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Abstract. Bundle adjustment plays an significant role in SLAM (simul-
taneous localization and mapping), which is utilized in both front-end
visual odometry and global back-end optimization. In many SLAM sys-
tems, bundle adjustment is employed to estimate the location of 3D
landmarks and 6 DOF camera pose. However, as the dimension of the
optimization variable increases, bundle adjustment consumes more and
more time in SLAM, mainly in the iterative process. In this paper, an
improved algorithm for this large scale bundle adjustment problem has
been proposed. Firstly, according to the pose consensus, the classic algo-
rithm ADMM (alternating direction method of multipliers) is introduced
into the bundle adjustment problem. Secondly, for the non-convex opti-
mization problem, the sub problem optimization method is introduced,
and convergence and stopping criteria of the algorithm are discussed.
Finally, the semi-dense direct method visual odometry for verification
is implemented, and the experiments prove that the improved bundle
adjustment algorithm has a speed advantage and can be applied to BAL
(bundle adjustment in the large) problem.

Keywords: Bundle adjustment · Simultaneous localization and
mapping · Alternating direction method of multipliers · Visual
odometry · Pose consensus

1 Introduction

In the past decades, with the development of robots and autonomous driving,
SLAM (simultaneous localization and mapping) have become increasingly impor-
tant [3,7]. In order to locate and map more accurately, people use higher qual-
ity and higher resolution images to extract more feature points. However, this
caused the bundle adjustment process in SLAM to spend more time and com-
puting resources, and some even required GPUs to speed up. Bundle adjustment
is the problem that optimizes the visual reconstruction to obtain the best 3D
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structure and estimation of viewing angle parameters (camera calibration and
pose) [22] in the SLAM. Bundle adjustment adjusts to obtain optimal camera
parameters and world landmarks coordinates by utilizing the camera’s pose and
the 3D coordinates of the measurement points as unknown parameters, and using
the coordinate of the feature points observed on the camera at the front inter-
section as observation data. The optimized parameters include the coordinates
of the world landmarks and the pose of the camera. Both of these determine the
projection bundle during the camera projection process, so we are adjusting the
bundle, which is also the origin name of the bundle adjustment.

Bundle adjustment is a non-linear optimization problem, which can be opti-
mized through iteration using the least squares method. The Gauss-Newton and
Levenberg-Marquadt methods [13] are the most popular methods in optimizing
the bundle adjustment formula. The time consumed by the bundle adjustment
process is related to the dimension of the optimization variable. As the dimension
of the optimization variable increases, the time of the bundle adjustment will
also greatly increase. In some dense and semi-dense construction maps, there
are tens of thousands of optimized world coordinate points, which makes the
matrix dimension of the least squares solution very large, resulting in a slow
speed. Even in recent years, people have realized the sparseness of the bundle
adjustment problem [6,19], but it still takes a lot of time for large-scale recon-
struction.

In order to increase the speed in bundle adjustment optimization, a related
algorithm is proposed in this paper. The proposed algorithm decomposes the
large Hessian matrix into two small Hessian matrices, where the dimensions
of the small matrix are about half that of the large matrix, and the speed of
inverting the two small matrices is much greater than that of the large matrix.
The main contributions of this paper are as follows: (1) The algorithm proposes
that the large matrix in the bundle adjustment process can be decomposed into
two mutually constrained small matrices. The two small blocks have different
world points, but their poses are the same. In this way, the ADMM [5] algorithm
can be applied to constrain it for optimization. (2) The projection function is
non-convex, so the convergence and termination conditions of the algorithm
need to be analyzed. We analyze that projection function has local Lipschitz-
continuous, and thus the augmented Lagrangian function in ADMM is convex
and it can converge.

The structure of the paper is organized as follows. Section 1 reviews the time-
consuming problems in large-scale bundle adjustment and proposed an improved
method. In Sect. 2, we discuss the related work of incremental bundle adjust-
ment, explain their advantages and disadvantages, and lead to our research con-
tent. Section 3 introduces the bundle adjustment and the ADMM algorithm, and
discusses how to apply the ADMM algorithm in bundle adjustment. In the Sect.
4, we discussed the convergence and termination conditions of the algorithm. In
Sect. 5, the experimental results using our proposed algorithm has been shown. At
last, our conclusion will be showed in Sect. 6.
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2 Related Work

When the robot moves in a long time and space, there are many methods using
the sliding window [8] method to discard some historical data due to the many
optimized variables. Or according to the practice of pose graph [17], abandon
the optimization of the landmark points, and only keep the edges between poses.
There are also some attempts to solve Structure-from-Motion in cities and even
the earth, such as the work in [11]. However, none of these tasks has been globally
optimized because the cost of global bundle adjustment optimization is very large
and cannot be completed with limited time and resources.

Some approaches have been proposed for incremental bundle adjustment.
The iSAM [15] transforms the graph optimization problem in bundle adjustment
into a Bayesian tree establishment, update, and inference problem. The whole
architecture of this method is based on probabilistic reasoning, and it uses QR
matrix factorization to optimize on sparsity. But only a small part of the decom-
position result has been updated in each iteration instead of the whole graph.
SLAM++ [20] recover estimates and variances, and update Schur complement
space incrementally in bundle adjustment. However, the above algorithm is only
appropriate for handling the sparse camera problem (most of the key points are
only visible in few frames), which is consistent with the large-scale SfM prob-
lem. But in the SLAM problem, most of the frames in the local sliding window
share a large part of the key points, so that the above incremental algorithm
evolves into a conventional BA solver, and the positioning accuracy cannot be
better than other latest algorithm. In visual inertial fusion of SLAM, ICE −BA
[18] efficiently uses the previously optimized intermediate results to avoid new
redundant calculations. This algorithm significantly improves the solution speed
and can be applied to most VI-SLAM based on sliding window method, but this
method only uses the repeatability of intermediate calculation results. At the
same time, the good engineering in Ceres [1] and g2o [14] implements BA and
is used in various SLAM systems. However, there is an obvious disadvantage in
these methods: the complexity increases twice with the number of image frames.
In order to achieve real-time pose estimation, SLAM systems based on these
solvers can only utilize very limited measurements.

In order to deal with above problems, referring to ADMM algorithm [5], we
propose an improved bundle adjustment algorithm to optimize the world points
and pose. Main contributions of this paper are as follows: (1) Our algorithm
proposes that the large Hessian matrix in the BA process can be decomposed
into two mutually constrained small Hessian matrices. The two small blocks have
different world points, but their poses are the same. In this way, the ADMM algo-
rithm can be used to constrain it for optimization. (2) The projection function
is non-convex, so the convergence and termination conditions of the algorithm
need to be analyzed. We analyze that projection function has local Lipschitz-
continuous, and thus the augmented Lagrangian function in ADMM is convex.
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3 Proposed Method

3.1 Bundle Adjustment

Bundle adjustment is a reprojection process. With the camera parameters, the
measured world landmarks are reprojected on the pixel plane and then com-
pared with the points observed by the camera. Camera parameters include
external and internal parameters. The external parameters include the cam-
era’s translation vector and rotation matrix. The internal parameters include
the distortion coefficient and focal length. At different times, the external cam-
era parameters are not the same, but internal parameters are generally the
same. Suppose we have M observed 3D points, the external parameter set of
N cameras is recorded as Ξ = {ξi ∈ RC | i = 1, ..., N}, and the inter-
nal parameter set is recorded as D = {dii ∈ RI | i = 1, ..., N}, record the
observed 3D point set P = {pj ∈ R3 | j = 1, ...,M} and the observation as
Z = {zij ∈ R2 | i = 1, ..., N ; j = 1, ...,M}, zij indicates that the i-th camera
observes the j-th point. The cost function can be expressed as follows

f(Ξ,D,P ) =
1
2

N∑

i=1

M∑

j=1

‖zij − h(ξi, di, pj)‖22 (1)

where h(ξi, di, pj) is the reprojection equation of the j-th point on the i-th cam-
era, is nonlinear and non-convex. The pose here includes two parameters, namely
translation vector and rotation matrix. Solving this nonlinear least squares prob-
lem is equivalent to adjusting camera parameters and landmark points at the
same time, and this process is called bundle adjustment.

3.2 ADMM

The proposal of ADMM algorithm [4] is to handle the following format problems:

min f(x) + g(z) subject to Ax + Bz = c (2)

According to the augmented Lagrangian multipliers method, we get

L(x, z, y) = f(x) + g(z) + yT (Ax + Bz − c) +
p

2
‖Ax + Bz − c‖22 (3)

The ADMM algorithm consists of iterations:

xk+1 = argmin
x

Lp(x, zk, yk) (4)

zk+1 = argmin
z

Lp(xk+1, z, yk) (5)

yk+1 = yk + p(Ax(k+1) + Bzk+1 − c) (6)

The updates of parameters are implemented by alternating iterations.
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And we want to use the ADMM algorithm to solve the general form of the
consistency optimization problem:

min
N∑

i=1

f(xi) subject to x̂i = ẑ, i = 1, ..., N (7)

Here, because the parameter space is divided into blocks, the parameter dimen-
sions of each sub-objective function fi(xi) are different, which are called local
variables. Local variables no longer correspond to global variables but are part
of global variables. Map a part of xi to a part of the global variable z as ẑi. Using
ADMM, the expressions capable of the deriving iteration are

xk+1
i = argmin

xi

(fi(xi) + yk
i (x̂i − ẑ) +

p

2
‖x̂i − ẑ‖22) (8)

ẑk+1 =
1
n

N∑

i=1

x̂i
k+1 (9)

yk+1
i = yk

i + p(x̂i
k+1 − ẑk+1) (10)

The augmented Lagrangian constant p > 0, and Eq. (9) is the average of the
optimization results of different nodes.

3.3 Pose Consensus

According to the algorithm given above, for a large bundle adjustment problem,
we can decompose it into multiple small blocks for processing. In fact, dividing
into two small blocks is the most common and can achieve better speed and
accuracy [10].

In the bundle adjustment problem, a camera will observe many points at
one location, and then optimize the feature points and locations together. In the
optimization, the characteristics of these feature points are the same, and the
constraints on the camera pose are also the same. This inspired us to divide them
into two separate optimizations. When we are processing bundle adjustment, the
observation set Z is divided into Z1 ∈ Z and Z2 ∈ Z, that is zij is randomly
divided into two parts. At the same time, we record the external and internal
parameters of each camera as T as a whole and define T1 and T2 as the external
parameters of the N cameras in the observation sets Z1 and Z2, respectively.
The relationship between these blocks is shown in Fig. 1.

Then bundle adjustment problem in the (1) can be modified as follows:

min
2∑

i=1

f(Ti, Pi) subject to AiTi = T, i = 1, 2 (11)

The top left corner of Ai is an identity matrix, and all other elements are 0. The
size of the identity matrix is related to the pose that needs to be optimized.
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Fig. 1. Camera parameters are represented by squares, and circles represent world
coordinate points. The blue line indicates that a world coordinate point is observed
by a camera. Red double arrows indicate that these two poses are local poses and are
constrained by the global pose. Another figure shows calculation of the first iteration
of the Hessian matrix. A1J

T
2 J2 means to take out the position-constrained part in

2-block. (Color figure online)

According to the augmented Lagrangian multiplier method, the cost function
obtained is as follows:

Lp =
2∑

i=1

(f(Ti, Pi) + yT
i (Ti − T ) +

p

2
‖Ti − T‖2) (12)

(T1, P1)k+1 = argmin
T1,P1

Lp(T1, P1, T
k
2 , P k

2 , yk
1 , yk

2 ) (13)

(T2, P2)k+1 = argmin
T2,P2

Lp(T k+1
1 , P k+1

1 , T2, P2, y
k
1 , yk

2 ) (14)
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T =
1
2
(T1 + T2) (15)

yk+1
1 = yk

1 + p(A1 ∗ T1 − T ) (16)

yk+1
2 = yk

2 + p(A2 ∗ T2 − T ) (17)

Taking the first block as an example, it can be finally derived that the first-order
Jacobian matrix in the derivation of poses and landmark points is as follows.

∂Lp

∂T1
=

∂f(T1, P1)
∂T1

+ y1 + p(T1 − T )

+ A1(
∂f(T2, P2)

∂T2
+ y2 + p(T2 − T )),

∂Lp

∂P1
=

∂f(T1, P1)
∂P1

(18)

From above analysis, we can also see that the constraints between the two
small blocks are only poses and no landmark points. The calculation method for
the first block’s Hessian matrix is shown in Fig. 1. So we calculate the Jacobian
matrix independently and constrain it before iteration.

4 Convergence and Stopping Criterion

4.1 Convergence

The reprojection function f(x) in Eq. (7) should be a convex function in ADMM
algorithm. But in fact, the objective function of bundle adjustment in Eq. (1) is
non-convex. Some work, such as [12,16], the proximal splitting method applied
to non-convex problems has been analyzed. Work [9] proposed a convergence
state and consistency of coordinate points, and [23] suggested that the cam-
era consistency problem was convergent. Referring to the analysis above, the
convergence of the improved bundle adjustment algorithm in this paper will be
analyzed.

The proof of the ADMM method’s convergence on the convex function is
shown in [5]. In Eq. (12), the convexity of f(x) determines the convexity of Lp. If
f(x) is a convex function, so is Lp. But the reprojection function is not convex.
With the theory in [16], f(x) should be local Lipschitz-continuous and have Lips-
chitz constant pmin, which ensures that when p > pmin, Lp is a convex function.
The proximity operator should handle on all landmarks in Eq. (12), because
Lipschitz-continuous is defined on all variables. Based on the requirement of
Lipschitz-continuous, we discuss the objective function in bundle adjustment.

Because the internal parameter matrix does not change with changes in cam-
era motion, we can ignore the internal parameters when analyzing convergence.
Therefore, for the reprojection function of Eq. (1), we consider R

(1:2)
i as the first

two rows of Ri, and R
(3)
i is the third row of Ri (similarly for t

(1:2)
i and t

(3)
i ).
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Then the projection function of the j-th point on the i-th camera can be written
as follow:

f(Pj |Ri, ti) :=
R

(1:2)
i Pj + t

(1:2)
i

R
(3)
i Pj + t

(3)
i

(19)

t and R are the translation vector and rotation matrix in the external parame-
ters, respectively. For this formula, the denominator is the only part of the f(x)
gradient that may disrupt Lipschitz-continuous. To avoid infinitely small denom-
inators, we must assume that the denominator R

(3)
i Pj + t

(3)
i > dmin > 0. This

is that the depth of any point observed by any camera in bundle adjustment
must be greater than dmin, and this is a reasonable assumption in the SLAM
problem.

Then we consider the Lipschitz-continuous of the rotation parameter of the
objective function in Eq. (1). We can utilize quaternions and Euler angles to
represent the rotation, and the rotation matrix R is denoted as rR. The work
[25] proposed that to warrant the Lipschitz-continuous of the cost function,
the Lipschitz-continuous of ∂R/∂rR must be guaranteed. The mapping of a
quaternion to a rotation matrix is designed to normalize the quaternion, so when
the quaternion is close to zero, the gradient is not limited. Although the gradient
R3− > SO(3) of the exponential mapping of the angular axis to the rotation
matrix also has a part of ‖θv‖−a, a > 0, it can be proved that when ‖θv‖− > 0,
the Jacobian tensor of the exponential mapping is a constant. Therefore, the
gradient of the exponential map Lipschitz-continuous can be proved. Based on
the above analysis, we can see that the augmented Lagrangian function Lp is
convergent.

4.2 Stopping Criterion

For the problem in Eq. (12), when the ADMM method finally reaches the optimal
solution, the following two conditions will be satisfied:

A1T1 − T = 0, A2T2 − T = 0 (20)

0 ∈ ∂f(T ∗
1 ) + AT

1 y∗
1 , 0 ∈ ∂f(T ∗

2 ) + AT
2 y∗

2 (21)

We note the dual and original residuals as rk = A1T1 − T + A2T2 − T and
sk = pAT

1 A2(T k
2 − T k−1

2 ), respectively. According to these two formulas, it can
be derived as follows:

0 ∈ ∂f(T k+1
1 + AT

1 yk
1 + pAT

1 (A1T1 − T + A2T2 − T )

= ∂f(T k+1
1 + AT

1 (yk
1 + prk + pA2(T k

2 − T k+1
2 ))

= ∂f(T k+1
1 + AT

1 yk+1 + pAT
1 A2(T k

2 − T k+1
2 )

(22)

That is
pAT

1 A2(T k+1
2 − T k

2 ) ∈ ∂f(T k+1
1 + AT

1 yk+1) (23)
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In this algorithm, when the dual residual term approaches 0, the above condi-
tions can be satisfied. We assume that the dual residuals and the initial residuals
are reduced to a certain error range and then stop iterating. Generally set to

‖sk‖22 < εdual, ‖rk‖22 < εpri (24)

From the above introduction and analysis of the algorithm, we can get the
improved bundle adjustment algorithm process. Based on pose consensus, an
improved bundle adjustment algorithm is summarized in Algorithm 1.

Algorithm 1 - Improved Bundle Adjustment based on the ADMM
1: input Camera parameters Ξ,D and landmarks P
2: Initialize ξi = 0, i = 1, ..., N , get D and P from measurements
3: repeat
4: update x1 with Eq.(13)
5: update x2 with Eq.(14)
6: update T with Eq.(15)
7: update yk+1

1 with Eq.(16)
8: update yk+1

2 with Eq.(17)
9: until the criterion in Eq.(24) is satisfied

5 Experiments

5.1 Semi-dense Visual Odometry

In the direct method, there is no correspondence between feature points because
the descriptors are not calculated and feature matching is not performed. We
don’t know which point p2 on the second photo corresponds to point p1 on the
first photo. Therefore, the idea of the direct method is to provide an initial value
of pose, and to look for position of p2 from the current estimate. If the pose
estimates given are poor, the appearance (brightness) of p2 will be significantly
different from p1. To reduce this difference, we constantly adjust the camera
pose to find p2, which is more similar to p1. The object of minimization is the
photometric error, and the premise of the direct method is the photometric
constant assumption.

The semi-dense direct method is to calculate pixels with gradients in the
image and then track these pixels. The advantage of the direct method is that
it uses more observation information, which can be used in situations where
features are missing, and to build a semi-dense map. At the same time, the
shortcomings are also very clear, and the movement must be small to ensure
convexity, and the photometric constant is a strong assumption.

In this paper, a semi-dense direct method of visual odometry has been imple-
mented, which has three main characteristics. First, pick some points randomly
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Fig. 2. We use the rgbd dataset freiburg1 xyz for testing to find the average time
required for each frame and the iteration time changes with the number of feature
points. IBA and BA represent the results of using improved and unimproved bundle
adjustment, respectively.

when taking pixels, which can speed up the speed. This also utilizes the feature
that the direct method does not require feature matching. Second, a four-layer
image pyramid is used when estimating poses, which can improve accuracy.
Third, the improved bundle adjustment algorithm proposed above is used when
estimating the pose and landmark points.

TUM [21] is a large data-set, which includes ground truth data and RGB-D
images, and we use it for experiments. The convergence of the proposed algorithm
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is tested first. According to stopping criterion, we set to stop iteration when the
error is less than a certain range. Because we do not know whether the algorithm
converges, we need to set the maximum number of iterations, so that even if the
algorithm does not converge, it will not enter the iteration loop. If the algorithm
is convergent, the time required by the algorithm will tend to stabilize with the
number of iterations increases. We assume each frame takes 1000 points, and
then set a different maximum iterations. Simultaneously, we analyze influence
of the number of extracted feature points on algorithm time by changing the
number of feature points and compare iteration time. The above experiment
result is shown in the Fig. 2.

It can be obtained from the result, for a single-frame picture, when the max-
imum number of iterations of the bundle adjustment process is greater than 3,
the time required is basically unchanged. The reason for this is that when the
number of iterations has not arrived the maximum iterations, iteration process
has been stopped according to the stopping criterion. This also reflects the con-
vergence of the algorithm, because if the algorithm does not converge, the time
will increase as the number of iterations increases. And it can be seen from the
figure that as the number of extracted feature points increases, time required
by the algorithm also increases dramatically. This is because the complexity of
the matrix decomposition algorithm used in the bundle adjustment process is
O(n3), where n is the side length. It can also be seen from the curve that our
improved bundle adjustment algorithm is superior to the previous one.

After getting our algorithm is convergent, we set up experiments to compare
time and error. We tested four sets of data-sets, the time required for testing
each set of data-sets and output estimated trajectory. Then calibrate with the
real trajectory to get the RPE (relative pose error) and ATE (absolute trajectory
error). At the same time, calculate average time consumed by each frame. We
set 1000 points for each frame, and the results are shown in Table 1.

Table 1. Results of different data-sets under different optimization methods

Data-set Images Algorithm Total time Average time ATE RPE

f1 xyz 1353 BA 1876.64 1.39 0.18 0.24

IBA 1546.37 1.14 0.23 0.39

BAP 9.20 0.01 0.55 0.82

f1 desk 574 BA 965.61 1.68 0.87 1.04

IBA 740.21 1.29 0.69 1.20

BAP 25.94 0.05 2.65 3.76

The above table is the test results of four different data-sets. Among them,
BAP means that only the pose is optimized, and the landmark points are not
optimized, BA and IBA are the same as the previous experiment. The four sets of
experiments only optimize the pose and the speed is fast. This is because most
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of the time in BA is used in the calculation of matrix inversion. The matrix
that only optimizes the pose is small, so the speed is fast, but the error is also
large. It can be obviously obtained from the experiments in the first and second
groups that the algorithm we proposed is more efficient than the previous, and
the errors of the two algorithm are relatively similar. Overall, our algorithm is
faster than the previous one when the error is not large, and it is more effective
when it is more translation and less rotation.

5.2 BAL Problem

Bundle adjustment in the large [2] (BAL) is a geometric reconstruction problem.
BAL provides a data-set that includes observation points, camera parameters,
and world coordinates. We need to optimize these parameters and coordinate

(a)

(b)

Fig. 3. The result of applying the proposed algorithm to the BAL problem.
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points according to the bundle adjustment. In our experiments, the proposed
algorithm has been applied to this large-scale bundle adjustment, and some of
the results obtained are shown in the following Fig. 3.

The above experiment selected a small data-set in Trafalgar Square and
Dubrovnik scenes, respectively. From the reconstruction results, the reconstruc-
tion outline can be clearly seen. At the same time, the reconstruction process
takes less time than the previous algorithm.

6 Conclusions and Future Work

In this paper, an improved bundle adjustment algorithm is proposed. The main
contribution of this work consists of the following two parts: (1) The ADMM
algorithm is introduced in the bundle adjustment process based on pose con-
sensus, so that bundle adjustment can be processed more efficiently. (2) The
convergence of proposed algorithm is analyzed in detail, and the stopping cri-
terion is derived according to the convergence. The experiment results of semi-
dense visual odometry and BAL problem show that the proposed algorithm has
a faster speed when testing the data-sets. In future, the improved algorithms in
global bundle adjustment in SLAM and SFM will be explored, simultaneously
we will explore more efficient algorithms for different optimization problems.
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