
Chapter 16
Modelling and Sensitivity Analysis
of COVID-19 Under the Influence
of Environmental Pollution
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Abstract The ongoing COVID-19 pandemic emerged as one of the biggest chal-
lenges of recent times. Efforts have been made from different corners of the research
community to understand different dimensions of the disease. Some theoreticalworks
have reported that disease becomes severe in the presence of environmental pollution.
In this work, we propose a nonlinear mathematical model to study the influence of air
pollution on the dynamics of the disease. The basic reproduction number plays a vital
role in predicting the future of an epidemic. Therefore, we obtain the expression of
the basic reproduction number and performed a detailed sensitivity and uncertainty
analysis. The values of partial rank correlation coefficients (PRCC) have been cal-
culated corresponding to six critical parameters. The positive values of PRCC for
pollution-related parameters depicts that pollution enhances the chances of a rapid
spread of COVID-19.

Keywords COVID-19 · Environmental pollution · Mathematical model · The
basic reproduction number · Sensitivity analysis

Introduction

The ongoing pandemic of COVID-19 was originated in Wuhan (China). Since then,
it has invaded almost every country across the globe and created unprecedented stress
on medical facilities and infrastructure. Due to its severity, the World Health Orga-
nization (WHO) first declared a Public Health Emergency of International Concern
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on 30 January 2020, and subsequently a pandemic on 11 March 2020 [1]. Coro-
naviruses, responsible for COVID-19, belong to the Coronaviridae family in the
Nidovirales order [2]. Due to the presence of crown-like spikes on its outer surface,
it is known as coronavirus. The coronaviruses diameter ranges between 65–125 nm
and contain a single-stranded RNA as a nucleic material. The coronaviruses family
has four subgroups namely; alpha (α), beta (β), gamma (γ ) and delta (δ) [2]. Before
2002, it was believed that coronaviruses infect only animals. The 2002 outbreak (in
Guangdong, China) of severe acute respiratory syndrome (SARS) was the first event
caused by SARS-CoV [3]. After 2002, the SARS outbreak, the world faced an out-
break of Middle East respiratory syndrome coronavirus (MERS-CoV) caused by the
coronaviruses family [4].

The coronavirus (responsible for COVID-19) initially transmitted to humans from
the Wuhan seafood market [5, 6]. Later, it was established that the disease can also
spread through human to human transmission mode. As per scientific and clinical
research, the transmission of the coronavirus from infected individuals to healthy
individuals spreads due to physical contacts and droplets in the air due to sneezing
and coughing of an infected person [7]. The primary symptoms of COVID-19 are
approximately 95% similar to SARS coronavirus and include dry cough, abnormal-
ity in body temperature, breathing difficulty and bilateral lung infiltration [7, 8].
Moreover, the role of environmental pollution on the spread of waterborne diseases
has also been studied [9–11]. The correlation between exposure to air pollution and
COVID-19 mortality poses a serious question in front of the research community.
Owning to this, attempts have been made to identify the possible impact of environ-
mental pollution on the spread of COVID-19 and COVID-19 mortalities. In partic-
ular, the study carried out by Conticini et al. [12] explored the correlation between
air pollution and COVID-19 mortality. They further observed that the regions with
a high level of pollution (Lombardy and Emilia Romagna) are also registered the
maximum number of deaths due to COVID-19. Further, based on the data, the study
concludes that people living in areas with high pollutants concentration may easily
fall prey to respiratory disease. The work carried out by Zoran et al. [13] investigates
the correlation between high transmissibility and lethality COVID-19 and the sur-
face air pollution in the Milan metropolitan area, Lombardy region, Italy. To achieve
this goal, authors collected daily data (from 1 January to 30 April 2020) of average
concentrations of PM2.5 and PM10 and maxima PM10 ground-level atmospheric pol-
lutants and air quality and climate variables (e.g., daily average temperature, wind
speed, relative humidity, atmospheric pressure field, etc.). The study demonstrates
the strong influence of daily averaged ground levels of particulate matter concen-
trations on COVID-19 cases outbreaks in Milan. The study, further, concludes that
chronic or short-term exposure to particulate matter PM2.5 or PM10 carrying different
viruses or bacteria has a major negative impact on the human immune system and
thus makes people vulnerable towards COVID-19.

Mathematical modelling of infectious disease provides critical information about
its transmission mechanism. The results obtained on the long-term dynamics of an
epidemic through the analysis of the mathematical model are crucial in the planning
intervention programs [14]. In case of COVID-19, many mathematical models have
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been deployed to study the difference dimensions of the disease (see [15–22, 22–26]
and references cited therein).

In [21], the authors proposed a mathematical model to make short-term predic-
tions about the future of COVID-19 in India, Argentina, Mexico and South Africa.
Moreover, they also explore the conditions under which the proposed model exhibits
backward bifurcation. In [23], a mathematical model is proposed to study the role of
different nonpharmaceutical intervention policies (e.g. contact tracing, quarantine,
social distancing, isolation, the use of face masks, etc.) in controlling the disease.
With the help of the data of COVID-19 for USA (US), the authors demonstrate that
these intervention strategies are successful in controlling the ongoing pandemic. In
[24], the authors investigate the importance of the lockdown in controlling the wave
of COVID-19 with the help of a mathematical model and simulating the same over
the real data available for Florida, Arizona, New York and for the entire country.
The study also underscores the importance of the identification of pre-symptomatic
and asymptomatic patients. Further, authors also observe that control of COVID-19
will be significantly achieved if the implementation of lockdown is complemented
by the use of face masks. In [17], the authors used a simple SIR epidemic model
to study the COVID-19 scenario in France, China and Italy. Through the simulation
of the model on the available data for the three countries, the authors identify that
the recovery rate is the same for all the three countries. On the other hand, a very
high variability has been observed among the three countries in terms of disease-
induced death and disease transmission rate. In [22], authors extended the generic
SEIR epidemic model by including a separate compartment for the super spreader,
hospitalized and fatality class. The analysis of the model reveals the role of the
super spreader in the dynamics of COVID-19 in Wuhan (China). In [20], authors
proposed a mathematical model by including the bat population. Further, the authors
extended the model to a fractional mathematical model to study the role of bats and
the seafood market on the spread of COVID-19. In [26], authors proposed a mathe-
matical model by incorporating some time dependent parameters to investigate the
COVID-19 outbreak in Wuhan. Through the calculation of the effective daily repro-
duction ratio, authors demonstrate that delay in providing medical facilities play a
key role in the increase in the size of the epidemic. In [18], authors formulated an
eight stages SIDARTHE epidemic model to investigate the COVID-19 scenario in
Italy. The model subsequently analysed to identify effective control strategies. The
authors conclude that collective implementation of restrictive social distancing along
with widespread testing and contact tracing may end the ongoing COVID-19 wave
in Italy. In [19], a stochastic epidemic model has been used to study the COVID-19
pandemic in China. The model further used to estimate the reproduction number
and gauge the success of implemented control measures. The authors also investi-
gate the effect of the work timing on the disease dynamics. In [16], authors apply
Monte–Carlo simulation on a stochastic SEIR compartmental model and predict the
future of COVID-19 using the initial data of the reported cases in India. In [22],
authors used a compartmental model to investigate the spread of the COVID-19 in
Wuhan. Subsequently, the authors proposed a detailed dynamical study of the model
and obtained the necessary conditions for the stability of the equilibrium solutions.
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Sensitivity analysis also carried out to gauge the impact of the individual parameters
on the dynamics of the disease. In [25], authors demonstrate the success of the SIR
epidemic model over the SEIR epidemic model (in terms of the representation of
confirmed cases) using the Akaike Information Criterion (AIC) in the term. In [15],
authors used a SLIAR epidemic model to study the future of COVID-19 using the
initial data of the disease. They demonstrate that during the initial phase of the infec-
tion simple models are more helpful and provides significant information about the
disease.

From the above discussion, it can be concluded that mathematical models are
vastly used to study different dimensions of the COVID-19. Moreover, the model
also employed to identify robust control measures to reduce the size of the epidemic.

During the formulation of a disease model, one has to make different assumptions
helping in representing the transmission mechanism of disease in the language of
mathematics. But, the assumptions lead to the formulation of an epidemic model
often introduce uncertainties in the estimation of parameters involved in the model.
In many cases, this seriously affects the accuracy of the results obtained through the
analysis of the model. The information obtained through the sensitivity analysis will
provide key information about the impact of different parameters on the dynamics
of the disease. Due to this, sensitivity and uncertainty analysis of epidemic models
is an important area of research, and many researchers are performing sensitivity
analysis of epidemic models [27–29]. A nice review of the methods and techniques
of sensitivity analysis can be found in [30].

Recently, a number of studies are found an active role of the environmental pol-
lution in the spread of a number of infections [31–35]. Some studies observed that
regular exposure to environmental pollution results in diminishing of immunity [31,
36, 37]. This enhances the susceptibility of an individual towards an infection. In
particular, Lafferty et al. [32] give a nice illustration of the impact of environmental
stress on the dynamics of an infectious disease. The work carried out in [38] pro-
posed an SIS type epidemic model by including a separate compartment of stressed
individuals (those having regular exposure to environmental pollution) demonstrate
the positive impact of environmental pollution on the spread of the disease. Despite
this, to the best of our knowledge, no mathematical model available to study the
correlation between environmental pollution and COVID-19. To fill this gap, in this
work, we propose a new mathematical model to investigate the possible impact of
environmental pollution on the spread of COVID-19. We obtain the expression of
the basic reproduction number for the proposed model and then perform a rigor-
ous sensitivity analysis of the same. The sensitivity analysis helps us to identify the
impact of a particular parameter on the dynamics of the system. In particular, the
current work demonstrates that environmental pollution may play a significant role
and should be considered as one of the factors in the study of COVID-19.
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Mathematical Model

In this section, we present themathematical model considered during thework. In the
modelling process, we divide the total human population N (t) at a particular time
t into seven mutually exclusive compartments; namely susceptible S1(t), stressed
(those with weaken immune system due to regular or frequent exposure to environ-
mental pollution) S2(t), exposed E(t), quarantine Q(t), infected I (t), hospitalized
H(t) and recovered R(t).

dS1
dt

= � − δS1(I + δ0E)

N
− dS1 − γ S1

dS2
dt

=γ S1 − δ(1 + εδ
′
)S2(I + δ0E)

N
− dS2

dE

dt
=δS(I + δ0E)

N
+ δ(1 + εδ

′
)S2(I + δ0E)

N
− (d + θ)E

dQ

dt
= θ(1 − p)E − (d + α)Q − φQ − φ0Q

dI

dt
= θpE − (d + α + r)I − ψ I

dH

dt
= ψ I − (d + αα

′
)H − ξH + φ0Q

dR

dt
= ξH + φQ − dR + r I

(16.1)

In the model system, � is the constant recruitment rate. δ is the disease transmis-
sion rate for the individuals of S1 class from the infected individuals. It is assumed
that disease transmission rate from exposed individuals to susceptible individuals is
less than δ and to incorporate the same we introduce δ0 as the reduction factor. Next,
using the approach of Lafferty et al. [32], we modify the disease transmission rate for
stressed individuals (S2) as δ(1 + εδ

′
), where ε measures the impact of environmen-

tal pollution on the transmission rate and the effect of pollution δ is represented by
δ

′
. The model also considers the natural death rate of d. θ is the rate at which exposed

individuals leave the exposed class and join the infected class, out of which one frac-
tion p joins the infected class while the remaining 1 − p joins the quarantine class.
Parameter α represents the disease-induced death rate. It is also assumed that the
disease-induced death rate for hospitalized individuals is less (due to availability of
medical treatment) than that of infected individuals and to incorporate this we intro-
duce α

′
as the reduction factor.ψ is the rate at which infected individuals admitted to

hospitals. The hospitalized individuals after initial treatment/checkup are allowed to
move in self-quarantine at the rate φ0. Parameters φ, ξ and r represent the recovery
rates for individuals of quarantine, hospitalized and infected class, respectively.
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The Basic Reproduction Number

It is trivial to observe that proposed model system possesses a unique disease free
equilibrium point E0 = (

S01 , S
0
2 , 0, 0, 0, 0, 0

)
, where S01 = �

(γ+d)
and S02 = γ�

d(γ+d)
.

Next, to calculate the basic reproduction number for the proposed model system
16.1, we use the popular next generation matrix method [39]. Now, the matrix F and
V can be obtained as

F =
⎡

⎢
⎣

δS(I+δ0E)
N + δ(1+εδ

′
)S2(I+δ0E)
N

0
0

⎤

⎥
⎦ , V =

⎡

⎣
(θ + d)E

−θ(1 − p)E + (α + d + φ + φ0)Q
−pθE + (α + d + r + ψ)I

⎤

⎦

Subsequently, we can obtained the Jacobians F and V ofF and V , respectively,
at the disease free equilibrium point E0 as

F =
⎡

⎣
δδ0S01+δδ0(1+εδ

′
)S02

N
δS01+δ(1+εδ

′
)S02

N 0
0 0 0
0 0 0

⎤

⎦

Similarly,

V =
⎡

⎣
(θ + d) 0 0

−θ(1 − p) 0 (α + d + φ + φ0)

−pθ (α + d + r + ψ) 0

⎤

⎦

Now, the spectral radius of the matrix FV−1 will provide us the expression of the
basic reproduction number (R0) as

R0 = δδ0d + δδ0(1 + εδ
′
)γ

(γ + d)(θ + d)
+ pθδd + δ(1 + εδ

′
)

(θ + d)(γ + d)(α + d + r + ψ)
(16.2)

Sensitivity Analysis

Mathematical models pertaining to infectious disease are considered as an exciting
field of research. The availability of a variety of mathematical models helps agencies
to reduce the burden of a number of infectious diseases. In the study of disease dynam-
ics using mathematical models, basic reproduction plays a very important role as it
provides the threshold for the disease elimination and persistence. The mathematical
epidemiological model may acquire a complex structure depending upon the com-
plexity involved in the transmission mechanism of a particular infection. Therefore,
in many cases, it will be difficult to identify the impact of an individual parameter
on the dynamics of the disease. Sensitivity analysis of the epidemic model plays an
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important role to overcome this problem. The sensitivity analysis corresponding to
some key parameters of an epidemic model provides crucial information that helps
the authorities to frame some robust policies to combat infectious disease.

In this section, the sensitivity analysis of R0 using two sampling schemes (namely
random and Latin hypercube) to investigate how sensitive R0 to an input parameter
involved in themathematicalmodel. Sensitivity analysis generally constitutes a series
of tests involving different sets of input parameters. This helps us to observe how
a change in the predictor parameter values changes the dynamical behaviour of the
system. It also provides information on how closely input parameters are related to
a particular predictor parameter. The results obtained through sensitivity analysis
helps in determining the level of change necessary for an input parameter to obtain
the desired value of a predictor parameter.

In the study of disease models, sensitivity analysis is used to identify the key
parameters, among the parameters involved in the model, which have a significant
impact on the outcome of R0 depending on the uncertainty involved in their estima-
tion. Partial rank correlation coefficients (PRCCs) are a popular technique used to
determine the statistical influence of any parameter on the R0. In the present work,
we first performed uncertainty analysis for R0, subsequently, we obtain partial rank
correlation coefficients corresponding to all uncertain parameters.

There are 11 parameters involved in themodel system (16.1) and the estimated val-
ues of the same have been given in Table16.1. Out of 11 parameters, δ, θ, p, r, ε and
δ

′
have been identified to conduct uncertainty analysis due to uncertainties involved

in their estimation. To carry out the uncertainty analysis, we consider each of these
parameters as a random variable with an appropriate probability density function.
The remaining five parameters are kept fix and their values have been taken from the
literature (given in Table 16.1).

Following are the distributions selected for six parameters

1. Four parameters consider to follow uniform distribution as discussed in [15]

(a) δ with minimum 5 × (10)−5 and maximum 3 × (10)−4.
(b) θ with minimum 1 and maximum 14.
(c) p with minimum 0 and maximum 1.
(d) r with minimum 2 and maximum 14.

2. ε followsWeibull distribution with parameters 0.6386 (scale) and 12.766 (shape).
3. δ

′
follows exponential distribution with rate 1.

Two sampling methods random sampling (RS) and Latin hypercube sampling (LHS)
have been considered to generate the values of these six uncertain parameters. A set of
1000 parameter values have been sampled using RS and LHS for six parameters from
different types of parameter distribution. Histograms of the parameters considered
for the study are given in Figs. 16.1 and 16.2. Histograms and box plots for the
distributions of R0 are shown in Fig. 16.5. These histograms and box plots have been
generated from Eq. 16.2 using RS and LHS.
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Table 16.1 Model parameters with interpretation and values/distribution

Parameter Description Value/distribution References

δ Disease transmission
rate from infected to
susceptible individuals

Uniform [15]

δ0 Reduction in disease
transmission for
exposed individuals

0.2 [40]

d Natural death rate 0.00003961 [41]

θ Rate at which exposed
individuals leaving
exposed class to
infected class

1
5.1 [16]

p Fraction of exposed
class joining infected
class

Uniform –

α Disease related death
rate

0.0175 [40]

α
′

Reduction factor and
lies between 0 and 1

0.1 Assumed

r Recovery rate for
infected class

Uniform [15]

ψ Rate at which infected
individuals admitted to
hospitals

0.2174 [42]

ρ Recovery rate of
hospitalized
individuals

1
14 [40]

φ Recovery rate of
quarantine individuals

0.1162 [40]

ε Amount by which
environmental
pollution affects the
transmission rate

Weibull [43]

δ
′

Effect of pollution on δ Exponential [32]

γ Rate at which
individuals of S1 class
join S2 class

0.004 Assumed
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Fig. 16.1 Histograms of the values obtained through random sampling with a sample size of 1000
(Source own)

Results and Discussion

The partial rank correlation coefficients (PRCC) indicate the degree of effect of a
particular parameter on the outcome. Scatter plots comparing the basic reproduction
number for each of the parameters; δ, θ , p, r , ε and δ

′
are shown in Figs. 16.3

and 16.4 for RS and LHS, respectively. These scatter plots clearly show the linear
relationships between input parameters and R0.

The sign of the PRCCdepicts the qualitative relationship between the input param-
eter and the related output variable. The positive sign of the PRCC of the variables
corresponds to the situation that an increase in the value of the input parameter, the
value of R0 also increases. On the other hand, the negative sign of the PRCC signifies
that any increase in the corresponding parameter results in the decrease of the basic
reproduction number, and hence such parameters have the potential to reduce the
size of the epidemic.
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Fig. 16.2 Histograms of the values obtained through Latin hypercube sampling with a sample size
of 1000 (Source: own)

The results obtained through sensitivity analysis are given in Table16.2. On the
basis of random sampling, we can conclude that parameters θ , δ and δ

′
have higher

degree of relationship with R0 with PRCC values 0.9077, 0.8591 and 0.749, respec-
tively. From the values of the parameters, it is easy to observe that δ and δ

′
have

positive association while the parameter θ has a negative association. Further, the
other pollution-related parameters ε also recorded the positive value of PRCC.

Similar results have been obtained for the Latin hypercube sampling as θ emerged
as the most sensitive parameter with the highest value (−0.924458593) of PRCC.
δ and δ

′
are observed as the next two most sensitive parameters with PRCC values

0.879221188 and 0.763274350, respectively. The PRCC value for ε is 0.096838976,
which clearly reflects the positive association of the pollution on the spread of the
disease.

The positive values of PRCC clearly depict that pollution plays a supportive role in
the spread of the disease and can increase the size of the epidemics. Since pollution is a
global problemandmanydeveloping countries are suffering severelywith themenace
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Fig. 16.3 Scatter plots for R0 obtained from random sampling (Source: own)

of pollution. These countries also lack a robust medical infrastructure. Therefore, the
results obtained in this work clearly highlights the need for some appropriate steps
from the different research community in order to control the ongoing COVID-19
pandemic.

In short, the following points can be concluded from the current study

1. θ is the most sensitive parameter followed by δ and δ
′
.

2. The positive values of PRCC for pollution-related parameters (δ
′
and ε) are posi-

tive. This clearly reflects the positive association of pollution on the spread of the
disease.

3. The PRCC value for δ
′
is significantly high, which shows that disease spreadmore

rapidly in the presence of pollution.
4. Disease eradication needs more effort in the presence of pollution.
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Fig. 16.4 Scatter plots for R0 obtained from Latin hypercube sampling (Source: own)

Table 16.2 PRCC values for the basic reproduction number R0

Parameter Sampling PRCCs

δ RS 0.85912837

LHS 0.879221188

θ RS −0.90773120

LHS −0.924458593

p RS 0.02250202

LHS 0.009476424

r RS −0.57183391

LHS −0.617232256

ε RS 0.07814241

LHS 0.096838976

δ
′

RS 0.74904911

LHS 0.763274350
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Fig. 16.5 Histogram and box plot of the basic reproduction number, a obtained from random
sampling and b obtained from Latin hypercube sampling (Source: own)

Accounts to the rapid growth in the industry and automobiles, the level of pollution
will rise significantly in the near future. And there is a high chance that many new
chemical pollutants will come into existence. Therefore, the current study can be
extended, in the future, by incorporating more variables or parameters as per the
available field data.
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