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Abstract. This paper describes our submitted systems for CCMT-2020
shared translation tasks. We build our neural machine translation sys-
tem based on Google’s Transformer architecture. We also employ some
effective techniques such as back translation, data selection, ensemble
translation, fine-tuning and reranking to improve our system.
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1 Introduction

Neural networks have shown their superiority on machine translation [1,18] and
other natural language processing tasks [5]. Self-attention based Transformer [19]
has been the dominant architecture for neural machine translation. This paper
describes our submission for CCMT-2020 Uighur — Chinese translation task.

We build our system based on Transformer [19] due to its superior perfor-
mance and parallelism. Several techniques which have been proved effective are
employed to boost the performance of our system.

We apply Byte Pair Encoding (BPE) [15] to reduce the sizes of vocabu-
laries and achieve open-vocabulary translation. Tagged back-translation with
top-k sampling [2,7,14] is used to improve translation performance with mono-
lingual data. We also train several variants of Transformer such as Dynam-
icConv [20] and Transformer with relative position representations. We select
back-translated data by length and alignment features. We average the param-
eters of several best checkpoints [3] in a single training process to get a better
single model. Translation models trained on mixed data are fine-tuned on real
data provided by the evaluation organizer. Finally, we translate source texts
by ensemble several best performing models and rerank the n-best lists with
K-batched MIRA algorithm [4].

With above techniques, our system evaluated with BLEU [13] improved for
a large margin. We also tried a few methods used in other neural machine trans-
lation systems without seeing significant improvements.
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2 Machine Translation System
Since there is far less parallel data for Uighur — Chinese translation, we adopt
several effective techniques for alleviating data starvation problem. The following

sections describe how we build a well-performing system for Uighur — Chinese
translation in low-resource scenario.

2.1 Pre-processing

Table 1. Statistics of pre-processed parallel data.

Translation direction #Sentence pairs
Uighur — Chinese 165792
Uighur — Chinese (sample 1) | 6340403
Uighur — Chinese (sample 2) | 6340804

We escape special characters and normalize punctuation characters with Moses
[10]!. Then we tokenize sentences for Chinese with pkuseg [12]2. Sentences with
more than 100 words were removed for both Uighur and Chinese. We also filter
parallel data where Chinese sentence is 6 times longer than Uighur sentence or
Uighur sentence is 4 times longer than Chinese. We learn word alignment with
fast_align [6]® and filter sentence pairs whose alignment rates are less than 0.6.
The statistics of pre-processed parallel data are shown in Table 1. The remaining
data is processed by Byte Pair Encoding [15]*, with 32K merge operations for
both Uighur and Chinese.

2.2 Architecture

Table 2. Architecture hyper-parameters of Transformer Big in our system.

Hyper-parameter name | Hyper-parameter value
Embedding size 1024

Hidden size 1024

Ffn inner size 4096

Attention heads 16

Dropout 0.2

Label smoothing 0.1

! https://github.com/moses-smt /mosesdecoder.
2 https://github.com/lancopku/pkuseg-python.
3 https://github.com/clab/fast_align.

* https://github.com/rsennrich /subword-nmt.
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We adopt Transformer Big as our base model and tune a few architecture hyper-
parameters in current setting, which are shown in Table 2. We train all models
by optimizing cross entropy loss with label smoothing. Adam optimizer [9] (81 =
0.9, 32 = 0.98, ¢ = 107Y) was used for optimization. Learning rate is linearly
increased during the first 4000 steps, and then decreased with inverse square
root function of steps as in [19]. We train all models on 4 NVIDIA Tesla V100
GPUs.

To obtain more diversed models for ensembling, we train two variants of
vanilla Transformer: Transformer with relative position representations [16] (Rel-
ative Transformer) and DynamicConv [20]. Checkpoint averaging [3] is also used
to get a stronger model.

2.3 Back-Translation of Monolingual Data

Back-translation has been proved as an effective method for data augmentation
of neural machine translation [7,14], especially in low-resource scenarios. With
only 165K provided parallel data, Transformer Big performs worse than Trans-
former Base, seeing Table 3. We train a Chinese — Uighur translation model,
taking Transformer Base architecture. Then we apply the trained Transformer to
translate large scale monolingual sentences in Chinese to Uighur and construct
pseudo Uighur — Chinese translation parallel data.

Table 3. Back-translation with different strategies

Setting BLEU
Transformer Base w\o BT 38.56
Transformer Big w\o BT 37.01
Transformer Big w\BT (beam search) 45.27
Transformer Big w\BT (top-10 sampling) 45.34
Transformer Big w\BT (top-10 sampling) + tag | 46.00

We experiment with several methods to generate synthetic data as proposed
in [7], such as beam search and top-k sampling. We find top-k sampling is more
effective as shown in Table 3. A possible explanation is that top-k sampling intro-
duce moderate noise into synthetic data, which makes pseudo data generated by
top-k sampling contain stronger training signal [8].

It is useful to distinguish real data and synthetic data during training since
synthetic data is usually more noised. A simple method distinguish real data and
synthetic data is adding a tag in front of each sentences, which is called Tagged
Back-Translation [2]. Experimental results in Table 3 proved its effectiveness in
Uighur — Chinese translation.

We construct two synthetic datasets (named samplel and sample2) by top-10
sampling in back-translation and filter sentence pairs with length and alignment
features.
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2.4 Fine-Tuning

Table 4. Fine-tuning trained models on real data

Model Before tuning | After tuning
Transformer (sample 1) 46.00 46.96
Transformer (sample 2) 45.32 46.76
Checkpoint averaging (sample 1) | 45.53 47.26
Relative transformer (sample 1) | 45.56 47.53
Relative transformer (sample 2) | 45.40 47.43
Dynamic convolution (sample 1) | 45.42 46.82

There is domain divergence between real data and synthetic data, since synthetic
sentence pairs are in general domain while real data specific in news domain. We
fine-tune translation models trained on mixed data on real data to adapt them
specific to target domain.

As indicated in Table 4, fine-tuning trained model on real data boost the
performance of translation models for a large margin evaluated by BLEU scores
on development set.

2.5 Ensemble Translation

Many literatures [1,18] have shown the effectiveness of ensemble learning for
improving translation quality. We translate evaluation source texts by ensem-
bling several diversed and best performing models. Our experimental results in
Table 5 present stable increments of translation quality with ensembling more
best performing models.

Table 5. Ensemble translation: index ¢ means the i-th model in Table 4

Ensemble selection BLEU
4 + 5 (beam size = 5) 47.97
3 4+ 4 + 5 (beam size = 5) 48.21
1+ 3+ 4+ 5 (beam size = 5) 48.51
14+3+4+5+ 6 (beam size = 5) 48.54
1+2+4+3+4+45+ 6 (beam size = 5) | 48.63
14+2+3+4+45+ 6 (beam size = 24) | 48.80
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2.6 Reranking

We generate the n-best translation lists by ensembling 6 best performing models
with beam size = 24. We hand-craft several features for reranking the n-best
lists, including log probability of each single translation model, target-to-source
translation score, right-to-left translation score [11], n-gram language model per-
plexity® and beam index. The reranking model is tuned by K-batched MIRA
algorithm [4]. BLEU score evaluated on development set achieves 49.17 after
reranking.

3 Results

Table 6 shows our systems evaluated by BLEU on development set. For Uighur
— Chinese translation, BLEU scores [13] are computed at character level. For
the last 4 rows, each model is based on the model described in the previous row.

Table 6. Translation quality evaluated by BLEU on development set

System Uighur — Chinese

Transformer Base | 38.56
Transformer Big 37.01
+ Back Translation | 46.00

+ Fine-tuning 46.96
+ Ensembling 48.80
+ Reranking 49.17

We can see that back-translation, fine-tuning, ensemble translation and
reranking consistently boost the performance of the Uighur — Chinese transla-
tion system. During these techniques, back-translation is most effective in low-
resource scenario.

4 Conclusion

This paper presents our submission for CCMT-2020 Uighur — Chinese transla-
tion task. We obtain a strong baseline system by tuning Google’s Transformer
Big architecture and continually improve it by back-translation, fine-tuning,
ensembing and reranking.

5 https://github.com/kpu/kenlm.
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