not polluted by
unwanted nouns which may give inaccurate results.

We obtain 3 types of topics from the review corpus. The first type contains particular
topics which are unique to a category. The second type of topics describes two or more
categories. One such topic that we obtained was about food and it described kitchen
food and pet food. Consequently, it was present both in ‘Gourmet and Food products’
and ‘Pet supplies’. The third type of topics is general topics. These are usually present
in all the categories and describe a general idea about the review platform like product
packaging in this case. Each category in all-pos tags approach was mostly made up of
type 1 topics with few type 2 and type 3 topics. In contrast, we did not obtain any type
3 topics for noun-only approach. Categories mainly contained type 1 and some type 2
topics.

Now we describe the methodology that was used. A review dataset D is considered
to be made up of i reviews and j independent categories. Each review r present in the
dataset belongs to only one of the j categories.

1. Topic model T is trained for D and m topics are found. The number of topics is
calculated using the coherence measure.

2. For each review in the dataset, its constituent topics are predicted using the topic
model T.

3. For each category in j, the frequency of occurrence of topics for every review is
aggregated. Topics with frequency > 1/m are taken as constituent topics for that
category. This ensures that topics belonging to out-of-context reviews are ignored.

4. A scoring function for each review is defined as the ratio of true topics to the total
number of topics present in that review.

S
(
ri,j

) =
∣∣T (ri) ∩ Cj

∣∣
|T (ri)| (4)

ri, j represents a review i belonging to category j. Cj represents a set of topics belong-
ing to category j. The value of this scoring function ranges from 0 to 1(with both 0 and
1 inclusive). If a review does not contain any topic from its respective category, then it
gets a score of 0. If all of the topics present in the review is also present in its category, it
gets a score of 1. This scoring function even takes care of reviews containing only type
3 topics by assigning it a low score.

The reviews with higher or near-perfect scores are taken as true reviews for the
category and by our definition, these are the non-spam reviews. The reviews with zero
or least scores are the spam reviews. These reviews do not contain topics from its own.

We trained 5 different classifiers namely, support vector machine, Bernoulli naïve
Bayes, multinomial naïve Bayes, k-nearest neighbours and decision tree. Top 1000
reviews with the highest score were taken as truthful reviews and bottom 1000 reviews
with the lowest score were taken as deceptive reviews. The F1 score, Precision, Recall
for all the classifiers are given in Table 1 and Table 2. The results shown by the metrics
only reflect how the out-of-context property performs in the classification task.
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Table 1. F-measure, precision, recall obtained from different classifiers.

SVM B.NB M.NB

P R F P R F P R F

LDA all pos 78.85 79.10 78.93 70.19 89.39 78.56 79.41 69.90 74.20

NMF all pos 90.30 86.70 88.42 77.88 66.00 71.30 79.48 80.80 80.08

LDA noun 90.45 97.09 93.64 89.59 90.90 90.20 89.96 95.00 92.38

NMF noun 92.81 93.49 93.13 73.34 74.80 73.98 85.17 79.00 81.92

Table 2. F-measure, precision, recall obtained from different classifiers.

KNN DT

P R F P R F

LDA all pos 75.47 77.70 76.52 70.07 71.10 70.58

NMF all pos 75.94 84.30 79.83 79.40 74.20 76.50

LDA noun 89.37 96.29 92.68 80.80 94.50 86.96

NMF noun 79.83 92.20 85.56 81.75 80.50 82.16

Support vector machine outperforms all other classifiers in most cases. This is
expected as SVM is shown to be highly effective in high dimensional vector spaces
[36]. LDA noun-only approach outperforms other approaches in recall and F-measure
with SVM. NMF noun-only approach outperforms all other approaches with respect to
precision using SVM. We see that noun-only approach generally has better scores than
all-pos tags approach.

Table 3 provides the arithmetic average of precision, recall and F-measure of all the
learners for each topic modelling approach. LDA noun-only approach outperforms other
approaches in all the cases. This is followed by the NMF noun-only approach.

Table 3. Average F-measure, precision, recall from different classifiers.

Average

P R F

LDA all-pos 74.79 77.43 75.75

NMF all-pos 80.60 78.40 79.22

LDA noun 88.03 94.75 91.17

NMF noun 82.58 83.99 83.35
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6 Effectiveness on an External Dataset

The methodology described in the previous section used the same reviews which were
used to learn the topics to score the reviews. In this section, we test the effectiveness
of the proposed methodology in handling reviews that the topic model has never seen
before. To ensure that the reviews used for testing, truthfully represent their respective
categories, we take top 1000 scoring reviews from each category and treat them as an
external dataset. We learn topics using the remaining reviews. The results are given in
Table 4. Accuracy represents the accuracy with which the truthful reviews are correctly
classified.

Table 4. Accuracy for an external dataset.

Accuracy

LDA all-pos 98.22

NMF all-pos 98.12

LDA noun 97.06

NMF noun 97.02

The false negatives had word distribution which the topic model had never seen
before. These words never appeared in the learning dataset. This is the disadvantage
of using a topic model on an external dataset. If the reviews in the external dataset are
completely different from the learning dataset, the model’s accuracy can be drastically
affected. In the case of noun-only approach, there were brand names which were present
in external dataset and which were not present in the training set. Such brand names
with low frequencies can be hard to eliminate during the pre-processing stage.

7 Conclusion

In this study, we have developed a methodology to label deceptive reviews based on
their out-of-context property. We followed two approaches, namely, all-pos tags and
noun-only approach. We found the minimum length of reviews required for both the
approaches and used topic models to score and label the reviews. Finally, we tested the
effectiveness of our approach by using an external dataset which it had never encountered
before.

The method we used in finding the minimum length of reviews was completely
independent of finding of deceptive reviews. The results from these methods can be
successfully used for any topic modelling approach involving reviews.

Even though the models were able to label the external dataset with high accuracy,
it had some false negatives. We do not recommend using a topic model to label external
reviews, because, depending upon the difference in word distributions in learning and
external datasets, the effectiveness of this methodology can be significantly affected.
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This research dealt with only one of the aspects of deceptive reviews. The out-of-
context property can be used as one of the features in a large deceptive review filtering
pipeline. Such a pipeline involving many fine-grained features about deceptive reviews
might provide better results than a general brute-force approach. For future work, we
plan on identifying additional fine-grained features based on different properties of spam
reviews.

Competing Interests. The authors declare that they have no competing interests.
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Abstract. Over the years lots ofmarine biologists and scientists havemade efforts
to study the various problem related to the ocean and its animals. One such prob-
lem faced by the fisheries is the change in the physical and mental state of the
fishes when they are affected by natural calamities, external agents, change in
environment, epidemic outbreak or many such factors. Under such circumstances
it’s probable that the fishes in the region may get affected and due to a small
amount of bad fish the whole population could suffer which is a huge loss both
biologically and economically. There are numerous research and studies back on
the fact that fishes tend to change their behaviour in the situation of distress. The
behavioural change is just in response to the distress caused to them either physi-
cally or psychologically. The motion of the fish over a period of time interval can
help us learn about the behaviour it is showing. And a significant change in its
pattern of motion can alarm us that there is some issue with the fish. The main idea
is to identify and establish the relationship between the movements and behaviour
of the fish. The video footage of a Tilapia Genus fish in a standard size aquarium
set up with the help of surveillance cameras, tracked the motion of the fish in 2-D
space is collected and themovement of the fish over a period of time is categorised.
Based on the output the losses can be reduced.

Keywords: Epidemic · Behavior · Motion · Machine learning · Environmental
change · Fourier transform · Harmonic analysis

1 Introduction

This paper mainly deals with the detailed study and categorize of fish behavior. The
movements have been analyzed under water and observe changes in them over time.
This also helps to identify such reactions towards environmental changes.

Objective: India is endowed with vast expanse of open inland waters in the form of
canals, rivers, lakes, estuaries, reservoirs, lagoons, ponds, tanks etc. In past few years
traditional aquaculture has turned into a science based commercial and economic activity
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involving heavy inputs and so, diseases of all kinds are known to occur on an increas-
ingly large scale. The stressors (environment condition) which elicit morphological and
physiological responses in fish fall into 4 categories as Chemical, Physical, Biological
and Macro-Organisms.It would be of a great advantage if we succeed in this project and
find out correlation between these stressors and the significant behavioral changes that
the fishes go through. Such a system can be then implemented in aquariums and fisheries
to monitor the situation in real time and also detect the potential threats by analysing the
significant changes in behaviour. Fish behavior is an important factor in understanding
environmental changes in water bodies [2, 7]. Marine biologists consider fish behavior
to understand the upcoming changes in the environment [8]. This paper aims to create an
automated system which could help determine fish behaviour and predict environment
changes in water bodies. A system is proposed which makes use of Computer Vision
and Machine Learning approaches to identify fish behaviour.

1.1 Setup

The first step was to setup a perfect aquarium setup (shown in Fig. 1) which makes
the habitat of fish under normal circumstances. Apart from this the setup included the
aerator to pump to regulate oxygen supply in the tank and the sand at the bottom to make
a favourable habitat. The surveillance system included the Hikvision DS-2CE56D0T-
IRP 2MP HD Indoor Night Vision Camera with Cisco IP camera switch to store the data
and backup on server.

Fig. 1. Acquarium setup

2 Detection and Tracking of Fish

A computer technology related to computer image and vision processing that deals with
detecting instances of semantic objects of a certain class (such as humans, fish, or house)
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in digital images and videos are termed as Object detection [5, 9]. In our case the subject
to be tracked was our fish in the aquarium setup [4, 6]. The aim was to detect the fish
in the video frames and log the coordinates of its movement over the period of time
as illustrated in Fig. 2. So the values we are obtaining from the video frames are the x
and y coordinates of the fish along with the time at which the fish was tracked [3, 6].
Amongst the various methods existing methods and approaches for the object detection
task what we have implemented is a classification based object detection method using
the Tensorflow Object Detection API [1, 10].

Fig. 2. Sample output of fish detection model

2.1 Motion Classification

Motion classification is to identify the frequently occurring motions of the fish. This
will help us to understand the behaviour of the fish. We’ll be able to categorise the high
frequency and low frequency motion of the fish with respect to its changing position. To
implement this we’ll be representing the motion of the as a two dimensional time signal
over its position (x, y) this will give us surface in a 3-D plot of (x, y, t).Since the tracking
is done in extremely close intervals, the change in position won’t be major hence we’ll
be considering only transition where there is a major change in position. To achieve
this we’ll divide the points into cluster and detect the motion between these cluster
with respect to time to obtain a time-signal. Taking the Fourier transform the obtained
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time- signal will result in a linear combinations of sinusoid. We can easily identify the
frequency of these sinusoid and this help us to determine the amount of highly-frequent
motion and similarly for low- frequency motion, the amplitude of these waves will help
us to identify the contribution of these signals in the final motion through the clusters.

3 Designing Approach and Details

Image recognition is important for developingmost of themachine learning applications.
Vision is the primary sense humans use to make decision in their everyday life. The input
for the algorithm is the position of fish, this is determined using image recognition and
classificaiton. To train the model we have taken snapshots of the fish from different
angles and labeled them as fish.

3.1 Design Approach-Motion Classification

First step: Clustering
Since the tracking is done in extremely close intervals, the change in position won’t
be major hence we’ll be considering only transition where there is a major change in
position. To achieve thiswe’ll divide the points into cluster and detect themotion between
these cluster with respect to time to obtain a time-signal. Cluster analysis or clustering is
the task of grouping a set of objects in such a way that objects in the same group (called
a cluster) are more similar (in some sense or another) to each other than to those in other
groups (clusters).

Elbow method:
It operates on each cluster and adds up the squares of the distance of each point in a
cluster from the centroid of the cluster. That is, for each point in a cluster we take the
distance between that point and the centroid of the cluster and square it. We do this for
each point in the cluster and then we sum it for that cluster. Then we do this for each
cluster.

When we have a “good” or tight cluster, individual distances will be small and hence
the sum of squares for that cluster be small. For a “bad” or loose cluster the opposite is
true. Now further, when we increase the value of K, the value of “within-cluster-sum-
of-squares” will drop as we have more clusters hence smaller distances to centroids. But
each successive increase inKwill not give the same drop.At some point the improvement
will start to level off. We call that value of K the elbow and use that as the “good” value
of K.

Psuedo-Code:
For k in range(1, 10):
k= kmeans(data,k) #k-means clustering with k= 1..10 find_total_square_distane(data,
k.centroids)Plot_total_squaredistance()

Second Step: Harmonic Wave Analysis
Harmonic wave analysis is the process of representing a time-signal as combination of
sinusoids and analyzing these components with respect to their frequency, amplitude
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and phase. These harmonics can used as an approximation for the signal. This enables
us quick comparison, because harmonics have a standard structure.

Once we have the clusters C1…..Cn, then we can track the motion of fish through
these clusters using the time parameter of <x, y, t> this will gives us a path through the
clusters. Now we can think of this as a two dimensional time signal over the position of
the fish. Harmonic wave analysis is procedure to split any time signal into component
signals. These component signals will be linear combinations of sinusoids. To obtain
this we’ll be taking 2-Dimensional fourier transform on the signal.

Two Dimensional Fourier Transform
Let the signal be y = f(x, t)…..we have vectors of the form <x, y, t> #x,y such that x
in R and y in R

Cluster.numbers = K
Fourier Transform of the input matrix can be calculated using:

X [k, l] = 1/
√
MN

N−1∑

n=0

[
M−1∑

m=0

x[m, n]e−j2Πmk/M ]e−j2Πnl/N

To visualize the sinusoids, Euler’s Formula:

eix = cos x + i ∗ sin x

By re-grouping the coefficients of the fourier transformwe can obtain the harmonics.
Harmonics represent the frequency components of the wave. A higher harmonic will
identify a higher frequency component signal.

Algorithm:
<x, y, t> be the coordinates representing the motion of the fish.

Fourier Transform:
Arrange <x, y, t> into [x]2×N matrix where: t →< 0 . . .N > take FFT2D of [x]2×N to
get [X ]2×N

⎛

⎜⎜⎜⎜⎜⎝

x1 y1
. .

. .

. .

xn yn

⎞

⎟⎟⎟⎟⎟⎠

FFT→

⎛

⎜⎜⎜⎜⎜⎝

X1 Y1
. .

. .

. .

Xn Yn

⎞

⎟⎟⎟⎟⎟⎠

Harmonic Analysis:
Splitting into horizontal and vertical frequency:

N th harmonic will be given by:

sin = imagpart ∗ sin(2π ∗ n)/N

cos = realpart ∗ cos(2π ∗ n)/N



60 R. Bhaskaran et al.

Where X0 = eiθ , applying Euler theorem to get
imag part and realpart.

Activity Score:
Given an input signal and a base signal

Calculate the first 7 harmonics of the input signal and base signal find the amplitude
of each harmonic.

Let it be vector:
signalbase: <A1b, A2b,…, A7b> and signalinput: <A1i, A2i,…, A7i>

where Anx = amplitude of nth harmonic of signal x.
Then activity score of input with respect to base would be:

Score =
7∑

j=1

(Ajb − Aji) ∗ i

Interpretation and Inference:
Higher frequency components of the signal will be quick swimming motion made by the
fish between clusters and amplitude of these waves will determine the intensity of the
fish’s displacement over time. Similarly low-frequency motion will describe the slow
motions made by the fish in which the change in position wasn’t as quick, meaning a
low-frequency component of the signal.

4 Trade Offs

Selection of Appropriate Neural Network Model
As discussed earlier Tensor flow Object detection supports various models for the com-
putation. The 5 most commonly used models are listed below. The various models pro-
vide different tradeoffs in between the two important parameters. These are the hyper
parameters which provide the performance details of the models (Table 1).

Table 1. Different neural network models supported by tensor flow

Model name Speed (ms) COCO mAP[ˆ1] Outputs

ssd_mobilenet_v1_coco 30 21 Boxes

Ssd_inception_v2_coco 42 24 Boxes

Faster_rcnn_inception_v2_coco 58 28 Boxes

Faster_rcnn_resnet50_coco 89 30 Boxes

The two parameters are Speed andmAP (MeanAverage Precision). As it is important
that our system should be fast as well as accurate at giving results. So comparing these
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two parameters and fixing upon the model was an important task. One more thing that
comes into picture when we talk about the neural net models is its size. We talk about
portable systems we have to make sure that the model is lightweight and does not cost
us much computationally. Thus the Mobile Net Model is an ideal choice for our task.

5 Conclusion

Acomputational system is designed and implementedwhich could detect, identify, study
and classify the motion of the fish in the aquarium setup. The system should be able to
track the aquarium and the mathematical computation over the data stream should be
able to tell us about the nature of the motion of the fish in 2D space. The fish was tracked
the coordinates were logged to a csv file along with timestamp, clustering was done and
motion was tried to be studied using Harmonic analysis. By using the machine learning
approaches and unsupervised learning techniques the behaviour of fish is analyzed along
with the risk factors.
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APPENDIX – Source Code

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
cap = cv2.VideoCapture('cam2.mp4')
sys.path.append("..")

from utils import label_map_util

from utils import visualization_utils as vis_util

MODEL_NAME = 'fish_detection_4'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'fish_detection.pbtxt')
NUM_CLASSES = 1

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, 

max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(

      (im_height, im_width, 3)).astype(np.uint8)
TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 
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with tf.Session(graph=detection_graph) as sess:
while True:
time=str(cap.get(cv2.CAP_PROP_POS_MSEC))
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(

[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})

vis_util.visualize_boxes_and_labels_on_image_array(time,
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)

font = cv2.FONT_HERSHEY_SIMPLEX
x = 10 #position of text
y = 20 #position of text
cv2.putText(image_np,time,(x,y), font, 1,(255,255,255),2,cv2.LINE_AA) 

#Draw the text

cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
if cv2.waitKey(25) & 0xFF == ord('q'):

cv2.destroyAllWindows()
break

'image{}.jpg'.format(i)) for i in range(1, 3) ]
IMAGE_SIZE = (12, 8)

with detection_graph.as_default():
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Function for Object Detection Visualisation 

def visualize_boxes_and_labels_on_image_array(time,image,
                                              boxes,
                                              classes,
                                              scores,
                                              category_index,
                                              instance_masks=None,
                                              keypoints=None,
                                              use_normalized_coordinates=False,
                                              max_boxes_to_draw=20,
                                              min_score_thresh=.5,
                                              agnostic_mode=False,
                                              line_thickness=4):

box_to_display_str_map = collections.defaultdict(list)
box_to_color_map = collections.defaultdict(str)
box_to_instance_masks_map = {}
box_to_keypoints_map = collections.defaultdict(list)
if not max_boxes_to_draw:

    max_boxes_to_draw = boxes.shape[0]
for i in range(min(max_boxes_to_draw, boxes.shape[0])):

    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
      if scores is None:
        box_to_color_map[box] = 'black'
else:
        if not agnostic_mode:  
        if classes[i] in category_index.keys():
            class_name = category_index[classes[i]]['name']
          else:
            class_name = 'N/A'
          display_str = '{}: {}%'.format(
              class_name,
              int(100*scores[i]))
        else:
          display_str = 'score: {}%'.format(int(100 * scores[i]))
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS
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Abstract. Algorithmic complexity has been a constraint to solving
problems efficiently. Wide use of an algorithm is dependent on its space
and time complexity for large inputs. Exploiting an inherent pattern to
solve a problem could be easy compared to an algorithm-based approach.
Such patterns are quite necessary at cracking games with a vast number
of possibilities as an algorithm-based approach would be computation-
ally expensive and time-consuming. The N-Queens problem is one such
problem with many possible configurations and realizing a solution to
this is hard as the value of N increases. Reinforcement Learning has
proven to be good at building an agent that can learn these hidden pat-
terns over time to converge to a solution faster. This study shows how
reinforcement learning can outperform traditional algorithms in solving
the N-Queens problem.

Keywords: Reinforcement learning · Q-learning · N-Queens problem ·
Deep Q-learning

1 Introduction

The N-Queens problem is studied as a combinatorial constraint optimization
problem which involves the placement of N queens on an n ∗ n chess board in
a non-conflicting manner. A conflict is said to occur if any two queens cross
each others’ path. The solution requires us placing no two queens in the same
column, same row or even the same diagonal. Finding a candidate solution to the
N-Queens problem can be computationally expensive. Looking at the problem
as choosing n places for N-Queens on an n*n board leaves us n∗n

n C options.
Restricting each queen to only a row would bring it down to nn options. Further
simplifying this, we could restrict ourselves to permutations relying on the fact
that after placing a queen, it’s row and column are not a part of the exploration
space. This brings it down to n

nP = n! options. As n increases, the computational
complexity involved in trying to find a solution increases hugely.

Though the N-Queens problem is studied merely as a mathematical recre-
ation, it has several applications as highlighted in [1], like memory storage scheme
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for a conflict-free access for parallel memory systems, traffic control, modular N-
queens solutions to study re-configurable meshes with buses (RMB), to find a
set of deadlock-free paths, image processing in low-density parity-check codes
and motion estimation. The existing approaches like Backtracking and Monte-
Carlo serve well for small n values. As n increases, reaching a solution is still
computationally expensive.

Expensive computation limits the wide application of algorithm-based
approaches mentioned earlier. This could be mitigated by a model that kept
learning inherent patterns to reach a solution faster. Such a model would be
highly preferable for large values of n.

Reinforcement Learning involves an agent placed in an environment that con-
stantly learns from its actions. The agent’s action is influenced by the environ-
ment and it improves over time through the reward for its action. The present
study chose to solve the N-Queens problem using reinforcement learning. Q-
Learning and Deep Q-Learning were the variants chosen for this study. A study
to compare the convergence rate of different algorithms (Backtracking, Monte-
Carlo, Q-Learning and Deep Q-Learning) to solve the problem in minimum steps,
given the same environment was also carried out.

2 Related Work

The article on Algorithms for constraint-satisfaction problems [4] shows the
backtracking solution to the N-Queens problem. Counting solutions for the N-
queens [11] explains the Monte-Carlo method as a probability-based algorithm
to achieve the same. It has been observed that Monte-Carlo performs better
than the backtracking algorithm for even values of n.

I. Rivin et al. [9] present a dynamic programming based algorithm to solve
an 8 × 8 board problem. Here, a line is defined as the maximal co-linear set of
squares on the chess board and it is said to be closed if a queen is on it. A can-
didate solution refers to the arrangement of n-queens in an n × n board without
any conflicts. Their approach is based on the theorem that if two candidate solu-
tions have the same set of closed lines, then the completion of one candidate is
also the completion of the other. By performing the depth first search of the fea-
sible solutions with the same set of closed lines and placing them in equivalence
classes, they surpass the back-tracking algorithm which explicitly constructs all
solutions to the problem.

Hu et al. [3] attempt to solve constraint optimization problems like permu-
tations using Particle Swarm Optimization (PSO). They pick n-queens problem
to demonstrate the effectiveness of their modified PSO. A particle is defined
as a permutation that satisfies a constraint, a solution. With reference to the
n-queens problem, a particle was defined as the permutation of row numbers of
the n queens. This ensured horizontal and vertical conflicts were resolved. Hence,
the objective was to eliminate the diagonal conflicts. This formed the basis for
the fitness function. The fitness function was defined as the number of collisions
along the diagonals of the board and the objective was to minimize the collisions
along the diagonals and hence the ideal fitness value was zero.
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A. Draa et al. [2] attempt to find an alternative to solve combinatorial opti-
mization problems. They employ a quantum-inspired differential evolution algo-
rithm to solve the n-queens problem. This algorithm is an improvisation on Dif-
ferential Evolution Algorithms(DEA) and Quantum-inspired Genetic Algorithm
(QGA).

The paper on Q-learning by Christopher Watkins and Peter Dayan [10] pro-
poses a simple way for agents to learn how to optimally respond in controlled
Markovian domains. It shows that Q-learning can converge to the optimum
action-values with a probability of one as long as all actions are repeatedly sam-
pled in all states and the action-values are represented discreetly.

The paper on Human-level control through deep reinforcement learning [6],
gives an insight into using neural networks in conjunction with q-learning. It
highlights how the DQN can out-perform the best reinforcement learning meth-
ods at various games.

The N-Queens problem was explored by Lim Soo Yeon and Son KiJun [5]
as a Depth-First-Search problem. Inorder to solve the N-Queens problem by the
usage of reinforcement learning, the best node from among the next available
nodes had to be selected during the Depth-First-Search. Q-Learning approach
was used to converge to a solution. The look-up table was simulated by assigning
a value to each node. The agent would select the next best node after placing a
queen and update the Q-table after every move.

Faster convergence of Q-Learning is dependent on the hyper-parameters like
the learning rate α, discount factor γ and exploration rate ε as they decide
how fast the Q-Learning model can stabilize. The paper on the acceleration
of learning [8] deals with how to choose these parameters for the Q-Learning
approach to stabilize quicker. The Bridge Algorithm proposed by Papavassiliou
et al. [7] is robust enough to converge to an approximate global optimum for
non-linear hypothesis classes as well.

The Q-learning approach [5] has been modified from a tree-based approach
to a Q-table of size n3. A Deep Q-Learning approach has also been explored
by considering approaches to quickly stabilize the model by a better choice of
hyper-parameters.

3 Reinforcement Learning

Reinforcement Learning is an approach modelled on how humans learn in a new
environment. In this approach, an agent interacts with its environment(which
can be dynamic) based on the reward it receives as it gets closer to the goal or
the penalty that it incurs on moving away from the goal. Once the model learns
which steps will lead to maximum reward and in turn to the goal, a policy is
learnt, which is a mapping from state to action that maximizes the expected
cumulative reward (value function) under that policy.
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3.1 Q-Learning

Q-learning does not use the transition probability distribution that is associated
with the Markov decision process and is hence a model-free reinforcement learn-
ing algorithm. Problems with stochastic transitions and rewards can be handled
by it without requiring any modifications. This algorithm finds a policy that
maximizes the cumulative reward which is the expected total reward it would
earn on reaching the goal following the current path. This is true for any Finite
Markov Decision Process (FDMP). Q-learning uses the rule:

Q(st, at)+ = α(rt+1 + γ ∗ maxa(Q(st+1, a) − Q(st, at)))

Taking the maximum across all actions a which are possible at state st,
where γ is the discounting factor which determines the weightage to be given
to future rewards and α is the learning rate which determines weightage to
be given to newly acquired information over old information. It makes learning
independent of the starting policy π and it allows keeping this policy throughout
the whole learning process (off-policy update). When Q-learning has finished, the
optimal policy and the optimal value function have been found, without having
to continuously update the policy during learning. Q-learning usually uses a
table to store the Q-values which are updated in every iteration. At each step
the algorithm chooses between exploration (finding out new ways to reach the
goal) and exploitation (choosing the action that would give the highest reward
referring the table). This method becomes cumbersome as the number of states
and actions increase.

3.2 Deep Q-Learning

In deep Q-learning, a neural network is used to approximate the Q-value func-
tion. Since the amount of memory required to save and update the Q-table would
increase as the number of states increase, the amount of time required to explore
each state to create the required Q-table would be unrealistic. With the input
being the state, the Q-value of all possible actions is generated as output. All
the experience is stored by the user in memory as a sequence of previous actions
and the corresponding rewards. The next action is determined by the maximum
output of the Q-network. The loss function here is the mean squared error of
the predicted Q-value and the target Qvalue − Q∗. This is a regression problem.
The network is going to update its gradient using back-propagation to finally
converge.

4 Methods

The traditional approaches used for this comparative study were backtracking
and Monte-Carlo. Two approaches under reinforcement learning have also been
explored under this study. Each approach has a different initial environment to
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begin with. The board state is initialized to have a single queen at the bot-
tom leftmost cell for the Q-Learning approach. The bottom row of the board is
filled with queens in the Deep Q-Learning approach. The start states for both
approaches can be seen in Fig. 3.

Fig. 1. Start States for n = 4

4.1 Q-Learning

In this approach, a table with all the possible states is considered. On every
action, points are either awarded or reduced from a state. After the learning
process, it will be possible to traverse the table to give the sequence of actions
to get the solution.

Here, the q-table is designed to be a 3-dimensional array. Each cell of the
board is represented by an array of width of n (array a1), which is in an array
of width n representing which column we are in (array a2), which is in another
array representing which row to put the queen in (array a3). On each turn, a
queen is placed in the next column and a row is chosen for it. Each position in
a1 corresponds to a row the previous queen can be placed in. The 3-dimensional
array representation is highlighted in Fig. 2.

The q-table is initialized with zeros. The rate of exploration ε is set to 0.9.
On every turn, first a random number between zero and one is picked and if
it is lesser than ε, a random action (row) is chosen for the queen and if it is
greater than ε, the q-table is referred. The value of ε is reduced by a factor after
every iteration to reduce the rate of exploration and exploit the knowledge learnt
more. After placing the queen, the board is checked to see if there are conflicts.
If a conflict is found, the states that led up to this point are penalized and the
board state is reset, else the procedure continues.
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Fig. 2. Q-Table Representation

Updating Q-Table. The agent can take action using the q-table based on the
sequence of actions previously taken rather than depending only on the current
state. If the previous action was k, then kth index in every array (row) of the
next column is checked to find the max value (row index = action). This would
mean that if the previous action was k, the most probable next step will be
action. This is similar to having a tree with all possible states and going to the
most favorable child. On selecting a cell, its value is updated as:

Qvalue = Qvalue + α ∗ (γ ∗ nextmax − Qvalue)

where γ is the discount factor, nextmax is the max value of the next column given
current action and α is the learning rate. The hyper-parameters for training can
be found in Table 1.

4.2 Deep Q-Learning

Q-Learning estimates the next action based on the highest q-value entry for a
particular state. This approach is quite effective for smaller values of n. Since the
Q-Table representation from the Q-Learning approach has a space complexity of
n3, it is not very efficient for larger n values. Therefore, Q-Learning is effective
for a limited space or environment.

Neural networks are universal function approximators. To reduce the space
complexity and better approximate the q-table, a neural network can be used.
This is the heart of Deep Q-Learning.
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Fig. 3. Q-table update pattern for n = 4. The x mark column is decided based on
the row number of the previous queen and highest value selected (red x). (Color figure
online)

In the implementation, a sequential neural network model was built. The
network takes the state of the chessboard as input and predicts the best action.
The state is represented as a n ∗ n + 1 sized vector where the last bit is used to
represent which queen’s action has to be predicted. The output of the network
is a set of q-values from which the action as a result of the highest q-value is
chosen.

The reward is calculated based on the board state as the negative of the
number of conflicts. Sequence of actions and their rewards are saved in memory.
These sequences are further used to train the neural network model to bet-
ter approximate q-values and hence converge to optimal action sequences. The
reward is optimal if an action led to the solution. Else, the target is updated as
the sum of reward and argmax of prediction of the next state. The target for the
current state as a result of the action leading to the next state is updated as the
newly calculated target and the model is re-trained to approximate the same.
This phase of training based on past sequences is called replay. The exploration
rate ε is decreased over each episode to help achieve faster convergence.

There is a trade-off between the number of unique solutions that can be
explored and the ε-decay rate. Greater the decay rate, faster the transition from
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exploring to exploiting. Uncovering all solutions would need high exploration
and hence a small ε-decay rate would serve well. This implementation mainly
focused on reaching a solution rather than finding all solutions and hence the ε-
decay rate was high. The model ends up generalizing better than the Q-Learning
approach and also saves space.

A sequential model was used to realise the architecture of the DQN Agent.
The model employs a series of fully connected layers with a ReLU activation.
The last layer however uses a linear activation unit. Mean squared error is used
as the error measure. The neural network architecture used for the DQN agent
is shown in Fig. 4 and the hyper-parameters for training can be found in Table 1.

Table 1. Hyper-parameters used for Q-Learning and Deep Q-Learning

Parameter Q-Learning Deep Q-Learning

Learning rate α 0.8 0.001

Discount factor γ 0.9 0.95

Exploration rate ε 0.9 1.0

Epsilon decay factor 0.95 0.995

Fig. 4. DQN Agent architecture for n = 4
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5 Results

The results from Q-Learning and the Deep Q-Learning approach are compared
to traditional algorithms like Backtracking and Monte-Carlo. It can be seen that
the reinforcement learning approaches perform better. The result is evaluated
in terms of the number of iterations it takes to converge to a solution. For the
reinforcement learning approaches, the iterations correspond to the 22nd episode
of training (Table 2).

Table 2. Iterations to converge to a solution by various algorithms

N-Value Back Tracking Monte-Carlo Q-Learning DQN

4 26 16 4 9

5 15 16 5 7

6 171 66 6 13

7 42 43 7 13

8 876 171 8 25

9 333 383 9 55

10 975 942 10 121

The convergence graphs of Q-learning show that the initial few episodes take
extremely large number of iterations.

Fig. 5. Q-Learning convergence graphs for different n
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The convergence graph of Deep Q-Learning below shows how the agent gets
better over each episode for different n values. The number of iterations to
converge to a solution is plotted against the episode number for different values
of n.

Fig. 6. Deep Q-Learning convergence graphs for different n

Convergence graphs of Deep Q-Learning resemble exponential decay as the
initial episodes take a high number of iterations due to the agent actively explor-
ing rather than exploiting. The first ten episodes of training are not strictly
decaying due to exploration as seen in Fig. 7. It is during the first ten episodes
that at least two different solutions to the N-Queens problem have been obtained.

Fig. 7. Deep Q-Learning convergence during first 20 iterations
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6 Conclusions

The experimental analysis using reinforcement learning approaches have led to
the following conclusions:

1) Q-Learning and Deep Q-Learning ensure to converge to a solution in less than
50% of the iterations required by the traditional methods like Backtracking
and Monte-Carlo.

2) Q-Learning takes a lot of iterations to converge to a solution in the initial
phases of training as the entire state space is almost explored (reach a conflict
and the board is reset). In contrast, Deep Q-Learning takes lesser iterations
during initial stages because of the replay phase. This can be understood from
the Fig. 8.

3) Q-Learning converges to a single solution and provides no scope for exploring
other possible solutions in contrast to Deep Q-Learning.

Fig. 8. Comparison of convergence for Q-Learning and Deep Q-Learning

7 Future Work

7.1 Q-Learning

The shortcomings of the present approach could be mitigated by considering the
following:

1) The current approach resets the board state and starts from the first queen
every time there is a conflict. The model can be improved by making it correct
the position of particular queens thereby decreasing the total number of moves
to get to the solution.

2) Due to exploration by trail and error, many iterations are used during the
learning phase. Therefore, the number of iterations for the initial few episodes
are very high and need to be reduced.



Faster Convergence to N-Queens Problem Using Reinforcement Learning 77

7.2 Deep Q-Learning

The proposed Deep Q-Learning method has performed really well. However,
there are a few limitations in terms of the choice of queen, flexibility in movement
and the need to train separately for every n. The same has been discussed here.

1) The current approach assigns turns for each queen in a round-robin fashion.
The model can be improved to predict the best queen to move and further
predict the action for the best queen choice.

2) The movement of a queen is restricted to a column in the current approach.
This can be generalized to include horizontal and diagonal movement as well.

3) A generalized network could be designed for transfer learning so that the
training time for different values of n could be reduced.

References

1. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discrete Math. 309(1), 1–31 (2009)

2. Draa, A., Meshoul, S., Talbi, H., Batouche, M.: A quantum-inspired differential
evolution algorithm for solving the n-queens problem. Neural Networks 1(2) (2011)

3. Hu, X., Eberhart, R.C., Shi, Y.: Swarm intelligence for permutation optimization:
a case study of n-queens problem. In: Proceedings of the 2003 IEEE Swarm Intel-
ligence Symposium. SIS 2003 (Cat. No. 03EX706), pp. 243–246. IEEE (2003)

4. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag.
13(1), 32 (1992)

5. Lim, S., Son, K., Park, S., Lee, S.: The improvement of convergence rate in n-
queen problem using reinforcement learning. J. Korean Inst. Intell. Syst. 15(1),
1–5 (2005)

6. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

7. Papavassiliou, V.A., Russell, S.: Convergence of reinforcement learning with general
function approximators. In: IJCAI, pp. 748–757 (1999)

8. Potapov, A., Ali, M.: Convergence of reinforcement learning algorithms and accel-
eration of learning. Phys. Rev.E 67(2), 026706 (2003)

9. Rivin, I., Zabih, R.: A dynamic programming solution to the n-queens problem.
Inf. Process. Lett. 41(5), 253–256 (1992)

10. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992).
https://doi.org/10.1007/BF00992698

11. Zhang, C., Ma, J.: Counting solutions for the n-queens and latin-square problems
by monte carlo simulations. Phys. Rev. E 79(1), 016703 (2009)

https://doi.org/10.1007/BF00992698


Classification of Corpus Callosum Layer
in Mid-saggital MRI Images Using Machine
Learning Techniques for Autism Disorder

A. Ramanathan(B) and T. Christy Bobby

Department of Electronics and Communication Engineering,
Ramaiah University of Applied Sciences, Bengaluru, India

ramsaivigbala@yahoo.co.in, christy.ec.et@msruas.ac.in

Abstract. Autism is a neuro developmental disorder that affects the social inter-
action and communication skills of the children. It is characterized by repetitive
behavior, lack of eye contact and unusual facial expressions. Corpus Callosum
(CC) is the largest white matter area in the central nervous system that helps in
transmission of information between both the hemispheres of brain. In autismkids,
CC in the brain region shrinks and shape variations occur, making it as the region
of interest with respect to diagnosis of autism disorder. Though there are many
methods to segment and classify CC, there is still a need for accurate segmentation
and automatic classification of CC. Since CC shares similar intensity and close
proximity to other parts of the brain, segmentation of only CC region becomes
challenging. To address this challenge, in the proposed work level set segmen-
tation technique is used to segment Corpus callosum and the segmented images
are validated against the ground truth using jaccard and dice index. From the seg-
mented images geometric, texture and statistical features are extracted. Feature
reductionmethods such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) are incorporated for selecting the most significant set
of features. Machine learning algorithms such as Support vector machine (SVM)
andExtreme learningmachine (ELM) are proposed to classify the image as normal
and abnormal. The proposed algorithm demonstrates the classification accuracy
of 97% and 96.5% using SVM and ELM respectively.

Keywords: Autism · Corpus callosum segmentation · Feature extraction ·
Classification

1 Introduction

Autism spectrum disorder commonly called as ASD are a group of neurological disorder
that affects the social interaction and communication skills of the children [1]. Autism
disorder is identified by structural changes in brain [2]. It is related to genetic mutations
[3]. However exact cause of the disease is still unknown in many cases [4]. Autism
is diagnosed by MRI taken from the patients. Size and shape and location of Corpus
Callosum (CC) is important in identifying it from other regions of the brain. MRI is
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much safer technique compared to other neuro imaging techniques like skull x-rays and
computed tomography (CT) [5].

Corpus callosum is the largest white matter area in the brain that connects both the
right and left hemisphere [6]. CC has millions of axons connected to it [7]. It also shares
close proximity with fornix, a bundle that lies below CC. Thus this CC size and shape
depends on the extent of the ASD. Since CC shares a close bond with other regions of
brain and has a close proximity with fornix segmenting and classifying the CC becomes
extremely difficult and challenging [6]. Along with this low contrast of MRI scans and
blurred CC boundaries makes the process further more challenging [5].

Though techniques like edge based active contour model, voxel intensity based seg-
mentation, exists they suffer from disadvantages such as higher complexity, poor results
due to presence of noise and less accuracy. Techniques like Active contour model do
not work well if initial contour is set away from the target [6]. Although classifiers like
SVM, ANN and ID3 exist, their accuracy is about 85%, 93.3% and 77% respectively [8,
9].

Thus the need for accurate segmentation and automatic classification of CC arises. To
address this challenge, the proposed technique uses a combination of accurate segmen-
tation and automatic classification. Level set method is used for accurate segmentation
of CC using contours. The segmented output is validated against both jaccard and dice
index to check the accuracy of segmentation. Various Geometrical, Texture statistical
features are extracted from the segmented CC. Feature selection techniques like PCA
and ICA are used for selecting highly significant features for better performance. The
output of the feature selection techniques are individually are fed into machine learn-
ing algorithms like support vector machine and extreme learning machine which uses
different kernels for classification.

The initial step is removal of skull from the brain usingMatlab based on thresholding
[10]. The Segmentation is carried out by the level set technique. Level set method works
on both internal and external energy present within the image [11]. The segmented
images are validated against the manual cropping by jaccard and dice index [12] and
associated features like area,major axis, minor axis, mean, energy, entropy, homogeneity
are extracted [13–16] from segmented CC.

To avoid of ‘curse of dimensionality’ [17] feature selection technique such as (PCA)
[18] and (ICA) [19] are being used for reducing the number of features thereby taking the
most significant set of features. Both PCA and ICA gives a complete new set of features
which are correlated features of original variables. Classifiers such as Support vector
machine (SVM) [20] and Extreme learning machine (ELM) [21] are used to classify
the image as normal and abnormal. SVM is a supervised learning methodology which
uses hyperplane to separates the data into different classes. To support the hyperplane
kernels like Gaussian, linear and many more are used. On the other hand, ELM works
on the concept that resembles the human brain. It works with the idea of hidden neurons
and does not require any sort of tuning and uses kernels like sigmoid, harlim and much
more.
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2 Methods and Methodology

See Fig. 1.

Fig. 1. Block diagram of the proposed work.

2.1 Data Set

Mid-Saggital T1 weighted brain MRI Images (N = 100) from age group of 2–40 years,
collected from University of Southern California (USC)-Laboratory of Neuro Imaging
(LONI) website are used for analysis. The images are in Jpeg format is of size 2048 ×
2048 pixels.

2.2 Skull Stripping

The Skull is removed completely from the brain. It helps in tissue classification, brain
surface reconstruction, identification of brain parts and inhomogenity correction. Skull
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is removed using Matlab in which the image is converted from color image to gray
image and global threshold is performed. Image is then converted from gray to binary
and connected components are labeled. Connected components are joined together and
the unconnected part is removed.

2.3 Segmentation

Geometric active contours (GAC) use the idea of Euclidean curve shortening evolution.
Contours merge and spilt depending on the object in the image. The proposed method
uses GACwhichmakes the level set function to act as close to a signed distance function,
thus completely removing the requirement of re-initialization procedure. Variational
formulation comprises of an internal energy factor which adds penalty to the digression
of the level set function from a signed distance function, and an external factor which
controls the motion of the zero level set toward the image areas like object boundaries.
The evolution of the output of level set function is the gradient flow which minimizes
the total energy. It uses a larger time step and therefore speeds up the curve evolution.

The level set evolution can also be implemented by simple finite difference scheme.
In level set formulation of active contour, the contours, denoted by S, are represented by
the zero level set S(t)= {(x, y) | ∅(t, x, y)= 0} of a level set function ∅(t, x, y). Evolution
of the level set function ∅ can also be written in the following general manner:

∂∅ + ∂t + F|∇∅| = 0 (1)

Re-initialization is always preferred as a numerical solution in usual level set
methods. The standard re-initialization method is to solve the following equation,

∂∅ + ∂t = sign∅0(1 − |∅|) (2)

where φ0 is the function to be re-initialized, and sign (∅) is the sign function. If φ0 is not
smooth or φ0 is much more steeper on one side than the other, zero-level set of the final
function φ has a chance of being moved incorrectly from original function.

Total energy functional,

E(∅) = μP(∅) + Eg,λ,v(∅) (3)

External energy Eg,λ,v derives the zero-level set along the boundaries of the object,
while the internal energy defined as μP(φ) penalizes the deviation of ∅ from a signed
distance function during its evolution [11].

2.4 Validation

After segmentation, the segmented output is compared with region of interest (ROI)
which is called as gold standard. This is created by experts using manual cropping.
The segmented output and the gold standard are overlapped against each other and are
checked for the overlapping coefficient or similarity index. This comparison is done by
jaccard and dice similarity index techniques. This Index varies between 0 to 1 where 0
indicates no overlap and 1 denotes complete overlap. The jaccard index is given by,

Jaccard(A,B) = intersection(A,B)|/|union(A,B) (4)
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Dice(A,B) = 2∗intersection(A,B)|/|(|A| + |B|)| (5)

|A| represents the cardinal of set A [12].

2.5 Feature Extraction

From the segmented images texture statistical features and geometrical features are
extracted which are discussed briefly as follows:

Mean-Average of all the pixel values present in the image.

μ = 1

NM

∑
i,j
p(i, j) (6)

Skewness-It is defined as measure of symmetry and gives information about image
surface.

γi =
(
1

N

∑N

J
(Vi,j − μi)

3
)1/3

(7)

Kurtosis-It gives information about noise and resolution measurement.

Ki =
(
1

N

∑N

J
(Vi,j − μi)

3
)1/4

(8)

Contrast-It measures the location variations in GLCM.

I =
∑ ∑

(x − y)2p(x, y) (9)

Correlation-Gives insight about how two variables activities are associated.

C =
∑ ∑

(x − μx)(y − μy)p(x, y)/σxσy (10)

Energy-Measures the homogeneity of the image from GLCM.

J =
∑

i=1

∑
j=1

(p(i, j))2 (11)

Homogeneity-Tells about the closeness of the distribution of elements in GLCM to it’s
diagonal.

H =
∑ ∑(

p(x, y)

1 + {x − y]

)
(12)

Area-Describes the actual number of pixels in a region. It denotes the total pixels present
in the image. Thus, it tells the total area of the image.

Major Axis-Longest Diameter with respect to length in pixels. This is the line that
divides the given image into 2 halves.

Minor Axis-Line that is perpendicular to major axis, this along with major axis divides
the image into 2 equal halves [13–16].
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2.6 Feature Selection

If more number of features is fed into the classifier as input, a phenomenon known as
“Curse of Dimensionality” [17] will occur in the classification process that leads the
degrading of classifier efficiency by overfiting concept. Thus, from the above derived
features, the prime features are derived using dimensionality reduction techniques such
as (PCA) and (ICA). PCA and ICA creates a new set of variables representing the linear
combination of original variables for further analysis.

PCA is an unsupervised technique for data reduction which depicts data sets present
in higher dimension to lower dimension keeping all the required linear structures steady.
For dataset ‘m’ with respect to ‘n’ feature, let k � n be the dimensionality space in
which data is about to be placed and features of F are mean centered. PCA returns the
top ‘k’ left singular vectors of F and makes the projection of newly obtained data on k
dimensional subspace spread over by the columns of Wk . Then, the projector matrix in
the subspace is defined as:

PWK = WKW
T
K (13)

The resulting projection obtained from the following equation, and it is reduced in all
possible ‘k’ dimensional space.

∣∣∣∣F − PWKF
∣∣∣∣

ξ
(14)

Where, ξ = 2 symbolizes spectral norm [18].
ICA is a statistical feature selection technique that eliminates the least important

features and takes only independent features from the data set. The aim of ICA is to
find the linear representation of the nonlinear data which are independent to each other.
The n dimensional observational vectors y = (y1, y2, , , , ym)t are random variables
that have zero mean. Let s = (s1, s2, , , , sd ′ )t where d

′
the dimensional transform of y

determining the fixed weight matrix W so that obtained variables linear transformation
is,

s = Wy (15)

The observed signal y can be written as independent components as

y = A−1s (16)

Where A is the inverse of W transform matrix [19].

2.7 Classification

In this step, the features obtained from PCA and ICA is given as input to SVM and ELM
for automating the classifications of normal and abnormal CC. The performance of the
classifiers for the features obtained from PCA and ICA are compared and analyzed. For
training the neural network 70% of the data and for testing 30% of the data are used.
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SVM is supervised algorithm that is used for classification of data. It works on the
concept of finding a hyperplane that separates the similar features from data into various
domains. SVM [20] is devises a computationally efficient way of separating hyperplane
in a high ‘n’ dimensional space. The various kernels of SVM used for the analysis are
as follows:

Linear kernel: It is used to separate data in to 2 classes with the help of hyperplane.

K
(
Ai,Aj

) = 〈
Ai.Aj

〉
(17)

RBF kernel: This kernel maps non-linear samples into a higher dimensional space.

K
(
Ai,Aj

) = e−∣∣ai − aj
∣∣a2/2σ2 (18)

Polynomial Kernel: Polynomial kernel takes features combinations into account. By
making h = 1 in the equation kernel behaves like a linear one

K
(
Ai,Aj

) = (
Ai,Aj + 1

)h (19)

ELM uses hidden neurons to classify the given data. ELM consists of Multilayer of
networks trained layer by layer. It is given by equation

βifL(x) =
∑L

j=1
Gj

(
x, qj, rj

)
βj qj ∈ Rd, rj, βj ∈ R (20)

whereGj tells about the jth hidden node activation function, qj is the input weight vector
which connects the input layer to the jth hidden layer, rj is the bias weight present at
the jth hidden layer and βj is regarded as the output weight. Various kernels like RBF,
sigmoidal and polynomial kernel are used [21].

2.8 Performance Estimation

The classifier’s performance is tested by sensitivity, specificity and accuracy. It is derived
from the values of True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN). TP is denoted when normal sample is classified as normal. TN comes
into play when abnormal sample is classified as abnormal. Normal sample classified as
abnormal is called as FP and abnormal sample classified as normal is FN [5, 22].

Sensitivity: Also called as the True positive rate (TPR) it measures the proportion of
actual positives that are identified as positives. It is denoted as TPR = TP/TP + FN.

Specificity: Also called as True negative rate (TNR) it measures the proportion of actual
negatives that are measured as negatives. It is denoted as TNR = TN/TN + FP.

Accuracy: Fraction of detected true samples that area actually true. (TP + TN)/(TP +
TN + FP + FN.
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3 Results and Discussion

Figure 2a is the MRI image of human brain in mid-saggital plane. The presence of skull
and other layers of brain like cerebrum, cerebellum, and corpus callosum which is the
region of interest of segmentation are seen. Figure 2b shows the contrast enhanced and

Fig. 2. a) Input image b) Skull stripped image

Fig. 3. a) and c): Contour present at CC. b) and d) Corresponding segmented CC alone.
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skull removed image.Fig. 3a and 3c shows the contour is set at the complete layer of CC,
after 20 iterations. Figure 3b and 3d shows CC alone gets segmented separately from
the whole image.

Table 1. Average index of normal and autism samples

Sample Jaccard Dice

Normal 99.46% 99.73%

Autism 99.44% 99.72%

Table 1 shows the average values of jaccard and dice index. The higher accuracy
value of these index indicates that the semented images are very close to gold standard
images in the dataset.

Table 2 shows the normalized mean values of statistical and geometrical features
derived from the segmented normal and autism images.

Table 2. Normalized mean values of features obtained from normal and abnormal images

Features Normal images Abnormal images

Contrast 0.677459 0.676456

Correlation 0.998431 0.998371

Standard
deviation

0.802415 0.812949

Entropy 0.731426 0.753631

Area 0.834125 0.812949

Major axis 0.843865 0.825031

Minor axis 0.685795 0.679862

The features such as contrast, correlation shows very small difference between nor-
mal and autism brain images. However features such as area, major axis, minor axis,
standard deviation and many more exhibits good demarcations between normal and
autism brain images. Figure 4, 5, 6 shows some of these feature which are plotted in the
form of scattergram.

PCA is applied to select best possible features from the original features. In Table 3
the first three principle components (PC1, PC2 and PC3) variance values are tabulated.
These three components contribute 94% of variance and other features contribute only
6%.

Similarly ICA is also applied to original set of features and the newly transformed
independent features are obtained. The principle and independent components are used
as an input to SVM and ELM classifiers.

In Table 4 results of SVM classifier are tabulated. Linear kernel gives highest classi-
fication accuracy of 97% for both PCA and ICA features when compared other kernels.
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Fig. 4. Scattergram of normalized contrast values of segmented CC
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Fig. 5. Scattergram of normalized standard deviation values of segmented CC

Since highly significant features are obtained using PCA and ICA the linear classifier
easily classifies the data. The classifier results shows, both PCA and ICA techniques
complements each other in the SVM classification.
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Fig. 6. Scattergram of normalized area values of segmented CC

Table 3. PCA and its variance

Component Variance

PCA1 52.80%

PCA2 31.44%

PCA3 9.811%

Table 4. SVM results

Kernels PCA ICA

Linear 97% 97%

Quadratic 90% 96%

Gaussian 93% 94%

Polynomial 94% 93%

Table 5 compares the performance of PCA and ICA with respect to ELM. The
training accuracy of both the feature selection techniques reaches 100% using ‘Sig’
kernel function. The testing accuracy also reaches the values of 96.55% in both PCA
and ICA respectively showing that both techniques complement each other in the ELM
classification. Hence comparing both the feature selection techniques we can conclude
that both the applied feature selection techniques select highly significant set of features.
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Table 5. Best obtained ELM results using both PCA and ICA techniques

Parametrs used PCA ICA

Kernel function Sig function Sig function

Number of hidden neurons 12 20

Training time 0.1404 s 0.0312 s

Training accuracy 1 1

Testing accuracy 96.55% 96.55%

SVM and ELM provides equally competitive results using both PCA and ICA indicating
both the feature selection techniques gives satisfactory results.

4 Performance Estimation

Parameters such as TP, FP, TN and FN are understood with the help of confusion matrix.

Fig. 7. Confusion matrix

Figure 7 discusses on the performance analysis of the classifiers used in the proposed
method. The values of TP, TN, FP, and FN can be obtained directly from the confusion
matrix. The sensitivity of the proposed system is 100% while the specificity is 92.85%
respectively. Table 6 final results obtained using SVM and ELM is compared with other
existing classifiers used to classify normal and abnormal patients with respect to autism
[8, 9, 23].

From the table it is evident that the proposed method is much better than all the
existing techniques in terms of performance parameters. Thus all the steps used in the
presented work are satisfactory and quite impressive.
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Table 6. Performance of existing methods in classifying autism

Existing methods Accuracy Sensitivity Specificity

SVM-Linear Kernel 78.3% 76.7% 80.0%

SVM-Polynomial Kernel 83.3% 86.7% 80.0%

ANN 93.3% 96.7% 90.0%

Id3 77% – –

SVM 93.8% 100% 87.5%

KNN 93.8% 100% 87.5%

LDA 68.8% 62.5% 75.0%

5 Conclusions and Future Suggestions

The paper presents efficient segmentation and classification of corpus callosum in Mid-
saggital MRI images for autism disorder. First, skull is removed from the brain using
thresholding. Second, the corpus callosum is segmented using level set method. The
segmented CC is validated using jaccard and dice index. Features associated with seg-
mented CC are extracted and fed into feature selection techniques such as PCA and ICA
to select the most significant set of features. Finally, the output of PCA and ICA are
given as input to classifiers namely SVM and ELM. The proposed method reaches an
accuracy of 97% in SVM and 96.5% in ELM. It also outperforms the existing techniques
used in the method providing better performance with respect to sensitivity, accuracy
and specificity. In future, Corpus callosum which begins to grow from 3 months from
the time of pregnancy can be monitored for change in variations associated to CC and
other areas of brain. This can be achieved using ultrasound with image processing. Other
areas of brain such as cerebrum, cerebellum should also be analyzed to check changes
in their growth. Along with autism and other neurological disorders such as epilepsy,
Alzheimer’s can also be checked for changes in the structure of brain.
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Abstract. In this paper, we introduce a novel architecture to connecting adaptive
learning and neural networks into an arbitrarymachine’s control system paradigm.
Two consecutive Recurrent Neural Networks (RNNs) are used together to accu-
ratelymodel the dynamic characteristics of electromechanical systems that include
controllers, actuators and motors. The age-old method of achieving control with
the use of the – Proportional, Integral and Derivative constants is well understood
as a simplified method that does not capture the complexities of the inherent non-
linearities of complex control systems. In the context of controlling and simulating
electromechanical systems, we propose an alternative to PIDControllers, employ-
ing a sequence of two Recurrent Neural Networks. The first RNN emulates the
behavior of the controller, and the second the actuator/motor. The second RNN,
when used in isolation potentially serves as an advantageous alternative to extant
testing methods of electro-mechanical systems.

Keywords: RNN sequence · Electromechanical systems · Control · Simulation ·
PID

1 Introduction

Electromechanical systems comprise actuators, controllers and motors: in practical field
work, oftentimes it is not feasible to have access to these physical systems. We pro-
pose a novel approach to their simulation and control. Currently, the field of ‘Industry
and Automation’ lacks a definite, robust and cost-effective model to perform testing of
electro-mechanical systems, and its variants across plants.

Since the 1930’s, control of these systems is traditionally done through the
Proportional-Integral-Derivative (PID) controllers, which is in widespread use [1, 2]
(Fig. 1).

One of the most famous method of achieving control is using the Zeigler Nichols’
methods. It is performed by setting the I (integral) and D (derivative) gains to zero. The
“P” (proportional) gain, Kp is then increased (from zero) until it reaches the ultimate
gain Ku, at which the output of the control loop has stable and consistent oscillations.

Ku and the oscillation period Tu are used to set the P, I, and D gains depending on
the type of controller used.
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Fig. 1. PID controller equation

The correction u(s) has the following transfer function relationship between error
and controller output, in Laplace domain:

u(s) = Kp

(
1 + 1

Tis
+ Td s

)
e(s) = Kp

(
TdTis2 + Tis + 1

Tis

)
e(s) (1)

The disadvantages of this technique are:

• It is time consuming as a trial and error procedure must be performed.
• It forces the process into a condition of marginal stability that may lead to unstable
operation or a hazardous situation due to set point changes or external disturbances.

• This method is not applicable for processes that are open loop unstable.
• Some simple processes do not have ultimate gain such as first order and second order
processes without dead time.

There exist alternate methods like Tyreus-Luyben method, Damped OscillationMethod,
etc. which aim to remove certain limitations of Zeigler Nichols’ [3, 4]; but not entirely.
The reason being that all these methods have a framework, which on a fundamental
level are similar- to use a finite number of arbitrary constants which then encapsulates
the entirity of a system and its behavior, regardless of the system’s complexity level.
The authors are of the opinion that (just) these constants are insufficient to completely
describe any electro-mechanical system.

İnstead of a controller being restricted to a fixed number of parameters, which then
describes the system- the authors were inspired to look at the controller as a blackbox
which builds a correlation between the inputs and the outputs of an electromechanical
system, and thus computes the error and the suitable corrections [5] (Fig. 2).

Kwang Y. Lee [6] suggests that this blackbox can be achieved by the use of Diagonal
Recurrent Neural Networks. The approach to use dynamic back propagation algorithms
to these diagonal recurrent neural networks spurred the idea to use an enhanced version
of the same.

It resulted in the creation of the Consecutive RNN approach, where the first RNN
(RNN1) functions as an inverse of the second RNN (RNN2). RNN2 in isolation is
the model which mimics the Electromechanical System (Microspin Machine [refer
footnote]) to a high degree of accuracy.



94 S. Chandar and H. Sunder

Fig. 2. RNN1 and RNN2 framework

2 Method

2.1 Machine, Model and Assumptions

The framework has two RNNs connected consecutively, and function as inverses of each
other. The authors modelled an electro-mechanical system used in the textile industry
by Microspin Machine Works [5] using RNNs.

The machine description is such that it takes in a time varying sequence of voltages,
which is fed using Pulse Width Modulations (PWM(t)) directly proportional to the
voltage at that instant. The output of thismachine is corresponding time varying sequence
of Revolutions Per Minute (RPM(t)).

The system in accordance to the laws of physics has an inertial lag during sudden
spikes, or impulse PWMs. The prior knowledge that the authors had of the system before
training the RNNs to replicate this model, is that this system has its own flaws- inertial
lag, resonance, turbulence, lags at the start of steep function etc. The model built to
replicate this machine, must have these flaws as well and must not be removed them in
the name of efficiency (Fig. 3).

Electro-mechanical system

(Microspin Machine)

PWM(t) RPM(t)

Fig. 3. Framework of electro-mechanical system

The machine has a device to capture the logged data, such as the PWM and RPM
values at an instant. The logged data over a period of time had ~35,000 data points of the
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form (PWM,RPM).This data set comprised sinusoidal inputs, step inputs, impulse inputs
and trapezoidal inputs (PWMs) - with varying slopes and peaks- and their corresponding
outputs (RPMs).

An assumption made at this point is that the system is symmetric about the origin;
and hence doubled the data set we had from 35,000 to 70,000 by flipping signs. This
assumption is valid, since logically a negative PWM would imply a negative RPM-
meaning that the motor rotates in the opposite direction.

This 70,000 data points is assumed to be a comprehensive list of details of the system,
and used this as the training data to model the RNNs.

After training the RNN (RNN2 henceforth) to mimic the machine to a high degree
of accuracy, it is assumed that this model is a perfect simulation of the machine, and the
controller RNN (RNN1 henceforth) is trained using the original dataset, and the data
from RNN2 (Fig. 4).

Fig. 4. Scatter plot of training data (PWM vs RPM).

2.2 Problem Formulation and Analysis

Fig. 5. Architecture of consecutive RNN approach
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Where:

i(t) is Target RPM profile (and input to RNN1)
wi(t) is the Predicted PWM from RNN1 and the input to machine and RNN2
w0(t) is the Actual RPM of the machine
v(t) is the predicted RPM of RNN2 (model of the machine) (Figs. 5 and 6).

Fig. 6. Equations to be minimized

RNN2 models the behavior of this machine to a high degree of accuracy by taking
PWMs as inputs and output the corresponding RPMs. Post this, the physical machine is
removed from the framework.

RNN1models the controller by behaving as the inverse of the machine, i.e. to predict
the voltage that has to be supplied to the machine in order to get a desired RPM profile.

The whole cycle is such: RNN1 takes in the Target RPM profile and predicts the
PWM profile that needs to be sent into the machine (RNN2) to get back the same Target
RPM Profile.

NOTE: This framework might resemble an Autoencoder, but the subtle difference
is that, in this framework- the RNN2 mimics a real life system (the electromechanical
system). The output of RNN1 (or the input to RNN2) has a constraint that it should be
such that it produces the Target RPM Profile, if given as inputs to the electromechanical
system. This is not the case in the Autoencoder, as there is no constraint on the encoded
pattern.

2.3 RNN2

• The machine logged data (PWM vs RPM), about 70,000 in number served as the
training data (20% of which was used as test data).

• Given a time varying voltage, this model predicts the RPM at that instant of time.
• Its built using LSTMs and combinations of dense layers to model this function of
PWM vs RPM, as a one to one mapping.
The training algorithm works to read ‘x’ time varying points of PWM and predict the
‘x + 1’th RPM. The models had varying step size (i.e. x = 3, x = 18 etc.). The most
optimal model had x = 3.

• The reason themodel did not have x= 1 (although its theoretically possible) is because
‘x’ cannot be too less; which would cause the model to not efficiently distinguish a
data point when it has had two different histories.
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• Even though RNNs account for the history through its memory feature, it was noticed
that building batches of data and predicting the next in line output was more efficient.
This is because the model now has a more unique data set (with a known history); so
the predictions become more accurate.

• However, this batch size cannot be too large, as it would cause the system to lag – as it
waits for as many intervals as the batch size, before predicting the next in line output.

• A fine balance between the two is the key.

Neural Architecture of a version of RNN2
Number of layers: 3 (2 LSTMs + 1 Dense)
Number of Neurons: 9
Number of Learnable Parameters: 122
Activation Function: Softmax
Optimizer: Adam
Loss function: Mean Square Error - between predicted output of RNN2 and true output
of RNN2

MSE = 1

n

∑
n

(
vi − v

′
i

)2

Where:

vi is the ith predicted output
v′
i is the ith true output
n is the total number of points (Fig. 7).

Fig. 7. RNN2 neural architecture
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2.4 RNN1

• The input to RNN1 is the Target RPMProfile- at which we finally want the machine to
run. We use the same training data used for training RNN2 but in an inverse fashion.

• Instead of predicting the RPM, given the PWMs; themodel is trained to predict PWMs
given a time varying RPM profile.

• Thismodel is not simply an inverse of theRNN2. Themethod of training is completely
different for the twomodels as they are fundamentally different in nature of data points.

• In RNN2, there was a one to one mapping of sorts between PWM and RPM, i.e. every
PWM was unique and could have a corresponding RPM. The neural network was
simpler, as it could uniquely relate a PWM to an RPM.

• However, with RNN1 the neural network has to be more complex, with more layers
and had to be run on a greater number of epochs. This is because the RPMs were
not all unique. Therefore, a prediction of an RPM, by simple logic is a one to many
mappings.

• The modelling of RNN1 had to be done much differently for two reasons a) it is a one
to many mapping, b) the error to minimized is:

MSE =
∑

t
(vi(t) − ii(t))

2 (2)

AND NOT:

MSE =
∑

t
(wi(t) − ii(t))

2 (3)

Where:

vi(t) is the ith predicted output of RNN2
ii is the ith input of RNN1
wi is the ith predicted output of RNN2
n is the total number of points.

• Therefore, the loss function for RNN1 had to involve the output of RNN2 and the
input of RNN1.

• This is possible only if there were a custom loss function, or a way around that implies
the minimization of the above error.

• The custom loss function, took in the intermediate training outputs of RNN1 (PWMs)
and fed it as inputs to already trained RNN2. The outputs of RNN2 – RPMs, were
then used as parameters for the loss function along with the input to RNN1.

• The two parameters that the RNN1’s loss function now depends on, are 1) input to
RNN1 and, 2) The output of RNN2 when intermediate training outputs of RNN1 are
fed as input.

• Note that the output of RNN1 is not directly a parameter for the loss function.
• This custom loss can be also be achieved by connecting the RNN2, to the last layer of
RNN1, and training RNN1 alone. (Since RNN2 weights are fixed to mimic the real
electro-mechanical system).
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Neural Architecture of a version of RNN1
Number of layers: 4 (2 LSTMs + 2 Dense)
Number of Neurons: 52
Number of Learnable Parameters: 3,553
Activation Function: Softmax
Optimizer: Adam
Custom Loss function: Mean Square Error - between output of RNN2 and input of
RNN1.

MSE =
∑

t
(vi(t) − ii(t))

2 (4)

Where:
vi(t) is the ith predicted output of RNN2
ii(t) is the ith input of RNN1 (Figs. 8 and 9).

Fig. 8. RNN1 neural architecture
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Fig. 9. Flow of consecutive RNNs

3 Results

Using Consecutive RNNs in mimicking industry equipment, particularly in the electro-
mechanical systems in the textile field, has been the primary focus of this paper, and has
been achieved.

The mapping between Predicted and Actual RPM (in Fig. 10) is almost spot on, with
marginal error.

However, there is a significant time lag for the Predictions. The predictions are valid
only after all the inputs of the step size have been fed to the RNN. There is an 18-unit
time delay in the model with step size = 18.

Fig. 10. RNN2 mimicing the motor almost identically; but with a lag. (x = 18)

Figure 11 shows that this problem is solved by reducing the step size from 18 to 3.
The following graph (Fig. 12) shows the relation between the predicted PWMs by

RNN1 and the actual PWMs, when the input is a time varying RPM profile. It shows
how RNN1 behaves in isolation when step size = 1.

Here, the step size is 1. This has been done sine the 2 RNNs are connected, which
would mean that any time lag would get doubled (one for each RNN). It is noticed that
this option of lag vs accuracy remains with the user, based on the situation. This lag can
always be overcome by padding too.
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Fig. 11. RNN2 mimicing the motor almost identically; and with much lesser lag. (x = 3)

Figure 13 and Fig. 14 capture the novelty of this paper, by comparing how the
given electro-mechanical system behaves when controlled by the Consecutive RNNs, as
opposed to classical PID control.

It is evident that the Consecutive Recurrent Neural Networks approach works as
a better controller than the classical PID controller in case of this electro-mechanical
system.
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Predicted PWM from RNN1
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Fig. 12. RNN1 mimicking controller; and without lag. (x = 1)

The difference margins between the output and the target is visibly lesser in the case
of the proposed framework in comparison to the controllers used across textile industries.
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Fig. 13. PID contol using Kp, Ki constants which have been found using classical models
involving trial and error.

0

200

400

600

800

1000

1200

1 4 7 10131619222528313437404346495255586164677073767982858891

Predicted RPM vs Target RPM using RNNs

Target RPM Predicted RPM

Fig. 14. Achiveing control using consecutive RNNs

4 Conclusion

In conclusion, it is evident from the graphical representation of the results that the
Consecutive Recurrent Neural Network approach a) works, and b) works better than the
PID controller in certain cases such as - controlling the textile motor and machinery of
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Microspin Machine Works Pvt. Ltd. The authors say certain cases and do not generalize
this approach to be better than PID controllers as a whole just yet, as the analysis has
beenwith only this class ofmachines. However, there a lot of future scope in this domain,
as this might just be the start of a new branch of Control Theory.

The past efforts that do come close to the framework proposed in this paper, do not
suggest with enough conviction that this type of controller actually works on a real time
dynamic electro-mechanical system [7, 8].

The other conclusions to make from this analysis is that most electromechanical
systems, even the nonlinear complex ones, can be modelled using RNNs, LSTMs etc. to
a good degree of accuracy.Amodel has been built successfully, that could saveMicrospin
Machine Works Pvt. Ltd. and the likes, from the cost of rent, power, etc. in the factories
that are set up for testing (the electromechanical systems) purposes.
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Abstract. The use of convolutional neural networks (CNNs) has
increased in the edge devices due to its successful performance. Vari-
ous such applications includes semantic segmentation which is one of the
most challenging tasks due to the involvement of tremendous model size
and parameters. In this paper, an enhanced hybrid segmentation with
non-local block and deep residual networks is introduced for pixel level
semantic segmentation. A light weight model is developed to facilitate
deployment on edge devices. Skip connection is applied to fire layer in
encoder and decoder block of segmentation model and non-local block
is inserted in between encoder and decoder. Due to such amendments,
the proposed network has optimized the number of parameters to only
2 Million whereas SegNet-Basic architecture required 5 Million. The per-
formance is validated on the Camvid dataset and 87.5% accuracy is
achieved.

Keywords: Semantic segmentation · Convolutional neural networks ·
SegNet · Skip connection · Non local block

1 Introduction

The progress in deep learning networks has led to lot of computer vision appli-
cations which has become part of our everyday lives. These applications include
image classification, localization, object detection, segmentation and image syn-
thesis. “Semantic segmentation is one of the high-level computer vision task that
paves the way towards complete scene understanding. The importance of scene
understanding as a core computer vision problem is highlighted by the fact that
an increasing number of applications nourish through inferring knowledge from
imagery” [3,6]. Semantic segmentation is the task of labeling the pixels of an
image which belong to the same object class. Many deep learning models are
developed for image segmentation in last few years; most of such networks are
based on encoder-decoder approach and hence involves huge number of param-
eters and model size. The inference time of these models in edge devices are
computationally expensive. In this work, light weight deep learning model is
c© Springer Nature Singapore Pte Ltd. 2020
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presented for pixel level semantic segmentation on edge devices like NVIDIA
Jetson Tx2, TI/NI board, Raspberry pi etc., The performance of proposed sys-
tem is improved than the state of art methods.

This paper is organized as follows: Sect. 2 presents the proposed enhanced
hybrid segmentation, Sect. 3 analyzes the performance of state-of-the-art deep
learning model for pixel semantic segmentation and Sect. 4 concludes the work
done.

2 Enhanced Hybrid Segmentation

In this section, an enhanced hybrid segmentation network is introduced. It con-
sists of the non-local and deep residual networks and hence is benifited by the
advantages of both. It is derived from the popular CNNs such as SegNet [1] and
SqueezeNet [5] and its architecture is shown in Fig. 1.

Fig. 1. Architecture of enhanced hybrid segmentation network

The proposed architecture contains encoder and decoder block. The encoder
has set of one convolution, three max pooling, four fire layers with skip connec-
tion and four fire layers without skip connection. The decoder section consists of
one convolution, three upsampling, eight fire layers without skip connection and
two concatenation layers. The output layer with softmax activation function is
used to calculate the probability of each pixel. In between encoder and decoder
block, the non local neural network block is inserted to capture the dependencies
within an image. The enhancement in segmentation performance is achieved due
to the fire layers and non-local blocks.

The fire layer serves the purpose of reducing the number of model parameters.
It has two blocks, namely squeeze and expand layer. Figure 2 presents the fire
layer with and without skip connection used in this work. The squeeze layer
performs 1 × 1 convolution to reduce the depth of output feature map. The
expand layer has two convolution layers with respective filter sizes of 1 × 1 and
3× 3, whereas the concatenation layer merges both feature maps in depth. The
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Fig. 2. Fire layer with and without skip connection

skip connection used in fire layer performs the element wise addition between
input and output feature map. It helps to avoid the vanishing gradients problem
and speeds up the training process.

The non-local neural network [8] captures the long range dependencies in
space (images), time (Sequences) and space-time (video). It establishes the rela-
tionship between local and non-local neighborhood pixels and also computes
the weighted sum of the features at all positions in the input feature maps. In
this work, the non-local block is added in between encoder and decoder block
which has availed to build the spatial dependencies in the feature encoding and
decoding. Figure 3 shows the non-local blocks used in the proposed segmentation
architecture.

Fig. 3. Non local block

The output of generic non-local block is computed using Eq. 1 [8].

yi,j =
1

c(x)

∑

∀k,l

f(xi,j , xk,l)g(xk,l) (1)
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where x denotes input image and y indicates the output signal with same
size as that of x. (i, j) are the coordinates of position whose response is to
be computed and (k, l) are the coordinates of all possible positions in the
input image. c(x) is used as a response normalization factor and is obtained
as

∑
∀k,l f(xi,j , xk,l). f(.) is the similarity measurement function and g(.) is a

unary function which calculates the representation of input present at (k, l).
The similarity measurement function, (f(.)) finds the similarity between pixel

(xi,j) to all the other pixels (xj) in an image and is given in Eq. 2.

f(xi,j , xk,l) = eθ(xi,j)
T φ(xk,l) (2)

Where θ(xi,j) = Wθxi,j , φ(xk,l) = Wφxk,l and g(xk,l) = Wgxk,l. Wθ, Wφ and
Wg represents the set of filter weights to perform 1 × 1 convolution.

Fig. 4. Layer wise detailed architecture of proposed network

There are various forms of functions f(.) and g(.) in non-local networks. This
includes Gaussian, embedded Gaussian, dot product and concatenation. The
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embedding Gaussian function computation is similar to the softmax function
and hence preferred in this work. In this case, the non-local output is found as
per mentioned in Eq. 3.

yi,j = softmax(XT WT
θ WφX)g(X) (3)

The output of the non-local block is computed by combining the original signal
with non-local operation result. It is presented in Eq. 4.

zi,j = Wzyi,j + xi,j (4)

The detailed architecture of proposed network is shown in Fig. 4; the layer
wise operation type, output feature map size and filter size are specified.

3 Results and Discussion

The proposed segmentation algorithm is implemented on NVIDIA Quadro P1000
(4 GB) GPU card, 32 GB RAM, intel core i7 processor in windows 10 OS. The
python libraries viz., Keras, Tensorflow, Numpy, Matplotlib and OpenCV are
used for coding. The CamVid [2] dataset is considered for validation of proposed
method. It contains 701 samples images out of which 367, 101 and 233 samples
are used for training, validation and testing, respectively. It has 12 classes of
objects such as training Sky, Building, Pole, Road, Pavement, Tree, Sign Symbol,
Fence, Car, Pedestrian, Bicyclist and Unlabelled. The image size is 360×480×3.
Adadelta optimization technique and cross entropy loss function are used for
training. The training is done for 100 epochs with the batch size of 2. Table 1
indicates the performance of proposed light weight deep learning model. The
enhanced hybrid segmentation network obtains the accuracy of 87.5% compared
to SegNet-Basic which is 86.11%. The number of parameters is reduced to 2M
from 5M. The results are also compared with existing methods such as Non local
block [9], fire layers with skip connection [4,5].

Table 1. Performance evaluation of proposed method

Sr. no Methods Number of parameters Accuracy

1 Segnet-Basic [1] 5467500 86.11%

2 SegNet-SqueezeNet [7] 1607564 76.42%

3 Segnet-SqueezeNet with residual
connection

1476492 82.35%

4 Segnet-squeeze with skip
connection and feature map
concatenation

1564604 87.08%

5 Enhanced hybrid
segmentation (proposed)

2088892 87.54%
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Figure 5 gives the visual segmentation results for CamVid dataset. First row
represents the original images of CamVid dataset and the segmented label of the
original image is given in second row. Third row presents the reference SegNet-
Basic segmented result and fourth row is the SegNet and SqueezeNet hybrid
segmentation architecture result. Fifth row represent hybrid segmentation with
residual connection segmented result and sixth row represents the hybrid seg-
mentation with residual connection and skip connection. Last row shows the
enhanced hybrid segmentation (non-local block based segnet squeezenet deep
residual networks segmented) results.

Fig. 5. Segmentation results for Camvid dataset using different segmentation tech-
niques
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4 Conclusion

In this paper we have proposed an enhanced hybrid segmentation network which
consists of non-local block and deep residual neural network for pixel level seman-
tic segmentation. The proposed segmentation architecture obtains the accuracy
of 87.5% and reduced the number of parameters to 2.08M. In future, we are
planning to implement different variants of skip connection and feature map
concatenation for encoder and decoder block in segmentation network.
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Abstract. In this paper, based on the Quantum-behaved Particle
Swarm Optimization algorithm in [1–3], we evolve the algorithm to opti-
mize a multiobjective optimization problem, namely the Cobb Douglas
Habitability function which is based on “CES production functions”
in Economics. We also propose some changes to the Quantum-behaved
Particle Swarm Optimization algorithm to mitigate the problem of the
algorithm prematurely converging and show the results of the proposed
changes to the Quantum-behaved Particle Swarm Optimization.

Keywords: Habitability score · Metaheuristic optimization · LDQPSO

1 Introduction

Quantum-behaved Particle Swarm Optimization (QPSO) algorithm, proposed
by Jun Sun, is an evolution of the Particle Swarm Optimization originally pro-
posed by Kennedy and Ebenhart in 1995.

Particle Swarm Optimization (PSO) is an evolutionary optimization tech-
nique, which is modelled to simulate the evolution of knowledge of a social
organism, in which the individuals, which represent the candidate solutions of
a particular problem, fly or move through a multidimensional space to find an
optima or sub optima. These particles in the solution space of the problem are
characterised by a “position” and a “velocity” in the multidimensional space
and reorient their position to a goal (defined by their fitness function) in every
iteration of their search algorithm. The particles in a local neighborhood share
memories of their best positions and use this local knowledge as well as their
own best solution to adjust their velocities.

A major draw of PSO is its simplicity and parallelizable nature. Saha et
al. [4] describe PSO as “a distributed method that requires simple mathemati-
cal operators and short segments of code, making it an optimal solution where
computational re-sources are at a premium. Its implementation is highly paral-
lelizable and scales with the dimensionality of the search space. The standard

c© Springer Nature Singapore Pte Ltd. 2020
S. Saha et al. (Eds.): MMLA 2019, CCIS 1290, pp. 113–129, 2020.
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PSO algorithm does not deal with constraints but, through variations in initial-
izing and updating particles, constraints are straightforward to represent and
adhere to.”

Quantum-behaved Particle Swarm Optimization (QPSO) is a quantum model
of the original PSO where the state (similar to the “position” and “velocity” in
PSO) of a particle is depicted by a wave-function, given by “ψ(−→x , t)” [2], instead
of a position and velocity. The dynamic behavior of the particle is different from
the particle in PSO as the “position” and the “velocity” of the particles cannot
be determined simultaneously. Only the probability of a particle appearing in a
particular location “

−→
X” can be determined from the probability density function

“|ψ(−→x , t)|2” [2]. A delta potential well is employed to constrain the quantum
particles and prevent explosion. Since the search space and the solution space
are different, a state transformation from the quantum state to classical state
called “collapse” is applied.

The proposed changes to the QPSO algorithm are related to the initialization
of the particles as well as the position update rule for the algorithm. A chaotic
initialization of the particles is done using the Lorenz attractor, which is a set
of chaotic solutions for the Lorenz equation. The particle position update rule
is changed to something similar to a Levy Flight mechanism, which is exhibited
by animals when searching for food in an area.

The multi-objective problem that the algorithm will be fine tuned to optimize
is the bi-objective Cobb Douglas Habitability function, which is used to generate
the Cobb Douglas Habitability Score for exoplanets. The score is composed of
two parts, namely the interior score and the surface score of the particular planet.

2 Cobb Douglas Habitability Function

The general motivation for using Cobb-Douglas production function is because
of its interesting properties as described in [5]. It is a function that models
the response of an output parameter on varying its inputs. According to [5],
“the function is concave when the sum of elasticities is not greater than one,
ensuring that an optimum exists which maximizes the function inside a feasible
region defined by the constraints on elasticities”. It was first originally introduced
to model the growth of American economy during 1899–1922. In the case of
exoplanetary habitability, the proposed metric models how the habitability score
Y changes on varying input planetary parameters. This is achieved by allowing
the coefficients of elasticity to be adjusted via an optimization algorithm. It
has already been established that the proposed habitability metric consists of
two components: surface score and interior score. The final CDHS, defined in
equation, is equal to the convex combination of Yi and Ys. The weights ωi and
ωs defines the importance of interior score and surface score in determining
the final CDHS, respectively. Here, ωi and ωs sum up to 1. The Cobb-Douglas
Habitability production function can be formally written as (from [5])

Y = Rα.Dβ .V δ
e .T γ

s (1)
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where R, D, Ve and Ts is the radius, density, escape velocity and surface tempera-
ture respectively. α, β, δ and γ are coefficients of elasticity and 0 < α, β, γ, δ < 1.

The Cobb Douglas Habitability score is estimated by breaking it up into the
interior score (CDHSi) and the surface score (CDHSs) and maximizing the
following production functions.

Yi = CDHSi = Rα.Dβ (2a)

Ys = CDHSs = V γ
e .T δ

s (2b)

Equations (2a) and (2b) are convex under either Constant Returns to Scale
(CRS), when α + β = 1 and γ + δ = 1, or Decreasing Returns to Scale (DRS),
when α+β < 1 and γ + δ < 1. The final Cobb Douglas Habitability Score is the
convex combination of the individual interior and surface scores, given by,

Y = ωi.Yi + ωs.Ys (3)

+

3 Quantum-Behaved Particle Swarm Optimization

Quantum-behaved Particle Swarm Optimization is an improved version of the
biologically inspired metaheuristic algorithm known as Particle Swarm Opti-
mization, which is used to find the global minima of a function. In PSO, particles
move around and converge towards the globally optimal solution while losing
kinetic energy as they approach the solution, similar to how a particle would
behave in a potential field of attraction at the optimal point. QPSO builds upon
this by making use of quantum potential fields, and introducing the particles
as quantum particles represented by their waveforms. Making use of a poten-
tial model, we can simulate the similar behaviour of particles being attracted
to the centre of the quantum potential field. In most cases, the Delta Potential
Well model is used for QPSO as it provides faster convergence, and this paper
employs the same as introduced in [2].

3.1 Proposed Changes to the QPSO Algorithm

Chaotic Initialization. Chaos theory is a part of mathematics that looks at
very sensitive systems where a very small change can make the system behave
drastically differently. It deals with nonlinear events which are impossible to
predict or control, like weather, turbulence, stock market etc. It is popularly
known by the butterfly effect, in which the flapping of a butterfly’s wings lead
to a chain of events that could lead to a hurricane somewhere else. It may take
a long time to become a hurricane, but the connection still exists. Since the
weather is a very sensitive system, the flapping of the wings at that point in
space-time or a different time would have drastically different effects. This is the
a simple example of a small change in the initial conditions leading to drastic
changes over time.
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Edward Lorenz, who was a meteorologist-mathematician, also known as the
founder of modern Chaos Theory made a weather model which involved 12
differential equations and exhibited chaotic behavior. In his effort to find chaotic
systems in simpler set of equations, he was led to the phenomenon of rolling
fluid convection and came up with the following equations.

dx

dt
= σ(y − x) (4a)

dy

dt
= x(ρ − z) − y (4b)

dz

dt
= xy − βz (4c)

When the parameters of the system, σ, ρ and β are 10, 28 and 8
3 respectively,

the system described by Equations (4a), (4b) and (4c) displays chaotic behavior.

Fig. 1. Projection of the Lorenz Chaos system on the XY plane

From Figs. 1, 2 and 3 we can see that the Lorenz system of equations is a
“strange attractor”. Wikipedia describes “strange attractors” to be very sensi-
tive to initial conditions, hence, any two arbitrarily close initial points on the
attractor, after any numbers of iterations, will lead to points that are arbi-
trarily far apart (within the limits of the attractor), and after any number of
iterations will lead to points that are arbitrarily close together. Thus, a system
with a chaotic attractor such as the Lorenz strange attractor is locally unstable
yet globally stable: i.e. once some sequences have entered the attractor, nearby
points diverge from one another but never depart from the attractor.

This behavior of the Lorenz system can be used to initialize particles in the
Quantum-behaved Particle Swarm Optimization algorithm. A similar approach
was followed in [6], where the CPSO algorithm used the Henon map and Tent
Map as the chaotic initializations of the particles. In a similar way, the Lorenz
system of equations is used to create a map which initializes all the particles
in the modified QPSO algorithm. Since the Lorenz system is restricted to three
dimensions, multiple Lorenz systems with different initializations are used for
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Fig. 2. Projection of the Lorenz Chaos system on the YZ plane

Fig. 3. Projection of the Lorenz Chaos system on the ZX plane

particles with higher dimensions. The dimensions are then scaled and mapped
to the particles using the limits of the Lorenz system. The main objective behind
the chaotic initialization is the importance of the initial positions of the particles
as they can help resolve premature convergence which hinders the algorithm from
finding the global minima of a given objective function.

Levy Flight. Levy Flight is a random walk in which the step-lengths have
a probability distribution that is heavy-tailed. When defined as a walk in a
space of dimension greater than one, the steps made are in isotropic random
directions. As described by wikipedia, “Levy flight stems from the mathematics
related to chaos theory and is useful in stochastic measurement and simulations
for random or pseudo-random natural phenomena. Examples include earthquake
data analysis, financial mathematics, cryptography, signals analysis as well as
many applications in astronomy, biology, and physics. For general distributions of
the step-size, satisfying the power-like condition, the distance from the origin of
the random walk tends, after a large number of steps, to a stable distribution due
to the generalized central limit theorem, enabling many processes to be modeled
using Lévy flights. The probability densities for particles undergoing a Levy
flight can be modeled using a generalized version of the Fokker–Planck equation,
which is usually used to model Brownian motion. The equation requires the use
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of fractional derivatives. For jump lengths which have a symmetric probability
distribution, the equation takes a simple form in terms of the Riesz fractional
derivative. In one dimension, the equation reads as,

δφ(x, t)
δt

= − δ

δx
f(x, t)φ(x, t) + γ

δαφ(x, t)
δ|x|α (5)

where γ is a constant akin to the diffusion constant, α is the stability parameter
and f(x, t) is the potential. The Riesz derivative can be understood in terms of
its Fourier Transform.”

F

[
δαφ(x, t)

δ|x|α
]

= kαFk [φ(x, t)] (6)

This naturalistic form of movement can be compared to organisms wandering
away from regions of over-saturation, which in case of optimization problems is
highly beneficial in allowing the model to explore a larger region in the solution
space before complete convergence. The main objective in using Levy Flight in
the QPSO model is that it is possible to simulate the wandering of particles away
from global or known optima and improve the search abilities of the model for
problems which have a high number of local optima, leading to greater frequency
of convergence to the global optima (Figs. 4 and 5).

Fig. 4. An example of 1000 steps of a Lévy flight in two dimensions
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Fig. 5. An example of 1000 steps of an approximation to a Brownian motion type of
Lévy flight in two dimensions

4 Representing the Problem

A Constrained Optimization problem can be represented as,

minimize
x

f(x)

subject to gk(x) ≤ 0, k = 0 . . . N − 1,

hl(x) = 0, l = 1 . . . r

Saha et al. [2] make use of a method by Ray and Liew [7], who describe a way
to represent non strict inequality constraints when optimizing using a particle
swarm as “strict inequalities and equality constraints are to be converted to non
strict equalities before representing them in the problem. Introducing an error
threshold ε converts the strict inequalities of the form g′

k(x) < 0 to non strict
inequalities of the form gk(x) = g′

k(x) + ε ≤ 0. A tolerance τ is used to convert
the equality constraints into a pair of inequalities,”

g(q+l)(x) = hl(x) − τ ≤ 0, l = 1 . . . r,
g(q+r+l)(x) = −hl(x) − τ ≤ 0, l = 1 . . . r.

(7)

In the above way, r equality constraints become 2r equality constraints,
raising the total number of constraints for to equation to s = q + 2r. In
these, For each potential solution pi, ci represents the constraint vector where,
cik = max{gk(pi), 0}, k = 1 . . . s. When cik = 0, ∀k = 1 . . . s, the solution lies
within the feasible region. When cik > 0, the potential solution pi violates the
kth constraint.

4.1 Representing CDH Score Estimation

Similar to the way the CDH Score is represented in [4], the CDH Score estimation
under CRS is represented as,
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minimize
α, β, γ, δ

Yi = Rα.Dβ (8a)

Ys = V γ
e .T δ

s (8b)

subject to −φ + ε ≤ 0, ∀φ ∈ {α, β, γ, δ}, (8c)
φ − 1 + ε ≤ 0, ∀φ ∈ {α, β, γ, δ}, (8d)
α + β − 1 ≤ 0, (8e)
1 − α − β ≤ 0, (8f)
γ + δ − 1 ≤ 0, (8g)
1 − γ − δ ≤ 0. (8h)

Under DRS, the constraints (8e) to (8h) are replaced with,

α + β + ε − 1 ≤ 0 (9a)

γ + δ + ε − 1 ≤ 0 (9b)

5 Experiments and Results

5.1 Testing the Proposed Algorithm

The proposed changes in the algorithm are first tested on a series of test functions
given by

– Rosenbrock Function: f(x) = (1 − x)2 + 100(y − x2)2

– Mishra Bird Function: f(x, y) = e(1−cos y)2 sin x + e(1−sin x)2 cos y + (x − y)2

– Ackley Function: f(x.y) = −20e0.22
√

(x2+y2) + e0.5+cos 2πx+cos 2πy + e + 20
– Levi function: f(x, y) = sin2 (3πx) + (x − 1)2(1 + sin2 (3πy)) + (y − 1)2(1 +

sin2 (2πy))

The algorithm was named LQPSO and another variant of it was named as the
LDQPSO. The LDQSP algorithm added a Levy Flight decay, which decayed
the effect of the Levy flight as the number of iterations increased. For all the
algorithms, the total number of particles were 1000 and the LQPSO and the

Table 1. Avg iterations to convergence

Test functions Algorithms

PSO QPSO LQPSO LDQPSO

Ackley 194 32.6 33.834 45.2

Levi 130.934 46.734 48.734 49.734

Rosen 134.767 42.8 42.934 46.8

Mishra Bird 152.734 77.534 65.634 60.534
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Algorithm 1. LDQPSO minimization
1: procedure minimize(fun, x) � Minimizing function fun using initialised particles

x0
2: repeat
3: pbest ← x
4: gbest = getBest(fun, pbest) � Best solution in pbest for fun
5: for i ← 1 to populationsize M do
6: if fun(xi) < fun(pbesti) then
7: pbesti = xi

8: end if
9: u = rand(0, 1)

10: f1 = rand(0, 1),f2 = rand(0, 1)
11: P = (f1 ∗ gbest + f2 ∗ pbest)/(f1 + f2)
12: find mbest
13: for d ← 1 to dimension D do
14: l = DecayedLevyWalkFactor()
15: update = mbestd ∗ l∗ln(1/ud)
16: if random(0, 1)> 0.5 then
17: positiond = Pd − update
18: else
19: positiond = Pd + update
20: end if
21: end for
22: gbest = getBest(fun, pbest)
23: end for
24: until termination criteria is met
25: end procedure

LDQPSO algorithms were initialized using Lorenz Chaos Map. The Lorenz Map
is a similar one as used in [6]. Each of the algorithms were tested a total of
30 times to get their average iterations and to calculate their success rate. The
results are presented in Table 2.

The results presented in Table 1 were generated using the Psopy library which
was created as part of the paper in [4]. All the algorithms had a 100% success
rate on all the test functions except for the Mishra Bird function. PSO had the
lowest success rate of 83%, with QPSO having a better success rate of 90%, with
the LQPSO and the LDQPSO both having a success rate of 93%. This shows
that the proposed algorithm does better at avoiding the local optima compared
to the original PSO as well as the revised QPSO algorithm.

5.2 Testing the Algorithm on the CD-HPF

After seeing the results of the LDQPSO algorithm on the test functions, the
LDQPSO algorithm was used to optimize the Cobb Douglas Habitability func-
tion using a modified version of the jMetalPy framework [8]. A subset of the
original PHL-EC Dataset [9] was used, specifically the exoplanets belonging to
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the TRAPPIST-1 system. The Pareto front plots were generated using 25 par-
ticles just as in [4] (Figs. 6 and 7).

Fig. 6. Trappist-1b under CRS conditions

Fig. 7. Trappist-1c under CRS conditions

After comparing the results of the algorithm with the catalog mentioned
in [4,5], we noticed that in most cases the points on the plot showed better scores
than those mentioned in the catalog. In the original paper [5] however, the plots
showed that most of the points were close together and a proper front could
be seen. We think that this is not visible in the Pareto front plots generated
by us as the conflict between the objective functions (for calculating CDHS)
might be minimal and not visible in these plots as the convergence may be
faster. Table 2 shows the average number of iterations over 30 runs that the
LDQPSO algorithm took to converge for both Constant Returns to Scale as well
as Decreasing Returns to Scale. A point to note is that unlike the offset in [4],
there is no offset in LDQPSO, due to which it may look misleading that the
LDQPSO takes more iterations than PSO, but that is not the case as there is no
offset used. We can clearly see that LDQPSO algorithm requires lesser number
of iterations to converge (Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17) (Table 3).
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Fig. 8. Trappist-1d under CRS conditions

Fig. 9. Trappist-1e under CRS conditions

Fig. 10. Trappist-1f under CRS conditions
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Fig. 11. Trappist-1g under CRS conditions

Fig. 12. Trappist-1b under DRS conditions

Fig. 13. Trappist-1c under DRS conditions
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Fig. 14. Trappist-1d under DRS conditions

Fig. 15. Trappist-1e under DRS conditions

Fig. 16. Trappist-1f under DRS conditions
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Fig. 17. Trappist-1g under DRS conditions

Table 2. Avg iterations to convergence

Returns
to scale

Planets

Trappist-1 B Trappist 1 C Trappist 1 D Trappist 1 E Trappist 1 F Trappist 1 G

CRS 28.3 26.067 29.567 28.034 28.3 26.734

DRS 52.3 65.034 37.034 32.834 73.767 90.3

Table 3. CDHS scores

Conditions Planets

Trappist-1 BTrappist 1 CTrappist 1 DTrappist 1 ETrappist 1 GTrappist 1 H

CRS (0.5i + 0.5s)1.1929 1.114 0.7926 0.887 1.065 0.7382

DRS (0.5i + 0.5s)1.1887 1.1717 1.009 0.9976 1.0795 0.9645

CRS (0.6i + 0.4s)1.1612 1.132 0.8005 0.888 1.0730 0.7452

DRS (0.6i + 0.4s)1.1619 1.1675 1.0073 0.9977 1.0803 0.9695

6 Conclusion

Quantum-behaved Particle Swarm Optimization as a variant of the original Par-
ticle Swarm Optimization is a highly parallelizable and easy to implement algo-
rithm, which performs better than the original PSO proposed by Kennedy and
Ebenhart in [10]. Since it does not need any gradient calculation, it can work in
high dimensional search spaces with a large number of constraints, which is use-
ful in cases such as a Habitability score estimate where many input parameters
can be used. The particles in QPSO are independent of each other in a single
iteration, allowing their updates to happen simultaneously and asynchronously.

Although the results of the Quantum-behaved Particle Swarm Optimiza-
tion and Particle Swarm Optimization algorithms are not as accurate as direct
methods, the scaling of the algorithms when the number of input parameters
increases allows it to be more feasible than traditional optimization methods as
it can handle the higher number of constraints.



Chaotic Quantum Behaved Particle Swarm Optimization 127

The main aim of this manuscript is to compare the performance of the
Quantum-behaved Particle Swarm Optimization with the Particle Swarm Opti-
mization while proposing some changes to the model itself. These changes are
influenced by Chaos Theory and the movement of animals foraging for food in
an area. As we observed from our experiments, the modified QPSO algorithm
performed better than the PSO in terms of performance and it’s ability to avoid
getting stuck in a local optima.

7 APPENDIX

7.1 Gradient Simulation of QPSO

The QPSO system functions by initializing a set of particles each with a pseudo-
random wave function. The position of the particles as obtained from these wave
functions at each iteration describe each particle’s solution at that instance,
which are feasible at initialization. However, the position of the particle is
updated on every iteration of the process which might put the particle on an
infeasible solution. Now, we simulate a particle well for each particle such that
each particle well has a centre at point p, which is related to the wave function
of the particle by,

d2ψ/dy2 = 2m/h[E + γδ(y)]ψ (10)

Hence, at each iteration, the algorithm stores a set of feasible solutions L
represented by the position of each particle, pi as well as the globally optimal
solution gbest represented by pg. At the start of the process, the algorithm
initializes L to the initial positions of the particles and gbest to the best solution
in L. At each iteration, QPSO calculates the position of each particle at that
instance using their p value and the gbest value pg by simulating the delta
potential well with a characteristic length l determined by the gbest as,

L = 1/β = �/(mγ) (11)

The algorithm then simulates a gradient based on the random new position
of the particle at the instance using the current delta potential well, which will
push it either towards or away from the gbest value. This new position is then
used as the new centre of each particle’s respective delta potential well. Each
iteration can hence be summed up as,

x = P ± L/2ln(1/u) (12)

where x is the new solution obtained, u is a uniform random number, and the
movement is simulated by the obtained position in the delta potential well of
each particle, where each particle’s p will move with larger steps towards or away
from the current solution based on the characteristic length of the well at that
point given by l. However, there remains a probability that the new solution
may not have been feasible or that it may have been less optimal than the prior
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position’s solution due to the random nature of the obtained position at that
instance. Hence, we shall add the rule,

if f(xi) < f(p), then p = xi (13)

which guarantees that there will be convergence and that the particles do not
move away from their optimal and opposite to the gradient. Here, the update
of the centre of the delta potential well for each particle is analogous to the
update of its wave function as the two are directly related. Once the positions
are updated, the algorithm then updates L and gbest as discussed earlier. After
each iteration, each particle moves a little closer toward gbest while the particle
at gbest also moves and possibly finds a better solution. This in turn leads to L
and gbest being updated in case any of the particles come across better solutions.
Eventually after several iterations, the particles and their corresponding pi values
will converge toward a gbest solution.
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Abstract. The system of open clusters is an excellent probe of the struc-
ture and evolution of the galactic disk. Their spatial, size, age and mass
distributions provide valuable information on the cluster formation pro-
cess. Present day astronomy is rich in data, and hence in this work, we
attempt to build up a comprehensive statistical study of star clusters.
This study is based on available catalogues, both homogeneous and inho-
mogeneous, to provide some useful insights on the evolutionary history
of the system of open clusters and consequently, the galaxy. We find
that the optimum size of a cluster for its survival is 3–4 pc. We also find
that there exists a simple linear relationship between the age and the
mean linear diameters of clusters and also with normalised reddening.
Using the catalogues based on Gaia DR2 and other catalogs, we find,
that the system of open clusters provides valuable clues to our under-
standing of the evolution of the galaxy. This system can be partitioned
by k-means to get clusters in a statistical sense, which indicates possible
cluster formation in the galaxy at different galactocentric distances and
with different parameters. These suggests a combination of the scenar-
ios of overall halo collapse and accretion to explain the formation of the
disk of the galaxy. This method is proposed to be used for the study of
external galaxies using catalogues of extragalactic clusters as it works
well with the clusters of the Milky Way.

1 Introduction

Empirical research in astrophysics has seen a paradigm shift in recent years; it is
now rich in data. Star clusters are the sites where star formation takes place and
are ideal testbeds for the study of star formation, galaxy formation, evolution
and dynamics. There have been numerous papers studying star clusters using
photometry in optical and infrared bands [3,6,9,13,16]. In this work, we make
a statistical study of star clusters based on both homogeneous and inhomoge-
neous catalogues and the package R [22] to provide some useful insights on the
evolutionary history of open clusters and the Milky Way. It is hoped that the
large number of open clusters for which parameters are now available can, in a
statistical sense, lead to a deeper understanding of star clusters.

The plan of the paper is as follows: Sect. 2 describes the catalogues in our
study and Sect. 3 describes the distribution of parameters in them. In Sect. 4,
c© Springer Nature Singapore Pte Ltd. 2020
S. Saha et al. (Eds.): MMLA 2019, CCIS 1290, pp. 130–143, 2020.
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we discuss the relations between parameters. Section 5 describes the method of
k-means clustering and the discussion and interpretation of our study is in the
concluding Sect. 6.

2 Catalogues

[5] compiled a catalogue of open clusters in the Galaxy, the updated version
(September 2017) has 2166 clusters. It updates the previous catalogues of [16]
and of [19]. All the three catalogues are bibliographic in nature and contain
compiled data from literature, thus presenting an inhomogeneous set of data.
This catalogue is inhomogeneous since it has data in different photometric sys-
tems and varied methods of determination of parameters. Using a system of
weights corresponding to the precision of the open cluster data, [10] studied the
open cluster system by compiling a list of 694 entries of 421 clusters. [9] used
the system of open clusters to study the development of the galactic disk. [25]
studied the dependence of cluster diameters on various parameters based on the
catalogue of [5].

Homogeneous samples of photometric data, coupled with uniform methods of
data analysis are preferable to make statistical inferences on clusters. [15] pub-
lished an updated catalogue of homogeneously estimated reddenings, distances
from the Sun and ages for 425 open star clusters. [12] used the high-precision
all-sky compiled catalogue ASCC-2.5 to derive a sample of 650 open clusters. On
the basis of the combined spatial proper motion photometric membership they
established uniform scales of spatial (angular dimensions), kinematic (proper
motions and radial velocities) and evolutionary (ages) cluster parameters. The
sample is complete within 850 pc, which provides unbiased parameters of the
local cluster population and its evolution. The catalogue by [24] has 160 clus-
ters for which parameters have been reobtained homogeneously by using CCD
observations from literature. It has been used in this analysis as it has the vital
parameter of mass, obtained homogeneously, which is not present in any of the
other catalogues. [14] presented the Milky Way Star Clusters (MWSC) catalog
of 3006 objects, the majority of them are open clusters, but also include associ-
ations and globular clusters. For each object they determined the exact position
of the cluster centre, the apparent size, proper motion, distance, colour excess,
and age.

In the case of star clusters, many uncertainties in determination of stellar
parameters like reddening, distance, metallicity and stellar masses are minimised.
The paper by [20] characterises the current status of knowledge on the accuracy
of open-cluster parameters such as the age, reddening and distance. Hence, we
expect, that in homogeneous samples there is similar accuracy in estimation of
parameters, unlike that in compiled inhomogeneous samples.

Astronomical catalogues are said to be ‘complete’ if all the sources present
have been listed in the catalogue. Completeness depends on the brightness of the
sources and our capability of detection. The completeness of the catalogues we
use are distance limited, implying that all sources within a certain distance have
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been detected. In Fig. 1 the solid line indicates possible completeness assuming
that we have detected all clusters within 1 kpc.

Fig. 1. Distribution in distance for catalogs by [5] in blue, [14] in green and [4] in red.
(Color figure online)

The [5] catalogue is complete within 2–3 kpc [11]. The catalogue of [14] is
complete within 1700 pc. The second Gaia data release DR2 [7,8] contains pre-
cise unprecedented astrometry at the sub-milliarcsecond level and homogeneous
three-band photometry at the mmag level for about 1.3 billion sources, which
can be used to characterize a large number of clusters over the entire sky. [4]
provides a list of cluster stars based on membership and derived parameters, in
particular mean distances and proper motions, for 1229 clusters, making use of
Gaia data alone. This catalog is incomplete as the criteria used are very conser-
vative, hence possible clusters at very close proximity have not been included.

For our analysis, we also added columns corresponding to galactocentric
distance (GC) and linear diameters of the clusters in the catalogues. The GC
has been calculated using the formula Rgc = (R2 + d2 − 2Rd cos l)1/2, where
R = 8.5 kpc [1]. The reddening E(B − V ) has been replaced by normalised
reddening [11] by the formula En(B −V ) = E(B −V )/r where r is the distance
from the Sun in kiloparsecs.

3 Distribution of Galactic Longitude, Age, Reddening,
Linear Diameters and Mass

The distribution of clusters in longitude (Fig. 2) is seen to exhibit maxima in the
regions of active star formation at l ≈ 800 (Vulpecula), l ≈ 1250 (Cassiopeia),
l ≈ 2050 (Monoceros), l ≈ 2400 (Canis Major), l ≈ 2850(Carina) and 3300 ≤ l ≤
200 (Sagitarrius). The deep minima occur in the obscured regions at l ≈ 500,
1550 and 1950. The deepest minimum is in the region l ≈ 500, where there is high
obscuration due to dust. [25] infers from the reddening map of [11], evidence for
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Fig. 2. Distribution of star clusters in Galactic longitude. Figures (a) and (b) are based
on the [5] catalogue. Figures (d) and (e) show the [14] catalogue. The residual number
of clusters (N − Npredicted) are shown in (c) and (f) to assess the effect of reddening
on the number of clusters observed in each of the catalogues

a 4 kpc long dust arm that comes as close as 1.5 kpc at l ≈ 400. We see that there
is an excess of clusters between 2000 ≤ l ≤ 3000. This could be an observational
bias as the En(B−V ) is much smaller for that region. Hence, to test the effect of
this bias, a plot of the mean En(B − V ) versus longitude (Fig. 2(b)) was made.
From the plot of En(B−V ) versus number of clusters observed, we predicted the
number of clusters to be observed for a given value of En(B −V ). The residuals
(N − Npredicted) as a function of longitude are plotted in Fig. 2(c). A similar
plots have been made with the homogeneous catalogue of [12] and is shown in
Fig. 2(d), (e) and (f).

We observe a peak at 2800 ≤ l ≤ 3200. This excess of clusters could be
because the destructive tidal forces exerted by giant molecular clouds are weakest
in the galactic anticenter direction [26]. Also the color excess En(B − V ) seems
lower in that direction. It has also been suggested by [25] that this peak is because
of clusters associated to the Canis Major dwarf galaxy (dCMa) (l = 2440, b =
−80). However, it was found by [21], that only Tombaugh 2 is physically located
within the main body of dCMa and since this overdensity appears to be quite
transparent to dust, only a few open clusters in that zone could have been missed.

In the [5] catalogue, there are 2102 clusters for which age has been deter-
mined and 299 of these lie within 2800 ≤ l ≤ 3200. Figure 3(a) shows the age
distribution of clusters in this region in the left panel and Fig. 3(b) shows the age
distribution of clusters outside this region. We clearly see a peak in the region of
8 ≤ log t ≤ 8.5. This shows a possible burst of cluster formation about 100 Myr
ago which could be the cause of the high density of clusters in these longitudes.
A similar peak is seen within 500 ≤ l ≤ 1500. This could also be tracing the
spiral structure in the neighbourhood of the Sun.
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Fig. 3. Distribution in age for clusters within longitudes 2800 − 3200 (red) and all
clusters (blue) for the [5] and [14] catalogs. (Color figure online)

Fig. 4. Distribution in Age. The catalogues are represented by [5] in blue and [14] in
green (Color figure online)

Figure 4 shows the distribution of age in clusters in the catalogues. The peak
in age distribution at 100 Myr, appears in both catalogues, and agrees with [10].
[27] made a study of the age distribution and total lifetimes of clusters. He found
the average lifetime of clusters to be 200 Myr.

Figure 5(a), (b) and (c) show the distribution of linear diameters in the
catalogues of [5] and [14], where the peak diameters are 1.5 pc and the median
diameters are ≈3 pc and 5 pc respectively. This implies that the optimum size
of a cluster for its survival is close to the above value. This optimum size should
also be related to the average mass of clusters, as a massive but small cluster
will dissolve due to encounters between its stars and a larger one would break
up under the galactic tidal field. Hence a fixed median size puts a constraint on
the mass of a cluster.
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Fig. 5. Distribution in Linear Diameter. The catalogues are represented by [5] in blue
and [14] in green (Color figure online)

4 Relations Between Parameters

4.1 Dependence on Longitude

To understand the relations between longitude on cluster parameters, we divided
clusters into longitude bins of width of 400 in all the three catalogues and
obtained the mean values of parameters in each bin with the exclusion of outliers.

Figure 6(a) shows the dependence of the normalised reddening En(B−V ) on
longitude. We have plotted this to see the effect of observational bias in variable
reddening for our next plots. As reported by [11], the [5] catalogue shows a
sinusoidal dependence. A similar variation can also be observed in [12] and [24].
This pattern is related to the spiral structure in the vicinity of the Sun and hence
is similar in these catalogues.

Fig. 6. Dependence of Age, Reddening and Cluster Diameter on Longitude. The data
is from the catalogue [5] in blue and [14] in green (Color figure online)



136 P. Hasan and S. N. Hasan

Figure 6(b) shows the dependence of cluster diameter on longitude. It shows
that the clusters in the anticenter region are found to be larger than those
towards the centre. This could be due to two possible reasons: (i) Clusters
towards the centre are smaller since they suffer greater galactic tidal forces and
hence get disrupted earlier compared to those in the anticenter direction. (ii) The
observational bias in determination of cluster diameter. Clusters in the anticen-
ter region are found to be larger since the field star density in the anticenter
direction is lower. The diameters obtained in the [14] catalogue are in general
smaller than those in the [5] catalogue as the [14] catalogue is magnitude limited
and hence does not consider the fainter members of clusters. However, we notice
that both show a similar trend.

Figure 6(c) shows the dependence of cluster age on longitude. It can be
noticed that the oldest clusters are in the anticenter direction in the [14] cat-
alogue. It could be due to the larger survivability of clusters in the anticenter
direction. The [5] catalogue which is a compilation, has younger clusters, while
[14] is more effective in finding older clusters.

4.2 Dependence on Cluster Age

To understand the relations between evolutionary parameters we divided clusters
into bins of log t = 0.5 in all the three catalogues and obtained the mean values
of parameters in each bin with the exclusion of outliers.

Fig. 7. Dependence of Age with normalised Reddening and Diameter. The data is from
the catalogue [5] (red), [12] (cyan) and [24] (black). (Color figure online)

Figure 7(a) shows that the mean normalised reddening towards the clusters
decreases with age: younger clusters, which are located in the spiral arms of the
Galaxy, tend to be more reddened than the older ones. The standard error of the
mean defined by stddev√

N
is shown in the plots. With a Pearson product-moment

test we found a negative correlation of −0.89 and −0.93 with p = 0.0021 for
1 p ≤ 0.05 implies a confidence level larger than 95 %.
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both the [5] and [14] catalogues, respectively. Straight line fits have also made
to the data. We found the linear relation

En(B − V ) = m ∗ (logt) + c

where m = −0.058 ± 0.01, −0.07 ± 0.01 and c = 0.69 ± 0.09, 0.88 ± 0.15 for the
[5] and [14] catalogues respectively.

Figure 7(b) shows the relation of cluster diameter with age. As seen in the
plot, the [5] catalogue shows a peak of large clusters at log t = 7. These, as we
mentioned earlier are unbound clusters. In general, most clusters are 3–4 pc in
size. This could be a selection bias, since these would be the easiest to observe
clusters, In the case of [14], we clearly see that mean cluster diameters tend to
decrease with an increase in age. This is because, as clusters age, they get mass
segregated and start losing low mass stars at their outer regions. We found the
linear relation

Diameter = m ∗ (logt) + c

where m = −1.93 ± 0.78 and c = 19.35 ± 5.96.

5 K-means Clustering

After the above detailed exploration of the data, we carried out k-means cluster-
ing of the catalogues. The k-means algorithm is an algorithm to group n objects
based on attributes into k partitions, k < n [17]. It attempts to find the centres
of natural clusters2 in the data and looks for groups of objects which lie in close
proximity to each other in the parameter space of these objects. It converges
when it minimises the total intra-cluster variance, or, the squared error function

V =
k∑

i=1

∑

xj∈Si

(xj − µi)2

where there are k clusters Si, i = 1, 2, ..., k and µi is the centroid or mean point of
all the points xj ∈ Si. The main advantages of this algorithm are the simplicity
and speed with which it can be run on large datasets.

In other words, the k-means cluster analysis criteria is employed to identify
relatively homogeneous groups of cases based on selected characteristics using
an algorithm which can handle large number of cases. For this algorithm we
have to specify the number of clusters and also we have to specify the initial
cluster center. With this information, we can classify the cases and then update
the cluster centres iteratively. In our analysis, the initial cluster center and the
number of iterations were taken to be 0 and 10 respectively. Then we specify a
variable whose values are used to label case wise output (see Table 1 and 2).

2 clusters in italics refers to clusters in the statistical sense and not physical star
clusters.
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K-means clustering was done for the [5] catalogue using the parameters:
galactic longitude, galactic latitude, linear diameters, GC and age (log t). Table 1
shows the centres of the clusters obtained for the [5] catalogue. Figure 8 shows
how these clusters are spread in parameter space. These clusters are very clearly
separated in GC. While the majority of clusters (in red, blue and black) are of
age log t ≈ 8, there is an interesting cluster (in green) at negative latitudes
−1.780 which corresponds to a z = −1765 pc with an age log t = 8.7 and the
largest GC (GC = 15.46 kpc) and comparatively large diameter of 9 pc. There
is also a light blue cluster at a GC of 5.55 kpc and age log t = 8.28.

Fig. 8. K-means clustering [5]

Table 1. Cluster centres [5]

Gal longitude Gal latitude Diameter (pc) GC (kpc) logt No Color

200 −0.50 6.6 5.55 8.28 73 Light blue

202 −1.50 5.6 7.70 8.08 299 Red

200 −1.20 5.8 8.97 8.09 374 Blue

182 −0.35 6.4 10.7 8.12 176 Black

223 −1.78 9.0 15.46 8.71 26 Green
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K-means clustering was done for the incomplete [12] catalogue using the
parameters: galactic longitude, galactic latitude, linear diameter of the core and
cluster, GC and age (log t). Figure 9 shows the results of the k-means clustering
for the [12] catalogue. In this case, we have used the incomplete catalogue of
[12], to highlight the differences between ‘incomplete’ and ‘complete’ catalogues.
Table 2 shows the centres of the clusters obtained. The clusters differ by their
GC, but do not differ very strongly in longitude, latitude and age. The cluster
in red at high galactocentric distance has 26 young clusters with very large
diameters and at a large GC of 10.75 kpc. In this table, we clearly see the effect
of observational bias in catalogues. Clusters away from the Sun seem to have an
average younger age, basically as they are more easily observable because of the
presence of young stars. Hence, the clusters at GC of 3809 pc are young and the
same applies to clusters in the anticenter direction.

Fig. 9. K-means clustering [12]

K-means clustering was done for the [24] catalogue using the parameters:
age (log t), linear diameters, distance from the galactic plane (z), GC and Mass.
Table 3 shows the existence of 4 clusters in the catalogue of [24]. Though this
cluster is incomplete, the advantage with this catalogue is the homogeneously
derived mass. In the case of clustering analysis with this catalogue, we have to
be wary about the number of clusters in a cluster, as there is a large obser-
vational bias involved. However, the presence of clustering in the analysis is
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Table 2. Cluster centres [12]

Gal.
longitude

Gal.
latitude

Rcore (pc) Rclus (pc) GC (kpc) log t No Color

211 −2.04 2.86 14.32 3.8 7.32 8 Lavender

231 −0.01 1.36 6.20 6.65 7.66 62 Black

223 −1.45 0.87 4.53 7.85 8.08 145 Blue

211 −1.76 0.85 4.84 8.68 8.17 181 Green

206 −1.04 1.07 5.20 9.5 7.96 97 Light blue

183 −0.78 1.92 11.79 10.75 7.41 26 Red

Fig. 10. K-means clustering [24]

Table 3. Cluster centres [24]

log t Diam (pc) z (pc) GC (kpc) Mass (M�) No Color

8.12 4.78 43.26 9.33 267 91 Red

9.46 17.53 −1103 12.79 736 6 Blue

8.24 7.37 76.30 9.96 976 37 Green

8.08 7.91 −200 10.29 2707 8 Black
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highly suggestive. As seen in Table 3, the cluster centres are described by age,
diameters, z, GC and mass. The clusters are clearly separated in mass. There
is a smaller cluster (blue) made of clusters of smaller masses. This group has
clearly very negative z = −1103 pc, large log t ≈ 9.5 and large diameters. There
is also a cluster (in black) made of very massive clusters of mass 2707 M� at
a distance of 200 pc below the galactic plane and diameter 7.9 pc. The origin
of these clusters seems interesting. Since this is an incomplete catalogue, our
observational bias would lead us to observe more younger clusters at larger dis-
tances. Hence, though this cluster has only 6 members, the true number must
be much larger, since the catalogue is incomplete. Figure 10 shows how these
clusters are separated in parameter space.

We should also note that unlike the previous two cases, clustering of the
[24] catalogue was clearly in terms of mass and not GC, which indicates the
significance of mass determinations in understanding clusters.

6 Discussion and Conclusions

Star clusters are very good indicators of the development of the galactic disk. In
this paper, we have made a statistical study of the catalogues, both homogeneous
and inhomogeneous, of star clusters. We studied the longitude, age, diameter and
mass distribution of clusters in these catalogues. We find that the optimum size
of a cluster for its survival is 3–4 pc. We have also studied the relation between
parameters of clusters. The Pearson product-moment correlation test showed
high negative correlations between age and normalised reddening En(B − V )
and age and linear diameters with a confidence level larger that 95%.

The review by [18] describes the two general categories of galaxy formation
and evolution: overall halo collapse with subsequent disk formation and contin-
ued collapse under self-gravity and those in which accretion plays an important
role. To study galaxy formation and to look for statistical clusters in our cat-
alogues, we carried out k-means clustering of the data. This method has been
described in detail in the earlier section. Its purpose is to look for groups within
the sample which are closely related in parameter space. The results obtained
have been described in detail. For the [5] catalogue, we found that while the
majority of clusters are localised near the plane of the galaxy, at an average
age of ≈ log t = 8, there also exists a cluster of old star clusters of age log
t = 8.71 and large diameters of 9 pc at a large GC. The bulk of clusters seem
to be formed on the disk by the process of overall halo collapse. However, the
group of old clusters could be formed by accretion as they are a at a distance of
1765 pc below the plane of the disk.

To highlight the differences between ‘complete’ and ‘incomplete’ catalogues,
we have performed a k-means analysis of the incomplete [12] and [24] catalogues.
We showed, how due to observational bias, the clusters located closer the Sun
appeared to be older than those away in the analysis of the [12] catalogue. In the
case of the [24] catalogue, we found that while the majority of clusters are at the
plane of the galaxy, there were two smaller clusters away from the plane. There is
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a cluster made of very massive clusters with mass 2707 M� and age 100 Myr at
a distance of 200 pc below the plane. There is also a group of still older clusters
of age more than 1 Gyr (log t = 9.46) which is made up of very large clusters
at a distance of 1103 pc from the galactic plane. The old clusters away from the
galactic plane could survive as they are not perturbed by massive concentrations
in the disk. These old clusters could not have been formed in the plane of the
disk and then accelerated to their present positions as they would not survive the
encounters necessary to move them [23,28]. The presence of bound clusters away
from the galactic plane are clear indicators of galaxy formation by accretion and
infall onto the galactic disk. We find 26 such candidates from the [5] catalogue
within 2–3 kpc of the Sun and 14 cluster candidates from the [24] catalogue
which are clearly different compared the general cluster population and which
are possibly formed due to accretion. A recent paper by [2] based on SDSS data
supports a picture in which an important fraction of the stellar halo of the Milky
Way has been accreted from satellite galaxies.

As a result of k-means clustering of these catalogues, we found that the
catalogues could be grouped in clusters which indicate different episodes of star
formation at different locations in the galaxy.

From our analysis, we conclude that the bulk of the data indicates galaxy
formation by overall halo collapse, but, there is also evidence of formation by
accretion from satellite galaxies from the existence of old clusters far from the
galaxy plane. Studies based on more homogeneous data and other vital param-
eters (preferably mass) are required to a deeper understanding of the system of
open clusters and the formation of the galaxy. Detailed studies of the interesting
clusters found in the above study are also planned.

Acknowledgements. The authors also thank Hargopal Vajjha and C R Rao for com-
ments and suggestions in statistics. Virtual observatory tools like VOSTAT and Top-
coat have been used in the analysis.
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Abstract. The search for life outside the Solar System is an endeav-
our of astronomers all around the world. With hundreds of exoplanets
being discovered due to advances in astronomy, there is a need to classify
the habitability of these exoplanets. This is typically done using various
metrics such as the Earth Similarity Index or the Planetary Habitabil-
ity Index. In this paper, Genetic Algorithms are used to evaluate the
best possible habitability scores using the Cobb-Douglas Habitability
Score. Genetic Algorithm is a classic evolutionary algorithm used for
solving optimization problems. The working of the algorithm is estab-
lished through comparison with various benchmark functions and its
functionality is extended to Multi-Objective optimization. The Cobb-
Douglas Habitability Function is formulated as a bi-objective as well as
a single objective optimization problem to find the optimal values to
maximize the Cobb-Douglas Habitability Score for a set of promising
exoplanets.

Keywords: Exoplanetary habitability score · Genetic Algorithm ·
Astroinformatics · Multi-objective optimization ·
Cobb-Douglas production function · Machine learning

1 Introduction

The search for life has been one of the oldest endeavours of mankind. But only
recently have we acquired the capability to take even a step towards this lofty
goal. With the first exoplanet discovered in 1991 [3], we have now reached a
point where we have discovered over 4000 exoplanets. We have also taken steps
in discovering if life exists on these planets through the use of various metrics
such as the Earth Similarity Index [15] or the Cobb-Douglas Habitability Score
(CDHS) [2]. These metrics take various planetary parameters as inputs and give
us an intuitive understanding of the likelihood of life existing on these planets.

The Cobb-Douglas Habitability Production Function (CD-HPF) can quickly
give us a score that is representative of the potential of habitability of an exo-
planet. It takes in the Radius, Density, Escape Velocity and Mean Surface Tem-
perature of a planet as inputs. All these inputs are in Earth Units (EU) i.e.
c© Springer Nature Singapore Pte Ltd. 2020
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the metric measurements of these parameters are divided by Earth’s own mea-
surements. Simply put, the values of any parameter of Earth in Earth Units is
1.

The Cobb-Douglas function was first developed in 1927 [4], seeking to mathe-
matically estimate the relationship between workers, capital and goods produced.
In its most standard form for production of a single good with two factors, it is
written as

Y = ALβKα

Where, Y is the total production, A is total factor productivity, L and K being
the labour and capital inputs, and α, β being output elasticities of labour and
capital respectively. The function itself is highly adaptable and has been uti-
lized for various tasks like revenue models for data centers [14], frameworks for
computing scholastic indicators of influence of journals [8] successfully.

The CDHS is calculated in a two-fold manner: by calculating the interior-
CDHS using radius and density, and the surface-CDHS, by using escape velocity
and surface temperature; the final score is computed by a convex combination of
the two scores. Thus the function is formulated as a multi-objective optimization
problem of the two scores.

Most optimization functions require the gradient of a function to minimize or
maximize it. However, this can prove computationally costly and all functions
are not differentiable, and even then, the derivative might not be smooth or
continuous. In this paper, we use Genetic Algorithms, a class of gradient-free
optimization functions, which are more widely applicable by virtue of them not
requiring the derivative of the function to optimize it.

In the book, “On the Origin of Species” by Charles Darwin, he concluded
that only those species survived who were successful in adapting to the changing
environment and others died. He called this “Natural Selection” which has three
main processes; Heredity,Variation and Selection. These involve species receiving
properties from their parents, making variations to evolve and then being selected
based on their adaptation to the environment for their survival. Along these
lines, genetic algorithms [9] were introduced with five phases of process to solve
an optimization problem. We create a initial population of randomly generated
elements, known as solutions to the problem and then evaluate the correctness
of the solutions using a fitness function which tells us how well the solution
helps in optimizing the problem. Genetic Algorithms revolve around the twin
principles of Exploration and Exploitation. There must be enough variety in
the population to ‘explore’ the solution space which is usually vast, and on
finding good solutions, the algorithm must ‘exploit’ these solutions and generate
incrementally better solutions.

The typical Genetic Algorithm consists of 3 processes: Selection, Crossover
and Mutation. In this paper, we use a modified version of a GA that combines the
processes of Mutation and Crossover into one. This Proto-Genetic Algorithm is
simpler to implement and understand while not compromising on performance.

We evaluate the ‘fitness’ of the population, that is to say we find the value
of the function to be optimized using the members of the population, generate
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children using one parent and then test their fitness as well, choosing the best for
the next generation. It is similar to the biological process of asexual reproduction
where the child inherits all the traits from one parent alone. In this case, the
child is generated from a Gaussian Distribution (as shown in Fig. 2) centered at
the parent’s value.

We illustrate the results of our algorithm on the set of Earth-like exoplanets
that is the TRAPPIST system from the exoplanet catalog [12], hosted by the
Planetary Habitability Laboratory at the University Of Puerto Rico at Acerbio.

2 Genetic Algorithms

A Genetic Algorithm (GA) is a meta heuristic which is based on the process of
natural selection. It is a subset of the class of Evolutionary Algorithms which take
cues from biological processes. They are most commonly used in optimization
or search problems as they are capable of searching large combinatorial solution
spaces to find globally optimal solutions.

Figure 1 indicates the pseudo-code of a typical Genetic Algorithm where a
population of solutions are initialized randomly, given the constraints of a specific
problem. The fitness of each solution is calculated, which is the value returned
by the given function for that solution. Following which the genetic operators of
Selection, Crossover and Mutation take place in order to create an incrementally
better population. This process is repeated until a termination condition is met,
such as a specified number of generations.

Fig. 1. Pseudo-code of a typical Genetic Algorithm

2.1 Proto-Genetic Algorithm

In this paper, we have utilized a simpler version of the Genetic Algorithm. While
GA’s typically generate children using traits from both two parents, we have
utilized a single-parent reproduction which is both crossover and mutation rolled
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into one. The best half of the population is selected and a single child is created
for each parent. This child is created using a Gaussian Distribution centered at
the parent, thus allowing for a mutation of sorts to occur. Due to the nature of
the Gaussian Distribution, a small change is much more likely to happen than
a drastic one, which reflects real life as well.

At the end of this process, we have a highly fit population. This algorithm is
simpler to understand and implement but gives satisfactory results.

Fig. 2. The bell-shaped curve of the Gaussian Distribution

3 Implementation

3.1 Single Objective Optimization

Various test functions like Mishra, Rastrigin, Schaffer and others share many
similarities [1]. All of them have 2 parameters and are highly multimodal. Thus,
these functions serve as suitable benchmarks for GA.

We first initialize 2 sets of values for x and y, having populations of 200 values
each. Our next step is to run the Genetic Algorithm. Here we choose to run the
algorithm for 1000 generations, that is to say the processes of crossover, mutation
and recombination take place 1000 times at the end of which we have solutions
which are very close to the global minimum. The fitness measure here is of course
the value of the function for the parameters x and y. After calculating the fitness
for each pair we then choose the best pairs, i.e. the ones with the lowest fitness
and then use them as the parents of the next generation. Generation of children
is done using the Gaussian Distribution, allowing us to vary the children slightly
in each generation. This is followed by checking the fitness of each child and
arranging the children and the parents in order of their fitness. This weeds out
all the parents who were not good enough and the children who were worse than
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their parents. Finally, we remake the population choosing the best of both the
old and the new generation.

For example, the Rastrigin Function [11], a commonly used benchmark func-
tion used to test optimization algorithms due to its highly multimodal nature:

f(x, y) = 20 + x2 + y2 − 10(cos(2πx) + cos(2πy))

Fig. 3. The Rastrigin function

The Rastrigin function in Fig. 3 has a global minima of 0.0 with the domain
being from −5.12 to 5.12. Thus, our algorithm generates 200 values of x and y in
the given domain, which is the first generation of the algorithm. They are sorted
according to their fitness and new children are generated from the best half of
the population. Following this the population is remade by sorting according
to fitness again and the second generation is created, with the members being
slightly fitter than their parents. Table 1 compares the actual global minima and
that obtained using GA for various test functions.

3.2 Constrained Optimization

These functions are also single objective optimization problems, however they
are constrained. Whereas the previous batch of functions are only limited by
the search domains, these functions have additional constraints. They tend to
be more challenging to optimize.

Mishra’s Bird Function displayed in Fig. 4 [10] has a global minima of −106.76
and the domain being from −10 to 0 for x and −6.5 to 0 for y. The function is
given as:

f(x, y) = sin(y).e((1−cos(x))2) + cos(x).e((1−sin(y))2) + (x − y)2
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Table 1. Single objective optimization results

Test functions Global minimum

Actual values GA values

Easom −1 −0.999

Rastrigin 0.0 0.0003

Ackley 0.0 0.009

Beale 0.0 0.0

Goldstein-Price 3.0 3.0001

Mishra No. 4 −0.199 −0.193

Cross-in-tray −2.06 −2.06

Eggholder −959.64 −959.27

Holder table −19.208 −19.208

McCormick −1.913 −1.913

Schaffer no. 4 0.292 0.292

In addition to minimizing this, the solutions must also not violate the addi-
tional constraint which is:

(x + 5)2 + (y + 5)2 < 25

We follow the same procedure as with single objective optimization, albeit
making sure the solutions do not violate the constraints along with the upper
and lower bounds of the domain. Children generated will be discarded if they do
not satisfy the constraints. The standard deviation of the Gaussian Distribution
goes on increasing to widen the search range if a large number of solutions are
discarded. Table 2 lists different test functions along with their actual and GA
obtained global minimum.

Table 2. Constrained optimization results

Test functions Global minimum

Actual values GA values

Rosenbrock (with a cubic and a line) 0.0 0.0009

Rosenbrock (disk) 0.0 0.0

Mishra’s Bird −106.76 −106.76

Townsend −2.02 −2.02

Simionescu −0.072 −0.0719
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Fig. 4. Mishra’s Bird function (Constrained)

3.3 Multi-objective Optimization

Whereas for single-objective optimization problems there exists a single solution
which is the best value, no such solution exists for non-trivial multi-objective
problems.

Multi-objective Optimization problems involve minimizing/maximizing more
than one function simultaneously. If these functions are competitive i.e. mini-
mizing one maximizes the other, it is not possible to find a single best solution.
Instead we get a set of non-dominating solutions known as a Pareto Front
(as shown in Fig. 6). In the absence of other information, each solution in the
Pareto Front is equally valid and no solution can be said to be better than
another.

Pareto fronts are based on the idea of dominance. If x ,y are two solutions,
then x is said to dominate y if

fi(x )) ≤ fi(y)) ∀ i = 1, 2, 3, ...k

In another words, the vector x is said to dominate y if and only if, f(x) ≤
f(y) for every single objective in the multi-objective optimization problem. We
say that a vector of decision variables x ∈ F is said to be Pareto optimal if no
other vector x ∈ F exists such that f(y) ≤ f(x ). A multi-objective optimization
consists of finding the best Pareto front for a given set of objectives.

There are various algorithms for multi-objective optimization. Indeed, one
such algorithm, Particle Swarm Optimization (PSO) has already been used in
solving the CD-HPF [17]. PSO have many advantages over GA [6] and hybrid
PSO-GA have also been used in problems like intelligent routing [18] to great
success.
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Fig. 5. Basics of NSGA-II procedure

When solving a multi-objective optimization problem using GA, a different
approach must be taken. While in single objective problems we can directly
compare function values as fitness and choose the best parents, the same cannot
be done when we have multiple objectives to optimize. There are numerous
algorithms such as MOGA [7], NSGA [16]. In this paper, we have used one of
the most popular multi-objective optimization algorithms, NSGA-II [5].

Fig. 6. A Pareto Front
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NSGA-II as illustrated in Fig. 5 consists of two new processes in order to
assign fitness to solutions. The first is the non-dominated sort, where the
solutions are sorted into sets of non-dominating solutions i.e. fronts. The second
is the crowded-comparison, which ensures that solutions which have fewer
number of solutions in their vicinity have a higher chance of getting selected.
In other words, this algorithm favours non-dominated solutions which are well
distributed.

Thus we can assign a fitness to the solutions even with multiple objectives.
Following this we use our proto-genetic algorithm to evolve the chosen solutions
and continue the process iteratively until we have our population closely resem-
bling the optimal Pareto Front. Figures 7 and 8 compare the actual and obtained
pareto fronts of different test functions.

((a)) Poloni ((b)) Schaffer1

((c)) CTP 1 ((d)) Constr-Ex

((e)) Binh and Korn ((f)) Chakong and Haimes

Fig. 7. Actual Pareto Fronts of test functions
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((a)) Poloni ((b)) Schaffer1

((c)) CTP 1 ((d)) Constr-Ex

((e)) Binh and Korn ((f)) Chakong and Haimes

Fig. 8. Obtained Pareto Fronts

4 Cobb-Douglas Habitability Function

The Cobb-Douglas Habitability Function is given as follows:

Y = Rα.Dβ .V δ
e .T γ

s

It can also be formulated as a bi-objective optimization problem for easy
visualization and understanding. The Cobb-Douglas Habitability Score (Y ) is
divided into two components, CDHS-interior (Yi) and CDHS-surface (Ys). The
CDHS is estimated by maximizing both Yi and Ys which are defined as follows:

Yi = Rα.Dβ

Ys = V δ
e .T γ

s

These functions are subject to the constraints:

α + β ≤ 1

δ + γ ≤ 1
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0 < α, β, δ, γ < 1

Where α, β, γ, δ are the elasticities of the planetary parameters Radius, Den-
sity, Escape Velocity and Mean Surface Temperature. The quality of this model
is well noted [13].

Thus we have a bi-objective optimization problem where we have to optimize
CDHSi and CDHSs simultaneously.

maxf(x ) = [Yi, Ys]

However, since Ve =

√
2GM

R
, we know that increasing surface score is not

possible without compromising on interior score and vice versa. Thus, as shown
in [2], we use the following relationships:

Ve =
δ

α

WR

WVe

R

Where WR and WVe
are weights of R and Ve respectively. Rearranging the

equation we get:

δ = α
Ve

R
C

where,

C =
WVe

WR

In order to bring out the trade-off between the two components of the Cobb-
Douglas Habitability Score, we calculate δ from the other parameters, optimizing
the variables α, β, γ and C.

We apply the aforementioned proto-genetic algorithm modified with NSGA-II
on a set of planets from the exoplanet catalog hosted by the Planetary Habit-
ability Laboratory at the University Of Puerto Rico, the TRAPPIST system.
The results are shown in Table 3 with illustrations in Fig. 9.

5 Results

After testing on multiple exoplanets in the catalog, we found promising results
similar to that of past approaches [13].

The Pareto fronts also show a trend where increase in one score is compen-
sated for by decrease in the other. These complementary scores bring out the
trade-off between Yi and Ys.
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Table 3. Comparison of CDHS using GA with past approaches

Exoplanets CDHS (2018) CDHS (GA)

TRAPPIST-1 b 1.0410 1.3753

TRAPPIST-1 c 1.1589 1.2073

TRAPPIST-1 d 0.8870 1.0146

TRAPPIST-1 e 0.9093 0.9990

TRAPPIST-1 f 0.9826 1.0389

TRAPPIST-1 h 0.8025 0.9973

Proxima Cen b 1.08297 1.11909

The final score is calculated as the weighted linear combination of interior
and surface score where the weights sum up to 1.

Y = wi.Yi + ws.Ys

wi + ws = 1

We set the weights wi and ws as 0.5 i.e. equal weights. Thus the calculated
CDHS is the mean of the surface score and the interior score. With different
weight pairs we get a range of habitability scores for each planet instead of a
hard score, making the model more robust than other metrics.

In order to ensure the results are consistent, the CD-HPF was also solved as
a single objective optimization problem i.e. its original form:

Y = Rα.Dβ .V δ
e .T γ

s

Similar to other single-objective optimization problems, we generated popu-
lations of α, β, γ and δ and evolved them with the proto-genetic algorithm. The
results were similar and establish the veracity of the multi-objective optimization
approach as listed in Table 4.

Table 4. CDHS obtained using multi-objective and single objective optimization

Exoplanets CDHS (multi-objective) CDHS (single objective)

TRAPPIST-1 b 1.3753 1.3684

TRAPPIST-1 c 1.2073 1.2065

TRAPPIST-1 d 1.0146 1.0138

TRAPPIST-1 e 0.9990 0.9972

TRAPPIST-1 f 1.0389 1.0343

TRAPPIST-1 h 0.9973 0.9929

Proxima Cen b 1.11909 1.1158
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((a)) TRAPPIST-b ((b)) TRAPPIST-c

((c)) TRAPPIST-d ((d)) TRAPPIST-e

((e)) TRAPPIST-f ((f)) TRAPPIST-h

Fig. 9. The TRAPPIST system of exoplanets

6 Conclusion

In this paper, we have used a Proto-Genetic algorithm along with NSGA-II to
calculate the best habitability scores for different exoplanets using the Cobb-
Douglas Habitability Production Function. The optimizing capability of the
proto-genetic algorithm was well established by testing on numerous benchmark
functions of the single objective, constrained single-objective and multi-objective
optimization types. Finally the algorithm was applied in calculating the habit-
ability scores of promising exoplanets from the TRAPPIST system. The results
were further verified using the single-objective optimization approach as well,
establishing the merit of a genetic bi-objective optimization approach to habit-
ability scores.
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Abstract. Gravitational waves has been a serious subject of study in
the modern day astrophysics. Where on one end the strain produced
by gravitational waves on matter could be practically studied by Laser
Interferometers such as LIGO, the strain generated by celestial bodies
on the other end a priori obtained by numerical relativity in the form
of waveforms. It is often the case that these waveforms are only used
to study the properties of black holes. This article tries to extrapolate
such methodologies to weaker celestial bodies for the primary purpose of
adding a new dimensionality in the prudent realm of possibilities. There
is a necessity to approach such studies from a statistical perspective. Uti-
lizing the combination of Statistical and Machine Learning tools not only
assist in analyzing data effectively but also aid in creating a generalized
computational model.

Keywords: LIGO · PyCBC · Gravitational waves · Numerical
relativity · Regression · Classification

1 Introduction

Gravitational waves (GW) are formally defined as the ripples in the space-time
curvature [1]. They are the direct consequence of a body with mass accelerating
through space. Scientifically, it occurs when the mass quadruple moment changes
with time. Einstein’s introduction of the theory of general relativity first planted
the seeds of inception for Gravitational Waves, now after a span of 100 years
with help of the extraordinary efforts of LIGO and Virgo their existence has
been confirmed. On February 11th 2016, LIGO announced its first discovery of
Gravitational waves corresponding to two black holes of 36 and 29 solar masses
merging. So far three such events of black hole mergers have been recorded.

Gravitational waves are detected as strains in laser interferometers when it
passes through it. These strains given by, h(t) = ΔL/L where ΔL is the change
in length, is often converted into numerical relativity based waveforms to bet-
ter understand the source. Numerical relativity (NR) is a subsidiary of general
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relativity. It is often employed to study cosmological entities such as black holes
and neutron stars. The principles of NR regarding GW however remain the same
regardless of the type of entity which is being studied. This leads to a postulation
that NR can be extrapolated to other entities particularly weaker entities such
as Exoplanets etc. The primary problem with employing NR directly to weaker
entities is that the complex nature of NR algorithms and its reliance on a con-
verging point gives it an enormous overhead in terms of time complexity and
therefore is ill-suited to obtain results quickly. There is a significant necessity to
find an optimized solution for generating NR waveforms, as NR waveforms give
valuable insight about the source. There have been attempts made to compu-
tationally increase the speed of NR equations such as PyCBC which still have
considerable overheads which will be addressed in depth in the upcoming sec-
tions.

Aside from the computational aspects of generating NR based waveforms for
GW, there is also a need to use GW as a feature which can supplement the
existing cohort of information regarding Exoplanets. This direction deals with
the extrapolation of properties of Gravitational Waves to weaker celestial bodies
like Exoplanets. Using the GW information to corroborate the classification of
Exoplanets into their respective mass classes. So far no such models exist, during
the progression of this article a precursory model is introduced which covers the
aforementioned basis.

2 Basic Properties and Features of Gravitational Waves

2.1 Physical Properties

In the context of physical nature, Gravitational waves cause the stretching and
squeezing of matter in space, it also distorts time around the object causing
a slowing and speeding up of time. GW also has polarization similar to light
they are (i) Plus and (ii) Cross type polarizations respectively. This polariza-
tion is caused due to the precession of the binary in-spiral pair. Gravitational
Waves being ripples in Space-time propagate at the speed of light. The necessary
conditions required for the propagation of GW is

λ << R

where λ is the wavelength of the GW and R is the Radius of Curvature (ROC) of
the background space-time. Other properties such as absorption and dispersion
are negligible in Gravitational Waves.

2.2 Wave Characteristics

Gravitational Waves can only be studied and discerned by their waveforms and
not just the strain alone. It is not possible to map GW as a figure or a picture.
Waveforms contains the details of the source. They can hold many attributes
such as mass of the binary pair, GW frequency etc. Normally to decide these
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attributes it has to be compared with NR simulations which as mentioned before
takes a long time even with the capabilities of existing super computers. To
circumvent this problem, numerical relativity approximates are used. Numerical
relativity approximates are simulated waveforms which are done in a weak field
paradigm. Under the assumption that the entities in question are not moving
fast enough or to better phrase it moving slower than the speed of light. This
application of Einstein’s equations in a weak field paradigm is also called Post
Newtonian Expansion.

h(f) =
1
r
M

5/6
ch f−7/6exp(iψ(f)) (1)

ψ(f) = 2πftc − φc − π

4
+

3
128

(πMchf)−5/3 (2)

Here tc is time at coalescence, φc phase at coalescence and Mch is chirp
mass which will be discussed in the upcoming sections. The h is a first order
approximation of the strain. Both these equations correspond to the frequency
domain. A few adjustments can be made regarding the location of the source
but for a basic scenario these formula can be generalized. These formula give
insight into how these source attributes can be obtained by the wave.

2.3 Existing Computational Approximation Methods

As previously mentioned NR takes a lengthy amount of time to approach gener-
alized solutions. To ease the arduous computational task approximation is used.
This provides an optimized solution with the help of the aforementioned Post
Newtonian Expansion methods. A common type of waveform is that of phe-
nomenological waveform or phenom waveform. These type of waveforms have
shown a very successful rate in mimicking NR waveforms as closely as possi-
ble. It has some inaccuracies as it has come to be expected, because of the
approximated nature of its generation but over all efficiency has been signifi-
cantly high compared to most approximates. One such existing methods which
uses phenom based waveforms is PyCBC. PyCBC - an open source python
implemented stable module could be used to obtain the theoretical gravitational
waveforms for specific input parameters such as the masses, lower frequency and
so on. This powerful module gives an optimized solution to theoretical equations
by means of Bayesian Belief Networks and computes different types of gravita-
tional waveform such as SEOBNR, TAYLOR and many more. The one problem
with PyCBC is that even though it is an optimized solution it can only give
results for black holes and other heavy entities like neutron stars. GW cannot
be studied effectively regarding other lesser mass entities like Exoplanets etc.
which are also in in-spiral with their corresponding star. Through the course
of this paper we will be extrapolating the approach used for black holes on
multiple Star-Exoplanet Systems. The aforementioned SEOBNR(Spin Effective
One Body Numerical Relativity) is a phenom based waveform which will be the
primary focus as we progress with this article (Fig. 1).
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Fig. 1. PyCBC generated SEOBNR waveform

2.4 Proposed Computational Approach

The problem lies in creating a flexible and elegant solution by discerning both
aspects, the waveform and the germane physics required to correlate the idea to
other weaker entities. On one hand there has to be a lucid interpretation of the
waveform, that is to say there should be clear understanding of how the trend
of the waveform changes with respect to different parameters which influence
it and on the other hand the proposed astrophysical model should not only
validate but also make inferences by a supervised learning procedure. The way
to go about achieving these goals is to approach the problem in two simultaneous
subroutines.

These proposed mechanisms are:

– Regression Analysis
– Classification

Regression Analysis deals with discerning the trend of the SEOBNR waveform.
It tries to correlate the various parameters that are inclusive of the generation
of these waveforms and tries to have a pellucid grasp on how it can be made
computationally efficient and deals with the process of extrapolation outside
the domain of its limiting factors. Classification aims to propose a new model
to group these entities in question with the help of GW. Not only does such a
model not exist so far but also it helps in validating and correcting the regression
results in a peculiar way. The upcoming sections of this article delves deep into
these subroutines and aids in surfacing a new computational model which is
created by mending these approaches.

3 Regression Analysis

The previous section speaks about the PyCBC module and why it is marked to
be of utmost importance in the study of GW. It is a robust module to perform
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tasks at various levels studying GW, one such task is the generation of GW based
on numerical relativistic equations. The module also presents diverse waveforms
to pick for study, ranging from the Taylor series representation to the SEOBNR
and many more. An important observation here is - the numerical relativistic
equations or the theoretical equations involved behind the generation of these
waveforms are intrinsic by nature. This intrinsic property results in a lot of
computational overhead while using the module for some specific values supplied
as part of functional requirements such as the masses of the celestial objects for
the generation of GW. An other observation is that, beyond certain limit of the
input parameters such as the masses of celestial bodies in-spiral, PyCBC fails
to compute values and generate waveforms, though in reality a similar in-spiral
system would naturally generate a GW. This paper aims to introduce few basic
concepts of ML, Regression and analyze their contribution to bring down the
computational overhead and extend the domain of the input parameters while
trading off the accuracy of the waveform generated by a small amount. This
trade off should be meager, shouldn’t interfere producing a result too deviated
from the theoretical result. The most interesting phase of in-spiral is that of
the Coalescence. As discussed in the previous sections about the in-spiral, there
is a certain period of time after which they gain rapid acceleration and spin
vehemently about each other. This is followed by both of the celestial bodies
colliding and thus merging into a single body which is a common phenomenon
in binary Black holes. The start of this merger is marked by the coalescence.
The peak amplitude of the GW happens at the coalescence and plays a vital
role to study the properties of celestial bodies involved in generating this peak
amplitude.

Fig. 2. A sample PyCBC Waveform

The above Fig. 2 depicts a simple PyCBC generated waveform for the param-
eters m1 = 10, m2 = 10, spin1z = 0.0, delta t = 1.0/4096 and f lower = 60.
The peak amplitude during coalescence (h0) as seen from the waveform occurs
at Time = 0.00.
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To understand how the peak amplitude varies with various masses of the
celestial bodies in-spiral, a huge dataset was created with a mixture of masses,
recording the peak amplitudes during coalescence from the PyCBC module. In
fact, the peak amplitude was recorded against the chirp mass which is given by,

Mch =
(m1m2)3/5

(m1 + m2)1/5
(3)

where m1, m2 correspond to the masses of the celestial bodies with m1 being
the mass of the more massive body among the two. The generation of the dataset
involves a lot of time as the generation of the waveform even for a single input
requires a lot of time. Thus, parallelization was used with the help of Multi-
processing module in python to build this dataset using all cores of the CPU.
The dataset created comprises peak amplitudes during coalescence (SEOBNR)
of celestial bodies recorded for different values of masses m1, m2 and lower fre-
quency f as follows:

Parameter Range

m1 10 – 99

m2 10 – m1

f {35, 40, 45, ...60}
spz 0

del 6.103515625E − 05

It has to be noted that the peak amplitude during coalescence for any input
lower frequency got to be equal in magnitude, but for PyCBC generated wave-
forms the peak amplitudes are not strictly equal though approximately equal.
Thus, the lower frequency is also considered while generating the data set. For
the preliminary analysis on the relation between the peak amplitude during coa-
lescence against the masses of the celestial bodies, a scatter plot is plotted with
these parameters.

From the above Fig. 3 it could be observed that the scatter plot approximates
to a linear curve. The x-axis corresponds to Mc while the y-axis corresponds to
h0 × 1019. The linear model of this data set could be imagined to be

h = β0 + β1Mch + ε (4)

In the above equation, β0 and β1 is some coefficient and ε the error. The blue
line in the above equation is a linear fit which could be calculated using the
Sum of squares method, minimizing the sum of the squared errors. Thus, for the
linear fit ĥ = β̂0 + β̂1Mch, we obtained the parameter β̂1 = 0.25464428. The
term β̂0 or the intercept is zero, since it is logical that when Mc = 0, h0 = 0. It
is now possible that we make use of this model to obtain h0 for other celestial
bodies such as the exo-planets, which could in turn be used for the classification
of exo-planets as discussed in the later sections of this paper.
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Fig. 3. Regression on amplitude peaks

4 Complete Waveform Generation

In the previous sections we have obtained a model to predict h0 for any given
Mch. In this section we discuss about an approach which could be used in the
generation of complete waveform. The approach taken here does not generate
the exact waveform but an approximation of the waveform. Generating the com-
plete waveform would result in a lot of GW characteristics which have potential
applications in many fields of astronomy. As we can observe from the PyCBC
waveform, output for SEOBNR, it is evident that the amplitude versus time
waveform is a chirp equation whereby the frequency increases with time.

To generate a waveform with unique characteristics, the waveform could be
identified with the amplitude, the frequency and its phase. Now, to generate
the GW waveform envelope we need to have at least two characteristics, the
amplitude and the frequency. The reason being that, the peak amplitude during
coalescence always occurs at the time = 0. It could be observed that the ampli-
tude peaks versus time of a gravitational wave could be split into two parts.
By observation, it could be concluded that in the first part of the GW the time
increases exponentially with the amplitudes peaks. i.e., the relation between
amplitude peaks and time is with time t and amplitude h follows:

t = ea.e
h.eb + ec (5)

The coefficients ea, eb and ec of this model cannot be obtained analyti-
cally and hence we resort to use approximation algorithms to obtain these val-
ues. For obtaining these values we make use of the curve fit() method inside
scipy.optimize. The initial guesses for these constants were set to (−1,−1,−1)
Now, hmax or the envelope could be obtained from t just using

hmax =
(

1
eb

)
.ln(

t − ec
ea

) (6)

The fit of the curve looks as depicted in Fig. 4.
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Fig. 4. PyCBC generated SEOBNR waveform

For the fit in the curve, the points marked in the red color, forming an enve-
lope above are the predicted peaks. The curve fits pretty well for the amplitude
peaks, but as we could see, reversing the equation presents two issues viz. the
first thing the domain error and the second thing that the predicted values
increase rapidly after a certain interval of time. It could be defined that the time
interval upto which neither of the issues occur as the pre-coalescence phase or
the non-coalescence phase. The time interval after which either of the two issues
occur could be defined as the coalescence phase, where by the current exponen-
tial model fails to fit the model and hence we would have to go with another
model which could be a model such as:

t = xa.h
xb (7)

Reversing the above equation for amplitude gives,

hmax =
(

t

xa

) 1
xb

(8)

Fig. 5. PyCBC generated SEOBNR waveform
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It could be seen from the fit that the model fits perfectly for the values of
time after the non-coalescence period. Figure 5 shows the fit of the amplitude
peaks for the time after the non-coalesce period or during the coalescence period.

The points in black color, forming an envelope towards coalescence are the
predicted peaks during the coalescence phase.

An envelope around the graph peaks could be obtained by using the models
for both the positive peaks as well as the negative peaks. Now in order to obtain
this envelope for all the GW for given masses and lower frequency, we need to
run a regression analysis on how these Model parameters viz. ea, eb, ec, xa and
xb vary with respect to masses and the frequency. The images - Fig. 6, 7, 8 and
9 show 3D scatter plot of the Model parameters with respect to chirp mass and
frequency for the non-coalesce phase. The points green in color are the predicted
points while the points in blue color are the observed points. From Fig. 6 and
Fig. 7 it can be inferred that the distribution of these parameters against Mch

and f is exponential.
It could be visually confirmed that the relation of ea with chirp mass and the

frequency is exponential, in fact it has a score of roughly about 98.5%. Similarly,
eb and ec follow an exponential distribution. The image of xa against Mch and f
shows a 3D scatter plot of the Model parameters with respect to the chirp mass
and the frequency for the coalescence phase.

It could be visually confirmed that the relation of xb with chirp mass and
the frequency also follows an exponential fit. But the relation of xb with respect
to the chirp mass and frequency is slightly scattered. Thus, for this we could
take a density estimate. The reason for this being that the scatter plot becomes
uniform as the plot approaches toward the lower masses and a lower frequency
but still the regression line passes through the mean density of the scatter.

After we are able to obtain an estimate of these model parameters, we could
again obtain an envelope of the amplitude for the time of a GW for a given chirp
mass and a given frequency by just using a version of gradient descent on the
equations up to the lower frequency.

Fig. 6. ea against Mch and f
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The procedure for construction of the envelope goes as follows:

1. Compute h0

2. Initial time,
t = xa.h

xb

dt

dh
= xa.xb.h

xb−1

3. Use dt
dh for new time,

tnew = told − dtold
dh

4. Compute hnew

hnew =
(

tnew
xa

)1/xb

5. Compute fc (current frequency)

fc = | 1
tnew − told

|

if fc <= flower: stop else if:

h′ =
1
eb

ln
(

t − ec
ea

)
> hnew

then goto step 3 else: continue
6.

dt

dh
= ea.eb.e

eb.h

7.
tnew = told − dtold

dhold

Fig. 7. eb against Mch and f
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8.

hnew =
1
eb

ln
(

t − ec
ea

)

9. if
fc = | 1

tnew − told
| <= flower

then stop else goto step 3.

Now that the envelope of the wave would be generated the next question
would be on identifying the points at which the envelope of the wave has to be
considered to roughly approximate the original wave. For this a simple scatter
plot between the chronological order of positive peaks of amplitude versus time
gives us a hyperbolic curve as shown in Fig. 10.

Thus, going with a hyperbolic fit, the right lower part of the equation

t2

a2
− i2

b2
= 1 (9)

where t corresponds to the positive time and i corresponds to the chrono-
logical order or index of the positive peaks. The next section deals with how
the predicted amplitude during coalescence could be applied for exo-planets and
help in their classification.

Fig. 8. ec against Mch and f

5 Gravitational Waves Based Classification

5.1 Need for Classification

Classification is the grouping of entities with similar attributes under a defined
class label. The necessity for classification is that it serves two purposes, it vali-
dates the astrophysical model and corroborates all the assumptions made so far in
extrapolating the model outside its usual domain, but also it helps in a subtle form
of correctable operations which corrects any types of inconsistency that may occur
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Fig. 9. xa against Mch and f

due to the regression analysis. Primarily it is used to bolster the claims made so far
that the model can indeed be flexible enough to operate outside the domain. The
center of focus in this section is dealing with the implications of extrapolating the
already existing GW concepts to weaker entities, followed by some computational
evidence that supports the usage of the GW concepts in this manner. The weaker
entities under scrutiny in this scenario are Star-planet system of Exoplanets. The
reason to choose this particular set of celestial objects is because they follow the in-
spiral mechanisms which is similar to black holes. The revolution of an Exoplanet
around their respective star which is considerably far away behave as a weak pair
of binary coalescing black holes. The term “weak pair” here describes the reduced
magnitude of mass compared to that of a black hole. The assumption is that coa-
lescence takes place a few million years later rather than quickly like that of two
merging black holes. Newtonian mechanics dictate that the gravitational orbits
are stable and once a celestial body such as a planet enters into orbit it remains
in revolution forever. But the introduction of Einstein’s general relativity showed
otherwise, indeed there is a decay in the gravitational orbits over time and this
decay of energy is emitted out in the form of Gravitational Waves. This Gravi-
tational waves can be observed in planets the problem being that the wave itself
is too weak to be detected by any conventional detectors like LIGO. The reason
being that a planet system would emit a GW due to the motion of masses which
are many times weaker than that of black holes, particularly LIGO is currently
more tuned to extract GW information for only black holes. This means that to
practically detect these waves from such small sources would probably take more
calibration on LIGO’s end but that doesn’t say anything about interpreting the
theoretical results. These theoretical results can assist in creating a more suitable
model to correlate weak mass entities with GW. The waveforms are well discerned
in the previous section Regression Analysis, the results generated for each unique
wave can be used as aids to help create a more pellucid model. Results such as the
maximum peak amplitude of the supposed coalescence, the GW frequency and
the known mass of the planets all help in creating a better classification model
(Table 1).



170 S. Agrawal et al.

5.2 Classification Overview

Gravitational waves have a lot of factors which influence them but none more
prominent than mass. As mentioned in the previous sections the necessity of
Chirp Mass in extracting important information about the source is essential.
When GW is so prominently influenced by mass, it can also be used as an aid
to help better sort the masses of the entities themselves. The mass class is a
parameter defined by astronomers used to classify various Exoplanets by virtue
of their mass. These masses have a defined set of constraining values which seg-
regate them to their corresponding mass classes. The numeric mass class are the
integer allocated values of the respective mass class done for easy graphic repre-
sentation. The key idea here is to relate the different masses of these Exoplanets
to the Gravitational waves they may produce while orbiting their corresponding
star. A supervised machine learning model can be proposed on the grounds of
training data with already confirmed masses along with their respective mass
classes to that of the supposed Gravitational Wave information. The Regression
Analysis section shows the various wave information that can be extracted by
using various predictive modeling techniques. Although to reach this coalescence
point where there is an immense burst of GW from the corresponding potential
merger it would take a considerable amount of time, at least a few billion years.
However, this potential maximum peak amplitude (GWPeakAmp) can be used
as a feature in classification of these Exoplanets. This is because the maximum
peak still denotes a unique point in the NR waveform. It can be used to uniquely
identify a binary pair based on the Chirp Mass, thereby making it a trainable
feature in the classification model. Another feature which is used to train the
classification algorithm is the Gravitational Wave frequency (GWFrequency).
The frequency of the wave itself can tell us lot about the source, it can correlate
to the orbital dynamics of the binary pair of the star-planet system of the Exo-
planet. The features which determine the outcome of Machine learning based
classification are as follows:

– GWPeakAmp
– SunMassSU
– PlanetMassSU
– GWFrequency

These features provide a rudimentary extension to the already existing mass
class grouping mechanism, so by associating them we can not only increase the
accuracy of the classification but also provide a new model, a catalog which
encompasses Gravitational Waves along with the existing features in the Exo-
planet Catalog.
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Fig. 10. Index vs time (positive peaks)

Table 1. Planet mass classes

Mass class Numerical mass class (NMC)

Jovian 1

Terran 2

Superterran 3

Subrterran 4

Neptunian 5

Mercurian 6

5.3 Exoplanet Catalog Dataset

The application of Gravitational Waves makes it a requisite to use the most
reliable catalog to extrapolate the idea. One such catalog is the Planetary Hab-
itability Laboratory Exoplanet Catalog (PHL-EC) by the University of Puerto
Rico. Although this dataset is known for its study for habitability of planets the
usage of the data set in this scenario is very different. The PHL-EC data set
is being used only to derive the orbital mechanics related information such as
orbital frequency and the corresponding masses of the planets. The mass classes
are also a part of this robust dataset. Although, there might exist some incon-
sistencies when masses are taken into account, such as compression of gravity
and the scaling of mass with volume. All these factors might cause a skew in
the data set for some of the mass classes. The dimensionally reduced distribu-
tion figure Jovian class for example contains the most varying range of possible
planets, but there may be cases in the data set where some of the observations
are misclassified. For this reason there is no hard limit set on the mass classes.
This problem can be overcome by our classification strategy by incorporating
the Gravitational Waves as a feature giving more clarity and distinction to the
mass classes. Another recognizable problem with the dataset is that it is unbal-
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anced. This may cause problems with the algorithm as it causes a bias in the
ML model. The reason a bias like this might exist is because if there are more
samples present in the training data which belong to a particular class compared
to the other classes, this will cause the algorithm to identify the majority sample
class with more efficiency compared to that of the minority sample class. This
type of imbalance problems can be resolved in various over-sampling or under-
sampling techniques. The next section will cover these methods in more detail
(Fig. 11).

Fig. 11. Dimensionally reduced data distribution

5.4 Classification Strategy and Algorithm

In the previous sections, the discussion was primarily focused on the idea and
the requisites that are needed for the implementation of the idea. This section
deals with the algorithmic details and methodologies. One of the primary aims
in this approach is to be able to classify accurately into any mass class. This
means a clear distinction of mass class has to be established. As mentioned
before there are some small amount of inconsistencies in the dataset. The pro-
cess of selecting the classification algorithm must take that into consideration
this nature of data and should provide an improvement. The appropriate algo-
rithm which satisfactorily tends to these nuances is Random Forests. Random
Forests being based on decision trees, finds the boundaries of the classes. This is
needed as previously stated, all the mass classes have to be uniquely identified
and should provide the best accuracy for each class. Under ideal circumstances
such an algorithm would be more than perfect to reliably complete the task.
But the aforementioned problem of imbalance tends to create biases within the
data. The two methods which are present to tackle such problems are (i) Over-
sampling and (ii) under-sampling techniques. Over-sampling techniques include
procedures to artificially generate data to fill the gaps so as to minimize then
imbalance, where as Under-sampling includes using only part of the data to
which all the classes are balanced, without using the entire dataset. For this
specific GW based classification problem, the better choice was over-sampling.
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Another reason for performing oversampling is that future data which has yet
to be observed and recorded has not been accounted. The generation of syn-
thetic data will help test the model in more robust conditions. There are many
well known oversampling techniques such as ADASYN etc., but for this prob-
lem, Synthetic Minority Over-Sampling Technique (SMOTE) was the superior
method. Other methods such as kernel density estimation, ADASYN were also
evaluated, but SMOTE provided the most agreeable values. The requisite for
the synthetic data is to maintain it’s integrity with that of the original PHL-EC
data. SMOTE provides values in an aggregated range and also manages to main-
tain the magnitudes of the parameters within domain constraints. Thus solving
the imbalance problem. The next course of action was to apply Random Forests,
to the already balanced data. The reasons for choosing Random Forests over
Decision Trees is because Random Forests uses a significant amount of voting
based conclusions as compared to that of Decision Trees. It runs a bagging based
routine by using a large number of de-correlated Decision Trees to classify a pre-
dicted class. This course of operations is highly suitable for the GW data and
it’s associated mass classification as it meticulously examines the feature space
to make better judgments over which mass class to choose.

5.5 Classification Performance Metrics

The accuracy metrics decide how efficiently the model has performed over a set
of constraining factors. In the case of classification, it could be simply defined as
the accuracy involved in predicting the correct class for a given set of parameters.
The results show various metrics such as True Positive Rate (TPR) or Sensitiv-
ity and True Negative Rate (TNR) Specificity etc. These metrics give valuable
insight into how each class is being treated and gives a more lucid interpretation
of all the nuances of the data. The following results displayed consists metric
scores of both classification without using SMOTE and classification after using
SMOTE (Table 2).

Table 2. Overall Metrics: PM = Performance Metrics; Original Data = OD; Original
+ Synthetic Data = OSD

PM OD OSD

Overall accuracy 89.4505% 84.9932%

95% CI (0.8625, 0.9211) (0.8325, 0.8651)

Kappa 0.8488 0.8184

The scores mentioned in Table 3 show the overall performance of the Random
Forest classifier. As the results indicate there is a drop in the overall accuracy
in the results of the SMOTE generated data. This is because the classifier is
trained without any imbalance and hence showing a decrease in accuracy. But
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this classifier trained without imbalance is more robust compared to that of the
classifier which trained only on the original data. The higher accuracy score
of the original data can only be attributed to the skew in the data. Because
of imbalance the classifier tends to recognize class 1 (Jovian) more than any
other class. Also, in the actual data set the number of planets in the class 6 or
Mercurian category are very less which is visible in its peculiar class wise scores.
This also factors into the classification algorithm’s accuracy.

Table 3. Class wise performance metrics

NMC Specificity Sensitivity Accuracy F1 score

OD OSD OD OSD OD OSD OD OSD

1 0.99 0.98 1.00 0.99 0.99 0.99 0.99 0.98

2 0.89 0.88 0.99 0.97 0.97 0.95 0.92 0.83

3 0.70 0.73 0.96 0.92 0.92 0.89 0.74 0.71

4 0.78 0.54 0.92 0.93 0.90 0.87 0.69 0.56

5 0.88 0.91 0.99 0.99 0.99 0.97 0.91 0.93

6 0 0.90 1.00 0.99 0.99 0.99 0.000 0.98

The class-wise scores give a better insight on how the classifier is handling
each class separately. Understanding the variations in Specificity and Sensitivity
are key in discerning how to efficiently boost up the classification model. As
shown in Table IV the class wise scores, the over all performance of the syn-
thetic model improved compared to it’s counterpart. This goes to show that
even though overall accuracy is higher, the robustness of model might not be
prominent. The model built from using SMOTE and then applying Random
forests might score less in the overall accuracy (not by much), the robustness of
the model is far more superior. It has validated that it can handle the data it
may have to process in the future and show promising results.

6 Conclusions

Gravitational waves and its significance has just started emerging to the fore-
front. This article has taken steps in a creative direction of applying these phys-
ical phenomenon to other weaker entities. The proposed computational model
serves as a rudimentary approach to a far more perplexing design. The strongest
aspect of this model is the use of Machine Learning and Statistical tools to not
only ease the understanding of this complex phenomenon but also making it effi-
cient to operate with it. The perspective of Data Science and Machine Learning
is that of elegance. Physicists already understand a vast amount about Gravi-
tational Waves. Data Science not only enhances that plethora of knowledge but
also gives a unique outlook. An eloquent solution to generalize one of the most



Machine Learning Based Analysis of Gravitational Waves 175

arcane paradigms of the universe. The progress made in this article is a stepping
stone for more elaborate models yet to be made. The understanding of Gravita-
tional waves is absolutely vital in advancement of sciences. It’s correlation with
some of the most enigmatic entities like black holes make it all the more reason to
delve deep to discern them. In search of these answers the proposed approaches
suggested in this paper is the understanding of these waveforms and extrapo-
lating the information learned from these trends to far outside the domain. Our
understanding of the waveform and how it behaves over variation of various
parameters such as mass and frequency has been enhanced. The application of
this knowledge outside the usual domain is a step on the creative side of the
paradigm. It led us to developing an efficient way of producing waveforms, and
also a new method for classifying Exoplanets based on the GW released by the
star-planet binary system. Ultimately developing a computational model com-
prising the two which enhance each other. The application of this model lies
in optimization algorithms to generate waveforms and also catalog extraction
which incorporates GW with Exoplanets.

7 Future Scope

This proposed computational model is the first of many approaches that will
unfold. With better understanding, a more refined model can be created by
considering a set of more elaborate factors. The proposed classification model
may use more discernible features and make the classification more robust. Better
calibration of the LIGO sensors can help in physically validating the proposed
waveforms. GW reveals more details about the universe everyday, a new off
domain application can be brought to existence by correlating the right idea
with accurate physics.
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Abstract. In this paper, a metric for estimating the potential habit-
ability of exoplanets, called thermal suitability score (TSS) is developed
based on machine learning (ML). As compared to prior literature, the
TSS ascertains habitability by using a sign – positive for potentially
habitable, and negative for non-habitable – and a number indicating the
extent to which an exoplanet is habitable or non-habitable. The TSS is
used on the data provided in the University of Puerto Rico’s Planetary
Habitability Laboratory’s Exoplanets Catalog (PHL-EC).

Keywords: Machine learning · Exoplanets · Habitability · Thermal
suitability score

1 Introduction

A majority of the interest in exploring exoplanets is the possibility of the exis-
tence of life on planets other than earth. For millennia, scientists and philoso-
phers have pondered over this possibility. Today, the rate at which exoplanets are
being discovered is rapidly increasing, fuelled by technological and methodolog-
ical advances. In this era of rapid discovery, it is imperative to develop methods
that can summarise the properties of planets such that interesting planetary
samples may be found and studied easily. Habitability metrics such as the bio-
logical complexity index (BCI) and the planetary habitability index (PHI) were
developed with this intent. Further developments based on econometric model-
ing done by [1–3] have expanded the range of techniques that may be used to
quantify properties of exoplanets.

In this paper, a habitability metric that is driven by machine learning is pre-
sented. Machine learning (ML) is a set of tools and ideas that involve statistical
estimation and inference in a way that ensures that a machine may be able to
make an intelligent decision. The typical families of machine learning are divided
into supervised and unsupervised methods. In supervised machine learning, the
training data consists of feature-target pairs, (x, y), where x is an input to the
system and y is the outcome for x that is learned by the algorithm. In a way,
in supervised learning, an optimal mapping between x and y is learned, for all
x in the input space. In unsupervised learning, the training data does not have
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a target to which the input is mapped; rather, an algorithm tries to discover
patterns that are inherent to the data and try to find underlying categories or
discriminations in the absence of a target label. Classification and regression are
supervised learning tasks, whereas clustering is an unsupervised learning task.

The metric that is proposed is called the thermal suitability score (TSS).
After ascertaining the effectiveness of ML algorithms for the automatic classi-
fication of exoplanets [2] a method to quantify the potential of a planet to be
habitable is developed, based on surface temperature alone, by developing an
entirely data-driven metric. This is called the Thermal Suitability Score (TSS)
because it is developed by using the mean surface temperature of a planet (and
features extracted from the surface temperature). The motivation to do this lies
in the fact that exoplanets that would be of greatest interest to the astronomical
community would be those that are closest in terms of their properties to earth;
the most important characteristic of Earth is the existence of water on the sur-
face, and the surface temperature of a planet is thus an optimistic indicator of
the possibility of surface water: if a planet is too hot (surface temperature over
100 ◦C), then it is unlikely that liquid water would exist on its surface as it could
have possibly evaporated; likewise, if a planet is too cold, (surface temperature
below 0 ◦C), then it is likely that even if water is present on the surface, it is
frozen and would not be able to support life as it is on earth.

2 Method

2.1 Understanding Surface Temperature Based Discrimination
of Exoplanets Based on Machine Learning

The Thermal Suitability Score (TSS) is a score which, in addition to providing
a notion of similarity to Earth in terms of surface temperature, provides a hab-
itability classification of an exoplanet. The formulation of this method is based
on support vector machines (SVMs). As a part of this method, two classes are
used based on the optimistic sample of potentially habitable exoplanets by PHL
[4]. The two classes are those of potentially habitable and non-habitable exoplan-
ets. The TSS is determined by first finding the maximum separating hyperplane
between the classes in the data, which acts as a discriminator and using the
distance from the hyperplane as the key characteristic. The metric is then devel-
oped by normalizing this distance by dividing by the distance of the Earth’s
feature vector from the hyperplane.

The goal of this model is to find a score that can instantly help us discrim-
inate between potentially habitable and non-habitable planets by finding one
boundary between two classes in the data. This is a hybrid approach where a
model outputs a number and a sign, the number indicating similarity to earth,
and the sign indicating the class. In this light, surface temperature (S. Temp)
is one of the only features which can be used to develop the metric because
S. Temp (and the related features of flux and distance from parent star) are
the only features based on which the habitable and non-habitable samples are
reasonably linearly separable.
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2.2 Formulation of the Optimization Problem

The support vector machine (SVM) quadratic optimization problem [5], which
is the basis of the TSS, is given as:

min
λ

1
2
λT (yyT K)λ − λ

subject to − λ ≤ 0,

y · λ = 0

(1)

where y is the list of class labels corresponding to samples in the data, λ is
the set of Lagrange multipliers, and K is the Gram matrix, which is given as:

K(x1, ..., xm) =

⎡
⎢⎢⎢⎣

x1 · x1 x1 · x2 . . . x1 · xm

x2 · x1 x2 · x2 . . . x2 · xm

...
...

. . .
...

x3 · x1 x3 · x2 . . . x3 · xm

⎤
⎥⎥⎥⎦ (2)

where xi represents the ith sample in the data.
After the optimization problem has been solved and the support vectors have

been found, the weight and bias: the variables w and b are determined by:

w =
m∑

i=1

λiyixi

b =
1
m

m∑
i=1

yi − w · xi

(3)

where m is the number of samples in the dataset.
The features used in this method are of the following form:

x = (T, |T − 1|) (4)

where | · | represents the absolute value function and T is the surface temper-
ature in Earth units. Together, these two features give us a data representation
of the surface temperature and the similarity of the surface temperature of the
planet to that of the Earth’s. This implies that the Earth’s feature vector is
(1, 0) and the consequence of this is that in the feature space, the distance of
Earth from the maximum separating hyperplane is the maximum. In addition to
this, as a consequence of the discrimination done by the hyperplane, the output
of the method is positive for potentially habitable samples (and non-habitable
samples whose surface temperatures are near the hyperplane) and it is negative
for non-habitable samples. Let the distance of the Earth from the maximum
separating hyperplane be represented as d. The final expression for the score is
thus given as:

TSS =
y · (

w · x + b
)

d
(5)
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2.3 Feature Extraction

The absolute value of the difference between the surface temperature of the
exoplanet and the surface temperature of the Earth is used as a parameter in
addition to the value of the surface temperature of the exoplanets, whose value in
EU is 1. Thus, the model inputs become ordered pairs of the type (T, abs(T −1)).
A data implication of extracting a feature this way is that the value of abs(T −1)
is 0 for Earth, an aspect central to the scoring mechanism of the model.

Fig. 1. Plot of S. Temp vs absolute value of (S. Temp - 1). In EU, 1 is the S. Temp of
Earth, and in this graph, it is represented by the green triangle at (1, 0). The points
in orange represent the optimistic sample of potentially habitable exoplanets and the
points in blue represent non-habitable planets. Since the non-habitable set is more
expansive, only the points in the vicinity of the habitable samples are plotted. We see
that there is minor overlap near the boundaries of the classes. (Color figure online)

From a physical viewpoint, we now have a representation of a planet’s surface
temperature in comparison to Earth. From a computational viewpoint, we have
an added dimension in the dataset which will help us effectively separate and
score the potentially habitable planets from the non-habitable planets using a
single hyperplane in a 2D space.

2.4 Overlap Between Classes

In the SVM formulation for a linearly inseparable dataset [5], there is a mini-
mization of a classification error which provides the best boundary between the
classes in the data. However, in this method, we do not want to find a best-case
boundary of separation, but would like to be inclusive of the habitable samples
which are manually labeled by the PHL-EC as we consider them to be reliable
points of judgment of habitability. Hence, we find the convex hull of the hab-
itable samples and exclude the non-habitable samples within this convex hull
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prior to finding a separating hyperplane. By doing this, we get a perfect sepa-
ration between the two classes, and we proceed to find the optimal separating
hyperplane.

Fig. 2. A graphical depiction of the optimal separating hyperplane (black line) deter-
mined after disregarding the non-habitable points within the convex hull of samples of
the habitable class. The consequence of this is noticed near the class boundaries, where
a few non-habitable samples fall on the habitable-side of the hyperplane.

2.5 A Geometric Interpretation of the Method and Proof
of Maximum Value

Let the feature vectors be denoted as (T, g(T )), where

g(T ) =

{
L1 = −T + 1, ∀T < 1
L2 = T − 1, ∀T > 1

(6)

g(T ) is nothing but an expansion of the absolute value function. L1 and
L2 may be considered as two lines which intersect at (0, 1). Let the separating
hyperplane be denoted by H. As we know that a separating hyperplane in a 2D
space is a line, L1, L2 and H may be considered to form a triangular region if
the angle made b H with respect to L1 and with respect to L2 is zero. This is
proven below.

Let the angle between H and L1 and L2 be θ1 and θ2 respectively. If sinθ1 > 0
and sinθ2 > 0, then we can say that H is not parallel or collinear with respect
to L1 and L2 respectively. If sinθ1 and sinθ2 are both greater than 0 then H
intersects with both L1 and L2.

The slope of L1 is −1 and the slope of L2 is 1. Let the angle between L1 and
L2 be given by θ3. Then,
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θ3 = arctan
−1 − (1)

1 + (−1)(1)

= arctan
−2
0

=
π

2

(7)

Thus, considering the points of intersection of H with L1 and L2 being A =
(x1, y1) and B = (x2, y2), and considering O = (1, 0), we can assert that a
triangular region is formed by OAB. Also, from Eq. 7, we know that �OAB is
a right angled triangle.

Fig. 3. Geometric representation of the problem in a 2D space. AB is a segment from
the optimal separating hyperplane, A = (x1, y1), B = (x2, y2) and O = (1, 0). d is the
distance of (1, 0) (which is Earth’s feature vector) from the separating hyperplane.

Let us consider the side OA. Here, O and A are the end points. On this line
segment, we know that point O is the greatest distance away from point A. This
is proved by contradiction.

Let us assume that on this line segment, O is not at the greatest distance
away from A. Let there be a point O′ on OA such that it lies between O and A
and is at a greater distance away from A than O. We know that for any point
K between O and A,

|OA| = |AK| + |KO| (8)

Hence, for the point O′,

|AO| = |AO′| + |O′O|
⇒ |AO′| = |AO| − |O′O|
⇒ |AO′| < |AO|

(9)

However, this contradicts the premise that there can be a point O′ on the line
segment OA for which |O′A| > |OA|. This implies that on line segment OA the
greatest distance between any two points on the line is the distance between the
endpoints O and A and this is the length of the line. This further implies that
there can be no point on OA apart from O for which |A′O|sinθ1 > |AO|sinθ1.
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Keeping in mind the geometric representation as shown in Fig. 3, we see that
the distance between O and AB, which actually represents the segment of the
hyperplane included in the triangular region �OAB, is given by |AO|sinθ1. The
same can be proven by taking into consideration side OB instead of OA.

Thus, in the context of the problem, in the feature space, Earth is the furthest
away from the maximum separating hyperplane and the distance of any planet
with feature vector not equal to (0, 1) from H will be less than that of Earth.

Thus, finally, the conditions that arise which allow this model to be used
as a metric is that the separating hyperplane should not be collinear or paral-
lel to any of the sides of the triangular region formed by �OAB. While solv-
ing the problem, we find that this condition is satisfied by the data. We find
w = [−392.011,−2487.989], b = 923.011 and d = 531.0002. The solution of the
problem was programmed in Python3.6 with the library CVXOPT, which is a
library for convex optimization.

3 Results and Discussion

The TSS of a sample of potentially habitable and non-habitable exoplanets are
presented in order to compare how the metric behaves for different exoplanets,
and to understand the relevance of the scores. The samples of TSS is presented
in Table 1.

Table 1. The TSS (2.1) of various samples are presented.

Potentially habitable exoplanets Non-habitable exoplanets

P. Name S. Temp TSS P. Name S. Temp TSS

TRAPPIST-1 d 1.01527 0.91713 TRAPPIST-1 b 1.37674 −1.04331

TRAPPIST-1 e 0.90416 0.62172 TRAPPIST-1 c 1.20799 −0.12806

TRAPPIST-1 f 0.79757 0.20096 TRAPPIST-1 h 0.63125 −0.45554

TRAPPIST-1 g 0.75035 0.01456 Kepler-519b 1.97257 −4.27495

ProximaCenb 0.91632 0.66969 MOA-2010-BLG-328Lb 0.33403 −1.62874

Kepler-186f 0.77430 0.10913 OGLE-2005-390Lb 0.32187 −1.67671

Kepler-705 b 1.00555 0.96987 Wolf1061d 0.56042 −0.73513

K2-72e 1.10555 0.42749 YZCetb 1.64861 −2.51789

Ross128b 1.09410 0.48964 GJ649c 1.98403 −4.33710

K2-3d 1.14271 0.22599 EPIC211822797b 1.44305 −1.40301

3.1 Results of Thermal Suitability Score Function

For the sake of clarity, two sets of TSS values (shown in Table 1), one for
potentially habitable exoplanets, and the other for non-habitable exoplanets.
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The potentially habitable sample in this table mostly consists of exoplanets
that have been gaining a lot of popularity as potentially habitable worlds. The
non-habitable samples are mostly chosen at random, except the TRAPPIST-
1 planets, which we included for the sake of completeness with respect to the
TRAPPIST-1 potentially habitable samples. Consider the planets TRAPPIST-1
d and b. The differences in sign indicate clear demarcation between the two dif-
ferent classes of habitability. In stark contrast, S.Temp based classification shall
place TRAPPIST-1 d and b in the same class because of the proximity of the
decision boundary (both TRAPPIST-1 d and b having the same sign as well as
close in magnitude). The TSS, unlike S.Temp can thus bolster the discrimination
capability (change in sign generates a non-ambiguous separating hyperplane) of
a habitability classifier. The variation of the scores from TRAPPIST-1 b to h are
reflective of the knowledge gained from ongoing research on the TRAPPIST-1
planets [6,7].

4 Conclusion and Future Work

This is a metric which is developed using ML and appropriate feature extraction.
The method takes our current knowledge and uses it to discriminate and gauge
the potential of incoming samples. Although optimization-based approaches have
been proposed by [1] and [8], an optimization of an error function in a habitability
metric has not been explored before. As it is inherently based on ML, we can
increase the number of parameters as long as the notion of linear separability is
maintained.

The value of this metric can only be less than 1 for all planets whose surface
temperature are not equal to 1 (in EU). The consequence of this is that the value
of TSS for only the Earth is equal to 1, and at this point in time, every other
planet (which is a part of the PHL-EC) has a TSS of less than one. In addition
to that, the hard-boundary aspect of SVMs is used to provide results which are
negative for non-habitable planets. Conclusively, the negative sign is an out-of-
the-box indicator that a planet may not be thermally suitable for habitability.
Samples close to the hyperplane may be ambiguous or erroneous; in this model,
the hyperplane itself does not perfectly divide the dataset into perfect class-wise
partitions, but provides a best-case discriminator. Some of the salient features
of TSS are:

1. Unidirectional Similarity Values: The value of this metric can only be less
than 1 for all planets whose S. Temp values are different from Earth. It
doesn’t matter if the value is greater or lesser: if it is different, then the value
is below that of Earth.

2. Positive and Negative Values : Notice that in Table 1, in most places, the sign
of the TSS has matched what we know about the habitability potential of
these planets. Negative represents non-habitable, and from what we know of
the planets in the TRAPPIST-1 system with negative values of TSS, they’re
not potentially habitable. Additionally, points on the hyperplane will have a
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TSS value of zero, and as there are no planets which themselves lie on the
maximum margin hyperplane, no planet may have a zero value.

3. Learning from Example: This is a metric which is developed using ML and
appropriate feature extraction. The method takes our current knowledge and
uses it to discriminate and gauge the potential of incoming samples.

4. Tackling Skewness: From Figs. 1 and 2, we see that the distribution of the
habitable samples in the feature space is not symmetric, but there exists a
skewness. As a consequence of this, the separating hyperplane is not parallel
to the x-axis. However, by thus using the separating hyperplane as a reference
boundary, we can equitably judge the samples notwithstanding their respec-
tive surface temperatures being lesser than or greater than that of Earth.

5. Scalable: As it is inherently based on ML, we can increase the number of
parameters as long as the notion of linear separability is maintained.
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