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Modeling the Spread of COVID-19 i
Among Doctors from the Asymptomatic
Individuals

M. H. A. Biswas, A. K. Paul, M. S. Khatun, S. Mandal, S. Akter,
M. A. Islam, M. R. Khatun, and S. A. Samad

Abstract The present world is in dire straits due to the deadly SARS coronavirus-2
(CoV-2) outbreak, and the experts are trying heart and soul to discover any prevention
and/or remedy. The people from all walks of life in the universe are fighting to defeat
this novel coronavirus. In this case, doctors are in the front line fighters who have put
themselves at a risk. In this paper, we have formulated a non-linear system of five
differential equations of COVID-19 based on the tendency of doctors to be infected.
The target of this study is to take a look at the transmission of COVID-19 from
asymptomatic populations to the doctors. The model is analyzed with the determi-
nation of the basic reproduction number, equilibrium, and related stability analysis
at both equilibrium points. The graph of the basic reproductive ratio for different
parameters has been drawn to show the disease behavior. Finally, we have simulated
our model numerically for visualizing the analytical findings. Our study shows that
the asymptomatic population increases as the disease (COVID-19) transmission rate
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increases. The number of infected population increases with the infection rate. These
increasing asymptomatic and infected populations lead the doctors to get infected by
contacting with them. Thus, the whole medical service system is getting down over
time.

Keywords SARS CoV-2/COVID-19 + Doctors + Mathematical model + Basic
reproductive ratio + Numerical simulation
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Introduction

This century is experiencing one of the most devastating diseases called COVID-19.
The cause of this disease is severe acute respiratory syndrome coronavirus-2 (SARS
CoV-2), a newly immerged virus in 2019. COVID-19 is a highly infectious disease
that has already spread irrespective of developed, developing, and under-developing
countries across the globe. It has become a global health hazard because still now
there is no specific medicine or drugs for remedy or even no other prevention like
a vaccine that can prevent people from being infected by this disease. The curve of
incidence rate and the death rate from coronavirus disease (COVID-19) is becoming
skyrocketed day by day. In order to overcome this fatality, our scientists, researchers,
government employers, politicians, defenses, experimentalists, intellectuals, health
workers are working hand in hand. However, doctors are trying their utmost to rescue
people in almost every way. These people are most vulnerable to infection by this
disease as they are directly involved in the treatment of COVID-19 patients. Already
an alarming number of doctors have died from this fatal disease. And, the death of
consultant doctors is an irreversible loss. Because it takes a long time to be a consul-
tant doctor. By this time in the United States, approximately, 600 health workers
have died of novel coronavirus disease at the time of performing their duty [1]. In
Bangladesh, the coronavirus infection rate among health workers is very high in
comparison to other countries in the world. At present, there are about 3301 health
workers living with coronavirus infections in Bangladesh, among which 1040 doctors
and about 50 doctors have been died by this fatal disease by this time [2]. In the case
of doctors’ death rate of COVID-19, United States is in the first position followed by
Russia (545), UK (540), Brazil (351), Mexico (248), Italy (188), Egypt (111), Iran
(91), Ecuador (82), and Spain (63) [3].

Nowadays, mathematical modeling is playing an incredible role in providing
quantitative insight into this type of mysterious infectious disease dynamics and
maintenance. It has already contributed to a better understanding of the mecha-
nisms of various critical phenomena and has gotten increasing attention because
modeling and simulation allow for rapid, cost-effective, and illuminating assess-
ment. In COVID-19, mathematical modeling can be used to better predictions,
management, and control strategies.
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Our previous work focused on the control policies where we showed that social
distancing, educational campaign, and treatment are efficacious for controlling the
spread of this horrible disease [4]. Many mathematical models of COVID-19 have
been studied as well. Sheffield et al. [5] combined an epidemic model with a cost asso-
ciated model with a lockdown in comparison to intermittent and moderate lockdown
strategies of COVID-19. Bairagi et al. [6] presented an analytical model in order to
control the outbreak of COVID-19 by augmenting isolation and social distancing
features of populations. Chen and Yu [7] studied a second derivative mathematical
model of COVID-19 in order to characterize it in China during the first two months of
the outbreak. Chen et al. [8] worked on a Bats-Hosts-Reservoir-People transmission
model where they simulated the potential transmission from the infection source to
the human infection. Depending on the outbreak of novel coronavirus infections in
Thailand, Sookaromdee and Wiwanitkit [9] developed and analyzed a mathematical
model of this disease. Zhao et al. [10] proposed a model where they estimated the
basic reproductive ratio of COVID-19 on the early detection of its outbreak in China.
Ndairoua [11] investigated a compartmental model of COVID-19 by focusing on the
transmissibility of super-spreaders populations. We refer Aguilar et al. [12], Carolina
et al. [13], Casas-Rojo et al. [14], Chitnis et al. [15], Chen et al. [16], Huo and Feng
[17], Kabir et al. [18], Queen Elizabeth Hospital Birmingham COVID-19 airway
team [19], Magalhaesa et al. [20], Melliani et al. [21], Nadeem [22], Prompetchara
et al. [23], Safi and Garba [24], Zhao et al. [10], Xu et al. [25], Zhang et al. [26],
Zhang et al. [27], Biswas [4, 28-34], Khatun and Biswas [35—-37] and all other refer-
ences inside for gathering effective knowledge about this highly infectious disease
and a very recent study of modeling and control methods.

The novel coronavirus disease (COVID-19) is a world pandemic. People from all
walks of life are taking steps to defend the COVID-19 epidemic but there is no fruitful
solution to this disease yet. As per our view, there is no work that highlights on a
mathematical model of COVID-19 based on the tendency of doctors to be infected as
a result, the medical service system is getting down over the time. Doctors are assets
and front line fighters during this tiring situation but most of the countries in the world
do not have adequate doctor as many as general people. In that case, the government
of those countries has to hire additional doctors and health experts to serve COVID-
19 patients. The present paper deals with the five compartmental model: susceptible
populations, asymptomatic populations, infected populations, doctor populations,
and recovered populations. The novelty of this study is to develop a mathematical
model of COVID-19 in terms of a set of non-linear ordinary differential equations
showing that doctors are affecting more frequently at the time of serving coronavirus
infected patients. Thus, the medical service system has shuttered for the time being.
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Mathematical Model

In our study, we formulate a five compartmental model of coronavirus disease
(COVID-19) by showing how frequently doctors are affecting, and thus, the medical
service system is getting down over time. Let the compartments are susceptible S(¢),
asymptomatic A;(t), infected I (¢), doctors D, (t), and recovered R(¢). Here, the first
compartment S(¢) denotes the susceptible populations and the second compartment
A, (¢) is for asymptomatic populations who are actually infected but have no symp-
toms of COVID-19. The third compartment 7 (¢) denotes the infected populations
as those who are actually infected and identified. The fourth compartment D, (¢)
denotes the doctor individuals who are serving COVID-19 patients. For that reason,
they come to close contact with COVID-19 patients. For this, some doctors are
being infected at the time of performing the duty. After being infected, they become
unable to provide treatment. While contacting COVID-19 patients, doctors are being
infected by a rate of £. Since there is a non-linear relationship, we can say that if
doctors decrease, then more infected people will die. And if the infected people
come into contact with susceptible people, the susceptible people can be infected
soon at a rate r. Another portion of susceptible populations get infected coming into
contact with infected people but they do not show any symptoms of COVID-19.
This phenomenon is denoted by o. For that reason, they can easily contact suscep-
tible people and lead them to become infected faster at a rate 8. When the country
demands more doctors for serving the COVID-19 patients, the government starts
recruiting the doctors by the rate of u from susceptible populations. Some infected
populations are dying at a rate 6, and another part is being recovered at the rate § after
getting proper treatment. o denotes the natural death of populations. £y represents
the infection rate of doctors at the time of serving the patients. (1 — &)y indicates
the recovery rate of COVID-19 patients for undertaking treatment at the hospital.
The interacting transmissions among different compartments are shown in Fig. 3.1.
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Fig. 3.1 The schematic diagram of the compartmental model of COVID-19
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Table 3.1 Parameter specifications of COVID-19 model (3.1)

Symbol | Meaning Values

r Contact rate of susceptible and infected populations 0.002

¢ Source rate to susceptible populations 5,000,000

y Rate of infected cases while consulting with doctors 0.06

0 Death rate from COVID-19 0.02

8 Recover rate without consulting with doctors 0.05

& Infection rate of doctors for contacting with COVID-19 patients 0.00006

P Rejoining rate of doctors after getting recovered 0.00005

B Infection rate of infected populations 0.005

" Source rate of doctors 150

o Disease transmission rate of asymptomatic individuals for contacting an | 0.003
infected and susceptible population

o Recovery rate of asymptomatic populations 0.03

Source Estimated from [1-3]

Now taking all the situations in Fig. 3.1 into consideration, the proposed model

can be formulated by the following set of non-linear ODE:

diy) =0 — oS — rI()S(t) — o 1(1)S(1)

dAdst(” — 0 1(1)S(1) — BADS() — aA,(1)

dgf) = BAS@®) —01(t) = 81 (1) +rI(NS®) +yED, (1) (3.1
% =u+pRE) —yD.()I(1)

? = aA,(t) +81(t) — pR(t) + y D, () (1)(E — 1)

with boundary conditions

$(0) = So > 0, Ag(0) = A0 = 0, 1(0) = Ip = 0, D, (0) = Do = 0, R(0) = Rp = 0

The brief description of the parameters used in the model are shown in Table 3.1.

Analysis of the Compartmental Model

‘We have done the positivity analysis of the solutions of the model in order to show the
validation and well-posedness of this model. Further, we have calculated different
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equilibria, basic reproduction ratio and have analyzed the stability at two different

equilibrium points.

Positivity Analysis

Lemmal If S(t) > 0, A;(¢) > 0,I(t) = 0, D,(t) > 0 and R(t) > O then the
solutions S(t), As(t), I(t), D,(t) and R(t) of the model (3.1) are non-negative.

Proof In order to show the proof of Lemma 1, we use the set of equations (3.1).

ds()
g =@ S —rl(1)8() — ol 1))

To seek positivity, we can write

ds(r) - ()
a - @ — Mo
ds(t
= % + 10S(1) = ¢

The integrating factor of (3.3) is given by
S LF. = el Podt — enot
Multiplying e’ on both sides of (3.3), we get
i(e“U’S(t)) > gpe““’
dt -
Now, by integrating (3.4), we have
S(t) > 2 4 et
Ko

where c is an integrating constant.
Considering the initial value at t = 0, S(¢) > S(0).
From (3.5), we attain

s> tess0) - L >c
Ho Mo

Substituting the value of ¢ into (3.5), we obtain

sy =2+ (s<0> - i)e”m
H“o Ho

(3.2)

(3.3)

3.4

(3.5)

(3.6)
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So,att = 0and t — oo, S(¢) > 0. By repeating the above procedure, we can
prove the positivity of all other state variables.
Consequently, it is clear that V¢ > 0.

S()>0,A,() >0,1I(t)>0,D,(t)>0.

Thus, Lemma 1 is undoubtedly proven.

Equilibrium Points

Let, Eqr.(S*, Ay, I*, D}, R*) be the disease-free equilibrium point of the model

(3.1). In order to find the disease-free equilibrium point, we need to solve % =
day _ drr _ dDp d(ﬁ* = 0 of the model (3.1). At the disease-free equilibrium

dr Tt
point Eq7.(S*, A, I*, D}, R*), the model (3.1) takes the following form:

© — woS* (1) — rI*()S*(t) — o I*(£)S*(1) = 0

o I*(t)S*(t) — BAX(1)S*(t) —aA*(t) =0

BAI(1)S*(t) — 0I*(t) — 81" (t) + rI*(1)S* (1) + yED:()I*(1) =0
w+pR* () —yDi)I*(t) =0

aAL(t) +817(t) — pR*(t) + y DF ()" (t)(E —1) =0 (3.7)

Since infection not found at the Egr(S*, AL, I*, D}, R*) (ie., Ai(t) =
0, I*(t) =0, R*(t) = 0), from (3.7), we have

4

S*(t) = —,
Mo

D*(t) = 0.
Hence, Eqpe(S*, A%, I*, D¥, R*) = (% 0,0,0, 0).

Similarly, we solve the system of equations (3.7) for finding
Eee(S*a A;k, I*, D;k, R*) where

. 90 . 09’ + pog « Bt

= LAY = ,
w+e)r+0) °  aur+aupo 4+ apr +apo + pd 0

adu’r + asp’o + adp’r + asp’o + B8¢20 + Bupd® + au’ro

+au200 + a<p200 + 208 ppr + 2adpupo + Bl + aperéd + 2aupod

Dr* =
E(yi+yp)aur +apo +apr +apo + o)’
(xS,uzr + aSuzd + ot&pzr + (x&pzd + ,35(/)2(-) + /3,u<p92 + (xp.zr(-) + OZ[I.ZO'Q
+Ot(p20'9 + 2a§puer + 2adpupo + Bued + aperd + 2o pupod
ge_  TPROO%E —ap’ros —au’abs — apgrog —apgots

PO (apur + apo + apr + agpo + Bebd)
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Basic Reproduction Ratio

We have used the next-generation matrix method for finding the basic reproduction
number of our model [38]. To employ this method, we have to seek the classes that are
disease or infection related term. From the infection subsystem, we get transmission
and transition matrix F and V.

Here, the matrix for the transmission terms:

=(77)

And, the matrix for the transition terms:

V_<—a—,3 0 )
N B —S5—y—0

Then, we need to estimate a matrix G, so that G = FV L.

Bo o
G=FV = ( (0‘+/3)(§+9+V) S+0+y )
0
a+pB

Now, the characteristic polynomial is given by setting |G — AI| = 0.
= ar’0 —ro +adA? +ayrt 4+ BEAE — Bok + BOAE + Byrt =0

Solving this equation, we get the following basic reproduction number.

Bo + \/(7 (,320 + 4adr +4B86r +4ayr +4Byr 4+ 4ard + 4,3r9)
R =
0 2(ad + B8 + ay + By + ab + B6)

Ry signifies an important role in disease modeling that if Ry > 1, the disease will
persist, and if Ry < 1, the disease will die out.

Stability Analysis at DFE (Egge)

Here, we have investigated the stability at £y, by establishing the Theorem 1.

Theorem 1 The disease-free equilibrium (DEF) point of the model (3.1) is
asymptotically stable if the eigenvalues of the Jacobian matrix are negative.

Proof The Jacobian of (3.1) is given by
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—po—Ir —Ilo 0 —Sr — So 0 0
lo — A8 —a—SB So 0 0
J = AB+1Ir S8 Sr—0—-D,y—-86+D,y§ Iy§ -1y O
0 0 —D,y& —Iys p
0 o §—Dyy(E—1) —IyE -1 —p
(3.8)
The characteristic polynomial can be attained as |J — AI| = 0.
—po—Ir—1Io —A 0 —Sr — So 0 0
lo — A —a—SB—x So 0 0
A+ Ir SB Sr—60—D,y —8+DyyE—X IyE—1Iy 0
0 0 —D,y§ —Iy§—-x p
0 o d—Dyy¢E -1 Iy -1 —p—4
=0
Substituting $* = %, we obtain
A= _er _ g9
A= o 0 Mo Mo 0 0
0 —a—-r-25 o 0 0
Ho Ho
0 e P _r—6-80 0 =0 (3.9)
Mo Mo
0 0 0 A p
0 o 8 0 —x—p

By taking determinant and solving it for A.

oo +8po + Be + ot —or + V¥

)\1:05)"2.:_“0’)"3:_10’)"3: 20

_apo + 30 + B + ot —¢r -V

hs =
2p0

where

Y= azué + 20Buop — 2a8u(2) — 201,11%9 + 20 po@r
+ 797 — 2BS 10 — 2B109b + 2B’ + 4oy’
+ 52/L(2) + 28,u(zﬂ — 28 mor + ;1,362 — 2uopro + (p2r2

Since Ay, A2, A3, A4 and As are all negative, E;y¢, point is asymptotically stable.
Hence, Theorem 1 is proved.
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Stability Analysis at EE (Ege)

In this section, we have investigated the stability at E;¢, by proving the Theorem 2.

Theorem 2 The endemic equilibrium (DEF) point of the model (3.1) is asymptoti-
cally stable if the eigenvalues of the Jacobian matrix are negative.

Proof The Jacobian of (3.1) at E,, point is

—po —rl* —ol* 0 —r8§* —oS* 0 0
ol* — BA} —BS* —« oS* 0 0
J= BAE +rI* BS* =0 —yDf —8+rS*+yEDF —yI* +yEI* 0 (3.10)
0 0 —y&D} —y&I* p
0 o 8 —yDf —yI* —p

In Echelon form, the above matrix is written as

—uo—rl*—ol* 0 —rS*—o8* 0 0
0 —BS* —a AT 0 0
J= 0 0 —ay —yIF4+yEl* 0 | (31D
0 0 0 —da4 P
0 0 0 0 —dss

Equation (3.11) is a 5 x 5 matrix and the characteristic polynomial having
eigenvalue A is given by |J — AI| = 0.

—uo —rl* —ol* — A 0 —rS* —oS* 0 0
0 —BS* —a—n BAS 0 0
0 0 —azxzs — A —yIl* 4+ y&EI* 0 =0
0 0 0 —ag4 — A ]
0 0 0 0 —ass — A

= (=po =" —ol" = 2)(=BS" — & = A)(=a33 — M) (—ass = M) (=ass —2) =0
Here the eigenvalues are given by
M= —(to+rI* +0I*), 0 = —(BS* + ), Ay = —ass, hy = —das, s = —ass.
where

a0 +8+yD})+BS*(0 + 6+ yD}) — yED} (o + BS*) afS* A}
BS* +a (BS* +a)O*

aszz =

_ yE(S +6) 0o + BS*} + afyESTALO*
T O+ O{a+BSIO* + (1 — E){ya + yBS*}Q*DF + afS*A*

ass
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_ p[BIEO +25 + 6)0*S* + a(£6 +25 + 6) 0" + 2aB S AT]
T £[6 + 0l + FSTI Q" + apSAT]

The eigenvalues of the characteristic polynomial are A; = —(rI* +o01%), A, =
—(BS* 4+ a), A3 = —as3, A4 = —ay4, and A5 = —ass, which are all real numbers.
Since all the eigenvalues (A, A2, A3, A4 and As) have a negative real part, E,, is
asymptotically stable. Hence, Theorem 2 is proved.

Results and Discussion

Computer simulations of any biological phenomena provide a rapid, cost-effective,
and illuminating assessment. For this reason, numerical simulations of the devel-
oped COVID-19 model (3.1) have been carried out by the Runge—Kutta-Fehlberg
method using MATLAB programming language. We have taken initial population
at S = 10, 000, 000, A; = 30, 000, I = 50, 000, D, = 3000, R = 20, 000. Firstly,
we have solved the model (3.1) for the tabulated values in Table 3.1, representing all
the parametric values considered for our model and the figure obtained from numer-
ical simulation is presented in Fig. 3.2. Also, we simulated the model for different
parameter values of o and § keeping all other values the same to show their effects
on the model. In this case, the graphs are shown in Figs. 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8.
The parameter o represents disease transmission rate of asymptomatic individuals
for contacting an infected and susceptible population. Thus, this parameter has great
value in respect to the disease transmissions. So, we perform simulations for different
values of o and the graphs are presented in Figs. 3.4, 3.5, 3.6, and 3.7. Furthermore,
is the rate at which the infected populations get infectious for contacting COVID-19
patients, and this parameter has a significant role for disease transmission among the
doctors. So, considering different values of this parameter, Figs. 3.8 and 3.9 have
been drawn. Finally, we show the graphs of the basic reproductive ratio presented in
Figs. 3.10, 3.11, 3.12 and 3.13. It helps us to predict whether the disease will persist
or die out.

Figure 3.2 shows the dynamics of five compartments such as susceptible, asymp-
tomatic, infected, doctors, and recovered populations. We have observed that the
susceptible population decreases from the initial state and it reaches to zero steadily.
The asymptomatic population decreases for the first week and quickly reaches to
zero after that it gradually booms. The infected populations progressively soar from
the initial state and reach to the peak level leading to decrease the number of doctors.
As coronavirus disease is highly infectious, doctors are frequently getting infected at
the time of performing their novel duty. So, the doctors are decreasing surprisingly
from the initial state. Despite this, the recovered populations and death rate increase
from the initial state. It shows that the infection rate of coronavirus disease increases
leading to an enormous death every day and causing a massive number of infections
among doctors. Thus, the whole medical service system is getting down over time.
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Fig.3.11 The graph of basic reproductive ratio (Ro) with respect to the infection rate (8) of infected
populations and recovery rate («) of asymptomatic populations (Source Own)
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Fig. 3.12 The graph of basic reproductive ratio (Ro) with respect to the recover rate (§) without
consulting with doctors and recovered rate () due to consulting with doctors (Source Own)

From Fig. 3.3, we can say that for a higher rate of y, the infected population
decrease with time because the majority of COVID-19 patients undertake treatment
to relieve the disease. This leads to a less number of asymptomatic individuals.
Hence, these reduced asymptomatic individuals do not infect the doctors massively.

Figure 3.4 indicates the influence of disease transmission rate (o) on the asymp-
tomatic populations for 15 weeks period. Asymptomatic populations are those who
are infected by the coronavirus disease. The unique feature of these asymptomatic
populations is that they don’t reveal any signs or symptoms of COVID-19. For that
reason, these asymptomatic populations spread the disease among people subcon-
sciously. In Fig. 3.4, it has been noticed that the asymptomatic populations increase
as the disease transmission rate (when o rises from 0.03 to 0.1) increases.

Figure 3.5 represents the effect of the disease transmission rate (o) on the infected
populations for 15 weeks period. Infected populations are those who are actually
infected by the coronavirus disease, identified, and able to transmit it among people.
From Fig. 3.5, we have observed that the infected populations decrease sequentially
as the disease transmission rate o (when o rises from 0.04 to 0.2) of asymptomatic
populations increases. This shows that the asymptomatic populations increase as
the disease transmission rate o increases but the infected populations decrease as
this parameter increases. This is because of the increasing number of asymptomatic
populations lead to a decrease in the concentration of infected populations. As the
more populations remain in asymptomatic condition, the more populations do not get
identified as COVID-19 carriers. Thus, a massive population will remain unidentified
and hence the number of identified infected populations will decrease.

Figure 3.6 shows the variation of doctor populations for different values of disease
transmission rate (o), the rate at which the susceptible populations becoming infec-
tious by contacting COVID-19 patients. A remarkable number of doctors have been
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infected worldwide at the time of serving COVID-19 patients, and as a result, they
have died by this novel coronavirus infection. Most of them are getting infected with
coronavirus by the asymptomatic populations. This scenario is presented in Fig. 3.6,
and from this figure, it has been observed that the doctor populations decrease quickly
as the disease transmission rate (o) (when o ranges from 0.04 to 0.2) of asymptomatic
populations increases. The increasing number of asymptomatic populations leads the
doctors to be infected. Thus, the number of doctors to serve patients is going down
over time.

Figure 3.7 shows the effect of the disease transmission rate (o) on the recovered
populations for 15 weeks period. It has been observed that the recovered popula-
tions decrease as the disease transmission rate o (when o goes from 0.04 to 0.2)
of asymptomatic population increases. Since the asymptomatic population increases
with the increase of disease transmission rate o, recovered individuals decrease with
the increase of this parameter value.

Figure 3.8 presents the effect of infection rate (8) on the asymptomatic populations
for 15 weeks period. From this figure, it has been noticed that the asymptomatic
populations decrease as the infection rate 8 (when 8 goes from 0.0008 to 0.009) of
the infected population increases. Since the infected population increases with the
increase of infection rate 8, the asymptomatic population decreases with the increase
of this parameter value.

Figure 3.9 exhibits the effect of infection rate (8) on the infected populations for
15 weeks period. It has been observed that the infected populations increase swiftly
for the first two weeks from the initial state but it slowly decreases to the next two
weeks as the infection rate (8) (when g goes from 0.0008 to 0.006) increases. After
that, the infected populations gradually increase as the infection rate (8) increases. It
means that when the infection rate (8) increases, the number of infected individuals
also increases.

The simulated graphs presented in Fig. 3.10, shows the schematic view of the
basic reproductive ratio of the model (3.1). We have performed the simulation of
basic reproductive ratio (Ry) with respect to «, B, y, r, and o. From Fig. 3.10, it
has been noticed that the basic reproductive ratio Ry < 1 for all values of @ and
y whereas Ry > 1 for all values B, r, and o. Hence, the disease-free equilibrium
point is locally asymptotically stable if Ry < 1 and unstable if Ry > 1. Whereas, the
endemic equilibrium point is locally asymptotically stable if Ry > 1 and unstable
if Ry < 1 [37]. Figures 3.11, 3.12 and 3.13 present a 3-dimensional plot of basic
reproductive ratio.

Conclusions

People from the entire world are confined at the home due to life-threatening coro-
navirus disease (COVID-19). In spite of the deadliness of COVID-19, doctors are
performing their novel duty to serve the coronavirus infected patients. Thus, they are
acting as first-line soldiers keeping themselves vulnerable to coronavirus infections.
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Fig. 3.13 The graph of basic reproductive ratio (R¢) with respect to the disease transmission rate
(o) of asymptomatic and the infection rate () of infected populations (Source Own)

In this paper, we have developed a mathematical model of COVID-19 in terms of a
set of non-linear ordinary differential equations showing that doctors are affecting
more frequently at the time of serving coronavirus infected patients. So, the medical
service system is going down over time. We have analyzed the model by determining
of the basic reproductive ratio and related stability analysis at the disease-free and
endemic equilibrium points. The graph of the basic reproductive ratio for different
parameters has been carried out to show the disease behavior. Finally, numerical
simulations have been performed to illustrate the analytic results. We have observed
that the asymptomatic population increases as the disease (COVID-19) transmission
rate increases and also the number of infected population increases when the infec-
tion rate increases. These increasing asymptomatic and infected populations lead the
doctors to be infected by contact with them. Thus, the whole medical service system
is getting down over time. So, it is time to save our supreme warriors (doctors) during
this coronavirus outbreak by ensuring their proper safety like life-saving protective
equipment.
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