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Abstract COVID-19 is a major pandemic threat of 2019–2020 which originated in
Wuhan. As of now, no specific anti-viral medication is available. Therefore, many
countries in the world are fighting to control the spread by various means. In this
chapter, wemodel COVID-19 scenario by considering compartmentalmodel. The set
of dynamical systemof nonlinear differential equation is formulated. Basic reproduc-
tion number R0 is computed for this dynamical system. Endemic equilibrium point
is calculated and local stability for this point is established using Routh-Hurwitz
criterion. As COVID-19 has affected more than 180 countries in several ways like
medically, economy, etc. It necessitates the effect of control strategies applied by
various government worldwide to be analysed. For this, we introduce different types
of time dependent controls (which are government rules or social, medical interven-
tions) in-order to control the exposure of COVID-19 and to increase recovery rate of
the disease. By using Pontryagins maximum principle, we derive necessary optimal
conditions which depicts the importance of these controls applied by the government
during this epidemic.
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Introduction

As of 3 May 2020, the countries affected by COVID-19 are suffering major loss in
terms of economy (globally) and also many workers are losing their jobs. So far,
the number of cases reported on 3 May 2020 are more than 3.24 million across
187 countries and territories, resulting in more than 243,000 deaths [1]. COVID-
19 is type of virus that infects the respiratory system of humans. It originated in
Wuhan (China) on 31 December 2019. It is highly contagious with the reproduction
number 6.47 calculated by Tang et al. [2] (as on 22 January 2020). Being a major
public health threat declared by WHO [3], it is necessary to control the pandemic
by understanding early dynamics of transmission of disease in china which has been
discussed by Kucharski et al. [4]. Since no pharmaceutical treatment is available,
interventions such as complete ban on air travel, shutting down of educational insti-
tutions, enforcing lockdown in the entire country, social distancing as studied byPrem
et al. [5], random testing at large scale studied by Mueller et al. [6] and by isolating
cases of COVID-19 and there contacts (Hellewell et al. [7]) have helped some of the
countries like China, Hong Kong to control the transmission of COVID-19.

Further to understand the spread of COVID-19 and to study the effect of various
interventions measures adopted by individuals and government, compartmental
modelling is significant. Some authors like Toda [8] developed basic SIR model
to study the effectiveness of social distancing in reducing the spread, Peng et al. [9]
developed SEIR compartmental model to study epidemics of COVID-19 in China.
Also Tang et al. [10] modified SEIR model for new prediction of COVID-19. Pigu-
illem et al. [11] extended standard SIR model to study the importance of rigours
testing and concluded mandatory quarantine can bring world close to what is consid-
ered as optimal. Some of the early research work with modelling of COVID-19 to
understand disease dynamics in various countries includes: study by Sun et al. [12],
discussed the various characteristic to COVID-19 situation in china which helps in
understanding the fatality rate and transmission rate of COVID-19 so as to help in
controlling the epidemic spread, the importance of travel quarantine or travel restric-
tion in Wuhan was studied by Chinazzi et al. [13]. Other related researchers include
Zhao and Chen [14], Xu et al. [15], Yang et al. [16] etc.

Now, as the world is very well aware of COVID-19 and everywhere the respec-
tive government is carrying out necessary measures to control the spread or human
to human transmission of COVID-19. The best way to visualize the importance of
measures been taken is to analyse it by introducing optimal control theory using
Pontryagins maximum principle [17] into the model. Some of the previous research
includes: Sharomi and Malik [18] have discussed very nicely optimal control in
epidemiology by considering various compartmentalmodels, Lemos-Paião et al. [19]
have also applied optimal control theory showing treatment of cholera with quaran-
tine effects, Tilahun et al. [20] applied optimal control to pneumonia disease, etc.
Similarly, in COVID-19 scenario also optimal control is applied by various authors
like Djidjou-Demassea et al. [21] formulated a model to minimize the death and the
cost by applying control until the vaccines arrives as it will take near about 18months.
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Mallela [22] also applied optimal control theory by taking social distancing as the
control in his model. Also, Tsay et al. [23] have modelled COVID-19 outbreak in
USA with optimal control theory, etc.

In this chapter, our target is to predict the importance of various control strate-
gies such as lockdown, curfew, viral load testing, plasma therapy, etc., adopted by
the government in COVID-19 environment, by introducing these, measures as time
dependent controls into themodel and using Pontryagins theory, wewill be obtaining
optimal control conditions. We will also simulate through trajectories the situation
with and without control in an exposed environment.

This chapter is organized as follows: Sect. Formulation of Mathematical Model
describes the formulation of mathematical model and calculation of its equilibrium
points. In Sect. BasicReproductionNumber, basic reproduction number is computed.
In Sect. Stability Analysis, local stability of the equilibrium point is established. In
Sect. Optimal Control, we develop optimal control theory by taking various controls
into the model and calculate optimality conditions. The results of optimal control
and other numerical simulation are discussed in Sect. Numerical Simulation. Finally,
the findings are summarized with conclusion in last Sect. Conclusion.

Formulation of Mathematical Model

This study considers formulation of mathematical model of COVID-19 dividing
human population into eightmutually exclusive compartmental model. The compart-
ments taken into account are exposed class EC O , identified population IF , isolated
population ISO , test TE—it is taken as the number of test done so far including both
positive and negative test, population in COVID-19 care centre C , population with
COVID-19 in hospital H , Home quarantined population Q and recovered population
R.

The parametric definitions and values used in formulation of this dynamical
system are given by Table 7.1.

Here, we develop a mathematical model starting with the exposure stage of
COVID-19, i.e. individuals thosewho are exposed toCOVID-19or are in surrounding
of COVID-19 infectives are considered to be in this compartment also new recruit-
ments to this class occur at the rate B. Out of this exposed class, COVID-19 infected
individuals (both symptomatic and asymptomatic, where asymptomatic are those
with less clinical symptoms such as fever, fatigue etc.) are identified joining the
compartment IF at the rate β1. After this, the identified population is isolated (ISO )
at the rate β2. Isolation of asymptomatic infectives is a vital strategy in containing
the spread of COVID-19. Next, isolated population is then tested through viral load
test for COVID-19 by laboratories and this tested population is contained in TE class
at the rate β3. Here, if the population is tested positive for COVID-19 then, we again
sub-divide this positive tested population into two classes as population in COVID-
19 care centre C and hospitalized population H . Here, we assume that if the positive
tested population is not in need of emergency medical treatment and is not severe it
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Table 7.1 Parametric definitions and its values [source own]

Notations Description Parametric values

B Birth rate 0.01

β1 Rate at which population exposed to COVID-19 is been
identified

0.0009

β2 Rate at which identified population is isolated 0.0086

β3 Rate at which isolated population is tested 0.0059

β4 Rate at which individuals joins COVID-19 care centre 0.0046

β5 Rate at which individuals get admitted to hospital 0.0024

β6 Rate at which individuals are quarantined after tested 0.0076

β7 Rate at which individuals in COVID-19 care centre gets
recovered

0.00006

β8 Rate at which individuals in hospital gets recovered 0.007

β9 Rate at which quarantined individual gets recovered 0.0001

μ Natural morbidity rate 0.00009

μC O Morbidity rate due to COVID-19 0.00029

goes to COVID-19 care centre with the rate β4 and emergency situations get hospi-
talized at the rate β5. The negative tested population is asked to home quarantine
themselves (Q) at the rate β6 which what the government is doing. Next, population
from COVID-19 care centre, hospital and home quarantine are recovered at the rate
β7, β8 and β9, respectively. Also, μ,μC O are taken as the morbidity rates.

The following set of nonlinear differential equations is established form the
Fig. 7.1.

Fig. 7.1 Compartmental diagram showing flow of human population through different compart-
ments [source own]



7 Effective Lockdown and Plasma Therapy for COVID-19 129

dEC O

dt
= B − β1EC O IF − μEC O

dIF

dt
= β1EC O IF − (β2 + μ)IF

dISO

dt
= β2 IF − (β3 + μ)ISO

dTE

dt
= β3 ISO − (β4 + β5 + β6 + μ)TE

dC

dt
= β4TE − (β7 + μ)C

dH

dt
= β5TE − (β8 + μ + μC O)H

dQ

dt
= β6TE − (β9 + μ)Q

dR

dt
= β7C + β8H + β9Q − μR (7.1)

where, N = EC O + IF + ISO + TE + C + H + Q + R.
The feasible region for the solutions of the system (7.1) is given by

� =

⎧
⎪⎨

⎪⎩

(EC O , IF , ISO , TE , C, H, Q, R); EC O + IF + ISO + TE + C + H + Q + R ≤ B

μ
,

EC O > 0, IF > 0, ISO > 0, C > 0, H > 0, Q > 0, R > 0

⎫
⎪⎬

⎪⎭

Equilibrium Solutions

Solving above system of equation, we get following equilibrium point

1. Disease-free equilibrium point E0
(

B
μ
, 0, 0, 0, 0, 0, 0, 0

)

2. Endemic equilibrium point E∗(E∗
C O , I ∗

F , I ∗
SO , T ∗

E , C∗, H∗, Q∗, R∗)

where
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E∗
C O = β2 + μ

β1

I ∗
F = Bβ1 − μ(β2 + μ)

β1(β2 + μ)

I ∗
SO = β2(Bβ1 − μ(β2 + μ))

β1(β2 + μ)(β3 + μ)

T ∗
E = β2β3(Bβ1 − μ(β2 + μ))

β1(β4 + β5 + β6 + μ)(β2 + μ)(β3 + μ)

C∗ = β2β3β4(Bβ1 − μ(β2 + μ))

β1(β4 + β5 + β6 + μ)(β2 + μ)(β3 + μ)(β7 + μ)

H∗ = β2β3β5(Bβ1 − μ(β2 + μ))

β1(β4 + β5 + β6 + μ)(β2 + μ)(β3 + μ)(β8 + μ + μC O)

Q∗ = β2β3β6(Bβ1 − μ(β2 + μ))

β1(β4 + β5 + β6 + μ)(β2 + μ)(β3 + μ)(β9 + μ)

R∗ =
β2β3(Bβ1 − μ(β2 + μ))((β9 + μ)(β4β7(μ + μC O) + β5β8(β7 + μ))

+β6β9μC O(β7 + μ) + (β8 + μ)(β7β9(β4 + β6) + β6β9μ))

β1μ(β4 + β5 + β6 + μ)(β2 + μ)(β3 + μ)(β7 + μ)(β8 + μ + μC O)(β9 + μ)

Basic Reproduction Number

Basic reproduction number R0 is defined as number of secondary infections produced
due to a single infection in a completely susceptible population. Basic reproduction
number plays a significant role in determining the disease spread and in developing
control strategies.

Basic reproduction is derived using next-generation matrix method by Diekmann
et al. [24]. Here, F is the Jacobian matrix of the new recruitments in the population
and V is the Jacobian matrix of the new transfer of exposed individuals from one
compartment to another.

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1EC O 0 0 0 0 0 0 β1 IF

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−β2 − μ 0 0 0 0 0 0 0

−β2 β3 + μ 0 0 0 0 0 0

0 −β3 β4 + β5 + β6 + μ 0 0 0 0 0

0 0 −β4 β7 + μ 0 0 0 0

0 0 −β5 0 β8 + μ + μC O 0 0 0

0 0 −β6 0 0 β9 + μ 0 0

0 0 0 −β7 −β8 −β9 μ 0

β1EC O 0 0 0 0 0 0 β1 IF + μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The reproduction number R0 is the spectral radius of FV −1 evaluated at

E0
(

B
μ
, 0, 0, 0, 0, 0, 0, 0

)
and is given by the expression R0 = Bβ1

(β2+μ)μ
.

Here, R0 gives the number of newly exposed individual toCOVID-19 due to single
exposure in a population which has been calculated as 11.5 using data from Table
7.1. This shows that an individual who is exposed to COVID-19 through anymode of
transmission of disease via infected individual exposes 12 more individuals. Here, if
R0 < 1, it means that the exposure to COVID-19 is deteriorating which indicates the
die out situation of COVID-19. This is stage which the world has not yet achieved.
And R0 > 1 shows the existence of endemic equilibrium point. Which is the scenario
as off 3rdMay 2020. In the next section, wewill discuss the local stability of endemic
point only.

Stability Analysis

Here, we study local stability of endemic equilibrium point using Routh-Hurwitz
criterion.

Theorem 1 The equilibrium point E∗ is locally asymptotically stable if (β2 +μ) >

β1E∗
C O.

Proof The Jacobian matrix for the dynamical system (7.1) is given by

J ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a11 −β1E∗
C O 0 0 0 0 0 0

β1 I ∗
F −a22 0 0 0 0 0 0

0 β2 −a33 0 0 0 0 0
0 0 β3 −a44 0 0 0 0
0 0 0 β4 −a55 0 0 0
0 0 0 β5 0 −a66 0 0
0 0 0 β6 0 0 −a77 0
0 0 0 0 β7 β8 β9 −a88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where
a11 = β1 I ∗

F + μ, a22 = −β1E∗
C O + (β2 + μ),

a33 = β3 + μ, a44 = β4 + β5 + β6 + μ, a55 = β7 + μ,

a66 = β8 + μ + μC O , a77 = β9 + μ, a88 = μ.
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Here, trace(J ∗) = −(a11 + a22 + a33 + a44 + a55 + a66 + a77 + a88) < 0 and
det(J ∗) > 0 if (β2 + μ) > β1E∗

C O . Hence, by Routh-Hurwitz criterion [25], the
endemic equilibrium point is locally asymptotically stable if (β2 + μ) > β1E∗

C O .

Optimal Control

In this section, we consider different measures adopted by government as control in
order to study the effectiveness of this model. Here, we apply Pontryagins maximum
principle [17] in order to determine necessary conditions for optimality by intro-
ducing time dependent controls in the system (7.1). The introduced controls as
follows can be observed in Fig. 7.2: u1 and u2 are taken as lock down and curfew
control in order to restrict the exposure to COVID-19, u3 as viral load test which
detects and measures virus level consistently in COVID-19 infected patient, u4 is a
control which allows more and more individuals to opt for COVID-19 care centre,
u5 a control which allows only emergency medical patients get into the hospital and
u6 as plasma therapy in-order to increase recovery rate of hospitalized patients.

And the modified system (7.1) with controls is rewritten as

dEC O

dt
= B − β1EC O IF − μE + u1 IF

dIF

dt
= β1EC O IF − (β2 + μ)IF − u1 IF + u2 ISO

dISO

dt
= β2 IF − (β3 + μ)ISO − u2 ISO − u3 ISO

dTE

dt
= β3 ISO − (β4 + β5 + β6 + μ)TE − u4TE + u5H + u3 ISO

Fig. 7.2 Optimal controls applied to the Fig. 7.1 [source own]
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dC

dt
= β4TE − (β7 + μ)C + u4TE

dH

dt
= β5TE − (β8 + μ + μC O + u5 + u6)H

dQ

dt
= β6TE − (β9 + μ)Q

dR

dt
= β7C + β8H + β9Q − μR + u6H

For this, we consider following objective function

J (ci ,�) =
T∫

0

(
W1E2

C O+W2 I 2F + W3 I 2SO + W4T 2
E + W5C

2

+ W6H 2 + W7Q2 + W8R2 + v1u2
1 + v2u2

2

+ v3u2
3 + v4u2

4 +v5u2
5 + v6u2

6

)
dt

The control functions u1, u2, u3, u4, u5 and u6 are bounded, Lebesgue integrable
functions. Here, � denotes the set of all compartmental variables. The coefficients
W1, W2, W3, W4, W5, W6, v1, v2, v3, v4, v5, v6 are the balancing cost functions.

Now, we seek to find out u∗
1, u∗

2, u∗
3, u∗

4, u∗
5, u∗

6 for the time t = 0 to t = T such
that

J (ui (t)) = min{J (u∗
i ,�)/(ui ) ∈ φ}, i = 1, 2, 3, 4, 5, 6

where φ is a smooth function on the interval [0, 1].
Next, we introduce the Lagrangian function as follows

L(u, λ) = W2 I 2F + W3 I 2SO + W4T 2
E + W5C

2 + W6H 2 + W7Q2 + W8R2

+ v1u
2
1 + v2u2

2 + v3u
2
3 + v4u2

4 + v5u2
5 + v6u2

6

To obtain the value of Lagrangian function, we define Hamiltonian H for the
optimal control as

H = W2 I 2F + W3 I 2SO + W4T 2
E + W5C

2 + W6H 2 + W7Q2

+ W8R2 + v1u2
1 + v2u2

2 + v3u2
3 + v4u2

4 + v5u2
5

+ v6u2
6 + λ1(B − β1EC O IF − μE + u1 IF )

+ λ2(β1EC O IF − (β2 + μ)IF − u1 IF + u2 ISO) + λ3(β2 IF

− (β3 + μ)ISO − u2 ISO − u3 ISO)

+ λ4(β3 ISO − (β4 + β5 + β6 + μ)TE − u4TE + u5H + u3 ISO)

+ λ5(β4TE − (β7 + μ)C + u4TE )

+ λ6(β5TE − (β8 + μ + μC O + u5 + u6)H)



134 N. H. Shah et al.

+ λ7(β6TE − (β9 + μ)Q)

+ λ8(β7C + β8H + β9Q − μR + u6H)

Now using Pontryagins maximum principle and existence condition discussed
by Fleming and Rishel [26], we obtain adjoint equations for the adjoint vari-
able λi = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) associated with the state variables
(EC O , IF , ISO , TE , C, H, Q, R)

•
λ1 = −2W1EC O + (λ1 − λ2)β1 IF + λ1μ

•
λ2 = −2W2 IF + (λ1 − λ2)β1EC O + (λ2 − λ1)u1 + (λ2 − λ3)β2 + λ2μ

•
λ3 = −2W3 ISO + (λ3 − λ2)u2 + (λ3 − λ4)(β3 + u3) + λ3μ

•
λ4 = −2W4TE + β5(λ4 − λ6) + β6(λ4 − λ7) + (λ4 − λ5)(β4 + u4) + λ4μ

•
λ5 = −2W5C + (λ5 − λ8)β7 + λ5μ

•
λ6 = −2W6H + (λ6 − λ4)u5 + (λ6 − λ8)(u6 + β8) + (μ + μC)λ6

•
λ7 = −2W7Q + (λ8 − λ7)β9 + λ7μ

•
λ8 = −2W8R + λ8μ

The optimality conditions for control are given by

u∗
1 = max

(
a1,min

(
b1,

IF (λ2−λ1)

2v1

))
, u∗

2 = max
(

a2,min
(

b2,
ISO (λ3−λ2)

2v2

))
,

u∗
3 = max

(
a3,min

(
b3,

ISO (λ3−λ4)

2v3

))
, u∗

4 = max
(

a4,min
(

b4,
TE (λ4−λ4)

2v4

))
,

u∗
5 = max

(
a5,min

(
b5,

H(λ6−λ4)

2v5

))
and u∗

6 = max
(

a6,min
(

b6,
H(λ6−λ8)

2v6

))
.

In next section, we will discuss these controls through plot.

Numerical Simulation

In this section, simulation is carried out to understand the compartmental model
of COVID-19. Here, we also discuss the various controlling interventions applied
to the system (7.1). The data taken in Table 7.1 has been calculated and assumed
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Fig. 7.3 Transmission dynamics of COVID-19 [source own]

accordingly to the current scenario and can be found on https://ourworldindata.org/
covid-testing [27].

In Fig. 7.3, we plot trajectory of all the compartments taken in our model. The
path of various compartment can be observed showing behaviour of the model.
Numerically, we observe that approximately 40% of population exposed to COVID-
19when tested showspositive report and is hospitalizedwithin 72days.About 35%of
identified population adopts quarantine law. It is also seen that individual hospitalized
gets recover at a faster rate than the individuals in COVID-19 care centre. Again,
approximately 49% of exposed population when tested, shows negative report and
is asked to home quarantine themselves. From Fig. 7.3, we also observe with time
hospitalization decreases and individuals in quarantine and care centres increases.

The system (7.1) is said to exhibit oscillatory behaviour observed in Fig. 7.4.
We see that Fig. 7.4a–c, i.e. exposed to COVID-19, identified and isolation, respec-
tively, these compartments gets stabilized in due course of time. Exposed population
initially decreases as seen in Fig. 7.4a which leads increase in identified (Fig. 7.4b)
and isolation (Fig. 7.4b) population. Figure 7.4d–f oscillates as number of tests, indi-
viduals in COVID-19 care centre and individuals in hospital fluctuates with time.
Quarantine population with the fluctuation decreases with time observed in Fig. 7.4g
and recovery rate increases with time as seen in Fig. 7.4h.

Next, we discuss the simulation of the model after applying various controls.
In this model, we have applied 6 controls namely u1, u2, u3, u4, u5, u6 as lock

down control, curfew, viral load test, control to increase population in care centres
and to decrease population in hospital and plasma therapy as a medical intervention,
respectively. Optimal control conditions are developed using iterative method. We
start with solving state equationswith a guess for controlswithin a simulated time and

https://ourworldindata.org/covid-testing
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Fig. 7.4 Oscillation observed in different compartments [source own]

apply fourth order Runge–Kutta method. Here, we plot each compartment against
all the controls applied to the system (7.1) which is observed in Fig. 7.5. From
Fig. 7.5a, we observe decrease in exposure to COVID-19. Showing importance of
lockdown and curfew control in the model. Similarly, identification of COVID-19
cases increases initially for 2 weeks but then with time and with all the controls it
decreases as observed in Fig. 7.5b. Similarly, decrease in number of isolated cases is
observed in Fig. 7.5c. After encouraging individuals for the test as shown in Fig. 7.5d,
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Fig. 7.4 (continued)

first 4 weeks helps to reduce catching infection. Again, number of individuals in
COVID-19 care centre increases seen in Fig. 7.5e and number of COVID-19 cases
decreases in hospital (Fig. 7.5f) under the influence of all the controls. Quarantine
population decreases (Fig. 7.5g) when control is applied as compared to when no
control is applied. This happens due to decrease in exposure cases which indirectly
decreases identification and isolation population. Recovery (Fig. 7.5h) increases with
the decrease in hospitalized human population which shows the positive effect of
plasma therapy used as one of the controls.

Figure 7.6 shows the plot of objective function under the influence of all the
controls taken in this chapter. Here, we observe that implementing all these controls
strictly can end this pandemic within 2 months.

Conclusion

Observing current situation of the world, a huge proportion is infected with COVID-
19. There are several social, medical interventions taken up by the government
throughout the world to fight against the transmission of COVID-19 in absence of
vaccination. In this chapter, we constructed a model considering exposure stage of
COVID-19. Here we have computed basic reproduction number and showed it to be
greater than 1 indicating current scenario of various countries. We have also calcu-
lated endemic equilibria and has shown it to be locally stable using Routh-Hurwitz
criterion. Now until vaccine arrives, COVID-19 pandemic will have caused huge
loss. Therefore, it is for our safety to follow various measures adopted by different
government. In this chapter, we applied optimal control theory using social, medical
measures as a control in a COVID-19 exposure scenario. It is observed that using
all the controls strictly life can come back to normal within 2 months. This model
suggest testing of COVID-19 at large scale also plays important role in combating
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Fig. 7.5 Effect of various controls applied to the model [source own]

COVID-19. Also, plasma therapy used as one of the controls plays vital role in
increasing recovery rate of infective’s.
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Fig. 7.5 (continued)

Fig. 7.6 Plot of objective function [source own]

One of the limitations of this model is we have not taken into account cost-
effectiveness strategies while applying controls.
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