
Chapter 9
Fractional SEIR Model for Modelling
the Spread of COVID-19 in Namibia

Samuel M. Nuugulu, Albert Shikongo, David Elago, Andreas T. Salom,
and Kolade M. Owolabi

Abstract In this chapter, a fractional SEIR model and its robust first-order uncon-
ditionally convergent numerical method is proposed. Initial conditions based on
Namibian data as of 4 July 2020 were used to simulate two scenarios. In the first
scenario, it is assumed that the proper control mechanisms for kerbing the spread
of COVID-19 are in place. In the second scenario, a worst-case scenario is pre-
sented. The worst case is characterised by ineffective COVID-19 control mecha-
nisms. Results indicate that if proper control mechanisms are followed, Namibia can
contain the spread of COVID-19 in the country to a lowest level of 1, 800 positive
cases by October 2020. However, if no proper control mechanisms are followed,
Namibia can hit a potentially unmanageable level of over 14, 000 positive cases
by October 2020. From a mathematical point of view, results indicate that the frac-
tional SEIRmodel and the proposedmethod are appropriate formodelling the chaotic
nature observed in the spread of COVID-19. Results herein are fundamentally impor-
tant to policy and decision-makers in devising appropriate control and management
strategies for curbing further spread of COVID-19 in Namibia.
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Introduction

It is now common knowledge that towards the end of the year 2019 a severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) emerged in aWuhan City of China.
In [1, 2], for example, it is mentioned that COVID-19 infections are transmitted from
one person to the other primarily through saliva droplets or charges from the noses
of infected persons when coughing or sneezing, or physical contacts with an infected
person and touching of infected surfaces. The World Health Organisation (WHO)
declared the new coronavirus disease a public health emergency of international con-
cern on 31 January 2020. By March 2020, the disease had already spread to the rest
of the world in a very shorter period of time. Thus, the WHO on the 11 March 2020
declared COVID-19 a global pandemic. Since then, COVID-19 has been claiming
many lives on a daily basis and currently (as of 11 July 2020 (14:00 GMT +8)) the
hard-hit countries are San Marino with more than 12,380 deaths, Belgium with over
843 deaths, Andorra with over 672 deaths, followed by the UKwith over 656 deaths.

COVID-19 is a highly contagious viral disease that is perpetually imposing severe
burdens on public health and economies and has thus created chaos across the globe
see for example [2–4] and references therein. Since there exists no clinically tested
vaccine or proper medication for treating COVID-19, most governments across the
world have drawn their attentions to stiffening of precautionary measures such as
lockdowns, social distancing protocols, self-isolations, quarantines as well as enforc-
ing basic public health practices of regular washing and sanitisation of hands to help
control further spread of the virus, see for example [2, 5]. In Namibia, President
Hage Geingob declared a state of emergency on the 17 March 2020 and stipulated
some unprecedented measures to help curb further spreading of COVID-19 in the
country.

In view of the above-mentioned developments, models for studying dynamical
behaviour of COVID-19 have been developed. For instance, Kassa et al. in [6] for-
mulated and analysed a COVID-19 mathematical model with model parameters esti-
mated from available COVID-19 data. The authors’ investigation involved a back-
ward bifurcation analysis which is believed to arise when recovered individuals do
not develop permanent immunity for the disease, i.e., (Ro = 1) and disappear in the
absence of re-infection (Ro < 1). Fanelli and Piazza in [7] analysed and forecasted
the spread of COVID-19 inChina, Italy and France using a simple day-lagmap points
of a simple susceptible-infected-recovery-death (SIRD) integer-orders model.

Mishra et al. in [2] developed a three special compartmental quarantine mod-
els, susceptible-immigrant-home isolation-infectious-hospital quarantine-recovered
(SIR) model. The authors performed numerical simulations and concluded that hos-
pitals quarantine and home isolations are indispensable forces to control spread of the
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virus in the absence of treatment and vaccine. Postnikov in [4] studied the dynamics
of COVID-19 using a simple susceptible-infectious-recovered (SIR) integer-order
model proposed by Kermack andMcKendrick in [4]. The author applied the sequen-
tial reduction of the SIR to a logistic regression-based equation and applied the
resultant model to validating the COVID-19 recent data reported by the European
Centre for Disease Prevention and Control.

Ullah and Khan [8] also developed a new mathematical transmission model to
explore the transmission dynamics and impact of non-pharmaceutical control of
the COVID-19 pandemic in Pakistan. In the first instance, they developed their
model without optimal control variables and estimated the model parameters from
the reported cases using a nonlinear least square curve fitting technique. In the sec-
ond case, after reformulating the model, they added two time-dependent control vari-
ables, i.e., quarantine, hospitalisation and self-isolation interventions for the infected
individual. They reported that their model outputs are in good agreement with the
COVID-19 confirmed cases in Pakistan. The infection horizons of COVID-19 esti-
mation using a data-driven approach and an SIR model with a time varying disease
transmission rate are studied in [9] and [10], respectively. Moreover, Manotosh et
al. in [5] formulated a model of integer order to study the dynamical behaviour
of the spread of COVID-19 by quantifying the basic reproductive number to help
predict and control further the spread of COVID-19 by introducing quarantine and
governmental measures components in the model.

The theory of fractional calculus is more than three centuries old just like classical
integer-order calculus, but it was not popular in science [11] and engineering field
[12–14] and recent discoveries of fractal geometries in different scientific fields
of applications such as finance, love dynamics as well as disease modelling, see
for example [15–20] and references therein have justified that fractional calculus-
based models are appropriate for handling real-world phenomenons better than their
integer-order counterparts.

Fractional calculus epidemiological models provide a general version of the
integer-order epidemiological models by replacing integer-order derivatives with
corresponding non-integers-order derivatives. Since fractional differential operators
are non-local and are often characterised by power processes [18], fading memo-
ries [15] as well cross-overs [14] such features make them appropriate in dealing
with dynamical real-life phenomena, see for example [15, 17, 18]. Though these
features until recently have only been commonly observed in stock price dynamics,
underground water modelling, etc., (see for example [17, 18, 21–23] and reference
therein), the extension of fractional calculus in this chapter and also in other recent
work in [15, 16, 24, 25] to modelling the chaotic nature of the spread of COVID-19
is well appropriate.

Zhang et al. in [25] applied fractional differential equations in modelling the
dynamics and mitigation scenarios of COVID-19 for the first time in China. The
authors proposed and applied a time-dependent susceptible-exposed-infectious-
recovered (SEIR) model to fit and predict the time series of COVID-19 for three
months (22 December 2019 to 22 March 2020) data from China. Their validated
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SEIR model was then applied further to predict the dynamic behaviour in Japan,
Italy, South Korea and the USA.

Atangana in [16] also applied new fractional operators to modelling the spread
of COVID-19 as well as to investigating the effect of governments’ lockdown proto-
cols. The author considered the possibility of infection ofmedical personnels by dead
bodies during the postmortemprocedures or direct contact during the funeral arrange-
ments, removed the transmission rate from dead bodies and incorporated lockdown
and social distancing effects using the next generation matrix. Their results indicate
that zero basic reproductive number can be achieved if lockdown recommendations
are observed properly.

In [15], Alkahtani and Alzaid investigated the stability conditions for a numer-
ical method based on Lagrange polynomial for fractional-orders epidemiological
model with eight compartments. Another fractional derivative-based model was also
formulated by Khan and Atangana [24] to describe the dynamics of COVID-2019.
They applied an Atangana-Baleanu derivative operator to their model as they believe
that many properties such as the kernel which is nonlocal and non-singular, and the
crossover behaviours within the model are best to explain using Atangana-Baleanu.
Their results indicate that the virus is locally asymptotically stable when the repro-
duction less than a unit. With the given data, they estimated that the basic repro-
duction number for the given data is Ro ≈ 2.4829. The Atangana-Baleanu fractional
derivative operator-based model was also used by Khan et al. in [26] in studying the
dynamics of COVID-19 by incorporating the quarantine and isolations principles in
the model formulations.

The exponential growth of the pandemic and chaotic situations it caused globally
in the health sector, international trades, travel and tourism, as well as energy sector
is undoubtebly significant, see Nuugulu et al. in [23]. The unprecedented effects of
the virus have forced governments and private institutions globally to take drastic
measures to contain further spread of the virus. Some of thosemeasures implemented
globally are travel restrictions, lockdowns, physical distancing and self-isolations
among others. While these measures are in place, researchers around the world are
nowworking on different theory andmodels to understand the dynamics of the spread
and possible impact of COVID-19. The primary motivation therein is to assist the
policy and decision-makers as well as health officials to plan for healthcare needs
and craft out appropriate mitigation strategies as epidemic unfold.

Namibia being a semi-arid country situated in Southern Africa has also not being
spared, by the time of finalising this manuscript, Namibia has recorded a total of 25
positive cases, a majority of which are all travel related. Compared to other countries
in the region, Namibia has been applauded of its effective efforts in cushioning the
unanticipated impacts of the outbreak. Declaration of a state of emergency on the
outbreak earlier and locking down the entire country was some of the best strategies
the country used in curbing further spread of the virus.

This chapter therefore firstly serves to propose a fractional calculus-based model
and its robust numerical method for modelling the spread of COVID-19 in Namibia.
Secondly, the study serves to illustrate why there is a need for Namibia to continue
on its best trajectory in controlling and managing further spread of COVID-19 as
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well as set out some policy recommendations for managing the spread of COVID-19
in the country. The rest of the chapter is organised as follows. In Sect.Conceptual
Model, we present the conceptual model under consideration, whereas in Sect.Math-
ematical Analysis of the Conceptual Model, we carry out the analysis of the concep-
tual model. The numerical method is derived in Sect.Construction of the Numerical
Method and the results and discussions are presented in Sect.Results andDiscussion.
SectionConcluding Remarks and Policy Recommendations presents the conclusion
and policy recommendations.

Conceptual Model

Themodel under consideration is a fractional susceptible-exposed-infected-recovered
(SEIR) model. Our classes are defined as follow: susceptible (S)—those individuals
who are at the risk of infection, exposed (E)—those individuals who are already
exposed to the virus by being in contact with a person who is infected, infected
(I )—comprising of individuals who are diagnosed and tested positive for COVID-
19 and lastly the recovered individuals in class (R). Figure 9.1 shows a graphical
representation of the dynamics of the considered SEIR model.

A fractional SEIR model is a generalisation of the well-known classical SEIR
model. In this model, we assume that the change in the population follows a super-
fractal diffusion process with fractional steps characterised by the Hurst parameter
α ∈ [1/2, 1). The Hurst parameter α is very fundamental in effectively modelling
the chaotic nature of the spread of the COVID-19. Assuming that the incubation
period is a random variable with exponential distribution with parameter ϑ (i.e., the
average incubation period is ϑ−1) and also assuming the presence of vital dynamics
with birth rate � equal to death rate μ, we get the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t St = � − μSt − β It

N St,
cDα

t Et = β It
N St − (μ + ϑ)Et,

cDα
t It = ϑEt − (π + μ)It,

cDα
t Rt = π It − μRt,

with

St(0) = S0 ≥ 0, Et(0) = E0 ≥ 0, It(0) = I0 ≥ 0, Rt(0) = R0 ≥ 0, on [0,T ],

(9.1)

where t ≤ T ∈ �, α ∈ [1/2, 1), cDα
t ,�,μ, β, ϑ, π denote fractional derivative in

defined in the Caputo sense, influx rate, death rate, infection rate, incubation rate,

Fig. 9.1 Graphical representation of the proposed spread of COVID-19. Source own
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recovery rate, respectively. We further assume that N = St + Et + It + Rt denotes
the total population, where subscript t denotes time.

Mathematical Analysis of the Conceptual Model

In this section, we assess the existence and uniqueness of solution to (9.1), as well
as its continuous dependency on data, equilibrium points, reproductive number and
stability conditions.

Existence of Uniqueness of Solution and Continuously
Dependency on the Data

Since the conceptual model in Eq. (9.1) is an initial value problem (IVP), it can be
expressed as

u(t) = u(0) + 1

�(α)

∫ T

0
(t − s)α−1F(s,u(z))ds, (9.2)

where

u(t) = (St,Et, It,Rt, )
′,F = (f1, f2, f3, f4)

′

in which,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 = � − μSt − β It
mSt,

f2 = β It
mSt − (μ + ϑ)Et,

f3 = ϑEt − (π + μ)It,

f4 = π It − μRt .

Since the IVP in Eq. (9.1) is a system of continuous functions, then it is in the space
of continuous function C[0,T ], thus, it suffices to define the operator

Au := u(0) + 1

�(α)

∫ T

0
(t − s)α−1F(s,u(z))ds, (9.3)

such that the following results hold.

Theorem 1 Let V denote a nonempty closed subset of a Banach space B, such that
for every Mj ≥ 0,

∑∞
j=0 converges. Moreover, let A : V → V denotes a mapping

satisfying



9 Fractional SEIR Model for Modelling the Spread … 167

‖A(j)u − A(j)v‖ ≤ Mj‖u − v‖,

for every j ∈ � and u, v ∈ V.

Proof The proof to these results has already been established in [27], therefore, we
conclude that there exist a unique solution to the IVP (9.1). 
�

Next, we establish results on the continuous dependency of the unique solution
to the IVP in (9.1) on the data. To do so, we re-define the IVP in (9.1) as

Definition 1

Dα(u − T0[u])(t) = F(t,u(t)), with u(0) = u0, (9.4)

where T0[u] denotes Taylor polynomial of order 0 for u centred at origin.

Theorem 2 Let D := [0,T ] × [u0 − δ,u0 + δ], for some δ > 0. Furthermore, let
u, v denote the unique solutions of

Dα(u − T0[u])(t) = F(t,u(t)), with u(0) = u0,

and

Dα(v − T0[v])(t) = F(t, v(t)), with v(0) = v0,

respectively. Then,

‖u − v‖∞ = O (‖max |u0 − v0| ‖) ,

over any compact interval in which u and v exist.

Lemma 1 Let D := [0,T ] × [u0 − δ,u0 + δ], for some δ > 0 such that F, F̃ are
continuous on D and f satisfy Lipschitz conditions with respect u. Furthermore, let
u, v denote the unique solutions of

Dα(u − T0[u])(t) = F(t,u(t)), with u(0) = u0,

and

Dα(v − T0[v])(t) = F(t, v(t)), with v(0) = v0,

respectively. Then,

‖u − v‖∞ = O
(
‖F − F̃‖

)
,

over any compact interval in which u and v exist.
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Proof The proof to Theorem 2 and Lemma 1 has also been established in [27]. 
�
The uniqueness and data dependency of the model on the data has been demon-

strated in the two considered scenarios in Sect.Results and Discussion.

Positivity of Solution

In this section, we simply present that the solution to the IVP in equation (9.1) is
biological feasible.

Theorem 3 The IVP in Eq. (9.1) possesses positive unique solution.

Proof In view of the total population, we see that

cDα
t N (t) = cDα

t St + cDα
t Et + cDα

t It + cDα
t Rt,

which yield

cDα
t N (t) = � − μN ≥ 0.

Therefore, the biological feasible region for the IVP in Eq. (9.1) is

� := {(St,Et, It,Rt) ∈ R
4
+ : St,Et, It,Rt ≥ 0; St + Et + It + Rt = N }.


�

Equilibrium Points

When

cDα
t St = cDα

t Et = cDα
t It = cDα

t Rt = 0,

the IVP in Eq. (9.1) yields the following results.

Theorem 4 The fractional SEIR model (9.1) possesses at most two equilibrium
points, namely the disease free equilibrium point (�

μ
, 0, 0, 0) and an endemic equi-

librium point (S	
t ,E

	
t , I

	
t ,R

	
t ), where

S	
t = (ϑ + μ)(π + μ)

βϑ
,E	

t =
(

βS	
t − (π + μ)

μ

)

I	t , I	t =
(

ϑ

π + μ

)

E	
t ,R

	
t =

(
πϑ

π + μ2

)

E	
t .
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Proof In view of the third and fourth equations in Eq. (9.1), we have

I 	
t =

(
ϑ

π + μ

)

E	
t and R	

t =
(

π

μ

)

I 	
t , (9.5)

respectively. From equations in (9.19), we obtain

R	
t =

(
πϑ

π + μ2

)

E	
t , (9.6)

in which we get the following cases.

• Case 1: When E	
t = I 	

t = R	
t = 0.

• Case 2: When E	
t �= 0, I 	

t �= 0, and R	
t �= 0,.

In view of Case 1:, we see from the first equation one in (9.1) that

� − μSt − β
It
N
St = 0, (9.7)

whenever, cDα
t St = 0, and Nt = 1. Solving for St in Eq. (9.7) we find

S	
t = �

μ
. (9.8)

Equation (9.8) imply that the disease free equilibrium point is
(

�
μ
, 0, 0, 0

)
∈ �.

Similarly, for Case 2:, we are adding the second equation to the third equation in
(9.1) to get

(βS	
t − (π + μ))I 	

t − μE	
t = 0. (9.9)

Then, substituting equation in (9.19) into equation in (9.24) and simplify further,
yields

βS	
t ϑ = (ϑ + μ)(π + μ),

which is equivalent to

S	
t = (ϑ + μ)(π + μ)

βϑ
,

which conclude the prove. 
�
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Reproductive Number

We understand that the reproductive number, henceforth denoted by Ro is defined as
the number of secondary cases that one casewould produce in completely susceptible
individuals. Therefore, to determine it from the disease free situation

S	
t ≥ �

μ
. (9.10)

Since the endemic equilibrium S	
t is

S	
t = (ϑ + μ)(π + μ)

βϑ
, (9.11)

then substituting (9.11) into (9.10) we find

(ϑ + μ)(π + μ)

βϑ
≥ �

μ
, (9.12)

which is equivalent to

1 ≥ �βϑ

μ(ϑ + μ)(π + μ)
.

Hence, the reproductive number is

Ro = �βϑ

μ(ϑ + μ)(π + μ)
. (9.13)

Equation in (9.13) imply that if Ro < 1, the disease free equilibrium point is

(S	
t ,E

	
t , I

	
t ,R

	
t ) =

(
�

μ
, 0, 0, 0

)

≥ 0,

whereas, if Ro > 1 then the endemic equilibrium point

(S	
t ,E	

t , I
	
t ,R	

t ) =
(

(ϑ + μ)(π + μ)

βϑ
,

(
βS	

t − (π + μ)

μ

)

I	t ,

(
ϑ

π + μ

)

E	
t ,

(
πϑ

π + μ2

)

E	
t

)

> 0.

In the next section, we investigate the endemic equilibrium points with respect to Ro.
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Stability Analysis

Linearising the system in Eq. (9.1) at the equilibrium point (S	
t ,E

	
t , I

	
t ,R

	
t ), we obtain

the non-zero entries of the Jacobian matrix as

⎧
⎪⎨

⎪⎩

J (S	
t ,E

	
t , I

	
t ,R	

t )(1,1) = −μ − βI	t , J (S	
t ,E

	
t , I

	
t ,R	

t )(1,3) = −βI	,

J (S	
t ,E

	
t , I

	
t ,R	

t )(2,2) = −(μ + ϑ), J (S	
t ,E

	
t , I

	
t ,R	

t )(2,3) = βS	, J (S	
t ,E

	
t , I

	
t ,R	

t )(3,2) = ϑ,

J (S	
t ,E

	
t , I

	
t ,R	

t )(3,3) = −(π + μ), J (S	
t ,E

	
t , I

	
t ,R	

t )(4,3) = π, J (S	
t ,E

	
t , I

	
t ,R	

t )(4,4) = −μ.

(9.14)

The Jacobianmatrix enables us to determine the nature of the disease free equilibrium
and endemic free equilibrium. This we establish in the next section.

Stability of the Disease Free Equilibrium

At the disease free equilibrium,

(S	
t ,E

	
t , I

	
t ,R

	
t ) =

(
�

μ
, 0, 0, 0

)

,

we see that characteristic equation associated with the Jacobian matrix in Eq. (9.27)
is

P(λ) = λ4 + Aλ3 + Bλ2 + Cλ + μ2D, (9.15)

where
⎧
⎪⎨

⎪⎩

A = (4μ + π + ϑ),B = (3πμ + πϑ − ϑβ + 6μ2 + 3μϑ),

C = (3πμ2 + 2πμϑ − 2ϑβμ + 4μ3 + 3μ3ϑ),

D = (πμ + πϑ − ϑβ + μ2 + μϑ).

Thus, the roots of characteristic polynomials in Eq. (9.15) are

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = −μ, λ2 = −μ,

λ3 = −π
2 − μ − ϑ

2 +
√

π2−2πϑ+4ϑβ+ϑ2

2

λ4 = −π
2 − μ − ϑ

2 −
√

π2−2πϑ+4ϑβ+ϑ2

2 .

(9.16)

Since all roots have negative real parts, it implies that a disease free equilibrium
point is locally stable.

Stability of the Endemic Free Equilibrium

For the endemic free equilibrium, we obtain the following roots to the associated
characteristic equation
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 = −μ, λ2 = −μ − β
(

�βϑ−μ3−μ2ϑ−μ2π−μϑπ

β(μ2+μϑ+μπ+ϑπ)

)

λ3 = −π
2 − μ − ϑ

2 +
√

π2−2πϑ+4ϑβ(
(ϑ+μ)(π+μ)

βϑ
)+ϑ2

2 ,

λ4 = −π
2 − μ − ϑ

2 −
√

π2−2πϑ+4ϑβ(
(ϑ+μ)(π+μ)

βϑ
)+ϑ2

2 .

(9.17)

Since the roots of characteristic equation are real and negative with Ro > 1, then
the endemic free equilibrium point is locally asymptotically stable. Therefore, the
following results follow.

Theorem 5 The basic reproduction number Ro < 1 is globally stable in the feasible
region, whereas, if Ro > 1 the unique endemic equilibrium is globally asymptotically
stable in the interior of the feasible region.

Proof The proof to this theorem has already been established in [28]. 
�

Construction of the Numerical Method

In this section, we design a robust numerical scheme for solving (9.1). Let M be
positive integers and define k = T/M time step-size. Further denote tm = mk; m =
0, 1, 2, . . . ,M , such that tm ∈ [0,T ], then the fractional derivatives in (9.1) can be
approximated using the following numerical quadrature as formulated in [17].

We will illustrate below using initial value problem (IVP)

⎧
⎪⎨

⎪⎩

cDα
t St = f (t, S(t)),

St(0) = S0,

(9.18)

where f (t, S(t)) = � − μSt − β It
N St , the equations for the rest of the compartments

will be given analogously.
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cDα
t St = 1

�(1 − α)

∫ tm

0

dSt
dt

(tm − τ)−αdτ,

= 1

�(1 − α)

m∑

j=0

∫ jk

jk

(
Sj+1 − Sj

k
+ O(k)

)

(mk − τ)−αdτ,

= 1

�(1 − α)

m∑

j=0

(
Sj+1 − Sj

k
+ O(k)

)(
(mk − (j + 1)k)1−α − (mk − jk)1−α

1 − α

)

,

= 1

�(1 − α)

1

1 − α

m∑

j=0

(
Sj+1 − Sj

k
+ O(k)

) [
(m − j + 1)1−α − (m − j)1−α

]
k1−α,

= 1

(α − 1)!
1

kα

m∑

j=0

[
Sj+1 − Sj

] [
(m − j + 1)1−α − (m − j)1−α

]

+ 1

(α − 1)!
m∑

j=0

[
(m − j + 1)1−α − (m − j)1−α

]
O(k)k1−α,

= 1

(α − 1)!
1

kα

m∑

j=0

(Sj+1 − Sj)
[
(m − j + 1)1−α − (m − j)1−α

]

+ 1

(α − 1)!
m∑

j=0

[
(m − j + 1)1−α − (m − j)1−α

]
O(k2−α). (9.19)

Shifting the indices in (9.19), we obtain

cDα
t St = 1

(α − 1)!
1

kα

m∑

j=0

(
Sj+1 − Sj

) [
(j + 1)1−α − j1−α

]

+ 1

(α − 1)!
m∑

j=0

[
(j + 1)1−α − j1−α

]O(k2−α). (9.20)

Let,

� := 1

(α − 1)!
1

kα
, (9.21)

and

γj := (j + 1)1−α − j1−α; j = 0, 1, . . . ,m, (9.22)

such that 1 = γ0 > γ1 > · · · > γm → 0. Substituting � and γj into (9.20) yield
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cDα
t St = �

m∑

j=0

γj
(
Sj+1 − Sj

) + 1

(α − 1)!
m∑

j=0

γjO(k2−α),

= �

m∑

j=0

γj
(
Sj+1 − Sj

) + 1

(α − 1)!n
1−αO(k2−α),

= �

m∑

j=0

γj
(
Sj+1 − Sj

) + 1

(α − 1)!
(
tm
k

)1−α

O(k2−α),

= �

m∑

j=0

γj
(
Sj+1 − Sj

) + t1−α
m

(α − 1)!k. (9.23)

Therefore, cDα
t St in (9.1)

cDα
t St = �

m∑

j=0

γj(Sj+1 − Sj) + O(k). (9.24)

Similarly, the rest of the compartments are

⎧
⎪⎨

⎪⎩

cDα
t Et = �

∑m
j=0 γj(Ej+1 − Ej) + O(k),

cDα
t It = �

∑m
j=0 γj(Ij+1 − Ij) + O(k),

cDα
t Rt = �

∑m
j=0 γj(Rj+1 − Rj) + O(k).

(9.25)

Substituting expressions in Eq. (9.24) into (9.1) and neglecting the error terms of
O(k), equation in (9.1) simplifies to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
j=0 γj(Sj+1 − Sj) = �̂ − μ̂Sm − β̂ Im

N Sm,

∑m
j=0 γj(Ej+1 − Ej) = β̂ Im

N Sm − (μ̂ + ϑ̂)Em,

∑m
j=0 γj(Ij+1 − Ij) = ϑ̂Em − (π̂ + μ̂)Im,

∑m
j=0 γj(Rj+1 − Rj) = π̂ Im − μ̂Rm,

(9.26)

whereby �̂ = �
�

, μ̂ = μ

�
, β̂ = β

�
, ϑ̂ = ϑ

�
, π̂ = π

�
.

By expanding the left hand-side of (9.26), and shifting indices yield to
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
j=0 γj(Sj+1 − Sj) = Sm+1 − γmS0 + ∑m−1

j=0 ϕjSm−j,

∑m
j=0 γj(Ej+1 − Ej) = Em+1 − γmE0 + ∑m−1

j=0 ϕjEm−j,

∑m
j=0 γj(Ij+1 − Ij) = Im+1 − γmI0 + ∑m−1

j=0 ϕjIm−j,

∑m
j=0 γj(Rj+1 − Rj) = Rm+1 − γmR0 + ∑m−1

j=0 ϕjRm−j,

(9.27)

where ϕj = γj − γj+1, j = 0, 1, · · · ,m.

Remark 1 The following observations are trivial to show.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = γ0 > γ1 > · · · γm → 0,

ϕ0 = 1 − γ1,

∑m−1
j=0 ϕj = 1 + γm,

∑∞
j=0 ϕj = 1 > 1 − (

21−α − 11−α
) = 2 − 21−α = ϕ0 > ϕ1 > · · · → 0.

(9.28)

The
∑m−1

j=0 (.) components in (9.27) represent the long memory effects in the
COVID-19 data, which is justified by the dependence between new and the existing
cases. Therefore, substituting (9.27) into (9.26) yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm+1 = γmS0 + �̂ − μ̂Sm − β̂ Im
N Sm − ∑m−1

j=0 ϕjSm−j,

Em+1 = γmE0 + β̂ Im
N Sm − (μ̂ + ϑ̂)Em − ∑m−1

j=0 ϕjEm−j,

Im+1 = γmI0 + ϑ̂Em − (π̂ + μ̂)Im − ∑m−1
j=0 ϕjIm−j,

Rm+1 = γmR0 + π̂ Im − μ̂Rm − ∑m−1
j=0 ϕjRm−j.

(9.29)

Equation (9.29) can be expanded into
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm+1 = γmS0 + �̂ − ϕ0μ̂Sm − β̂ Im
N Sm − (ϕ1Sm−1 + · · · + ϕm−2S2 + ϕm−1S1),

Em+1 = γmE0 + β̂ Im
N Sm − (μ̂ + ϑ̂ + ϕ0)Em − (ϕ1Em−1 + ϕ2Em−2 · · · + ϕm−2E2 + ϕm−1E1),

Im+1 = γmI0 + ϑ̂Em − (π̂ + μ̂ + ϕ0)Im − (ϕ1Im−1 + ϕ2Im−2 · · · + ϕm−2I2 + ϕm−1I1),

Rm+1 = γmR0 + π̂Im − (μ̂ − ϕ0)Rm − (ϕ1Rm−1 + ϕ2Rm−2 · · · + ϕm−2R2 + ϕm−1R1).

(9.30)

The above scheme (9.30) was implemented as an iterative process using MAT-
LAB.

Analysis of the Numerical Method

The exact solution of this problem is not available and in order to calculate the
maximumpointwise error and rate of convergence, we use the doublemesh principle.
We define the double mesh principle as follow;

εMC = max
xi∈D̄M

C

∣
∣UM (xj) −U 2M (xj)

∣
∣ , (9.31)

and

εM = max
C

εMC , (9.32)

where D̄M
C is the domain withUM (xj) andU 2M (xj) denoting numerical solutions

obtained using M and 2M mesh intervals, respectively (Table 9.1).
Furthermore, the robust orders of convergence are computed using

r = log2

(
εMC

ε2MC

)

. (9.33)

We will use (9.32) and (9.33), respectively, to compute the maximum absolute
errors and orders of convergence of the numerical scheme in (9.30). The stability and
convergence results to the two scenarios presented in Sect.Results and Discussion
are appearing in Tables9.2, 9.3, 9.5, 9.6 and 9.4.
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Table 9.1 Parameter values for Example 1

Birth rate (λ) Death rate (μ) Infection rate (β) Incubation period
(1/ϑ)

Recovery rate (π )

0.013 0.013 0.06 14 0.98

source own

Table 9.2 Maximum absolute errors for Example 1 with� = 0.013,μ = 0.013, β = 0.06, 1/ϑ =
14 and π = 0.98

α M = 100 M = 200 M = 400 M = 800 M = 1600

0.1 6.1152e−02 3.1069e−02 1.5659e−02 7.8606e−03 3.9381e−03

0.2 5.9707e−02 3.0276e−02 1.5245e−02 7.6491e−03 3.8312e−03

0.3 5.7925e−02 2.9330e−02 1.4758e−02 7.4021e−03 3.7069e−03

0.4 5.5896e−02 2.8272e−02 1.4218e−02 7.1294e−03 3.5698e−03

0.5 5.3692e−02 2.7136e−02 1.3641e−02 6.8388e−03 3.4240e−03

0.6 5.1370e−02 2.5948e−02 1.3040e−02 6.5369e−03 3.2726e−03

0.7 4.8978e−02 2.4731e−02 1.2427e−02 6.2289e−03 3.1183e−03

0.8 4.6552e−02 2.3503e−02 1.1809e−02 5.9190e−03 2.9631e−03

0.9 4.4121e−02 2.2277e−02 1.1194e−02 5.6107e−03 2.8088e−03

1.0 4.1705e−02 2.1064e−02 1.0586e−02 5.3066e−03 2.6567e−03

Source own

Table 9.3 Convergence rates for Example 1 with� = 0.013,μ = 0.013, β = 0.06, 1/ϑ = 14 and
π = 0.98

α M = 200 M = 400 M = 800 M = 1600

0.1 0.98 0.99 0.99 1.00

0.2 0.98 0.99 0.99 1.00

0.3 0.98 0.99 1.00 1.00

0.4 0.98 0.99 1.00 1.00

0.5 0.98 0.99 1.00 1.00

0.6 0.99 0.99 1.00 1.00

0.7 0.99 0.99 1.00 1.00

0.8 0.99 0.99 1.00 1.00

0.9 0.99 0.99 1.00 1.00

1.0 0.99 0.99 1.00 1.00

Source own

Table 9.4 Parameter values for Example 1

Birth rate (λ) Death rate (μ) Infection rate (β) Incubation period
(1/ϑ)

Recovery rate (π )

0.023 0.023 0.10 7 0.70

Source own
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Table 9.5 Maximum absolute errors for Example 1 with� = 0.023,μ = 0.023, β = 0.10, 1/ϑ =
7 and π = 0.70

α M = 100 M = 200 M = 400 M = 800 M = 1600

0.1 1.5661e−01 8.1330e−02 4.1509e−02 2.0978e-02 1.0547e−02

0.2 1.3930e−01 7.2084e−02 3.6713e−02 1.8533e-02 9.3120e−03

0.3 1.2548e−01 6.4751e−02 3.2926e−02 1.6607e-02 8.3404e−03

0.4 1.1445e−01 5.8938e−02 2.9934e−02 1.5088e-02 7.5750e−03

0.5 1.0574e−01 5.4365e−02 2.7586e−02 1.3898e-02 6.9759e−03

0.6 9.8970e−02 5.0832e−02 2.5777e−02 1.2983e-02 6.5152e−03

0.7 9.3914e−02 4.8203e−02 2.4435e−02 1.2304e-02 6.1741e−03

0.8 9.0418e−02 4.6397e−02 2.3516e−02 1.1840e-02 5.9410e−03

0.9 8.8420e−02 4.5378e−02 2.3001e−02 1.1581e-02 5.8109e−03

1.0 8.7951e−02 4.5161e−02 2.2896e−02 1.1530e-02 5.7857e−03

Source own

Table 9.6 Convergence rates for Example 1 with � = 0.023, μ = 0.023, β = 0.10, 1/ϑ = 7 and
π = 0.70

α M = 200 M = 400 M = 800 M = 1600

0.1 0.95 0.97 0.98 0.97

0.2 0.95 0.97 0.99 0.99

0.3 0.95 0.98 0.99 0.99

0.4 0.96 0.98 0.99 0.99

0.5 0.96 0.98 0.99 0.99

0.6 0.96 0.98 0.99 0.98

0.7 0.97 0.98 0.99 0.99

0.8 0.97 0.98 0.99 0.99

0.9 0.97 0.98 0.99 0.99

1.0 0.97 0.98 0.99 0.99

Source own

Results and Discussion

In this section, we consider two scenarios of the spread of COVID-19 in Namibia. In
Example 1, we consider a case when proper quarantining, and lockdown regulations
are followed and in Example 1, we consider a case where the government does not
effectively implement and enforce the quarantining protocols to those individuals
who travelled from outside the country, for example, truck drivers and essential
goods suppliers. Apart from the opening of the Namibian borders to essential goods
and services providers to and from Namibia, the proposition of Example 1 was also
necessitated by the envisaged opening of Namibian borders to tourists by July 2020.
These two reasons are believed to be key risk factors to importation of COVID-19
infections into the country. The projections herein are made from July 2020 up to
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July 2021 under the condition that no effective and affordable vaccine or cure for
COVID-19 is made available until then.

To simulate our model under the two considered scenarios, the generic initial
conditions to the model are that the susceptible population is the country’s entire
population, i.e. (S0 = 2, 200, 000 people), exposed individuals (E0 = 1680 people),
infected individuals (I0 = 202 people) and recovered individuals (R0 = 27 people).

Remark 1 In this scenario, the following model parameters were used, birth rate
(� = 0.013), death rate (μ = 0.013), infection rate (β = 0.06), incubation period
(1/ϑ = 14) and recovery rate (π = 0.98).

Example 1 In this scenario, we assume the violation of established quarantine proto-
cols, inconsistencies in management of positive cases, no proper contact tracing and
early isolations. With these assumptions in place, the following model parameters
were used, birth rate (� = 0.023), death rate (μ = 0.023), infection rate (β = 0.10),
incubation period (1/ϑ = 7) and recovery rate (π = 0.70).

General results as observed in Figs. 9.2 and 9.4 indicate that the fractional calculus
approach proposed in this chapter is highly predictive for when 0 < α ≤ 0.5 and
conservativewhen 0.5 < α < 1. These observations substantiate the use of fractional
order derivatives over full order derivatives. From the numerical point of view, when
0.5 < α < 1 the order of the fractional derivative operator is more closer or equal to
unit, in which case, we have a classical SEIR model. Whereas, when 0 < α ≤ 0.5,
we have super-diffusive fractal dynamics characterised by persistent non-Gaussian
increments in the underlying process with memory (Figs. 9.2 and 9.4).

In order to show how convergent, stable and robust, the proposed method is
in solving the fractional SEIR model presented in (9.1), we present the numerical
stability and convergence results in Tables9.2 and 9.3 for Example 1, as well as
Tables9.5 and 9.6 for Example 1. These results were computed using the double
mesh principle described in Sect.Analysis of the Numerical Method. As one can see
from the results presented in Tables9.2 and 9.5, the proposed method is very robust
and unconditionally stable for a range of values of α (0 < α ≤ 1). The results in
Tables9.3 and 9.6 further indicate that indeed the numerical method is convergent
with order (O(1)). Therefore, from the numerical point of view, the fact that the
method is unconditionally stable, α can be chosen to be small or large without
affecting the order of accuracy the proposed method.

Furthermore, from the application point of view, results from the best case scenario
presented in Example 1 indicate that given current (as of 11 July 2020) statistics,
if the government continue to exercise proper quarantining of individuals coming
from affected countries, isolating the infected individuals, timely tracing contacts
of the infected individuals, as well as heavily investing in public health awareness
campaigns to sensitise the general public on the danger and impact of COVID-19 to
the country, then, the spread of the virus can be reasonably contained at around 1800
positive cases by October 2020. It is further projected in Fig. 9.3a that secondary
cases may raise from 10 to around 60 cases from July 2020 and will subside by
October 2020 and that the mortality rate will remain substantially below 3% of the
infected cases under the same reporting period (see Fig. 9.3b).
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Fig. 9.2 Numerical solution to Eq. (9.1) under Example 1: a susceptible population, b infected pop-
ulation, c exposed population and d recovered population at different values of α. Model parameter
values are given in Table 9.1. Source own

(a)

Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021

Time

0

10

20

30

40

50

60

70

R
0

Basic reproduction number

R0 when =0.10

(b)

Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovery rate
Mortality rate

Fig. 9.3 a Ro and b projected recovery and mortality rate under Example 1 at α = 0.10 for model
parameters under Table9.1. Source own
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Fig. 9.4 Numerical solution to Eq. (9.1) under Example 1: a susceptible population, b infected pop-
ulation, c exposed population and d recovered population at different values of α. Model parameter
values are given in Table9.4. Source own

Moreover, if the Namibian government reinforce its efforts in kerbing further
spread of the virus, secondary cases are projected to reach zero by July 2021, see
Fig. 9.3a and also that by the end of 2020, a very significant proportion of the existing
positive cases would have recovered and further spread substantially contained, see
Fig. 9.2d. The overall mortality rate as projected in Figs. 9.3b and 9.5b for both
scenarios will remain way below a 3% level for the period under investigation.

In the worse-case scenario under Example 1, given the current reported trend
of widespread community transmission across the country, our results indicate that
if government does not take drastic steps to kerb further community transmissions
in major regions of the country, namely Khomas, Erongo as well as a majority of
northern regions where a few cases of local transmissions have been reported, and
Namibia can potential record over 14, 000 cases of positive COVID-19 infections in
a very short period of time, see Fig. 9.4. In the absence of an effective cure or vaccine
for COVID-19, our projections will remain valid.
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Fig. 9.5 a Ro and b projected recovery and mortality rate under Example 1 at α = 0.10 for model
parameters under Table9.4. Source own

Concluding Remarks and Policy Recommendations

Though Namibia did not record any cases of local transmission up until May 2020,
the number of positive cases has been on an increase on a daily basis. In this chapter, a
fractional SEIRmodel and its robust first-order unconditionally convergent numerical
method is proposed. Results herein indicate that the fractional calculus approach and
the numerical method used are well appropriate for modelling the dynamics of the
spread of COVID-19. From the numerical point of view, the results indicate that the
considered method is robust and unconditionally converges with order 1. From the
application point of view, we considered two scenarios characterised by different
parameterisation of the fractional SEIR model. The first scenario is regarded as the
best case scenario, which is characterised by proper quarantining protocols, effective
contact tracing and isolation of positive individuals and their contacts. In the second
scenario,we looked at aworst-case scenario characterised by ineffective quarantining
and isolation procedures, non-compliance of the general public to the set guidelines
for kerbing the spread of the virus and enforcement of the set guidelines by the
relevant assigned authorities. The two considered scenarios present similar structural
features in terms of profiling the three compartments of the considered SEIR model.
However, the spread of the virus is amplified in the worst-case scenario with longer
delays in the recovery of the infected individuals.

In an effort to help isolate and kerb further spread of the virus, this current work
draws some policy recommendations:

1. It is recommended that government revert back to stage 1 of the declaration of a
national health emergency on COVID-19, at least for a period of 14days in those
regions with a high community transmission.

2. Enforce working from home for non-essentially entities.
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3. Alcohol outlets should only open on a takeaway basis until a point where the
country has attained a full control of the virus.

4. Furthermore, it is recommended that schools and high education institutions
should take their teaching and learning to 100% e-learning at least for the remain-
der for the current academic year 2020.

5. Those schools which are unable to offer their classes online should be allowed to
cancel the current academic year.
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