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Abstract Epidemic diseases are well known to be fatal and cause great loss
worldwide—economically, socially and mentally. Even after around nine months,
since the Coronavirus Disease 2019 (COVID-19) began to spread, people are getting
infected all over the world. This is one of the areas where human medical advance-
ments fail because by the time the disease is identified and its treatment is figured
out, most of the population is already exposed to it. In such cases, it becomes easier
to take steps if the dynamics of the disease and its sensitivity to various factors is
known. This chapter deals with developing a mathematical model for the spread of
Coronavirus disease, by employing a number of parameters that affect its spread.
A compartmental modelling approach using ordinary differential equation has been
used to formulate the set of equations that describe the model. We have used the
next generation matrix method to find the basic reproduction number of the sys-
tem and proved that the system is locally asymptotically stable at the disease-free
equilibrium for R0 < 1. Stability and existence of endemic equilibrium have been
discussed, followed by sensitivity of infective classes to parameters like proportion
of vaccinated individuals and precautionary measures like social distancing. It is
expected that after the vaccine is developed and is available to use, as the proportion
of vaccinated individuals will increase, the infection will decrease in the population
which can gradually lead to herd immunity. Since, the vaccine is still under develop-
ment, non-intervention measures play a major role in coping with the disease. The
disease generally transmits when the water droplets from an infected individuals’
mouth or nose are inhaled by a healthy individual. The best measures that should be
adopted are social distancing, washing one’s hands frequently, and covering one’s
mouth with mask, quarantine and lockdowns. Thus, as more and more precautionary
measures are taken, it would gradually reduce the infection which has also been
proved numerically by the sensitivity analysis of ‘w’ in our dynamical analysis.
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Introduction

Epidemic diseases have always been amajor concern worldwide. In addition tomany
people losing their lives, outbreaks also impose financial, social, and mental strains
on individuals and nations as a whole. History has many examples of such brutal
outbreaks like Russian plague, Flu pandemic, Spanish Flu, Asian Flu, H1N1 Swine
Flu pandemic, West African Ebola epidemic, Zika virus epidemic and many more.
Quite a chunk of these have been able to be suppressed by vaccinations, ofcourse only
after causing the mass destructions, while some diseases still have no vaccinations. A
current such threat is COVID-19 epidemic, which started spreading from the Wuhan
city of China in December 2019 and is now brutally taking lives worldwide. Since,
people were unaware of this new virus initially, they kept on travelling internationally
and the virus soon spread out from China to all across the world. One of the worst
affected countries were Italy and Spain. These were the first to suffer at the hands
of the virus and had massive death tolls. Most other countries had a buffer period
and did not experience an outbreak immediately, so steps like passenger screening
were adopted at airports, assuming that the virus could only affect an individual if the
person had a travel history to affected countries like China or Italy. Soon cases started
appearing wherein the patients did not had a travel history but came in contact with
someone who had and it did not take long for the community spread to begin leading
to outbreak all over the world. With no vaccination at hand and no prior information
about the virus or it’s treatment, it had been difficult to handle the disease initially
and even months after the spread the number of cases are still increasing. Various
researches are being carried out by several countries to develop a vaccination for the
disease and some have already come up with one, like Russia.
But amajor fact about epidemic diseases is that theymostly cause an outbreak and are
unable to control initially because of lack of prior knowledge. Even though the human
race has aced in providing themselves health stability over the years, by getting deeper
into medical research, it takes time and effort to deal with epidemics. That is where
epidemiology comes into play. In order to deal with epidemics, epidemiologists bring
together the real life prospects of the disease into a mathematical model and using
real life data one can make estimates regarding length and extent of the transmission
and also various control measures that can be adopted to control the disease in long
and short run. In the presence of a vaccine, one can even make estimates regarding
how much of the population has to be vaccinated before achieving herd immunity.
For instance, Ochoche and Gweryina in their study on measles using mathematical
modelling concluded that atleast 94 % of the population must be vaccinated in order
to achieve herd immunity [1]. Similarly, Kassa et al. in their research on COVID-19
have discussed various mitigation strategies to cope with the disease [7]. Different
possible scenarios are being considered by researchers in order to be as accurate as
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possible [5, 8–10, 14–17]. Ngonghala et al. came up with a complex mathematical
model for COVID-19 to study the impact of non-pharmaceutical interventions in
[4]. Chang et al. have discussed the impact of media coverage on the spread of the
disease in their research [6]. Researchers like Paul et al. have done prediction analysis
for various South Asian countries focussing on the impact of various precautionary
measures in [3].
In the sections that follow, we have attempted to study the spread of an epidemic with
the help of mathematical modelling, bringing together the various stages involved
in the spread of an epidemic and analysing various factors affecting this spread.
We have first dealt with a general model for an epidemic, incorporating a variety
of parameters that affects it’s spread. Scenarios like vaccination have been added
that can be used based on whether vaccination is available for a particular disease
or not. Later on we have used the model to analyse the spread of COVID-19 and
the intensity of the affect certain parameters have on it. SectionModel Formulation
deals with model formulation. In Sect.Stability Analysis, we have discussed about
the stability and existence of the two equilibrium points - the disease-free and the
endemic equilibrium based on the basic reproduction number. SectionSensitivity
Analysis consists of sensitivity analysis of COVID-19 model parameters. Lastly, we
have concluded the results in Sect.Conclusion discussing a few mitigation strategies
and summarising the importance of epidemiology.

Model Formulation

Description

The model is based on the S-E-I -R-S deterministic compartmental modelling
approach. The total population(N ) is divided amongst seven compartments listed
in Table13.1.

Table 13.1 The seven compartments in the model (Source: own)

Compartment Description

S Susceptible individuals (those at a risk of being infected)

E Exposed individuals (those exposed to the infection)

I Symptomatic individuals (infected individuals who show symptoms)

Ia Asymptomatic individuals (infected individuals who do not show any
symptoms)

Iq Quarantined individuals (infected individuals who only show mild symptoms)

H Hospitalized individuals

R Recovered individuals
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In the beginning the model assumes that the entire population is susceptible. The
susceptible individuals are exposed to the disease after coming in contact with the
infectious population. The force of infection is defined as βSIa + βSI

1+αI . Keeping
in mind the fact that people tend to avoid direct contact with symptomatic indi-
viduals and hence the infection due to symptomatic individuals is less than that of
asymptomatic individuals, the inhibitory parameter α has been incorporated in the
expression. Once the disease starts spreading people tend to take precautionary mea-
sures like washing their hands frequently, using face masks and social distancing
which is being taken care by the parameter ω.
The exposed individuals move to the infectious compartments (I , Ia, Iq) at a rate of σ
depending on the intensity of infection, in the proportions ρ1, ρ2 and ρ3, respectively.
Individuals showing very high symptoms move to the ’Symptomatic’ compartment,
those showing no symptoms at all move to ‘Asymptomatic’ compartment and indi-
viduals showing mild symptoms move to ‘Quarantined’ compartment.
The infectious individuals move to ‘Hospitalized’ and ‘Recovered’ compartments
depending upon their health status. Further at any stage individuals might die a nat-
ural death or a disease induced death depending upon their compartmental position.
The model also incorporates new births at a rate b.
To provide flexibility to the modelling process parameters p and � have been incor-
porated in the model that denote the proportion of vaccinated individuals and the rate
at which the recovered individuals become susceptible again, respectively. Both of
these scenarios are not always sure to occur and hence can be set to 0 whenever the
model does not allow for vaccination orwhen recovery ensures immunity. Figure13.1
shows the flow diagram of the model, depicting the various stages involved in it.
Based on the above description themodel can be represented by the following system
of differential equations:

Fig. 13.1 Flow diagram for model (Source own)
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dS

dt
= bN (1 − p) − βSIa − βSI

1 + αI
− μS + �R

dE

dt
= βSIa(1 − ω) + βSI

1 + αI
(1 − ω) − (σ + μ)E

dI

dt
= ρ1σE + φIa − (θ + μ + δ)I

dIa
dt

= ρ2σE − (φ + φq + γa + μ)Ia

dIq
dt

= ρ3σE + φqIa − (θq + γq + μ + δ)Iq

dH

dt
= θ I + θqIq − (γ + μ + δ)H

dR

dt
= bpN + γaIa + γqIq + γH − (� + μ)R

(13.1)

Table13.2 lists all the parameters used in the model and their description.

Table 13.2 Description of model parameters (Source: own)

Parameter Description

b Birth rate

μ Natural death rate

δ Disease-induced death rate

p Proportion of vaccinated individuals

ρ1 Proportion of exposed individuals moving to Symptomatic class

ρ2 Proportion of exposed individuals moving to Asymptomatic class

ρ3 Proportion of exposed individuals moving to Quarantined class

α Parameter measuring inhibitory effect

β Transmission rate

σ Transition rate to infected classes from Exposed class

θ Transition rate to Hospitalized class from Symptomatic class

θq Transition rate to Hospitalized class from Quarantined class

γ Transition rate to Recovered class from Symptomatic class

γa Transition rate to Recovered class from Asymptomatic class

γq Transition rate to Recovered class from Quarantined class

φ Transition rate to Symptomatic class from Asymptomatic class

φq Transition rate to Quarantined class from Asymptomatic class

� Transition rate to Susceptible class from Recovered class

ω Parameter capturing the effect of precautionary measures like washing hands
frequently, using masks and social distancing
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Well Orderedness

The feasible region for the system (13.1) is:

τ = {(S,E, I , Ia, Iq,H ,R) : S + E + I + IA + Iq + H + R � bN

μ
,

S > 0,E � 0, I � 0, Ia � 0, Iq � 0,H � 0,R � 0} (13.2)

Stability Analysis

Disease-Free Equilibrium (E0)

Disease-free equilibrium (DFE) is defined as the point at which the disease is com-
pletely eradicated from the system. Hence, all the infectious classes become constant
at zero and the non-infectious classes attain a constant non-zero level.
In order to compute DFE of system in (13.1), we first set the sum of equations equal
to zero:

0 = dS

dt
+ dE

dt
+ dI

dt
+ dIa

dt
+ dIq

dt
+ dH

dt
+ dR

dt

0 = bN − (S + E + I + Ia + Iq + H + R)μ − (I + Iq + H )δ − βSIaω − βSIω

1 + αI

Next we substitute, E = I = Ia = Iq = H = R = 0:

0 = bN − Sμ

S = bN

μ

Thus we have the DFE,

E0 = (S∗,E∗, I∗, I∗
a , I∗

q ,H ∗,R∗) =
(
bN

μ
, 0, 0, 0, 0, 0, 0

)
(13.3)

Basic Reproduction Number (R0)

Basic reproduction number is defined as the average number of new infectious indi-
viduals produced when a single infectious individual is exposed to the susceptible
popultaion. R0 plays a major role in stability analysis of epidemic diseases. It is
one of the first parameters to be calculated while modelling any epidemic because
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it determines important factors like whether the system would be stable or not, the
disease will persist or will be eradicated, and what perecentage of population should
be vaccinated in order to achieve herd immunity.
Hence, if R0 is known we can make the following conclusions:

1. R0 <1 implies that on an average each new infectious will give rise to less than
one new infectious upon contact and hence the DFE is stable which implies that
the disease will be eradicated.

2. R0 >1 implies that on an average each new infectious will give rise to more than
one infectious upon contact and hence the DFE is unstable which implies that the
disease will not be eradicated and will lead to an outbreak.

In order to compute R0 we will bring into use the next generation matrix method [1].
R0 is equal to the spectral radius of the next generation matrix.

Step 1: We first express system (13.1) as:

H = (E, I , Ia, Iq,H ,R, S)

which can be rewritten as:

H′ = F (x) − V (x)

= F (x) − [V −(x) − V +(x)]

where, F (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

βS(1 − ω)(Ia + I
1+αI )

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
and V (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(σ + μ)E
(θ + μ + δ)I − ρ1σE − φIa
(φ + φq + γa + μ)Ia − ρ2σE

(θq + γq + μ + δ)Iq − ρ3σE − φqIa
(γ + μ + δ)H − θI − θqIq

(μ + �)R − bpN − γaIa − γqIq − γH
bN (1 − p) + βS(Ia + I

1+αI ) + μS − �R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F (x) is a column vector whose each entry is the collection of terms which result
in new infectious in each compartment and V (x) is a column vector consisting of
remaining terms.

Step 2: Next we find the Jacobian matrix of F (x):

DF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 βS(1−ω)

(1+αI)2 βS(1 − ω) 0 0 0 β(1 − ω)(Ia + I
1+αI )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The Jacobian matrix of F (x) at DFE is:

DF (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 bβN (1−ω)

μ

bβN (1−ω)

μ
0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
F 0
0 0

]

where,

F =

⎡
⎢⎢⎣
0 bβN (1−ω)

μ

bβN (1−ω)

μ
0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Step 3: Next we find the Jacobian matrix of V (x):

DV

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(σ + μ) 0 0 0 0 0 0
−ρ1σ (θ + μ + δ) −φ 0 0 0 0
−ρ2σ 0 (φ + φq + γa + μ) 0 0 0 0
−ρ3σ 0 −φq (θq + γq + μ + δ) 0 0 0
0 −θ 0 −θq (γ + μ + δ) 0 0
0 0 −γa −γq −γ (� + μ) 0
0 βS

(1+αI)2
βS 0 0 −� μ + β(Ia + I

1+αI )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Jacobian matrix of V (x) at DFE is:

DV (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(σ + μ) 0 0 0 0 0 0
−ρ1σ (θ + μ + δ) −φ 0 0 0 0
−ρ2σ 0 (φ + φq + γa + μ) 0 0 0 0
−ρ3σ 0 −φq (θq + γq + μ + δ) 0 0 0
0 −θ 0 −θq (γ + μ + δ) 0 0
0 0 −γa −γq −γ (� + μ) 0

0 βbN
μ

βbN
μ 0 0 −� μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
V 0
J1 J2

]

where,

V =

⎡
⎢⎢⎣

(σ + μ) 0 0 0
−ρ1σ (θ + μ + δ) −φ 0
−ρ2σ 0 (φ + φq + γa + μ) 0
−ρ3σ 0 −φq (θq + γq + μ + δ)

⎤
⎥⎥⎦
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Step 4: The last thing we need to generate the next generation matrix is V−1, which
after calculations is as below:

V−1 =

⎡
⎢⎢⎢⎢⎣

1
(σ+μ)

0 0 0

( σ
(σ+μ)(θ+μ+δ)

)(ρ1 + ρ2φ
(φ+φq+γa+μ)

) 1
(θ+μ+δ)

φ
(θ+μ+δ)(φ+φq+γa+μ)

0
ρ2σ

(σ+μ)(φ+φq+γa+μ)
0 1

(φ+φq+γa+μ)
0

( σ
(σ+μ)(θq+γq+μ+δ)

)(
ρ2φ

(φ+φq+γa+μ)
+ ρ3) 0

φq
(θq+γq+μ+δ)(φ+φq+γa+μ)

1
(θq+γq+μ+δ)

⎤
⎥⎥⎥⎥⎦

Step 5: Now, we shall compute next generation matrix:

FV−1 = [
fij

]
7X 7

where,

f11 = βbNσ(1 − ω)σ

μ(σ + μ)

(
ρ1

(θ + μ + δ)
+ ρ2φ

(θ + μ + δ)(φ + φq + γa + μ)
+ ρ2

(φ + φq + γa + μ)

)
;

f12 = βbN (1 − ω)

μ(θ + μ + δ)
;

f13 = βbN (1 − ω)

μ(φ + φq + γa + μ)
;

and all other entries are zero.

Spectrum of FV−1 is the set of eigen values of the matrix:
{ βbNσ(1−ω)

μ(σ+μ)
(

ρ1

(θ+μ+δ)
+ ρ2φ

(θ+μ+δ)(φ+φq+γa+μ)
+ ρ2

(φ+φq+γa+μ)
); 0; 0; 0}

Spectral radius of FV−1 is the maximum eigen value of the matrix:
βbNσ(1−ω)

μ(σ+μ)

(
ρ1

(θ+μ+δ)
+ ρ2φ

(θ+μ+δ)(φ+φq+γa+μ)
+ ρ2

(φ+φq+γa+μ)

)

Hence, R0 = βbNσ(1−ω)

μ(σ+μ)

(
ρ1

(θ+μ+δ)
+ ρ2φ

(θ+μ+δ)(φ+φq+γa+μ)
+ ρ2

(φ+φq+γa+μ)

)

or

R0 = βbNσ(1 − ω)(ρ1(φ + φq + γa + μ) + ρ2(φ + θ + μ + δ))

μ(σ + μ)(θ + μ + δ)(φ + φq + γa + μ)
(13.4)

Local Stability of Disease-Free Equilibrium

The stability of DFE ensures that the disease can be removed from the system over
a finite period of time. We will now derive conditions for local stability of system
(13.1). The Jacobian matrix for the system in (13.1) is given by:
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ − β∗ 0 − βS
(1+αI)2

−βS 0 0 �
β∗(1 − ω) −(σ + μ)

βS(1−ω)

(1+αI)2
βS(1 − ω) 0 0 0

0 ρ1σ −(θ + μ + δ) φ 0 0 0
0 ρ2σ 0 −(φ + φq + γa + μ) 0 0 0
0 ρ3σ 0 φq −(θq + γq + μ + δ) 0 0
0 0 θ 0 θq −(γ + μ + δ) 0
0 0 0 γa γq γ −(� + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)
where, β∗ = β(Ia + I

1+αI )

The Jacobian matrix for the system in (13.1) at DFE is given by:

J (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 −βS∗ −βS∗ 0 0 �
0 −(σ + μ) βS∗(1 − ω) βS∗(1 − ω) 0 0 0
0 ρ1σ −(θ + μ + δ) φ 0 0 0
0 ρ2σ 0 −(φ + φq + γa + μ) 0 0 0
0 ρ3σ 0 φq −(θq + γq + μ + δ) 0 0
0 0 θ 0 θq −(γ + μ + δ) 0
0 0 0 γa γq γ −(� + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where, S∗ = bN

μ

Now, the system in (13.1) is locally assymptotically stable if the eigen values of
the above jacobian matrix are all real and negative, which is true if the following
conditions are met:

1. (θ + μ + δ) + (σ + μ) + (φ + φq + γa + μ) > 0
2. −βS∗σ(1− ω)(ρ1 + ρ2) + (θ + μ + δ)[(σ + μ) + (φ + φq + γa + μ)] + (σ +

μ)(φ + φq + γa + μ) > 0
3. −βS∗σ(1 − ω)[ρ1(φ + φq + γa + μ) + ρ2(φ + θ + μ + δ)] + (σ + μ)(θ + μ

+ δ)(φ + φq + γa + μ) > 0

It can be observed that condition 2 holds true for R0 < 1 and it can be deduced from
the third condition that:

βS∗σ(1 − ω)[ρ1(φ + φq + γa + μ) + ρ2(φ + θ + μ + δ)]
(σ + μ)(θ + μ + δ)(φ + φq + γa + μ)

< 1

βbNσ(1 − ω)[ρ1(φ + φq + γa + μ) + ρ2(φ + θ + μ + δ)]
μ(σ + μ)(θ + μ + δ)(φ + φq + γa + μ)

< 1

which implies that:
R0 < 1

Hence, we have the following theorem.

Theorem 1 The system (13.1) is locally asymptotically stable at the disease-free
equilibrium point if R0 < 1.
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Endemic Equilibirum (E1)

Endemic equilibrium is defined as the point at which the disease is not completely
eradicated but it approaches to a constant level in the population. Let the endemic
equilibrium for system (13.1) be denoted by:

E1 = (S∗∗,E∗∗, I∗∗, I∗∗
a , I∗∗

q ,H ∗∗,R∗∗)

To solve for endemic equilibrium, we assume force of infection to be defined as:

λ∗∗ = βI∗∗
a + βI∗∗

1 + αI∗∗

Each of the equation in system (13.1) is then equated to zero to get the following
solution:

E1 = (
M

μ + Jλ∗∗ ,Aλ∗∗S∗∗,
σAλ∗∗S∗∗G

BC
,
ρ2σAλ∗∗S∗∗

B
,

σAλ∗∗S∗∗L
BD

,
σAλ∗∗S∗∗(θDG + θqCL)

BCDE
,
bpN

F
+ (1 − J )λ∗∗S∗∗

� )

(13.5)

Here, λ∗∗ ca the below equation:

a0(λ
∗∗)2 + b0λ

∗∗ + c0 = 0 (13.6)

where,

a0 = J 2

μ
+ ασAGM

μBC

b0 = 2J + ασAGM

BC
− αβσ 2ρ2A2GM 2

μB2C
− J (1 − p + �p

F
)R0

c0 = −μ[(1 − p + �p

F
)R0 − 1]

Further A,B,C,D,E,F,G,L,M , J used in the above expressions can be calculated
as:
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A = 1 − ω

σ + μ

B = φ + φq + γa + μ

C = θ + μ + δ

D = θq + γq + μ + δ

E = μ + γ + δ

F = μ + �
G = Bρ1 + φρ2

L = Bρ3 + φqρ2

M = bN (1 − p + �p

F
)

J = 1 − (
�σA

FB
)(γaρ2 + γ [θDG + θqCL]

CDE
+ γqL

D
)

It can be noted, that corresponding to each value of λ∗∗ in equation (13.6) we get a
value for endemic equilibrium. Therefore, the number of endemic equilibria of the
system (13.1) is equal to the number of positive roots of the equation (13.6). Clearly
in equation (13.6), a0 > 0 while c0 > 0 when R0 < 1 and c0 < 0 when R0 > 1.
Using Descartes’ rule of signs we have the following theorem on the existence of the
endemic equilibrium.

Theorem 2 The system (13.1) has:

1. exactly one unique endemic equilibrium, if c0 < 0 (i.e. R0 > 1).
2. exactly one unique endemic equilibrium, if b0 < 0, and c0 = 0 (i.e. R0 = 1) or

b0
2 − 4a0c0 = 0.

3. exactly two endemic equilibria, if c0 > 0 (i.e. R0 < 1), b0 < 0 and b0
2 − 4a0c0 >

0.

Remark It can be seen from the above theorem, making R0 < 1 is not sufficient for
controlling the disease. Therefore, some extra measures should be taken so that the
diease can be controlled.

Local Stability of Endemic Equilibrium

Now we discuss the local stability of endemic equilibrium. Similar to the process
followed in subsection (3.3) for the stability of disease-free equilibrium, we start by
finding the jacobian matrix of system (13.1) at endemic equilibrium point, which can
be obtained by substituing the value of E1 from equation (13.5) into equation (3.3):
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J (E1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ − β∗∗ 0 −βS∗∗
(1+αI∗∗)2

−βS∗∗ 0 0 �
β∗∗(1 − ω) −(σ + μ)

β(1−ω)S∗∗
(1+αI∗∗)2

β(1 − ω)S∗∗ 0 0 0

0 ρ1σ −(θ + μ + δ) φ 0 0 0
0 ρ2σ 0 −(φ + φq + γa + μ) 0 0 0
0 ρ3σ 0 φq −(θq + γq + μ + δ) 0 0
0 0 θ 0 θq −(γ + μ + δ) 0
0 0 0 γa γq γ −(� + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where, β∗∗ = β(I∗∗
a + I∗∗

1+αI∗∗ )

To find the eigen values for the above jacobian matrix, we put:

|J (E1) − λI | = 0

which implies,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(μ + λ + β∗∗ ) 0 −βS∗∗
(1+αI∗∗ )2

−βS∗∗ 0 0 �
β∗∗ (1 − ω) −(σ + μ + λ)

β(1−ω)S∗∗
(1+αI∗∗ )2

β(1 − ω)S∗∗ 0 0 0

0 ρ1σ −(θ + μ + δ + λ) φ 0 0 0

0 ρ2σ 0 −(φ + φq + γa + μ + λ) 0 0 0

0 ρ3σ 0 φq −(θq + γq + μ + δ + λ) 0 0

0 0 θ 0 θq −(γ + μ + δ + λ) 0

0 0 0 γa γq γ −(� + μ + λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (13.7)

where, β∗∗ = β(I∗∗
a + I∗∗

1+αI∗∗ )

Theorem 3 The system (13.1) is locally asymtotically stable at the endemic equi-
librium point if all the seven eigen values, obtained by solving the determinant in
equation (13.7), have negative real parts.

Sensitivity Analysis

Sensitivity analysis helps us to determine the affect on model results due to change
in parameter values and the extent to which this change affects the model results. It
plays a crucial role because if the sensitivity to model parameters is known, we can
use this in real life to control the spread of the disease. For instance, if we know a
certain parameter when decreased leads to the reduction in infectious classes, certain
measures can be employed which reduces it’s effect in the real life. In this section,
we have used our model to analyse the COVID-19 epidemic.We have first calculated
the Sensitivity Indices of R0 with respect to various parameters and then have done
the sensitivity analysis using a few parameters.
The first step is to assign the values to model parameters. For simplicity, we have
assumed a few parameter values and picked the rest from the existing studies that fit
best with ourmodel. The list of parameter estimates and their sources are summarized
in Table13.3 below.
Now, we study the impact on R0 due to changing paramaters. To do this we obtain the
Sensitivity Index of R0 with respect to different model parameters, which measures
the change in R0 in response to the change in a parameter.
The sensitivity index of R0 with respect to any parameter Z is calculated as follows
(refer to [11]):
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Table 13.3 List of parameter values

Parameter Value Source Sensitivity index

b 0.002 Assumed 1.0000

N 60,000 Assumed 1.0000

μ 0.0098 Assumed −1.0726

δ 0.0175 day−1 [2] −0.0242

p 0 Assumed NA

ρ1 0.5210 [2] 0.0428

ρ2 0.2740 [2] 0.5011

ρ3 0.2050 [2] NA

α 0.25 Assumed NA

β 0.02 Assumed 1.0000

σ 0.219 day−1 Assumed 0.0428

θ 0.2174 day−1 [2] −0.5778

θq 0.1429 day−1 [2] NA

γ 0.701 day−1 Assumed NA

γa 0.13978 day−1 [2] −0.2307

γq 0.11624 day−1 [2] NA

φ 0.139 day−1 Assumed −0.1061

φq 0.019 day−1 Assumed −0.0314

� 0.001 Assumed NA

ω 0.2 Assumed -0.25

Source own

ϕR0
Z = ∂R

∂Z

Z

R0

Table13.3 lists the sensitivity index of R0 with respect to various parameters appear-
ing in the formula for R0, while Fig. 13.2 gives a pictorial representation of the same.
The positivity or negativity of the index determines the relationship (direct or inverse)
of R0 with the parameter whereas its magnitude determines the strength of depen-
dence of R0 on the parameter. In Fig. 13.2, for every parameter with index extending
towards the right, R0 increases as the parameter increases while the one with index
extending towards the left, R0 decreases as it increases. Sensitivity Index of R0 with
respect to β is +1.0 (i.e. ϕR0

β = +1.000), whichmeans that a 1% increase in β results
in a 1% increase in R0. Similarly, ϕR0

θ = −0.5778, which implies that a 1% increase
in θ will result in a 0.5778% decrease in R0.

A pictorial representation of theCOVID-19 compartmentalmodel, fittedwith param-
eter values is demonstrated in Fig. 13.3. Since, no vaccination has been brought into
use yet we have set the proportion of vaccinated individuals (p) to zero. Also, since
there is no concrete evidence that recovery ensures permanent immunity, therefore,
we have allowed for the transition from recovered to susceptible state with a very
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Fig. 13.2 Sensitivity Indices of R0 corresponding to various parameters (Source own)

Fig. 13.3 The S-E-I-R-S compartmental model for COVID-19 epidemic (Source own)
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(a) Model without precautionary measures (ω = 0) (b) Model with vaccination (p = 0.72)

Fig. 13.4 Effect of precautionary measures and vaccination (Source own)

small possibility. We have analysed the sensitivity of the model to the parameters ω

andp,which captures the effect of precautionarymeasures on the spreadof the disease
and the proportion of vaccinated individuals, respectively. Figure13.4a, b depicts the
behaviour of the model in the absence of precautionary measures (ω = 0) and in the
presence of a vaccine (p = 0.72), respectively. It can be seen how in the absence of
precautionary measures the peaks of infectious classes are higher. Similarly, in the
presence of the vaccine the peaks of infectious classes are lower and it can be seen
how the spread of the disease is controlled.

Next, we have analysed the impact of various parameters on the spread of the infec-
tion. Therefore, we have graphically studied the sensitivity of symptomatic class
with respect to a few parameters [18].
Fig. 13.5a depicts how with increasing ω the number of symptomatic individuals
decrease in the system, that is, as more and more precautions are taken the infec-
tion keeps on reducing. When ω = 1 the curve lies on the x-axis depicting that in
case strict precautionary measures are taken, like complete lockdown and social dis-
tancing, then there will be no infection in system. Figure13.5b depicts how with
increasing β, the number of symptomatics increase, that is, greater the rate of trans-
mission more the infection. Figure13.5c depicts how with increasing φ the count of
symptomatics increase, that is, greater the rate at which asymptomatic individuals
show symptoms andmove to the symptomatic classmore the number of symptomatic
individuals. Figure13.5d depicts how with increasing θ the count of symptomatics
decrease, that is greater the rate at which symptomatic individuals are hospitalized
lesser the number of susceptible individuals.
This depicts the importance of steps like lockdown and social distancing, along with
precautionarymeasures like using facemasks and washing hands frequently, as these
steps can help in controlling the spread of the disease by leading to a lesser number
of infected individuals in the system. Similarly, better the medical facilities and the
treatment, lesser will be the spread of the disease. As more and more infected people
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(a) Sensitivity to ω = 0 (b) Sensitivity to β = 0

(c) Sensitivity to φ = 0 (d) Sensitivity to θ = 0

Fig. 13.5 Sensitivity of Symptomatic class to changing parameters (Source own)

will be treated, leading to lower number of infectives in the system, this will result
in lower risk of getting exposed and hence control the spread of the disease.

Conclusion

Wehavedefined ageneralS-E-I -R-S compartmentalmodel for epidemicdiseases and
derived important mathematical results like the reproduction number, the diseased-
free equilibrium and the endemic equilibrium. While the reproduction number deals
with how rapidly the disease will spread, the two equilibriums, in real sense, corre-
sponds to the levels at which the disease would completely be eradicated or atleast
will remain at constant levels within the population. We have also derived conditions
for the stability of the two equilibrium points, along with the conditions for the exis-
tence of the endemic equilibrium and have established that R0 <1 would imply local
asymptotic stability of DFE.



270 Y. Bahri et al.

Later, we have fitted the model with a suitable set of parameters to deduce predic-
tions regarding the COVID-19 disease. Firstly, we have calculated the sensitivity
indices of R0 corresponding to various parameters. It can be seen from Fig. 13.2 how
R0 is highly dependent on parameters like β, thus, controlling the values of these
parameters can help cope with the disease. Then, we have used the model to do
sensitivity analysis for the COVID-19 epidemic disease. We studied the behaviour
of symptomatic class in the presence of a few changing parameters. Then we have
analyzed the impact of ω = 0 and p = 0.72. It is clear that in the presence of a vac-
cine the spread of the disease can be minimized. We can see from Fig. 13.4b, in the
presence of vaccination the infection decreases in the system. But vaccination as a
mitigation strategy is not as simple as it sounds and is a time taking process. While
many vaccinations are available now there are still a number of diseases for which
vaccination has not been developed yet.
The availability of a vaccine alone do not bring down the list of challenges linkedwith
it. One such challenge being the impossibility of vaccinating the entire population
of a country. Ofcourse instead of targeting the vaccination of an entire population,
epidemics deal with the concept of herd immunity, which can be estimated using the
reproduction number (once determined). But even achieving herd immunity could
take years in some cases due to the required vaccinated proportion falling almost
around the whole of it. For instance, small pox which lasted for around 3000years
required an 80% vaccinated population in each country whichwas achieved over sev-
eral years with an effort led by World Health Organization [13]. Similarly, measles
lasted for years and required 96% vaccinated population [1].
The next challenge linked to vaccination is that even if a vaccine is available along
with all the estimates regarding achieving the herd immunity, not all the countries
can afford developing it or some might even face issues in purchasing it. In any case,
coming up with a first and safe dose of a vaccine during any epidemic takes time and
implementing it would take years.
Until a vaccine is made available, precautionary measures play an important role
in eliminating the disease. As reported by WHO, the COVID-19 virus spreads due
to the transfer of liquid droplets from an infected individual’s mouth or nose while
the person sneezes or coughs [12]. It can even stay on non-living bodies for varied
amount of times. So, for instance, if a person sneezes and the infected droplets fall
on a cereal packet in a super market, the next person touching the packet will be
exposed to the disease if he/she touches his/her mouth, nose, or even eyes leading
to the virus entering his/her body. Therefore, steps like social distancing, covering
one’s mouth and nose using a mask and washing one’s hands frequently is playing
a major role in combating with the disease. It can be noticed from Fig. 13.5a that
while ω is set to 1 the infectious classes rest at zero, which means, in case of no
contact at all the spread of disease would stop because the virus won’t get new liv-
ing bodies to cling onto and transfer any further. But, obviously the condition of no
contact at all cannot be achieved, as even though lockdowns have been imposed all
over the world to achieve this as much as possible, people still have to get out of
their places for every day essentials and even for providing essential services. So,
precautionary measures like lockdown cannot be treated as long term solution as it
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drastically affects the economy. But precautionarymeasures do help in slowing down
the process and help in reducing the spread of the disease until long term solutions
are explored. Figure13.4a clearly shows how in the absence of any precautionary
measures the infectious trajectories attain high peaks than usual, thus, depicting their
importance.
Thus, it can be argued that even though vaccination is a permanent and a long term
solution for an epidemic but until a vaccination comes in to play precautionary mea-
sures can help a great deal in controlling the disease. Since, all these mitigation
strategies and the extent to which they should be allowed for are derived from a close
insight into the epidemic model, it can be said the dynamic analysis of an epidemic
is the base for it’s future elimination. Also, it is to be noted that once sufficient data
related to the impact of vaccination is available, from countries like Russia, where
vaccination is now available, the model developed in this paper can be used to do
future predictions regarding the long term effects of vaccination in the fight against
COVID-19.
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