
Chapter 6
A Mathematical Model for COVID-19
in Italy with Possible Control Strategies

Sumit Kumar, Sandeep Sharma, Fateh Singh, PS Bhatnagar,
and Nitu Kumari

Abstract Italy faced the COVID-19 crisis in the early stages of the pandemic. In
the present study, a SEIR compartment mathematical model has been proposed. The
model considers four stages of infection: susceptible(S), exposed (E), infected (I )
and recovered (R). Basic reproduction number R0 which estimates the transmission
potential of a disease has been calculated by the next-generation matrix technique.
We have estimated the model parameters using real data for the Coronavirus trans-
mission. To get a dipper insight into the transmission dynamics, we have also studied
four of the most pandemic affected regions of Italy. Basic reproduction number stood
differently for different regions of Italy i.e. Lombardia (2.1382), Veneto (1.7512),
Emilia Romagna (1.6331), Piemonte (1.9099) and for Italy at 2.0683. The sensitiv-
ity of R0 corresponding to various disease transmission parameters has also been
demonstrated via numerical simulations. Besides, it has been demonstrated with the
help of simulations that earlier lockdown and rapid isolation of infective individuals
would have been helpful in a dual way; by substantially reducing the number of sus-
ceptible people on one hand and preponing the end of the pandemic on the other. This
paper also includes complete theoretical analysis of the proposed model including
the epidemic feasibility of the model and existence of endemic equilibrium point.
We have also derived the conditions under which the disease became endemic. Since
the existence of an endemic equilibrium point refers to the possibility of backward
bifurcation, we have given a detailed analysis regarding the same. All the theoretical
analysis is supported by detailed numerical simulations to understand the transmis-
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sion dynamics of COVID-19 While analyzing different regions of Italy it was found
that Lombardia was the hardest hit and had the highest number of infectives. We
have also forecasted the future scenario of the pandemic in Italy. The model predicts
that the COVID-19 epidemic shall die out from the worst affected Lombardia region
by approximately by November 2020.

Keywords SEIR Model · Basic reproduction number · Stability analysis ·
Backward bifurcation · Parameter estimation

Mathematics Subject Classification Primary: 92B05 · 93A30 · Secondary:
34C23

Introduction

Epidemics and pandemics have shaped human history since long. It has been pro-
posed that a majority of human Coronovirus have been derived from bat reservoir
[1]. At the initial stage it was believed that transmission of disease took place through
animal to human mode but later it has been established that direct transmission of
the disease is also possible and is the primary reason for transmission to various
countries [2–4]. Hospital related transmission is also suspected in 41 percent of the
patients [3].

Along with high transmission efficiency, global travel has also contributed to
SARS-CoV-2 spread across the globe [5]. On 30 January 2020, the WHO ini-
tially declared COVID-19 a public health emergency of international concern and
later a pandemic on 11 March 2020 [6]. Interestingly African region has lowest
reported cases of COVID-19 which is otherwise host to many infectious diseases.
Italy recorded its first case of COVID-19 on February 20, 2020, at Lodi40 (Lom-
bardy) [7]. In the next 24 h, the infected cases increased to 36 [7].

In the begning, Italian data followed similar trend observed in Hubei Province,
China. Till date, Italy is one of the countries that have faced grievous consequences
of COVID-19. Till 20th May 2020, Italy has 2,27,364 recorded cases and 32,330
deaths due to COVID-19. In terms of reported cases, it is the sixth highest while
it is third when it comes to the number of deaths across the globe. 42.2% of the
patients who died were 80–89 years old, 32.4% were 70–79 years, 8.448% were
60–69 years, and 2.8% were 50–59 years old. The male to female ratio is 80–20%
with older median age for women (83.4years for women vs 79.9years for men) [8].
Moreover, the estimated mean age of those who lost their lives in Italy was 81years
[8]. The COVID-19 outbreak completely disturbed the economic condition of Italy.
Several family owned small sectors are suering [9]. The condition of Italy surprised
the research fraternity because Italy stands in the top ve countries in terms of medical
facilities. The ongoing dismal scenario in Italy has forced the government to admit
that they do not have any control over the spread of the disease as well as do not
know when the ongoing web of COVID-19 will stop.
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Besides, the situation is so grim that Italian College of Anaesthesia, Analgesia,
Resuscitation and Intensive Care has published guidelines that said resources that
could be every scarce are reserved for those who have the greatest chances of survival
first and secondly to those who have more years of life to be saved, with a view to
maximizing the benefits for the most number of people. Due to the catastrophic
impacts of the COVID-19 outbreak, efforts have been made to analyze the trend of
the disease and predict the future of the epidemic [8, 10]. The work carried out in [8]
predicts that in the absence of timely implementation of available medical resources,
the authorities will not be able to control the outbreak of the disease. The study
further concludes that together with the medical facilities people’s movement and
social activities should be restricted immediately in order to curtail the burden of the
COVID-19. The work carried out in [8], collected the day to day data and measured
the possible similarity between Italy and Hubei Province (China). Further, the study
also shows that the number of deaths increased almost five times as the available
treatment facilities reached the limit. As of now, there is no vaccination available for
COVID-19.

There are many models for infectious diseases and in the class of compartmental
models, they may range from very classical SIR to more complex ones. In the cur-
rent work, we have developed a compartmental model to examine the case of Italy.
The proposedmodel incorporates four different compartments namely—Susceptible,
Exposed, Infected and Recovered population. The present COVID-19 has an latency
periodwhich ranges up to 14days. Therefore, tomake ourmodel realistic, we include
the exposed population along with the infected population, which certainly results in
improved prediction. We collected the data of Italy for COVID-19 available on the
Worldometers website [11]. Further we trained the proposed mathematical model
using the data available till 20th May 2020. Using this enhanced model we analyze
the effect of lock down on the spread of COVID-19 in Italy. Also, we predict the
possible end of the current outbreak of COVID-19 in Italy. Moreover, to make our
predictions more realistic, we have trained and validated our model with COVID-19
data of some the highly affected regions of Italy.

The Mathematical Model

The proposed model describes the transmission mechanism of COVID-19. In the
modelling process, we have divided the human population into four mutually exclu-
sive compartments, namely, susceptible (S), exposed (E) infected but asymptomatic,
infected (I ) symptomatic and infectious and recovered (R). The flow chart of the
model is presented in Fig. 6.1.
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Fig. 6.1 Flow chart for the
COVID-19 Italy model

Based on the above assumptions, the model is governed by the following system
of equations:-

dS
dt = A − βS I

N − β0S
E
N − μS

dE
dt = βS I

N + β0S
E
N − αE − α1E − μE

dI
dt = αE − θI − α2I − μI
dR
dt = α1E + α2I − μR

(6.1)

In the above model, N represents the total population. We assume that all the new
recruiters joined the susceptible class at a constant rateA.β is the disease transmission
rate from the infected individuals to susceptible individuals. We further assume that
susceptible individuals once come into the contact of infected individual will not
directly join the infected class. They first join the exposed class (E) and after certain
period of time shows visible symptoms of the disease and enters into the infected class
(I ). Exposed class individuals are assumed to be less infectious as compared to the
infected class individuals. Therefore, β0 represents the disease transmission rate for
exposed individuals. Clearly,β0 ≤ β. Here,α is the rate bywhich exposed population
moves to infected compartment. α1 is the recovery rate of exposed individuals and
α2 is the recovery rate of infected individuals. θ is the disease induced death rate. μ
is the natural death rate.



6 A Mathematical Model for COVID-19 in Italy … 105

Our proposed model system involves human population. Hence for the initial
state, all the compartmental values are assumed to be non-negative. The model will
be studied under the following initial conditions:

S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0 (6.2)

Basic Properties

In this section, we check the mathematical feasibility of the proposed model. For
this purpose, we check whether all the solutions of the proposed model will remain
positive and bounded or not.

Non-negativity of the Solution

To show the epidemiological feasibility of the proposed model system (6.1), it is
required that all the solutions remain non-negative. Hence, in the following theorem
we verify that all the solutions with non-negative initial condition will remain non-
negative.

Theorem 1 The solution (S(t),E(t), I(t),R(t)) of the proposed model system is
non-negative for all t ≥ 0 with non-negative initial condition (6.2).

Proof From the first equation of system (6.1), we have

dS

dt
= A −

(
βI

N
+ β0E

N
+ μ

)
S

From this equation, we can deduce that

d
dt

[
S(t) exp

{
t∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt

}]

= A exp

{
t∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt

}

Now, integrating the equation on both sides

S(t1) exp

{ t1∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt1

}
− S(0) =

t1∫
0

A
2 exp

{
u∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt

}
.du
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On simplification we have,

S(t1) = S(0) exp

{
−

( t1∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt1

)}

+ exp

{
−

( t1∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt1

)}
×

t1∫
0

A
2 exp

{
u∫
0

(
βI(v)
N + β0E(v)

N

)
.dv + μt

}
.du

This gives
S(t1) ≥ 0

where t1 ≥ 0 is arbitrary. Similarlywe can show the non-negativity for compartments
E, I and R.

Hence, the solution (S(t),E(t), I(t),R(t)) will remain positive for non-negative
initial condition.

Boundedness of the Solution

In order to accurately predict the epidemic, the solutions of the mathematical model
should be bounded.

Theorem 2 All solutions of the proposed model are bounded.

Proof We need to show that (S(t),E(t), I(t),R(t)) is bounded for each value of
t ≥ 0. From our model system (6.1) we obtain:

(S + E + I + R)′ = A − μ (S + E + I + R) − θI ≤ A − μ (S + E + I + R)

which gives us

lim
t→∞Sup (S + E + I + R) ≤ A

μ

which implies that each individual component is also bounded.

Disease Free Equilibrium and Basic Reproduction Number

The basic reproduction number is one of the critical parameters to examine the long
term behaviour of an epidemic. It can be defined as the expected number of cases
directly generated by one case in a population where all individuals are susceptible
to infection. We have used next-generation matrix technique explained in [12], to
obtain the expression of reproduction number R0.
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In order to reduce the number of parameter in proposed model system (6.1), we
normalize themodel by consideringX1 = S

N ,X2 = E
N ,X3 = I

N ,X4 = R
N andA = μN .

For convenience, we represent the variables X1, X2, X3 and X4 by the same variables
as S, E, I and R. The proposed model takes the following form:

dS
dt = μ − βSI − β0SE − μS
dE
dt = βSI + β0SE − αE − α1E − μE
dI
dt = αE − θI − α2I − μI
dR
dt = α1E + α2I − μR

(6.3)

The disease fee equilibrium (DFE)of the model system (6.3) can be given as:

E0 = {1, 0, 0, 0}

The infection states of the model are E and I . The progression from E to I is not con-
sidered as new infection but rather a progression of infection through compartment.
Therefore,

F =
(

β0SE + βSI
0

)
and V =

(−αE − α1E − μE
αE − α2I + θI + μI

)

At DFE E0 the transmission matrix F and the transition matrix V are given as:

F =
(

β0 β
0 0

)
and V =

(
α + α1 + μ 0

−α α2 + θ + μ

)

Which gives,

FV−1 = 1
(α+α1+μ)(α2+θ=μ)

(
(β0 (α2 + θ + μ) + βα) β (α + α1 + μ)

0 0

)

Hence, the R0 takes the following expression

R0 = ρ
(FV−1

) = β0 (α2 + θ + μ) + βα

(α + α1 + μ) (α2 + θ + μ)

We will analyse the variation in R0 for different values of the parameters involved
in the model system. Figure 6.2 illustrates the simultaneous variation in the basic
reproductionnumber for different values of correspondingparameters. Theparameter
values used are given in Tables6.1 and 6.2.
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Fig. 6.2 Variation in the basic reproduction number R0 for different values of sensitive parameters.
a Effect of α and θ on R0. b Effect of α1 and α2 on R0. c Effect of β and α on R0. d Effect of β
and β0 on R0

Table 6.1 Parameter values used for the model

Parameters Value Source

α2 0.02 Estimated

θ 0.01 [11]

μ 3.3009e−05 [16]

Table 6.2 Estimated parameter values of the model for Lombardia, Veneto, Emilia Romagna,
Piemonte and Italy

Parameters Lombardia Veneto Emilia
Romagna

Piemonte Italy

A 100.4365 45.4183 110.0589 160.4357 675.0309

β 0.6290 0.7191 0.5006 0.5040 0.5036

β0 0.2241 0.4595 0.4689 0.2630 0.3159

α 0.0023 0.0017 0.0025 0.0017 0.0019

α1 0.1250 0.2839 0.3101 0.1509 0.1662

Existence of Endemic Equilibrium

The endemic equilibrium state is the state when the disease can not be completely
eradicated but remains in the population. For the disease to persist in the population;
the exposed class and infected class must not be zero at the equilibrium state.
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Let E∗ = (S∗,E∗, I∗,R∗) be the endemic equilibria. Now, E∗ can be achieved by
solving the equations below:

μ − βS∗I∗ − β0S∗E∗ − μS∗ = 0
βS∗I∗ + β0S∗E∗ − (α + α1 + μ)E∗ = 0
αE∗ − (θ + α2 + μ) I∗ = 0
α1E∗ + α2I∗ − μR∗ = 0

(6.4)

From the third equation, we have

E∗ = θ + α2 + μ

α
I∗

Also, from fourth equation, we have

R∗ = α1E∗ + α2I

μ
=

(
α1 (θ + α2 + μ) + αα2

αμ

)
I∗

Now, using the values of E∗ and R∗ in second equation we will have

S∗ = (α + α1 + μ)E∗

βI∗ + β0E∗ = (α + α1 + μ) (θ + α2 + μ)

αβ + β0 (θ + α2 + μ)

Now using the values of E∗,R∗ and S∗, first equation implies

I∗ = μ − μS∗(
β + β0(θ+α2+μ)

α

)
S∗

On simplification, we have

S∗ = ΛΥ
ψ

E∗ = μ[αβ + Υ (β0 − α − α1 − μ)]
Λψ

I∗ = αμ[αβ + Υ (β0 − α − α1 − μ)]
ψΛΥ

R∗ = [αβ + Υ (β0 − α − α1 − μ)](α1Υ + αα2)

ψΛΥ

(6.5)

where,
ψ = αβ + β0 (θ + α2 + μ)

Λ = α + α1 + μ
Υ = θ + α2 + μ

(6.6)

Hence, there exist a unique endemic equilibrium point for our proposed model
system 6.3.
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Backward Bifurcation

The analysis conducted in the previous section on the occurrence of endemic equi-
librium E∗ suggests the probability of backward bifurcation. We have used the resuts
based on the center manifold theorem (theorem 4.1) given in [13], to check the occur-
rence of backward bifurcation. From the expression of R0 it is clear that R0 is directly
related to β as well as β0. Therefore we will consider two separate cases one for each
β and β0.

• Case 1: If we select β as the bifurcation parameter. Moreover, R0 = 1 implies

β∗ = (α2 + θ + μ) (α + α1 + μ − β0)

α

Now,

J0(E0,β
∗) = Dxf (E0,β

∗) =

⎛
⎜⎜⎝

−μ −β0 −β∗ 0
0 β0 − (α + α1 + μ) β∗ 0
0 α − (θ + α2 + μ) 0
0 α1 α2 −μ

⎞
⎟⎟⎠

It is clear that 0 is a simple eigenvalue of J0. Let w = (w1,w2,w3,w4) be the
associated right eigenvector, then

−μw1 − β0w2 − β∗w3 = 0
(β0 − (α + α1 + μ))w2 + β∗w3 = 0
αw2 − (θ + α2 + μ)w3 = 0
α1w2 + α2w3 − μw4 = 0

On solving the above system of equation and substituting the value of β∗, we
obtain

(w1,w2,w3,w4) =
(
− (θ+α2+μ)(α+α1+μ)

αμ
,

θ+α2+μ
α

, 1, α1(θ+α2+μ)+αα2

αμ

)

Similarly, Let v = (v1, v2, v3, v4) be the corresponding left eigenvector satisfying
w.v = 1. After evaluation, we have

(v1, v2, v3, v4) =
(
0, α

(θ+α2+μ)+(α+α1+μ−β0)
,

α+α1+μ−β0

(θ+α2+μ)+(α+α1+μ−β0)
, 0

)

As discussed in Theorem 4.1 [13], the coefficients ‘a’and ‘b’can be computed as:

a =
4∑

k,i,j=1

vkwiwj
d2fk
dxidxj

(
E0,β

∗)



6 A Mathematical Model for COVID-19 in Italy … 111

b =
4∑

k,i=1

vkwi
d2fk
dxidβ

(
E0,β

∗)

Algebraic calculations shows that

d2f2
dx1dx2

= β0 = d2f2
dx2dx1

,
d2f2

dx1dx3
= β∗ = d2f2

dx3dx1

d2f2
dx3dβ

= S0 = 1

The rest of the second derivatives appearing in the formula for ‘a’ and ‘b’ are all
zero. Hence,

a = v2
(
w1w2β0 + w1w3β

∗ + w2w1β0 + w3w1β
∗)

After simplifying and substituting the value of β∗, we have

a = − 2 (α2 + θ + μ)2 (α + α1 + μ)2

α [(α + α1 + μ − β0) + (θ + α2 + μ)]

Similarly, we have

b = α

(θ + α2 + μ) + (α + α1 + μ − β0)

Now, from the above two expressions it is clear that:

a > 0 if β0 > α + α1 + α2 + θ + 2μ
b > 0 if β0 < α + α1 + α2 + θ + 2μ

Now, from the above two conditions it is clear that the coefficients ‘a’ and ‘b’
can not be positive simultaneously. Hence, backward bifurcation is not possible at
R0 = 1 for this particular case.

• Case 2: In this case, we will consider ‘β0’ as our the bifurcation parameter. Now
R0 = 1 implies:

β∗
0 = (α + α1 + μ)(α2 + θ + μ) − βα

(α2 + θ + μ)

On following the same procedure as in “case 1", the associated right eigenvector
w = (w1,w2,w3,w4) can be given as:

(w1,w2,w3,w4) =
(
− (α+α1+μ)(α2+θ+μ)

αμ
,

θ+α2+μ
α

, 1, α1(θ+α2+μ)+αα2

αμ

)
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and the corresponding left eigenvector v = (v1, v2, v3, v4) can be given as:

(v1, v2, v3, v4) =
(
0,

θ + α2 + μ

θ + α2 + μ + β
,

β

θ + α2 + μ + β
, 0

)

Further calculations gives as the values of the coefficients ‘a’ and ‘b, as:

a = −2

α2μ

(θ + α2 + μ)3(α + α1 + μ)2

(θ + α2 + μ + β)

b = θ + α2 + μ

θα2 + μ + β

Hence it is clear that ‘a’ is always negative and ‘b’ is always positive. Hence, for
this case also there does not exist backward bifurcation at R0 = 1.

Therefore, from case 1 and case 2, we can conclude that there does not exist backward
bifurcation at R0 = 1. Only bifurcation which occur at R0 = 1 will be forward in
nature.

Stability Analysis

Local Stability of Disease Free Equilibrium

Theorem 3 The disease free equilibrium of the proposed model system is locally
asymptotically stable when R0 < 1 and unstable for R0 > 1.

Proof The Jacobian matrix corresponding to the disease free equilibrium is

M =

⎛
⎜⎜⎝

−μ −β0 −β 0
0 (β0 − α − α1 − μ) β 0
0 α −(θ + α2 + μ) 0
0 α1 α2 −μ

⎞
⎟⎟⎠

The characteristic equation ofM is

(−μ − Σ)(−μ − Σ) (− (β0 − α − α1 − μ − Σ) (θ + α2 + μ + Σ) − βα) = 0

The first two eigenvalues can be given as Σ = −μ,−μ.
In order to find the other two eigenvalues we will simplify

(− (β0 − α − α1 − μ − Σ) (θ + α2 + μ + Σ) − βα) = 0
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The above equation can be written as

(β0 − D1 − Σ) (D2 + Σ) + αβ = 0

Here,D1 = α + α1 + μ andD2 = θ + α2 + μ.On simplification, the above equation
will be reduced to

Σ2 + (D1 + D2 − β0) Σ + D1D2 − β0D2 − αβ = 0 (6.7)

The basic reproduction number in terms of D1 and D2 is

R0 = β0D2 + βα

D1D2

Now, R0 < 1 implies
D1D2 − β0D2 − αβ > 0
D1 + D2 − β0 > 0

The positivity of these two values and Eq.6.7 implies that the other two eigenvalues
of Jacobian matrixM are negative.

Hence, the disease free equilibriumE0 of the model system (6.1) is locally asymp-
totically stable if R0 ≤ 1 and unstable for R0 > 1.

Global Stability of Disease Free Equilibrium

In order to obtain the conditions for the global stability for E0, we have used the
approach set out in [14], which states that if the model system can be written in the
following form

dX
dt = F(X ,Z)
dZ
dt = G(X ,Z),G(X , 0) = 0

(6.8)

hereX ∈ Rn are the uninfected individuals andZ ∈ Rm describes the infected individ-
uals.According to this notation, the disease free equilibrium is given byQ0 = (X0, 0).

K1: For dX
dt = F(X , 0), X0 is globally asymptotically stable.

K2: G(X ,Z) = BZ − Ĝ(X ,Z) where Ĝ(X ,Z) ≥ 0 for X ,Z ∈ Ω .

here B = DzG(X0, 0) is a M -matrix (matrix whose non-diagonal elements belongs
toR+ ∪ 0) andΩ is the feasible of themodel. Now, the following theorem establishes
the global stability of the disease free equilibrium E0 for our proposed model system.

Theorem 4 The disease free equilibrium point is globally asymptotically stable
provided R0 ≤ 1.
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Proof First we will prove K1 as

F(X , 0) =
[
μ − μS
−μR

]

The characteristic polynomial of system is given by

(−μ − Γ )(−μ − Γ ) = 0

Hence, there are two negative rootsΓ = −μ,−μ. Hence,X = X0 is globally asymp-
totically stable.

Now, we have G(X ,Z) = BZ − Ĝ(X ,Z)

=
[
β0S0 − (α + α1 + μ) βS0

α − (θ + α2 + μ)

] [
E
I

]
−

[
β(S0 − S)I + β0(S0 − S)E

0

]

Here, B =
[
β0S0 − (α + α1 + μ) βS0

α − (θ + α2 + μ)

]
is anM matrix.

Also, Ĝ(X ,Z) =
[
β(S0 − S)I + β0(S0 − S)E

0

]
≥ 0 ; ∀(X ,Z) ∈ Ω .

Hence K1 and K2 are satisfied, which proves our theorem.

Local Stability of Endemic Equilibrium

Theorem 5 When R0 > 1 the endemic equilibrium E∗ is locally asymptotically sta-
ble under the condition Aj > 0 ; ∀ j = 1, 2, 3 and 4 and

A1A2A3 > A2
3 + A2

1A4 , A1A2 > A3

expression of A1,A2,A3 and A4 are given in the proof.

Proof The Jacobian matrix about E∗ is given as

J0 =

⎡
⎢⎢⎣
a11 a12 a13 0
a21 a22 a23 0
0 a32 a33 0
0 a42 a43 a44

⎤
⎥⎥⎦
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Here,

a11 = −βI∗ − β0E∗ − μ a12 = −β0S∗ a13 = −βS∗ a21 = βI∗ + β0E∗
a22 = β0S∗ − (α + α1 + μ) a23 = βS∗ a32 = α a33 = −(θ + α2 + μ)

a42 = α1 a43 = α2 a44 = −μ

The characteristic equation of J0 is

Γ 4 + A1Γ
3 + A2Γ

2 + A3Γ + A4 = 0

Here,

A1 = −(a11 + a22 + a33 + a44)
A2 = (a11a22 − a12a21 + a11a33 + a11a44 + a22a33 − a23a32 + a22a44

+a33a44)
A3 = (−a11a22a33 + a11a23a32 + a12a21a33 − a13a21a32 − a11a22a44

+a12a21a44 − a11a33a44 − a22a33a44 + a23a32a44)
A4 = (a11a22a33a44 − a11a23a32a44 − a12a21a33a44 + a13a21a32a44)

Thus, under the conditions stated in the theorem, the local stability of the endemic
equilibrium is guaranteed by the Routh-Hurwitz criterion.

Numerical Simulation and Model Fitting

According to the data collected from [11], the total number of COVID-19 cases has
crossed 227364 as of May 20. There has been more than 17669 deaths in the country
due to this epidemic. A study is needed to observe that what will be the situation in the
near future in terms of daily active cases. Therefore, the aim of the proposed model
is to predict the future scenario of daily active cases of the COVID-19 epidemic in
Italy by analyzing its present state in the country. In this section, we perform rigorous
numerical simulations to get an insight into the pandemic in Italy (Fig. 6.3).

We calibrated the model (6.1) for daily active cases of COVID-19 in Italy and
its four province namely Lombardia, Veneto, Emilia Romagna and Piemonte. For
simulation, data for daily active cases has been taken from [15] for the period of
68days (March 14 to May 20, 2020). We fit the model system (6.1) with daily
active cases for the whole country as well as for the four provinces. We use in-built
function lsqcurvefit in MATLAB (Mathworks, R2017a) to fit the model. The param-
eters A,β,β0,α,α1 (see Table 6.2) and initial conditions of the human population
(S(0),E(0), I(0),R(0)) are estimated. Other parameters, involved in the model sys-
tem (6.1) are taken from the literature (Table 6.3).

According to the situation report-11 available on the official website ofWHO [17],
the first two COVID-19 positive cases in Italy were reported on January 31. Both the
infected individuals had a travel history to the city ofWuhan, China. This was the ini-
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Fig. 6.3 Current status of COVID-19 in various regions on Italy. (as on 20th May, 2020)

Table 6.3 Estimated initial conditions of human population for Lombardia, Veneto, Emilia
Romagna, Piemonte and Italy

Lombardia Veneto Emilia romagna Piemonte Italy

S(0) 6,630,487.2250 4,463,338.6370 4,297,884.3050 3,899,297.0840 35,906,707.6100

E(0) 505,834.0860 148,574.0557 123,220.8240 151,910.3186 2,715,742.7120

I(0) 9905.8333 1771.0768 2833.7313 1410.4594 10,542.2400

R(0) 978.6327 199.5888 52.0534 199.1392 422.8864

tial phase of the epidemic in the country. Due to delayed imposition of lockdown, the
epidemic started to grow slowly but significantly. By the end of February, the number
of cases reached 1000 [11].We fitted the proposedmodel system (6.1) for Italy and its
four provinces with the official data available on [15] for the month of March, April
andMay. It is observed that the proposedmodel is able to predict the epidemic closely
(see Figs. 6.6, 6.7, 6.8, 6.9 and 6.10). Also, the corresponding residual is also given
in Fig. 6.5, which shows the efficiency of our model with the real data (Fig. 6.4).

Using the parameters given in Tables 6.1 and 6.2, we evaluated basic reproduc-
tion number (R0) for Lombardia, Veneto, Emilia Romagna, Piemonte and Italy (see
Table 6.4). As the Lombardia was worst affected province of Italy and thus recorded
highest value ofR0 among others. The fitting ofmodel to daily active cases data is rep-
resented in Figs. 6.7a and 6.10a for Lombardia, Veneto, Emilia Romagna, Piemonte
and Italy, respectively. The corresponding residuals for these regions are given in
Figs. 6.7b and 6.10b. Further, we tried to predict the situation of daily active cases
of COVID-19 in near future. Graphs of prediction are shown in Figs. 6.7c and 6.10c
for Lombardia, Veneto, Emilia Romagna, Piemonte and Italy, respectively.
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Fig. 6.4 Fitted model to daily active cases data of Italy for the period of March 14 to May 20, 2020
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Fig. 6.5 Residuals for the data fitting of Italy

Table 6.4 Total population (N) and evaluated basic reproduction number (R0) for Lombardia,
Veneto, Emilia Romagna, Piemonte and Italy.

Lombardia Veneto Emilia
Romagna

Piemonte Italy

N 10,000,000 5,000,000 4,500,000 4,400,000 60,000,000

R0 2.1382 1.7512 1.6331 1.9099 2.0683
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Fig. 6.6 Prediction of the model for Italy
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(a) Model fitting to data
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(b) Residual
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(c) Prediction of the model

Fig. 6.7 Fitted model to daily active cases data of Lombardia for the period of March 14 to May
20, 2020
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(a) Model fitting to data
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(b) Residual
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(c) Prediction of the model

Fig. 6.8 Fitted model to daily active cases data of Veneto for the period of March 14 to May 20,
2020. b Residual c Model prediction

It can be seen from Figures that the proposed model is fitted well with the actual
active cases of COVID-19 for all provinces Lombardia, Veneto, Emilia Romagna,
Piemonte, and Italy. In each case, first, we fit the model to the actual data fromMarch
14 to May 20, and estimated parameter values. After that, we used these parameter
values for prediction of the daily active cases for all regions considered in the present
work. The prediction of the active cases for Lombardia is shown in Fig. 6.7c. From
the Figure, it can be concluded that the epidemic will be over approximately by
November 19, 2020 (250days from 14 March). Next, the model fitting for Veneto
and Emilia Romagna is performed and plotted in Figs. 6.8 and 6.9 and prediction
for these regions is given in Figs. 6.8c and 6.9c, respectively. From the Figures, we
conclude that the active cases will near to be eliminated in approximately 200days
(near about September 30, 2020). In continuation of this, Figs. 6.10 and 6.6 depicts
model fitting and prediction of daily active cases of COVID-19 for Piemonte and
whole country Italy, respectively. Again, it is observed that both the regions model
show a good fit with actual daily active cases. One can see the model prediction in
Figs. 6.10c and 6.6 for Piemonte and whole country Italy, respectively that the daily
active cases will be annihilated in approximately 225days (near about October 25,
2020).

Why Lombardia is epicenter of COVID-19 in Italy? Our model has shown that
it has the highest infectives in Italy (Fig. 6.7). Besides, there may be other reasons
as well; the initial case was found here and he had travel history to Wuhan and in
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(a) Model fitting to data
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(b) Residual
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(c) Prediction of the model

Fig. 6.9 Fitted model to daily active cases data of Emilia Romagna for the period of March 14 to
May 20, 2020. b Residual c Model prediction

Wuhan L and S type of strains have been documented [18]. It has also been proposed
by some researchers that L type is more deadly. It has one-sixth of Italy’s 60 million
population and is a region with one of the most high density of population. It also
has more people over 65years of age than any other region. In an interesting study,
high association with pollution in this region has also been pointed out as one of the
reasons in Lombardia [19].

Game Changers

In this section, we will discuss the factors which can significantly control the spread
of pandemic. The two major factors discussed here are (a) Early Lock down and (b)
Rapid Isolation.

Impact of Early Lock Down

On 9thMarch 2020, in response to the increasing COVID-19 pandemic in the region,
the Government of Italy enforced a national quarantine restricting population move-
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(a) Model fitting to data
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(c) Prediction of the model

Fig. 6.10 Fitted model to daily active cases data of Piemonte for the period of March 14 to May
20, 2020. b Residual c Model prediction

ment, with the exception of necessity, work and health circumstances. In this section,
we will investigate the effect of early lock down on the spread of pandemic in Italy.

It is clear from Fig. 6.11 that the epidemic could have been controlled at a very
early stage if the lockdown had been imposed early in Italy. Figure 6.11 shows three
different scenarios of the epidemic in Italy

Figure 6.11a shows the current scenario of Italy. However, if lock down would
have been imposed prior to 9th March 2020, the number of susceptible would have
been significantly low. In Fig. 6.11b, we have considered a case of lock-down with
50%efficiency. It can be seen from the plot that, it has not only significantly reduce the
number of infections, but also caused the overall death of pandemic by 31st August,
2020. Also, Fig. 6.11c indicate that the epidemic could have been eliminated even
more earlier if the the efficiency of lock-down would have been 80%.

Impact of Rapid Isolation on Infected Individuals

COVID-19 is a pandemic which is spreading all across the globe. Early research
shows that the disease transmission rate from an infected individual to a susceptible
is very high [20]. The transmission rate can be reduced by isolating the infected
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(a) Scenario of Italy with current precaution-
ary measures

(b) Possible scenario with 50 percent lock
down efficiency

(c) Possible scenario with 80 percent lock down efficiency

Fig. 6.11 Various possible cases of Italy corresponding to different lock down efficiency rate.

individuals as quickly as possible. In this subsection, with the help of numerical
simulations we will show the variations in infected population for different values
of β, disease transmission rate from infected individual to susceptible individuals.

Figure 6.12 shows various scenarios of the epidemic in Italy in case disease
transmission rate would have been timely controlled. A rapid isolation of infected
population will lead to reduce the disease transmission rate, β. From Fig. 6.12, we
see that as disease transmission rate, β is reduced by 75%, it not only decrease the
active number of infections from 1.5 lacks to 35000, but also the overall lifespan of
pandemic reduced from November 30th to July 15, 2020.

Conclusion

A SEIR type compartmental model is proposed to study the current scenario of
COVID-19 in Italy. Our proposed model accurately fits the officially available data
of the pandemic in Italy. Also, we have discussed how the lock down that was
imposed on 9th March, 2020 was a good but a delayed decision of the government
of Italy. Through simulations, we have shown that a rapid isolation of the infective
individuals and early lock down in the country are twoof themost efficient procedures
to terminate the spread of COVID-19. Our simulations shows that the pandemic in
Italy will last till November, 2020. As of now, the vaccination of COVID-19 have not
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(a) Scenario of Italy with current precaution-
ary measures

(b) Scenario with 50 percent rapid isolation

(c) Possible Scenario with 75 percent rapid isolation of infected
population

Fig. 6.12 Variation in infected population for different isolation of infected population.

been discovered. Hence, this research can also be beneficial for the countries which
are in the initial stage of the pandemic, as our research describes two of the most
effective procedures to counter the spread of the pandemic and its long term impact
on the spread of disease.

We have also estimated the basic reproduction number R0 for the disease. As
our proposed model involves several parameters, we have shown the sensitivity of
these parameters via numerical simulations. It is clear from the simulations (see
Fig. 6.2) that the transmission rates, β and β0 are the most sensitive parameters. The
reproduction number can be minimized if we can reduce these two parameters. Also,
we have derived the value of the basic reproduction number for Italy and some of its
highly effected regions. This research can be extended in variousways.One can refine
the model by introducing new compartments in order to examine the epidemic more
precisely. There are certain assumptions which we have made while constructing
this model because of the limited data and short onset time. As more data will be
available in the future, this model can be trained with more real data to increase its
efficiency. Useful future directions have been proposed Ndairou et al. (2020) in their
compartment model on Wuhan, China. Besides, future mathematical models may
take virus strains prevailing in a region also in account.
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