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Abstract In this paper, we put forth a progressive, decision-based, two-phase image
denoising algorithm for eliminating random-valued impulse noise from images. The
manner in which this algorithm deals with noise is a completely pristine method
when compared to the other existing image denoising algorithms. In the primary
phase, the noise is dealt at a coarse level; in other words, the noisy pixels that are
easily differentiable from the neighborhood are eliminated. In the secondary phase,
fine-level image denoising is performed. In other words, the left-over fine scale noise
in the detected corrupted pixels of the first phase, which cannot be straightforwardly
differentiated from the surrounding pixels, is eliminated. In both the phases, separate
mechanismswere followed to eliminate noise in the interior regions and edge regions.
Hence, the algorithm is edge-detail preserving. Images with very high noise levels,
in other words, with 70% noisy pixels were restored successfully. Speaking in terms
of quantitative significant measures, the restored images in most cases were better
than those of the other existing filters.
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1 Introduction

Impulse noise is broadly classified into salt-and-pepper noise and random-valued
impulse noise. In images corrupted by salt-and-pepper noise, the noisy pixels can
take only the maximum and the minimum values in the dynamic range, while in the
images corrupted by random-valued noise (RV noise), they can occupy any value in
between the minimum and maximum values in the same dynamic range.

Hence, practically speaking, handling RV noise would be quite tedious. The
sources of impulse noise have been explained in [1].

Among the various existing denoising methods, the median filter is used exten-
sively because of its effective noise subduing potential and computational effec-
tiveness. Its denoising power and computational efficiency are elaborated in [3, 4],
respectively.

However, the main drawback of a standard median filter is that it is effective only
for low-noise densities [5] and the vital original information of the image is lost
because it is not a decision-based filter. The other drawback of the median filter was
that it was not decision based; in other words, it cannot preserve original information.

In order to ameliorate denoising, many other impulse detector filters were
proposed. The weighted median filter [6] and adaptive median-based filters [7] were
partially decision based. The adaptive median-based filter using second-generation
wavelets [8], multi-statemedian filter [9], the homogeneous information-based filters
[10, 11], the adaptive center-weighted median filter [12], the peak-and-valley filters
[13, 14], the signal-dependent filter [15], the iterative method proposed by Luo [16]
and other algorithms like [17–21] are decision-based algorithms. Among the two-
phase algorithms, the three-state median (TSM) [22], the adaptive center-weighted
median (ACWM) [12], the Luo filter [23], the genetic programming (GP) filter [24]
are worth stating. The effective detection technique to replace RV noise in images
with high noise levels is an open challenge. A partial differential equation-based
technique [25] is an interesting method proposed in recent times, which uses a new
defined set of controlling functions for impulse noise removal.

As already said, dealing with RV noise is relatively tedious in contrast to salt-and-
pepper impulse noise [26].

We hereby propose the localized pixel intensity variation (LPIV) filter which has
been proved successfully by Kireeti Bodduna and Rajesh Siddavatam et al. in [27],

[28, 29]. The credibility of cardinal splines for interpolation in impulse noise-
related problems was again tested by Rajesh Siddavatam et al. in [29].
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Our work introduces a two-phase mechanism for random-valued noise removal.
In the first stage, the noisy pixels were dealt with at a coarse level. Noise at a very
fine level still persists in those detected pixels after the first phase. So in the second
phase, for those pixels which were detected as noisy in the first phase, the second
part of the proposed algorithm is applied. The fact that edge pixels and interior pixels
were separately dealt with in both the phases of the algorithm is the prime reason
for edge-detail preservation in the restored images. We make use of dyadic wavelets
of canny to determine whether a particular pixel belongs to the interior region or the
edge region.

The outline of this paper is as follows: The proposed algorithm and the significant
measures are discussed in Sect. 2. The results along with conclusions have been
discussed in Sect. 3.

2 Proposed Algorithm

The noise detection job is performed by the LPIV filter [29]. It designates each
and every pixel in the window as a noisy pixel or a noise-free counterpart. Once
a pixel is detected as noisy, it is replaced by interpolating the noise-free pixels in
the neighborhood with cardinal splines. By neighborhood, we mean the particular
window in the image where the algorithm is currently active.

2.1 Coarse Level Image Denoising—I

This is the first phase of the algorithm where the noise is removed in local neigh-
borhoods where the noisy pixels can be identified with certainty. “The underlying
idea of the localized pixel intensity variation (LPIV) filter is that the gray-scale pixel
intensities in a local neighborhood vary insignificantly. Thus, for every central pixel
in a window, we find the noise-free pixels in that window. Subsequently, using these
noise-free pixels, we calculate a local threshold. Depending on this threshold, we
decide the fate of the central pixel whether it is corrupted by noise or not. If corrupted,
we replace it by interpolating the noise-independent pixels.

If the center pixel belongs to the interior region of the image, a threshold of T1
+ � is used, where � is the flexibility parameter for interior regions andis constant
for a particular image, but different for various images. Rajesh Siddavatam et al.
computational results showed that when it is varied between 20 and 60 dB we obtain
better restored images. To be more precise, a particular value of in this range gives
best interpolation results as elaborated in [29].
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In the second case, if the center pixel belongs to the edge region of the image, a
threshold of T1 + � is used, where � is the flexibility parameter for edge regions
[29].

The novelty here lies in the fact that the threshold selected is a function of the
window. In other words, the threshold is calculated locally but not globally like in
some of the erstwhile proposed filters. This paves way for better detection and hence
better restored images.

2.2 LPIV 1 for Interior Regions

INPUT: Coarse scale denoised image
∑

(i, j). This algorithm is simulated for only
those interior pixels which were detected as noisy in the first phase. Again, we define
the 3 × 3 window � = {(s, t)| − 1 ≤ s, t ≤ 1} centered at (O, O). Here, the center
element is the noisy interior pixel detected in phase 1.

Step A:

∀D(i, j) ∈
∑

(i, j) ∈
∑

1

(For the detected interior region noisy pixels in phase 1).

Z(1) = �(0,1)
Z(2) = �(0, − 1)
Z(3) = �(−1, 0)
Z(4) = �(1, 0)
b ← (−βα3 + 2 βα2 − βα)
b ← [(2 − β)0α3 + (β − 3)α2 + 1]
b ← [(β − 2)1α3 + (3 − 2β)α2 + βα]
b ← (βα3 + 2βα2)
pt. = b0 * Z(3 l) + b1 * Z(2) + b2 * Z(3) + b3 * Z(4)
�(0,0) = pt.
OUTPUT: Interior region fine scale denoised image

∑
(i, j).

2.3 LPIV 2 for Edge Regions

INPUT: Interior region fine-level denoised image
∑

(i, j). This algorithm is simu-
lated for only those edge pixels whichwere detected as noisy in the first phase. Again,
we define the 3 × 3 window � = {(s, t)|−1 ≤ s, t ≤ 1} centered at (0, 0). Here the
center element is the noisy edge pixel detected in phase 1.
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Step B:

∀D(i, j) ∈
∑

(i, j) ∈
∑

2

• Z(1) = �(0,1)
• Z(2) = �(0, − 1)
• Z(3) = �(−1, 0)
• Z(4) = �(1, 0)
• b ← (−βα3 + 2 βα2 − βα)
• b ← [(2 − β)0α3 + (β − 3)α2 + 1]
• b ← [(β − 2)1α3 + (3 − 2β)α2 + βα]
• b ← (βα3 + 2βα2)
• pt. = b0 * Z(3 l) + b1 * Z(2) + b2 * Z(3) + b3 * Z(4)
• �(0,0) = pt
• OUTPUT: Edge region fine scale denoised image

∑
(i, j). The image

∑
(i, j)

is the final restored image (Table 1; Fig. 1).

3 Results and Conclusions

Figures 2, 3, 4 and 5 show the final restored images from various noise levels of
Lena, Bridge, Peppers and Airplane. Tables 2, 3 and 4 give the comparative analysis
with other existing algorithms. The PSNR values are quite impressive keeping in
mind the corresponding amount of noise 60% in the original images.

Summarizing the results from the abovefigures, it can be clearly seen thatwhen the
noise density increases, the PSNR andMSSIM values decrease. As the noise density
increases, the amount of original information that is available to us decreases. The
standard test images were procured from theUniversity of Southern California image
database. All the images were 8-bit images with dynamic ranges from 0 to 255. Peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) [32]
have been used as quantitative yardsticks to measure the restored images.

Table 1 Parametric values used in the initial iteration of both LPIV 1 and LPIV 2 for various
images

Image α B γ (dB) δ (dB)

Lena 0.5 −1.8 25.0 32.5

Bridge 0.4 −2.3 45.0 60.0

Peppers 0.5 −1.8 25.0 32.5

Airplane 0.4 −2.5 32.5 47.5

Bridge 0.5 −2.1 25.0 62.5
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Fig. 1 Parameter optimization for Lena image to obtain optimal PSNR by varying α, β

Fig. 2 a Noisy image Lena: 60%, b LPIV1 (25.96 dB), c LPIV2 (25.90 dB), d original image,
e SSIM Map (MSSIM = 0.8906)

Fig. 3 a Noisy Bridge: 60%, b LPIV1 (21.4 dB), c LPIV2 (22.57 dB), d original image, e SSIM
map (MSSIM = 0.7886)
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Fig. 4 a Noisy Peppers: 60%, b LPIV1 (24.99 dB), c LPIV2 (22.14 dB), d original image, e SSIM
map (MSSIM = 0.8448)

Fig. 5 a Noisy Airplane: 60%, b LPIV1 (23.76 dB), c LPIV2 (24.7 dB), d original image, e SSIM
map (MSSIM = 0.8719)

The proposed localized pixel intensity variation (LPIV) filter has two-way mech-
anism of denoising random-valued impulse noise, and it has been found that the
obtained restored images are either superior to those produced by other theoretical
models in most cases or almost similar to the results of other works in a very few
cases. When compared with other algorithm results (Tables 2, 3, 4 and 5), in a total
of 30 cases, in 20 cases LPIV (either LPIV1 or LPIV2) gave best results and in 7
cases, PDE (NSDD + NTVD) gave better results while in only 3 cases GP gave best
results. Another advantage of using this method is that it does not involve any time-
consuming theoretical equations. Hence, the computational efficiency is impressive.
Finally, our proposed methodology also suffices for color images (by extending the
LPIV to three dimensions). Future work can be done in applying this filter to 3D
mesh models and point cloud graphic models.
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