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Abstract. Supervisory control and data acquisition (SCADA) system
has been widely used in traditional power systems for operation and con-
trol. As increasingly more ICT technologies are deployed to improve the
smartness of the power grid, cyber security is becoming an important
issue in the development of smart grids, for example, false data injection
attack (FDIA) poses a serious threat. The paper analyzes the impact
of false data injection attack on smart grid state estimation under ran-
dom packet losses. First, a measurement model of power grids under
random packet loss is established, and an attack vector range that can
fool the attack detector is acquired. Then, a mean square error matrix
of weighted least squares estimation is proposed, taking into account
potential false data injection attacks. A IEEE-14 nodes system is used
to evaluate the performance of the weighted least squares state estima-
tion under three different scenarios, namely false data injection attack
only, random packet loss only, and under both random packet loss and
false data injection attack.

Keywords: False data injection attack · Random packet losses ·
Weighted least squares estimation · Smart grid

1 Introduction

Modern power systems transmit electricity from generators to users via large-
scale transmission and distribution networks. To ensure safe and reliable opera-
tion of the system, increasingly more ICT technologies are introduced into the
power systems to improve the smartness [1]. However, the introduction of mod-
ern communication networks not only facilitates information interaction and
wide-area system monitoring, protection and control of power grids but also
makes it vulnerable to network invasion [2,3]. In recent years, cyber-attacks on
power grids around the world have been viewed as a principal threat, not just a
conceptual one.
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For example, Iran’s Blushehr nuclear power plant was attacked by the
Stuxnet virus in 2010, which caused the delay of power generation and seriously
damaged Iran’s industrial facilities [4]. The transmission lines in Ukraine were
continuously tripped in 2015, while the information system was implanted with
malicious software, which blocked the system restart [5]. In 2019, several cities
in Venezuela including its capital city Caracas plunged into darkness, and power
outages affected 21 of the country’s 23 states. According to the media reports,
the direct cause of the power failure was a cyber-attack on the country’s largest
hydropower station. Soon after, several transformer explosions occurred in the
federal district of Caracas, causing another power failure [6].

The power system control center collects measurement data from different
power devices and components through the supervisory control and provide
instructions back to the system [7]. State estimation is a key functionality in
real-time power system monitoring and supervisory control. By analyzing the
data collected by the SCADA systems, the current operating state of the power
grids can be estimated while bad data and anomalies in the collected measure-
ments can be eliminated.

However, state estimation can be vulnerable to cyber-attack in the open net-
work environment. The false data injection attack (FDIA) against the state esti-
mator in the SCADA system was investigated by Liu et al. in 2009 [8], and it was
found that existing bad data detection methods relying on Chi-square detector
may not work in response to some false data injection attacks. An experienced
attacker can deliberately design the attack vector such that these attacks can
bypass the Chi-square detector. Once the sensor is successfully hacked, the tam-
pered measurement will spread in the network, resulting in system performance
degradation or even instability [9].

In the research area of false data injection attack, some researchers aim to
identify the vulnerability of the system and build the attack models [10–13], and
this helps to improve the understanding of the attack mechanism in order to
design a better defense system. For example, a linear spoofing attack strategy and
the corresponding feasibility constraints are demonstrated where fake data can
be effectively designed to cause system failure [10]. In [11], the potential impact
of unobservable attacks is investigated, and the least measurable attack strategy
is proposed. Under the fully measurable model and partially measurable model,
the existence conditions of unobservable subspace attacks are derived, based
on which two attack strategies are proposed in [12]. The first strategy directly
affects the system state by hiding attack vectors in the system subspace, and the
second strategy misleads the bad data detection mechanism. Meanwhile, other
researchers focus on the detection and defense of the system in the presence of
attacks [14–19]. For example, both active detection and estimation-based detec-
tion are proposed in [14]. In the active detection method, a reasonable excitation
signal is designed to be superimposed on the control signals, which improves the
detectability of attacks on the actuator attack. The other method estimates the
value of the attack by using the unknown input observer. In [15], a FDIA attack
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detection mechanism based on the increments of analytic measurements in the
micro-grid environment was proposed.

Most existing researches are based on the analysis of the acquired measure-
ments, but the impact of data communication is not considered. The FDIA in
smart grid applications is an attack that reduces the integrity of data acquired by
the system. In the existing communication technology, data transmitted through
the network is often in the form of packets [20]. Most existing approaches con-
struct the attack model and detect the attack using acquired measurements
and the estimation of measurements [10–18]. However, in addition to poten-
tial FDIA, the data transmitted through the network may also be affected by
network characteristics such as data losses during the transmission phase. This
paper investigates the data injection attack on power system state estimation
considering data losses in communication. The main contributions are as follows:

• A DC (direct current) model of the system under data injection attack is
deduced, taking into account the random packet losses.

• The mechanism of weighted least squares state estimation and bad data detec-
tion are analyzed and an undetected range of attack vectors is derived.

• Based on the established DC measurement model, the mean square error
matrix of state estimation under the FDIA is analyzed.

The remainder of the paper is organized as follows. The transmission model
of sensor measurements in the power grids under random packet loss is discussed
in Sect. 2. Section 3 analyses the effects of random packet loss and data injection
attacks on weighted least squares estimation, and the range of attack vectors is
also studied. Simulation results are presented in Sect. 4, and the weighted least
squares state estimation results under three different cases are compared.

2 Problem Formulation

2.1 Data Transmission Model

The SCADA system in the power grids collects sampled measurements from
sensors through the communication network. However, due to limitations of the
communication technology, data may get lost during the transmission. Figure 1
illustrates the whole process from data sampling and transmission to state
estimation.

As shown in Fig. 1, at time instant tk−1, the measurement device samples and
transmit the sensor measurements to the network in the form of packets. Due to
network induced delays, after the transmission delay dk−1, the SCADA system
will receive the sampled measurements at time instant tk−1 + dk−1. Further,
some data may be lost during the transmission process, such as the data at time
instant tk shown in Fig. 1. Once the SCADA system obtains the measurements,
the estimator can receive the data after the computing time delay of ck−1. Power
grids are typical complex cyber-physical systems with numerous sensors, and all
sensor data will go through the similar process as shown in Fig. 1 when they are
transmitted to the SCADA system.
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Fig. 1. The data sampling, transmission and state estimation process.

Define the measurements received by the SCADA system at sampling instant
k as zk, zk ∈ Rm , and if there exists data packet losses, two popular compensated
methods are often adopted. One is to directly replace the lost data with 0 [21].
Another is to replace the lost data with the previous sampled data. This paper
adopts the first method, i.e., the loss packet is set as 0. For random packet losses,
the received measurements can be expressed by

zlk = λkzk, (1)

where λk ∈ Rm×m is a diagonal matrix whose diagonal elements are either 1 or
0. When a measurement is lost, its corresponding value is set to 0.

2.2 Power Grid Measurement Model

When the system is subject to a false data injection attack, the measurement
process of the grids is shown in Fig. 2. When a sensor device samples measure-
ments, it may be invaded by an attacker by deception, and false data are injected.
Next, the sensor transmits the corrupted data to the SCADA over the network.
When random packet loss is not considered at the sampling instant k, the AC
measurement model can be described as

zk = h(xk) + vk, (2)

where zk is denoted as the measurement vector, xk is the system state vector,
vk is the Gaussian measurement noise, and h(xk) is the functional dependency
between measurements and state variables.

If the ground admittance and branch conductance are ignored and assume
that the voltage phase difference between two nodes is negligible, the voltage
amplitude of the nodes is close to unit quantity 1. The DC measurement model
can be used to approximate AC measurement model. The DC measurement
model can be expressed as

zk = Hxk + vk, (3)
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Fig. 2. The power grid measurement process subject to false data injection attack.

where H is the steady-state functional dependency between measurements and
state variables.

When only random packet loss is considered, at the sampling instant k, the
DC measurement model can be expressed as

zlk = λk(Hxk + vk). (4)

When only a data injection attack is considered and assume that the injected
value is akand ak ∈ Rm. If ak is nonzero, the corresponding measurement is
tampered. Then the measurement contains the attack vector ak, which can be
expressed as

zak = zk + ak, (5)

where ak is the attack vector injected to measurement.
When random packet loss is considered, the measurement function can be

expressed as
zlak = λkzak. (6)

Equation (6) is the measurement model under the false data injection attack
which considers both the influence of random packet loss and data injection
attack on the measurements of the grid.

3 Analysis of Weighted Least Squares Estimation

State estimation is used for monitoring the operating state of the grid and remove
bad data, and the weighted least square method is a popular state estimation
method. The false data injection attack aims to mislead the state estimation,
and it is necessary to have a detailed analysis of the state estimator. According
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to the weighted least squares estimation, the objective function can be expressed
as

min J (xk) = (zk − Hxk)T
W (zk − Hxk), (7)

where W is the weighted matrix. The estimation of the system state can be
expressed as

x̂k = (HT WHT )
−1

HT Wzk. (8)

Define ẑk = Hx̂k as the state estimation of the system, and the residual between
the real and the measurement estimation is defined as rk, and rk can be expressed
as

rk = zk − ẑk. (9)

According to the Chi-square detector, 2-norm of the residual must be less than
the threshold to consider that there is no bad data, i.e.,

‖rk‖2 ≤ τ, (10)

where τ is the threshold of the Chi-square detector, which can be obtained
by checking the Chi-square distribution table. When there is only a false data
injection attack, the injected increment must meet certain conditions in order
not to be detected. According to (8), for a given ak, the state estimation can be
expressed as

x̂ak = (HT WHT )
−1

HT Wzak, (11)

where x̂ak the corrupted estimation due to FDIA. The estimate of the measure-
ment is ẑak = Hx̂ak, and the residuals can be expressed as

rak = zak − ẑak = zk + ak − (Hx̂k + H
(
HT WH

)−1
HT Wak)

= (I − H
(
HT WH

)−1
HT W )(zk + ak).

(12)

To evade the detector, Eq. (13) must be satisfied, that is

‖rak‖2 ≤ τ. (13)

Let B = (I − H
(
HT WH

)−1
HT W ), Eq. (13) can be re-written as

‖B(zk + ak)‖2 ≤ τ. (14)

According to the compatibility

‖B(zk + ak)‖2 ≤ ‖B‖2‖(zk + ak)‖2, (15)

when ‖B‖2‖(zk + ak)‖2 ≤ τ hold, the Eq. (14) will be hold, where ‖B‖2 =√
ηmax(BT B) is the induced norm and ηmax(BT B) is the maximum eigenvalue

of the matrix BT B.
Therefore,

‖(zk + ak)‖2 ≤ τ

‖B‖2
. (16)
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Remark 1. Inequality (16) represents a subset of the attack vector which will
not trigger an alarm from the bad data detector.

Corollary 1. Equation (17) is the non-detectable spoofing range of the attack
vector.

‖ak‖2 ≤ τ

‖B‖2
− ‖zk‖2. (17)

According to the triangle inequality, it’s easy to prove Corollary 1 is true. The
specific derivation is given as follows.

According to the triangle inequality of vector 2-norm,

‖(zk + ak)‖2 ≤ ‖zk‖2+‖ak‖2, (18)

when ‖zk‖2+‖ak‖2 ≤ τ
‖B‖2

hold, the Eq. (16) will be hold. So Eq. (17) is a safe
range of the attack vector.

When packets are randomly lost, the integrity of the collected data by
SCADA is destroyed. However, due to the redundancy of data in data acquisi-
tion of the power grids, the effect of the loss of a small number of measurements
may small. To study the effect of data injection attack on the performance of
state estimation under random packet losses, the mean square error (MSE) of
weighted least squares state estimation under random packet losses is derived.

Suppose that the state vector xk, the attack vector ak, and the noise vk obey
the Gaussian distribution where the mean value is μxk

= 0, and the variance is
Rxk

, Rak
, Rv. When there is random packet loss, the measurement model of the

system is shown by Eq. (6). Combined Eq. (11) with Eq. (6), the state estimation
of the system can be expressed as

x̂lak = ((λkH)T
WλkH)

−1
(λkH)T

W (zk + ak)
= (HT λkWH)−1

HT λkW (zk + ak).
(19)

When the system state estimation residual is defined as εxk
= x̂lak −xk, εxk

can
be expressed as

εxk
= (HT λkWH)−1

HT λkW (zk + ak) − xk

= (HT λkWH)−1
HT λkW (Hxk + vk + ak) − xk

= (HT λkWH)−1
HT λkW (vk + ak)

(20)

When there is random packet losses and data injection attack, the mean square
error matrix of system state estimation is

Rεxk
= E{εxk

εT
xk

} = (HT λkWH)−1

+(HT λkWH)−1
HT λkWRak

λkWH(HT λkWH)−1
.

(21)

Let Bk = (HT λkWH), Rεxk
can be expressed as

Rεxk
= Bk

−1 + Bk
−1HT λkWRak

λkWHBk
−1. (22)
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Ideally, when there is no packet losses and data injection attacks, λk = I, ak = 0.
Then the mean square error matrix of the weighted least squares state estimation is

Rεxk
= (HT WH)

−1
. (23)

Comparing Eq. (22) and (23), it can be found that the existence of random packet
losses will not only affect the state estimation, but also affect the effect of data
injection attack.

4 Simulation Study

To assess the impact of data injection attack under random packet losses on
smart grid state estimation, IEEE-14 node system is used in the simulation
experiments, as shown in Fig. 3. IEEE-14 node system has 54 measurements,
where 1–14 are the measurements of the active power of the bus, 15–34 are
the measurements of branch power of the incoming node, and 35–54 are the
measurements of branch power of the outgoing node. Assuming that the noise
of each measurement obeys the Gaussian distribution, i.e., vi˜N(0, 0.022), where
i = 1, 2, · · · , 54. Considering the phase angle of the reference bus δ1 = 0, it is only
necessary to estimate the state quantity of the other 13 nodes, and H ∈ R54×13.

Fig. 3. The power grids measurement process.

Firstly, node 1 is selected as the reference node, and the state truth value
and the measurement truth value are obtained by 100 power flow calculations.
It is assumed that the white noise obeys the Gaussian distribution (0, 0.022) and
the measurement error covariance matrix is constant.

Performance Index: From Eq. (23) under ideal conditions, when there is no
data injection attack and transmission packet losses, the mean square error
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matrix of system state estimation is Rεxk
= (HT WH)−1. In order to measure

the state estimation performance, Eq. (24) is used as the performance index.

Performance =
‖(xreal − x̂)(xreal − x̂)′‖F∥

∥
∥(HT WH)−1

∥
∥
∥

F

, (24)

where xreal is system status truth value, x̂ is the estimation, and ‖‖F is frobenius
norm of matrix.

When there only exist data injection attacks, while Eq. (17) is satisfied, three
different attacks are randomly selected, where one measurement is tampered in
a88, five measurements are tampered in a41, and ten measurements tampered in
a55. The dimension of each non-zero in the attack vector was randomly selected
in [−( τ

‖B‖2
−‖zk‖2)/p, ( τ

‖B‖2
−‖zk‖2)/p], where p is the number of the tampered

devices. The details of the attack vector are shown in Table 1. The estimated
results are also illustrated in Fig. 4.

Table 1. Details of the attack vector in data injection attack only

Attack Details

a88 Index 52

Value 37.97

a41 Index 4 15 43 44 45

Value 0.84 −6.05 9.47 8.44 −8.57

a55 Index 11 12 16 25 29 47 48 50 51 54

Value −5.06 −1.18 −1.01 −3.22 −3.59 −0.1 0.17 −0.04 −2.17 −5.25

According to Fig. 4, the data injection attack has a great impact on the surviv-
ability of system state estimation. However, with the increase of attack dimen-
sions, the impact of the attack on the estimation decreases gradually if the attack
vector remains non-detectable by satisfying Eq. (16).

The performance index is also illustrated in Fig. 5. This is a result from the
attack vector limited by Eq. (17). The more dimensions of the attack, the lower
the amplitude of each dimension in the attack vector will become.

In the packet loss only scenario, three packet loss rates are randomly selected,
which are 2%, 5% and 10% respectively. The specific information of random
packet losses is shown in Table 2, and the estimation results are illustrated in
Fig. 6.

As show in Figs. 6 and 7, a small amount of random data packet loss in the
data transmission of the sensor does not have significant impact on the system
state estimation. This is due to the existence of the measurement redundancy of
the power system, which guarantees the safety and reliability of power system
state estimation.
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Fig. 4. State estimation under only data injection attack.
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Fig. 5. Estimation performance under only data injection attack.

Table 2. Details of the packet loss due to random packet loss only

Probability Time Index

2% 66 2

5% 99 16,28,48

10% 62 3,5,7,8,39
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Fig. 6. State estimation under random packet loss scenario.
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Fig. 7. Estimation performance in random packet loss only scenario.

Furthermore, comparing Fig. 4 with Fig. 6, it is clear that the data injection
attack has a greater impact on the system state estimation. Again, the perfor-
mance indexes as shown in Figs. 5 and 7 are not in the same order of magnitude.

When both packet losses and data injection attacks are presented, 5% packet
loss rate and 5 dimensions attacked are simulated.
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Table 3. The details of the packet loss and attack vectors

Time Attack and packet loss Details Common index

44 a44 Index 9 15 24 30 49 No

Value −9.33 −7.28 −6.88 −3.79 −9.67

Packet loss index 7,20,22

92 a92 Index 2 14 30 44 46 30,44

Value 6.37 −6.40 0.94 9.84 −6.14

Packet loss index 21,30,44

53 a53 Index 12 24 28 48 53 12,48,53

Value −2.19 −8.03 5.65 8.68 −1.45

Packet loss index 12,48,53
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Fig. 8. State estimation under both random packet loss and data injection attack.

Three scenarios, including random packet losses and data injection attack are
not coincidences, some coincident, and all occurred coincidently are analyzed.
The specific information of random packet loss and attack vectors are listed in
Table 3, and the estimation results are illustrated in Fig. 8. It can be seen that
notification of data injection attack and random packet loss will have a great
impact on system state estimation results.

As shown in Fig. 9, when the random packet losses occur coincidently with
the attack, and the estimation performance is better than the non-overlap, but
the impact of the attack vector itself is greater.
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Fig. 9. Estimation performance under both random packet loss and data injection
attack.

5 Conclusions

This paper has analyzed the impact of false data injection attacks on smart grid
state estimation under random packet losses. Firstly, the measurement model
of power grid under random packet losses is established, and an attack vector
range that can escape the detector is derived. Then, the weighted least squares
estimation is analyzed, and a non-detectable range of attack vectors in the data
injection attack is derived. It is proved that as long as the attack vectors are
selected in the derived range, the existing “bad data” detection device will not
respond. Further, considering the false data injection attack, the mean square
error matrix of the weighted least squares estimation is provided. Finally, simu-
lation experiments on a IEEE-14 node system is used to compare the effects of
data injection attack, random packet loss, and simultaneous random packet loss
and data injection attack on the system state estimation.

Acknowledgement. Supported by Natural Science Foundation of China (No.
61633016, 61533010), Key Project of Science and Technology Commission of Shang-
hai Municipality (No. 19510750300, 19500712300, 16010500300), Industrial Internet
Innovation and Development Project (TC190H3WL).



74 M. Xia et al.

References

1. Yan, J., Guo, F., Wen, C.: False data injection against state estimation in power
systems with multiple cooperative attackers. ISA Trans. 101(10), 225–233 (2020)

2. Sahoo, S., Dragicevic, T., Blaabjerg, F.: Cyber security in control of grid-tied power
electronic converterschallenges and vulnerabilities. IEEE J. Emer. Sel. Top. Power
Electr. 15, 1–15 (2019)

3. Shu, J., Guo, Z., Han, B.: A bilevel optimization model for power network spurious
data injection attack. Autom. Electr. Power Syst. 43(10), 95–101 (2019)

4. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review of false data
injection attacks against modern power systems. IEEE Trans. Smart Grid 8(4),
1630–1638 (2017)

5. Liang, G., Weller, S.R., Zhao, J., Luo, F., Dong, Z.Y.: The 2015 Ukraine blackout:
implications for false data injection attacks. IEEE Trans. Power Syst. 32(4), 3317–
3318 (2017)

6. Gong, X.: Analysis of the situation of the power outage in Venezuela and recom-
mendations for the safety of critical infrastructure. J. Inf. Technol. Network Secur.
38(04), 1–2+14 (2019)

7. Gong, X.: Upadhyay, D., Sampalli, S.: Scada (supervisory control and data acqui-
sition) systems: Vulnerability assessment and security recommendations. Comput.
Secur. 89, 101666 (2020)

8. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 1–33 (2011)

9. Li, L., Yang, H., Xia, Y., Yang, H.: Event-based distributed state estimation for
linear systems under unknown input and false data injection attack. Signal Process.
170, 107423 (2020)

10. Guo, Z., Shi, D., Johansson, K., Shi, L.: Optimal linear cyber-attack on remote
state estimation. IEEE Trans. Control Network Syst. 4, 4–13 (2016)

11. Zhao, Y., Goldsmith, A., Vincent Poor, H.: Minimum sparsity of unobservable
power network attacks. IEEE Trans. Autom. Control 62(7), 3354–3368 (2017)

12. Kim, J., Lang, T., Thomas, R.J.: Subspace methods for data attack on state esti-
mation: a data driven approach. IEEE Trans. Signal Process. 63(5), 1102–1114
(2015)

13. Zhong, H., Du, D., Li, C., Li, X.: A novel sparse false data injection attack method
in smart grids with incomplete power network information. Complexity 1–16 (2018)

14. Muniraj, D., Farhood, M.: Detection and mitigation of actuator attacks on small
unmanned aircraft systems. Control Eng. Pract. 83, 188–202 (2019)

15. Huaye, P., Chen, P., Hongtao, S., Mingjin, Y.: Incremental detection mechanism
of microgrid under false data injection attack. Inf. Control 48(5), 522–527 (2019)

16. Chen, R., Li, X., Zhong, H., Fei, M.: A novel online detection method of data
injection attack against dynamic state estimation in smart grid. Neurocomputing
344, 73–81 (2019)

17. Du, D., Chen, R., Li, X., Wu, L., Zhou, P., Fei, M.: Malicious data deception
attacks against power systems: a new case and its detection method. Trans. Inst.
Measur. Control 41(6), 1590–1599 (2019)



Impact Analysis of False Data Injection Attack on Smart Grid Estimation 75

18. Du, D., Li, X., Li, W., Chen, R., Fei, M., Wu, L.: ADMM-based distributed state
estimation of smart grid under data deception and denial of service attacks. IEEE
Trans. Syst. Man Cybernet.-Syst. 49(8), 1698–1711 (2019)

19. Xia, M., Du, D., Fei, M., Li, X., Yang, T.: A novel sparse attack vector construction
method for false data injection in smart grids. Energies 13(11) (2020)

20. Aghanoori, N., Masoum, M.A., Abu-Siada, A., Islam, S.: Enhancement of microgrid
operation by considering the cascaded impact of communication delay on system
stability and power management. Int. J. Electr. Power Energy Syst. 120, 105964
(2020)

21. Ding, D., Han, Q.L., Xiang, Y., Ge, X., Zhang, X.M.: A survey on security control
and attack detection for industrial cyber-physical systems. Neurocomputing 275,
1674–1683 (2018)


	Impact Analysis of False Data Injection Attack on Smart Grid State Estimation Under Random Packet Losses
	1 Introduction
	2 Problem Formulation
	2.1 Data Transmission Model
	2.2 Power Grid Measurement Model

	3 Analysis of Weighted Least Squares Estimation
	4 Simulation Study
	5 Conclusions
	References




