Malware Detection by Merging 1D CNN )
and Bi-directional LSTM Utilizing L
Sequential Data

Seung-Pil W. Coleman and Young-Sup Hwang

Abstract Due to the popularity of the android platform, there is a growth in the
number of devices and threats. For this reason, it is essential to build reliable tools that
can detect malware android application packages (APK) on this platform. Creating
effective models requires the use of rich features that are hard to generate. In this work,
we extracted the Dalvik executable (.dex) byte-codes from APKs. Android applica-
tion binaries are opcode sequences. Then, we trained one-dimensional convolutional
Neural networks (CNN) using those sequential data. These one-dimensional CNNs
detect local features and reduce the feature size. We went even farther to combine one-
dimensional CNNs with a bi-directional long-short term memory network (LSTM)
to detect malware. Experimental results show that our model, trained on a balanced
number of samples, got an error rate of merely 5.4% on a dataset of 20,000.

Keywords Android malware detection - Data section *+ One dimensional
convolutional neural network - Bi-directional LSTM - Sequential data

1 Introduction

The android platform is the most popular today, and it contains several hundred
thousand applications in different markets. This has led to smartphones running on
the Android operating system becoming a target for black hat hacker developers
that have malicious intentions. Android is vulnerable compared to other platforms
because it allows applications installation from multiple third-party markets. Recent
studies have announced that mobile malware is finding new ways to hide, and the
number of mobile malware seems to be increasing [1]. This is evident that there is a
need to create a robust security solution.

S.-P. W. Coleman (X)) - Y.-S. Hwang
Department of Computer Science and Engineering, Sun Moon University, Asan, South Korea
e-mail: spil3141 @naver.com

Y.-S. Hwang
e-mail: young @sunmoon.ac.kr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 167
H. Kim et al. (eds.), Information Science and Applications, Lecture Notes
in Electrical Engineering 739, https://doi.org/10.1007/978-981-33-6385-4_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6385-4_16&domain=pdf
mailto:spil3141@naver.com
mailto:young@sunmoon.ac.kr
https://doi.org/10.1007/978-981-33-6385-4_16

168 S.-P. W. Coleman and Y.-S. Hwang

The most popular methods used for android malware detection are static and
dynamic analysis. Static analysis is a technique widely used by researchers and
industries. It involves the APK file being scanned before they can be executed on
an android system. In such a case, the file is disassembled by a disassembler to
obtain information such as API calls, permission lists, among others, which can
then be examined. On the other hand, dynamic analysis involves methods that can
monitor the behavior of applications at run-time. Some examples of this method are
implemented by tools like TaintDroid [2], DroidRanger [3], and DroidScope [4].
Even though these are effective methods they have limitations. For example, even
though dynamic analysis is effective at identifying malware, there is a caveat of
overhead. And as for static analysis, it is fast and efficient but can easily be dodged
by malware writers who can trick the disassemblers into producing incorrect code.
This is accomplished by inserting errors into the source which leads to the actual
code execution path being hidden or obfuscated. In this work, we choose to use the
static analysis method because this method is essentially helpful on low-power and
memory-limited devices such as Android devices. High optimization for performance
is essential on the android operating system.

Data used to train deep learning models can come in the form of spatial, temporal,
and more. Spatial data refers to location-aware information, a common example
of this is a digital image. Temporal data are time-series that are collected as time
progresses. These two concepts have been researched and powerful analysis tools in
machine learning and deep learning have been created.

In this paper, we held the assumption that the DEX file binary, the bytes of the
Dex file, is in the form of a time-series data [4]. The android binary file can be
seen as containing sequences of opcode. We targeted the data section of the android
application package (APK file). Our work is among the first to utilize CNN and
RNN architectures. Particularly, one-dimensional convolutional neural network and
bi-directional long-short term memory RNN.

The rest of this paper is arranged in the following way: we provided insight into
previous works relating to this domain in Sect. 2. Our technique methodology is
explained in Sect. 3. Experiments and Results with related information are presented
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Works

The number of researches relating to android malware detection has seen an increase
since the discovery of deep learning as a possible alternative to older techniques. Deep
learning applications relating to the areas of speech recognition, image classification,
and natural language processing are among the several pioneers. Deep learning for
android malware detection can be seen in [5] which was among the first to utilize
deep learning for android malware detection. They extended the research work of
[6] by employing long short-term memory (LSTM) on a large-scale. In [7], R2-D2



Malware Detection by Merging 1D CNN and Bi-directional LSTM ... 169

translates android apps into RGB (red, green, and blue) color code and transforms
them into a fixed-sized encoded image for image classification.

In [8], they proposed an end-to-end solution using one-dimensional CNN, where
both the spatial and temporal data features in bearing fault diagnosis are extracted
and utilized. In this paper, we extended this approach in the field of android malware
detection. Convolutional neural network (CNN) models, developed for image clas-
sification, can also work well on one-dimensional sequential data. In our case, this
refers to the raw bytes of android applications, we extract features from sequential
data and maps to a vector space. A one-dimensional CNN works the same way as
two- or three-dimensional CNN. The difference is in the structure of the input data
and the convolution kernel movement.

3 Methods

In this section, we describe the methodology of our research. The core of our approach
can be divided into three parts. The first is the data section extraction, next is data
preprocessing, and finally the model design Fig. 2.

3.1 Data Section Extraction

The goal of this step is to gather the raw bytes of the data section, embed it in a vector
space, and group them to form the dataset. A DEX file contains many sub-sections
shown in Fig. 1 among these are the header, string ids, data section, code item, etc.
[11]. Our method extracts information on the data section binary from the header
which contains information on every other section. This information includes the
offset and size of the data section.

The tool used to disassemble the APKs was Androguard [9]. Android applications
are developed in Java and compiled into optimized bytecodes for the Dalvik virtual
machine. This bytecode can be directly accessed with the help of Androguard.

3.2 Data Preprocessing

In this step, the features were made suitable for the deep learning model. This involved
padding the features to a fixed length and scaling it with normalization. Normalization
is afeature scaling method to change the values of individual features to use acommon
scale (a range of 0 ~ 1) without distorting differences in the range of values or losing
information.

The input shape of our model must be of dimension [timestep, feature]. However,
the resultant dataset after the data extraction step from Sect. 3.1 contains elements of



170 S.-P. W. Coleman and Y.-S. Hwang

DEX Structure

header.data_offset:
offset from the start of the DEX
file to the start of the
data section.

Header

string_ids

type_ids

header.data_size: field_ids

the size of the data section.

|
|
|
proto_ids I
|
|

metrods_ids

data

Fig. 1 Data section extraction

Bi-L5TM Fully Connected layer

Input Reshape Convolution + Relu Convolution + Relu
Max Pooling Max Pooling
1 P @ 1% P[]
2l 12
S={Ts, ] [64,64,16] [64,64,16] [124,124,1] 121

[N] [20]

100} [100]

Fig. 2 Deep learning neural network architecture (one dimensional convolutional neural network
and Bi-directional long-short term memory network)

various lengths. We reshape every sample in our dataset to achieve this fixed length.
The process involved the use of a post-padding algorithm that appends the value of
zero to the end of every sample less than a predefined threshold or cut if greater.
Next, we used a window size to reshape the features into a sequential timestep. This
new fixed input shape “S” and the window size can be defined as follows

S=I[T,Fl; T,=N/Fy; F,=4 (1)

where T is the timestep (window size), and F,, is the number of features per timestep
for a given sample. For clarity, our final dataset has N equals ten million features,
the new shape S becomes (2.5 million Timestep, 4 features). Before deciding on the
number of features per timestep, other sizes were tested (4, 8, 16, etc.) but a timestep
with 4 bytes gave the best performance.



Malware Detection by Merging 1D CNN and Bi-directional LSTM ... 171

3.3 Model Design

With the sample data padded and scaled, the next step is to decide on the malware
detection architecture. Instead of using machine learning algorithms for pattern
recognition and feature extraction, a deep learning solution was chosen. This work
made use of the convolutional and recurrent deep learning architectures. As shown in
Fig. 2, our model is composed of three one-dimensional CNN layers, a Bi-directional
layer, and two dense layers (fully connected layers).

The one-dimensional CNN layers extract spatial and local temporal features
from the sequences of normalized features. The pooling layers reduce the size of
each feature map thus leading to a reduction in computational efficiency. The bi-
directional LSTM layer extracts long-term temporal patterns that are analyzed by
the fully connected layers. The fully connected layers then perform binary classi-
fication. Binary classification is accomplished by a classifier that can distinguish
between two classes or labels.

4 Experiments

4.1 Dataset

All the data are from the following sources: Google play (the period between October
2016 and February 2017), Amazon, APK pure, AMD, and Drebin [10]. The malware
samples are from the Drebin and AMD archives while the benign samples were
combined samples from Amazon, Google play, and APK pure. The dataset we used
contains 20,000 applications comprising of malware as well as benign android pack-
ages with a ratio of 1:1 (10,000 malicious applications and 10,000 benign ones). For
the experiments, we used 19,000 samples for training, 500 for validation, and 500
for testing, summing up to a total of 20,000 (Table 1).

Table 1 Dataset sources

Source Malware (%) Benign (%)
Google play 0 20
Amazon 0 12.5

APK pure 0 17.5

AMD 35 0

Drebin 15 0




172 S.-P. W. Coleman and Y.-S. Hwang

Table 2 Evaluation result from tested models

Models Train accuracy Test accuracy Precision Recall F1-Score
3 x 1D Conv, 1 x 0.983 0.946 0.947 0.946 0.945
Bi-LSTM

1 x 1D Conv, 1 x 0.91 0.902 0.9 0.9 0.9
Bi-LSTM

Table 3 Experiment to Models Epoch Train accuracy Test accuracy
determine F,

(N/ Fy,16) 10 0.81 0.806

(N/ Fy,8) 10 0.84 0.832

(N/ Fp,4) 10 0.84 0.846

4.2 Experiment Result

The table below depicts the result of experiments undertaken to evaluate the
performance of our deep learning model.

Table 2 shows the training accuracy, test accuracy, precision, recall, and F1-score
of our final experiments. The table displays results from the two best models. The
first is the 3 1D CNN layers architecture, and the other was a simpler model with a
single convolutional layer. Our best model generalized on the test dataset with merely
a5.4% error rate. Also, this experiment proved that going deeper with convolutional
layers yields better performance.

Table 3 shows the result of the experiment to determine the number of features
per timestep. A simplified version of our dataset with 4, 8, and 16 feature channels
enabled us to achieve our desire outcome. Each sample in this simplified dataset was
made of merely 30,000 bytes. The model simplification involved reducing the layers
and units per layer. Using 4 bytes per timestep gave the best testing model perfor-
mance. Out of the result, we realized that larger feature channels did not correlate to
better generalization.

5 Conclusion

In this work, we addressed the challenges of android malware detection through
the introduction of a possible solution utilizing bi-directional LSTM and one-
dimensional convolutional neural networks. Our method handles android binary files
as sequences of opcode for malware detection.

In practice, this work demonstrates the process of analyzing both the temporal
and spatial aspects of an android application for malware detection. To improve the
achieved results, in future work, we plan to investigate methods that handle the large
input size of our proposed model and the case of malware family detection.



Malware Detection by Merging 1D CNN and Bi-directional LSTM ... 173

Acknowledgements This research was supported by the National Research Foundation of Korea
(NRF) and funded by the Ministry of Science and ICT (no. 2018R1A2B2004830).

References

—

11.

McAfee Mobile Threat Report Q1 (2020)

Enck W, Gilbert P, gon Chun B, Cox LP, Jung J, McDaniel P, Sheth A (2010) Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. In: Proceed-
ings of USENIX symposium on operating systems design and implementation (OSDI), pp
393-407

Zhou 'Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: Proceedings of network and distributed
system security symposium (NDSS)

Yan L-K, Yin H (2012) Droidscope: seamlessly reconstructing os and dalvik semantic views
for dynamic android malware analysis. In: Proceedings of USENIX security symposium
Bilar D (2007) Opcodes as predictor for malware. Int J Electron Secur Digit Forensics 1(2):156—
168

Vinayakumar R et al (2018) Detecting android malware using long short-term memory (LSTM).
J Intell Fuzzy Syst 34(3):1277-1288

Hsien-De Huang TT, Kao H-Y (2018) R2-D2: color-inspired convolutional neural network
(CNN)-based android malware detections. In: 2018 IEEE international conference on big data
(Big Data). IEEE

Hao S et al (2020) Multisensor bearing fault diagnosis based on one-dimensional convolutional
long short-term memory networks. Measurement: 107802

Anthony D (2019) Androguard documentation. Release 3.4.0

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens CERT (2014) Drebin:
effective and explainable detection of android malware in your pocket. In: Yan J, Yong Q, Qifan
R (eds) NDSS, LSTM-based hierarchical denoising network for Android malware detection.
Security and communication networks 2018, vol 14. pp 23-26

Chiossi, R. 2014. “A deep dive into DEX file format. https://elinux.org/images/d/d9/A_deep_
dive_into_dex_file_format--chiossi.pdf


https://elinux.org/images/d/d9/A_deep_dive_into_dex_file_format{-}{-}chiossi.pdf

	 Malware Detection by Merging 1D CNN and Bi-directional LSTM Utilizing Sequential Data
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Data Section Extraction
	3.2 Data Preprocessing
	3.3 Model Design

	4 Experiments
	4.1 Dataset
	4.2 Experiment Result

	5 Conclusion
	References




