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Abstract

There are many people in the world that they are exposed to arsenic and in risk of
related diseases such as diabetes, arteriosclerosis, neuropathy, infertility, and
many types of cancer. Arsenic (As) is the most important toxic metalloid in the
earth. Some causes of arsenic toxicity and the development of these disorders
include: oxidative stress (OS), increased ROS (reactive oxygen species) produc-
tion, alteration of some signaling pathway and gene expression, damages to
structure and function of some proteins, especially SH-proteins, impairment of
mitochondria, alteration of antioxidant defense system, changes in the secretion
of some hormones such as FSH, LH, and testosterone (dysfunction of men and
women reproductive system), disturbance in the structure of cellular components
such as lipids, proteins, carbohydrates, and DNA. This section focused on the
association of As with some diseases, e.g. diabetes, atherosclerosis, male and
female infertility, and neurodegenerative disorders and sources of ROS produc-
tion in these disease.
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2.1 Generation of ROS in Oxidative Stress

Oxidative stress (OS) damages cell by disturbance of the balance between produc-
tion of highly reactive molecules such as �OH, O2

�� (reactive oxygen species) and
�NO or nitric oxide (reactive nitrogen species) and antioxidant defense system
(Nordberg and Arnér 2001; Reuter et al. 2010; Valko et al. 2006; Ďuračková
2010). Free radicals are energetic molecules that have unpaired electrons in atomic
orbits. The most important radicals in living system are ROS (Miller et al. 1990;
Halliwell and Gutteridge 1999). ROS have a major role in stimulation of cell
signaling pathway. However, overgeneration of ROS is deleterious (Thannickal
and Fanburg 2000).

The overproduction of RNS (nitrosative stress) and ROS induces oxidative
damage and damage to components of the cell such as DNA, lipid, protein, cell
structure, and cell membranes (Valko et al. 2006; Noori 2012). ROS interact at the
site of formation or far from their production site) Kohen and Nyska 2002). The toxic
effects of arsenic are attributed to the generation of ROS and OS and the change of
antioxidant enzymes activity (Heidari Shayesteh and Ranjbar 2013; Zargari et al.
2014). One of the mechanisms of arsenic toxicity is oxidative stress (Ercal et al.
2001).

The sources of ROS and RNS are exogenous and endogenous [enzymatic (pro-
duced under the physiological conditions, such as monoamine oxidase, NADPH
oxidase, xanthine oxidase, cyclooxygenase, myeloperoxidase) and non-enzymatic
(produced by Fenton’s and Haber’s reaction, such as H2O2,

�OH, HOCL, ONOO)]
(Noori 2012).

2.2 Arsenic and Oxidative Stress

Arsenic is the 33rd element of the periodic table and toxic metalloid in the form of
inorganic (iAs) or organic compounds in the environment (Jomova et al. 2011). The
most important forms in water are arsenite (As III: the most toxic and carcinogen
form, reacting with enzymes and transcription factors) and arsenate (As 5+). Arsenic
levels of drinking water in some countries such as Mexico) García-Vargas et al.
1991), Tiwan (Yen et al. 2007), and Indo-Bangladesh are more than the amount
recommended by WHO (10 μg/l) (Kinniburgh and Smedley 2001). Arsenic changes
mitochondrial integrity and its membrane potential. Mitochondria is the most impor-
tant organelle for the generation of ROS (by complex I and complex II of the electron
transport chain). Arsenic acts directly or by the production and accumulation of ROS
on the matrix of mitochondria (Pulido and Parrish 2003). The formation of superox-
ide anion radical and the decrease in cellular oxidant defense result in production of
peroxyl radicals (ROO�), anionic form of O2 (O2

��), singlet oxygen or dioxygen
(1O2), hydroxyl radical (�OH), dihydrogen dioxide (H2O2), and dimethylarsine
radical [(CH3)2As

�] (Flora et al. 2007). H2O2 is produced by the oxidation of arsenite
to arsenate (H3AsO3 + 2H2O + O2 ! H3AsO4 + H2O2) (Valko et al. 2005). H2O2

with iron generates highly reactive hydroxyl radical (Fenton reaction) with
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mutagenic effect (Hei et al. 1998). In addition, arsenic generates RNS during
metabolism (Shi et al. 2004) (Fig. 2.1).

2.3 Arsenic Detoxification Mechanisms (Methylation
of Arsenic)

The biotransformation of As or its detoxification and production of metabolites
induces oxidative stress (Flora 2011). Arsenic detoxification mechanisms are as
follows:

– Conversion of As+5 to As+3 by PNPase (purine nucleoside phosphorylase) in
plasma (Radabaugh et al. 2002) [Tripeptide glutathione (GSH) and other thiol
compounds are required for this conversion] (Scott et al. 1993; Flora et al. 2007).

– The methylation of As+3 via As+3 methyltransferase (As3MT) (Hayakawa et al.
2005; Lin et al. 2002) in liver (Marafante et al. 1985) and the production of
arsenic acid monomethyl (MMAA), and finally arsenic acid dimethyl (DMAA)
[s_ adenosyl_methionine (SAM) is involved in arsenic methylation) (Rossman
2003; Németi and Gregus 2002). Like other toxic metals, it is converted to the
less toxic form by methylation and other reductant factors, such as TR
(thioredoxin reductase), TRX (thioredoxin), dihydrolipoic acid] (Waters et al.
2004). Arsenic can conjugate with GSH and produce arsenite trigluthatione and
then MMA (SG)2(monomethylarsenic diglutathione and DMA
(SG) (dimethylarsinic glutathione) (Kenyon et al. 2008).

– The reduction of methylation capacity increases the toxic effects of arsenic, e.g.,
hypo methylation of DNA leads to impaired gene expression, such as oncogenes
or tumor—the suppressor genes (Roy and Saha 2002). In vitro studies indicated
that MMAA inhibits glutathione reductase. MMAA is very toxic to human liver
cells. The degree of cytotoxicity is: MMAA+3 > arsenite > arse-
nate > MMAA+5 ¼ DMAA+5 (Petrick et al. 2000).

2.4 Arsenic and Signaling Pathways

Arsenic altered some signaling pathways, such as:

– Tyrosine phosphorylation pathway including receptor tyrosine kinase (RTKs),
such as growth factor receptors and nonreceptor tyrosine kinase (NTKs), such as
Src family (Blume-Jensen and Hunter 2001). Arsenic induces the phosphoryla-
tion of epidermal growth factor receptor (EGFR) in the cell. It interacts with the
SH-group of EGFR (Wu et al. 1999)

– The mitogen-activated protein (MAP) kinase (Kumagai and Sumi 2007)
– Alteration of the major transcription factors, such as NF-Kappa B and activated

protein-1 (AP-1) (stress-induced transcription factors), regulating
proinflammatory genes in defense of cell (Chen and Shi 2002)
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– The activation of p53 and the induction of apoptosis (Filippova and Duerksen-
Hughes 2003). Arsenic-induced apoptosis, due to the increase in cytochrome c,
imbalance of Ca++, increased Bax expression, and the downregulation of Bcl-2
(Das et al. 2009)

2.5 Arsenic and Antioxidant Enzymes Activity

The activity of antioxidant enzymes (SOD, CAT, GPx, GST, GR) increases with
short term and low levels of arsenic exposure. The chronic exposure of arsenic
decreases their activity (Shi et al. 2004; Zargari et al. 2015).

2.6 The Effect of Arsenic-Induced Oxidative Stress on Proteins

Some ROS such as �OH and O2
�� damage proteins (Stadtman 2004; Samuel et al.

2005; Valko et al. 2006; Kaneto et al. 2005). Arsenic has different effects on proteins
that some of them are as follows:

– The production of aldehydes, keto compounds, and carbonyls [3_ nitrotyrosine as
protein oxidative marker] (Kaur et al. 2011; Stadtman and Oliver 1991; Blokhina
et al. 2003)

– Damage to the specific amino acid residues [in particular oxidation of cysteine
and methionine residue, which may cause the formation of disulfides between
(-SH) group of proteins or the formation of glutamyl semialdehyde and impaired
SH-proteins] (Dalle-Donne et al. 2003)

– A change in protein structure, degradation, unfolding, fragmentation, inactivation
of enzymes (Kaneto et al. 2005; Kelly and Mudway 2003; Dean et al. 1985)

– Altered cellular function (e.g., changing the energy production, due to the
inhibition of pyruvate dehydrogenase by especially MMAIII) (Reichl et al.
1988; Hughes 2002)

– The change in the type and level of cellular proteins (the reduction of antioxidant
enzymes) (Flora 1999)

– Production of AGEs or advanced glycated proteins. They are produced by the
reaction between carbohydrates and the free amino group of proteins,
e.g. pentosidine and carboxymethyl lysine (CML) as the most important of
AGEs (Dalle-Donne et al. 2005)

– Increased proteolysis due to production of reactive carbonyl groups (RCGs)
(Mahata et al. 2007; Kelly and Mudway 2003)
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2.7 Arsenic-Induced Oxidative Stress and DNA

DNA is sensitive to the free radicals, due to the unsaturated bounds in purine and
pyrimidine rings. Arsenic damages DNA by ROS production and alteration of the
enzymes that are needed to repair DNA (Bartsch and Nair 2004; De Vizcaya-Ruiz
et al. 2009). The important damages of arsenic on DNA are as follows:

– The alteration of DNA bases: 8-hydroxydeoxyguanosine: 8-OHdG as the marker
of oxidative damage to DNA or 8-oxoadenine [detected in urine of animal
exposed arsenic] thymine glycols, 5-hydreoxymethyl-uracyl are produced in
oxidation of DNA (Bartsch and Nair 2004; De Vizcaya-Ruiz et al. 2009; Cooke
et al. 2003). Binding of altered bases to transcription factors alters the expression
of some dependent genes (Ghosh and Mitchell 1999)

– DNA strand break (single and double) (Ying et al. 2009; Mourón et al. 2006;
Dong and Luo 1993)

– The loss of purines (the formation of apurinic sites) (Yamanaka et al. 1995)
– The cross-linkage of DNA–protein (Huang et al. 2004)
– Altered gene expression as a result of damage to the transcription factors (Huang

et al. 2004; Lantz and Hays 2006; Díaz-Villaseñor et al. 2007). However, based
on an in vitro study, As does not effect on the transcriptional regulator of DNA
(Lantz and Hays 2006)

2.8 The Effect of Arsenic-Induced Oxidative Stress on Lipid

Many clinical studies indicated that arsenic causes lipid peroxidation (Wirtitsch et al.
2009; De Vizcaya-Ruiz et al. 2009). Some important damages of arsenic on lipids
include:

– Production of cyclic endoperoxide, isoprotans, and hydrocarbons
– Peroxidation of cell membrane lipids. The high concentration of unsaturated fatty

acids in the cell membrane leads to oxidative damage and inactivation of
membrane-bound receptors.

– The formation of fatty acid radical (ROO�).
– The formation of lipid hydroperoxide, leading to a chain reaction and the oxida-

tion of fatty acids in the membrane of the cells (Halliwell and Gutteridge 2015)
– Peroxidation of membrane lipids and generation of two important markers of

lipid peroxidation called malondialdehyde (MDA) and 4-hydroxy-2-nonenal
(HNE) (Wirtitsch et al. 2009)
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2.9 The Effect of Arsenic-Induced Oxidative Stress
on Carbohydrates

– Producing ketoamines and ketoaldehydes and changing carbohydrate metabolism
(the inhibition of pyruvate dehydrogenase complex, hyperglycemia, and glucose
intolerance) (Ghafghazi et al. 1980)

– Producing AGEs.

2.10 Arsenic-Induced Oxidative Stress and Some Disorders

Some disorders linked to arsenic-induced oxidative stress are diabetes, cardiovascu-
lar disease, neurodegenerative disease, and infertility, which are discussed in the
following.

2.10.1 Oxidative Stress and Diabetes

Some studies have demonstrated the relationship between the oxidative stress,
diabetes and its complications, as micro- and macro-vascular dysfunction such as
retinopathy, neuropathy, stroke, heart disease, and atherosclerosis (Phillips et al.
2004; Asfandiyarova et al. 2006). Diabetes mellitus (DM) refers to the metabolic
disorder, which is characterized by the elevated levels of blood glucose caused by
the lack or insufficient insulin secretion or defects in insulin action (Maritim et al.
2003). Insulin is a hormone secreted by β-cells of pancreatic islets, which has an
important role in glucose, lipids, and proteins metabolism. Some mechanisms of
oxidative stress-induced diabetes are as follows:

– The auto-oxidation of glucose and hyperglycemia increases the OS (Rains and
Jain 2011; Maritim et al. 2003) [NADPH oxidase, an important producer of ROS
in various cells, has a major role in hyperglycemia-induced oxidative stress] (Jain
1989; Wolff and Dean 1987; Jiang et al. 1990). Reactive compounds such as
ketoaldehydes, superoxide anion radicals, peroxynitrite, and toxic hydroxyl
radicals are produced in the presence of oxidized glucose, transition metals, and
nitric oxide (Hogg et al. 1993; Halliwell and Gutteridge 1990)

– A change in the redox balance status [reduced glutathione (GSH), vit E, impaired
antioxidant defense]. Glutathione is a tripeptide consisting of three amino acids
cysteine, glycine, glutamate and has an important role in antioxidant defense,
transferation of amino acids, redox balances, scavenging of free radicals, and
enzymatic reaction (Tsai et al. 2012; Gregus et al. 1996). Some studies showed
that the level of GSH reduces in diabetes. The decreased GSH results in β-cells
dysfunction and other complications in diabetes, such as hyperlipidemia, inflam-
mation, and DNA damage. Keeping the GSH redox state may be useful for
diabetic patients (Dinçer et al. 2002; Das et al. 2012; Livingstone and Davis
2007; Tan et al. 2012).

2 Arsenic and Oxidative Stress: An Overview 33



– The damage to β-cells and the reduction of insulin secretion as a result of the low
levels of antioxidant enzymes (Ceriello and Motz 2004; Lipinski 2001) and the
production of mitochondrial superoxide activating UCP-2 [uncoupling protein-2,
a mitochondrial inner membrane protein], reduction of ATP/ADP and increase of
the superoxide formation (Brownlee 2003).

– The increased protein cyclin-dependent kinase inhibitor 1 and decreased insulin
mRNA (Maechler et al. 1999).

– The disturbances of lipid profile, such as the production of ox LDL, and lipid
oxidation (the formation of highly reactive compounds such as MDA and HNE).
A change in the cellular structure and its function, especially alteration of
membrane-bound receptors and membrane proteins with thiol groups. Ox LDL
is associated with the risk for atherosclerosis (Tsai et al. 1994; Kawamura et al.
1994; Rabini et al. 1994; Guo et al. 2012; Cai and Harrison 2000; Goldstein et al.
1979).

– The disturbance of insulin signaling cascade that leads to the insulin resistance
(Rains and Jain 2011; Ogihara et al. 2004).

– The increased stress signaling pathway, such as NF-kappaB and apoptosis of B
cells by glycated proteins, reduction of insulin expression due to alteration of
JNK pathway (Rhodes 2005; Kaneto et al. 2005; Mohamed et al. 1999).

– The damage to the proteins [the production of modified, nonfunctional, dena-
tured, and glycated proteins (AGEs) such as glycated hemoglobin, glycation of
lens proteins, and cataract formation (Ramalho et al. 1996; Yano et al. 1989). The
protein oxidation is in side chain of cysteine, methionine, and tyrosine. The
products of protein oxidation in oxidative stress are carbonyls [the marker of
protein oxidation], advanced oxidation protein products [AOPPs], known as
proinflammatory and prooxidant compounds (Suzuki and Miyata 1999; Pandey
and Rizvi 2010; Witko-Sarsat et al. 1996).

– The damage to the mitochondria function, which increases the free radicals
production, due to impaired electron transfer chain (Turrens et al. 1985; Liu
et al. 2002).

– Alteration of antioxidant enzymes activity such as CAT, SOD, GPx (Goth and
Eaton 2000; Giugliano et al. 1995; Shukla et al. 2012; Maritim et al. 2003). CAT
is present in all living organisms and regulator of hydrogen peroxide metabolism.
Catalase plays a major role in oxidative stress. The deficiency of CAT leads to the
damage of β-cells, containing a large amount of mitochondria and H2O2 producer
(increasing ROS and fibronectin expression) (Hwang et al. 2012). Patel et al.
(2013) showed that high blood glucose leads to increased H2O2 production and
downregulation of expression of CAT gene. Some studies indicated the decreased
SOD level in diabetic blood and tissues (He et al. 2011; Shukla et al. 2012;
Giugliano et al. 1995). SOD is an enzyme found in mammalian tissues and
converts superoxide anion to molecular oxygen and hydrogen peroxide. Three
forms of SOD include: cytosolic Cu-Zn superoxide dismutase (SOD1), mito-
chondrial Mn-SOD (SOD2), and extracellular SOD(SOD3 or EC-SOD). SOD1
and SOD2 have an important role in diabetic nephropathy and SOD3 or EC-SOD
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involves in scavenging of superoxide radicals in extracellular (Oury et al. 1996;
Zelko et al. 2002) (Fig. 2.2).

2.10.1.1 Arsenic Toxicity and Diabetes Mellitus (DM)
In Taiwan Lai et al. (1994) reported for the first time that there is a relationship
between the prevalence of diabetes and chronic exposure to the arsenic. Other
researches in Bangladesh, Swedish, and Mexico confirmed the high prevalence in
the postmenopausal women (>50 years) (Rahman and Axelson 1995; Rahman et al.
1998; Coronado-González et al. 2007). Other studies indicated the relationship
between diabetes and iAs (inorganic arsenic) (Tsai et al. 1999; Navas-Acien et al.
2006). Some mechanisms of diabetes are induced by inorganic arsenic (Fig. 2.3) and
its methylated metabolites, especially trivalent arsenicals and they are as follows:

– The phosphorus substitution, increasing ROS and altering some genes expres-
sion, such as increasing renal hexokinase II: HK-II expression in mice, which
causes pathological changes in kidney (Tseng 2004; Pysher et al. 2007).

– The insulin resistance and alteration of glucose homeostasis [by inhibiting the
AKT signaling pathway and inhibiting glucose transporter 4 transposition to
plasma membrane (Rudich et al. 1998; Paul et al. 2007; Hamann et al. 2014).

– The reduction of the expression of many genes, such as GLUT4, AKT (Walton
et al. 2004; Paul et al. 2007; Hamann et al. 2014).

– The upregulation of Nr-f2 signaling pathway in mice increased the expression of
antioxidant enzymes and the inhibition of glucose uptake (Xue et al. 2011; Duan
et al. 2015).

– The inhibition of adipogenesis and decreased lipid storage capacity by inhibiting
the adipocyte differentiation [the alteration of the expression of PPAR-γ and
CEBP-α]. PPAR-γ is a nuclear receptor that regulates the storage of fatty acids
and glucose metabolism. CEBP-α is a transcription factor and the inducer of
adipogenesis (Hou et al. 2013; Hamann et al. 2014; Wauson et al. 2002).

– The damage to β-cells. One of the most important causes of β-cells dysfunction is
oxidative stress. β-cells damage occurs due to low antioxidant defense, mitochon-
drial damage, and generation of superoxide (Kaneto et al. 2007; Tiedge et al.
1997). Arsenic is involved in the development of diabetes through damage to
function of β-cells, secretion and synthesis of insulin (Zhu et al. 2014; Lu et al.
2011).

– The programmed cell death or apoptosis of β-cells, due to the production of
arsenic-induced ROS and production of the activated caspase 3 and increased
NF-kappaB activity (Rhodes 2005).

– The upregulation of some essential transcription factors such as Nr-f2. It is the
regulator of expression of the cellular antioxidant proteins. Inhibition of
TXNRD1 protein (thioredoxin reductase 1), imbalance of intracellular redox
status, and inhibition of insulin secretion (Xue et al. 2011).
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– Decreased production of insulin-related mRNA due to overproduction of ROS
(Díaz-Villaseñor et al. 2006).

– The stimulation of hepatic gluconeogenesis. The induction of expression of PEPC
[an enzyme in the metabolic pathway of gluconeogenesis] results in fasting
hyperglycemia (Díaz-Villaseñor et al. 2007).

2.10.2 Oxidative Stress and Arteriosclerosis

Arteriosclerosis is a disease characterized by hardening and thickening of the arterial
wall due to the accumulation of serum lipoprotein LDL (low density lipoprotein) and
endothelial damage. The oxLDL (oxidized form of LDL) plays an important role in
the formation of foam cells and atherosclerosis plaque in the arterial wall (Lusis
2000). The oxLDL increases the expression of intracellular adhesion molecule-1
(ICAM-1), platelet, and selectins that facilitate the leukocytes binding and plaque
formation. Plaques contain a central lipid core with crystals of cholesterol plaques,
resulting in the myocardial infraction or stroke (Hennig et al. 2001; Inoue and Node
2006; Stocker and Keaney 2004; Madamanchi et al. 2005; Devasagayam et al. 2004;
Lum and Roebuck 2001).

Some studies demonstrated that OS has an effective role in the development of
disease and various cardiovascular disorders (Dhalla et al. 2000; Kukreja and Hess
1992).

The main and important ROS sources in atherosclerosis include:

• Smooth muscle cells (SMCs) and immune cells (macrophages) in blood vessel
arteries (Antoniades et al. 2007).

• Hypercholestrolemia. It stimulates the production of superoxide anion (O2��)
from the smooth muscle cells (Vepa et al. 1999).

• Mitochondria. One of the major sources of superoxide anion (O2��) production is
electron transport chain in mitochondria. Mitochondrial dysfunction is associated
with the atherosclerosis (Singh and Jialal 2006; Madamanchi et al. 2005).

• Enzymatic sources:
– Nicotinamide adenine dinucleotide phosphate oxidase (NAD(P) H oxidase), in

the vascular cells, leads to production of ROS. Some stimulators such as Ang
II (angiotensin II), PDGF (platelet derived growth factor), TNF-α (tumor
necrosis factor α) regulate its production (Griendling et al. 2000; Harrison
et al. 2003; Droge 2002).

– XO (xanthine oxidase) is a flavoprotein found in serum and endothelial cells. It
is not present in smooth muscle cells. Two forms of XO exist, including
xanthine dehydrogenase (XD) and XO and XD is transformed into oxidase.
During the conversion of hypoxanthine and xanthine to uric acid by the XO
superoxide anion is produced. The enzyme level is increased in the coronary
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patients and in asymptomatic young individuals with familial hypercholester-
olemia (Spiekermann et al. 2003; Droge 2002; Harrison et al. 2003).

– Myeloperoxidase (MPO) produces hypochlorous acid, as more potent oxidant,
from H2O2 and expressed in neutrophil granulocytes. Increased MPO level is
shown in patients with coronary disease, due to the oxidation or modification
of lipo-proteins, such as LDL by MPO and the production of modified
apolipoproteins. Serum level of MPO can be utilized to prediction of cardio-
vascular disease (Daugherty et al. 1994; Heinecke 2003; Zouaoui Boudjeltia
et al. 2004; Baldus et al. 2003; Brennan et al. 2003; Bergt et al. 2004;
Pennathur et al. 2004).

• NOS (nitric oxide synthase) produces potent vasodilator nitric oxide (NO) from
L-arginine under normal condition. NO production is required for the endothelial
function. Endothelia NOS (eNOS) produces O2��, H2O2, and peroxynitrite in
absence of L-arginine and increases OS. eNOS plays an essential role in
protecting the wall of blood cells from atherosclerosis. Some experimental studies
indicate that the activity of eNOS in atherosclerosis is decreased (Schächinger
and Zeiher 2002; Singh and Jialal 2006; Cai and Harrison 2000)

• LPO, lipoxygenase(s), catalyze the dioxygenation of polyunsaturated fatty acids
(arachidonic acid) and produce biologically active lipids such as prostanoids
(prostaglandins, thromboxanes, and prostacyclin), lipoxin, and leukotrienes.
They are involved in inflammatory reaction and increased vascular permeability
and atherogenesis (Stocker and Keaney 2004). Some experimental studies
indicated some lipoxygenases oxidized LDL) Folcik et al. 1995)

2.10.2.1 ROS-Induced Damage to Vascular Function
• The damage to the cell membrane, nuclei, especially hydroxyl radicals, and

dysfunction of endothelial (Suwaidi et al. 2000; Antoniades et al. 2003;
Schächinger et al. 2000)

• The interaction with the vasoactive mediators in cells of endothelium (Antoniades
et al. 2003).

• The formation of oxLDL. oxLDL activates monocytes and inhibits migration of
macrophage and releases proinflammatory cytokines (Antoniades et al. 2007;
Hennig et al. 2001).

• The production of NF-kappaB and activator protein-1 (AP-1) in oxidative stress.
They increase the expression of vascular cell adhesion molecule-1 (VCAM-1),
ICAM-1, E-selectin, and other cytokines. Accumulation of these molecules on
the endothelial wall causes change in vascular permeability and endothelial wall
dysfunction (Hennig et al. 2001; Bourcier et al. 1997; Tousoulis et al. 2007).

2.10.2.2 Arsenic Toxicity and Atherosclerosis
The association between cardiovascular disease (CVD) and arsenic exposure has not
been established and evidences are limited and mechanisms are unclear (Navas-
Acien et al. 2005; Wang et al. 2007a, b). Lemaire et al. (2011) demonstrated that
arsenic may have proatherogenic effects on mice. Some epidemiological studies in
Taiwan and Bangladesh indicated a positive association between the arsenic and
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heart disease and high pulse pressure, which may be related to the arsenic detoxifi-
cation and the increase of homocysteine and cardiovascular disease (Hsueh et al.
1998; Chen et al. 2007; Gamble et al. 2005; Zakharyan and Aposhian 1999; Araki
et al. 1989; Lim and Cassano 2002). Based on the results of some studies, there is a
relationship between arsenic and some genes expression, such as NOS3 (Balakumar
and Kaur 2009; Desjardins and Balligand 2006), SOD2, monocyte chemoattractant
protein-1 (MCP-1), interleukin 6 (IL-6) and ET-1 (endothelin-1) mRNA in mice
(Sun et al. 2009; Lee et al. 2005; Soucy et al. 2005). They are involved in endoge-
nous defenses against ROS and other risk factors for vascular dysfunction and
maintaining vascular tone. Overproduction of ROS leads to loss of mitochondrial
function, oxidative stress, alterations in the mitochondrial structure and cellular
damage, endothelial cells death (Wang et al. 2002; Andreyev et al. 2005; Packer
1961). Endothelial vascular damage occurs as a result of reduced synthesis of NO
and inactivation of eNOS and overgeneration of ROS. Dysfunction of vascular
endothelial is a risk marker of atherosclerosis (Kumagai and Pi 2004; Lee et al.
2003; Cai and Harrison 2000; Balakumar and Kaur 2009; Davignon and Ganz
2004).

Based on the animal experimental studies, MDA and HNE accumulate in
advanced lesions. They play an important role in the constitution of atherosclerotic
lesion. Due to the production of proinflammatory factors such as MCP-1, IL-6, and
TNF-alpha in exposure to arsenic it is an important risk factor for atherosclerosis
(Tsou et al. 2005).

As induces hypertension. Many studies are needed due to increased sensitivity to
calcium in blood vessels, phosphorylation of myosin and disruption of the antioxi-
dant defense (Yang et al. 2007) (Fig. 2.4).

2.10.3 Oxidative Stress and Neurodegenerative Disease

Oxidative stress leads to neurotoxicity, mitochondrial dysfunction, severe disorders
of neuronal cells and cell death (Caito and Aschner 2015; Cicero et al. 2017; Hsieh
and Yang 2013).

Free radicals damage brain and neuronal cells (Chance et al. 1979; Floyd and
Carney 1992; Marklund et al. 1982; Zaleska et al. 1989; Pamplona 2008; Halliwell
et al. 1992). Brain and neuronal cells are prone to oxidative damage due to their high
concentration of polyunsaturated fatty acids, high oxygen and glucose consumption,
presence of some metals, such as Cu, Fe, vitamin C, and low levels of antioxidant
enzymes.

Oxidative damage to neuronal cells leads to neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease (Perry et al. 2002). In Alzheimer’s disease
(AD) there is an accumulation of misfolded protein called beta-amyloid (Aβ) plaque
in the brain (Opazo et al. 2002). Parkinson’s disease (PD) is associated with the
accumulation of abnormal α-synuclein protein, degradation of dopaminergic
neurons, in the brain due to oxidative stress (Segura-Aguilar et al. 2014; Gasser
2001; Dalfó et al. 2005). These misfolded proteins inhibit mitochondrial function
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and induce more OS (Abramov et al. 2017; Caspersen et al. 2005). The dysfunction
of mitochondria is important in both AD and PD process (Angelova and Abramov
2017; Schapira 2008; Andersen 2004). The etiology and mechanisms of damage to
the neuron cells in neurodegenerative disease are unclear but the important sources
of oxidative stress are related to AD and PD, which are discussed in the following.

2.10.3.1 Oxidative Damage in Alzheimer’s Disease
– Decreasing the complex IV activity in the mitochondria and generation of ROS

(Sheehan et al. 1997; Du et al. 2010).
– Increasing the H2O2 production, due to Aβ peptide accumulation and cytochrome

C release (Lloret et al. 2008).
– Increasing the protein carbonyl (Bogdanovic et al. 2001; Sultana et al. 2010).
– Increasing the AGEs production and their receptors (Takeuchi et al. 2007).
– Increasing the mitochondrial VDAC1 (voltage-dependent anion channel 1) as a

regulator of important metabolic function of the cell, such as homeostasis of
calcium, OS, and apoptosis (Shoshan-Barmatz et al. 2018).
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Fig. 2.4 Mechanism of arsenic-induced atherosclerosis
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– Increasing the intracellular free ca++ that results in the reduction of GSH and
accumulation of ROS (Ferreiro et al. 2008).

2.10.3.2 Parkinson’s Disease and Oxidative Stress
– Dopamine (DA) metabolism. Dopamine quinone [6-hydroxydopamine as a neu-

rotoxin (Graham 1978; Tse et al. 1976)] is produced from oxidation of dopamine.
That leads to production of misfolded proteins, such as α-synuclein, Parkin
protein, DJ-1, and inactivation of DA transporter, tyrosine hydroxylase, damage
to mitochondria and decreased complex I in mitochondria (Betarbet et al. 2002;
Schapira et al. 1989; Parker et al. 2008; Kuhn et al. 1999; Sulzer and Zecca 2000;
Gluck and Zeevalk 2004; Jana et al. 2007; Van Laar et al. 2009; Whitehead et al.
2001; Andersen 2004; Betarbet et al. 2002; Parker et al. 1989).

– Mitochondrial dysfunction
The peroxidation of cardiolipin leads to apoptosis due to release of cytochrome C
(Betarbet et al. 2002; Parker et al. 1989).

The damage to the complex I transporter chain and decreased ATP production
(Mizuno et al. 1987).

The dysfunction of some proteins, such as DJ-1, as a recognizer of OS, redox-
chaperone protein, and related genes to PD, leads to more damage of
mitochondria (Van Laar et al. 2009; Conway et al. 2001; LaVoie et al. 2005).

The alteration of related genes in the regulation of mitochondrial homeostasis
in PD (PINK 1- PARK-2) that inhibits the complex I activity (Valente et al. 2004;
Gilks et al. 2005).

– The inflammation of neurons.
The production of ROS and inflammatory cytokines, due to the production of
neuromelanin from DA oxidation, which can interact with iron and leads to
overgeneration of ROS (Garrido-Gil et al. 2013)

2.10.3.3 Arsenic Toxicity and Neurodegenerative Disease
Less investigation has been done on the association between exposure to As and
neurodegenerative disease. Arsenic is one of the most important environmental risk
factors for these disorders (Chin-Chan et al. 2015; Engström et al. 2010; Butterfield
et al. 2002; Loh et al. 2006; Cheung et al. 2007). Recent studies indicated that As
damages the mitochondria and function of neurological cells. The highest accumu-
lation of As and its methylated components are in the hypophysis (Sanchez-Pena
et al. 2010). Positive association between soil arsenic and mortality from
Alzheimer’s disease was reported by Li et al. in Mainland Chine (2020).

Some mechanisms of arsenic toxicity in the brain (Fig. 2.5) are as follows:

– The alteration of some signaling pathway, e.g., glucocorticoid signaling (interac-
tion with glucocorticoid receptors and the inhibition of some transcription factors
and alteration of nuclear function), cholinergic and monoaminergic signaling
(Kaltreider et al. 2001; Kobayashi et al. 1987; Chandravanshi et al. 2019).

– Decreased activity of choline acetyltransferase (CHAT) and acetylcholinesterase
(ACHE) (Baldissarelli et al. 2012; Nagaraja and Desiraju 1994).
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– Increased the β-amyloid protein, tau protein hyperphosphorylation, endothelial
cell dysfunction, and inflammation in cell culture studies (Vahidnia et al. 2007;
Giasson et al. 2002; Fry et al. 2007; Hardy and Higgins 1992; Zarazúa et al.
2011).

– The depletion of GSH and the induction of OS (Chang et al. 1991; Huang et al.
1993; Bermejo et al. 2008; Jomova and Valko 2011).

– The alteration of some transporter systems, such as brain monoamines especially
dopamine, serotonin (5-HT), and noradrenaline (NA) (Martinez et al. 2008).

– Change of gene expression of some antioxidant (SOD, Trx-1) (Rodríguez et al.
2010; Lau et al. 2008; Zhang 2006).

– Activation of p38, MAPK and JNK3 signaling pathway and induction of apopto-
sis, oxidative damage which leads to Alzheimer’s disease (Chandravanshi et al.
2018; Namgung and Xia 2001; Lu et al. 2011; Yen et al. 2012).

– The adjustment of the expression of inflammatory cytokine genes (Sun et al.
2017; Praticò and Trojanowski 2000; McGeer et al. 2006).

– The enhancement of Bcl2/Bax ratio and change in the potential of the mitochon-
drial membrane in brain, stimulation of apoptotic signaling, especially caspases-
3, decrease in the level of Nr-f2 and Tex (Lu et al. 2014; Pradelli et al. 2010;
Friedlander 2003; Shacka and Roth 2005; Srivastava et al. 2014).

– The storage of α-synuclein protein (SYN) and the oligomerization of SYN and
synucleinopathies (Cholanians et al. 2016)

– Arsenic has a synergistic effect on the toxicity of dopaminergic cells in PD, as As
and DA can increase toxicity in the neuronal cells, leading to the development of
PD, probably with the production of DA quinone as a highly toxic free radical
(Shavali and Sens 2008; Sulzer and Zecca 2000).

Increased inflammatory cytokines  
gens (IL-6,TNF-α, COX-2)

Induction of apoptosis
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Inhibition of  GR

Monoaminergic  signaling 

Inhibition  of  ChAT,AChE
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amyloid,hyperphosphorylation   tau

Depletion  of  GSH

Decreased  antioxidant 
enymes

Glucocorticoide  signaling
Inhibition of  GR

Neurodegenerative  
diseaseArsenic

Fig. 2.5 Mechanism of arsenic-induced neurodegenerative disease
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2.10.4 Infertility and Oxidative Stress

Infertility is considered as a serious health problem over the last decades. Recently,
studies demonstrated that the oxidative stress and the overproduction of ROS (such
as, OH, H2O2, O2

��) damage the normal function of sperm and cause male or female
infertility. One of these ROS is the H2O2 with the beneficial and damaging effect on
sperm. The low level of H2O2 increases sperm–oocyte fusion (phosphorylation of
tyrosine leads to the binding of sperm membrane to zona pellucida ZP3 protein)
(de Lamirande and Gagnon 1995; Sharma and Agarwal 1996; Agarwal and Saleh
2002; Saleh and HCLD 2002; Twigg et al. 1998; Aitken and Clarkson 1987; Aitken
et al. 1995, 1998).

There is no sufficient information about the ROS or OS and function of repro-
ductive system. Some mechanisms of the effect of OS on the reproduction (Cicinelli
et al. 1996; Halliwell and Gutteridge 1984; Penniston 1983) are as follows:

– Lipid damage, the production of lipid hydroperoxides, as cytotoxic, leads to the
inactivation of enzymes, damage to DNA, cell leakage, membrane disruption
(permeability to electrolytes).

– The modification of some transcriptional factors and gene expression
(Paszkowski and Clarke 1996)

– The depletion of ATP, produced in the mitochondria during oxidative phosphor-
ylation, for example, gametes use the produced ATP for mobility (Liu and Keefe
2000; Liu et al. 2000; Valko et al. 2007).

In the normal condition, low levels of ROS are essential for spermatocytes
function, motility, hyperactivation, acrosome reaction, the interaction of sperm
with oocyte, due to peroxidation of plasma membrane lipids and adhesion of
sperm-oocyte (Agarwal et al. 2004; Griveau and Lannou 1997; Kodama et al.
1996) However, an unbalance between the production of ROS and their removing
causes the development of oxidative stress in the seminal (Sikka et al. 1995; Sikka
2001; Sharma and Agarwal 1996). Spermatozoa (immature sperms) and white blood
cells (leukocytes) in human semen are the most important sources of ROS. ROS are
produced in spermatozoa by the NADPH oxidase in the membrane of plasma and
NAD(P)H-dependent oxidoreductase in the mitochondria. High pressure of oxygen
leads to the loss of sperm motility, flexibility, less or lack of interaction with oocyte
for fertilization (Aitken et al. 1992, 1994; Gavella and Lipovac 1992; Aitken and
Baker 1995; MacLeod 1943; Whittington et al. 1999; Kao et al. 2008).

Oxidative stress impairs to spermatocytes (Alvarez and Storey 1995; Jones et al.
1979; Aitken and Fisher 1994; De Lamirande and Gagnon 1995; Sharma and
Agarwal 1996; Penniston 1983; Holland and Storey 1981; Holland et al. 1982) for:

– Low levels of scavenging enzymes [lack of integral catalase or glutathione]
– High levels of PUFA in their plasma membrane [rich in unsaturated lipids]
– High levels of mitochondria [for supply of energy]
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The overproduction of ROS and defects of oxidative phosphorylation are the
most important molecular mechanisms in men infertility (Cummins et al. 1994).

Excessive production of ROS damages mitochondrial function and stimulates
high ROS production. Disturbance of mitochondrial membrane induces apoptosis
and DNA fragmentation (by activating of caspase cascade). The different forms of
damage to DNA include: DNA cross-links, the modification or deletion of bases,
chromosomal rearrangement (Duru et al. 2000; Plante et al. 1994; Appasamy et al.
2007; Vermes et al. 1995; Wang et al. 2003). Some reports indicated excessive
production of ROS (high levels of ROS) in the semen of infertile men. The
mitochondrial system has the major role in production of ROS in infertile men
[impaired and immature sperms in the semen are considered] (De Lamirande and
Gagnon 1995; Padron et al. 1997; Plante et al. 1994; Huszar et al. 1997; Aitken
1999). OS has an important role in the function of ovary. Endothelial cells, phago-
cytic macrophages, and parenchymal steroidogenic cells are the most main sources
of ROS in the ovaries. Under normal condition, ROS are involved in the maturation
of follicle, ovulation, and folliculogenesis (Halliwell and Gutteridge 1988; Tamate
et al. 1995; Sugino et al. 1996; Jozwik et al. 1999; Sabatini et al. 1999). The activity
of some antioxidative enzymes, such as Cu-Zn SOD, Mn-SOD, GPx in human ovary
is needed for normal reproduction (Suzuki et al. 1999; El Mouatassim et al. 1999;
Paszkowski et al. 1995). The low expression of GPx in follicular fluid is associated
with infertility. Increased nitric oxide (NO) is shown in the infertility (NO may lead
to the apoptosis and fragmentation of embryo) (Bedaiwy et al. 2004). Peroxidation
of lipids (increased MDA) and decreased antioxidant enzymes have reported in the
infertile women (Polak et al. 2001; Shanti et al. 1999; Murphy et al. 1998).

2.10.4.1 Arsenic Toxicity and Infertility
Some human (occupational) and animal researches reported the effects of small
amounts of some toxic metals, such as arsenic (As) on male reproduction. As directly
affects the testicular tissue. Exposure to As in animal models leads to the reduction
of testicular weight, production of sperm, number of spermatids, and decreased
sperm mobility (Pant et al. 2004; Sarkar et al. 2003; Centeno et al. 2002; ATSDR
2007, 2012, 2019). As activates some signaling pathway such as ERK/AKT/NF-KB
and leads to spermatogenesis disorders and reproductive toxicity (Huang et al.
2016). As exposure damages to the sperm DNA and leads to male infertility. Arsenic
influences the steroid receptors activity, such as glucocorticoid and mineralocorti-
coid receptors. It may cause infertility by the inhibition of activity of androgen
receptor (AR) (Kaltreider et al. 2001; Bodwell et al. 2006; Rosenblatt and Burnstein
2009). Some environmental pollutants such as heavy metals (lead, arsenic, cad-
mium), may lead to the reproductive disease by altering hormone levels. Arsenic
increases ovarian tumors. Studies showed that serum As was high in infertile women
(Lei et al. 2015; Mendola et al. 2008; Bloom et al. 2011; Gallagher et al. 2010; Guo
et al. 2011; Tokar et al. 2011). Arsenic exposure leads to the inhibition of ovarian
steroidogenesis, secretion of gonadotropins, and reduction of plasma testosterone
(Chattopadhyay et al. 1999; Vreeburg et al. 1988; Hardy et al. 2005; Jana et al.
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2006). The several possible mechanisms of As toxicity (Uckun et al. 2002; Jana et al.
2006; Sarkar et al. 2008) are as follows:

The direct action on testis: ROS affect the testicular function. Based on the results
of the researches, exposure to the arsenic causes OS and reduction of some semen
parameters, such as the reduction of number of sperm, motility of sperm, plasma
levels of testosterone, FSH, LH hormones in the testis of rabbits (Manna et al. 2008;
Zubair et al. 2014). The experimental studies indicated that As has toxic effects on
the testis and damages the structure of testes and reduces the sex hormones (LH,
FSH, testosterone) (Soleymani and Hemadi 2007; Pires Das Neves et al. 2004; Jana
et al. 2006). Many researches reported the accumulation of arsenic in the testes,
prostate glands. As toxicity alters the activity of mitochondrial enzymes, mitochon-
drial membrane potential, impairs DNA sperm and reduces testosterone. Inhibition
and reduction of enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD) and
17β-HSD, and wasting of Leydig cells, and reduction of testosterone occur in the
presence of arsenic. Arsenic influences the hypothalamic-pituitary axis, impairs
Leydig cells function, and binds directly to sperm. The thiol containing proteins
have main role in the motility of sperm. High levels of SH-proteins are in sperm
(sperm chromatin and flagellum contain plenty of sulfhydryl) and As has high
affinity to binding to these proteins. Arsenic induces cell death or apoptosis and
ROS production [the peroxidation of PUFA of spermatozoa] (Das et al. 2009;
Danielsson et al. 1984; Pant et al. 2001; De Vizcaya-Ruiz et al. 2009; Morakinyo
et al. 2010; Sudha 2012; Kumar et al. 2002; Jana et al. 2006; Sarkar et al. 2003).

Shortly, arsenic in male reproductive system causes a reduction in the number of
sperm, high productions of ROS in testes, abnormal secretion of hormone, a
decrease in the testicular weight, abnormality of enzymes, such as LDH, sorbitol
dehydrogenase, acid phosphatase, γ-glutamyl transpeptidase, a decrease in FSH, LH,
resulting in low sperm count and male infertility, a decrease in the sperm mobility
and viability, depletion of GSH, increases of MDA, and protein carbonyl in testes
and effects on 3β-HSD and 17β-HSD, which are important for biosynthesis of
testosterone.

Arsenic in female reproductive system results in the suppression in the ovarian
steroidogenesis, the degeneration of ovarian cells, follicular cells and uterine cells,
alteration of neurotransmitter secretion like norepinephrine, dopamine, and seroto-
nin, leading to reduction of gonadotropin secretion, FSH, LH, and estradiol, and
alteration of Δ5-3beta-HSD and 17beta-HSD, as the regulator enzymes of
steroidogenesis.
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