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Abstract

The emergence of Next Generation Sequencing (NGS), such as DNA, RNA and
other small RNA sequencing technologies, gave rise to a huge amount of raw data
on a massive scale. To analyse that data and to obtain the biological interpretation
as a challenging act, advancements in computational biology and bioinformatics
applications emerged as the need of the hour. RNAseq accounts for exploration of
comprehensive expression profile of genes and quantifies the presence of RNA
content in the biological sample. In addition to this, RNAseq also provides
information for alternative splice variants, novel gene identification, differentially
expressing genes, etc. The workflow for RNAseq data analysis requires quality
check of the data, mapping onto a reference genome/transcriptome, read quanti-
fication, differential expression analysis and functional annotation. Various tools
and softwares with different algorithms have been developed to provide
biological understanding of the data and to meet the demands of the analyst.
An overview of the tools and softwares has been provided in the chapter that can
be exploited to analyse the data for different investigations. Also, a glimpse of

P. Sharma (*)
Department of Zoology, Biomedical Technology and Human Genetics, University School of
Sciences, Gujarat University, Ahmedabad, Gujarat, India

PanGenomics International Pvt Ltd, Sterling Accuris Diagnostics, Ahmedabad, Gujarat, India

B. S. Sharma
Genexplore Diagnostics and Research Centre, Ahmedabad, Gujarat, India

Rivaara Labs Pvt Ltd, KD Hospital, Ahmedabad, Gujarat, India

R. J. Verma
Department of Zoology, Biomedical Technology and Human Genetics, University School of
Sciences, Gujarat University, Ahmedabad, Gujarat, India

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021
V. Singh, A. Kumar (eds.), Advances in Bioinformatics,
https://doi.org/10.1007/978-981-33-6191-1_12

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6191-1_12&domain=pdf
https://doi.org/10.1007/978-981-33-6191-1_12#DOI


other RNAseq techniques such as single cell RNAseq and small RNA sequencing
has been discussed as an introduction to newer forms of RNA sequencing.
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Next generation sequencing · Transcriptome · Pre-processing · Quantification ·
Normalization

12.1 Introduction

With the advent of NGS technologies, RNA sequencing (RNAseq) occurred as a
pivotal approach to evaluate the expression of a whole genomic profile. Sooner, the
technique was exploited tremendously for certain advantages over others, such as
identification of novel genes, unlike microarrays, detection of alternative splice
variants, differentially expressing transcripts, etc.

The vast and varied applicability of RNAseq by offering results in multiple forms
led to the generation of huge loads of data, also referred to as ‘Big Data’. Resultantly,
the technological expansion in the era of NGS also directed the evolution in the field
of computational biology. Different tools and softwares were developed to analyse
and interpret the results from the data generated on different platforms, such as
SoLiD sequencing, Ion Torrent Platform, Illumina sequencing, etc. The procedure
for RNAseq data analysis takes place in a number of steps which involves cDNA
preparation, fragmentation followed by adapter ligation, cDNA library preparation
and amplification (Han et al. 2015), etc. The fragments are read and sequenced to
obtain the raw sequence data in the prescribed formats. These raw data sequences are
then analysed to extract meaningful results from the sequences using various tools
and pipelines.

The workflow for data analysis involves quality check and pre-processing of the
raw reads, assembly to a reference genome, quantification of transcripts and identi-
fication of differentially expressed transcripts. The transcripts of interest are then
annotated to different databases for functional enrichment, gene ontology analysis
and pathway enrichment, etc. (Garber et al. 2011). A schematic workflow of the
steps involved in data analysis has been shown in Fig. 12.1.

To explore deep into the genome or transcriptome (Sharma et al. 2020), other
RNAseq technologies such as single cell RNAseq, small RNA sequencing etc. were
developed. The development of these modified versions of RNAseq technologies
also led to certain variabilities during sample processing, technical noise, normali-
zation processes, etc. The challenges in data analyses for these processes accounted
for advancements in development of computational tools and bioinformatics
applications with certain modifications.

The present chapter provides an overview of workflow for analysis of RNAseq
data on different sequencing platforms using bioinformatics approaches. Also, a
brief outlook of different tools and softwares, based on different algorithms, can
provide an understanding of using them in multiple dimensions depending upon the
type of analysis to be performed (Table 12.1).
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12.2 Platforms Available for Sequencing

Since the commencement of sequencing technologies various platforms have been
developed which are based on different chemistries. The differences in the sequenc-
ing platforms also lie in the data output, performance and data quality. Some of the
sequencing platforms and chemistries are discussed below:

12.2.1 SOLiD

SOLiD stands for Sequencing by Oligo Ligation and Detection and the technique
was developed in 2005 (Hedges et al. 2011). It is based on oligonucleotide ligation to
ligate dsDNA strands with the help of enzyme DNA ligase. A primer-binding
adapter is bound to the target sequence on a bead, which is then amplified using
emulsion PCR. A universal primer is hybridized to the adapter, followed by expo-
sure of beads to a library of 8-nucleotide probes tagged with four different fluores-
cent dyes at 5’end and a hydroxyl group at 3’end. Based on the complementarity of

Fig. 12.1 Schematic Workflow showing steps in RNAseq data analysis
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Table 12.1 List of tools available for different analytical processes of RNAseq data analysis

S. no. Process Tool Link

1. Quality check FastQC http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/

Kraken https://github.com/DerrickWood/kraken2

HTSeq https://htseq.readthedocs.io/en/master/

NGS QC
Toolkit

http://www.nipgr.res.in/ngsqctoolkit.html

RNASeQC https://github.com/getzlab/rnaseqc

2. Pre-processing BBDuk https://github.com/BioInfoTools/BBMap/
blob/master/sh/bbduk.sh

Cutadapt https://bioinformaticshome.com/tools/rna-
seq/descriptions/cutadapt.html

FASTX Toolkit http://hannonlab.cshl.edu/fastx_toolkit/

SortMeRNA https://bioinfo.lifl.fr/RNA/sortmerna/

Trimmomatic https://github.com/timflutre/trimmomatic

3. Alignment of reads

Reference guided Bowtie http://bowtie-bio.sourceforge.net/index.
shtml

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Burrows-
Wheeler Aligner
(BWA)

http://bio-bwa.sourceforge.net/

Bayesembler https://github.com/bioinformatics-centre/
bayesembler

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/

IsoLasso http://alumni.cs.ucr.edu/~liw/isolasso.
html

De novo assemblers CLC Genomics
Workbench

https://digitalinsights.qiagen.com/
products-overview/discovery-insights-
portfolio/analysis-and-visualization/
qiagen-clc-genomics-workbench/

Oases https://github.com/dzerbino/oases

rnaSPAdes https://cab.spbu.ru/software/rnaspades/

Rnnotator https://www.osti.gov/biblio/1231732-
rnnotator

SOAPdenovo-
trans

http://sourceforge.net/projects/
soapdenovotrans/

Trans-ABySS https://github.com/bcgsc/transabyss

Trinity https://github.com/trinityrnaseq/
trinityrnaseq/wiki

Velvet https://www.ebi.ac.uk/~zerbino/velvet/

4. Assembly evaluation
tools

Busco https://busco.ezlab.org/

Detonate http://deweylab.biostat.wisc.edu/detonate/

rnaQUAST https://github.com/ablab/rnaquast

TransRate https://hibberdlab.com/transrate/

(continued)
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first two bases, the probes get attached to the target sequence with the help of the
enzyme DNA ligase. The fluorescent tag is then cleaved from the fragment at 5th and
6th base of the probe which is joined by phosphorothioate linkage. The fluorescence
of the dyes generated due to cleavage is measured at different spectra. After the
completion of first round of sequencing, the second-round sequencing starts with
primer of length N-1, and so on. The sequencing of the target is ensured by
measuring the fluorescence signals at each round of sequencing. However, the
technique was low-cost and provided results with high accuracy due to the
two-base sequencing, the main disadvantages were the time-consumption and
shorter read lengths (Wyrzykiewicz and Cole 1994).

12.2.2 Ion Torrent Semiconductor Sequencing

The Ion Torrent sequencing is well-versed as ‘semiconductor sequencing’, where the
target is sequenced by measuring changes in the pH variation due to release of
hydrogen ion after incorporation of a specific nucleotide (Quail et al. 2012). A
cDNA library is prepared here by fragmenting the RNA using enzymatic

Table 12.1 (continued)

S. no. Process Tool Link

Co-expression
networks

http://gnw.sourceforge.net/

WGCNA http://www.genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/
Rpackages/WGCNA.

5. Functional, network
and pathway
analysis tools

BioCyc https://biocyc.org/

FunRich http://www.funrich.org/

GeneSCF http://genescf.kandurilab.org/

GOexpress http://bioconductor.org/packages/release/
bioc/html/GOexpress.html

PathwaySeq https://rna-seqblog.com/pathwayseq-
pathway-analysis-for-rna-seq-data/

ToPASeq https://www.bioconductor.org/packages/
release/bioc/html/ToPASeq.html

RNA-Enrich http://lrpath.ncibi.org

6. miRNA prediction
and analysis

miRDeep2 https://www.mdc-berlin.de/content/
mirdeep2-documentation

miRExpress http://mirexpress.mbc.nctu.edu.tw/

miR-PREFeR https://github.com/hangelwen/miR-
PREFeR

miRDeep-P http://faculty.virginia.edu/lilab/miRDP/

miRPlant http://www.australianprostatecentre.org/
research/software/mirplant

ShortStack https://github.com/MikeAxtell/ShortStack

mireap https://github.com/liqb/mireap
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degradation. The fragmented libraries are then ligated with complementary probes
embedded on beads and mixed with PCR reagents and oil to perform emulsion PCR.
Here, each microsphere of emulsion, specifically known as Ion Sphere Particles
(ISPs), is covered with multiple copies of same DNA fragment for clonal amplifica-
tion. After amplification the ISPs with template fragment are enriched from the
mixture using biotin labelled magnetic beads and the rest are melted off. The positive
templates are then prepared for sequencing and loaded onto Ion chips which contain
millions of microwells with many copies of single-stranded DNA template and other
sequencing reagents such as DNA polymerase, dNTPs in each well. The
incorporation of the complementary nucleotide results into the change in pH level
and is converted to digital signals to obtain the sequence of the target sequence. The
technology is not based on fluorescence signals and does not require optical reading
for detection so the sequencing is rapid and number of bases gets incorporated in less
time. The technology limits in reading of homopolymer sequences in the template,
such as ‘TTTTTT’, and becomes challenging to distinguish between the multiple
oligomers, resulting into an increase in the error rate (Merriman et al. 2012).

12.2.3 Illumina Sequencing Technology

Illumina sequencing also known as ‘sequencing by synthesis’ approach (Ansorge
2009). Here, the target sequence is cleaved into smaller fragments of 100–150 bp to
form a library and is ligated to customized adapters followed by generation of
multiple copies of the same read using PCR. The adapter ligated templates are
then washed onto a flow cell where millions of clusters are formed by the process
of ‘bridge amplification’ PCR. The amplification process is carried out with DNA
polymerase and modified dNTPs with a terminator tagged with a fluorescent label
corresponding to each base. This terminator blocks the addition of another nucleo-
tide and only one base is added by the polymerase at a time. The fluorescence is
detected by imaging the signals, indicating a base that has been added to the
sequence. With the addition of four nucleotides, the terminators are removed
preparing the slide for next cycle of sequencing. The signals are then converted to
construct the entire sequence. As the sequencing takes place in fixed cycles and of
uniform read length, the sequences generated are also of uniform length (Meyer and
Kircher 2010).

12.3 Quality Check and Pre-Processing of Reads

12.3.1 Formats Available for Storage of Raw Data

The sequences, can be referred to as raw reads, generated by sequencing on different
platforms are stored in multiple files of short reads. After sequencing, the raw data is
generated and can be stored in different file formats such as FASTQ, FASTA,
SAM/BAM, etc.

248 P. Sharma et al.



• FASTQ is the most commonly used file format. It allows storing of data with
corresponding quality values known as Phred scores. The files in fastq format are
with extension ‘.fq’ or ‘.fastq’. A FASTQ file contains four lines of textual
information. The first line starts with a sign ‘@’, generally known as a sequence
identifier. The second line consists of a sequence of nucleotides, i.e. A, T, G,
C. The third line consists of a ‘+’ sign which is usually a separator and indicates
the end of the sequence. The fourth line provides a quality score corresponding to
the sequence in the second line (Deorowicz and Grabowski 2011).

• FASTA format is also one of the data storing formats and is available with
extension ‘.fa’ and ‘.fasta’. The sequences are recognized by a ‘>’ sign in the
beginning followed by a descriptive information about the sequence. This format
is generally used while alignment or reference genome mapping by different tools
and softwares. The sequence consists of nucleotides A, T, G, C and N (for
undetermined base) (Gilbert 2003). The sequence can be viewed using text editor
tools or LINUX/UNIX environment.

• BAM/SAM—The raw sequence data generated from the sequencer have no
genomic information and are need to be aligned to a reference genome. After
mapping or aligning to a reference genome, the output is generated in SAM/BAM
format. SAM is Sequence Alignment/Map format which stores the sequences in
an aligned format against the reference genome. A SAM file is a tab-delimited
file, recognized by a ‘.sam’ extension and can be viewed using text editor tools
(Li et al. 2009). A BAM file is binary version of SAM file and is often found with
‘.bam’ extension (Niemenmaa et al. 2012).

12.3.2 Quality Check Using Available Softwares and Tools

The data generated after sequencing often contains contaminants such as poor-
quality reads, PCR artefacts, adapter sequences, over-represented sequences, etc.
which interferes in downstream analytical operations of the data. Hence, the data
needs to be quality checked to obtain clean and filtered high quality reads. For this,
many softwares are available to assess the quality of the reads. These softwares
perform a quality check (QC) on the data and provide a QC report depicting
low-quality sequencing reads impeding the quality of the data. FASTQC is a
commonly used tool for assessing the quality of the data. It measures scores
associated with data such as read length, quality score, GC percentage, k-mers,
etc. and produces results in different modules (Andrews 2010).

The per base sequence quality module assesses the overall quality of the bases at
each position of the read which is represented by a box whisker plot. A higher score
determines better quality of the base call. Likewise, per sequence quality score
report presents a subset of overall sequences having low-quality scores. This
constitutes a small fraction of the total sequences; however, a large subset possessing
bad quality scores indicates some systematic errors.

The per base GC content shows the GC content of each base in the sequence. A
shift in the graph of GC content with the underlying genome indicates presence of
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over-represented sequences creating a sequence bias. Further in this, per sequence
GC content marks for GC content across whole length of sequences comparable to
normal distribution plot of GC content. A shift of the plot from the normal distribu-
tion on the graph indicates some systematic bias which is independent of base
position. Some other modules such as per base N content, sequence length distribu-
tion, duplicate sequences, over-represented sequences and over-represented k-mers,
etc. also provide report for the quality of the data.

12.3.3 Pre-Processing of Data

Before using the data for functional annotation and differential expression, etc. it is
required to be pre-processed for removal of contaminated reads. For this, various
tools are available such as Fastx-toolkit (Gordon and Hannon 2010), NGStoolkit
(Mulcare 2004), Trimmomatic (Bolger et al. 2014), etc. Fastx-toolkit is most com-
monly used tool to filter out the good data from the bad quality data. During the
course of filtration, the data is processed for removal of low-quality bases, adapter
sequences, and other such reads interfering with the quality of the data.

The sequencing data is often contaminated with adapter sequences which are
synthetically designed fragments of DNA added to the target sequences. These
sequences are generally removed by the sequencers after the completion of sequenc-
ing process. But less often they remain attached to the sequenced read and are
responsible for background noise in the data. Various tools such as Cutadapt (Martin
2011), Trimmomatic (Bolger et al. 2014), etc. are most frequently used tools for
removal of adapter sequences.

Other contaminants are bases with low-quality, i.e. those with high error rate of
being incorrect. The quality of base is assigned by a phred score (Q score) value,
which is commonly used to measure the accuracy of the base call while sequencing
the read by the sequencer. A quality score of <20 is generally considered of poor
quality with high chances of inaccuracy. Fastx-toolkit is the most commonly used
tool to trim off the reads with phred score <20.

Few other sequences such as rRNA sequences also act as contaminants in case of
whole transcriptome sequencing. To remove the rRNA reads, rRNAFilter (Wang
et al. 2017), SortMeRNA (Kopylova et al. 2012) and RiboPicker (Schmieder and
Edwards 2011) are commonly used tools for the process.

12.4 Assembling Reads to Reference Genome/Transcriptome

12.4.1 Alignment of Reads

The raw reads generated after sequencing are then mapped onto a reference genome
or transcriptome of the same species or the nearest relative, whichever available.
(Roberts et al. 2011; Trapnell et al. 2010). The mapping of reads is affected by
complexities of the genome, polymorphisms, gene isoforms, alternative splicing, etc.
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leading to reduced percentage of mapped reads. The percentage of reads assembled
indicates the accuracy of the results and presence of contaminated sequences
(Conesa et al. 2016). The mapping can be done uniquely to one position or can
also be mapped to multiple reads due to presence of repetitive sequences. In case of
reference transcriptome multiple reads are found more often because of the presence
of all isoforms of genes in the transcriptome.

12.4.2 Reference Guided/de Novo Assembly

In reference guided assembly, the reads are mapped onto a reference genome or
transcriptome, whichever available, to assemble them into transcripts. The reads to
be mapped are split into parts where one part maps to the exonic part and the other
one to the intronic region. Reads mapping on the reference genome minimizes the
complexities in the assemblies as they are mapped specifically to their genomic
locations (Voshall and Moriyama 2018). Several assemblers are available for refer-
ence guided assemblies, such as Bayesembler (Maretty et al. 2014), Cufflinks
(Ghosh and Chan 2016), Stringtie (Pertea et al. 2015), etc. Different assemblers
use different strategies to assemble reads with highest percentage of read coverage,
such as Cufflinks uses few numbers of transcripts to assemble large number reads to
the genome or transcriptome, whereas Bayesembler uses Bayesian likelihood to
estimate the most likely combination of transcripts constructed for each splice
junction. Other assemblers such as IsoLasso (Li et al. 2011) and iReckon (Mezlini
et al. 2013) use L-1 norm and specific sparse constraints, respectively, to obtain
possible transcripts combinations.

The reference guided assemblers use reference genomes to align the reads and
assemble them into transcripts, where graphs are prepared and isoforms are consid-
ered as paths of graphs (Li and Xuejun 2016). The accuracy of the assembly depends
on the availability of complete and good quality reference genome which are usually
available for the model organisms such as human, mouse, rat, Arabidopsis, Oryza,
etc., but not for non-model species.

Therefore, for species with no reference genome de novo or reference-
independent method is used to construct the transcripts. The de novo assembly is
based on generation of short fragments of reads known as k-mers which overlaps to
form a de Bruijn graph structure (Martin and Wang 2011). The assemblage of
contigs using different algorithms depends on the varying lengths of the k-mers.
Shorter k-mers generally cover the reference sequences completely but also provides
ambiguity because of the presence of multiple reads from different transcripts. In
case of longer k-mers, ambiguity is resolved but also does not cover the entire region
of the reference genome/transcriptome.

Various assemblers are available based on optimization of k-mer lengths for
assemblage of contigs using different algorithms. SOAPdenovo-Trans (Xie et al.
2014) and Trinity (Freedman 2016) use the preferred k-mer lengths for producing
the de Bruijn graph. Trinity is a package of three independent softwares: Inchworm,
Chrysalis and Butterfly, where Inchworm assembles the transcripts, Chrysalis forms
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the de Bruijn graph by clustering those transcripts and finally Butterfly evaluates the
graphs and produces the full-length assembly (Grabherr et al. 2011). rnaSPAdes
(Bushmanova et al. 2019) identifies the k-mer lengths based on the read data.
rnaSPAdes is the optimized version of SPAdes (Bankevich et al. 2012), where
three assemblies are produced and one can choose any of them depending upon
the downstream analyses. The three assemblies contain, one assembled with all
transcripts, assembly with long and highly expressing transcripts, and assembly
with short and lowly expressing transcripts (Geniza and Jaiswal 2017). Another
assembler Velvet/Oases assembles the contigs based on de Bruijn graph using short
reads. Velvet assembles the contigs using the short reads which are then clustered
into loci using Oases program (Schulz et al. 2012).

12.4.3 Quality Check (QC) of Assembled Reads

Before processing the data for further downstream analysis the assembled reads are
checked for their quality. The quality metrics of the assembled reads can be
evaluated using two different criteria, either by calculating number and length of
contigs or by mapping the assembled reads to coded proteins for similarity search.
Softwares such as rnaQUAST (Bushmanova et al. 2016), CD-HIT (Li and Godzik
2006), TransRate (Smith-Unna et al. 2016) and Bowtie (Langmead 2010), etc. can
be used to measure the quality of the assembly by measuring the lengths of the
contigs and N50 value of the assemblies (T O’Neil and Emrich 2013). N50 value is
defined as the minimum contig length required to cover fifty percent of the genome.
While N50 value is more suitable quality of a genome assembly, transcriptome
assembly is checked by measuring their ExN50 value which is dynamic and real
time estimation of the assembled reads (Geniza and Jaiswal 2017).

ExN50 calculates the highly expressing transcripts which accounts for half of the
overall transcriptome data. Another criterion based on mapping of the assembled
reads to the coded proteins provides more probable notion of completeness of the
assembled transcripts. The similarity searches are generally done by aligning the
assembled reads against well-annotated databases containing non-protein sequences,
conserved domains of proteins with functional annotation or lineage dependent
protein databases (Nakasugi et al. 2014). These include BLAST (Altschul et al.
1990), Pfam (Finn et al. 2014), UniProt/Swiss-Prot (Apweiler et al. 2004), BUSCO
(Waterhouse et al. 2018), etc. However, the protein-coded similarity search is a more
plausible metric of QC of an assembly, the performance is limited by the relatedness
of the biological entity in question to the sequences present in the databases. The
more the divergence of the organism, more will be the possibility of lower percent-
age of assembled reads and gaps in the assembly.
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12.5 Expression Quantification and Differential Expression

The first approach for transcriptome quantification is done by quantifying the
expression of number of reads of specific transcripts. The most likely used method
is maximizing likelihood (Glebova et al. 2016), based on different variants of
expectation maximization (EM) (Li and Dewey 2011; Li and Jiang 2012),
min-cost flow (Tomescu et al. 2013) and regression (Li et al. 2011), etc. RNAseq
by Expectation Maximization (RSEM) quantitates the expression at isoform level
and produces the output with 95% confidence interval. Moreover, all approaches use
sequence specific transcripts to assess the expression level of each transcript. RSEM
processing requires transcript sequences produced by the assembler as reference
transcript sequences for RNAseq analysis for species with only transcript sequences
available (Li and Dewey 2011). The mapped reads on multiple isoforms can be used
to quantitate the expression in terms of prospective measures such as counting
Fragments Per Kilobase of transcript per Million (FPKM) (Trapnell et al. 2010).

Another most widely used tool Cufflinks-Cuffdiff (Trapnell 2013) upgraded to
Cuffdiff2 provides more determined method for differential expression analysis at
transcript level. The newer version Cuffdiff2 uses negative binomial model and
provides FPKM reads after normalization using relative log expression and inter-
sample normalization method Q (Trapnell 2013).

Normalization of read counts is one of the critical steps in differential analysis of
RNAseq data. The primary step in this process is to equate the total read counts from
different libraries, as the variation caused by sequencing depths and size of the
library are not comparable directly. In association to the number of expressing reads
and gene length, the expression analysis also depends on the sample RNA that is
being processed. For instance, genes with high expression shares a large percentage
of the total reads of the sample compared to the left-over reads. This could be
compared to the samples where reads are distributed evenly, in which case these
lowly expressed genes show false positive result of differential expression for those
genes (Zyprych-Walczak et al. 2015).

12.6 Annotation

12.6.1 Functional Annotation

The output of differential gene analysis provides information for the altered expres-
sion level of particular set of genes, now the next step is to explore the biological
function of the genes. This is done by analysing the functional aspects, interaction
network, pathway analysis and gene ontology, etc. of the genes involved in different
processes of the biological system.

For functional annotation of the genes, various databases such as PANTHER
classification system (Mi et al. 2016), DAVID Gene Functional Classification Tool
(Sherman et al. 2007), etc. are available which assign particular function to genes
and categorize them into different protein classes and biological pathways based on
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their over-representation analysis (ORA) in the data (Khatri et al. 2012). Based on
similar biological functions, cellular localization and pathway annotation these
genes are classified into different functional categories. The genes are analysed for
their over-representation in the particular category by calculating their occurrence in
the specific category compared to the proportion of genes accommodated in the same
category. The results can further be evaluated for significant results by applying
statistical tools such as Fisher’s exact test, Hypergeometric correction, etc.

12.6.2 Pathway Analysis

Annotation of differentially expressed genes to different pathways ensues to offer
biological insights of genes based on their functional and structural similarities. Few
methods of pathway annotation involve categorization of genes into different
pathways irrespective of the mechanistic model of the pathway (Zhao et al. 2016).
Another method involves analysis of certain genes enriched more than the expected
count. This is known as pathway enrichment analysis which provides more func-
tional understanding to the gene sets obtained from sequencing data. Here, the over-
represented pathways are identified with strong statistical significance, such as FDR
(False Discovery Rate) and p-value, relative to the expected chance of occurrence,
using ranking score, overlapping genes over the size of the pathway and pathway
topology, etc.

Some databases identify the enriched genes by assigning a scoring system based
on their position and interaction amongst other genes in the network. Resultantly,
interacting genes obtain higher weightage compared to the non-interacting ones,
showing the functional relatedness of few sets of genes (Zhao et al. 2016). The
analysis involves identification of set of genes from the sequencing data, selection of
statistically significant enriched pathways and visualization and graphical represen-
tation of the results.

12.6.3 Gene Ontology (GO) Analysis

Gene Ontology analysis is a method to distribute genes into hierarchical classifica-
tion and their representation in graphical structure. GO classification is distributed
into different terms in which the genes or gene products get distributed into
Biological Process (BP), Molecular Function (MF) and Cellular Component (CC).
These GO terms can be defined as:

• Biological Process—defines the role of the genes in the biological processes of an
organism, such as, transcription, translation, signalling, apoptosis, etc.

• Molecular Function—provides the information related to functional activity of
the gene in molecular terms. These activities include protein binding, nuclease
activity, protease activity, etc.
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• Cellular Component—provides information for cellular localization of the gene
product. This includes components such as nucleus, lysosome, plasma
membrane, etc.

The GO terms are said to be loosely hierarchical based on the available informa-
tion regarding their biological functions and localizations. Based on this information
they can be arranged in terms of ‘parent terms’ or more specific ‘child terms’.

GO analysis also provides information for genes that are over- or under-regulated
under specific conditions. This is done by calculating the enrichment analysis for the
over-representation of certain set of genes in a particular condition (Gene Ontology
Consortium@2015). The results are statistically evaluated based on their p-values.
Various tools such as WebGeStalt (Wang et al. 2013), Clusterprofiler (Yu et al.
2012), Gorilla (Eden et al. 2009), WEGO (Ye et al. 2006), etc. are widely used.

12.7 Other RNAseq Applications

12.7.1 Single Cell RNAseq

RNAseq provides information for expression profile for a population of millions of
cells. But different population of cells behave distinctly in different tissues. Single
cell RNAseq is a recently developed technique designed to explore the distinct
expression profile of single gene entity. Several tools have been designed to improve
the procedural factures in employing this technique, such as dividing and
disintegrating the cells to obtain single cell molecule (Zappia et al. 2018).

Since transcriptomic profiles of bulk samples provide a comprehensive outlook of
bulk population of cells, single cell RNA sequencing meant to decipher the distinc-
tiveness of cells at individual level. This approach is an addition to identify
distinguishing variations in gene expression which are more complex and under-
standing of biological diversities in cellular context. Different approaches are being
used to achieve unbiased, high throughput single cell RNAseq with exhaustive
quantitative information at individual scale (Avital et al. 2014). One such approach
is droplet based single cell RNAseq, developed independently by Klein et al. (2015)
and Macosko et al. (2015). This technology is based on identification of single cells
by barcoding individual cells from bulk of cells and analysing them using high
throughput sequencing.

Another approach developed recently for single cell RNAseq is based on differ-
ential analysis of discrete expression pattern in different biological conditions. The
approach developed by Korthauer and his team uses simulated data to detect the
variations in the differential patterns under given set of biological conditions using a
modelling framework (Korthauer et al. 2015).
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12.7.2 Small RNA Sequencing

Small RNAs, such as siRNA (small interfering RNA), miRNA (microRNA), etc.
belong to class of non-coding RNAs that plays crucial roles in regulation of gene
expression at transcriptional level. The developing technologies in high throughput
sequencing opened new prospects to explore the world of the miRNAs
(Sharma@2020). Despite their pivotal roles, miRNAs share very less percentage
in the genome. In order to obtain a comprehensive profile of miRNAs, deep
sequencing is performed which is a modified version of next generation sequencing,
sequencing a genomic region hundred or thousand times and allowing to detect
molecules present in rare volumes (Motameny et al. 2010).

Currently, only a small number of tools and pipelines are available for analysis of
miRNA data which is also a major challenge faced by many researchers. The
analysis of miRNA data involves:

(a) Pre-processing of the raw data to filter out low-quality reads and other
non-coding RNAs such as rRNA, tRNA, snRNA, snoRNA, etc.

(b) Mapping of reads to miRbase (largest repository of published miRNA
sequences and annotations of various organisms) (Griffiths-Jones et al. 2007)
to obtain known or conserved miRNAs in an organism.

(c) Prediction of novel miRNAs in an organism based on generation of hairpin loop
structure using an RNA folding algorithm.

(d) Quantification of miRNAs for detection of differentially expressing miRNAs.

Further, these miRNAs regulate expression of various genes by binding to the
3’UTR (untranslated region) of their target mRNAs with near specific complemen-
tarity. Based on the complementarity between miRNA and target mRNAs various
tools have been developed to detect the potential targets of candidate miRNAs using
different algorithms. Tools such as microrna.org (Betel et al. 2008) and TargetScan
(Lewis et al. 2005) account for detection of target mRNAs by searching for the
binding sites for specific miRNAs. Few other tools such as Pictar (Lall et al. 2006),
RNAhybrid (Rehmsmeier et al. 2004), miTarget (Kim et al. 2006), miRDB (Wong
and Wang 2015), DIANAmicroT (Maragkakis et al. 2009) also predict putative
binding mRNAs for given miRNAs using different algorithms in the background.

Identification of target mRNAs also accounts for involvement of these target
mRNAs in different molecular processes and significant pathways, which is done by
functional annotation, gene ontology and pathway analysis, etc. This could provide
information for miRNA-mRNA regulatory network and can further be exploited for
disease aetiology and therapeutic interventions.

12.8 Concluding Remarks

The rapid increase in technological expansion in the current times resulted in a
tremendous upsurge of NGS technologies such as DNA sequencing, RNA sequenc-
ing and other targeted sequencing projects (Sharma et al. 2016). But to translate the
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data generated from sequencing, the prime requisite is development of appropriate,
specialized and reliable tools and bioinformatics applications. RNA sequencing is an
advanced technique of NGS which favours the quantification and presence of RNA
content in the biological sample. It also infers the presence of post-transcriptional
modifications, SNPs, mutations, alternative spliced transcripts and their association
with disease pathogenesis (Conesa et al. 2016). The use of RNAseq technology for
various applications on a massive scale also demands for development of computa-
tional tools and softwares, with significant and reliable results, to match the pace by
analysis and interpretation of data parallelly.

However, RNAseq is a gold standard technique to generate a comprehensive
profile of whole transcriptome and other small non-coding RNAs in the sample. It is
also highly prone to biasness and discrepancies in the data due to RNA extraction
process, fragmentation of RNA, cDNA synthesis, amplification and sequencing, etc.
Hence, to avoid these inconsistencies various tools and pipelines have been devel-
oped, based on different algorithms, to avoid the artefacts generated at various steps
during the process. Data normalization is one such step which is crucial to reduce the
biasness in the data. Several researchers deliver different thoughts on using different
tools for data normalization and to minimize the noise and obtain best possible
results.

Furthermore, different analysis tools offer varied results depending on the
algorithms and backend procedures they are based on, hence relying on single tool
cannot be recommended to provide substantial results. Therefore, it is always
advisable to go through different school of thoughts and use multiple tools to attain
comprehensive and comparative values for conclusive considerations.
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