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Predicting the Outcome of Arsenic Toxicity
on Exposed Juvenile Male-Humans: A Shift
to Infertility

1

Victor Eshu Okpashi and Abeng Fidelis Ebunta

Abstract

Toxicity caused by arsenic ingestion on the health of the human male reproduc-
tive axis has been researched upon. Numerous pathways linking arsenic toxicity
including the endocrine system and hormonal cascade have been elucidated. In
this text, several aspects of arsenic effect on human reproductive health, including
how arsenic triggered DNAmethylation, deregulate spermatogenesis, and decline
sperm quality will be discussed. The route of arsenic ingestion, connecting
occupational exposure, and polluted water resources are verily implicated in the
etiology of arsenic effect on male infertility. Nevertheless, the populaces are
worried about how their reproductive health is negatively impacted by arsenic
ingestion and its derivatives or combinations. This text exposes several areas,
pathways, and mechanisms of actions that necessarily lead to male infertility
overtime if adequate intervention and awareness are not brought to bear. The
endpoint is that knowledge and awareness by individuals is a key to provoking
environmental health campaigns and strategic intervention plans to ameliorate
arsenic effect. Diagnostics instruments may be required to avert the onset of
arsenic effect before the manifestation and complication of infertility in men due
to arsenic ingestion. Therefore, if the knowledge and clinical evidence present
here is not appreciated, it will be predicted that over time, there will be physical
appearance of two different sexes, with sexually inactive men. That will be the
predictive shift to infertility by men due to the effect caused by arsenic and its
combination.
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1.1 Introduction to Arsenic

Arsenic is among the metalloid that is characteristically clustered with other metals
when allowing for its progressive and procreative toxicity (Ferm 1972). Arsenic is
categorized with light-in-weight metals such as lithium, chromium, fluoride, boron,
and aluminum that are originally based on biological substances in minute quantities
and perform natural exertion.

Arsenic subsists in three allotropies—yellow, black, and gray. The steadiest
allotropes of arsenic are the silver-grey and inelastic-see-through crystal (Blank
1932). It discolors speedily in air, and at elevated heat, it scorches to form arsenic
trioxide which appears as a white cloud. Arsenic is a group “Va”metal that combines
easily with numerous elements. Arsenic can become inelastic, discolors upon
heating, it speedily rusts to arsenic trioxide, with a garlic odor. The non-metallic
arsenic is less-reactive but thaws upon heating with strong acids and alkalis.

Hardly do arsenic exists in the form of metal. A source such as incineration,
sources-smelters, and coals are generally formed arsenic oxide (particulates) but
enters into the soils and water as arsenite and arsenate (Jin et al. 2014). Arsenic from
artificial sources such as commercials, industries is used as stable arsenate (Jin et al.
2014). Biological arsenic combination enters the surrounding through saleable
application in tiny quantities and is naturally not fragmented into the artificial
arsenic. Arsine is been applied in biotechnology factories that culture
microorganisms to remediate and degrade polluted soil, it is swiftly dissolved to
arsenate and arsenide (USPHS/ATSDR 1999). Arsenic is adhesive to the soil
particles, partition in the soil strata, but can percolate into the water during the
raining seasons. In a location with increased earth-arsenic deposit (naturally from
sulfide raw material and volcanic soils), there is an increase in arsenic concentrations
and bioaccumulation in water and plant (USPHS/ATSDR 1999).

1.1.1 Applications of Arsenic

Most arsenic derivatives are utilized in the construction of distinctive varieties of
glasses, preservation of wood and, newly, in the construction of semiconductor—
gallium arsenate with the capacity to translate current from electricity to laser-light.
Arsine (AsH3) gas is a vital dopant in the microchip industry used to alter the
properties of some substances such as conductivity. Although, strict compliance is
required during utilization of arsenic compounds because of toxicity. However,
during the medieval era, several arsenic mixtures were applied as medications. For
example, copper acetoarsenite that was previously applied as a green-pigment had
different appellations.
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1.1.2 Environmental Arsenic

Arsenic can occur naturally on the earth’s crust in tiny amounts. It befalls in the soil
and may go to the air, water, and land via wind-blown, dust, and surface water
run-off (USDHEW (1966). Atmospheric arsenic emanates from different cradles like
volcanoes may discharge about 3000 tons per year and microorganisms may as well
liberate about 20,000 tonnes of explosive methyl arsines per year, while human
activity is perceived to give out about—80,000 tonnes of per year (Air Quality and
Emission Data 1968). In spite of its infamy as a lethal toxin, arsenic is still a vital
delineating element for some animals, and humans at 0.01 mg/day intake.

Arsenic is a constituent that is changed to water-soluble or explosives. The
concept that arsenic is natural and objectively migratory suggests that huge
quantities of arsenic may not be intense at a specific site (Angino et al. 1970). This
is good because the negative impact of arsenic pollution has become an issue
because of its spread spectrum. The immobility of arsenic makes it difficult to be
mobilizing (Haq et al. 2012). Human activities such as mining and smelting, and
immobile arsenic have been transported and are now seen in locations other than
where they previously existed. Tiny un-combined arsenic can occur as microcrystals
(Bibha et al. 2016). Some arsenic is seen in aggregation form with sulfur—arseno-
pyrite (AsFeS), realgar (an orange-red mineral consisting of arsenic sulfide and
having a resinous luster), orpiment (an uncommon orange to lemon-yellow element
comprising of built-in trisulfide of arsenic), and enargite. None of these minerals are
mined because they are been produced as by-products of refining copper and lead
ores. The production of arsenic oxide is about 50,000 tonnes annually globally, in
excess of that required by industries. The main country that exports arsenic oxide is
China next is Chile and Mexico. The global production of arsenic from copper and
lead raw materials had exceeded ten million tonnes.

1.1.3 The Outcome of Arsenic Concentration in the Environment

The arsenic dominance in the environment and atmospher is caused and sustained by
anthropological meddling. Therefore, the termination of arsenic in the environmental
media and in living organisms is predictable if arsenic pollution is control. Arsenic
originates from the industries that mined copper, lead, and zinc (EPA 1986). It is
difficult to destroy arsenic once it has permeate the soil strata and, additional, the
concentration of arsenic may spread and cause defect on the health of humans and
animals at various locations. Plants readily absorb arsenic, such that at increase
concentrations may have a dominant concentration in food and crops. The level of
synthetic arsenic in surface waters is sufficient to trigger a genetic alteration in fish
like zebra (Janell et al. 2016). This trigger is caused by a build-up of arsenic in the
frames of edible vegetables, fruits, and freshwater creatures (Sayan et al. 2012,
Okpashi et al. 2019). Carnivores and herbivores who feed exclusively from organic
matter (plants and animals) will always ingest high amounts of arsenic and may
suffer injury or death due to arsenic poisoning.
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1.1.4 How Arsenic Contaminate the Water

Naturally, arsenic can be seen in some soil strata and layers. When arsenic is mixed
with groundwater it may remain in the water as a recalcitrant contaminant. Arsenic is
a metal-like, which fundamentally suggests that it has the properties of a metal and
that of a non-metal. As a composite, arsenic can be exceedingly toxic. That is why it
is ordinarily used in the formulation of rat poison. The industrial production of
arsenic from lead and copper ores and the application of insecticides on farmland are
implicated as sustainable sources of generating and circulating arsenic in the envi-
ronment. Furthermore, arsenic is an essential ingredient for preserving wood. The
WHO recommends that a 10 ppb of arsenic ought to be the maximum concentration
in groundwater. Even though arsenic may be in surface water due to run-off,
groundwater is the main source of arsenic because of percolation. Inevitably, a
level above 10 ppb can be ascertained unsurprisingly in groundwater. Arsenic is
water-insoluble and biological arsenic (AS-V) anions or (AS-III) molecules exist in
groundwater.

1.1.5 Effects of Arsenic on Human Health

Arsenic is among the noxious metals in the earth’s layer. Despite the noxious
outcome of arsenic, synthetic arsenic appears on the soil innately in tiny quantities.
Human beings can be unprotected to arsenic through food, liquid, and airborne. The
unproductiveness of individuals can befall through skin connection with the soil or
water containing arsenic. The arsenic levels in food may be reasonably low since its
toxicity is drastically reduced during food processing and coking. Marine organisms
such as planktons, small jellyfish, comb jellies, sober-toothed—(called arrowworms
or chaetognaths) may contain high level of arsenic because they usually imbibe
arsenic from the surroundings. Providentially, this form of organic arsenic is fairly
mild in reactions, but fish that bears substantial quantities of synthetic arsenic can be
dangerous to the health of humans (Young et al. 2014). Exposure to arsenic might be
greater for people working in arsenic extracting factories, people living in woods
houses that are preserved with arsenic, and farmers who spray their farmlands with
arsenic formulated insecticides and pesticides. Contact with synthetic arsenic can
result in a number of health effects, including stomach irritation and intestines,
dwindled red and white blood cells formation, change in skin complexion, and
lungs exasperation (Buchet et al. 1981). The uptake of substantial measures of
synthetic arsenic can build up the chances of developing cancer, particularly the
probabilities of incurring different types of cancers like cancer of the skin, lung,
liver, and lymphatic. Prolonged contact with synthetic arsenic can cause infertility
and reproductive insufficiencies in women (Cecilia et al. 2017), and weakened the
competition against infectious diseases, heart disorders, and brain damage in men
and women (Cecilia et al. 2017). Synthetic arsenic can originate DNA mutilation
(Victor et al. 2011). A lethal dose of arsenic oxide is about 100 mg (Barbara et al.
2004).
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1.2 Absorption, Distribution, and Excretion of Arsenic

In humans, the accumulative concentration of arsenide and arsenate in the intestinal
strip is about 90% (Vahter and Envall 1983). Nadir values of about 39.9% and
49.9% were reported in hamsters (Odinaka et al. 1980). Oral administration of
arsenic indicated that bioavailability in humans is about 55% and 79.9% for syn-
thetic arsenic (Buchet et al. 1981). Surface availability of arsenic in the soil and
household dust polluted with radiations from smelting showed 14.9% in monkeys
upon inhalation (Freeman et al. 1995). In rat’s intestine, phosphate represses the
absorption of arsenate (Gonzalez et al. 1995). In animals, the immersion of arsenic
upon intratracheal linking is about 89.9% for soluble arsenic composites. Vahter and
Envall (1983) quoted a previous investigation by Holland et al. (1959) wherein
86–89% of arsenic was set-down in cigarette smoker’s lungs.

The binding of arsenic is to plasma proteins is a loss, but readily fused with red
blood cells before binding to intracellular proteins (Vahter and Envall 1983). Arsenic
is rapidly distributed to tissues. Arsenide is strongly bound to dithiol and vicinal thiol
moiety; it is well linked to protein than arsenate (Styblo et al. 1995). The binding of
arsenic to metallothionein has not been observed (Chen and Whanger 1994).
Kreppel et al. (1994) proposed that treatment with zinc could serve as an inhibitor
of arsenic pestilent. Primarily, the eradication of arsenic follows through the excre-
tion of urine, with a trifling biliary contribution of arsenic which varies in species
(Vahter and Envall 1983).

1.2.1 Metabolism of Arsenic

The breakdown of arsenic differs among species, but similar in components of their
pathways. Methylation is the main mechanism where decontamination of arsenic can
occur, granting that the latest reports on binding of zinc to intracellular protein
restrained arsenic toxicity in the liver and gut. Lately, a protein that binds to arsenide
was recognized in the liver of the rabbit (Bogdan et al. 1994). Arsenide binds to
glutathione and gets methylated to s-adenosyl methionine. At the intracellular level,
arsenate is transformed to arsenide via redox cycling to methylation as a first step
mechanism. Lately, it was proposed that when glutathione binds to arsenate and
biological arsenic, it becomes reduced before methylation takes place
(Delnomdedieu et al. 1994). During urination, mono-, di-, and tri-methylated species
are eliminated as waste. There is a breakdown of biological arsenic. Humans lack the
enzymes that break down arsenic to carbon (As-C) bond in arsenobetaine, occasion-
ally expelled unaffected (Lee and Ho 1994). The substantial volumes of arsenide and
arsenate do not originate from swallowing organic arsenic (Buchet et al. 1994). Their
types vary due to methylation (i.e., the quantity of nonmethylated arsenic expelled),
the methylated types forms what is called mono, di, tri-methyl arsenate. The biliary
excretion of arsenic and binding to tissues before and later methylation can be
predicted (Vahter et al. 1995). There is a broader spectrum of arsenic methylation
in some mammals such as rats, mice, and dogs, than in hamsters, rabbits, and
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humans. Remarkably, two studies showed that non-human primate types—marmo-
set monkeys and chimpanzees were not enable to methylate arsenic (Vahter et al.
1995), and it is applicable to guinea pigs (Healy et al. 1996). The central place for
methylation is the live, with a wide-ranging medication. However, some cells have
arsenic methylation capacity (Fischer et al. 1985). The rabbits, hamsters, and rats
have exhibited key biliary secretion while less biliary excretion is observed in mice
and humans. Humans can expel a substantial quantity of monomethyl arsenate.
Diverse methyl transferases are implicated in the mono and dimethylation pathways.
Efforts are ongoing to ascertain arsenic binding proteins that ought to help in the
clarification of relative metabolism.

Some researches explain the differences in methylation among animal species
built on acute, single-dose administration. Though there are metabolites enlisted to
be linked to habitually unprotected persons Foa et al. (1984); Valentine et al. (1979
suggest that prolonged treating may not modify the pathway that breakdowns
arsenic. Severe doses in mice can decelerate methylation and result in the accumula-
tion of intermediary products (Hughes and Menache 1994). Conversely, no index
that measures methylation—the threshold to ascertain arsenic toxicity in humans to
establish the disparity in the rising of arsenic has been identified (Hopenhayn-Rich
et al. 1993). At the physiological level, and pharmacokinetic (PBPK)
representations, there is a hope that across species, dosing will correlate the concen-
tration of arsenic in the tissue of different species and show similar lethal reactions.
PBPK has been formulated for the testing of hamsters and rabbits models, the classes
of animals with close resemblance to humans in terms of methylation patterns (Mann
et al. 1996); still, fetal barrier and procreative structures were not incorporated in the
designed model.

1.2.2 The Role of Arsenic in Male Reproductive Functions

Arsenic has a great influence on male reproductive health. Even though men suffer
privation in terms of the ability to be gauged reproductive cycle, success has been
achieved in appraising trials that will ascertain chemical hazards and assess repro-
ductive health risks. The need for reactive chemicals with the capacity to covalently
interact with biological systems should be appraised, and demarcated as mutagens
and/or carcinogens. This will rate them as potential actuators of aneuploidy, chro-
mosomal anomalies, usually distress the motility of sperm and affect hormonal
actions.

The male reproductive system can be impacted negatively by a straight attack of
arsenic on the testis. Eventually, that will modify the sperm making process, by
diminishing the auxiliary secretion of the sex gland, and neuroendocrine system,
which causes the disparity in hormone (Chandra et al. 2012). Adverse effects of
arsenic on the fertility of men comprise the transformed sperm, which modifies the
spermatogenetic pathway, causes loss of gestation, and heritable disease in off-
spring. Shared endpoints for evaluating the male procreative task embrace the size
of the testis, quality of semen, secretory role of the prostate and seminal vesicles,
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procreative endocrine task, the ineffectiveness of sperm, and sterility (Nordberga
et al. 2005). Existing proof implicated the environment as culpable reasons why
there is a fall in sperm quality.

Additionally, contact with pesticides containing arsenide has been linked to the
modifications in the spermatogenetic pathway. When measuring the arsenic effect on
the reproductive health of men, it is important to create a space for possible
influences of exposure to some other contaminants. Their combination usually acts
via accumulation, potentiation, synergistic, or antagonizing. Some toxic metals like
lead, copper, and cadmium are predominant in the soil and amass in the soil and
edible crops over a lifetime (Okpashi et al. 2019). The indicators for lead and
cadmium toxicity usually correlate with the toxicity of arsenic (Lin et al. 2010).

Recent evidence point out that male reproductive capability has depreciated. The
advent of industrialization has caused many couples to search for in vitro insemina-
tion (IVI) due to deprived semen quality (Nordberga et al. 2005). Data collated over
the last three decades have revealed alarming drifts in male reproductive health.
Erstwhile reports discovered that men birth later than 1970 years had about 25%
sperm count lower than men birth earlier than the year 1959, an average of 2.1%
decline (Brown and Caseldine 1999). The lowness of sperm count was linked to
deprived semen quality (Waissmann 2002). The wide variance in the mean semen
level between countries, and diverse localities within a country, has been detected.
The men have comparatively minute fertility chances, likened to other animals. For
instance, the quantity of sperm for each ejaculation by a human is about twofold–
fivefold greater than the quantity of semen from an abridged fertility, while the
quantity of sperm from mouse, rabbit, and bull for each ejaculation is several times
(up and about 1400-fold) greater than the quantity that yields fertility. Male-humans
require a noticeably reduced size of the testis and a low rate of sperm making daily
for each gram of testis, by a factor greater than 3, compared to mouse, rat, or
monkey. The ratios of motile spermatozoa to healthy spermatozoa in men’s semen
are lesser relative to other mammals.

The human male may be susceptible to arsenic toxicity than rat for the reason of
shoddier efficiency of the antioxidant, resistance to the coordination and superior
susceptibility to oxidative injury, spermatozoa DNA and attack by sulfhydryl (–SH)
moiety, which is needed to repair sperm maturation and motility. Since the variances
between arsenic effect in procreative endpoints and the pathway of arsenic toxicity
can be monitored, the duration of contact to arsenic and data from experimental
animals may be beneficial for approximating permissible human contact limit.
Granting that studies on animal models have shown the adverse outcome of arsenic
on the reproductive pathway, increase amounts of various metals may be suitable to
elicit shielding effects against other heavy metals (lead, copper-zinc, selenium, and
magnesium). The dosages of the metals were not sedate and very few types of
research have appraised the special effects of long-term vocal administration or
induction of arsenic to an animal. For most metals other than arsenic, data pertinent
to individuals are short and incomplete by insufficient regulation and modifications
that will affect confusing variables (Nordberga et al. 2005). The male reproductive
tract that is attacked by an endocrine disruptor can upset some marked cells or
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receptors such as testes that are paired for the making of sperm and androgens. There
are regulations at the para- and autocrine compartments of the testes under influences
of pituitary and hypothalamus. According to a report by Zubair et al. (2016),
oxidative stress (OS) occasioned by reactive oxygen species (ROS) is a possible
negative outcome of contact to arsenic. Thus, a high level of arsenic can subdue
gonadotroph sensitivity to GnRH and gonadotropin secretion by raising the plasma
level of glucocorticoids. These can eventually widen the toxicity of the gonad in men
thereby causing a shortfall in sperm quantity, sperm capability, and motility. A
substantial relapse of germ cells and modifications of luteinizing hormone,
follicle-stimulating hormone, and testosterone are feasible. ROS-hydrogen peroxide
(H2O2), superoxide anion, singlet oxygen, and hydroxyl radical can impair cellular
DNA and protein. Hydroxyl radical is considered a dire species that rightly attack
DNA. In order for hydroxyl radicals to cause arsenic carcinogenesis, iron which is a
free transition metal is necessary for the Haber–Weiss sequences to cause DNA
mutilation. Comparing the different compounds of arsenic, iron releasers from
ferritin methylated arsenic were extra energetic than arsenate or arsenide. The
trivalent arsenic was extra active compared to pentavalent arsenic while the DMA
(III) was a more active iron releaser from ferritin (Ahmad et al. 2000 cited in Flora
et al. 2007). A collective exposure of in vitro ascorbic acid and DMA (III) gives rise
to a great synergistic rise in iron released from ferritin and a significant synergistic
rise in DNA impairment (Ahmad et al. 2000). The induction of rats with arsenite
causes the liver cell and kidney cells heme-oxygenase isoform 1 (Kitchin et al.
1999).

The induction of heme-oxygenase initiate the making of CO, biliverdin, and iron.
Also, 8-Hydroxy-20-deoxyguanosine (8-OhdG) is among the main ROS that causes
DNA impairment. It is used as an indicator of OS to DNA (Yamanaka et al. 2001). In
enduring carcinogenesis research, liver cells 8-OhdG levels amplified in DMA cured
patients signify that DMA raises the percentage of a free radical bout on DNA
(Wanibuchi et al. 1997). Barchowsky et al. (1999) verified the making of free
radicals in mice, after severe contact to synthetic arsenic. In human lymphocytes
that were cultured and exposed to arsenite, a rise in sister chromatid give-and-take
regularity was alienated via the inclusion of superoxide dismutase and catalase
(Nordenson and Beckman 1991). Initiation of micronuclei in 20 ml of arsenide
(CHO-K1 cells) was alienated by nitric oxide synthase inhibitors—superoxide
dismutase and uric acid (Gurr et al. 1998). This outcome proposes that specific
clastogenic effect of arsenic is facilitated by free radicals—peroxynitrite, superoxide,
H2O2, and free iron. Toxicity of trivalent arsenic is done by attacking—SH groups,
and by generating ROS (Chen et al. 1998). The toxicity of synthetic arsenic (iAsv)
gives the impression that it is facilitated by its tendency to replace phosphate moiety,
by upsetting the enzymes that rely on the moiety, by interfering with the ATP and
DNA synthesis. However, the mechanism for making reactive intermediate is not
entirely implicit, even though Yamanaka et al. (2001) wished-for the realization of
intercessory arsenic types.

Further likelihoods for arsenic to generate ROS are based on the oxidation
of iAsIII to iAsV in functional circumstance, which will yield H2O2:
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H3AsO3 + 2H2O + O2 H3AsO4 + H2O2. Hydroxyl radicals are the originators of
lipid peroxidation (LPO), where iron-catalyzed Fenton in membranes (Halliwell and
Gutteridge 1986). Erythrocytes are at risk of oxidative injury due to haem-iron,
polyunsaturated fatty acid (PUFA), and oxygen, that kick start the reactions that
cause oxidative injuries in red blood cells. The antioxidants enzyme in the erythro-
cyte often neutralizes OS. For illustration purposes, superoxide dismutase (SOD)
catalyzes the conversion of superoxide radical (O2-) to H2O2 while catalase (CAT)
and glutathione peroxidase (GSH-Px) convert H2O2 to H2O. These antioxidant
enzymes help to lessen the lethal effects of ROS. The cell has several ways of
alleviating OS, repairing the damage, and weakening the incidence of oxidative
damage (OD) via enzyme and non-enzyme antioxidants activities. The enzyme and
non-enzyme antioxidants help to sift free radicals and ROS. A non-enzyme antioxi-
dant—vitamin E and vitamin C helps to overwhelm the OS (Lee and Ho 1994). The
oxidants impaired the macromolecules in the cells and function as secondary
messengers, which lead to changes in the expression of gene and improvement of
successive cells multiplication (Farber 1994).

1.2.3 Impairment of the Male Reproductive System by Arsenic

In men, arsenic can weaken the quality of semen. In research that evaluated the
semen based on its motility, capability, membrane veracity, and DNA, these
parameters were considered as key in men’s procreative role (Zubair et al. 2016).
In one experiment, 177 males adults age less than or equal to 50 years ingested about
50 ppb of arsenic in potable water. The report showed an increase in the risk of
erectile dysfunction due to reduced testosterone in circulation (Hsieh et al. 2008).
Previous reports directed that men exposure to arsenic can deregulate semen quality
and be of assistance to determine the urinary biomarkers. In another report, about
159 fresh semen were collected from the sterile men and 65 controls collected from
Chines were separated on the premise of Ureaplasma and urealyticum (Uu). An
increased level of arsenic was observed in patients with Uu syndrome bearing a high
level of spermatozoa quality more than patients without Uu syndrome (Wang et al.
2005). In the same report, it was observed that 75 semen samples that were collected
from sterile men and 75 semen samples collected from productive men within the
age 38 years were screened for the concentration of arsenic (Inhorn et al. 2008). The
arsenic level in the semen was lower in men that were sorted from infertile-
environment-occupation and compared with men found at fertile-environment and
infertile-environment. Oligospermia (low sperm count), azoospermia (absence of
spermatozoa from the seminal fluid), and asthenospermia (immotile spermatozoa in
the ejaculate) had lower arsenic in the semen than usual spermatozoa counts.
Oligoasthenospermia (a combination of Oligospermia and asthenospermia) had a
marginally greater arsenic level in the spermatozoa, though it was not suggestively
greater than the average spermatozoa counts (Inhorn et al. 2008). Environmental
exposure of 96 men aged 32 and 36 years to arsenic reduces the semen quality by
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lessening the sperm count. This was clearly linked to arsenic level in the blood and
semen (Xu et al. 2012).

The toxic outcome of arsenic ingestion on the reproductive structure of male adult
mice has been investigated. The mice were ingested with 40 mg/L of sodium
metaarsenite into potable water for 30, 45, and 60 days, respectively. Observation
revealed that the interruption of spermatogenesis and post-meiotic stages together
with the disruption of spermatocyte formation from spermatogonium of mouse
response depends on the dosage of ingested arsenic. See Fig. 1.1 for illustration on
how arsenic toxicity affects the steroidogenic pathway and consequently causes
infertility in exposed male adults. This occurs by reducing the diameter of seminif-
erous tubules, gametogenic—the inactive spermatocyte, pachytene, step 1 to 7 sper-
matid declines excluding spermatogonia (undifferentiated germ cells in male) and
atrophy in Leydig cells (Sanghamitra et al. 2008). A cross-sectional research in
Chinese by Weipan et al. (2012) reported that environmental exposure to arsenic
may reduce human semen quality. They further stated that an in vitro and in vivo
study recommended arsenic as an endocrine disruptor (compounds that mimic and
interfere with hormone). The exposure of male rats to As shows steroidogenic
impairment which leads to sterility. The different species of arsenic (As) can be
obtained through several metabolic pathways such as methylation, the major path-
way that creates synthetic (Asi) in men. It was reported that the pathway that
breakdowns Asi utilizes the following reaction mechanism: AsiV+2e– !Asi
III + CH3 + !MMAV (CH3) AsO (OH)2) + 2e– !MMA III + CH3 + !DMAV
(CH3) 2AsOOH) + 2e– !DMA III + CH3 + !TMAO (trimethylarsine oxide)
(Madhyastha et al. 2018). Still, these mechanisms of reaction do not completely
breakdown As, and their derivatives—Asi, MMA III, and MMAV, may remain in
the body to cause methylation of DNA (Argos et al. 2012; Kim and Kim 2015). To
establish the loci for As outcome on the men procreative organ, Kaviyarasi et al.
(2018) stated that specific proteins involved in spermatogenesis were deregulated
after treatment with arsenic. Calcium-binding protein and spermatid-specific protein
1 (CABS1) were vastly expressed in extended spermatids. It is particularly involved
in the readjustment of a composite structure which arises from haploid germ cells
during spermatogenesis (Tamba et al. 2009). Exposure of male mice to 1, 5, and
25 mg/L of sodium arsenite for 6 months raised CABS1 sideways with a deficiency
in reorganizing a compound structure that transpires in a haploid germ cell, and
hinders spermatogenesis in male rats (Huang et al. 2016). Exposure to sodium
arsenide and sodium arsenate at 0.01 mg/L and 10 mg/L/for 56 days in potable
water reduces the procreative properties of male rats. The administration of 10 mg/L
of the arsenide moiety caused a decreased sperm in production due to the overpro-
duction of H2O2 and damage to germ cells. It revealed that reduction of sperm count
in epididymis can decrease the percentage of sperm as well as the intact membrane.
A quantity of 10 mg/L of arsenate which was given to such a group of rats facilitated
the OS in the epididymis, which damages the sperm membrane with no effect on
fertility.

Arsenic (As) is considered a major environmental health hazard all over the
world. Prolonged ingestion is connected with amplified health risk like cancer,

10 V. E. Okpashi and A. F. Ebunta



Fi
g
.1

.1
In
du

ct
io
n
of

m
al
e
re
pr
od

uc
tiv

e
sy
st
em

w
ith

ar
se
ni
c.
T
hi
s
ex
pl
ai
n
ho

w
ar
se
ni
c
af
fe
ct
s
th
e
fu
nc
tio

n
of

en
do

cr
in
e—

G
nR

H
,C

R
H
,L

H
,a
nd

F
S
H
,d

er
eg
ul
at
e

te
st
os
te
ro
ne

sy
nt
he
si
s
(f
ro
m
ch
ol
es
te
ro
lt
o
te
st
os
te
ro
ne

by
re
du

ci
ng

th
e
le
ve
lo
fe
nz
ym

es
—

P
45

0S
C
C
,3
β-
H
S
D
,C

Y
P
17

,a
nd

17
β-
H
S
D
;m

et
ab
ol
ite

al
lo
pr
eg
na
no

lo
ne

an
d
te
st
os
te
ro
ne
)
an
d
co
rt
is
ol

pa
th
w
ay
s
(c
or
tis
ol

to
co
rt
ol
on

e
by

in
cr
ea
si
ng

11
β-
H
S
D

en
zy
m
e
an
d
co
rt
ic
os
te
ro
ne

w
hi
ch

in
hi
bi
ts
G
nR

H
,d

ec
re
as
ed

m
et
ab
ol
ite
s—

C
or
to
lo
ne
)i
n
L
ey
di
g
ce
lls
,d
ec
re
as
ed

te
st
os
te
ro
ne

sy
nt
he
si
s
de
fe
ct
s
th
e
pr
oc
es
s
of

st
er
oi
do

ge
ne
si
s
si
gn

al
in
g
pa
th
w
ay
s
in
S
er
to
li
ce
lls

(i
nh

ib
iti
on

of
sp
er
m
at
og

en
es
is
,

ge
rm

ce
ll
ap
op

to
si
s,
S
er
to
li
ce
ll
ap
op

to
si
s,
in
cr
ea
se
d
O
S
m
ed
ia
te
s
th
e
S
er
to
li
m
ar
ke
r
γ-
G
T
,d
ow

nr
eg
ul
at
io
n
of

D
dx

3y
ge
ne
),
ep
ig
en
et
ic
m
od

ifi
ca
tio

n
th
ro
ug

h
do

w
n

re
gu

la
tio

n
of

S
P
R
-5

up
on

H
3k

5
di
m
et
hy

la
tio

n.
R
ed

co
lo
ri
nd

ic
at
es

de
cr
ea
se
d
en
zy
m
es
/m

et
ab
ol
ite
s
af
te
ra
rs
en
ic
tr
ea
tm

en
t.
G
re
en

co
lo
ri
nd

ic
at
es

in
cr
ea
se
d
en
zy
m
es
/

m
et
ab
ol
ite
s
af
te
r
ar
se
ni
c
tr
ea
tm

en
t.
A
da
pt
ed

fr
om

K
av
iy
ar
as
i
et
al
.(
20

18
)

1 Predicting the Outcome of Arsenic Toxicity on Exposed Juvenile Male-Humans: A. . . 11



diabetes mellitus, and cardiovascular disease, submits that trace levels of about
5–10 ppb can exacerbate the health risks. Jack et al. (2004) agreed that a 0.05–1
íM (6–120 ppb) of arsenic can exert energetic outcome on the glucocorticoid
receptor (GR)-mediated gene activation in rat’s EDR3 hepatoma cells having
endogenous tyrosine aminotransferase (TAT) gene and reporter genes having TAT
glucocorticoid response elements. At a trace concentration of about 1–3 M As may
become inhibitory. Accordingly, on a small concentration, the As effects may
change after stimulation of a twofold to fourfold or greater than two-fold inhibition
of inactivity. The suppression outcome of GR on AP1- and NF-B-mediated gene
activation was not affected by As. The cellular level of hormone-activated GR is
dependent on the degree of stimulating and inhibiting the GR. Deletion mutation
indicates that the DNA binding domain (DBD) of GR is the area for As to elicit
effect and without using free sulfhydryls moiety. Point mutations located within the
DBD usually changed the GR responses to As binding significantly.

Arsenic trioxide (As2O3) has gain thoughtfulness for the reason that it can cause
an ample decrease in serious promyelocytic leukemia (APL) (Tzeon-Jye et al. 2008).
Despite the result of arsenic trioxide (As2O3), the U.S. Food and Drug Administra-
tion had ratified the application of As2O3 in the cure for degenerated acute
promyelocytic leukemia (APL). The beneficial prospective and antitumor action of
As2O3 has blowout to non-APL leukemia, myelodysplastic disorders, and various
myeloma, including solid growths and cancer cell lines, together with neuroblas-
toma, renal, prostate, colorectal, and hepatocellular tumors (Lin et al. 2006).
Antitumor activity arises through inducing cell apoptosis (Oketani et al. 2002;
Zhang and Wang 2006). Arsenic exerts its toxicity by producing ROS during
redox cycling and activation of metabolic routes that causes tissue injuries. The
sensitivity of cells to As2O3 is contrariwise correlated to their intracellular glutathi-
one level and the action of antioxidant enzymes (Nakagawa et al. 2002). Arsenite
fixes thiol (S-H) moiety in tissue proteins and abates the protein function. Despite the
in-depth studies, there is no clearer report on the results of As2O3 on the men
procreative structure.

The report on the venous injection of radioactive arsenate (As-V), or arsenide
(As-III) to mice and hamsters by Danielsson et al. (1984) submitted that arsenic
accumulates in the duct and lumen of epididymal. This proposes that there was
continuous ingestion of arsenic to the rat’s sperms in the lumen in vivo. Sarkar et al.
(2003) also informed about the inhibitory action of sodium arsenide on spermato-
genesis, gonadotrophin, and testosterone in rats. There are several possible
mechanisms meant for the antigonadal actions against toxic chemicals. They wield
an inhibitory action on the testis and affect the hypothalamic–pituitary axis by
triggering changes in plasma concentrations of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH). It has been established that by reducing plasma
LH, Leydig cells are greatly damaged thereby causing a decrease in testosterone
production. Testosterone is an essential hormone for normal spermatogenesis,
whereas FSH is needed for normal testicular role and spermatogenesis (Jana et al.
2006).
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1.2.4 How Arsenic Impact the Male Reproductive System

Arsenic could upset the men procreative system when a precise procreative organ is
targeted or when they act on the endocrine system. The former can be termed direct
target while the latter is called an indirect target. The distress could be prolonged
irreversibly especially when the Sertoli cells are interrupted at the time of developing
the fetus. The amount of Sertoli cells defines the number of spermatozoa that can be
manufactured by an adult-human since every Sertoli cell can be cared for in a limited
quantity of germ cells that will mature into sperm. Agreeing with Apostoli et al.
(2007), Sertoli cells multiply at the time of fetal, neonatal, and pre-pubertal devel-
opment, while each of these phases is liken to suffer from arsenic effect. The
interruption of spermatogenesis at any phase of differentiating cells in men can
shrink the total spermatozoa count, surge the irregular spermatozoa count, weaken
the strength of spermatozoa chromatin, or injure the DNA of spermatozoa
(Mangelsdorf et al. 2003). When arsenic accumulates in the epididymis, prostate,
vesicular seminalis, or seminal fluid might weaken the continuous sperm motility
(Hess 1998). Thus, arsenic can reason imbalance in several hormones through the
endocrine system, by unsettling androgen discharge in the Leydig cells or inhibit B
cells in the Sertoli cells (Jensen et al. 2006). There are mounting indications that OS
is connected with the pathogenesis of men sterility (Pizent et al. 2012). See Fig. 1.1
for illustration.

It has been established that spermatozoa from human are susceptible to OS. The
peroxidation of polyunsaturated fatty acids inside the plasma membrane is caused by
a disproportionate generation of ROS in the spermatozoa (Koppers et al. 2008).
Several arsenic combinations, including iron, copper, and lead, usually increase the
generation of ROS, deregulate glutathione and other antioxidant levels, improve
lipid peroxidation of the cell membrane, reason for apoptosis, and add to the
generation of OD on the DNA (Jones et al. 1979). Damage of the sperm membrane
decreases the motility of sperm and its affinity to oocyte while the mutilation of
spermatozoa DNA can damage the parental genomic of the embryo (Tremellen
2008) and raises the sterility chances, abortion, or serious teratogenicity of the
progeny (Aitken et al. 1993). Some teratogenicity of the men procreative parameter,
such as cryptorchidism (undescended testicle), hypospadias (a reproductive abnor-
mality in men where the urethral meatus opens from the ventral side of the phallus
and not on the tip of the penis), thus cancer of the prostate and testicular may arise
upon contact to endocrine-disrupting metals such as arsenic (Chedrese et al. 2006).
Suggestions are commonly restricted to animal data or to in vitro studies (Iavicoli
et al. 2009). The medical and epidemiological consequences are rare and conten-
tious, and usually challenging to infer due to numerous exposures to diverse causes
and latency of effects.
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1.2.5 How Arsenic Weakens Spermatogenesis in Male Rat Testis

Spermatogenesis is a cellular progression that takes place in seminiferous tubules
and generates mature sex cells within 74 days (Mangelsdorf et al. 2003); it begins at
puberty and often continues till death. It is a compound development that produces
mature spermatozoa that is crucial for reproduction in men. According to Qingyu
et al. (2016) who reported that five upward-regulating and five downward-regulating
proteins, and one decreased metabolite were observed in spermatogenesis as reactive
to the treatment of arsenic in rat testis. Glutathione peroxidase 4 (GPx4) is the
leading selenoenzyme in testis and is crucial for spermatogenesis (Schneider et al.
2009). Overexpression of glutathione peroxidase 4 in rat testis triggered a
spermatogenetic defect, together with haploid cell loss, seminiferous epithelium
disorganization, and apoptosis of spermatocyte (Puglisi et al. 2007). Similarly,
endocrine-disrupting chemicals (EDC) pose a harmful effect on spermatogenesis
by an abnormal heightening of GPX4 expression in rat testis (Baek et al. 2007).
Corticosteroid 11β-dehydrogenase isozyme 1 (11β–hydroxysteroid dehydrogenase,
HSD11B1) catalyzes the conversion of inactive cortisone to active cortisol, it is
situated completely in the Leydig cells. HSD11B1 was proposed to play a significant
function in sustaining steroidogenesis via making cortisol which is implicated in the
formation of testosterone (Sharp et al. 2007). A greater level of HSD11B1 activity
has been connected with lesser spermatozoa count and upper level of abnormal
spermatozoa (Nacharaju et al. 1997). Nuclear autoantigenic sperm protein
(NASP)—a histone chaperone binds to H1 linker histones is responsible for trans-
portation of arsenic into the nucleus of dividing cells. Testicular NASP (tNASP) is
intricate in cell advancement in spermatogenetic cells, possibly through the interface
with the Cdc2/cyclin B and Hsp70-2 complex (Alekseev et al. 2005).
Overexpression of tNASP during androgen receptor obstruction would possibly
inhibit spermatocyte meiosis (Stanton et al. 2012). Calcium-binding and
spermatid-specific protein 1 (CABS1) is a calcium-binding protein that precisely
showed the elongated spermatids. It is included in the compound structure and
reorganizations in the haploid germ cells during spermatogenesis (Kawashima
et al. 2009). Heat shock 70 kDa protein 4-like (HSPA4L) is an HSP110 heat
shock protein family is expressed all in the testis. It has been reported that the
ratio of matured sperm to sperm motility may reduce hugely in HSPA4L-deficient
male mouse occasioned by increased levels of apoptosis in the germ cells (Held et al.
2006). When the expression of GPX4, HSD11B1, NASP, and CABS1 is raised,
spermatogenesis will be decreased and low sperm quality would be inevitably
formed, this buttressed the fact that the number of spermatozoa and spermatozoa
motility can decline in arsenic ingested rats, see Fig. 1.2. Though, the upward-
regulation of HSPA4L may show opposition to arsenic-induced germ cell apoptosis.
Scaffold attachment factor B1 (SAFB1) bears a transcriptional repression domain
and can bind to some receptors and repress their activity. Male SAFB1 mouse can be
sterile due to apoptosis amplification germ cells, Leydig cell hyperplasia, and small
testosterone deregulation, which is caused by the decrease in circulating insulin-like
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growth factor 1 (IGF1) and loss of SAFB1-mediated repression of hormone
receptors (Ivanova et al. 2005).

Transcriptional intermediary factor 1 (TIF1) β (also called KAP-1 or TRIM28) is
a co-repressor that plays a role in spermatogenesis and initial embryonic develop-
ment. During spermatogenesis, TIF1β is biasing to heterochromatin structures of
Sertoli cells and round spermatids, meiotic chromosomes (Weber et al. 2002).
Herzog et al. (2011) observed that the lack of TIF1β may lead to a defect in
spermatogenesis occasioned by the poor release of spermatid and degenerating
testis. Retinols are necessary for the upkeep of spermatogenesis in testis, and
sustained shortage of retinol may give rise to spermatogenic arrest at the preleptotene
spermatocytes trailed with widespread loss of germinal epithelium in rats. Retinol is
conveyed into the seminiferous tubules by retinol-binding protein 1 (RBP1), found
in Sertoli cells (specific plasma transport protein). The roles of RBP1 include the
transfer of retinol to the developing germ cells (Rajan et al. 1990). DNAJ1 homolog
subfamily of A member 1 (DNAJA1) works with a co-chaperone of Hsp70s in
protein folding and mitochondrial protein import. It has been observed that the loss
of DNAJA1 in mice led to a failing of Sertoli cells in preserving spermatogenesis,
increasing androgenetic receptor (AR), and interruption of Sertoli-germ cell, which
shows a dire role of DNAJA1 in spermatogenesis via AR-mediated signaling in
Sertoli cells (Terada et al. 2005).

The protein family with a Y-box has been recognized to be among the utmost
preserved families of nucleic acid-binding protein. A notable reduction in protamine

Fig. 1.2 Representation of pathways affect by arsenic induces male reproductive toxicity in rat
testis. Molecules in red denote upward-regulation, while the green signify downward-regulation.
Adapted from Qingyu et al. (2016)
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2 transcription will occur when the PAF-RE and Y-box binding protein 3 (YBX3,
YB2) is erased, and proposes that YBX3 is required for the activation of protamine
2 transcription in post-meiotic germ cells (Kota et al. 2010). Allopregnanolone is a
metabolite of progesterone produced by the reaction of 5α-reductase and 3α-HSD
(Santoru et al. 2014). Since progesterone is the main intermediary in testosterone
biosynthetic, it is correct that arsenic ingestion declines allopregnanolone levels
since it facilitates the reduction of progesterone and impaired testosterone produc-
tion. This mechanism is connected to the decrease in testosterone and sperm quality.
Therefore, the weakening of SAFB1, TRIM28, RBP1, DNAJA1, YBX3, and
allopregnanolone could damage the irregular spermatogenetic process due to paucity
of germ cells and lesser testosterone level in arsenic-exposed male organisms.

1.2.6 How Arsenic Obstructs Insemination of Rat Sperm

In female mammals, insemination is the combination of a spermatozoon with an
ovum, which first forms a zygote and progresses to the embryo. Qingyu et al. (2016)
reported that 6 downward-regulated proteins and 1 improved metabolite are linked
with impregnation of mouse exposed to arsenic. Voltage-dependent anion channel
protein 3 (VDAC3) is an isoform of VDACs, inherent in the mitochondrial proteins
of eukaryotes (Craigen and Graham 2008). VDAC3 is contained in the acrosomal
region and midpiece. The blocking of VDAC3 decreases the acrosome action,
phosphorylation of tyrosine, and later impregnation, which signifies the crucial
function of VDAC3 in male fertility (Kwon et al. 2013). A cAMP-dependent protein
kinase catalytic subunit alpha (PRKACA) is a serine/threonine kinase activated by
cAMP, which progresses downstream with phosphorylation of tyrosine. The
restrictions of PRKACA have abolished the phosphorylation of tyrosine signaling
and eventually impede spermatozoa capacitation (McPartlin et al. 2011).

Glycerol-3-phosphate dehydrogenase 2 (GPD2) is among the proteins that enable
the phosphorylation of tyrosine during the capacitation of spermatozoa. The activity
of GPD2 relates with hyperactivation and acrosome reaction, which advanced the
function of GPD2 in spermatozoa capacitation. GPD2 activity is needed for the
making of ROS in mouse spermatozoa during capacitation. Thus, without the GPD2
activity, capacitation is impaired (Kota et al. 2010). Tyrosine phosphorylation of
proteins is the commonest mechanisms where numerous signal transduction
pathways are adjusted in spermatozoa. It regulates various aspects of sperm roles,
like motility, hyperactivation, capacitation, acrosome reaction, and insemination
(Katoh et al. 2014). Therefore, it is obvious that arsenic can induce the suppression
of VDAC3, PRKACA, and GPD2 and the abnormal rise of L-tyrosine could
interrupt the degree of protein tyrosine phosphorylation necessary for sperm capaci-
tation; caused failure in insemination and male sterility.

Sperm acrosome membrane-associated protein 1 (SPACA1) is found in the
equatorial fragment of spermatozoa and plays a role in the fusion of sperm-egg in
mammals. Interruption of SPACA1 will lead to unusual shaping of the semen head
(globozoospermia), which caused male mice sterility (Yoshitaka et al. 2012).
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Additionally, antibodies against recombinant SPACA1 can deregulate the sperm
affinity to the ovum; impede the binding and fusion of sperm to zona-free eggs (Haq
et al. 2012). Angiotensin-converting enzyme (ACE) is a permeating membrane
ectoprotein in mammal’s tissues, and germinal cells ACE (gACE, is also named
testicular ACE), is located entirely inside the germinal cells after meiosis in male. A
germinal ACE knockout in mice could cause a deficiency in semen binding to the
zona pellucida of the oocyte (Kwon et al. 2014). Li et al. (2014) revealed that the
lack of gACE expression is accountable for the failure in fertilization of semen
mitochondrial-associated cysteine-rich protein (SMCP), a component of keratinous
capsule that surrounds spermatozoa mitochondria and improves sperm motility. The
erasure of SMCP diminishes sperm motility, which prevents sperm from migrating
into the female reproductive tract and penetrates the egg membranes during concep-
tion (Nayernia et al. 2002). Given the decrease in the expressions of SPACA1, ACE,
and SMCP in testis of rat, it is suggested that arsenic affects impregnation by
impeding the binding (affinity) and fusion (adhesion) of spermatozoa to the ovum.

1.3 Mechanism of Arsenic Toxicity on the ERK/AKT/
NF-kB-Pathway: A Molecular Perspective

Mitogenic-activation protein kinases (MAPKs) are major controlling proteins in cell
signaling and partake in various roles activated by the reaction of many exterior
stimuli. Earlier investigations have exposed that the male procreative roles, compris-
ing spermatozoa, and Sertoli cell tasks are moderated by MAPK signaling pathways
(e.g., extracellular signal-regulated kinases, ERKs) (Li et al. 2009). Wang et al.
(2012); Xia et al. (2012) stated that the activation of the ERK1/2 (MAPK3/1)
signaling pathway will damage the roles played by Sertoli cells and proliferate the
apoptosis of germ cell in mouse testes. Protein kinase B (AKTB) is a central
controller of cell development and growth, persistence, spread, inflammatory, and
immune reaction in reaction to OS. Exposure to PM 2.5 of OS by
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway reduced procreative
organ of male mouse (Cao et al. 2015). MAPK and AKT pathways perform rightly
by phosphorylating the nuclear factor kappa B (NF-κ B) subunits and upset the
ability of NF-κ B to bind to DNA and rise the transactivation of NF-κ B-dependent
genes (Rui et al. 2016). NF-κ B deals with spermatogenesis by controlling cellular
apoptosis and function of Sertoli cell in the testis, and the activation of NF-κ B
encompassing defective sperm in mice and humans (Chen et al. 2012; Yu et al.
2015). Besides contact with arsenic, investigation has showed that arsenic triggers
the ERK, PI3K/AKT, and NF-κ B signaling pathways in diverse cells (Huang et al.
2015; Tsai et al. 2016). The differential proteins and metabolites allied to male
reproduction are included in ERK/AKT/NF-κ B pathway (Fig. 1.3). The upward-
regulation of ERK1/2, PI3K, AKT, IKKγ, and NFKB expression improved the
phosphorylation level of ERK/AKT in rat testis. The implication of arsenic in the
men procreative noxiousness by the activation of the ERK/AKT/NF-κ B pathway is
well established.
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Summarily, considering the collective proteomic and metabolomic investigation,
research has shown that exposure to arsenic affects the expression of proteomic and
reproductive pathways in rat testis. A sequence of different proteins and metabolites
related to the male sex parameters has been recognized. Therefore, the deregulation
of about 17 proteins and 3 metabolites by challenging the cells with arsenic would
damage sperm and hinder insemination processes by activating ERK/AKT/NF-κ
B-dependent pathway.

Fig. 1.3 Analyses of the different proteins and metabolites involved in arsenic toxicity. A network
that describes molecules involved in the development and function of reproductive system, organ
morphology, as well as organismal injury and abnormalities. Molecules are in nodes. Nodes in red
represent upward-regulated molecules, while nodes in green symbolize downward regulated.
Molecules exemplified with white nodes are noticed observed. Solid lines indicate direct
interactions or regulation, while dashed lines indicate indirect effects mediated by additional
molecules. Source: Qingyu et al. (2016)
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1.4 Conclusion

Arsenide (As-3) is a type of synthetic arsenic, exposures to As-3 occurs through
arsine gas which causes diverse toxicological sketch created by the binding of
arsenic to hemoglobin and red blood cell lysis. Arsenate, arsenide, and alkylated
arsenic are used for commercial purposes. Synthetic arsenic is predominant in
environmental media. Organic arsenic—methyl (cacodylate), dimethyl, and
trimethyl accumulate in mammals tissues. Arsenobetaine can be found in fish and
seafood, while arsenocholine, arsenosugars, and arsenolipids are in plants. A mix-
ture of gene, environment, and social lifestyle are contributing factors that unfriendly
affects arsenic-exposed men. Investigations had submitted that different compounds
of arsenic exert adverse effects on the male reproductive function. Conversely,
evidence about the reproductive effects of human exposure to arsenic is scarce
and/or inconsistent. This text abridges the information from numerous clinical and
scientific studies on the consequential exposure of men to reproductive function.
Intervention is given to studies that consider the effects of different arsenic
compounds. For instance, information on the dose-dependent effect at modest- to
low-level contact to arsenic on the prostate gland and serum level of testosterone is
reviewed. The adverse effects of arsenic on the quality of semen and the change in
serum hormones were elucidated. Just a few investigations have examined the
procreative effects of simultaneous contact with some metals that work in synergy
with arsenic and are controlled for prospective complement. Future studies should
consider the contribution of combined exposure to various metals and other factors
that may influence individual vulnerability to reproductive health impairment
in men.
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Arsenic and Oxidative Stress: An Overview 2
Felor Zargari

Abstract

There are many people in the world that they are exposed to arsenic and in risk of
related diseases such as diabetes, arteriosclerosis, neuropathy, infertility, and
many types of cancer. Arsenic (As) is the most important toxic metalloid in the
earth. Some causes of arsenic toxicity and the development of these disorders
include: oxidative stress (OS), increased ROS (reactive oxygen species) produc-
tion, alteration of some signaling pathway and gene expression, damages to
structure and function of some proteins, especially SH-proteins, impairment of
mitochondria, alteration of antioxidant defense system, changes in the secretion
of some hormones such as FSH, LH, and testosterone (dysfunction of men and
women reproductive system), disturbance in the structure of cellular components
such as lipids, proteins, carbohydrates, and DNA. This section focused on the
association of As with some diseases, e.g. diabetes, atherosclerosis, male and
female infertility, and neurodegenerative disorders and sources of ROS produc-
tion in these disease.
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2.1 Generation of ROS in Oxidative Stress

Oxidative stress (OS) damages cell by disturbance of the balance between produc-
tion of highly reactive molecules such as �OH, O2

�� (reactive oxygen species) and
�NO or nitric oxide (reactive nitrogen species) and antioxidant defense system
(Nordberg and Arnér 2001; Reuter et al. 2010; Valko et al. 2006; Ďuračková
2010). Free radicals are energetic molecules that have unpaired electrons in atomic
orbits. The most important radicals in living system are ROS (Miller et al. 1990;
Halliwell and Gutteridge 1999). ROS have a major role in stimulation of cell
signaling pathway. However, overgeneration of ROS is deleterious (Thannickal
and Fanburg 2000).

The overproduction of RNS (nitrosative stress) and ROS induces oxidative
damage and damage to components of the cell such as DNA, lipid, protein, cell
structure, and cell membranes (Valko et al. 2006; Noori 2012). ROS interact at the
site of formation or far from their production site) Kohen and Nyska 2002). The toxic
effects of arsenic are attributed to the generation of ROS and OS and the change of
antioxidant enzymes activity (Heidari Shayesteh and Ranjbar 2013; Zargari et al.
2014). One of the mechanisms of arsenic toxicity is oxidative stress (Ercal et al.
2001).

The sources of ROS and RNS are exogenous and endogenous [enzymatic (pro-
duced under the physiological conditions, such as monoamine oxidase, NADPH
oxidase, xanthine oxidase, cyclooxygenase, myeloperoxidase) and non-enzymatic
(produced by Fenton’s and Haber’s reaction, such as H2O2,

�OH, HOCL, ONOO)]
(Noori 2012).

2.2 Arsenic and Oxidative Stress

Arsenic is the 33rd element of the periodic table and toxic metalloid in the form of
inorganic (iAs) or organic compounds in the environment (Jomova et al. 2011). The
most important forms in water are arsenite (As III: the most toxic and carcinogen
form, reacting with enzymes and transcription factors) and arsenate (As 5+). Arsenic
levels of drinking water in some countries such as Mexico) García-Vargas et al.
1991), Tiwan (Yen et al. 2007), and Indo-Bangladesh are more than the amount
recommended by WHO (10 μg/l) (Kinniburgh and Smedley 2001). Arsenic changes
mitochondrial integrity and its membrane potential. Mitochondria is the most impor-
tant organelle for the generation of ROS (by complex I and complex II of the electron
transport chain). Arsenic acts directly or by the production and accumulation of ROS
on the matrix of mitochondria (Pulido and Parrish 2003). The formation of superox-
ide anion radical and the decrease in cellular oxidant defense result in production of
peroxyl radicals (ROO�), anionic form of O2 (O2

��), singlet oxygen or dioxygen
(1O2), hydroxyl radical (�OH), dihydrogen dioxide (H2O2), and dimethylarsine
radical [(CH3)2As

�] (Flora et al. 2007). H2O2 is produced by the oxidation of arsenite
to arsenate (H3AsO3 + 2H2O + O2 ! H3AsO4 + H2O2) (Valko et al. 2005). H2O2

with iron generates highly reactive hydroxyl radical (Fenton reaction) with
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mutagenic effect (Hei et al. 1998). In addition, arsenic generates RNS during
metabolism (Shi et al. 2004) (Fig. 2.1).

2.3 Arsenic Detoxification Mechanisms (Methylation
of Arsenic)

The biotransformation of As or its detoxification and production of metabolites
induces oxidative stress (Flora 2011). Arsenic detoxification mechanisms are as
follows:

– Conversion of As+5 to As+3 by PNPase (purine nucleoside phosphorylase) in
plasma (Radabaugh et al. 2002) [Tripeptide glutathione (GSH) and other thiol
compounds are required for this conversion] (Scott et al. 1993; Flora et al. 2007).

– The methylation of As+3 via As+3 methyltransferase (As3MT) (Hayakawa et al.
2005; Lin et al. 2002) in liver (Marafante et al. 1985) and the production of
arsenic acid monomethyl (MMAA), and finally arsenic acid dimethyl (DMAA)
[s_ adenosyl_methionine (SAM) is involved in arsenic methylation) (Rossman
2003; Németi and Gregus 2002). Like other toxic metals, it is converted to the
less toxic form by methylation and other reductant factors, such as TR
(thioredoxin reductase), TRX (thioredoxin), dihydrolipoic acid] (Waters et al.
2004). Arsenic can conjugate with GSH and produce arsenite trigluthatione and
then MMA (SG)2(monomethylarsenic diglutathione and DMA
(SG) (dimethylarsinic glutathione) (Kenyon et al. 2008).

– The reduction of methylation capacity increases the toxic effects of arsenic, e.g.,
hypo methylation of DNA leads to impaired gene expression, such as oncogenes
or tumor—the suppressor genes (Roy and Saha 2002). In vitro studies indicated
that MMAA inhibits glutathione reductase. MMAA is very toxic to human liver
cells. The degree of cytotoxicity is: MMAA+3 > arsenite > arse-
nate > MMAA+5 ¼ DMAA+5 (Petrick et al. 2000).

2.4 Arsenic and Signaling Pathways

Arsenic altered some signaling pathways, such as:

– Tyrosine phosphorylation pathway including receptor tyrosine kinase (RTKs),
such as growth factor receptors and nonreceptor tyrosine kinase (NTKs), such as
Src family (Blume-Jensen and Hunter 2001). Arsenic induces the phosphoryla-
tion of epidermal growth factor receptor (EGFR) in the cell. It interacts with the
SH-group of EGFR (Wu et al. 1999)

– The mitogen-activated protein (MAP) kinase (Kumagai and Sumi 2007)
– Alteration of the major transcription factors, such as NF-Kappa B and activated

protein-1 (AP-1) (stress-induced transcription factors), regulating
proinflammatory genes in defense of cell (Chen and Shi 2002)

2 Arsenic and Oxidative Stress: An Overview 29



Ar
se

ni
c-

in
du

ce
d 

 o
xi

da
tiv

e 
st

re
ss

Ch
an

ge
  o

f  
m

ito
ch

on
dr

ia
l

in
te

gr
ity

Ar
se

ni
c 

 
bi

ot
ra

ns
fo

rm
at

io
n(

 
bi

oa
ct

iv
at

io
n 

an
d 

de
to

xi
fic

at
io

n)

Pr
od

uc
tio

n 
 o

f  
su

pe
ro

xi
de

  a
ni

on
D

am
ag

e 
 in

  c
el

lu
la

r  
ox

id
an

t  
de

fe
nc

e

-F
or

m
at

io
n 

 o
f R

N
S(

N
O

· )
-F

or
m

at
io

n 
 o

f  
RO

S:
- P

er
ox

yl
 ra

di
ca

l(R
O

O
· )

-S
up

er
ox

id
 a

ni
on

  r
ad

ic
al

(O
2·- )

-S
in

gl
et

  o
xy

ge
n(

1 O
2)

-H
yd

ro
xy

l  
ra

di
ca

l (
O

H
· )

2
fe

nt
on

 re
ac

tio
n)

-D
im

et
hy

la
rs

en
in

  r
ad

ic
al

s 
[(

CH
3)

2A
s]

-D
ep

le
tio

n 
of

 G
SH

(f
or

m
at

io
n 

 o
f  

gl
ut

ha
tio

n 
di

m
et

hy
l a

rs
in

ite
  c

om
pl

ex
)

-C
om

bi
na

tio
n 

 w
ith

  S
H

-g
ro

up
s 

 o
f  

pr
ot

ei
ns

  a
nd

  i
m

pa
ire

d 
 S

H
-p

ro
te

in
s

an
d 

in
hi

bi
tio

n 
 o

f s
om

e 
 c

el
lu

la
r  

en
zy

m
es

  
in

vo
lv

ed
  i

n 
 g

lu
co

ne
og

en
es

is
, f

at
ty

 a
ci

da
  

ox
id

at
io

n(
 s

uc
h 

 a
s 

  A
LA

-s
yn

th
et

as
e 

,  
py

ro
va

te
  e

hy
dr

og
en

as
e…

)

D
ec

re
as

ed
  t

he
  a

nt
io

xi
da

nt
  

en
ym

es
  (

 C
AT

,S
O

D
,G

PX
)

Ce
ll 

 in
ju

ry

-A
ne

m
ia

,D
ia

be
te

s,
Ca

rd
io

va
sc

ul
ar

 
di

se
as

e,
ca

nc
er

(e
sp

ec
ia

lly
  l

un
g,

sk
in

,  
ur

in
ar

y 
 

bl
ad

de
r ,

liv
er

,p
ro

st
at

e)
,  

N
er

od
eg

en
er

at
iv

e(
Al

zh
ei

m
er

,..
)

Im
pa

ir
ed

  p
hy

si
ol

og
ic

al
  f

un
ct

io
n 

  s
uc

h 
 a

s 
:

-
Al

te
ra

tio
n 

ge
ne

 e
xp

re
ss

io
n

-
Im

pa
ir

ed
  s

ig
na

l  
tr

an
sd

uc
tio

n 
ca

sc
ad

e
-

Al
te

ra
tio

c 
tr

an
sc

rip
tio

n 
fa

ct
or

s 
 re

gu
la

tio
n

-
Ap

op
to

si
s

D
am

ag
e 

 to
  D

N
A:

al
te

ra
tio

n 
of

 D
N

A 
 b

as
es

, 
al

te
ra

tio
n 

 o
f  

D
N

A 
 re

pa
ir,

 tr
an

sc
rip

tio
n 

fa
ct

or
s,

cr
os

s-
lin

ka
ge

  w
ith

  
pr

ot
ei

n,
al

te
ra

tio
n 

 o
f D

N
A 

pr
om

ot
or

   
m

et
hy

la
tio

n,

D
am

ag
e 

 to
 c

ar
bo

hy
dr

at
e:

pr
od

uc
tio

n 
 o

f k
et

oa
m

in
es

  
,A

G
Es

,k
et

oa
ld

eh
yd

es

D
am

ag
e 

 to
  p

ro
te

in
e:

 
pr

od
uc

tio
n 

of
 

AG
Es

,c
ar

bo
ny

ls
,a

lte
ra

tio
n

of
 

pr
ot

ei
n 

 s
tr

uc
tu

re
  a

nd
 fu

nc
tio

n 

D
am

ge
  t

o 
 li

pi
ds

:
(li

pi
d 

 p
er

ox
id

at
io

n 
)  

pr
od

uc
tio

n 
 o

f  
M

D
A,

 H
N

E-
In

cr
ea

se
 o

f  
 A

LT
,A

ST
,

-L
iv

er
 d

is
fu

nc
tio

n
-

D
ec

re
as

e 
of

  G
SH

-I
nh

ib
iti

on
  o

f  
G

ST
-

In
cr

ea
se

 o
f l

ip
id

  p
er

ox
id

at
io

n
-

Ap
op

to
si

s

liv
er

-H
yd

ro
ge

n 
 p

er
ox

id
e 

(H
O

2
: p

ro
du

ce
r 

 o
f O

H
·

in
  

Fi
g
.2

.1
M
ec
ha
ni
sm

of
ar
se
ni
c-
in
du

ce
d
ox

id
at
iv
e
st
re
ss

30 F. Zargari



– The activation of p53 and the induction of apoptosis (Filippova and Duerksen-
Hughes 2003). Arsenic-induced apoptosis, due to the increase in cytochrome c,
imbalance of Ca++, increased Bax expression, and the downregulation of Bcl-2
(Das et al. 2009)

2.5 Arsenic and Antioxidant Enzymes Activity

The activity of antioxidant enzymes (SOD, CAT, GPx, GST, GR) increases with
short term and low levels of arsenic exposure. The chronic exposure of arsenic
decreases their activity (Shi et al. 2004; Zargari et al. 2015).

2.6 The Effect of Arsenic-Induced Oxidative Stress on Proteins

Some ROS such as �OH and O2
�� damage proteins (Stadtman 2004; Samuel et al.

2005; Valko et al. 2006; Kaneto et al. 2005). Arsenic has different effects on proteins
that some of them are as follows:

– The production of aldehydes, keto compounds, and carbonyls [3_ nitrotyrosine as
protein oxidative marker] (Kaur et al. 2011; Stadtman and Oliver 1991; Blokhina
et al. 2003)

– Damage to the specific amino acid residues [in particular oxidation of cysteine
and methionine residue, which may cause the formation of disulfides between
(-SH) group of proteins or the formation of glutamyl semialdehyde and impaired
SH-proteins] (Dalle-Donne et al. 2003)

– A change in protein structure, degradation, unfolding, fragmentation, inactivation
of enzymes (Kaneto et al. 2005; Kelly and Mudway 2003; Dean et al. 1985)

– Altered cellular function (e.g., changing the energy production, due to the
inhibition of pyruvate dehydrogenase by especially MMAIII) (Reichl et al.
1988; Hughes 2002)

– The change in the type and level of cellular proteins (the reduction of antioxidant
enzymes) (Flora 1999)

– Production of AGEs or advanced glycated proteins. They are produced by the
reaction between carbohydrates and the free amino group of proteins,
e.g. pentosidine and carboxymethyl lysine (CML) as the most important of
AGEs (Dalle-Donne et al. 2005)

– Increased proteolysis due to production of reactive carbonyl groups (RCGs)
(Mahata et al. 2007; Kelly and Mudway 2003)

2 Arsenic and Oxidative Stress: An Overview 31



2.7 Arsenic-Induced Oxidative Stress and DNA

DNA is sensitive to the free radicals, due to the unsaturated bounds in purine and
pyrimidine rings. Arsenic damages DNA by ROS production and alteration of the
enzymes that are needed to repair DNA (Bartsch and Nair 2004; De Vizcaya-Ruiz
et al. 2009). The important damages of arsenic on DNA are as follows:

– The alteration of DNA bases: 8-hydroxydeoxyguanosine: 8-OHdG as the marker
of oxidative damage to DNA or 8-oxoadenine [detected in urine of animal
exposed arsenic] thymine glycols, 5-hydreoxymethyl-uracyl are produced in
oxidation of DNA (Bartsch and Nair 2004; De Vizcaya-Ruiz et al. 2009; Cooke
et al. 2003). Binding of altered bases to transcription factors alters the expression
of some dependent genes (Ghosh and Mitchell 1999)

– DNA strand break (single and double) (Ying et al. 2009; Mourón et al. 2006;
Dong and Luo 1993)

– The loss of purines (the formation of apurinic sites) (Yamanaka et al. 1995)
– The cross-linkage of DNA–protein (Huang et al. 2004)
– Altered gene expression as a result of damage to the transcription factors (Huang

et al. 2004; Lantz and Hays 2006; Díaz-Villaseñor et al. 2007). However, based
on an in vitro study, As does not effect on the transcriptional regulator of DNA
(Lantz and Hays 2006)

2.8 The Effect of Arsenic-Induced Oxidative Stress on Lipid

Many clinical studies indicated that arsenic causes lipid peroxidation (Wirtitsch et al.
2009; De Vizcaya-Ruiz et al. 2009). Some important damages of arsenic on lipids
include:

– Production of cyclic endoperoxide, isoprotans, and hydrocarbons
– Peroxidation of cell membrane lipids. The high concentration of unsaturated fatty

acids in the cell membrane leads to oxidative damage and inactivation of
membrane-bound receptors.

– The formation of fatty acid radical (ROO�).
– The formation of lipid hydroperoxide, leading to a chain reaction and the oxida-

tion of fatty acids in the membrane of the cells (Halliwell and Gutteridge 2015)
– Peroxidation of membrane lipids and generation of two important markers of

lipid peroxidation called malondialdehyde (MDA) and 4-hydroxy-2-nonenal
(HNE) (Wirtitsch et al. 2009)
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2.9 The Effect of Arsenic-Induced Oxidative Stress
on Carbohydrates

– Producing ketoamines and ketoaldehydes and changing carbohydrate metabolism
(the inhibition of pyruvate dehydrogenase complex, hyperglycemia, and glucose
intolerance) (Ghafghazi et al. 1980)

– Producing AGEs.

2.10 Arsenic-Induced Oxidative Stress and Some Disorders

Some disorders linked to arsenic-induced oxidative stress are diabetes, cardiovascu-
lar disease, neurodegenerative disease, and infertility, which are discussed in the
following.

2.10.1 Oxidative Stress and Diabetes

Some studies have demonstrated the relationship between the oxidative stress,
diabetes and its complications, as micro- and macro-vascular dysfunction such as
retinopathy, neuropathy, stroke, heart disease, and atherosclerosis (Phillips et al.
2004; Asfandiyarova et al. 2006). Diabetes mellitus (DM) refers to the metabolic
disorder, which is characterized by the elevated levels of blood glucose caused by
the lack or insufficient insulin secretion or defects in insulin action (Maritim et al.
2003). Insulin is a hormone secreted by β-cells of pancreatic islets, which has an
important role in glucose, lipids, and proteins metabolism. Some mechanisms of
oxidative stress-induced diabetes are as follows:

– The auto-oxidation of glucose and hyperglycemia increases the OS (Rains and
Jain 2011; Maritim et al. 2003) [NADPH oxidase, an important producer of ROS
in various cells, has a major role in hyperglycemia-induced oxidative stress] (Jain
1989; Wolff and Dean 1987; Jiang et al. 1990). Reactive compounds such as
ketoaldehydes, superoxide anion radicals, peroxynitrite, and toxic hydroxyl
radicals are produced in the presence of oxidized glucose, transition metals, and
nitric oxide (Hogg et al. 1993; Halliwell and Gutteridge 1990)

– A change in the redox balance status [reduced glutathione (GSH), vit E, impaired
antioxidant defense]. Glutathione is a tripeptide consisting of three amino acids
cysteine, glycine, glutamate and has an important role in antioxidant defense,
transferation of amino acids, redox balances, scavenging of free radicals, and
enzymatic reaction (Tsai et al. 2012; Gregus et al. 1996). Some studies showed
that the level of GSH reduces in diabetes. The decreased GSH results in β-cells
dysfunction and other complications in diabetes, such as hyperlipidemia, inflam-
mation, and DNA damage. Keeping the GSH redox state may be useful for
diabetic patients (Dinçer et al. 2002; Das et al. 2012; Livingstone and Davis
2007; Tan et al. 2012).
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– The damage to β-cells and the reduction of insulin secretion as a result of the low
levels of antioxidant enzymes (Ceriello and Motz 2004; Lipinski 2001) and the
production of mitochondrial superoxide activating UCP-2 [uncoupling protein-2,
a mitochondrial inner membrane protein], reduction of ATP/ADP and increase of
the superoxide formation (Brownlee 2003).

– The increased protein cyclin-dependent kinase inhibitor 1 and decreased insulin
mRNA (Maechler et al. 1999).

– The disturbances of lipid profile, such as the production of ox LDL, and lipid
oxidation (the formation of highly reactive compounds such as MDA and HNE).
A change in the cellular structure and its function, especially alteration of
membrane-bound receptors and membrane proteins with thiol groups. Ox LDL
is associated with the risk for atherosclerosis (Tsai et al. 1994; Kawamura et al.
1994; Rabini et al. 1994; Guo et al. 2012; Cai and Harrison 2000; Goldstein et al.
1979).

– The disturbance of insulin signaling cascade that leads to the insulin resistance
(Rains and Jain 2011; Ogihara et al. 2004).

– The increased stress signaling pathway, such as NF-kappaB and apoptosis of B
cells by glycated proteins, reduction of insulin expression due to alteration of
JNK pathway (Rhodes 2005; Kaneto et al. 2005; Mohamed et al. 1999).

– The damage to the proteins [the production of modified, nonfunctional, dena-
tured, and glycated proteins (AGEs) such as glycated hemoglobin, glycation of
lens proteins, and cataract formation (Ramalho et al. 1996; Yano et al. 1989). The
protein oxidation is in side chain of cysteine, methionine, and tyrosine. The
products of protein oxidation in oxidative stress are carbonyls [the marker of
protein oxidation], advanced oxidation protein products [AOPPs], known as
proinflammatory and prooxidant compounds (Suzuki and Miyata 1999; Pandey
and Rizvi 2010; Witko-Sarsat et al. 1996).

– The damage to the mitochondria function, which increases the free radicals
production, due to impaired electron transfer chain (Turrens et al. 1985; Liu
et al. 2002).

– Alteration of antioxidant enzymes activity such as CAT, SOD, GPx (Goth and
Eaton 2000; Giugliano et al. 1995; Shukla et al. 2012; Maritim et al. 2003). CAT
is present in all living organisms and regulator of hydrogen peroxide metabolism.
Catalase plays a major role in oxidative stress. The deficiency of CAT leads to the
damage of β-cells, containing a large amount of mitochondria and H2O2 producer
(increasing ROS and fibronectin expression) (Hwang et al. 2012). Patel et al.
(2013) showed that high blood glucose leads to increased H2O2 production and
downregulation of expression of CAT gene. Some studies indicated the decreased
SOD level in diabetic blood and tissues (He et al. 2011; Shukla et al. 2012;
Giugliano et al. 1995). SOD is an enzyme found in mammalian tissues and
converts superoxide anion to molecular oxygen and hydrogen peroxide. Three
forms of SOD include: cytosolic Cu-Zn superoxide dismutase (SOD1), mito-
chondrial Mn-SOD (SOD2), and extracellular SOD(SOD3 or EC-SOD). SOD1
and SOD2 have an important role in diabetic nephropathy and SOD3 or EC-SOD
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involves in scavenging of superoxide radicals in extracellular (Oury et al. 1996;
Zelko et al. 2002) (Fig. 2.2).

2.10.1.1 Arsenic Toxicity and Diabetes Mellitus (DM)
In Taiwan Lai et al. (1994) reported for the first time that there is a relationship
between the prevalence of diabetes and chronic exposure to the arsenic. Other
researches in Bangladesh, Swedish, and Mexico confirmed the high prevalence in
the postmenopausal women (>50 years) (Rahman and Axelson 1995; Rahman et al.
1998; Coronado-González et al. 2007). Other studies indicated the relationship
between diabetes and iAs (inorganic arsenic) (Tsai et al. 1999; Navas-Acien et al.
2006). Some mechanisms of diabetes are induced by inorganic arsenic (Fig. 2.3) and
its methylated metabolites, especially trivalent arsenicals and they are as follows:

– The phosphorus substitution, increasing ROS and altering some genes expres-
sion, such as increasing renal hexokinase II: HK-II expression in mice, which
causes pathological changes in kidney (Tseng 2004; Pysher et al. 2007).

– The insulin resistance and alteration of glucose homeostasis [by inhibiting the
AKT signaling pathway and inhibiting glucose transporter 4 transposition to
plasma membrane (Rudich et al. 1998; Paul et al. 2007; Hamann et al. 2014).

– The reduction of the expression of many genes, such as GLUT4, AKT (Walton
et al. 2004; Paul et al. 2007; Hamann et al. 2014).

– The upregulation of Nr-f2 signaling pathway in mice increased the expression of
antioxidant enzymes and the inhibition of glucose uptake (Xue et al. 2011; Duan
et al. 2015).

– The inhibition of adipogenesis and decreased lipid storage capacity by inhibiting
the adipocyte differentiation [the alteration of the expression of PPAR-γ and
CEBP-α]. PPAR-γ is a nuclear receptor that regulates the storage of fatty acids
and glucose metabolism. CEBP-α is a transcription factor and the inducer of
adipogenesis (Hou et al. 2013; Hamann et al. 2014; Wauson et al. 2002).

– The damage to β-cells. One of the most important causes of β-cells dysfunction is
oxidative stress. β-cells damage occurs due to low antioxidant defense, mitochon-
drial damage, and generation of superoxide (Kaneto et al. 2007; Tiedge et al.
1997). Arsenic is involved in the development of diabetes through damage to
function of β-cells, secretion and synthesis of insulin (Zhu et al. 2014; Lu et al.
2011).

– The programmed cell death or apoptosis of β-cells, due to the production of
arsenic-induced ROS and production of the activated caspase 3 and increased
NF-kappaB activity (Rhodes 2005).

– The upregulation of some essential transcription factors such as Nr-f2. It is the
regulator of expression of the cellular antioxidant proteins. Inhibition of
TXNRD1 protein (thioredoxin reductase 1), imbalance of intracellular redox
status, and inhibition of insulin secretion (Xue et al. 2011).
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– Decreased production of insulin-related mRNA due to overproduction of ROS
(Díaz-Villaseñor et al. 2006).

– The stimulation of hepatic gluconeogenesis. The induction of expression of PEPC
[an enzyme in the metabolic pathway of gluconeogenesis] results in fasting
hyperglycemia (Díaz-Villaseñor et al. 2007).

2.10.2 Oxidative Stress and Arteriosclerosis

Arteriosclerosis is a disease characterized by hardening and thickening of the arterial
wall due to the accumulation of serum lipoprotein LDL (low density lipoprotein) and
endothelial damage. The oxLDL (oxidized form of LDL) plays an important role in
the formation of foam cells and atherosclerosis plaque in the arterial wall (Lusis
2000). The oxLDL increases the expression of intracellular adhesion molecule-1
(ICAM-1), platelet, and selectins that facilitate the leukocytes binding and plaque
formation. Plaques contain a central lipid core with crystals of cholesterol plaques,
resulting in the myocardial infraction or stroke (Hennig et al. 2001; Inoue and Node
2006; Stocker and Keaney 2004; Madamanchi et al. 2005; Devasagayam et al. 2004;
Lum and Roebuck 2001).

Some studies demonstrated that OS has an effective role in the development of
disease and various cardiovascular disorders (Dhalla et al. 2000; Kukreja and Hess
1992).

The main and important ROS sources in atherosclerosis include:

• Smooth muscle cells (SMCs) and immune cells (macrophages) in blood vessel
arteries (Antoniades et al. 2007).

• Hypercholestrolemia. It stimulates the production of superoxide anion (O2��)
from the smooth muscle cells (Vepa et al. 1999).

• Mitochondria. One of the major sources of superoxide anion (O2��) production is
electron transport chain in mitochondria. Mitochondrial dysfunction is associated
with the atherosclerosis (Singh and Jialal 2006; Madamanchi et al. 2005).

• Enzymatic sources:
– Nicotinamide adenine dinucleotide phosphate oxidase (NAD(P) H oxidase), in

the vascular cells, leads to production of ROS. Some stimulators such as Ang
II (angiotensin II), PDGF (platelet derived growth factor), TNF-α (tumor
necrosis factor α) regulate its production (Griendling et al. 2000; Harrison
et al. 2003; Droge 2002).

– XO (xanthine oxidase) is a flavoprotein found in serum and endothelial cells. It
is not present in smooth muscle cells. Two forms of XO exist, including
xanthine dehydrogenase (XD) and XO and XD is transformed into oxidase.
During the conversion of hypoxanthine and xanthine to uric acid by the XO
superoxide anion is produced. The enzyme level is increased in the coronary
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patients and in asymptomatic young individuals with familial hypercholester-
olemia (Spiekermann et al. 2003; Droge 2002; Harrison et al. 2003).

– Myeloperoxidase (MPO) produces hypochlorous acid, as more potent oxidant,
from H2O2 and expressed in neutrophil granulocytes. Increased MPO level is
shown in patients with coronary disease, due to the oxidation or modification
of lipo-proteins, such as LDL by MPO and the production of modified
apolipoproteins. Serum level of MPO can be utilized to prediction of cardio-
vascular disease (Daugherty et al. 1994; Heinecke 2003; Zouaoui Boudjeltia
et al. 2004; Baldus et al. 2003; Brennan et al. 2003; Bergt et al. 2004;
Pennathur et al. 2004).

• NOS (nitric oxide synthase) produces potent vasodilator nitric oxide (NO) from
L-arginine under normal condition. NO production is required for the endothelial
function. Endothelia NOS (eNOS) produces O2��, H2O2, and peroxynitrite in
absence of L-arginine and increases OS. eNOS plays an essential role in
protecting the wall of blood cells from atherosclerosis. Some experimental studies
indicate that the activity of eNOS in atherosclerosis is decreased (Schächinger
and Zeiher 2002; Singh and Jialal 2006; Cai and Harrison 2000)

• LPO, lipoxygenase(s), catalyze the dioxygenation of polyunsaturated fatty acids
(arachidonic acid) and produce biologically active lipids such as prostanoids
(prostaglandins, thromboxanes, and prostacyclin), lipoxin, and leukotrienes.
They are involved in inflammatory reaction and increased vascular permeability
and atherogenesis (Stocker and Keaney 2004). Some experimental studies
indicated some lipoxygenases oxidized LDL) Folcik et al. 1995)

2.10.2.1 ROS-Induced Damage to Vascular Function
• The damage to the cell membrane, nuclei, especially hydroxyl radicals, and

dysfunction of endothelial (Suwaidi et al. 2000; Antoniades et al. 2003;
Schächinger et al. 2000)

• The interaction with the vasoactive mediators in cells of endothelium (Antoniades
et al. 2003).

• The formation of oxLDL. oxLDL activates monocytes and inhibits migration of
macrophage and releases proinflammatory cytokines (Antoniades et al. 2007;
Hennig et al. 2001).

• The production of NF-kappaB and activator protein-1 (AP-1) in oxidative stress.
They increase the expression of vascular cell adhesion molecule-1 (VCAM-1),
ICAM-1, E-selectin, and other cytokines. Accumulation of these molecules on
the endothelial wall causes change in vascular permeability and endothelial wall
dysfunction (Hennig et al. 2001; Bourcier et al. 1997; Tousoulis et al. 2007).

2.10.2.2 Arsenic Toxicity and Atherosclerosis
The association between cardiovascular disease (CVD) and arsenic exposure has not
been established and evidences are limited and mechanisms are unclear (Navas-
Acien et al. 2005; Wang et al. 2007a, b). Lemaire et al. (2011) demonstrated that
arsenic may have proatherogenic effects on mice. Some epidemiological studies in
Taiwan and Bangladesh indicated a positive association between the arsenic and
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heart disease and high pulse pressure, which may be related to the arsenic detoxifi-
cation and the increase of homocysteine and cardiovascular disease (Hsueh et al.
1998; Chen et al. 2007; Gamble et al. 2005; Zakharyan and Aposhian 1999; Araki
et al. 1989; Lim and Cassano 2002). Based on the results of some studies, there is a
relationship between arsenic and some genes expression, such as NOS3 (Balakumar
and Kaur 2009; Desjardins and Balligand 2006), SOD2, monocyte chemoattractant
protein-1 (MCP-1), interleukin 6 (IL-6) and ET-1 (endothelin-1) mRNA in mice
(Sun et al. 2009; Lee et al. 2005; Soucy et al. 2005). They are involved in endoge-
nous defenses against ROS and other risk factors for vascular dysfunction and
maintaining vascular tone. Overproduction of ROS leads to loss of mitochondrial
function, oxidative stress, alterations in the mitochondrial structure and cellular
damage, endothelial cells death (Wang et al. 2002; Andreyev et al. 2005; Packer
1961). Endothelial vascular damage occurs as a result of reduced synthesis of NO
and inactivation of eNOS and overgeneration of ROS. Dysfunction of vascular
endothelial is a risk marker of atherosclerosis (Kumagai and Pi 2004; Lee et al.
2003; Cai and Harrison 2000; Balakumar and Kaur 2009; Davignon and Ganz
2004).

Based on the animal experimental studies, MDA and HNE accumulate in
advanced lesions. They play an important role in the constitution of atherosclerotic
lesion. Due to the production of proinflammatory factors such as MCP-1, IL-6, and
TNF-alpha in exposure to arsenic it is an important risk factor for atherosclerosis
(Tsou et al. 2005).

As induces hypertension. Many studies are needed due to increased sensitivity to
calcium in blood vessels, phosphorylation of myosin and disruption of the antioxi-
dant defense (Yang et al. 2007) (Fig. 2.4).

2.10.3 Oxidative Stress and Neurodegenerative Disease

Oxidative stress leads to neurotoxicity, mitochondrial dysfunction, severe disorders
of neuronal cells and cell death (Caito and Aschner 2015; Cicero et al. 2017; Hsieh
and Yang 2013).

Free radicals damage brain and neuronal cells (Chance et al. 1979; Floyd and
Carney 1992; Marklund et al. 1982; Zaleska et al. 1989; Pamplona 2008; Halliwell
et al. 1992). Brain and neuronal cells are prone to oxidative damage due to their high
concentration of polyunsaturated fatty acids, high oxygen and glucose consumption,
presence of some metals, such as Cu, Fe, vitamin C, and low levels of antioxidant
enzymes.

Oxidative damage to neuronal cells leads to neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease (Perry et al. 2002). In Alzheimer’s disease
(AD) there is an accumulation of misfolded protein called beta-amyloid (Aβ) plaque
in the brain (Opazo et al. 2002). Parkinson’s disease (PD) is associated with the
accumulation of abnormal α-synuclein protein, degradation of dopaminergic
neurons, in the brain due to oxidative stress (Segura-Aguilar et al. 2014; Gasser
2001; Dalfó et al. 2005). These misfolded proteins inhibit mitochondrial function
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and induce more OS (Abramov et al. 2017; Caspersen et al. 2005). The dysfunction
of mitochondria is important in both AD and PD process (Angelova and Abramov
2017; Schapira 2008; Andersen 2004). The etiology and mechanisms of damage to
the neuron cells in neurodegenerative disease are unclear but the important sources
of oxidative stress are related to AD and PD, which are discussed in the following.

2.10.3.1 Oxidative Damage in Alzheimer’s Disease
– Decreasing the complex IV activity in the mitochondria and generation of ROS

(Sheehan et al. 1997; Du et al. 2010).
– Increasing the H2O2 production, due to Aβ peptide accumulation and cytochrome

C release (Lloret et al. 2008).
– Increasing the protein carbonyl (Bogdanovic et al. 2001; Sultana et al. 2010).
– Increasing the AGEs production and their receptors (Takeuchi et al. 2007).
– Increasing the mitochondrial VDAC1 (voltage-dependent anion channel 1) as a

regulator of important metabolic function of the cell, such as homeostasis of
calcium, OS, and apoptosis (Shoshan-Barmatz et al. 2018).

Arsenic
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mitochondria 

Decresed ATP 
production

Cellular injury , 
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endothelial  cells

NO production 

Inhibition  of 
eNOS

Dysfunction  of  
endothelial  and  

blood  vessel

Vascular  disease

ROS

O2
-·

NO

NAD(P)H  oxidaseXO MPO

Decrased  NO  
availibility  for  smoth  

muscle  relaxation

Increased  TNF-α

Lipid  peroxidation

Aggregation  of  platelet

NF-KB

ADP-1

- Expression  of  
VCAM-1,  ican-1, E-
selectin,

OX-LDL

Relaese  of cytokines

Inhibition  of  macrophage  
motility

Inflammation

COX2

Fig. 2.4 Mechanism of arsenic-induced atherosclerosis
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– Increasing the intracellular free ca++ that results in the reduction of GSH and
accumulation of ROS (Ferreiro et al. 2008).

2.10.3.2 Parkinson’s Disease and Oxidative Stress
– Dopamine (DA) metabolism. Dopamine quinone [6-hydroxydopamine as a neu-

rotoxin (Graham 1978; Tse et al. 1976)] is produced from oxidation of dopamine.
That leads to production of misfolded proteins, such as α-synuclein, Parkin
protein, DJ-1, and inactivation of DA transporter, tyrosine hydroxylase, damage
to mitochondria and decreased complex I in mitochondria (Betarbet et al. 2002;
Schapira et al. 1989; Parker et al. 2008; Kuhn et al. 1999; Sulzer and Zecca 2000;
Gluck and Zeevalk 2004; Jana et al. 2007; Van Laar et al. 2009; Whitehead et al.
2001; Andersen 2004; Betarbet et al. 2002; Parker et al. 1989).

– Mitochondrial dysfunction
The peroxidation of cardiolipin leads to apoptosis due to release of cytochrome C
(Betarbet et al. 2002; Parker et al. 1989).

The damage to the complex I transporter chain and decreased ATP production
(Mizuno et al. 1987).

The dysfunction of some proteins, such as DJ-1, as a recognizer of OS, redox-
chaperone protein, and related genes to PD, leads to more damage of
mitochondria (Van Laar et al. 2009; Conway et al. 2001; LaVoie et al. 2005).

The alteration of related genes in the regulation of mitochondrial homeostasis
in PD (PINK 1- PARK-2) that inhibits the complex I activity (Valente et al. 2004;
Gilks et al. 2005).

– The inflammation of neurons.
The production of ROS and inflammatory cytokines, due to the production of
neuromelanin from DA oxidation, which can interact with iron and leads to
overgeneration of ROS (Garrido-Gil et al. 2013)

2.10.3.3 Arsenic Toxicity and Neurodegenerative Disease
Less investigation has been done on the association between exposure to As and
neurodegenerative disease. Arsenic is one of the most important environmental risk
factors for these disorders (Chin-Chan et al. 2015; Engström et al. 2010; Butterfield
et al. 2002; Loh et al. 2006; Cheung et al. 2007). Recent studies indicated that As
damages the mitochondria and function of neurological cells. The highest accumu-
lation of As and its methylated components are in the hypophysis (Sanchez-Pena
et al. 2010). Positive association between soil arsenic and mortality from
Alzheimer’s disease was reported by Li et al. in Mainland Chine (2020).

Some mechanisms of arsenic toxicity in the brain (Fig. 2.5) are as follows:

– The alteration of some signaling pathway, e.g., glucocorticoid signaling (interac-
tion with glucocorticoid receptors and the inhibition of some transcription factors
and alteration of nuclear function), cholinergic and monoaminergic signaling
(Kaltreider et al. 2001; Kobayashi et al. 1987; Chandravanshi et al. 2019).

– Decreased activity of choline acetyltransferase (CHAT) and acetylcholinesterase
(ACHE) (Baldissarelli et al. 2012; Nagaraja and Desiraju 1994).
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– Increased the β-amyloid protein, tau protein hyperphosphorylation, endothelial
cell dysfunction, and inflammation in cell culture studies (Vahidnia et al. 2007;
Giasson et al. 2002; Fry et al. 2007; Hardy and Higgins 1992; Zarazúa et al.
2011).

– The depletion of GSH and the induction of OS (Chang et al. 1991; Huang et al.
1993; Bermejo et al. 2008; Jomova and Valko 2011).

– The alteration of some transporter systems, such as brain monoamines especially
dopamine, serotonin (5-HT), and noradrenaline (NA) (Martinez et al. 2008).

– Change of gene expression of some antioxidant (SOD, Trx-1) (Rodríguez et al.
2010; Lau et al. 2008; Zhang 2006).

– Activation of p38, MAPK and JNK3 signaling pathway and induction of apopto-
sis, oxidative damage which leads to Alzheimer’s disease (Chandravanshi et al.
2018; Namgung and Xia 2001; Lu et al. 2011; Yen et al. 2012).

– The adjustment of the expression of inflammatory cytokine genes (Sun et al.
2017; Praticò and Trojanowski 2000; McGeer et al. 2006).

– The enhancement of Bcl2/Bax ratio and change in the potential of the mitochon-
drial membrane in brain, stimulation of apoptotic signaling, especially caspases-
3, decrease in the level of Nr-f2 and Tex (Lu et al. 2014; Pradelli et al. 2010;
Friedlander 2003; Shacka and Roth 2005; Srivastava et al. 2014).

– The storage of α-synuclein protein (SYN) and the oligomerization of SYN and
synucleinopathies (Cholanians et al. 2016)

– Arsenic has a synergistic effect on the toxicity of dopaminergic cells in PD, as As
and DA can increase toxicity in the neuronal cells, leading to the development of
PD, probably with the production of DA quinone as a highly toxic free radical
(Shavali and Sens 2008; Sulzer and Zecca 2000).

Increased inflammatory cytokines  
gens (IL-6,TNF-α, COX-2)

Induction of apoptosis

Glucocorticoide  signaling 
Inhibition of  GR

Monoaminergic  signaling 

Inhibition  of  ChAT,AChE

Increased  β-
amyloid,hyperphosphorylation   tau

Depletion  of  GSH

Decreased  antioxidant 
enymes

Glucocorticoide  signaling
Inhibition of  GR

Neurodegenerative  
diseaseArsenic

Fig. 2.5 Mechanism of arsenic-induced neurodegenerative disease
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2.10.4 Infertility and Oxidative Stress

Infertility is considered as a serious health problem over the last decades. Recently,
studies demonstrated that the oxidative stress and the overproduction of ROS (such
as, OH, H2O2, O2

��) damage the normal function of sperm and cause male or female
infertility. One of these ROS is the H2O2 with the beneficial and damaging effect on
sperm. The low level of H2O2 increases sperm–oocyte fusion (phosphorylation of
tyrosine leads to the binding of sperm membrane to zona pellucida ZP3 protein)
(de Lamirande and Gagnon 1995; Sharma and Agarwal 1996; Agarwal and Saleh
2002; Saleh and HCLD 2002; Twigg et al. 1998; Aitken and Clarkson 1987; Aitken
et al. 1995, 1998).

There is no sufficient information about the ROS or OS and function of repro-
ductive system. Some mechanisms of the effect of OS on the reproduction (Cicinelli
et al. 1996; Halliwell and Gutteridge 1984; Penniston 1983) are as follows:

– Lipid damage, the production of lipid hydroperoxides, as cytotoxic, leads to the
inactivation of enzymes, damage to DNA, cell leakage, membrane disruption
(permeability to electrolytes).

– The modification of some transcriptional factors and gene expression
(Paszkowski and Clarke 1996)

– The depletion of ATP, produced in the mitochondria during oxidative phosphor-
ylation, for example, gametes use the produced ATP for mobility (Liu and Keefe
2000; Liu et al. 2000; Valko et al. 2007).

In the normal condition, low levels of ROS are essential for spermatocytes
function, motility, hyperactivation, acrosome reaction, the interaction of sperm
with oocyte, due to peroxidation of plasma membrane lipids and adhesion of
sperm-oocyte (Agarwal et al. 2004; Griveau and Lannou 1997; Kodama et al.
1996) However, an unbalance between the production of ROS and their removing
causes the development of oxidative stress in the seminal (Sikka et al. 1995; Sikka
2001; Sharma and Agarwal 1996). Spermatozoa (immature sperms) and white blood
cells (leukocytes) in human semen are the most important sources of ROS. ROS are
produced in spermatozoa by the NADPH oxidase in the membrane of plasma and
NAD(P)H-dependent oxidoreductase in the mitochondria. High pressure of oxygen
leads to the loss of sperm motility, flexibility, less or lack of interaction with oocyte
for fertilization (Aitken et al. 1992, 1994; Gavella and Lipovac 1992; Aitken and
Baker 1995; MacLeod 1943; Whittington et al. 1999; Kao et al. 2008).

Oxidative stress impairs to spermatocytes (Alvarez and Storey 1995; Jones et al.
1979; Aitken and Fisher 1994; De Lamirande and Gagnon 1995; Sharma and
Agarwal 1996; Penniston 1983; Holland and Storey 1981; Holland et al. 1982) for:

– Low levels of scavenging enzymes [lack of integral catalase or glutathione]
– High levels of PUFA in their plasma membrane [rich in unsaturated lipids]
– High levels of mitochondria [for supply of energy]

44 F. Zargari



The overproduction of ROS and defects of oxidative phosphorylation are the
most important molecular mechanisms in men infertility (Cummins et al. 1994).

Excessive production of ROS damages mitochondrial function and stimulates
high ROS production. Disturbance of mitochondrial membrane induces apoptosis
and DNA fragmentation (by activating of caspase cascade). The different forms of
damage to DNA include: DNA cross-links, the modification or deletion of bases,
chromosomal rearrangement (Duru et al. 2000; Plante et al. 1994; Appasamy et al.
2007; Vermes et al. 1995; Wang et al. 2003). Some reports indicated excessive
production of ROS (high levels of ROS) in the semen of infertile men. The
mitochondrial system has the major role in production of ROS in infertile men
[impaired and immature sperms in the semen are considered] (De Lamirande and
Gagnon 1995; Padron et al. 1997; Plante et al. 1994; Huszar et al. 1997; Aitken
1999). OS has an important role in the function of ovary. Endothelial cells, phago-
cytic macrophages, and parenchymal steroidogenic cells are the most main sources
of ROS in the ovaries. Under normal condition, ROS are involved in the maturation
of follicle, ovulation, and folliculogenesis (Halliwell and Gutteridge 1988; Tamate
et al. 1995; Sugino et al. 1996; Jozwik et al. 1999; Sabatini et al. 1999). The activity
of some antioxidative enzymes, such as Cu-Zn SOD, Mn-SOD, GPx in human ovary
is needed for normal reproduction (Suzuki et al. 1999; El Mouatassim et al. 1999;
Paszkowski et al. 1995). The low expression of GPx in follicular fluid is associated
with infertility. Increased nitric oxide (NO) is shown in the infertility (NO may lead
to the apoptosis and fragmentation of embryo) (Bedaiwy et al. 2004). Peroxidation
of lipids (increased MDA) and decreased antioxidant enzymes have reported in the
infertile women (Polak et al. 2001; Shanti et al. 1999; Murphy et al. 1998).

2.10.4.1 Arsenic Toxicity and Infertility
Some human (occupational) and animal researches reported the effects of small
amounts of some toxic metals, such as arsenic (As) on male reproduction. As directly
affects the testicular tissue. Exposure to As in animal models leads to the reduction
of testicular weight, production of sperm, number of spermatids, and decreased
sperm mobility (Pant et al. 2004; Sarkar et al. 2003; Centeno et al. 2002; ATSDR
2007, 2012, 2019). As activates some signaling pathway such as ERK/AKT/NF-KB
and leads to spermatogenesis disorders and reproductive toxicity (Huang et al.
2016). As exposure damages to the sperm DNA and leads to male infertility. Arsenic
influences the steroid receptors activity, such as glucocorticoid and mineralocorti-
coid receptors. It may cause infertility by the inhibition of activity of androgen
receptor (AR) (Kaltreider et al. 2001; Bodwell et al. 2006; Rosenblatt and Burnstein
2009). Some environmental pollutants such as heavy metals (lead, arsenic, cad-
mium), may lead to the reproductive disease by altering hormone levels. Arsenic
increases ovarian tumors. Studies showed that serum As was high in infertile women
(Lei et al. 2015; Mendola et al. 2008; Bloom et al. 2011; Gallagher et al. 2010; Guo
et al. 2011; Tokar et al. 2011). Arsenic exposure leads to the inhibition of ovarian
steroidogenesis, secretion of gonadotropins, and reduction of plasma testosterone
(Chattopadhyay et al. 1999; Vreeburg et al. 1988; Hardy et al. 2005; Jana et al.
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2006). The several possible mechanisms of As toxicity (Uckun et al. 2002; Jana et al.
2006; Sarkar et al. 2008) are as follows:

The direct action on testis: ROS affect the testicular function. Based on the results
of the researches, exposure to the arsenic causes OS and reduction of some semen
parameters, such as the reduction of number of sperm, motility of sperm, plasma
levels of testosterone, FSH, LH hormones in the testis of rabbits (Manna et al. 2008;
Zubair et al. 2014). The experimental studies indicated that As has toxic effects on
the testis and damages the structure of testes and reduces the sex hormones (LH,
FSH, testosterone) (Soleymani and Hemadi 2007; Pires Das Neves et al. 2004; Jana
et al. 2006). Many researches reported the accumulation of arsenic in the testes,
prostate glands. As toxicity alters the activity of mitochondrial enzymes, mitochon-
drial membrane potential, impairs DNA sperm and reduces testosterone. Inhibition
and reduction of enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD) and
17β-HSD, and wasting of Leydig cells, and reduction of testosterone occur in the
presence of arsenic. Arsenic influences the hypothalamic-pituitary axis, impairs
Leydig cells function, and binds directly to sperm. The thiol containing proteins
have main role in the motility of sperm. High levels of SH-proteins are in sperm
(sperm chromatin and flagellum contain plenty of sulfhydryl) and As has high
affinity to binding to these proteins. Arsenic induces cell death or apoptosis and
ROS production [the peroxidation of PUFA of spermatozoa] (Das et al. 2009;
Danielsson et al. 1984; Pant et al. 2001; De Vizcaya-Ruiz et al. 2009; Morakinyo
et al. 2010; Sudha 2012; Kumar et al. 2002; Jana et al. 2006; Sarkar et al. 2003).

Shortly, arsenic in male reproductive system causes a reduction in the number of
sperm, high productions of ROS in testes, abnormal secretion of hormone, a
decrease in the testicular weight, abnormality of enzymes, such as LDH, sorbitol
dehydrogenase, acid phosphatase, γ-glutamyl transpeptidase, a decrease in FSH, LH,
resulting in low sperm count and male infertility, a decrease in the sperm mobility
and viability, depletion of GSH, increases of MDA, and protein carbonyl in testes
and effects on 3β-HSD and 17β-HSD, which are important for biosynthesis of
testosterone.

Arsenic in female reproductive system results in the suppression in the ovarian
steroidogenesis, the degeneration of ovarian cells, follicular cells and uterine cells,
alteration of neurotransmitter secretion like norepinephrine, dopamine, and seroto-
nin, leading to reduction of gonadotropin secretion, FSH, LH, and estradiol, and
alteration of Δ5-3beta-HSD and 17beta-HSD, as the regulator enzymes of
steroidogenesis.
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Abstract

Fish and seafood are popularly consumed all over the world for their rich
nutritional qualities and numerous health benefits. In this chapter, we present
overview of the major arsenic (As) species found in the seafood, its accumulation
pathway, toxicity, and health effects, regulation analytical techniques, and risk
assessment. Further, the bioavailability, bioaccessibility, and cooking effect for
As species were discussed. The amount of As level, specially inorganic As and
total As concentration of the seafood are highly varied. The toxicity and forma-
tion pathways of most As species and new metabolites are still not clear. This
review tries to present limitation and the available data on As levels in various
types of seafood and products.
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3.1 Introduction

The term ‘seafood’ generally covers a heterogeneous group of aquatic organisms,
mainly from the marine environment but also from brackish water and freshwater,
including mollusks, crustaceans, all types of finfish, edible seaweeds, and aquatic
plants. The benefit of high consumption of seafood has been associated with a
reduced risk of developing coronary heart disease (CHD), high blood pressure,
stroke, some cancers, rheumatoid arthritis, and other inflammatory diseases (Lund
2013). According to a 2018 report of the Food and Agriculture Organization (FAO),
worldwide fisheries and aquaculture production peaked at about 171 million tonnes
in 2016 (excluding aquatic mammals, crocodiles, alligators and caimans, seaweeds,
and other aquatic plants), with aquaculture representing 47% of the total and 53% if
non-food uses are excluded. Moreover, fish provided about 3.2 billion people with
almost 20% of their average per capita intake of animal protein (FAO 2018). As a
source of livelihood, capture fisheries and aquaculture employed 43.5 million people
in 2006, and 520 million people relied on income from seafood production. Seafood
is rich in proteins (including taurine), vitamins (e.g. vitamin D), very long-chain
polyunsaturated fatty acids (VLC-PUFA), eicosapentaenoic acid (EPA, C20:5),
docosahexaenoic acid (DHA, C22:6) and provides important micronutrients,
e.g. selenium among others.

Although seafood is the most highly traded food all over the world, it is an often
overlooked component of global food safety and security (Smith et al. 2010; Lund
2013). The outbreaks and recalls of seafood are caused by microbial pathogens,
chemical contaminants, toxins from harmful algal blooms and xenobiotics which
lead to significant public health and economic burdens. From the above-mentioned
contaminants, chemical contaminants of emerging concern in seafood are toxic
elemental species such as arsenic, mercury, cadmium, and lead (Marques et al.
2019). In this chapter, we discuss the arsenic (As) presence in seafood, its levels,
extraction and analytical techniques, international regulations, and health risk
assessments associated with seafood species consumption and their As
concentrations. In the final section, the drawbacks and challenges related to As
contamination of seafood are discussed.

3.2 The Accumulation of Arsenic in Seafood

The natural concentration of As in the Earth’s crust is about 2 mg kg�1, however, its
concentration in some sedimentary rocks, such as sandstone, can be as high as
900 mg kg�1, while in coal it ranges from about 2.5–17 mg kg�1 (Cullen and
Reimer 2016). The sources of As in the environment originate from a number of
anthropogenic activities and natural processes. Combustion of fossil fuels
redistributes As in the environment and the crude oil contains 0.002–1.6 mg kg�1

of As. Another anthropogenic redistribution pathway that occurs is the gold mining
and recovery processes, which result in several As contaminated by-products,
usually with a very high As content. Arsenic compounds are used as a principal
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ingredient of insecticides, pesticides, and herbicides, all of which also end up in the
environment. Moreover, As is commonly used in the electronics industry (as gallium
arsenide and arsine gas), algaecides, desiccants for mechanical cotton harvesting,
glass manufacturing, nonferrous alloys, and in the feed industry as a feed additive.
Finally, natural phenomena such as volcanic activity and the weathering of minerals
through wind and water erosion are the main pathways in which As is distributed
into the soil, water, and air. Once there, As can become transformed through a
variety of chemical or biological (biogeochemical) processes that occur in the
environment (Cullen and Reimer 2016; Jinadasa and Fowler 2019).

Common concentrations of As in surface soil worldwide generally lie in a range
between 5 and 10 mg kg�1, with an average of around 7 mg kg�1. However, the As
concentration in seawater is very constant worldwide (1–2 μg L�1), except in
estuarine areas. In freshwater, the concentration range spans four orders of magni-
tude, ranging from less than 0.5 μg L�1 to more than 5000 μg L�1 such as in
groundwater in Bangladesh (Cullen and Reimer 2016). Aquatic organisms accumu-
late, retain, and transform As species inside their bodies when exposed to it through
their food and other available routes and sources such as water, sediment, and
suspended particles (Azizur Rahman et al. 2012). Despite the low levels of As in
seawater, much higher concentrations of As are found in marine food webs com-
pared with those in freshwater food webs. This noticeable difference may be
explained by the transformation of inorganic As species (iAs) to organic As (oAs)
compounds at the base of the marine food web, and the greater accumulation and
retention of these organic compounds in marine organisms (Jinadasa and Fowler
2019). Seaweeds have one of the highest total As (tAs) concentrations in the marine
food web, with shellfish containing higher tAs levels than those in finfish, and
demersal fish often containing more tAs than pelagic fish (Taylor et al. 2017).

3.3 Arsenic Speciation in Seafood

Arsenic in marine samples was first reported over 100 years ago and shortly
thereafter it was shown that common seafood types such as fish, crustaceans, and
mollusks contained As at exceedingly high concentrations (Francesconi 2010). Fish
and seafood contain both iAs and oAs species. iAs is identified to be present in two
oxidation states, i.e. arsenite (As-III) and arsenate (As-V), however, these forms are
found at lower levels in seafood compared to oAs compounds. There are more than
50 oAs species found in seafood, including the most common forms arsenobetaine
(AB), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenocholine
(AC), arsenosugars (AS), and arsenolipids (AL) (Begerow et al. 2002; Jinadasa and
Fowler 2019) (Table 3.1).

Arsenous acid/arsenite (As-III), [As(OH)3] is the most toxic iAs species among
all arsenicals, more toxic than arsenic acid/arsenate [AsH3O4] and other oAs species
which are found in fish and other seafood (Jinadasa and Fowler 2019). When
chemically quantified, As (V) and As (III) are normally described together and
referred to as the sum of iAs. Cullen and Reimer (2016) have summarized the
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range of iAs for fish (<0.1–600 μg kg�1), seafood (<0.29–1700 μg kg�1), and
seaweed/algae (<14–2200 μg kg�1). Ferrante et al. (2019) reviewed studies of As in
fresh fish and mollusks harvested in the Mediterranean sea and the European coasts
of the Atlantic ocean within the period 2004–2017. Although 25 research articles
were cited, only 7 applied to iAs analysis. According to the summary, tAs (mg kg�1,
ww) differed in the three analysed group of species, i.e. demersal fish, 4.96 � 5.28;
pelagic fish, 5.90� 6.87; and molluscs, 3.56� 3.33. The same variability was noted
for iAs (mg kg�1, ww), e.g. demersal, 0.001� 0.03; pelagic, 0.01� 0.02; molluscs,
0.08 � 0.15. On the basis of the speciation results, it was assessed that the iAs
fraction (in relation to tAs) for each seafood group was low, i.e. demersal ¼ 0.14%;
pelagic ¼ 0.41%; mollusks ¼ 2.37% and for that reason the speciation analysis was
not conducted. According to Molin et al. (2015) fish and seafood contained the

Table 3.1 The most common and widely determined As speciation forms measured in seafood
(Jinadasa and Fowler 2019)

Name Acronym Chemical structure

Arsenite As (III) As(OH)3
Arsenate As (V) AsH3O4

Monomethylarsonous acid MMAA (III) CH3As(OH)2
Dimethylarsinous acid DMAA (III) (CH3)2AsOH

Monomethylarsonic acid MMAA (V) AsO(OH)2CH3

Dimethylarsinic acid DMAA (V) AsO(OH)(CH3)2
Trimethylarsine acid TMAA CH3As3
Arsenocholine AC (CH3)3As(CH2)2OH

Arsenobetaine AB (CH3)3AsCH2COOH

Arsenosugar AS

Sulphate arsenoribose _ R ¼ SO3H

Sulfonate arsenoribose _ R ¼ OSO3H

Phosphate arsenoribose _ R ¼ OP(O)(OH)OCH2CH(OH)CH2OH

Trimethylarsoniopropionate TMAP (CH3)3As(CH2)2COOH

Tetramethylarsonium ion TETRA (CH3)4As

Trimethylarsine oxide TMAO (CH3)3AsO

Thiodimethylarsinate Thio-DMA (CH3)2AsS

Arsenolipids AL (CH3)2AsO(R)COOH

Roxarsone ROX AsO(OH)2(C6H6)OHNO2

Phenylarsonic acid PhA AsO(OH)2(C6H6)

Triphenylarsine TPA As(C6H6)3
Triethylarsine TEA (CH3)3(CH2)3As

2-Chlorovinylarsonous acid CVAA (CH2)2AsCH2CHCl

2-Chlorovinylarsonous oxide CVAO OAs(CH)2Cl

2-Chlorovinyldichloroarsine Lewisite Cl2As(CH)2Cl
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highest tAs concentrations, but these food groups are generally low in iAs (usually
<0.2 mg As kg�1, dw). However some marine algae species such as hijiki (Hizikia
fusiforme) [>60 mg kg�1] and some bivalve species such as blue mussels (Mytilus
edulis) [up to 5.8 mg kg�1, ww] contain very high iAs concentrations (Molin et al.
2015; Sloth and Julshamn 2008). As (III) and As (V) are categorized under the group
1 carcinogens with acute toxicity of LD50 of 15–42 mg kg�1 of body mass (Luvonga
et al. 2020).

The main source of the oAs for general populations worldwide is seafood (Navas-
Acien et al. 2011). Arsenobetaine (AB), mainly 2-trimethylarsoniumylacetate and
2-trimethylarsaniumyl acetate, is a non-toxic arsenical (LD50 � 10,000 mg kg�1,
body weight) that is excreted in humans unchanged via the kidneys. It is the major
oAs species found in most shellfish, finfish, seaweed and even zooplankton. It
accounts for between 50% and nearly 100% of tAs in finfish, but its proportion is
similar to that for the arsenosugars (AS) in shellfish, and this balance even shifts
almost entirely to the AS in algae and seaweed (Taylor et al. 2017; Cullen and
Reimer 2016; Navas-Acien et al. 2011; Luvonga et al. 2020). Although AB is the
most studied As species, details on its source in the food web and the synthesis
pathway for it are still unclear (Chen et al. 2020). Nevertheless, there are a number of
theories and models about the biosynthetic pathway of the AB formation that have
been described, e.g., by Caumette et al. (2012), Hoffmann et al. (2018), and Thomas
and Bradham (2016).

There are also methylated As compounds in marine seafood, mainly resulting
from enzymatic methylation of iAs by arsenite S-adenosylmethionine methyl
transferases which contain 1–4 methyl groups. These compounds are monomethyl
arsenic acid (MMAV), monomethyl arsonous acid (MMAIII), dimethyl arsenic acid
(DMAV), dimethyl arsenous acid (DMAIII), tetramethyl arsine oxide (TMAO),
tetramethyl arsine sulphide (TMAS), tetramethyl arsonium ion (TETRA), and
arsenocholine (AC) (Taylor et al. 2017) (Table 3.1). MMA and DMA are generally
either present in trace amounts or not present in seafood at all. Some detectable
levels of DMA and MMA are present in fatty fish such as mackerel and herrings, and
in prawns. DMA is also detected in kelp-like seaweeds and in molluscs. TMAO is
reported to be present in higher concentrations in some fish species, while TETRA is
found in clams and gastropods (Luvonga et al. 2020; Taylor et al. 2017). In terms of
cytotoxicity, genotoxicity, and enzyme inhibition, recent data show that MMAIII and
DMAIII are more active than iAs (Cui et al. 2020). MMA and DMA are classified
under group 2B (possible human carcinogen) by the International Agency for
Research on Cancer (IARC) (Luvonga et al. 2020).

The arsenosugars (AS) are ribose derivatives and the structure was first identified
in 1981 in water-soluble components of brown kelp (Ecklonia radiata), and subse-
quently over 20 AS with different side chains in the skeletal structures have been
identified, among which four types (Fig. 3.1) (AS-Gly, AS-PO4, AS-SO3, and
AS-SO4) are the most frequently detected (Cao et al. 2019). AS are mainly present
in high concentrations (20–100 mg kg�1, dw) in marine algae and also in mollusks
and crustaceans. Even in seaweeds, the AS content varies among different taxa
(Taylor et al. 2017). Almela et al. (2005) studied the bioaccessibility of raw and
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cooked seaweeds and observed a high bioaccessibility rate of >80% that did not
vary with cooking. Even no degradation of As was observed as a result of the in vitro
digestion. No biological functions are associated with AS, however, their important
role in the transformation and cycling of As in the marine environment has been
studied. AS are not considered to be acutely toxic, but they can result in slight
chronic toxicity following the high consumption of seaweeds (Yu et al. 2020b).

Arsenolipids (AL) are in general organic As compounds that exhibit lipophilic
properties. There are mainly five types of AL identified in seafood, namely arsenic-
containing hydrocarbons (AsHCs), fatty acids (AsFAs), phospholipids (AsPLs),
phosphatidylcholines (AsPCs), and fatty alcohols (AsFAl) (Cao et al. 2019; Chen
et al. 2020). Following the first identification of ALs in 2017,
i.e. dipalmitoylglycerophospho-2-hydroxypropyl-5-deoxy-5-(dimethylarsinoyl)-
beta-ribofuranoside extracted from brown algae, more than 50 AL have been
identified since then (Chen et al. 2020). There is not much information on AL in
seafood, but they have been identified in some oily fish and seaweeds. Al Amin et al.
(2020) assessed the AL content in 18 seafood samples, i.e. fish, shellfish, and
crustaceans in Japan, and determined AsHCs in all samples (83 � 73 ng g�1, ww)
and AsFAs in some of them. In 2014, the same research group studied the in vitro
toxicity of AL and found that AsHCs were cytotoxic to the human liver and bladder
cells in a similar way as the As (III) species (Meyer et al. 2014).

3.4 Extraction and Detection Techniques of As in Seafood

Acid digestion is a commonly used method for tAs determination in seafood
samples. Different acid combinations were used by different researchers, and each
method has some advantages and disadvantages. As one example, Storelli and
Marcotrigiano (2000) applied the reflux extraction method for tAs determination
in fish (3 g) with 10 mL of a HNO3/HClO4/H2SO4 mixture. The main drawback of
this method was that it is time-consuming (6 h). To avoid long digestion times,
microwave-assisted digestion with different reagents has been proposed, e.g. HNO3

(Jinadasa et al. 2015), a HNO3, and H2O2 mixture (Cui et al. 2020), and HNO3, HCl,
H2O2, and HF mixtures (Shakeri et al. 2020). Some other examples and alternatives
(hot plate, water bath, etc.) are summarized in Table 3.2.

The sample extraction method is very important in the As speciation analysis of
seafood due to the complexities of the matrices. Several analytical methods and
extraction solvents have been used for that purpose (Table 3.2). Distillation was
proposed for the extraction of As species from fish samples by Storelli and
Marcotrigiano (2000). In the first step, 5 g samples of wet tissues were treated
with 1 mL of HBr and 25 mL of 6 M HCl, and refluxed for 15 min. After collecting
20 mL of distillates, 20 mL of 6 M HCl were added to samples and the resulting
mixtures were refluxed again. The disadvantage of the above method is that it is slow
and consumes a high amount of concentrated reagents. Kalantzi et al. (2017)
proposed a vortex and ultrasonic-assisted method for the extraction of iAs [As(III)
and As(V)] and oAs species (AB, MMA, DMA) from fish. Freeze-dried fish powder
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samples (0.03 g) were mixed with 1.2 mL of (NH4)2HPO4 (10 mM, pH 7.9) and
vortexed for 1 min prior to ultrasonic-assisted extraction (3 min, 40 �C). These two
steps were repeated 10 times. In another study, an ultrasonic bath was used with
10 mL of a (1:1) methanol:water mixture with 30 min extraction time as an alterna-
tive enabling rapid extraction of As species (Jinadasa et al. 2020b). 5 mL of methyl
tert-butyl ether (MTBE) and methanol (1.5 mL) were used for the AL extraction
from seafood samples with the assistance of a rotary evaporator (1 h, room tempera-
ture) (Amin et al. 2018; Al Amin et al. 2020). Almela et al. (2005) used 20 mL of a
(1:1) methanol:water mixture for extraction of AS from seaweed. The mixture was
agitated for 15 min in a mechanical shaker and centrifuged at 2000 rpm for 10 min.
Finally, the supernatants were collected for further analysis. Other examples of
seafood sample preparation for the extraction of As species are given in Table 3.2.

Traditional instrumental methods, overwhelmingly spectrometric ones, for the
tAs determination in seafood samples include thin-layer chromatography (TLC),
atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS),
spectrophotometry, inductively coupled plasma mass spectrometry (ICPMS), induc-
tively coupled plasma-optical emission spectrometry (ICP OES), neutron activation
analysis (NAA), direct current plasma-optical emission spectrometry (DCP OES),
X-ray absorption spectroscopy (XAS), and X-ray fluorescence (XRF) (Mounicou
et al. 2009; Hu et al. 2020). A combination of chromatographic separation with
spectrometric detection is the most commonly used and well accepted approach for
As speciation analysis of seafood samples. The following coupled techniques are
used for that purpose, i.e. high performance liquid chromatography hyphenated with
inductively coupled plasma mass spectrometry (HPLC-ICP MS), gas chromatogra-
phy hyphenated with inductively coupled plasma mass spectrometry (GC-ICP MS),
ion chromatography hyphenated with inductively coupled plasma mass spectrome-
try (IC-ICP MS), or capillary electrophoresis coupled with inductively coupled
plasma mass spectrometry (CE-ICP MS), or HPLC coupled with electron spray
ionization mass spectrometry (HPLC-ESI-MS) (Yu et al. 2020a; Gutiérrez Sama
et al. 2018). Almost all of these techniques have a potential of rapid elemental
speciation with low detection limits for the As species. Most of them require very
costly and highly sophisticated analytical equipment, and that becomes a major
disadvantage. Moreover, these methods are prone to spectroscopic interferences
and matrix effects, and include the use of toxic solvents at the stage of sample
preparation. Hence, it is necessary to develop cost-effective but highly efficient
methods with new selective green alternatives to sample preparation of food matrices
in order to overcome the above-mentioned problems (Olesik et al. 1998; Escudero
et al. 2016).

3.5 Microextraction Techniques

The determination of some As speciation, particularly iAs in seafood, is of great
importance for human health. However, it is still a challenge due to the complexity
of food matrices and the relatively low concentrations of these As species in samples.
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Therefore, liquid-liquid extraction (LLE) and solid phase extraction (SPE) are
widely used to pre-concentrate the iAs species. Both extraction techniques evolved
into microextraction techniques (MET), i.e. solid sorbent-based or solid phase
microextraction (SPME), and liquid-based or liquid-phase microextraction
(LPME). METs have been proven to provide similar or even better results in terms
of sensitivity and reproducibility than conventional SPE and LLE. In addition,
METs meet the green analytical chemistry requirements, regarding the reduction
of the reagent and solvent consumption, in addition to the miniaturization and the
automation of the analytical techniques. Moreover, recent METs applications, used
as combined microextraction techniques (CMETs) in which ultrasonication, vortex,
or microwave treatments are employed open new perspectives in sample preparation
for speciation analysis of As (Werner et al. 2018; Jinadasa et al. 2020a). In particular,
CMETs were proposed to combat some limitations in the enrichment factors,
detection limits, and accuracy of METs. SPME was first introduced by Arthur and
Pawliszyn (1990) and after that, several types of SPME such as stir bar sorptive
extraction (SBSE), microextraction in packed sorbent (MEPS), magnetic micro-
solid phase extraction (MμSPE), and dispersive micro-solid phase extraction
(DμSPE) were developed (Jinadasa et al. 2020a). Wu et al. (2000) developed the
polypyrrole (PPY) coated capillary in-tube SPME coupled with liquid chromatogra-
phy electrospray ionization mass spectrometry (LC-ESI-MS) detection for the As
speciation (MMA, DMA, AB, AC) analyses in aqueous samples and certified
dogfish reference materials (DORM-2). Several commercial gas chromatography
(GC) capillary columns were evaluated, but the best extraction performance was
obtained using a lab-made PPY coated capillary which exhibited better extraction
efficiency. Magnetic ferrite particles SPEME combined with an electrothermal
atomic absorption spectrometry method was developed to measure iAs and MMA
in DORM-4 (fish protein) and NIST 1566a (oyster tissue). The detection limit of As
was 0.02 μg L�1 for a 10 mL sample volume (López-García et al. 2018).

LPME techniques were developed to overcome the drawbacks occurring in
convention LLE, such as the use of large quantities of potentially toxic and expen-
sive solvents, long analysis times, and the multi-stage character of the extraction of
the As species. According to the current trends in sample pre-treatment, the follow-
ing LPME approaches are now used to extract As species: single-drop
microextraction (SDME), hollow-fibre liquid-phase microextraction (HF-LPME),
and dispersive liquid-liquid microextraction (DLLME) (Werner et al. 2018; Jinadasa
et al. 2020a). Shirani et al. (2015) developed a procedure for the pre-concentration
and determination of tAs in fish liver based on the use of ultrasound-assisted, ionic
liquid-linked, dual-magnetic multiwall carbon nanotube microextraction (USA-IL-
LDMME), combined with electrothermal atomic absorption spectrometry
(ET AAS). A solution of sodium diethyldithiocarbamate (NaDDTC) was used as
the chelating agent for As species. The proposed method demonstrated a very high
enrichment factor (398), a good linear range (10–100 ng L�1), the low detection
limit for As (5 ng L�1), and a satisfactory precision (3.2%) (Shirani et al. 2015).
There are a number of SPME and LPME applications available for the As extraction
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from environmental and biological samples, but to date very few applications have
been reported for complex matrices such as seafood.

3.6 As Content in Commonly Consumed Seafood

Some recent publications (2015–2020) on As concentrations in fish and seafood
samples from all regions in the world are summarized in Table 3.2. A low As
concentration was observed in freshwater fish species as compared to concentrations
in marine species. Many authors have confirmed this difference for the freshwater
environment (Kumari et al. 2017; Oliveira et al. 2017; Jia et al. 2018a; Miloškovic
and Simić 2015). However, according to some references in Table 3.2, it is not
always true. Accordingly, Ahmed et al. (2016) analysed three freshwater fish
species, namely Rui (Labeo rohita), Pangas (Pangasius pangasius), and Tilapia
(Oreochromis mossambicus) from Bangladesh with Tilapia showing a high As
concentration (average, 1.5 � 0.4 mg kg�1, ww and range 0.98–1.8 mg kg�1,
ww). Moreover, Gbogbo et al. (2017) analysed a number of fish, shellfish, and
gastropod species from Ghana, and found they contained a high As concentration
ranging from 0.86 to 2.01 mg kg�1. This was likely related due to the surrounding
environmental conditions, because the river water of Ghana also showed the high As
concentration, i.e. 0.2–2.2 mg L�1, which was higher than the World Health
Organization (WHO) recommended value for drinking water (10 μg L�1). The tAs
level of the seafood is also dependent on the body tissues of the analysed species.
Sele et al. (2015) determined the As level in liver samples from Northeast Arctic cod
(Gadus morhua) and observed its very high value ranging from 2.1 to 240 mg kg�1

ww. This kind of variation was also observed in different parts of seaweeds such as
Laminaria digitata although the recorded tAs level was very high (59–114 mg kg�1

dw) despite the fact that samples came from a clean seashore area (Ronan et al.
2017).

3.7 International Regulation of As in Seafood

Many international, national, and regional level organizations, for reasons of human
health, have set standards to control the amount of metals and metalloids in seafood.
Such standards usually refer to maximum permissible contaminant levels (MPCL)
(Jinadasa et al. 2020c). MPCL values vary in accordance with the food type and the
regulation body. The MPCL values for iAs are given in different guidelines by
countries, and are 2 mg kg�1 ww in crustaceans and fish, and 1 mg kg�1, ww in
mollusks and edible seaweeds [Australia New Zealand (ANZFA)]; 3.5 mg kg�1, ww
for fish protein, Canadian Food Inspection Agency (CFIA); 0.1 mg kg�1, ww in fish,
fish products and fish seasonings, Ministry of Health of the People’s Republic of
China (MHPRC); and 3 mg kg�1 for algal condiments, Centre d’Etude et de
Valorisation des Algues, France (CEVA). The European Food Safety Authority
(EFSA) and the Food and Drug Administration of the United States (USFDA)
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have also reported MPCL values for certain foodstuffs (e.g. rice, rice-based products
and infant cereals) but not for seafood (Liu et al. 2010; Llorente-Mirandes et al.
2017; Jinadasa et al. 2020c).

The ‘tolerable intake’ is commonly used to describe the ‘safe’ levels of intake.
The joint FAO-WHO expert committee on food additives (JECFA) has established a
provisional tolerable weekly intake (PTWI) value for As of 15 μg kg�1 of body
weight (equivalent to 2.1 μg kg�1 of body weight per day). The EFSA established a
tolerable weekly intake (TWI) value for As and evaluated the safe dietary exposure
to iAs. The PTWI parameter is no longer appropriate and was withdrawn in 2010.
The Panel on Contaminants in the Food Chain (CONTAM) and EFSA, therefore,
suggested a range of values of the benchmark dose lower confidence limit (BMDL)
for As, including 0.3–8 μg of As/kg of body weight per day in case of cancers of
lung, skin, and bladder as well as for skin lesions. BMDL values seem to be more
suitable than a single reference value in the risk evaluation related to the iAs intake.
Also because of limited available data, EFSA has considered an iAs level of
0.03 mg kg�1 in fish and 0.01 mg kg�1 in seafood to be realistic for calculating
human dietary exposure (Llorente-Mirandes et al. 2017; EFSA 2009).

3.8 Bioavailability and Bioaccessibility of As

The bioavailability describes the proportion of a nutrient or trace element in food that
can be absorbed and participate in the functioning of the normal body (Moreda-
Piñeiro et al. 2012a, b). During the gastrointestinal digestion process, food
components are released and only their portions are available for the body function
and storage. Hence, it is important to know the difference between bioavailability
and bioaccessibility. The bioaccessibility denotes the fraction of a given compound
that is released from the food matrix after ingestion and solubilization in the
intestinal lumen. Thus, bioavailability defines the fraction of the solubilized com-
pound that is absorbed in the intestinal tract and reaches the circulatory system
(Barciela-Alonso and Bermejo-Barrera 2016). However, some authors used bio-
availability and bioaccessibility as one term whereas it is affected by the food type,
its composition, a given cooking procedure, and gastrointestinal conditions
(Moreda-Piñeiro et al. 2012a, b).

There are two methods that are used to evaluate the bioavailability of different
food components, namely in vivo and in vitro. In the in vivo method living
organisms are used, thus it is expensive, difficult to reproduce, and ethically contro-
versial (Barciela-Alonso and Bermejo-Barrera 2016). For that reason, the in vitro
methods are mostly used to assess the bioavailability of these components, and the
methods usually contain mainly two steps, i.e. gastric digestion stage and intestinal
digestion stage. In some in vitro methods, semi-permeable membranes with specified
pore sizes are applied during the intestinal digestion step to simulate the nutrient
absorption mechanism (Moreda-Piñeiro et al. 2012a, b). Since the toxicity of
elements strongly depends on their physico-chemical forms, and they are differen-
tially bioavailable, it is necessary to assess the bioavailability of each As species.
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The bioavailability (Moreda-Piñeiro et al. 2012a, b; Garcia-Sartal et al. 2012) and
bioaccessibility (Contreras-Acuña et al. 2014; Cano-Sancho et al. 2015; Lyu et al.
2020; Alves et al. 2018; García-Sartal et al. 2011; Koch et al. 2007; Laird and Chan
2013; Maulvault et al. 2011; Torres-Escribano et al. 2011) studies on tAs and the As
species in the seafood are summarized in Table 3.3. Moreda-Piñeiro et al. (2012a)
evaluated the bioavailability of tAs and As speciation in seafood (fish and mollusks)
based on the in vitro approach and using dialysis membranes. High dialyzability
percentages for tAs and As species were found, i.e. ranging from 84.6 � 1.7% to
106 � 2.6%. These authors concluded that the fat content in the sample mainly
affected the bioavailability of tAs, AB, and AC. The higher bioavailabilities of As
were observed in less fat containing seafood samples. However, the authors also
observed that there was no correlation between the As bioavailability and the protein
content of seafood. The same bioavailability method has been used in the case of
seaweed species (e.g. Kombu, Wakame, Nori, and Sea Lettuce) (García-Sartal et al.
2011, 2012). The results revealed that approximately 11–16% of tAs, of which
93–120% were AS, were recovered from dialysates. In general, As showed a higher
bioavailability percentage than mercury (Hg) or cadmium (Cd) in seafood. As an
example, the bioavailability of As, up to 100% of tAs, was observed in fish and crab
(Maulvault et al. 2011), as much as 95% of tAs in anemones (Contreras-Acuña et al.
2014), 72–89% of tAs in different fish species (Cano-Sancho et al. 2015), and nearly
100% of tAs and As (III) in gastropods (Lyu et al. 2020). However, Contreras-Acuña
et al. (2014) reported that 85% of tAs ingested by humans was eliminated from the
body by urination within 90 h.

3.9 Cooking Effect of As in Seafood

Most of the tAs and As speciation assessment of seafood has been performed with
the raw (fresh) samples. However, except for a few cases, most of the seafood
products are consumed after treating them with different culinary procedures such
as boiling, baking, frying, grilling, etc. These treatments can alter the tAs content and
the As speciation (Barciela-Alonso and Bermejo-Barrera 2016). Devesa et al.
(2001a) studied the effect of different cooking procedures (grilling, roasting, baking,
stewing, boiling, steaming, and microwaving) on the changes in the tAs and iAs
levels in several seafood species such as hake, megrim, anchovy, sardine, Atlantic
horse mackerel, bivalves, squid, crustaceans, and salted cod. They observed a
significant increase of tAs after cooking bivalves and salted cod, and also iAs in
the case of squid and bivalves. The same authors (Devesa et al. 2001b) studied the
effect of different cooking processes (i.e. baking, frying, and grilling) and tempera-
ture on the oAs speciation (AB, TMA+, TMAO) in several seafood species (sole,
dory, hake, and sardine). The cooking temperature varied from 90–160 �C and the
cooking time between 5 and 25 min. It was found that AB underwent changes in the
samples during the heating, and they were transformed into another more toxic
species, i.e. TMA+. Moreover, it was observed that an increase in cooking tempera-
ture and time resulted in production of higher amounts of TMA+. However,
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Table 3.3 Bioavailability/bioaccessibility studies of tAs and As species in different seafood

Sample matrix
Bioavailability or
bioaccessibility process As species Ref.

Fish and
molluscs

[Bioavailability]
1. Mix 0.5 g powdered seafood
sample with 20 mL ultra-pure
water (pH 2)
2. Add 0.15 g of gastric juice
solution (6% pepsin in 6MHCl)
and incubate at 37 �C (150 rpm,
120 min)
3. Add 5 mL of and intestinal
juice solution (4% pancreatin,
2.5% bile salt in 0.1 M
NaHCO3)
4. Introduce a dialysis bag
(10 kDa) filled with 20 mL of a
0.15 N PIPES solution (pH 7.5)
and incubate at 37 �C (150 rpm,
120 min)

tAs, As (III), As (V), AB,
DMA, MMA, AC

Moreda-
Piñeiro
et al.
(2012a, b)

Seaweed [Bioavailability]
Same procedure as above

As (III), AB, DMA,
AS-Gly, AS-PO4, AS-SO3

García
Sartal
et al.
(2012)

Seaweed [Bioavailability]
Same procedure as above

As (III), as (V), AB, DMA,
MMA, DMA, AS-Gly,
AS-PO4, AS-SO3

Garcia-
Sartal
et al.
(2012)

Seafood
(Anemonia
sulcata)

[Bioaccessibility]
1. Mix 1 g of cooked anemone
with 10 mL of a gastric juice
solution (100 mg
pepsin + 10 mL 150 mM NaCl,
pH 2.5)
2. Incubate at 37 �C (4 h,
150 rpm)
3. Add 10 mL of an intestinal
juice solution (3% pancreatin,
1% amylase, 1.5 g L�1 bile salt
in ultra-pure water), adjust pH to
7.4
4. Incubate at 37 �C (4 h,
150 rpm), centrifuge (8 g,
30 min, 4 �C)

As (III), as (V), AB, DMA,
MMA, AC, DMASV,
GpAsC, TMAO, TETRA,
tAs

Contreras-
Acuña
et al.
(2014)

Seafood [Bioaccessibility]
1. Mix 5 g of cooked sample
with 5 mL of artificial saliva
solution (5 min)
2. Add 12 mL of a gastric juice
solution and stir for 2 h (37 �C,
60 rpm)
3. Add 12 mL of a duodenal

tAs Cano-
Sancho
et al.
(2015)

(continued)
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Table 3.3 (continued)

Sample matrix
Bioavailability or
bioaccessibility process As species Ref.

juice solution and stir for 5 min,
and then add 5 mL of bile juice
solution and stir for 2 h (37 �C,
60 rpm)
4. Separate a non-digestible
fraction by centrifuging
(10,000 g for 10 min, 4 �C)

Gastropod
(Bellamya
aeruginosa)

[Bioaccessibility]
1. Mix 0.5 g of powdered
sample with 6 mL artificial
saliva solution (pH 6.8),
incubate for 5 min (37 �C,
250 rpm)
2. Add 12 mL of artificial gastric
juice solution (pH 1), incubate
for 2 h (37 �C, 250 rpm)
3. Add 12 mL of a duodenal
juice solution, 6 mL of a bile
juice solution, 2 mL of a 1 M
Na2CO3 solution and incubate
for 2 h (37 �C, 250 rpm)
4. Separate a non-digest fraction
by centrifuging (10,000 g,
10 min)

tAs, as (III), as (V), AB,
DMA, AC

Lyu et al.
(2020)

Seafood [Bioaccessibility]
1. Mix 1.5–2 g of sample with
4 mL of a saliva fluid (pH 7),
5 min (37 �C, 25 rpm)
2. Add 8 mL of a gastric fluid
(pH 2), incubate for 2 h, (37 �C,
25 rpm)
3. Add 8 mL of a duodenal fluid,
4 mL of a bile fluid (pH 7),
incubate for 2 h, (37 �C, 25 rpm)
4. Separate the bioaccessible
fraction by centrifuging (2750 g,
10 �C, 10 min)

tAs Alves
et al.
(2018)

Seaweeds
(kombu,
wakame, nori,
and sea lettuce)

[Bioaccessibility]
1. Mix 0.5 min sample with
20 mL ultra-pure water, after
20 min adjust to pH 2 (6 M HCl)
2. Add 0.15 g of a gastric
solution (pepsin 6%, in 0.1 M
HCl) and incubate for 2 h
(37 �C, 150 rpm)
3. Add 5 mL of a gastric
solution (0.4% pancreatin, 2.5%
bile salt in 0.1 M NaHCO3)
4. Introduce a dialysis

tAs García-
Sartal
et al.
(2011)

(continued)
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Rasmussen et al. (2017) studied the cold smoking process of Greenland halibut and
Atlantic salmon and concluded that non-toxic oAs did not transform into carcinogen
iAs during the industrial process. The same observation was reported by Schmidt
et al. (2017). In their study, three different culinary treatments, i.e. boiling, frying,
and sautéing with or without the addition of three spices, i.e. salt, lemon juice, and
garlic on the As speciation [As (III), As (V), AB, DMA, MMA] of blacktip shark and
Asian tiger shrimp were investigated. It was confirmed that there was no intercon-
version of the As species due to any culinary treatment and the addition of spices.

Table 3.3 (continued)

Sample matrix
Bioavailability or
bioaccessibility process As species Ref.

membrane (10 kDa) filled with
20 mL of a 0.15 N PIPES
solution (pH 7.5) and incubate
at 37 �C (150 rpm, 120 min)

Seafood [Bioaccessibility]
1. Mix 2 g sample with 30 mL of
a stomach solution (0.6%
pepsin, 0.85% NaCl, pH 2) and
incubate for 2 h (37 �C,
130 rpm)
2. Add 50 mL of an intestinal
juice solution (3 g L�1 porcine
pancreatin, 6 g L�1 oxgall,
12.5 g L�1 NaHCO3) and
incubate for 3 h (37 �C,
130 rpm)
3. Separate the bio accessible
fraction by centrifuging
(10,000 g, 20 min)

tAs Laird and
Chan
(2013)

Fish, crab 1. Mix 5 g of sample with 5 mL
of a saliva solution (pH 6.8) and
5 min (37 �C, 60 rpm)
2. Add 12 mL of a gastric juice
solution (pH 1.3) and incubate
for 2 h (37 �C, 60 rpm)
3. Add 12 mL of a duodenal
juice solution (pH 8.1), incubate
for 5 min (37 �C, 60 rpm), and
add 6 mL of a bile juice solution
(pH 8.2) and finally incubate for
2 h (37 �C, 60 rpm)
4. Separate the digested fraction
by centrifuging (10,000 g,
10 min, 10 �C)

tAs Maulvault
et al.
(2011)

AB arsenobetaine, AC arsenocholine, DMA dimethyl arsonic acid, DMASV

dimethylmonothioarsinic acid, MMA monomethyl arsonic acid, GpAsC
glycerylphosphorylarsenocholine, tAs total arsenic, TETRA tetra-methyl-arsonium, TMAO
trimethylarsine oxide
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The extraction efficiency was not changed; only in case of boiling was a 15–45%
loss of As observed.

The effect of four cooking methods (baking, grilling, microwaving, and frying)
on the element profile in sea bass fillets (Dicentrarchus labrax) was studied by Ersoy
et al. (2006). It was found that the As concentration of fried and microwaved samples
was increased significantly, hence these culinary processes were concluded not to be
suitable for seabass. Laparra et al. (2004) studied the cooking effect on commercially
available edible seaweeds, Hizikia fusiforme, which had a high content of tAs and
iAs. It was established that boiling at 100 �C for 20 min caused a significant
reduction in the concentrations of tAs (30–43%) and iAs (46–50%). A reduction
in tAs was also observed by García Sartal et al. (2012) in seaweed samples following
boiling. It was demonstrated that 69% of tAs in Kombu, 50% in Wakame, 71% in
Nori, and 34% in sea lettuce were released into the boiling water. Furthermore, it was
suggested that the heat treatment and acidic environment and enzymes used in the
in vitro gastrointestinal digestion did not produce any changes in the As speciation of
the four seaweeds studied. In another study conducted by Contreras-Acuña et al.
(2014), the cooked anemones (Anemonia sulcata) were prepared in wheat flour and
fried with olive oil. This treatment resulted in a 54% loss of tAs. Thus, the increase or
the decrease in the As content of seafood species is both species and culinary
treatment specific.

3.10 Risk Assessment of As and Seafood

An increasing concentration of As in the environment is a major threat to human
health from exposure through inhalation, ingestion, and dermal contact (Ferrante
et al. 2019). Oral consumption of seafood is primarily the major route for human
exposure to As (Lorenzana et al. 2009). The Agency for Toxic Substances and
Disease Registry (ATSDR) of the United States of America categorized As as
number one in their substances priority list in 2017; furthermore, it is also
categorized as a human carcinogen by the International Agency for Research on
Cancer (IARC) (Jinadasa and Fowler 2019). Health risk associated with exposure to
As is a significant global health issue that affects millions of people. The symptoms
of acute exposure to As include vomiting, abdominal pain, and diarrhoea. Chronic
exposure to As is associated with cancer, skin diseases, developmental effects,
morphological alterations, cardiovascular disease, neurotoxicity, epigenetic changes
like DNA methylation, increased risk of diabetes mellitus, adverse pregnancy
outcomes, and a variety of complications in body organ systems (Hsueh et al.
2016; Upadhyay et al. 2018). Hence, the determination of As speciation in seafood
is a more important factor to be considered in human health and risk assessment
studies than the tAs measurement.

Seafood contains both iAs and oAs species, but the iAs species are considered
more toxic than the oAs species. The main oAs species in seafood, such as AB, is not
metabolized by humans. Hence, it is excreted unchanged and assumed to be of no
toxicological concern (Ferrante et al. 2019). The United States Environmental
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Protection Agency (USEPA) published a consensus toxicity value of oral exposure
dose (RfD) for the iAs species, but not for the oAs species (Lorenzana et al. 2009).
However, there is a lack of metabolism pathways and toxicity studies regarding such
As species as AL, etc. (Taylor et al. 2017). Most of the available health risk
assessment studies dealing with As in seafood have used the following measures;
provisional tolerable weekly intake (PTWI) or average daily intake (ADI), target
hazard quotient calculation (THQ) for non-carcinogen risk analysis, and the cancer
risk (CR) calculation. When a THQ is lower than 1, it means that there is no adverse
effect coming from the oral exposure to As. A value greater than 1 means that there is
a statistical possibility of developing chronic systemic effects, but it does not provide
a risk quantification. In the case of CR, when its value is above an acceptable lifetime
risk (ALR) or equal to 1 � 10�5, there is 1 chance in 100,000 that a person could
develop cancer from the oral exposure to iAs. Such results depend not only on the As
concentration in seafood, but also on the amount consumed, the culinary pattern,
season, consumer body weight and age, etc. (Ferrante et al. 2019). Even with the
limitation of available data, some researchers have concluded that there is a health
risk associated with long-term consumption of some seafood species having a high
iAs content, and some potential risk to certain age groups and in some areas where
seafood is highly consumed (Lyu et al. 2020; Omeragic et al. 2020; Jia et al. 2018b;
Ahmed et al. 2016).

3.11 Conclusions

The accumulation of arsenic in seafood and the analytical techniques for the routine
extraction, or micro extraction, and detection of total As (tAs) and various As species
are presented and evaluated in this chapter. Related to these topics, recent
publications, international regulations, and aspects of bioavailability and
bioaccessibility of As from seafood, cooking effects on As content, and bioavail-
ability and risk assessment related to oral As exposure are also discussed in detail.
Sample pre-treatment and pre-concentration techniques, such as SPE and LPE, are
deemed important when As speciation analysis is carried out in seafood. The
hyphenated techniques, combined HPLC or IC separation with ICP MS and ICP
OES detection, or GFAAS and HGAAS are reliable analytical methods used for the
determination of tAs as well as separated inorganic (iAs) and organic (oAs) arsenic
species. It seems that the most common and frequent hyphenated technique is
HPLC-ICP MS which possesses a high specificity and high sensitivity, in addition
to the possibility of multi-element analysis. However, in the risk assessment
analyses, transformation pathways of most As species and culinary effects on As
content in seafood still remain unclear. Therefore, further studies are necessary to
find the solutions for filling these gaps. Certainly, standards of individual oAs
species and certified reference materials that represent particular matrices of seafood
samples and contain these oAs compounds will help in this type of research. Their
role in a proper selection of the conditions for sample preparation before
measurements, chromatographic separation of individual arsenicals during, and
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finally confirmation of the reliability of the results of the speciation analysis cannot
be overestimated.
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Dietary Arsenic Exposure: Sources and Risks 4
Anamika Shrivastava

Abstract

Arsenic occurs in both organic and inorganic forms and is contributed by natural
as well as anthropogenic sources. Inorganic arsenic, due to its high toxicity, is
very critical for toxicological risk assessments from dietary exposure. It had been
reported that when water has under low-arsenic concentration, food becomes the
primary contributor to arsenic exposure in general population. Arsenic has been
found in many food varieties such as rice, wheat, vegetables, fruits, beverages
fishes, seafoods, etc. throughout the world, in different forms. Of all, rice plays a
dominant role in contributing to the overall dietary exposure to inorganic in most
parts, particularly where rice is a staple dietary source. In terms of the vulnerabil-
ity, younger population is found to have more dietary exposure, which may be
attributed to high food consumption on body weight basis and less variation in
diet, mostly rice-based products. Although this high food consumption does not
reflect a greater risk of adverse effects in them as most of the health effects of
arsenic are a result of chronic exposure and only a few have been associated with
acute arsenic exposure. Epidemiologic studies have linked chronic or acute
dietary arsenic exposures with various adverse health effects such as cancer and
many non-malignant manifestations like cardiovascular disease, type II diabetes,
skin lesions, respiratory, haematological, immune, reproductive, endocrine, and
neurological disorders. The risks associate with the dietary arsenic exposures
have become a public health concern and it call for effective intervention to lower
the exposure, especially to vulnerable populations.

Keywords

Dietary exposure · Arsenic · Risks · Vulnerability · Public health

A. Shrivastava (*)
Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021
N. Kumar (ed.), Arsenic Toxicity: Challenges and Solutions,
https://doi.org/10.1007/978-981-33-6068-6_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6068-6_4&domain=pdf
https://doi.org/10.1007/978-981-33-6068-6_4#DOI


4.1 Introduction

Arsenic (As) is a ubiquitous metalloid occurring in the environment as a result of
natural as well as anthropogenic processes (Davis et al. 2017; Yager et al. 2015;
Shrivastava et al. 2020). Arsenic occurs both in organic and inorganic forms, in over
50 recognized naturally occurring species, major arsenic forms are shown in
Table 4.1 (Pétursdóttir 2010). Different forms of arsenic vary in terms of toxicity,
which depends on its complex chemical species and thus contributing to public
concerns regarding risks (Pétursdóttir 2010; Nachman et al. 2017; Ciminelli et al.
2017; EFSA 2014; JECFA 2011; ATSDR 2007).

The inorganic forms of arsenic (iAs) (arsenite, As (III) and arsenate, As
(V) derived from H3AsO3 and H4AsO4, respectively) are the most toxic. Further-
more, simple methylated forms such as methylarsonic acid (MA) are slightly toxic
and are found as an intermediate form in the process of detoxification of iAs in
human body (Leermakers et al. 2006), whereas the organic forms such as
arsenobetaine (AsB) are considered to be non-toxic (Pétursdóttir 2010). Generally
human exposure to As is primarily through consumption of As-contaminated water
and food but in areas where As level in water is less than 10 ppb [Maximum
Permissible limit (MPL) given by WHO 2010], food becomes the main source of
dietary exposure (Xue et al. 2010; IARC 2012a, b; Baker et al. 2018; Yager et al.

Table 4.1 Major arsenic forms

Arsenic
forms Name/abbreviation Chemical structure Relevance

Total
arsenic

tAs Sum of inorganic and organic
arsenic

Inorganic
arsenic
(iAs)

As (III) As(O�)3 Highly toxic, found in reduced
condition

As (V) O ¼ As(O�)3 Toxic, favoured by oxidizing
conditions

Organic
arsenic

Arsenobetaine
(AsBe)

(CH3)3As
+CH2COO

� Relatively non-toxic, main
source of arsenic found in
seafoods

Arsenocholine
(AsCho)

(CH3)3As
+CH2CH2OH Potentially toxic compound,

source of arsenic found in
seafoods

Methylarsonic acid
(MA)

CH3AsO(O
�)2 Slightly toxic, an intermediate

in the detoxification of
inorganic arsenic in human
body

Dimethylarsinic acid
(DMA)

(CH3)2AsO(O
�) Considerably less toxic,

reduced and methylated form
of MA

Trimethylarsine
oxide (TMAO)

(CH3)3AsO Potentially hazardous, minor
as species in seafoods

Tetramethylarsonium (CH3)4As
+ Intermediate in as metabolism
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2015; Kurzius-Spencer et al. 2014; Halder et al. 2013). A recent study (2003–2004
NHANES) has also found that among population with drinking water As concentra-
tion above the MPL, food contributed to 30% of iAs exposure. The same was found
to be between 54 and 85% where drinking water As concentration was below MPL
(Kurzius-Spencer et al. 2014; Nachman et al. 2017). In some cases, the exposure can
also be by dermal route or respiratory inhalation, which in general is much less than
the oral. The dermal route or respiratory inhalation can become a primary route
mostly in case of occupational As exposure (Pétursdóttir 2010; Baker et al. 2018).
The human exposure to As is also increased by the lifestyle of a person, for example,
by cigarette smoking, even then food is found to be the primary contributor (ATSDR
2007).

The As exposure varies as per the local geochemistry, level of pollution, living
conditions, etc. (Xue et al. 2010). In general, low background levels of As are
present in natural water expect a few areas, in the world, e.g. West Bengal,
Bangladesh, South-east Asia, etc. (Shrivastava et al. 2017). People most exposed
to arsenic are those living in As- affected low-income areas who mostly rely on
locally grown food and contaminated groundwater source for daily purposes such as
drinking, irrigation, and cooking (Cubadda et al. 2017; Baker et al. 2018). It has been
reported that the overall iAs exposure to people living in these areas is almost
10 times more compared to other places (Cubadda et al. 2017). As a result,
As-contamination of water and food has become a serious problem which is putting
the health and well-being of more than 150 million people worldwide, in danger
(Shrivastava et al. 2015; Majumder and Banik 2019; Upadhyay et al. 2020).
Additionally, some reports have also mentioned As exposure through sea foods
but that mostly is in the relatively non-toxic organic forms (Pétursdóttir 2010). Due
to this reason, scientists, researchers, and food related health surveys have now
started to focus more on estimating iAs in food items rather than tAs alone (Xue et al.
2010; Wong et al. 2013; Oguri et al. 2014; Yager et al. 2015).

In humans, iAs forms are rapidly absorbed when consumed orally (50% to
>95%) (Rose et al. 2010; Pétursdóttir 2010), whereas the in case of organic As
forms the absorption value is generally more than 70% (Yager et al. 2015). After
absorption, these find their way to almost every organ of the exposed person (EFSA
2009). The resulting human exposure has been associated with a wide range of
adverse outcomes (Sharma et al. 2014; UN FAO/WHO 2011).

iAs has been classified as Group I carcinogen and in addition to cancer, it has
been linked with many other adverse health outcomes such as skin lesions, repro-
ductive, hepatic, cardiovascular, respiratory, neurological disorders, and more
(Melkonian et al. 2012; National Research Council 2014). Studies have also reported
a twofold increase in risk of diabetes mellitus when consumed orally (Lim et al.
2014). Moreover, iAs has also been linked with the neurodevelopmental effects on
new born and in early life, making it a matter of high public concern in terms of
dietary risk assessment and management (Nachman et al. 2017; Cubadda et al.
2017).

Despite above-mentioned outcomes of As exposure and significant number of
exposed population via ingestion of contaminated food and water, focus of
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regulatory bodies, in the past has been on limiting iAs in drinking water and soil
(Kurzius-Spencer et al. 2014; Carlin et al. 2015). However, only recently the need
for regulatory limits of iAs in food has been recognized by many national and
international agencies (Nachman et al. 2017). Additionally, the importance of
assessment study of dietary iAs exposure in humans and characterisation of food
related risks have also been acknowledged (Marcason 2015; Cubadda et al. 2017).

Rare but another risk associated with As is the accidental ingestion of As
containing pesticides or insecticides, which can eventually lead to acute As exposure
that can become fatal if consumed above 100 mg (Duarte et al. 2009). The most
common symptoms of acute As exposure are abdominal pain, cramping, nausea,
vomiting, and diarrhoea. These can progress to serious issues like kidney failure,
respiratory issues, etc. and sometimes may lead to shock, coma, and death of the
victim (Lim et al. 2014; Duarte et al. 2009; Ratnaike 2003).

Although the concern on levels and effects of iAs in food are now being
recognized as a public health concern (EFSA 2014; JECFA 2011; ATSDR 2007),
general population are still not much aware to make informed choices regarding their
diet and food of preference (Lai et al. 2015).

4.2 Arsenic Sources in Foodstuffs

Arsenic being ubiquitous in nature can enter foodstuffs after getting released in soil
and water by various natural and anthropogenic processes (Nachman et al. 2017). In
some parts of the world, As is primarily released into soil and water by geogenic
processes like weathering and volcanic activities (Aiuppa et al. 2006; Nachman et al.
2017; Haque et al. 2019; Shrivastava et al. 2020). However, it has also been
observed that in some cases human activities become the main source to As in soil
and water and ultimately reaching the food system. The most common anthropo-
genic sources for As release are reported to be industrial activities (Baker et al.
2018), smelters (Pershagen 1985), arsenical drugs in animal agriculture (Nachman
et al. 2013, 2016), and chemical weapons (Fox et al. 2010). Furthermore, the use of
arsenic based pesticides in agriculture and the subsequent runoff to water are other
potential sources (Li et al. 2016). On the one hand, the crops grown in contaminated
soil pose a threat to food safety, the use of contaminated groundwater for irrigation
makes the situation worse by further adding up to the overall load of As in soil and
thus reaching to cultivated crops (Baker et al. 2018).

Moreover, as a consequence of increasing food demands in countries like India
and Bangladesh coupled with the “Green Revolution,” farmers are now cultivating
the same land three to four times a year, which has made them to rely on the
As-contaminated shallow groundwater sources for irrigation (Shrivastava et al.
2014). Reports have shown that in these regions, to fulfil the increased water
demand, thousands of pumps abstracting water from shallow aquifers have been
installed in the last few decades. These aquifers are proven to be highly
contaminated with iAs of geogenic origin (Halder et al. 2013; Barla et al. 2017).
This continued use of As-laden groundwater for irrigation accumulates iAs in the
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upper surface of soil of the irrigated lands, affecting the topsoil strongly (Heikens
2006; Roberts et al. 2007; Baig et al. 2011; Shrivastava et al. 2014; Sahoo and
Mukherjee 2014; Baker et al. 2018). This increase of As in the topsoil has ultimately
resulted in increase in reported cases of As accumulation in locally grown food crops
(Halder et al. 2013; Cubadda et al. 2017; Shrivastava et al. 2020).

Although contaminated soil has a big role in the accumulation of As in cultivated
food crops, (Nachman et al. 2017), As present in them are not always available for
plant uptake (bioavailable) due to their presence in different forms in the soil. The
fraction of soil As which is bioavailable depends on various factors like As species,
pH, redox potential, organic matter, biotic factors, etc. playing a significant role
(Shrivastava et al. 2014, 2015; Majumdar and Bose 2018; Cubadda et al. 2017).
Moreover, the rate of As uptake and its accumulation also varies from crop to crop
and it is more concerning for rice in terms of As accumulation in grains, as the
cultivation field requires 3/4th of its time to be fully inundated with water
(Shrivastava et al. 2020). This condition leads to soil As build-up when
contaminated water is used for irrigation and also provides a reduced condition
that favours conversion of As (V) to As (III), the latter being more bioavailable and
toxic at the same time (Upadhyay et al. 2019; Shrivastava et al. 2020). It has been
reported that plants grown in As-rich environments can take up substantial amounts
As and accumulate it in its edible portions (Signes-Pastor et al. 2012; Williams et al.
2007). The dietary As exposure from food of animal origin is of less concern as
reports have found that animals metabolize and excrete excess As, efficiently
(Cubadda et al. 2017).

In addition to As concentration in cooking medium (typically water), dietary
exposure to As is also affected by the food preparation and cooking methods, which
play a major role determining the As content of the final product (Cubadda et al.
2017). Generally, most food prepared using As-contaminated water are expected
retain As contributed by water, thus become more concerning than when cooked
using low As water (Halder et al. 2014). This has been proven by many other studies
on different food items such as soups, lentils, etc. (Del Razo et al. 2002), rice
(Torres-Escribano et al. 2008; Halder et al. 2014), and vegetables (Diaz et al.
2004). However, there are a few studies which have also observed that high As
containing food have a tendency to show a decrease in the overall iAs in the final
product when prepared using low As containing water (Bundschuh et al. 2012).
Although this is not same for the food that require large volume of water or longer
cooking time, here they tend to retain more As from the water (Laparra et al. 2005).

Furthermore, in case of rice, additional steps such as rinsing raw rice multiple
times with water, boiling in excess water to be discarded later, have proven to be
quite effective in the reduction of dietary As exposure for people consuming rice as a
staple diet (Halder et al. 2014; Cubadda et al. 2017; Mihucz et al. 2010; Rahman
et al. 2006; Sengupta et al. 2006). For other food items which requires more cooking
time, it tend to lose their moisture and the As concentration per unit mass increases.
Similar trend was reported by Ersoy et al. (2006) and Devesa et al. (2001) in sea bass
and bivalves, respectively, when food items were microwaved and fried. The same
showed a net decrease in As content as the cooking method was changed to steaming
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(Cubadda et al. 2017). Similar result was also reported by Raab et al. (2009)
although there was a slight reduction in his study.

Other sources of As in foodstuffs can be the use of arsenic containing compounds
as herbicides (e.g. sodium methanearsonate), pesticides (e.g. arsenate and arsenic
trioxide), and in some countries, As containing feed additives (e.g. Roxarsone)
(EFSA 2009).

4.3 Health Effects of Dietary Arsenic Exposure

4.3.1 Chronic Exposure

Epidemiologic studies have linked chronic or acute As exposures due to ingestion of
food and water with various adverse health effects (IARC 2004; UN FAO/WHO
2011; Sharma et al. 2014; NRC 2014; Carlin et al. 2015; Nachman et al. 2017).
Although a wealth of epidemiologic evidences supports that chronic exposure of As
is linked to an increased risk of diverse types of cancer such as lungs, bladder, and
skin (IARC 2012a, b), only a few have shown conclusive evidence of connection
with cancer of other organs such as kidney, liver, and prostate (ATSDR 2007;
Cubadda et al. 2017). The non-malignant manifestations of chronic As exposure
(�0.02 mg/kg BW/day) have also been reported and are associated with numerous
organ systems, ranging from cardiovascular disease, type II diabetes, skin lesions,
respiratory, haematological, immune, reproductive, endocrine to neurological
disorders (WHO 2010; ATSDR 2007; James et al. 2015; Moon et al. 2017; Cubadda
et al. 2017; Smith et al. 2006; WHO 2011a, b; Liaw et al. 2008; Yorifuji et al. 2011;
US FDA 2016; EFSA 2009).

4.3.1.1 Skin Manifestations
Studies have reported that the one of the most prevalent and typical signs of chronic
iAs exposure is the dermal effects (ATSDR 2007; EFSA 2009; WHO 2010; US
FDA 2016). Here the most sensitive indicator is the generalized hyperpigmentation,
which can progress to Palmoplantar hyperkeratosis with the continued exposure of
high-dose As (0.04 mg/kg BW/day) for 6 months to 3 years or chronic exposure of
low dose (�0.01 mg/kg BW/day) As for 5–15 years (US FDA 2016; ATSDR 2007;
EFSA 2009). These may vary in some cases where the exposed person can show
hypopigmentation or sometimes it may appear as mix of both hyperpigmentation
and hypopigmentation on the face, neck, and back (WHO 2010; EFSA 2009). Some
studies have also reported the occurrence of benign cutaneous warts or thickening of
the outer layer of feet, palms, or other body parts (Baker et al. 2018). These skin
manifestations are the diagnostic of chronic arsenicosis, which at later stage may
progress to nonmelanoma skin cancers in most of the exposed population with
repeated oral ingestion of As (Mazumder 2000; Chakraborti et al. 2003; ATSDR
2007).
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4.3.1.2 Cancer
Arsenic, a class I carcinogen has been proven to cause human malignancies of many
forms (EFSA 2009). The initial evidences were based largely on reported skin and
respiratory cancers occurring due to the occupational exposures to people from
activities like mining and smelting (Baker et al. 2018). Numerous studies on lower
As exposure have shown increased risks of bladder cancer (IARC 2012a, b). While
many studies from south Asia, south America, and the USA have reported exposed
population to develop lung, prostate, kidney, and liver cancer. Additionally, reports
of relation between iAs exposure and smoking in increasing the lung cancer risk are
also present (Chen et al. 2010a, b; Ferreccio et al. 2013). These evidences are
consistent in all these studies and thus have also been included in the IARC report
(IARC 2012a, b).

4.3.1.3 Respiratory Disease
Chronic As ingestion has also been associated with many respiratory diseases such
as injury to the pulmonary vasculature affecting the blood vessels along the route
between the heart and lungs (Chen et al. 2009; Farzan et al. 2013). Additionally,
some cases of bronchitis and other pathological conditions such as bronchopneumo-
nia have also been found in the exposed population (ATSDR 2007; Guha Mazumder
et al. 2010).

4.3.1.4 Liver Disease
The effects of chronic As ingestion in liver can range from serious hepatic injury to
renal cancer. Studies have shown that patients with repeated oral As exposure
(0.01–0.1 mg As/kg/day) have been examined with swollen and tender liver, often
time (Liu et al. 2015). Many detailed studies of blood analysis and histological
examinations have also reported increased levels of hepatic enzymes and portal tract
fibrosis, respectively (Guha Mazumder et al. 2010; Shi et al. 2014). Additionally, in
some cases hepatic damages like cirrhosis and internal bleeding from esophageal
varices have also been observed in the exposed population (Tan et al. 2011).

4.3.1.5 Cardiovascular Diseases
The study on association between chronic As exposure via oral route and cardiovas-
cular disease has shown adverse effects of exposure on the cardiovascular function,
ranging from peripheral vascular disease prevalence, black foot disease (BFD),
coronary heart disease (CHD), myocardial infarction to stroke (Navas-Acien et al.
2005; Mazumder 2008; Tseng 2008). Although the observed associations between
As exposure and cardiovascular outcomes still call for more detailed studies (Chen
et al. 2009; Moon et al. 2017).

4.3.1.6 Nervous System
Several studies have shown an association between exposure to iAs and nervous
system injury (Mazumder 2008). One of the signature effects of iAs exposure is the
symmetrical peripheral neuropathy which has been reported in most of the cases
with repeated chronic ingestion of lower levels (0.03–0.10 mg/kg/day) although this
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can also occur in case of acute exposure (EFSA 2009; Mazumder 2008). The distinct
symptoms of As exposure begin with numbness in hand and feet, which may later
progress to pricking sensation (ATSDR 2007). Some studies have also reported the
effects on both sensory and motor nerves along with weakening of muscles and
reduced sensitivity to stimuli in addition to abnormal patellar reflexes (EFSA 2009;
Rodrıguez et al. 2003). Studies on the histology of nerves from affected person have
shown axonal peripheral neuropathies with damage to the myelin sheath (EFSA
2009; Sińczuk-Walczak et al. 2010). Furthermore, a detailed histological study of
exposed population has shown inconsistency in peripheral neuropathy between
acute and chronic As exposure, suggesting different mechanisms in their pathogen-
esis (Tseng et al. 2006).

4.3.1.7 Reproductive Effects
The chronic exposure to As has mostly been reported in case of drinking water as a
source. The outcome of these studies has reported many adverse reproductive effects
such as increase in spontaneous abortions, stillbirth, and preterm birth compared to
non-exposed women (Gilbert-Diamond et al. 2016; Milton et al. 2005). There are
studies which also suggest that exposure of pregnant women to iAs can pose
negative impacts on foetal development (Gilbert-Diamond et al. 2016; Raqib et al.
2009; Vahter 2008; Davis et al. 2017).

4.3.2 Acute and Intermediate Exposure

iAs is very toxic and ingestion of it in high doses can result in death (ATSDR 2007;
Mazumder 2008). Many studies have established the oral lethal dose of iAs to be
between 70 and 180 mg/day (US FDA 2016). The adverse health outcomes of iAs
can occur in many different organs depending upon the dose and duration of iAs
exposure. In case of intermediate to acute exposure (�0.2 mg As/kg BW/day) the
symptoms can be range from diarrhoea, vomiting, blood in the urine, muscle cramps,
stomach pain to convulsions (US FDA 2016).

The studies on intermediate exposure in terms of duration (weeks to months) have
reported outcomes such as gastrointestinal effects (common symptoms like abdomi-
nal pain, vomiting, diarrhoea, and cramping), peripheral neuropathy (common
symptoms like numbness, burning, or tingling sensations), and haematological
effects (common symptoms like anaemia and leukopenia), somewhat similar to the
chronic expose (ATSDR 2007).

Several other studies on acute iAs ingestion (�8 mg As/kg) have reported serious
adverse outcomes on respiratory system, such as respiratory distress, haemorrhagic
bronchitis, and pulmonary oedema (Mazumder 2008). There are also reports where
gastrointestinal system may be affected, with symptoms like vomiting, diarrhoea,
and severe abdominal pain, with short-term high-dose (�0.01 mg/kg/day) ingestion
of iAs (Vantroyen et al. 2004; US FDA 2016). However, these symptoms generally
tend to fall-off soon as the exposure stops (ATSDR 2007). Additional outcome of
acute iAs exposure (�2 mg As/kg/day) includes hepatic effects like liver failure
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(Vantroyen et al. 2004; Shi et al. 2014) and neurological effects like headache,
confusion, seizures, coma, etc., a major indication of encephalopathy (Vantroyen
et al. 2004).

4.4 Vulnerable Populations

In case of As, most of the results of adverse health outcomes have come from
numerous reported cases in humans rather than animal studies and this makes unique
as compared with other hazardous chemicals (Baker et al. 2018). These outcomes
have shown a high variability between individuals and populations, due to varying
iAs metabolism mechanism and other aspects of toxicokinetics (Carlin et al. 2016;
Nachman et al. 2017). The difference in iAs metabolism and toxicokinetics has been
found to depend on factors like age, sex, life-stage, lifestyle, nutritional status, etc.
(EFSA 2009; Nachman et al. 2017). Similar observations came from the study
conducted by Lindberg et al. (2008) on dietary iAs exposure where a 30% variation
was observed in As metabolism due to difference in age, sex, and exposure level of
the participants (US FDA 2016).

There are also a few emerging studies that show role of gut microbiota in causing
the variations (Carlin et al. 2016). Additionally, many studies have also shown that
underlying genetic or metabolic factors are responsible for distinctive susceptibility
to iAs toxicity. The varying effects of dietary iAs exposure are also influenced by
factors like the food preferences, dietary restrictions, and cultural choice of food
(Baker et al. 2018; Nachman et al. 2017).

It is important to recognize the vulnerable population who are at increased risk of
iAs exposure and more susceptible to adverse health outcomes (Baker et al. 2018).
The contribution of iAs causing many adverse health effects and its variation in
outcomes has led the scientists to do the risk assessments for iAs separately for the
general and vulnerable populations for different life stages (US FDA 2016;
Nachman et al. 2017).

In these regards, a European study found that the dietary exposure to iAs was
almost 3 times more in infants (<3 years) compared to the adults (EFSA 2014). This
was directed to the fact that in general infant food contains more restrictive pattern of
rice and rice products and there is a high food to body weight consumption rate in
them (EFSA 2009). A few studies have also shown that a certain ethnic group such
as Asian/other, Mexican, and African children (6–17 years) may be more vulnerable
to adverse health outcomes of dietary iAs exposure than other of same age range, due
to their higher average rice consumption (Lai et al. 2015).

4.4.1 Effects on Foetal Development and Infants

The dietary iAs exposure to pregnant women has been evaluated extensively and
found that even moderate exposure iAs during pregnancy can cause negative health
outcomes in the foetus (Rahman et al. 2006; Gilbert-Diamond et al. 2011; Davis
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et al. 2014; Karagas et al. 2016; US FDA 2016). Reports have also shown an
increase chance of miscarriage, stillbirth, and risk of infant mortality for the exposed
pregnant women (WHO 2010; Quansah et al. 2015). Furthermore, there are many
evidences establishing that material iAs exposure during pregnancy has led to the
crossing of iAs through the placental barrier and has appeared of iAs in foetal tissues
(US FDA 2016; Davis et al. 2017; Nachman et al. 2018). One such study was
conducted in New Hampshire Birth Cohort Study (NHBCS), where consumption of
As containing food product by pregnant women led to the accumulation of iAs in the
toenail of the new-borns, proving the exposure of foetus to iAs through mother’s diet
(Davis et al. 2014; Karagas et al. 2016).

iAs has also been reported at low levels in breast milk of nursing mothers and
exposure is thought to be low from breast milk to the infants (EFSA 2009).
However, another study on association of iAs ingestion and its effects on the infants
showed an increase in iAs exposure when the diet shifted to rice and rice products
followed by fruits and vegetables (Signes-Pastor et al. 2018). Generally different
infant foods like cereals, purees, drinks are fortified with rice and rice-based products
such as starch, syrup, etc. (Jackson et al. 2012c) and these have been reported to have
the maximum contribution towards high iAs exposure (1.6 mg As/kg per day) to
infants (EFSA 2014; WHO 2011b).

There are numerous evidences showing negative impacts on the foetal develop-
ment and infants due to iAs exposure (Gilbert-Diamond et al. 2016; Raqib et al.
2009; Vahter 2008). The exposure of iAs during foetal development and in the early
stage of childhood is particularly concerning due to their susceptibility to environ-
mental contaminants (IARC 2004; Farzan et al. 2013). This particular risk may be
because of developing organ systems and exposure to iAs during early stage may
affect the growth and well-being of the infants in the later stage of life (Farzan et al.
2013; Davis et al. 2017). Studies have also shown that in exposed infants this also
increases the risk of impaired development (NRC 2013). It has also been reported
that young individuals exposed to iAs early in life have an increased risk of diseases
like bronchiectasis and lung cancer (WHO 2010; Smith and Steinmaus 2009a, b).

A study conducted in Chile observed the same trend where an early exposure to
iAs during foetal development or postnatally leads to a dramatic increase in rates of
death from bronchiectasis (Smith et al. 2006). Moreover, at a later stage of life this
can also led to an increased rate of occurrence of cancer in different organs such as
lung and bladder, even if the iAs exposure had occurred as long as four decades back
(Steinmaus et al. 2013). Similar result was observed by Steinmaus et al. (2014a) in
another case study in Chile where individuals were exposed to moderately elevated
iAs in uterus of during infant stage (Nachman et al. 2017).

4.4.2 Effects on Children and Adults

Dietary exposure to iAs in childhood days also has a possibility to cause chronic
health effect such as development of cancer and other respiratory diseases in the later
stage of life (WHO 2011a, b; Yorifuji et al. 2011). However, there are studies

104 A. Shrivastava



suggesting that children metabolize As at a slower rate, while a few studies have also
established that the conversion of As to its lesser toxic organic form (methylated) is
done more efficiently in them as compared to the adults (ATSDR 2007; US FDA
2016).

Children generally have a less-diversified diet and on an average consume food
about 3 times more on body weight basis compared to adults, leading to greater
chance of dietary iAs exposure (EFSA 2009). Thus, elevated levels of iAs through
food become the primary source of iAs exposure in children (ATSDR 2007; EFSA
2009). In a study conducted in the USA on mean childhood dietary iAs exposure, it
was found that on an average 3.2 mg As per day is consumed by the children through
food (Smith et al. 2006). This value was later adjusted on the dose to body weight
basis and it was found that children may show similar response for acute and chronic
exposure as adults (Lindberg et al. 2008).

Studies have observed from temporal evidence from episodic exposures that iAs
exposures earlier in life are likely to play an important role than exposures later in
life, for cancer risks (US FDA 2016; Steinmaus et al. 2014b). A few studies have
also shown an impaired cognitive function in iAs exposed children (Hamadani et al.
2011) although there is a need for further data supporting identification of dose–
response relationships.

4.4.3 Effects Due to Gender Difference

Various studies on association of iAs and its effects on different genders have also
been conducted all around the world (Lindberg et al. 2008). The results of these
studies have shown men to exhibit more As-induced outcomes as compared to
women, based on the more dimethylarsinate and low methylarsonate in the urine
of women and men, respectively (Fischer et al. 2007). This level of dimethylarsinate
in urine of women points to the production of methyl donor choline, regulated by
oestrogen which may attribute to an efficient iAs metabolism in them (Fischer et al.
2007; Lindberg et al. 2008). In a separate study it also has been observed that
expecting mothers in their third trimester excrete more than 90% dimethylarsinate
in their plasma and urine, which also supports the study of efficient methylation of
As in the childbearing years (EFSA 2009). Moreover, there are certain outcomes like
higher rate of anaemia and delayed onset of menstruation which have also been
found in women and girls, respectively, with dietary iAs exposure (Vahter 2009).
Although a few studies have tried to check the relation, a detailed study on the
mechanism involved in sex difference is much needed.

4.4.4 Effects Due to Nutritional Variation

Several sources have shown results to support the role of diets as a primary source of
iAs burden of population (Nachman et al. 2017), hence it is very important to show
the association of iAs related health outcomes with indicators of food and nutritional
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status (EFSA 2009). Out of the limited reports available, a study of Vahter (2007)
has also shown that a malnourished person or a person with poor nutrition is more
vulnerable to adverse outcomes of As exposure. The authors have given a possible
explanation which shows As metabolism to be closely linked to one-carbon metab-
olism and factors like requisite intake of vitamin B12, folic acid, and choline
required for proper functioning of one-carbon metabolism (EFSA 2009).

4.5 Estimating of Arsenic and Its Species in Food

Estimation of As and its species is of much importance owing to the need to check
the variability, extent of exposure, and to know the foodstuff associated with high
exposure to general and susceptible populations (Cubadda et al. 2017). It is difficult
to characterize the dietary As exposure as only a handful of the studies have reported
As contamination in selected foodstuffs, far less have done the As speciation in them
(Nachman et al. 2018). For many years, As in foodstuff was targeted to estimate total
arsenic content (tAs, sum of different As forms present) as it was analysed conve-
niently in the laboratories equipped with instruments used for trace elements analysis
(EFSA 2009). However, monitoring of As speciation is more important due to the
variable toxicity of different As forms which can be present in any form in different
food items (Haque et al. 2019). Estimation of iAs or other As species was not so
frequently done in the past due to lack of specialized instruments and expertise
(EFSA 2009; Cubadda et al. 2017).

Estimation of tAs in foodstuffs using modern analytical methods usually consists
of two parts: sample preparation and analysis using instrumental technique. The first
step usually involves processes like mineralization, derivatization, which is followed
by the running of samples through instruments. The major types of instruments used
for tAs estimations are atomic fluorescence spectrometry (AFS), atomic absorption
spectrometry (AAS), inductively coupled plasma atomic emission spectrometry
(ICP AES), and inductively coupled plasma mass spectrometry (ICP MS) (EFSA
2009; Haque et al. 2019).

In the past few years due to the growing concerns over the effects of different As
species, many sophisticated analytical methods for determination of As species have
come up in practice (Cubadda et al. 2017). The prerequisite for speciation analysis is
to do the first step of sample preparation without changing the chemical speciation.
As species can be water or fat soluble and owing to their different properties, they
require different extraction strategies. For extracting water soluble As species from
foodstuffs water, acid, base, methanol, and enzymatic extractions are generally used
(Conklin et al. 2012; Liu et al. 2015; Maher et al. 2015; Nookabkaew et al. 2013;
Pétursdóttir et al. 2014; Sadee et al. 2016). During sample preparation it has been
noted that the organic As species remain fairly stable in dilute acids or base;
however, iAs (As (III) and As (V)) are easily interconvertible (Cubadda et al. 2017).

Irrespective of the toxicity potential of As (III) and As (V), human risk assess-
ment is based on iAs as a whole (EFSA 2009) and thus generally they all are
converted to As (V) by adding an oxidant (usually H2O2) (Raber et al. 2012) for
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further evaluation as iAs. For As speciation most frequently used analytical tech-
nique is high performance liquid chromatography (HPLC) coupled to either ICP-MS
or AFS. Furthermore, for water soluble As species including iAs, anion exchange
chromatography is the most commonly adopted method (Fig. 4.1). Whereas for
complex As species such as organic form arsenosugar, additional chromatographic
separations such as cation exchange are needed (Fig. 4.1) (Taylor et al. 2017).

Even with the advancement of different methodologies and techniques for the
estimation of As and its species in common foodstuffs, the estimation of iAs in
seafood remains a big challenge (Baer et al. 2011; Pétursdóttir et al. 2014). This is
due to the small contribution of iAs to the tAs and other factors like species
interconversion, etc. (Cubadda et al. 2017).

4.6 Arsenic Exposure from Different Foodstuff

Health impacts of As intake via drinking water have been studied extensively in the
past (NRC 2014). Although the reports from the existing studies have suggested
same effects when it is entering via food, the level of iAs in foodstuff and estimation
of its daily intake have been studied less (Nachman et al. 2018).

The dietary exposure and outcomes of iAs are directly related level of iAs in food
and the amount of contaminated food consumed (US FDA 2016). Different scientist
have reported varying levels of iAs in a wide range of foodstuffs (Jackson et al.
2012b) but in general, terrestrial food have higher proportion of iAs (range from
50 to 100%) as compared to the fishes and seafood (Baker et al. 2018; Pétursdóttir
2010; EFSA 2009). In fishes and seafood, depending upon the seafood type, the
overall iAs is less, this value also decreases with the increase in tAs concentration
(EFSA 2009; Pétursdóttir 2010).

Many scientists have also shown that iAs exposure from food becomes the
primary contributor towards daily As intake when level of As is less in water
(Baker et al. 2018). Studies have also shown that the level of daily dietary iAs
exposure also varies in different age groups, where the average and high level values
of dietary exposure to tAs for adults were 1.3 and 4.4 mg/kg BW/day, respectively.
Moreover, the estimates were higher for children compared to adults, owing to their
higher food consumption relative to body weight basis (Rose et al. 2010).

4.6.1 Rice and Rice Products

Epidemiologic evidence suggests that rice is a primary contributor to dietary iAs
exposure (Davis et al. 2017) as it is a major part of the diet for a majority of world’s
population with regard to nutrition and caloric intake (Schmidt 2015; Shrivastava
et al. 2017, 2020). Rice is a major component of many infant food and many
breakfast cereals consumed by children in different parts of the world, making
them more susceptible to adverse health outcomes of iAs exposure (Mazumder
2008; Farzan et al. 2013; Jackson et al. 2012a; Signes-Pastor et al. 2016). Concerns
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have also been raised for regarding the bioaccessibility of As present in rice. The
in vitro gastrointestinal digestion simulation procedures have revealed that in rice the
bioavailable fraction of tAs is between 53 and 102% (He et al. 2012; Signes-Pastor
et al. 2012).

The evidences of higher iAs level in rice crop come from the fact that it is grown
in anaerobic conditions of flooded rice paddies which can result in high tAs
availability by facilitating the conversion of immobile As (V) into mobile As (III),
thus increasing the uptake (Barla et al. 2017). Furthermore, rice plant has a unique
physiology that leads to uptake and accumulation of more As from the environment,
assimilating it to a greater extent than the soil (Hojsak et al. 2015; US FDA 2016).
Supporting evidences show that iAs is an analogue of the phosphorus (one of the
plant micronutrients) and silicic acid, which are captured very efficiently by plants
from soil solution due to the evolved mechanism (Zhao et al. 2010). It has also been
found that rice can bioaccumulate iAs at 10 times higher rate compared to other
grains such as wheat and barley (Williams et al. 2007; Ma et al. 2008; Meharg et al.
2009; Mitani et al. 2009).

A variation in the amount and type of As is found in rice depending on the rice
cultivar, soil type, and the geographical location of cultivation (Bastias et al. 2010;
Norton et al. 2009, 2012; Signes-Pastor et al. 2016; Williams et al. 2005, 2007;
Torres-Escribano et al. 2008). Moreover, the iAs levels in rice also change when
contaminated water is used in crop irrigation as well as during different stages of
processing and food preparation (Carbonell-Barrachina et al. 2009). For example,
the iAs content in brown rice is found to be more than the white rice and cooking rice
using uncontaminated water can lead to a reduction in the rice As content (Jackson
et al. 2012a; Diaz et al. 2004). In general the rice grown in parts of India and
Bangladesh has more iAs which can even reach up to 90% of tAs (Hojsak et al.
2015), whereas those cultivated in the USA has higher level of dimethylarsinic acid
(DMA) (Meharg et al. 2009; Williams et al. 2005). In a study conducted in UK, pure
baby rice it was found that the tAs concentrations ranged between 0.120 and
0.470 ppm, whereas iAs concentration ranged between 0.060 and 0.160 ppm
(33–68% of tAs) (Meharg et al. 2008).

In the studies conducted to estimate iAs in different parts of the rice plants
(e.g. root, shoot grains, husk, or bran), it was found that the iAs level in husk is
10–20 times higher than grains (Sun et al. 2008; Meharg et al. 2008). Thus, the
dietary exposure from the rice drinks prepared from rice bran is found to be much
higher than exposure from rice grains (Meharg et al. 2008a). Another study on rice
flour, a primary ingredient of processed food and brown rice syrup showed higher
iAs content, making rice and its product a potential source for dietary exposure
(Baker et al. 2018; Upadhyay et al. 2020).

4.6.2 Seafood

Scientific studies have reported that although a large amount of As is present in
seafoods, most of it is present in the organic form as arsenobetaine (AsB) and to a
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lesser extent, as arsenocholine (AsCho) and arsenosugars (Caldwell et al. 2009; US
FDA 2016) and only 0.4–5.3% of As is present in inorganic form (Borak and
Hosgood 2007; Sirot et al. 2009). Organic As being relatively non-toxic poses no
harmful effects when dietary exposure occurs due to consumption of seafoods (Sirot
et al. 2009). As is present as AsB in the fishes and crustaceans and as arsenosugars in
seaweed, marine algae, commonly consumed bivalves, etc. (Leffers et al. 2013).
Some studies on As in seafood have also found that the arsenosugars present in them
may metabolize to dimethylarsinic acid (DMA) and thio-dimethylarsinic acid.
Although studies have shown the cellular toxicity and genotoxicity of these
compounds, the overall human health impacts have yet not been studied in detail
(Leffers et al. 2013).

It is very important to have a clear idea about the differentiation between tAs and
iAs as some food such as fishes and seafood may show a very high tAs value but will
have low fraction of iAs, the toxic form (EFSA 2009). For the population that
consume more seafood, it becomes the significant source of iAs exposure but due
to its presence as organic AsB, other sources such as fruits and grains become
primary sources of dietary iAs exposure (Taylor et al. 2016; Xue et al. 2010).

Among the seafoods, the highest tAs concentrations were found in bottom
dwelling fish species (12–34 ppm), with concentrations of iAs varying from 0.068
to 0.073 ppm (Sirot et al. 2009). Similarly, crustaceans also showed high
concentrations of tAs, however, Lynch et al. (2014), in his study observed that a
few crustaceans such as molluscs may constitute a considerable level of iAs (0.1–6%
of tAs) which normally varies between 0.1 and 3.5% in other seafoods. Moreover,
for marine food like seaweeds, the level of iAs varies from around 1% in most
consumable forms to >50% in some brown algae (EFSA 2009).

4.6.3 Vegetables

In vegetables, As is present as iAs but it has been found that consumption of
vegetables alone does not pose a health risk to the people. However, vegetables
when grown in contaminated soil or irrigated using contaminated water, generally
accumulate more iAs and become a matter of concern (Halder et al. 2013). In the
absence of As in soil or water, these have less iAs (10–20 ppb) but still can be of
concern for dietary iAs exposure due to their high consumption level (Cubadda et al.
2017).

Many scientists have also conducted studies to assess the level of iAs in different
vegetable types. In a study conducted on the comparison of As accumulation by
different vegetables in Bangladesh, it was found higher accumulation of As in leafy
vegetables such as spinach and amaranth leaf (average 0.21 ppm) as compared to the
non-leafy or root vegetables (average 0.07 and 0.1 ppm, respectively) (Halder et al.
2013). Similar results were found byWilliams et al. (2006) and Roychowdhury et al.
(2002) in studies conducted in Bangladesh and India, respectively. However, a few
studies have also shown a higher accumulation of As in the underground vegetables
such as taro, arum tuber, potato, and elephant foot (Williams et al. 2006; Guha
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Mazumder et al. 2010). Thus, a detailed conclusive study on vegetables is still
needed.

4.6.4 Other Foodstuffs

There are several other studies that have shown the presence of As in different food
like fruits and fruit juices, chicken meat, etc. One such study conducted on samples
from Slovak Republic found average As concentration in chicken meat to be
0.028 ppm, although majority of the As was in the organic form arsenobetaine
(Lindberg et al. 2006).

Another study conducted by FDA in the USA on As in fruit juices found that
apple juice has a more threat for dietary iAs exposure especially in children due to
their dietary pattern (Carrington et al. 2013). This was followed by grape juice
(9 ppb) and cooked spinach (6 ppb) (EFSA 2009). Another study on poultry has
found that chicken meat can also become a potential source of dietary iAs exposure
due to the use of roxarsone, an approved animal drug that containing organic As. The
organic As could get converted to iAs in the roxarsone treated chickens (JECFA
2011). This has not only potential to affect the direct consumers, but the litter of the
poultry has also been found to contain iAs due to the use of organo-arsenical feed
additives. As these are used in the agriculture, iAs gets released and may result in
accumulation in soil hence can be up taken by the crops, reaching to the cultivated
food (Rutherford et al. 2003).

4.7 Dietary iAs Intake: Status of Toxicological Assessments

Despite the adverse health effects and classification of iAs as carcinogen, not many
countries consider the need for regulatory limits for iAs except the USA and Europe,
who recently recognized it (Cubadda et al. 2017). This delay could possibly be due
to complexity in toxicological risk assessment of iAs, which depends on As specia-
tion analysis (Cubadda et al. 2017). Due to the latest toxicological studies of dietary
As raising concerns on the health outcomes and as analytical speciation techniques
continue to improve, scientists now have started to focus more on iAs (Sirot et al.
2009).

Initially with the limited data available, the provisional tolerable weekly intake
(PTWI) of 15 μg/kg body weight (BW) for As was given by the World Health
Organization (WHO 1989). After the studies that establish that iAs causes cancer,
dermal, cardiovascular, and many other adverse effects, at even lower levels of
exposure, the PTWI of 15 μg/kg was no longer considered suitable (Pétursdóttir
2010).

Another way for toxicological assessments of iAs is to calculate the total daily
intake of inorganic As (TDI-iAs) (Eq. 4.1), which is essentially the sum of daily
intake of iAs (Eqs. 4.2 and 4.3) from different dietary sources (e.g. drinking water,
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rice, fruits, and vegetables) for an exposed person, which can be calculated using the
equation as given below (EPA, 200; Halder et al. 2013):

TDI� iAs ¼ DIw � iAsþ DIf � iAs ð4:1Þ
DIw � iAs ¼ Cw� Fi�Wð Þ=BW ð4:2Þ
DIf � iAs ¼ Cs� Fi�Wð Þ=BW ð4:3Þ

where DIw � iAs ¼ daily intake of iAs from drinking water (μg/day/kg BW),
DIf � iAs ¼ daily intake of iAs from solid foods (μg/day/kg BW), Cw ¼ concentra-
tion of total As in drinking water (μg/L), Cf ¼ concentration of total As in solid
foods (μg/kg), Fi¼ fraction of inorganic As content in the medium, W¼ the amount
of daily consumption of the exposure medium (L/day for drinking water and kg/day
for solid foods), BW ¼ body weight of exposed person (kg).

Similar to PTWI, the provisional tolerable daily intake (PTDI) value for iAs
intake (2.1 μg/day/kg BW) was also withdrawn at the 72nd meeting of the Joint
FAO/WHO Expert Committee on Food Additives (JECFA), as the value observed to
be in the lower range of the BMDL0.5 (bench mark dose level for 0.5% increased
prevalence of lung cancer) (JECFA 2011).

So far the key evidences for risk assessment of iAs have come from people with
chronic exposure to high level of As especially through drinking water (>50 ppb) in
several regions like Bangladesh, India, South Asian countries, parts of South
America (Chen et al. 2010b; Halder et al. 2013; Shrivastava et al. 2014; Cubadda
et al. 2017). As of now, no established guidelines for risk assessment of iAs from
dietary sources have been given. Furthermore the Codex Committee on
Contaminants in Foods (CCCF) has suggested that a TDI-iAs level observed
below BMDL0.5 does not guarantee safety and should not be considered as the
safe limit (JECFA 2011).

Schoof et al. (1998) conducted a study long back in Taiwan to assess the mean
dietary iAs exposure from food in Asian people and found out that on an average the
DIf-iAs for the adult population was 50 μg/day, which was much above the
recommended dose (EFSA 2009). Many other studies conducted in Bangladesh,
West Bengal, and other places found similar results where the iAs level ranged
between 34 and 97 μg/day (Halder et al. 2014; Shrivastava et al. 2017). Another
study conducted in Europe found that the DI-iAs in adults (average body weight
58 kg) ranged between 22 and 70 μg/kg. The study was also conducted on certain
ethnic groups with specific diet preferences and found that those who consume rice
and algae-based products had more DI-iAs (EFSA 2014). In a probabilistic exposure
modeling study combined with food intake data conducted by NHANES, in the
USA, it was found that on an average DI-iAs of 1.96 μg/day is accounted by US diet,
which is not as high as the previous ones but was two times the average iAs
contribution through drinking water and significant for a nation where severe As
contamination has not been reported (Xue et al. 2010).
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4.8 Dietary iAs Exposure Assessment

For the dietary iAs exposure assessment, a clarity in amount of contaminated food
consumed and the measure of internal dose are very important (Davis et al. 2017). So
far numerous studies have focused on understanding the association between dietary
iAs exposure and As biomarkers concentration (Gilbert-Diamond et al. 2011).

Most frequently used method for estimating iAs in foodstuffs has already been
discussed in the previous section. Next step is to estimate the absorption of ingested
arsenic forms, which is supposed to differ depending on factors like the soluble
fraction of different As forms in food, association with food constituents and
nutrients in the gastrointestinal tract, etc. (EFSA 2009). This has been explained in
a study conducted by Juhasz et al. (2008) in a swine model. The authors found out
that although the bioavailability of iAs in different foodstuffs varied greatly such as
100% in mung beans, and only 50% in leafy vegetables, supporting the influence of
other component of the vegetable on gastrointestinal absorption of iAs.

4.8.1 Biomarkers of Human Arsenic Exposure

Biomarkers have widely been preferred for estimating the internal dose of As
exposure and the most frequently used biomarkers are urine, nails, hair, and blood
(Marchiset-Ferlay et al. 2012; Meharg et al. 2014).

After the exposure, As is absorbed and iAs fraction starts to get methylated
(MMA and DMA) within the body and the sum of iAs and its metabolites in the
urine are reported as the total urine As (Hughes 2006; Baker et al. 2018). This value
is the most frequently used to interpret As exposure (Hughes 2006; Normandin et al.
2014). The sum of iAs and its metabolites in urine samples have been found to reflect
human exposure from all the sources (dietary and other sources) and if other sources
such as air, dermal, etc. are insignificant, urine can play an important role as a
biomarker of dietary exposure (Gilbert-Diamond et al. 2016; García-Esquinas et al.
2013; Moon et al. 2013; Zheng et al. 2013; Hamadani et al. 2011). The distribution
of iAs and methylated As forms excreted in urine shows an individual’s potential to
metabolize iAs (Nachman et al. 2017).

Many supporting studies conducted in Europe, the USA, South America, and
southeast Asia have reported the ratio of total urine As to iAs level in the exposure
medium to be 1:1 although it was conducted considering level of As only in water.
This ratio was found in cases where water was the primary contributor to As
exposure (UN FAO/WHO (2011)). For cases where food was the primary As
contributor, the ratio was found to be higher than 1 (Cubadda et al. 2017).

In addition to assessing dietary exposure, assessment of As speciation in urine is
also useful understand As metabolism (Davis et al. 2017; Fängström et al. 2009;
Hughes 2006; Baker et al. 2018). Different studies have found that in the body iAs
first metabolizes to MMA and then to DMA. Evidences have shown that cases where
people have excreted more MMA in their urine have been found to have an increased
risk of different types of cancer. This is mainly due to an inefficient methylation
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capacity converting iAs to DMA although this may vary from person to person
(Smith and Steinmaus 2009a, b). Furthermore, a few studies have also suggested that
a high level of DMA observed in the urine is associated with an increased risk of type
2 diabetes (Chen et al. 2010b, 2012; Gribble et al. 2013; Kuo et al. 2015).

As a best practice the urine As concentration should be analysed within 24 h of
sample collection for the accurate result. However, spot urine samples have also
indicated a good correlation with dietary As exposure (Davis et al. 2012). One
important factor to consider is that As in urine only starts to appear after 3–5 days
of As ingestion (Meharg et al. 2014) and not necessarily show the exact estimate of
As exposure as it can also accumulate and get release from other routes (hair, nails,
faeces) (Yager et al. 2015).

Other biomarkers used extensively to assess long-term chronic exposure to iAs in
humans are hair and nails (Marchiset-Ferlay et al. 2012; Slotnick and Nriagu 2006;
Davis et al. 2017) and have a very slight effect of organic As ingestion (Cubadda
et al. 2017). This is because of presence of high keratin that has sulphydryl groups
which can bind iAs although they have a high potential for external contamination
which poses some limitation (EFSA 2009). Despite this, hair and nails specimens
have some advantages like being convenient to collect and store but is preferred less
over urine as these are less sensitive than later (Davis et al. 2017). These are
preferred only when the measurement of long-term exposure is required, as they
tend to provide better estimate due to their growth rate (Mandal et al. 2003).
Moreover, interestingly the blood As was not found to be a well-founded biomarker
of As exposure as these are rapidly eliminated from the blood thus have shown an
inconclusive relation with As exposure (Hughes 2006; Munday 2015).

4.9 Regulatory Policies Concerning Arsenic in Food

The existing regulatory system focuses on the As levels in soil, water, and irrigation
water, they do not address the same in the food nor do they address the maximum
dietary intake value of iAs (Nachman et al. 2017). There is available value for
maximum tolerable level of tAs in drinking water given by the World Health
Organization (WHO, 10 ppb) (WHO 2011a, b), limit for maximum dietary intake
or maximum limit of As (tAs or iAs) in food items are not available from any of the
major agencies like WHO, European Union (EU) or the USA, Food and Drug
Administration (US FDA) (Francesconi 2007). Although the dietary As exposure
has proved to be a serious issue in many areas all around the globe, current
regulatory approaches regarding dietary exposure are limited. The possible reason
for this could be the variation of iAs levels across various foodstuffs, different food
choices, and a varying rate of food consumption, making it hard to focus on a
specific foodstuff as a reference for regulatory limits and widespread awareness
(Nachman et al. 2017). This has resulted in only a minor success in controlling
dietary iAs exposure, moreover has created a gap in the communication about risks
to the consumers (Nachman et al. 2018). Moreover, the information available to the
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consumers based on the research does not give them a clarity to take informed
choices regarding possibility of dietary iAs (Lai et al. 2015).

Few countries do have regulatory limits for As in certain food items, but value,
food item, and the assessment associated with the limits differ drastically amongst
different countries (Nachman et al. 2017). Rice has ever been a focus for the several
agencies to regulate iAs limits as a measure to check dietary As exposure (Halder
et al. 2014; Shrivastava et al. 2020). However, no recommendation has been given
regarding limits of As in fish due to the evidence of presence of organic As in them
which are relatively non-toxic and easily metabolized (EFSA 2009).

Previously China regulated the iAs level in rice where the maximum contaminant
level permitted was given to be 0.15 ppm (Zhu et al. 2008). However, with further
study, iAs was found to be a non-threshold carcinogen and exposure of any level
constituted risk, thus, a limit on dietary intake could not be established (Hite 2013).
This was also the reason for taking down the limit provisional maximum tolerable
daily intake (PMTDI) for iAs (2 mg/kg (bw)/day), proposed back in 1983 by Joint
FAO/WHO Expert Committee on Food Additives (JECFA) (WHO 1983). Later
JECFA determined the value for benchmark dose confidence limit (BMDL) to be
3.0 mg/kg (bw)/day (WHO 2011a), however Contaminants in the Food Chain
(CONTAM) Panel of the European Food Safety Authority (EFSA) determined the
same for a 1% increased risk of different types of cancer to be and 0.3–8 mg/kg (bw)/
day. They also gave recommendation to use the same range for the risk characteri-
zation for dietary iAs exposure (EFSA 2009).

Recently at the Codex Alimentarius level, regulatory limits for iAs in polished
rice have been proposed (UN FAO/WHO (2011)) and at the European Union level,
the regulatory limits for the same have been adopted for rice and rice-based products
(EU 2015). The maximum limit in EU has set to be 200 ppb for white rice and
100 ppb for rice used for the production of rice-based food items especially for
infants and young children (EU 2015).

The problem remains the same in the USA also, where on the one hand United
States Environmental Protection Agency (US EPA) regulates As level in public
supply of drinking water, there is no regulatory agency directly involved in moni-
toring of As content in irrigation water (contributing to As accumulation in agricul-
tural soil and food crops) and food (Heikens 2006). Although the various
assessments of FDA address the risks associated with As exposure in the early life
due to high food consumption, it fails to address the effects of long-time dietary iAs
exposure (Nachman et al. 2017). The FDA attention towards the iAs in food and
beverages has become more serious in recent years after public attention and interest
of the legislators (Consumer Reports 2012). As a result, the safe limits as adopted by
EU are consideration by the US FDA (2016).

On the global level, policy and limits on As in foodstuffs are a matter that needs
more attention for many countries and international agencies (Nachman et al. 2017).
Unfortunately, many countries such as Bangladesh, India, South Asian countries,
Argentina with a significant population exposed to iAs exposure via food and water,
has not set any limit for dietary As exposure. This may be due to the fact that there
are certain gaps still existing in understanding the complete picture which once
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filled, would help in setting limits for public health safety and reducing dietary
exposure (Nachman et al. 2018). Thus, a detailed study and regulatory advances are
much needed for an effective intervention and implementation of necessary steps for
reducing dietary iAs exposure.

4.10 Prioritizing Intervention Opportunities

Many reports from all across the world have given enough evidence to establish the
fact that diet can play a crucial role in human iAs exposure. Also, a vast variation in
iAs level across different foodstuffs, their consumption pattern, and its countless
outcomes makes research, regulatory intervention, mitigation plans and effective
risk communication, the need of the hour. Furthermore, the consideration to evaluate
the dietary exposure to organic As species, in addition to iAs, would also add to the
knowledge in understanding true health burdens resulting from exposure (Li et al.
2009). The research and intervention strategies of dietary iAs exposure may best
focus on minimizing the exposure risks from common food items, in addition to
commonly used risk-based approach such as cancer risk (Nachman et al. 2017).
More research and meta-analysis of other health outcomes of iAs exposure such as
cardiovascular diseases, neurodevelopmental issues, diabetes, renal disease, etc. are
also much needed. Furthermore, research on interactions of As exposure with
different genetic factors and association with other contaminant can also help in
such studies.

Additionally, there can be other intervention strategies for reducing dietary iAs
exposure such as the adoption of better cultivation practices (e.g. intermittent irriga-
tion method in case of rice) that could limit As uptake by the food crop, prioritizing
food of concern and their detailed evaluation (Norton et al. 2017; Shrivastava et al.
2020). There are instances where reduction in As exposure is not possible by the
limiting As content of food, then alternative way such as focusing on influencing
consumers preference of food purchase may be warranted. Consumer awareness and
providing dietary advice on regulating the dietary iAs intake can also be very useful
in this scenario (Shrivastava et al. 2020). For similar concern, Nachman et al. (2017)
has also suggested the option of developing a relative source contribution (RSC)
approach in the food which can ensure that no particular food contributes a dispro-
portionate amount to aggregate dose.

In a recent report Codex Alimentarius international food standards codes of
practice (Codex 2017) summarized simple ways for reducing iAs content in rice,
namely, source-directed measures, agricultural measures, and monitoring and risk
communication step. The first step focuses on ways to make sure that As in soil and
irrigation water is good for cultivation purpose. If this is difficult to achieve, then the
second step focuses on taking necessary measure to reduce iAs uptake by crops like
alternative irrigation methods or selection of low-arsenic cultivars. In case of rice a
few studies have also observed that cooking rice in excess of As safe water (<10 ppb
of As) and draining resulted in the net decrease in tAs content in the finished product,
which could also be adopted (Munera-Picazo et al. 2015). The final step focuses on
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proper monitoring and public awareness to make sure the consumers are at lower risk
of exposure (Nachman et al. 2018).

All the above interventions can be made more useful with the integration of
population-level health surveys of the exposed or vulnerable population, their
dietary patterns and consumption rate (Nachman et al. 2017). Thus, reducing dietary
As exposure requires a multi-sectorial, inter-agency, and public health systems
approach across the globe.
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Effects of Arsenic: Neurological and Cellular
Perspective 5
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Abstract

Arsenic in combination with oxygen, sulphur and hydrogen is highly toxic and
even regarded as a xenobiotic compound. Inorganic arsenic has become a global
health concern for its easier availability in nature. Most commonly accessible
source being groundwater which is being used for drinking as well as irrigation
purposes in various parts of the world where it is released due to several
geological processes like erosion. It induces toxicity through various mechanisms
but in this chapter arsenic induced neurotoxicity is analysed. Cognitive
impairment in the nervous system is one of the critical implications of its toxicity
which may further lead to various neurological as well as neurodegenerative
disorders. The potential neurotoxicity and the mechanisms involved at molecular
level with arsenic neurotoxicity are investigated in this chapter which includes
cognitive dysfunctions, neurochemical alterations and neurodevelopmental
alterations. Arsenic exposure may be toxic for cholinergic and dopaminergic
system development which may be the cause for various other adverse effects
specifically in perinatal.
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5.1 Introduction

Arsenic in its inorganic form is distributed all over the environment which includes
land, air and water. It manifests the properties of both metal and non-metal. Hence, it
is often referred to as metalloid. Elemental sulphide and carbonate allotropic forms
of arsenic have usage in the industries (Henke 2009). It has been used in past as a
homicidal agent and as a pigment. Lately for its chemical properties arsenic salts
have been used naturally in traditional medicines to treat ulcers and leukaemia (Ernst
2002; Cooper et al. 2007). Arsenic is also being used in pesticides, fertilisers and in
various industries (Hughes et al. 2011).

Arsenic concentrates leaches into drinking water from the earth’s crust, bedrocks
(Vahter 2008). Globally people are exposed to arsenic mostly from the contaminated
water which is used for drinking, irrigation as well as in food preparation. According
to World Health Organization (WHO) the recommended arsenic contamination in
drinking water is 10 ppb. The drinking water containing arsenic has been reported to
be one of the major cause for health problems in several countries such as
Argentina, Chile, India, Taiwan, Bolivia, Japan, Bangladesh, Columbia and Mexico
(Brinkel et al. 2009; Chen et al. 2011; Duker et al. 2005; Gonzalez-Horta et al. 2015;
Hughes et al. 2011; Liu and Waalkes 2008) contained arsenic above 10 ppb.
According to the data available arsenic contaminated drinking water containing
more than 10 ppb of arsenic has affected about 140 million people residing in
more than 50 countries of the world (Ravenscroft et al. 2009).

It can easily cross blood–brain barrier and may even accumulate in brain to cause
neurobehavioural deformities (Itoh et al. 1990). Serious health impact due to long-
term arsenic exposure in low doses includes skin cancer liver cancer, kidney cancer,
cardiovascular disorders and neurological disorders (Vahidnia et al. 2008). McCarty
et al. (2011) referred these medical conditions due to low dose and of term of arsenic
exposure as “arsenicosis”. The heavy metal arsenic along with its inorganic form is
known to be neurotoxic and exhibits neurological effects within few hours after
exposure but most commonly seen after 2–8 weeks of arsenic induction (Kishi et al.
2001; Jha et al. 2002). Arsenic exposure leading to peripheral neuropathy has been
studied by many scientists (Chhuttani and Chopra 1979; Brouwer et al. 1992;
Heaven et al. 1994). It is hypothesised that arsenic may be the causative agent for
neurological disorders based on the research reporting that arsenic ingestion is
responsible to increase risk of microvascular diseases (Chiou et al. 2005). Arsenic
induces neurotoxicity by altering the levels of several neurotransmitters including
acetylcholine, dopamine and serotonin which suggested that neurotoxicity involved
biogenic amines due to arsenic encounter (Tripathi et al. 1997; Kannan et al. 2001).
Shila et al. (2005) reported that the specific brain areas like corpus striatum, cortex
and hippocampus display effects of arsenic.

It has been reported that arsenic presence in breast milk may cause adverse effects
on infant growth and development (Fängström et al. 2008). Arsenic chronic expo-
sure decreases the signal transmission speed in peripheral nerve (Blom et al. 1985;
Vahidnia et al. 2007). Gharibzadeh and Shahabuddin (2008) researched that arsenic
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presence within the vertebrate body may induce cortical neurons apoptosis leading to
neurodegenerative disease like Alzheimer’s disease.

This chapter focuses mainly on the arsenic induced neurotoxicity thoroughly for
its toxicity and epidemiological relevance. And an effort is made to understand the
mechanisms involved in causing neurological disorder due to long-term arsenic
exposure, specifically its inorganic forms.

5.2 Natural and Anthropogenic Sources of Arsenic and Their
Exposure

Arsenic is present naturally in the environment including water, air and soil either by
natural means or in anthropogenic ways in its inorganic form which are highly toxic.
Arsenic leaches from several natural geological resources into the environment.
Mining and industrial processes are also responsible for arsenic presence in the
environment. There are two inorganic forms which are most commonly found in the
environment, namely trivalent arsenic (iAsIII) form and pentavalent arsenic (iAsV)
form. In deep water sources arsenic is mostly found in its iAsIII form. Its concentra-
tion in seawater is approximately 2 ppb (Onishi and Sandell 1955), while in rain and
river water is 0 ppb (Mochizuki et al. 2019). In seafood 0.78–25 ppm of arsenic is
found in less toxic organic form (Lunde 1977).

Arsenic contaminated underground water is used by people in daily life like
cooking, drinking, etc. as well as for agricultural purposes through which it enters
the human body. Arsenate insecticide was used in the past to treat tobacco plant from
which arsenic was taken up by plant easily. This tobacco exposed natural arsenic to
smokers in their inorganic form. Agricultural products and soil readily allowed
arsenic to enter the food chain of plants (Tamaki and Frankenberger 1992). When
a pregnant female ingests arsenic contaminated water, arsenic can easily cross
placenta as well as blood–brain barrier (BBB) in human (Jin et al. 2006; Hirner
and Rettenmeier 2010; Rudge et al. 2009; Sanders et al. 2014; Willhite and Ferm
1984). When high amount of arsenic is consumed by a pregnant female it may lead
to foetal fall, defective neural tube, abortion and neonatal death (Mazumdar 2017;
Milton et al. 2017; Rahman et al. 2010, 2016).

Various industries manufacturing wood preservatives, electrical products like
semiconductors, lasers, etc., fertiliser, cotton desiccants, agricultural chemicals,
etc. are those where arsenic is used. Arsenic exposure through inhalation directly
from the air especially in the proximity of mines, smelters and industrial hotspots is
also absorbed by human body. The concentration dependent response relationship of
arsenic exposure to various organs causing diseases is reported to be linear in
previous studies (Yoshida et al. 2004; Lubin et al. 2000; Yuan et al. 2018).
According to WHO, as the exposure time increases the threshold value of arsenic
causing organ impairment is low (Ratnaike 2003). To cause cancers, the threshold
value of arsenic in drinking water lies between 50 and 150 ppb (Tsuji et al. 2019).
While long exposure period of arsenic contaminated water is reported to cause
diabetes mellitus and hypertension (Chen et al. 2007).
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5.3 Arsenic Toxicity: Clinical Manifestations

There are mainly two types of clinical features of arsenic toxicity, namely acute
toxicity and chronic toxicity. These two types of clinical features are based on
concentration and duration of dose. Significant features of both acute and chronic
acute toxicity are mentioned in Table 5.1.

5.3.1 Acute Toxicity Due to Arsenic Exposure

Acute arsenic toxicity occurs when high concentration of arsenic is either ingested or
inhaled or absorbed. Rare occurrence of acute toxicity is observed as it is considered
as wilful suicide or homicide condition due to accidental ingestion of arsenic. Acute
toxicity concentration range of arsenic lies between 100 and 300 mg (Schoolmeester
and White 1980) and for humans the lethal dose of arsenic is reported to be 0.6 mg/
kg/day (Opresko et al. 1993). A person dies if consumed a quantity higher than lethal
dose within 24 h.

Arsenic exposure associated with several other medical symptoms involving
gastrointestinal system like nausea, vomiting, severe diarrhoea and abdominal pain
can become severe initially but may lead to death lately. Metabolism is affected due
to arsenic toxicity. Its impact is reported to cause abnormalities in cardiac and
respiratory system as well. These abnormalities include pulmonary oedema, respira-
tory failure (Lerman et al. 1980), toxic cardiomyopathy (Ghariani et al. 1991;
Greenberg et al. 1979), hypotension, cardiac arrest and seizures (Campbell and
Alvarez 1989). Delirium, weakness, peripheral neuropathy, encephalopathy are
some of the neurological abnormalities which have been reported (Greenberg
1996). Encephalopathy occurs when arsenic enters the body system intravenously
(Lerman et al. 1980). Haemorrhage is hypothesised to be the cause for encephalopa-
thy (Beckett et al. 1986). Arsenic induced neuropathy due to toxicity led to decre-
ment in signal conduction velocity severely (Vahidnia et al. 2007). After few weeks
arsenic toxicity is observed as delayed peripheral neuropathy (Le Quesne and

Table 5.1 Significant features of acute and chronic arsenic toxicity (Adapted from Ratnaike 2003)

Acute inorganic toxicity Chronic inorganic arsenic toxicity

• Clinical symptoms include nausea, vomiting,
abdominal pain, excessive salivation and
diarrhoea
• Arsenic toxicity affects several organs like
acute psychosis, seizures and skin rashes after
diffusion, toxic cardiomyopathy, renal failure,
pulmonary oedema, etc.
• Neurotoxicity includes peripheral neuropathy
as well as encephalopathy
• Recent acute arsenic toxicity is detected by
determining arsenic concentration in urine
within 1–2 days

• Arsenic absorbed gets accumulated into
various body organs including liver, kidney,
nervous system, gastrointestinal tract, lungs
and spleen
• Keratin rich tissues are highly prone for
arsenic accumulation like nails, hair and skin
• Clinical symptoms include malignant
modifications in various organs,
dermatological modifications like
hyperpigmentation, cardiovascular diseases,
peripheral vascular disease and neutropenia
• No effective treatment yet developed
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McLeod 1977). Arsenic concentration within 2 days in urine can be used as an
indicator for arsenic acute toxicity.

5.3.2 Chronic Toxicity Due to Arsenic Exposure

Chronic arsenic toxicity occurs when low concentration of arsenic is either ingested
or inhaled or absorbed for a very long time. It imposes a serious health threat
globally as arsenic availability in the environment becomes much easier and from
where getting access to the human body. Around 35–37 million people are reported
to be suffering from chronic toxicity and may even lead to their death, principally
among children (Mayans et al. 2000; Mukherjee et al. 2006).

According to WHO, initial symptoms after the chronic arsenic exposure for a
duration of at least 5 years are seen in the skin which includes hyperkeratosis,
pigmentation alteration and skin lesions. Developmental effects, cardiovascular
diseases, diabetes and pulmonary disease are some of the other symptoms of chronic
arsenic toxicity.

Arsenic chronic toxicity has adverse effects on pregnancy as well as on mortality
rate of infant. Due to the arsenic exposure during pregnancy, it is likely to have high
mortality among young adults (Quansah et al. 2015). Occurrence of multiple
cancers, kidney failure, lung disease and heart attack in early childhood due to
exposure within the uterus may be the reason behind high mortality (Farzan et al.
2013). It has also been reported that cognitive dysfunction including memory,
development and intelligence also occurred due to the chronic arsenic exposure
(Tolins et al. 2014).

5.4 Effects of Arsenic on the Nervous System

Since inorganic arsenic has the potential to traverse the blood–brain barrier (BBB)
with ease, brain becomes the significant organ to get affected by arsenic toxicity
which further leads to cognitive impairment including learning and memory
(Mundey et al. 2013). Although arsenic being distributed throughout the brain but
at pituitary gland it gets highly accumulated (Sánchez-Peña et al. 2010). Sensory
neurons sensitivity to arsenic in comparison to motor neurons is higher. Longer axon
neuron is more affected due to arsenic than shorter ones. Arsenic neurotoxicity is one
of the major causes of production of reactive oxygen species (ROS) which further
leads to cause oxidative stress, even the activity of enzyme superoxide dismutase
(SOD) declines and glutathione (GSH) level is also reduced (Mundey et al. 2013;
Dwivedi and Flora 2011). Cytoskeletal framework disorganisation and
destabilisation in addition to neuronal apoptosis are also major effects of arsenic
exposure (Namgung and Xia 2001). Enzymes which are prominent for a cell to
function might even get inactive due to adverse condition of arsenic neurotoxicity.
Arsenic is also responsible for inducing central neuropathy as well as peripheral
neuropathy (Rodríguez et al. 2003; Mathew et al. 2010). Various neurological
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implications in humans due to arsenic exposure include Guillain-Barre like neurop-
athy, poor concentration, Parkinson’s disease, cognitive dysfunction, encephalopa-
thy, impaired memory as well as peripheral neuropathy (Piao et al. 2005; Felix et al.
2005; Yip et al. 2002; Gopalkrishnan and Rao 2006; Bardullas et al. 2009). Various
neurodegenerative conditions such as Alzheimer’s disease are reported to be caused
due to chronic arsenic toxicity (O’Bryant et al. 2011). Arsenic metabolism and its
toxicity mechanism are discussed in detail later in this chapter.

The neurobehavioural disorders and cognitive dysfunctions are also reported to
be the consequences of severe arsenic exposure (Vahidnia et al. 2007). As per
studies carried out these consequences occurred due to the receptors present in the
hippocampus get suppressed in the presence of specific arsenic metabolites (Luo
et al. 2009; Krüger et al. 2009). Concentration between 10 and 50 ppb of arsenic
presence in the water is reported to be responsible for causing peripheral neuropathy
(Mochizuki et al. 2019). Peripheral neuropathy outcome is the impairment of
sensory neurons to a large extent than the motor neuron (Ishii et al. 2019; Kawasaki
et al. 2002). Further reduction in the number of both myelinated and non-myelinated
axon occurs leading to peripheral neuron axonal degeneration (Le Quesne and
McLeod 1977). Arsenic concentration to cause CNS impairment is reported to be
50 ppb for children or more, while for adults with high concentration is required
(Vibol et al. 2015; Mochizuki et al. 2016). CNS impairment due to arsenic exposure
including encephalopathy with loss of brain functions lately is considered to be
irreversible. Encephalopathy is the outcome of elevated level of pyruvate in the
blood and this elevated pyruvate is contributed by arsenic important role in thiamine
deficiency and enzyme pyruvate decarboxylase inhibition (Gopalkrishnan and Rao
2006).

Arsenic is also responsible for inducing apoptosis in CNS by triggering p38-mito-
gen-activated protein kinase (MAPK) and JNK3 pathway (Namgung and Xia 2001).
The various neurotransmitters like glutamate, acetylcholine, dopamine, epinephrine,
etc. level are modified along with their metabolism and synaptic transmission
velocity after arsenic exposure (Kannan et al. 2001; Rodríguez et al. 2002; Ramos-
Chávez et al. 2015; Nelson-Mora et al. 2018). Arsenic clinical manifestations
include delusion, stroke, headache and even a state of deep unconsciousness
(Bartolomé et al. 1999).

5.5 Stage Specific Arsenic Neurotoxicity

5.5.1 In Foetal and Children Development

Study conducted on mice has revealed that sodium arsenite prenatal exposure causes
neurobehavioural impairment along with prelimbic cortex abnormal formation in the
offspring (Aung et al. 2016). Sodium arsenite gestational exposure has the potential
to impair learning and memory processes (Ramos-Chávez et al. 2015; Nelson-Mora
et al. 2018).
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It is reported that arsenic exposure impacts full scale intelligent quotient (IQ) and
memory even at a concentration far below than recommended level (Tolins et al.
2014; Farzan et al. 2013). IQ, cognitive function, long term memory, motor skills
and verbal abilities are affected after inorganic arsenic contaminated water exposure
ranging between 5 and 50 ppb in children of Mexico (Calderón et al. 2001; Rosado
et al. 2007), the USA (Wasserman et al. 2014) and Bangladesh (Parvez et al. 2011).
In comparison to adults there is less arsenic neurotoxicity reported in children as
children have effective detoxification mechanism through arsenic methylation (Lau
et al. 2013; He et al. 2009). But CNS damage is severe in children than in adults due
to its immature BBB defence system. Further investigation is required to be
conducted to understand the gestational and developmental arsenic neurotoxicity
in a better and advanced way. During development inorganic has the potential to
modify the formation of BBB gap junction (Golmohammadi et al. 2019; Manthari
et al. 2018). It can have an adverse effect in the development of brain.

5.5.2 In Adults

There are reports disseminating that inorganic arsenic exposure is responsible for
modified adult cognitive function as well as mental health (Hong et al. 2014; Tyler
and Allan 2014). Arsenic contaminated underground water not only affects periph-
eral neuropathy but also alters sensory functions and decreases nerve conduction
velocity (Chou et al. 2007; Paul et al. 2013; Mochizuki et al. 2019; Hafeman et al.
2005). In rats it is observed that after arsenic exposure neurofilament and fibroblast
proteins specifically in the sciatic nerves get disappeared (Vahidnia et al. 2006,
2008). Also, peripheral neuron axon gets modified; demyelination and increase
oxidative damage are seen in rats after arsenic exposure. Further all these
observations affect the neurotransmission between CNS and peripheral nervous
system (García-Chávez et al. 2006).

5.5.3 Neurodegeneration

Arsenic relevance in causing oxidative stress, mitochondrial dysfunction and inflam-
mation is an essential aspect as these molecular mechanisms play vital role in
causing neurodegeneration. The Alzheimer’s disease (AD) vulnerability increases
when there is high level of inorganic arsenic, dimethylarsinic acid (DMA) and
selenium in urine (Yang et al. 2018). Study conducted on rats revealed that due to
chronic arsenic exposure neurobehaviour gets affected as level of amyloid-beta (Aβ)
increased along with enzyme beta-secretase increased activity (Nino et al. 2018).
Arsenic associated with other heavy metals leads to increased pro-amyloidogenic
effects, this further promotes oxidative damage and neuroinflammation (Ashok et al.
2015). Arsenic in cooperation with the affected neurotransmitter dopamine leads to
neurotoxicity which plays significant role in alpha-synuclein accumulation and
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oligomerisation causing Parkinson’s disease (PD) (Cholanians et al. 2016). These
studies have revealed the relationship of arsenic with neurodegeneration.

5.6 Arsenic Metabolism and Its Metabolites

Inorganic arsenic is transported into the cell and then its metabolism occurs which
leads to the formation of several metabolites as represented in Fig. 5.1. The complete
mechanism is discussed in detail below.

Fig. 5.1 Inorganic arsenic transport and metabolism (Adapted from Garza-Lombo et al. 2019).
Trivalent inorganic arsenic (iAsIII) enters into a cell through glucose transporter (GLUT1) and
aquaporins (AQP). While pentavalent inorganic arsenic (iAsV) enters through phosphate trans-
porter. Within the cell iAsV gets reduced to iAsIII with the help of thioredoxin (Trx)/thioredoxin
reductase (TR) system. Oxidative methylation of iAsIII into various metabolites is catalysed by
arsenite methyltransferase (AS3MT). iAsIII combination with glutathione (GSH) in the presence of
glutathione-S transferase (GSTs) results in the formation of conjugates like As(GS)3. Arsenic
metabolites produced within the cell are transported outside the cell through the multidrug resis-
tance proteins (MRPs)
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5.6.1 Arsenic Transportation into the Brain

As mentioned earlier inorganic arsenic exists in two oxidation states, i.e. trivalent
(iAsIII) and pentavalent (iAsV). About 60–87% of both inorganic form of arsenic
are bioavailable in humans. Large amount of arsenic is absorbed in the small
intestine, while its small amount is absorbed by skin and through inhalation
(Centeno et al. 2002; Enterline et al. 1987; Hertz-Picciotto and Smith 1993).

After entering into the blood, arsenic enters into the brain easily as it can cross the
BBB. There are different types of transporter used by them to enter the cells.
Aquaporin (AQP) which is an organic anion transporter glucose transporters
(GLUT) is used by iAsIII to enter the cell. While phosphate transporters are used
by iAsV to enter the cell wherein they are reduced to their iAsIII form (Torres-Avila
et al. 2010; Liu et al. 2002; Calatayud et al. 2012). It is highly accumulated in the
pituitary gland inside the brain in its methylated form (Sánchez-Peña et al. 2010).
Inorganic arsenic metabolites are transported out of the brain cells through multidrug
resistant protein (MRP). Mostly MRP1, MRP2 and MRP4 are used (Leslie et al.
2004; Yoshino et al. 2011; Shukalek et al. 2016).

5.6.2 Inorganic Arsenic Metabolic Pathway and Methylation

After entering the brain cells inorganic arsenic undergoes methylation through
various mechanisms. iAsIII is always methylated; hence, iAsV has to be first
reduced to iAsIII. Inorganic arsenic is methylated in different zones of the brain
which can express the enzyme arsenic methyltransferase (AS3MT) (Sánchez-Peña
et al. 2010; Rodríguez et al. 2005). The mechanisms used for methylation of
inorganic arsenic (Challenger 1945; Hayakawa et al. 2005) are described below.

5.6.2.1 Oxidative Methylation
In oxidative methylation, S-adenosylmethionine (SAM) acts as the donor of methyl
group catalysed by inorganic arsenic methyltransferase (AS3MT) enzyme to the
inorganic arsenic. Various products produced due to iAsIII methylation as shown in
Fig. 5.1 are monomethylarsonic acid or arsenate (MMAV), monomethylarsonous
acid (MMAIII), dimethylarsinic acid (DMAV) and dimethylarsinous acid (DMAIII)
(Watanabe and Hirano 2013; Chou et al. 2007).

5.6.2.2 Inorganic Arsenic Glutathione (GSH) Conjugation
Inorganic arsenic is conjugated to GSH non-enzymatically to produce arsenic
tri-glutathione [As(GS3)] (Leslie et al. 2004; Watanabe and Hirano 2013). Arsenic
conjugated GSH is further methylated in a reaction catalysed by enzyme arsenite
methyltransferase (AS3MT) to produce mono-methylarsenic di-glutathione [MMA
(GS)2] and di-methylarsenic glutathione [DMA(GS)]. When the presence of gluta-
thione is less than the GSH conjugates, then these conjugates further get hydrolysed
followed by oxidation to produce MMAV and DMAV (Watanabe and Hirano 2013).

5 Effects of Arsenic: Neurological and Cellular Perspective 135



In human urine DMAV (40–80%), MMAV (10–25%), and inorganic As
(10–30%) are reported to be detected frequently (ATSDR 2007; Vahter and Concha
2001). LD50 concentration values of arsenic and its metabolites in human are as
follows for each: iAsIII—50μM, iAsV—180μM, MMAIII—8μM, MMAV—
60 mM, DMAIII—8μM and DMAV—15 mM (Himeno 2017). MMAIII and
DMAIII are reported to have deleterious effects in comparison to other arsenic
metabolites (Kligerman et al. 2003). Depending on the different oxidation state of
arsenic the biological half-life is determined. In comparison to arsenate, arsenite has
a shorter biological half-life (Sattar et al. 2016). Arsenate is reduced to arsenite in a
reaction catalysed by GSH and thiols reducing agents (Buchet et al. 1981).

5.7 Arsenic Induced Toxicity Mechanism

The various arsenic metabolites as discussed above express their neurotoxic effect
by inducing significant enzymes inactive which participates in catalysing necessary
life processes pathways like DNA repair and synthesis pathway. More precisely
trivalent arsenic metabolites in their reduced state inhibit catalytic activity of
enzymes (Aposhian et al. 2004; Ratnaike 2003). There are various mechanisms
through which arsenic metabolites induce their neurotoxic effects like reactive
oxygen species generation, oxidative stress, shortfall of thiamine and reduction in
enzyme acetylcholinesterase activity (Dwivedi and Flora 2011; Singh et al. 2011).
Molecular mechanism of arsenic induced neurotoxicity is shown in Fig. 5.2. Arsenic
and its metabolites play a significant role in epigenetic modification leading to
neurological impairment (Kleefstra et al. 2014; Rudenko and Tsai 2014; Farzan
et al. 2013; Smith et al. 2012), altering neurotransmitter homeostasis as well as

Fig. 5.2 Arsenic induced neurotoxicity (Adapted from Mohammed Abdul et al. 2015)
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synaptic neurotransmission, inducing neuronal cell death and brain strong inflam-
matory response. These mechanisms affected by arsenic and its metabolites are
discussed in detail below.

5.7.1 Mitochondrial Dysfunction and ROS Production

Mitochondrial dysfunction involvement in ROS production plays a vital role in
arsenic induced neurotoxicity (Chandravanshi et al. 2019; Prakash et al. 2016) and
may even induce neurodegeneration (Calì et al. 2011). Arsenic neurotoxicity major
implication is observed in reactive oxygen species (ROS) generation shown in
Fig. 5.3 which occurs primarily in mitochondria (Jomova et al. 2011; Flora 2011)
due to the electron leak by decreasing the activities of mitochondrial complexes (I–
IV) (Chandravanshi et al. 2019). It is well known that in normal conditions mito-
chondrial ROS level is controlled by the antioxidant systems. But in adverse

Fig. 5.3 Arsenic metabolism induces generation of reactive oxygen species (ROS) leading to
oxidative stress along with mitochondrial dysfunction (Adapted from Garza-Lombo et al. 2019).
Mitochondria function is altered and ROS are generated through its electron transport chain.
Superoxide anion, hydrogen peroxide and hydroxyl radical act as ROS. Superoxide anion (O2

�)
forms hydrogen peroxide (H2O2) in the presence of superoxide dismutase (SOD). GSH conjugated
arsenic [DMA(GS)] forms dimethylarsine (DMAH). DMAH after reacting with molecular oxygen
(O2) forms DMAH free radicals (DMAH�) as well as the DMAH peroxyl radical (DMAOO�).
Dimethylarsinous acid (DMAIII) reacts with O2 to form dimethylated arsenic peroxide
(DMAOOH) which again in the presence of O2 leads to the formation of radical DMAOO�
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condition which may be either due to mitochondria dysfunction or ageing which
assists in the uncontrolled ROS generation, protein carbonylation and lipid peroxi-
dation (Halliwell and Cross 1994; Olsen et al. 2013; Forman 2016). The other factors
which contribute to the ROS generation include nicotinamide adenine dinucleotide
phosphate (NADPH) dependent oxidase and the NO synthase enzyme activities
(Culotta et al. 2006; Schrader and Fahimi 2006). Activities of certain other enzymes
like cytochrome p450 enzymes, lipoxygenases, myeloperoxidases, xanthine
oxidases, cyclooxygenases (COX) and the molecular mechanism of protein folding
in the endoplasmic reticulum (ER) also play important role in ROS generation
(Halliwell and Cross 1994; Olsen et al. 2013; Finkel 2011). Increased level of
ROS in comparison to normal condition leads to oxidative stress. And this oxidative
stress causes oxidative alteration of biomolecules which further leads to the func-
tional protein loss, organelles impairment and even apoptosis (Finkel 2011; Olsen
et al. 2013; Forman 2016; Reczek and Chandel 2015). There are enzymatic and
non-enzymatic antioxidant mechanisms which prevent oxidative stress (Halliwell
and Cross 1994; Olsen et al. 2013; Forman 2016; Finkel 2011). ROS generation
induced by arsenic leading to oxidative stress is represented in Fig. 5.3.

Mitochondrial dysfunction is also responsible for reducing the amount of peroxi-
some proliferator-activated receptor-gamma co-activator 1-alpha (PGC-1α) as well
as the transcription factor A found in mitochondria (TFAM) (Prakash and Kumar
2016). Arsenic metabolite specifically MMAIII and DMAIII produces free radicals
and hence considered to be more potent toxic (Zamora et al. 2014).

5.7.2 Thiamine Deficiency

Thiamine is a vitamin which is referred as vitamin B1. Neuronal complications occur
due to its deficiency. Arsenic plays a vital role in thiamine deficiency which further
inhibits the activity of enzyme pyruvate decarboxylase leading to neuronal
complications (Gopalkrishnan and Rao 2006). Enzyme pyruvate decarboxylase
catalyses the catabolic pathway of glucose to release energy. ROS produced due to
trivalent arsenic and its metabolites makes pyruvate dehydrogenase enzyme inactive
by oxidising it. And for this very low concentration of arsenic is enough in
comparison to arsenate concentration required for binding to the critical thiols
(Samikkannu et al. 2003; Szinicz and Forth 1988). Both dry thiamine deficiency
neuropathy and mild encephalopathy are considered to be the severe form of
thiamine deficiency affecting the nervous system (Dieu-Thu 2015). Thiamine defi-
ciency may be induced by arsenic exposure.

5.7.3 Decreased Acetylcholinesterase Enzyme Activity

Acetylcholinesterase enzyme (AChE) plays a significant role in cholinergic neuro-
transmission. It catalyses the hydrolysis of acetylcholine which functions as a
neurotransmitter into acetate and choline. Hence it is crucial for proper functioning
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of brain or nervous system. It was found that when rats as animal model were
exposed to arsenic trioxide depending on dosage, activity of the AChE present in
their serum was decreased (Patlolla and Tchounwou 2005). And further it affects the
cholinergic neurotransmission in association with either peripheral neuropathy or
CNS damage (Singh et al. 2011; Patlolla and Tchounwou 2005). A more detailed
study is required to determine the mechanism, symptoms and association between
AChE and arsenic exposure.

5.7.4 Epigenetics Modification

Epigenetics is defined as inherited altered phenotype or gene expression without the
DNA sequence involvement (Eccleston et al. 2007; Nanney 1958). Nanney in 1958
coined term epigenetics. The modified phenotype or gene expression may be
brought about by acetylation, ubiquitination, phosphorylation of histone, methyla-
tion (DNA as well as histone) and expression of microRNA (Collotta et al. 2013;
Heerboth et al. 2014). Epigenetic modifications are reported to be associated with
neurological dysfunctioning (Kleefstra et al. 2014; Rudenko and Tsai 2014). Meth-
ylation is assumed to be responsible to conciliate arsenic toxicity (Reichard and Puga
2010; Ren et al. 2011). S-adenosyl methyltransferase (SAM) plays a crucial role in
methylation dependent epigenetic modification like DNA and histone methylation.
Reduction or deletion of the SAM gene expression is the main effect of inorganic
arsenic exposure.

Gene transcription is repressed mostly due to DNA methylation. Arsenic induced
epigenetic disruption is also regulated by DNA methyltransferase enzyme activity
and expression (Bestor 2000; Lan et al. 2010; Reichard and Puga 2010). More than
2000 newborn cord blood genes are reported in an epidemiological study that DNA
methylation modifies due to arsenic exposure (Garza-Lombó et al. 2019). Gene
methylation altered due to inorganic arsenic exposure modified was reported to be
related to the gestational age and head circumference (Rojas et al. 2015). Studies on
rats revealed that neuroplasticity regulating genes showed altered methylation due to
arsenic developmental exposure (Martínez et al. 2011). Even the enzymes
participating in DNA methylation demethylation processes in rat’s brain, DNA
methyltransferase as well as translocation enzymes were found to be suppressed
due to arsenic exposure.

Inorganic arsenic is also proposed to affect the acetylation process of histone.
Since enzyme pyruvate dehydrogenase (PDH) catalysed the oxidation reaction of
pyruvate to acetyl-CoA which gets impaired after arsenic being introduced into the
body (Samikkannu et al. 2003; Schiller et al. 1977). Acetyl-CoA acts as the donor of
acetyl group required for acetylation.
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5.7.5 Apoptosis

Apoptosis in nervous system basically involves neural death pathway due to inor-
ganic exposure. Arsenic and its metabolites neurotoxicity are responsible for
activating several neural death pathways. The different pathways used for inducing
caspase dependent neurons and neuroblastoma apoptosis include mitogen-activated
protein (MAP) kinase, serine/threonine protein kinase such as extracellular signal-
regulated kinase (ERK), p38 MAPKs or c-Jun N-terminal kinases (JNK) signalling
pathway (Namgung and Xia 2001; Lu et al. 2011). Secondary messenger calcium
ion (Ca2+) can also induce apoptosis due to arsenic exposure (Florea et al. 2007).
When HepaRG cells were exposed to arsenic metabolite DMAIII, the activity of
apoptosis initiator caspase-9 is reported to increase (Würstle et al. 2012). Arsenic is
reported to induce apoptosis in cerebral cortex (Yen et al. 2011). Even the hippo-
campal neurons can be induced for apoptosis due to arsenic exposure by the
antagonism of neurotrophic signalling (Pandey et al. 2017).

Autophagy is the regulated process of a cell which helps in removing the
damaged cells and unnecessary components. Basically, autophagy is activated to
counter stress as a defence mechanism but sometimes it may even induce cell death
(Doherty and Baehrecke 2018). As such during development arsenic triggers
autophagy in mouse brain by inhibiting Akt or phosphoinositide 3-kinase signalling
or mTOR signalling pathway (Manthari et al. 2018). These studies provided evi-
dence of association between arsenic induced apoptosis and neurotoxicity.

5.7.6 Inflammation

Strong inflammatory reaction is observed in the brain due to inorganic arsenic
exposure. On exposing arsenic to rat’s hippocampus, after culturing microglia and
glial cells of the CNS, the phenotypic expression of inflammatory causing cytokines
such as interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon gamma (IFNγ)
and tumour necrosis factor-α (TNFα) was increased to a large amount (Ashok et al.
2015; Firdaus et al. 2018; Mao et al. 2016). The cytokines released may enhance the
chances of mediating neuronal toxicity (Mao et al. 2016).

5.8 Diagnosis and Treatment

The urine sample is used for the purpose of quantification of arsenic concentration in
the body. To diagnose acute arsenic toxicity there are two parameters which are to be
considered: firstly, when arsenic concentration in urine is 50μg/L and secondly when
arsenic concentration in urine is 100μg within 24 h of urine collected. There is
another prior condition that no seafood is ingested when the urine sample is
collected. Urine sample should be kept according to the protocol to carry out the
quantification. Blood, nails and even hair as biological samples can be used for
chronic arsenic toxicity diagnosis.
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Acute arsenic toxicity treatment should be focused on amending arsenic induced
dehydration as well as restoring the functions which are vital for the body for which
it is required to eliminate arsenic from the body. Gastric lavage, activated charcoal
and haemodialysis are prescribed for its elimination from the body. But still there is
no evidence for these methods for their efficacy. Since arsenic is a metalloid,
chelators like 2,3-dimercapto-1-propanol also commonly known as British anti-
lewisite (BAL), dimercaptosuccinic acid (DMSA), penicillamine and
2,3-dimercapto-1-propane sulfonic acid (DMPS) are used for their successful
removal (Vantroyen et al. 2004; Tseng et al. 2006; Rahman et al. 2001; Stenehjem
et al. 2007). Neurological complications of acute arsenic toxicity are reported to be
not relieved after chelation (Perriol et al. 2006). But the studies conducted on rats
revealed that after chelating using BAL, arsenic is depleted from tissues and even
excreted through urine and faeces (Hilmy et al. 1991). Chelating agent has higher
binding affinity for arsenic than endogenous ligands present within the body but the
chelating is reported to be ineffective for treating arsenic induced peripheral neurop-
athy (Hall 2002). Still more studies are required to be carried out for treating arsenic
toxicity.

5.9 Conclusion and Future Perspective

Arsenic has become a worldwide public health concern for its toxic effects. The
primary focus of this chapter is to understand the various neurotoxic pathway of
arsenic along with their severe consequences. After understanding the mechanism of
arsenic induced toxicity specifically arsenic neurotoxicity, it has become clear that
its toxic effect is far wider. Epidemiological studies have revealed that arsenic
neurotoxicity impact is not only limited to adults but even to the foetus as well as
children’s nervous system proper development which includes their intellectual and
cognitive functions (Nagaraja and Desiraju 1994; Hamadani et al. 2011; Rahman
et al. 2009; McDermott et al. 2012; Grandjean and Landrigan 2006). The arsenic
involvement in increasing the susceptibility to develop neurodegenerative disease,
neuronal apoptosis and oxidative stress is discussed in detail in this chapter. The role
of chelating agent in the treatment of arsenic induced toxicity is also discussed along
with the various parameters which should be considered for its diagnosis (Vahidnia
et al. 2007). Axonal degradation and neuropathy of CNS are few adverse
implications of chronic arsenic neurotoxicity.

Affordable, sustainable as well as cost effective methods are required to be
developed to remove arsenic from the most common accessible arsenic source,
i.e. drinking water (Matschullat 2000). More study and research are required to
understand the mechanisms by which neurotransmission and cognitive functions are
altered by arsenic exposure during development. Also, arsenic toxicity association
with neural cell population which includes neurons and glia is required to be
analysed in more detail. Till now there is no cure and treatment for its toxic effect
which can be an important area of study. Diagnosis of arsenic toxicity using the
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potential biomarkers can transform its detection as acute or chronic and henceforth
its diagnosis can become easier (Garza-Lombó et al. 2019).
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Arsenic: Source, Distribution, Toxicity
and Bioremediation 6
Ghanshyam Kumar Satyapal and Nitish Kumar

Abstract

Arsenic is ubiquitous in nature and a well-known toxic metalloid. There are four
oxidation states (�3, 0, +3 and + 5) of arsenic found in nature and most common
forms are +3 and + 5. The main sources of arsenic in nature are anthropogenic and
natural activities. The natural sources include rocks, soils, seawater, arsenic-
bearing minerals, volcanic emission and river originating from Himalaya. The
anthropogenic activities include mining, smelting, use in herbicides and combus-
tion of fossil fuels. The exposure to arsenic occurs mainly by consumption of
arsenic contaminated drinking water or food. Arsenic is distributed all around the
world beyond permissible limits in drinking water. Such type of contamination
was reported in India, Thailand, Mexico, Chile, Argentina, China, Taiwan, USA
Hungary and Bangladesh. The arsenic toxicity largely depends on its physical
state and chemical form of the arsenic compound. Arsenic toxicity causes blad-
der, prostate, lung and skin cancer, rhagades, skin lesions, oxidative stress,
mitochondrial damage and may interfere with the DNA methylation or DNA
repair system. The ubiquitous nature of arsenic leads microorganism to evolve
several plan of action for their survival in stressed environments. These strategies
include arsenic oxidation, reduction, intracellular bioaccumulation and methyla-
tion. These strategies can be used in mitigation of the environmental arsenic from
contaminated sites. In bacteria, the uptake of As(III) is mediated by GlpF whereas
the A(V) uptake is facilitated by Pst and Pit membrane proteins. The oxidation of
arsenic occurs in the periplasm of the bacteria and is regulated by arsenite oxidase
(AoxAB) enzyme. The arsenate As(V) reduction occurs either in cytoplasm or in
periplasm of the bacteria by arsenate reductase, ArsC or by arrA and arrB,

G. K. Satyapal · N. Kumar (*)
Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
e-mail: nitish@cub.ac.in

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021
N. Kumar (ed.), Arsenic Toxicity: Challenges and Solutions,
https://doi.org/10.1007/978-981-33-6068-6_6

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6068-6_6&domain=pdf
mailto:nitish@cub.ac.in
https://doi.org/10.1007/978-981-33-6068-6_6#DOI


respectively. The bioremediation is a low-cost and eco-friendly technique for the
treatment of arsenic contaminated sites.

Keywords

Arsenic · Arsenic distribution · Anthropogenic · Arsenic toxicity · Arsenite
oxidation · Arsenate reduction · Bioremediation

6.1 Arsenic

Arsenic (atom. no. 33) is a poisonous semi-metallic element and is broadly
distributed all around the world. In the earth’s crust, arsenic was ranked 20th for
its abundance (Bahar et al. 2012; Zhang et al. 2002). There are four oxidation states
(�3, 0, +3 and + 5) of arsenic found in nature and most common forms are trivalent
arsenite [+3, As(III)] and pentavalent arsenate [+5, As(V)] (Bahar et al. 2012;
Mateos et al. 2006). The �3 species of arsenic, arsines and methylarsines, are
generally unstable when present in air (Adriano 2001). As(III) is highly toxic in
comparison with As(V) and has a high magnitude solubility which makes it difficult
to remove from water (Bahar et al. 2012). More than 200 minerals occur in nature
which contain arsenic, most of these minerals are in close association with metals
such as Ni, Cu, Fe, Co, Ag, Cd and Pb. Most of the arsenic occur in minerals are
sulphur conjugated for example, orpiment (As2S3), enargite (Cu3AsS4), realgar
(As4S4) and arsenopyrite (FeAsS) (Drewniak and Sklodowska 2013). The anionic
forms of arsenous acid and arsenic acid are the most common compounds of arsenite
and arsenate, respectively. MMAs(V) (monomethylarsonic acid) and DMAs
(V) (dimethylarsinic acid) are stable methylated form of inorganic arsenic in mam-
malian metabolites and are excreted in the urine. DMAs(V) and the sodium salts of
MMAs(V) have been used as herbicides. For long time, DMAs(III)
(dimethylarsinous acid) and MMAs(III) (monomethylarsonous acid) have been
proposed intermediates in the arsenic metabolism (Hughes 2002).

6.2 Source of Arsenic

Arsenic is found everywhere in natural surroundings. It is a well-known toxic
element for all forms of life (Banerjee et al. 2011; Tripathi et al. 2007; Villadangos
et al. 2012). The main sources of arsenic in nature are anthropogenic and natural
activities (Mandal and Suzuki 2002). Arsenic is released in the environment, pri-
marily by natural activities like volcanic emission, weathering of minerals
containing arsenic, etc. and due to anthropogenic activities such as burning of fossil
fuels, smelting and mining (Bahar et al. 2012).
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6.2.1 Natural

Arsenic is widely distributed in nature and is a rare crystal element. In rocks, the
concentration of arsenic depends on the rock type, as higher concentration of arsenic
is present in sedimentary rocks than igneous rocks (Mandal and Suzuki 2002).
Generally, in sedimentary rocks, the range of mean value of arsenic concentrations
is varied from 0.3 to 500 ppm and from 1.5 to 3.0 ppm in igneous rocks (Adriano
2001). The concentration of arsenic in rocks ranges from 0.5 to 2.5 mg kg�1

(Kabata-Pendias 2010); however, higher concentrations were present in
phosphorites and finer-grained argillaceous sediments (Mandal and Suzuki 2002).
More than 200 minerals occur in nature which contain arsenic (Drewniak and
Sklodowska 2013), of which approximately 20% are sulphosalts and sulphides,
20% comprises silicates, arsenides, oxides and elemental arsenic and remaining
60% are arsenates (Mandal and Suzuki 2002). In soil, the arsenic concentration in
various countries varies considerably among the geographic regions, and the range
of arsenic concentration are 0.1–40 mg kg�1 and 1 to 50 mg kg�1 (Mandal and
Suzuki 2002). In seawater, the arsenic concentration ordinarily found in the range of
0.001–0.008 mg l�1 (Johnson 1972). The high level of arsenic concentration was
observed from an area nearby Alaska in well water samples after performing the
arsenic speciation (Harrington et al. 1978), it shows inorganic As(III) comprises 3 to
39% and remaining were inorganic As(V) (Mandal and Suzuki 2002).

In unpolluted freshwater, arsenic concentrations range from 1 to 10 g l�1; how-
ever, in the area of sulphide mineralization and mining it ranges from 100 to
5000 g l�1 (Smedley et al. 1996). In air, the concentration of arsenic ranges from
0.4 to 30 ng m�3, thus human exposure to arsenic from air is generally very low
(Mandal and Suzuki 2002).

6.2.2 Anthropogenic

Arsenic is released in the environment, primarily by natural activities like volcanic
emission, weathering of minerals containing arsenic, etc. and due to anthropogenic
activities such as burning of fossil fuels, smelting and mining (Bahar et al. 2012).
Arsenic is extensively spread in water, land, and air through water run-off and wind-
blown dust (Mateos et al. 2006). There are some more primary anthropogenic input
derives from burning of fossil fuels in power plants based on oil- and coal-fire,
discharge from metal smelters, combustion of solid waste from municipals and use
of herbicides containing arsenic directly in agriculture and by industry (Zhang et al.
2002). Arsenic is naturally available in ores of copper, gold, lead and zinc and during
the smelting process it can be released in the environment. The neighbouring
ecosystem may become polluted by particulates and flue gases released from
smelters (Adriano 2001).

The arsenic concentration in coal combustion residues and fly ash varies in the
range from 100 to 1000 ppm (Adriano 2001). Therefore, generating power from
combustion of coal and disposal of its fly ash may play a role in arsenic input in the
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surroundings. Metal forms of arsenic are used in copper and lead alloys as an
additive. Mainly compounds containing arsenic are being used in forestry and
agriculture as silvicides, herbicides and pesticides. As(III) is a raw material for
arsenical pesticides which includes sodium arsenite, calcium arsenate, lead arsenate,
and organic arsenicals. These arsenicals are being used in the production of wood
preservatives, algicides, fungicides, herbicides, insecticides and ship dips (Adriano
2001). For some animals, arsenic is an essential trace element and thus used as
additive in the animal feed. Aluminium gallium arsenide or gallium arsenide crystals
are used as a component of laser, light emitting diodes, semiconductors and in
different types of transistors (Ratnaike 2003). The anthropogenic sources of arsenic
are playing a crucial role for elevation of arsenic level in environment. The
consequences occur by repeated use of arsenic in agricultural and industrial areas
which results in increased levels of arsenic.

6.2.3 Source of Exposer to Arsenic

Humans can be exposed to arsenic by several ways. Probably, the most common
way is ingestion of food or drinking water contaminated with arsenic (Ratnaike
2003; Zhang et al. 2002). The concentration of arsenic in worldwide aquifers ranges
from <5 to 5000 μg/l and this leads it to become a human health concern globally
due to its subsequent contamination in drinking water and food (Mandal and Suzuki
2002; Suttigarn and Wang 2005). According to the guidelines established by WHO,
the permissible concentration of arsenic is 10 μg/l in drinking water but due to the
economic reasons most of the developing countries accepted 50 μg/l, including
Bangladesh (Bahar et al. 2012). Peoples are ingesting arsenic from contaminated
water by agrochemical or industrial waste or from wells drilled in arsenic-rich
geographic area (Adriano 2001). Arsenic contamination in fruit and vegetable
crops occurs by uptake of arsenic from roots, soil or through spraying application.
Seafood consumption from different sources may be another reason of arsenic intake
by humans (Bishop and Chisholm 1966). Fish, algae and seafood are the sources of
richest organic supplement (Edmonds and Francesconi 1987). Humans consuming
seafood in their supplementary diet from different sources may be a reason for
arsenic intake. The amount of arsenic in fish differs with their location and their
species. The high level of arsenic is found in marine seafood products available
commercially than terrestrial animals (Adriano 2001).

6.3 Arsenic Distribution

The arsenic level beyond permissible limits in drinking water around the world is the
chief reason of arsenic toxicity. Such type of contamination was reported in India,
Thailand, Mexico, Chile, Argentina, China, Taiwan, USA, Hungary and
Bangladesh. In Nepal (2001), it came to notice that the groundwater of lower Plain
area (Terai) is contaminated with arsenic (Chaurasia et al. 2012). In the Asian
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countries, arsenic contamination was recorded from the Red River delta and from the
Hanoi city. In addition, they reported high loads due to flooding and from delta
plains of the Irrawaddy delta of Myanmar, in the Indus basin and Mekong valley in
Vietnam and Cambodia. This indicates that the arsenic groundwater contamination
is prone in lower flood plains and delta regions of south-eastern Asia (Saha 2009).
The chronic mass toxicity of arsenic contamination in groundwater is a reason of
large scale thread and there are more than 20 countries in the midst of it, including
India (Chaurasia et al. 2012). However, due to drinking of arsenic contamination
groundwater, the largest population affected by chronic arsenic toxicity in the world
belongs to China, Bangladesh and India (Chaurasia et al. 2012; Saha 2009). In 1983,
the first arsenic groundwater contamination was reported in West Bengal
(Chakraborti et al. 2003; Ghosh and Singh 2009). In India, contamination of arsenic
was first identified in Punjab, Haryana, Uttar Pradesh and Himachal Pradesh
(Chaurasia et al. 2012). The groundwater contamination of arsenic and its effects
on health were noticed in 1999 in Rajnandgaon district (Chhattisgarh, India). In
2002, in the western part of Bihar (India), the two villages of Bhojpur districts,
Semaria Ojha Patti and Brisban, were reported for exceeding permissible level of
50 μg/l arsenic contamination in groundwater (Chaurasia et al. 2012; Ghosh and
Singh 2009; Nath et al. 2015). States of India, like Jharkhand, Uttar Pradesh, Bihar,
West Bengal come under the flood plain of River Ganga; Manipur and Assam come
under the flood plains of rivers Imphal and Brahmaputra, are reported above 50 μg/l
of arsenic contamination level in groundwater (Ghosh and Singh 2009). The avail-
ability of arsenic in India and Bangladesh depends geologically on nature. The
sediment deposition took place 25,000 to 80,000 years ago, i.e., the Quaternary
Period, in the arsenic affected areas. These sediments almost cover entire region of
the river Ganga and it contains arsenic-rich pyrite (Adriano 2001).

6.4 Arsenic Toxicity

Arsenic is well-recognized to cause cancer in humans (Hughes 2002; Shi et al.
2004). The species of arsenic are toxic and bioactive (Zhang et al. 2002). Arsenic
toxicity largely depends on its physical state and chemical form of the arsenic
compound. Inorganic As(III) is highly toxic in comparison with the inorganic As
(V), however inorganic As(V) is more toxic than the methylated form of arsenic
(Adriano 2001). The exposure to arsenic in drinking water even in low
concentrations can result in many types of cancer like prostate, bladder, lung and
skin. The ingestion of arsenic in low levels can also result in non-cancerous effects
such as diabetes, anaemia and developmental, cardiovascular, reproductive, neuro-
logical and immunological. The exposure to high dose of arsenic for short-term may
result in many adverse health problems (Zhang et al. 2002). The arsenic toxicity also
leads to skin lesions, rhagades, and damage to digestive, circulatory, respiratory and
mucous membrane (Rehman et al. 2010). The most prevalent form of arsenic in oxic
condition is As(V) and its toxicity depends on its tetrahedral oxyanion structure
which resembles phosphate, thus As(V) is involved in uncoupling the intermediary
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metabolic conversions, for example in oxidative phosphorylation (Kruger et al.
2013; Villadangos et al. 2014). As(V) may interfere in the methylation state or
repair system of DNA, oxidative stress, promotion of cell proliferation, telomerase
activities and inhibition of p53 inhibit activation of transcription factors by
interfering with signal transduction pathways (Butt and Rehman 2011; Shakoori
et al. 2010). As(III) is highly toxic in comparison with As(V), as it can react with free
thiols which results in disturbing the redox homeostasis. Additionally, As(III)
stimulates the production of reactive oxygen species (ROS), subsequently ROS
damages the DNA as well as proteins (Villadangos et al. 2014). The presence of
arsenic during DNA replication shown to induce sister chromatid exchanges and
chromosomal aberrations, and arsenic is mutagenic according to the results of
genotoxicity studies (Shakoori et al. 2010). 200 enzymes can be inactivated by
arsenic toxicity, mostly the enzymes that are involved in cellular energy pathways.
It generates ROS which in turn exerts its toxicity causing DNA damage and lipid
peroxidation (Ratnaike 2003). Arsenic also exerts its toxicity on plants involving in
their metabolisms. Plants can easily take up As(III) and As(V) by their root cells. The
roots tissue of plants is the first one to interact with arsenic, which in turn results in
inhibition of root proliferation and extension. After taken up from the roots, the
arsenic is translocated to the shoots, where it arrests or slows down the biomass
accumulation and expansion by inhibiting the plant growth. Arsenic also leads plants
to compromise in their reproductive capacity by losing fruit production, yield as well
as plant fertility (Garg and Singla 2011). Both, As(III) and As(V), play role in
disruption of plant metabolism by distinct mechanism of action. As(V) is structurally
resembles phosphate, it can disrupt phosphate dependent metabolisms. It competes
with phosphate uptake in plants leading to imbalance of phosphate supply. As
(V) forms unstable and short-lived adducts by competing with phosphate in phos-
phorylation reactions. The enzymes that contain closely spaced dithiol co-factors or
cysteine residues are inactivated by As(III) as it binds with the thiols group of the
enzymes, as As(III) is a dithiol reactive compound (Finnegan and Chen 2012).

6.5 Bioremediation of Arsenic

Bioremediation is the process of eliminating toxic waste from environment by
exploiting biological agents (Ahemad 2012). The metals present in industrial
effluents can be removed by conventional methods like chemical reduction or
oxidation, chemical precipitation, ion exchange, filtration, evaporation recovery,
membrane technologies, electrochemical treatment and reverse osmosis (Ahluwalia
and Goyal 2007). When the concentration of metals in solutions is 1–100 mg/l then
these conventional methods are ineffective or extremely expensive. So, there is an
urgent need to develop an eco-friendly, cost-effective and innovative technique for
elimination of the metals from contaminated water (Rehman et al. 2010). The
microorganisms can transform the oxidation state of arsenic having different solu-
bility properties, thus performing an important role in biochemical cycle of arsenic
(Silver and Phung 2005). In metal-stressed environment, the bacteria have
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developed several mechanisms for their survival to reduce the uptake of heavy
metals (Nies 1999). Bioremediation of arsenic by microorganisms involves their
intracellular bioaccumulation, methylation, reduction and oxidation (Satyapal et al.
2016). The arsenic can be utilized in metabolism of bacterial strains which are
arsenic resistant for producing energy by chemoautotrophic As(III) oxidation
(Santini et al. 2000). In aerobic respiration, bacteria can utilize As(V) as terminal
electron acceptor (Ahmann et al. 1994; Stolz and Oremland 1999).

6.5.1 Arsenic Uptake and Extrusion System in Bacteria

Numerous mechanisms have been adopted by bacteria to survive in metal stress, to
tolerate the heavy metal uptake and to protect themselves from cell homeostasis
caused by heavy metals. These mechanisms include the efflux of metal ions,
reduction of heavy metals and metal ion complexation and accumulation inside the
cell (Ahemad 2012). In prokaryotes, the uptake of arsenic is due to its molecular
similarity with the substrates of membrane transporter proteins. In aqueous
solutions, at optimum pH, As(III) is structurally similar to glycerol and exists as
As(OH)3. However, As(V) is taken up by phosphate transporter proteins of mem-
brane as it is a structural analogue of phosphate (Maciaszczyk-Dziubinska et al.
2012). The GlpF, an aquaglyceroprotein, involves in the transport of As(III) across
the cell membrane. Pst and Pit are phosphate transporter proteins facilitating AsV
uptake in bacteria (Kruger et al. 2013). In bacteria, arsenic extrusion is done by an
arsenite-translocating ATPase. The three gene operon, arsRBC, present in bacteria
encoding ArsB, involve in arsenite extrusion. Majority of the bacteria use ArsB
alone to extrude arsenite. Some bacteria have the five gene operon, arsRDABC,
encoding for ArsA and ArsB as components of ArsAB ATPase complex (Rosen
2002; Satyapal et al. 2016). The arsenite permease Acr3, an arsenic resistance
transporter, is a member of the bile/arsenite/riboflavin transporter (BART) super-
family. BART includes members of archaea, fungi, and bacteria. Acr3 are more
widely available than ArsB and are small-sized proteins (Villadangos et al. 2012).

6.5.2 Bacterial Arsenite Oxidation

The As(III) can be oxidized by bacteria into As(V), a less toxic form of arsenic. The
Centibacterium arsenoxidans contains aoxABCD operons consisting four adjoining
genes encodes for arsenite oxidase, which is involve in arsenite oxidation (Satyapal
et al. 2016). The larger subunit of arsenite oxidase is also known as aoxB/asoA/aioA
and the small subunits are called as aoxA/asoB/aioB (Silver and Phung 2005; Van
Lis et al. 2013). In H. arsenoxidans, aox operon is regulated by aoxR gene product
and aoxS gene product is a sensor kinase, both are involved in quorum sensing
(Koechler et al. 2010). The expression of aox operon leads to the synthesis of
arsenate oxidase, AoxAB complex, which is then exported to the periplasm of the
bacteria by a Tat (Twin-Arginine Translocation) protein. In periplasm of the bacteria
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the AoxAB complex involves in oxidation of As(III) to As(V) (Silver and Phung
2005).

6.5.3 Bacterial Arsenate Reduction

The ars operon is involved in the reduction of As(V) to As(III). The arsRBC, a three
gene operon, is present in E. coli genome, whereas a five gene operon, arsRDABC, is
reported in S. aureus (Rosen 2002). The transcriptional regulator (arsR) is encoded
by arsR, whereas arsA and arsB encode arsA and arsB, respectively. These are
components of ArsAB, ATPase, an arsenite efflux pump and arsC encodes for an
arsenate reductase (arsC) (Arsène-Ploetze et al. 2010). The ArsD encoded by ArsD
acts as arsenic chaperone. The ars operons, arsRBC and arsRDABC, may present in
a single strain, as observed in T. arsenitoxidans 3As (Anderson and Cook 2004). The
arsenate reduction in prokaryotes is of two types: periplasmic and cytoplasmic
arsenate reduction. Pst and Pit are membrane transporter proteins involve in the
uptake of As(V). The As(V) is then reduced to As(III) by ArsC, arsenate reductase
(Kruger et al. 2013). The As(III) is then transferred by arsenic chaperon, ArsD, from
the glutathione-bound complex to the small subunit, ArsA, of the ArsAB complex
which in turn activates the ArsAB pump. The As(III) is then extruded out through
the ArsAB pump (Satyapal et al. 2016). The As(V) reduction in periplasm of bacteria
is mediated by the components of respiratory arsenate reductase, i.e., arrA and arrB
encoded by the arr operon (Kruger et al. 2013).

6.5.4 Arsenic Methylation in Bacteria

Arsenic methylation is very less known in bacterial system; however, it was consid-
ered as a detoxification process. In methylation process, the intermediate compounds
or methylated products are more toxic for the eukaryotic cell lines in comparison
with the inorganic forms of arsenic (Kruger et al. 2013; Stolz et al. 2006). In
methylation process, the methylated arsenicals are more toxic because of increase
in their volatility (Kruger et al. 2013). The bacteria can perform animatic activity for
the methylation of arsenic by involving a S-adenosylmethionine (SAM) and
methyltransferase enzyme. The methyltransferase, ArsM/AS3MT, is an arsM gene
product which methylates As(III) into a MMAs(III) (monomethyl arsenite/MMA3+)
(Obinaju 2009; Satyapal et al. 2016). This MMAs(III) is then methylated to form
DMAs(III) (dimethyl arsenite/DMA3+) followed by a final product as TMAs(III)
(trimethyl arsine). These arsenicals can be extruded out from the cell through the
process of diffusion (Hughes 2002). Though, the demethylation mechanism of
arsenic in prokaryotes is not well understood. The demethylation of arsenic
compounds (mono and dimethyl) is observed in some microorganisms, e.g.,
Alcaligenes, Pseudomonas and Mycobacterium species (Stolz et al. 2006).
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6.6 Conclusion

Arsenic is found worldwide and is one of the most toxic pollutants found in nature. It
is naturally found and distributed in rocks, rivers, soils, sea, air and water. The
anthropogenic activities are the big reason in distribution of arsenic at large scale.
Nevertheless, there are some bacterial systems that involve in detoxification of toxic
arsenic in present nature. The bacteria have developed tolerance against arsenic by
different mechanisms. These mechanisms of oxidation, reduction and methylation
may play a great role in bioremediation of arsenic. The genes regulating these
mechanisms may play a great role in developing a cheap and cost-effective model
for arsenic bioremediation.
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Assessment of Arsenic Contamination
in Groundwater and Affected Population
of Bihar

7

Arun Kumar and Ashok Kumar Ghosh

Abstract

Arsenic poisoning has become a global problem in the recent times. It is estimated
that >300 million population are exposed to arsenic worldwide. Bihar is the state
in India, which is in the vicinity of river Ganges where seven major tributaries
from Great Himalayas through Nepal meet river Ganges. This entire Gangetic
plain area is highly fertile land, with very high population density. In this state an
estimated 10 million people are exposed to arsenic contaminated drinking water
as well as irrigation water. Groundwater is the primary source of arsenic poison-
ing which has caused serious health hazards to the exposed population. The
exposed population are exhibiting typical symptoms of arsenicosis such as
hyperkeratosis, melanosis, pigmentations and other skin manifestations. Apart
from this they are also exhibiting other symptoms such as disorders of liver,
kidney, nervous system, cardiovascular, hormonal, etc. The prolonged arsenic
exposure also leads to different types of cancer. The cancer among the exposed
population is of skin, liver kidney, gall bladder, bladder, breast, colorectal, etc.
Hence, it is very important to evaluate the health problems exhibited in the
exposed population. The present study highlights the health problems of the
exposed population of different parts of Bihar with confirm presence of elevated
arsenic concentration in groundwater (>10 μg/L). Apart from this the study also
examined the mitigation strategies undertaken by the state Government for the
exposed population.
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7.1 Introduction

Arsenic menace in the recent times has caused serious health hazards in the popula-
tion worldwide. Drinking water is the major source where contamination of arsenic
is significant. In a recent study, it has been estimated that >300 million population
are exposed to arsenic worldwide (Hassan 2018; Naujokas et al. 2013; Murcott
2012; Straif et al. 2009; ATSDR 2005; IARC 2004). In Asia alone an estimated
>200 million are affected with arsenic poisoning which includes countries such as
Bangladesh, India, Myanmar, Cambodia, China, Iran, Japan, Nepal, Pakistan,
Taiwan, Thailand, Turkey and Vietnam. In India and Bangladesh together >150
million people are exposed to arsenic poisoning (Chakraborti et al. 2003, 2004,
2008, 2009, 2015, 2016a, 2017; Mukherjee et al. 2006; Nickson et al. 2007; Hassan
2005; Rosenboom 2004). Apart from this, in other continents, such as in north
America an estimated population of 2 million, in south America about 2.5 million, in
Europe about 1.2 million, in Africa about 0.5 million, respectively, are exposed to
arsenic poisoning (Hassan 2018). Arsenic exposure has caused serious health
hazards in the exposed population such as skin manifestations, gastrointestinal
tract disorders, neurological disorders, respiratory disorders, cardiovascular
disorders, hormonal disorders, etc. and non-communicable diseases like cancer
(Sinha and Prasad 2020; Marshall et al. 2007; Argos et al. 2011; Kumar et al.
2020; Powers et al. 2018; Ersbøll et al. 2018; Profili et al. 2018; Wang et al. 2016;
Kumar et al. 2015; Susko et al. 2017; Weidemann et al. 2015; Engström et al. 2015;
Yang et al. 2013; Roh et al. 2017; UNICEF 1998).

7.2 Arsenic Problem in Indian Subcontinent

In Indian subcontinent, arsenic has caused severe health hazards in the population
residing in the Ganga–Meghna–Brahmaputra (GMB) plains. This arsenic poisoning
in Indian subcontinent is a geogenic problem. As far as the magnitude of arsenic
poisoning due to geogenic activity in groundwater in India is concerned, following
states have severe arsenic problem: West Bengal, Assam, Bihar, Uttar Pradesh,
Uttarakhand and Punjab (Kumar et al. 2015, 2016a; Chakraborti et al. 2003,
2016b, c; Ahamed et al. 2006; Shankar and Shanker 2014; Goswami et al. 2020;
Bhowmick et al. 2018; Richards et al. 2020; Roychowdhury 2010; Mondal and
Chattopadhyay 2020). However, in few states in India like Chhattisgarh, Jharkhand,
Karnataka, Madhya Pradesh, there has been reporting of arsenic poisoning in
groundwater due to anthropogenic activities (Manju et al. 2017; Acharyya et al.
2005; Chakraborti et al. 1999). Unfortunately, in Ganga–Meghna–Brahmaputra
plains the health-related issues in the exposed population have increased many
folds in the recent years. The major rivers like holy Ganga and Brahmaputra cater
the major river plain region of this subcontinent. Through many studies it has been
confirmed that the arsenic in the form of arsenopyrite is carried out through the river
streams from the great Himalayas and are being deposited in the river banks where
the meandering of the river is very high. In due course of time, after 1980, when
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millions of handpumps were drilled in India led to over-exploitation of groundwater.
It changed the chemistry of aquifer leading to arsenic poisoning through groundwa-
ter with more than WHO permissible limit of 10 μg/L (Guillot and Charlet 2007;
Saha and Sahu 2016; Acharyya and Shah 2007; Chakraborty et al. 2015; Edmunds
et al. 2015; Mukherjee et al. 2019) (Fig. 7.1).

7.3 Arsenic Problem in State of Bihar

Bihar is located in the eastern region of India between latitude 24�-200-1000N ~
27�-310-1500 N and longitude 83�-190-5000E ~ 88�-170-4000 E. It is an entirely land-
locked state, in a subtropical region of the temperature zone. It is bounded in east by
West Bengal, in west by Uttar Pradesh, in north by Nepal and in south by Jharkhand.
The Bihar plain is divided into two unequal halves North Bihar and South Bihar by
the river Ganges. The major river of the state is river Ganges which flows from west
to east in a stretch of 405 km. There are seven major tributaries of the Ganges which
flows from the Great Himalayas through Nepal to Bihar catering the river course
through the entire districts of the north Bihar. Unfortunately, the arsenic poisoning in
the groundwater in the state is also reported from the districts of the north Bihar
including the districts near the river Ganges. In Bihar, the river Ganges flows through
the following districts—Buxar, Bhojpur, Saran, Vaishali, Samastipur, Begusarai,
Luckeesarai, Munger, Khagaria and Bhagalpur. In the recent times,. the seven major
rivers which have their origin from the great Himalayas are Gandak, Burhi Gandak,
Bagmati, Kamla, Kosi and Mahananda. However, there are other rivers as well

Fig. 7.1 Showing Ganga—Meghna—Brahmaputra plains affected with arsenic poisoning in
Indian subcontinent
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which are the tributaries of river Ganges coming from the southern region of the state
such as Son, Punpun, Phalgu, Kiul, Chandan, etc. (Fig. 7.2).

7.4 Assessment of Arsenic Poisoning in Districts of Bihar

The Gangetic plain region of the state and the north Bihar river plain regions have
become the hotspot areas of arsenic poisoning. It is quite apparent that in due course
of time, the arsenopyrite load coming from great Himalayas through these rivers
could have deposited in the sediment in past. The geogenic and anthropogenic
activities led to arsenic poisoning in this area. Consumption of these arsenic
contaminated water (>10 μg/L) has caused serious health hazards in the population
inhabiting in these regions. Out of 38 districts of the state, 18 districts are affected
from arsenic poisoning (Singh 2017; Kumar et al. 2015; Chakraborti et al. 2016a;
Rahman et al. 2019). Unfortunately, the arsenic poisoning is very common in the
river basins of north Bihar. These north Bihar arsenic affected river basin districts are
West Champaran, Saran, Muzaffarpur, Vaishali, Samastipur, Madhubani, Supaul,
Darbhanga, Begusarai, Khagaria, Kishanganj, Purnia and Katihar (Fig. 7.3).

Arsenic poisoning in Bihar has caused health-related problems in the exposed
population. Till date the studies carried out are in the pockets as the reporting are in
scattered form. Our team have assayed the maximum affected districts along with the
public health surveys in the state.

1. Patna District: In Patna district, we have surveyed the flood plain regions of river
Ganges in one of the villages named Gyaspur Mahaji of Bakhtiyarpur Block
(N25�30002.300E085�27014.200). The village is in the vicinity of river Ganges

Fig. 7.2 Tributaries of river Ganges
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Fig. 7.3 Arsenic map of Bihar

Fig. 7.4 Aerial view of the arsenic exposed village Gyaspur Mahaji along with inset river Ganga
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between the two streams of river called as Diara land (island in two streams of the
Ganga river) (Fig. 7.4). The village had severe arsenic contamination in the
handpumps with highest level as 826.2 μg/L, and in human blood 64.98 μg/L
in one of the individuals. We carried out extensive health assessment in the
village along with the groundwater assessment. Population of this village
exhibited typical symptoms of arsenicosis such as hyperkeratosis in sole and
palm and hyperpigmentation in palm was prominently observed. We interviewed
n¼ 580 individuals of the village and they arsenic related health issues apart from
the skin manifestations. The most unfortunate part of the study was the increasing
incidences of cancer among the village population. During our study we observed
06 cancer cases in the village (Table 7.1). The subjects were still drinking arsenic
contaminated water (Fig. 7.5).

2. Buxar District: In Buxar district, we surveyed the flood plain region of river
Ganges in one of the villages named Tilak Rai Ka Hatta of Simri block
(2504103600N, 8400705100E). The village too is in the vicinity of river Ganga
(Fig. 7.6).

The village had maximum arsenic concentration in one of the handpumps up to
1908 μg/L, while blood arsenic concentration in one of the individuals was up to
664.7 μg/L. We carried out extensive public health assessment and found that the
subjects had typical symptoms of arsenicosis along with arsenic related disease. The
disease burden in this particular village in percentage was highest among the study
carried out by our team (Fig. 7.7).

In this village the subjects had the highest disease burden ever explored in the
arsenic exposed population of Bihar. The female disease burden was higher in the

Table 7.1 Showing Arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases

P-
value

Hyperkeratosis in palm
and sole

16 (2.76%) 564 (97.24%) 580 <0.001

Melanosis in palm and
trunk

44 (7.59%) 536 (92.41%) 580 <0.001

Other skin problems 339 (58.45%) 241 (41.55%) 580 <0.001

Anaemia 156 (26.90%) 424 (73.10%) 580 <0.001

General body weakness 410 (70.69%) 170 (29.31%) 580 <0.001

Gastritis and flatulence 438 (75.52%) 142 (24.48%) 580 <0.001

Constipation 424 (73.10%) 156 (26.90%) 580 <0.001

Loss of appetite 276 (47.59%) 304 (52.41%) 580 <0.001

Breathlessness 248 (42.76%) 332 (57.24%) 580 <0.001

Mental disability 11 (1.90%) 569 (98.10%) 580 <0.001

Lump in the body 18 (3.10%) 562 (96.90%) 580 <0.001

Cancer 06 (1.00%) 574 (98.90%) 580 <0.001
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Fig. 7.5 Arsenic exposed individuals showing skin manifestations along with skin cancer (con-
firmed squamous cell carcinoma) in the index finger

Fig. 7.6 Aerial view of the arsenic exposed village Tilak Rai Ka Hatta along with inset river Ganga
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exposed population than the male population. The incidences of infertility were also
reported from the village along with severe skin manifestations (Table 7.2).

3. Saran District: In Saran district, we surveyed the flood plain region of river
Ganges and river Gandak in one of the villages named Sabalpur of Sonepur block
(25�40037.400N 85�10048.000E). The village is in the confluence of river Ganga and
river Gandak (Fig. 7.8).

Fig. 7.7 Arsenic exposed individuals showing skin manifestations along with skin cancer (con-
firmed squamous cell carcinoma) in the entire palm. One individual who is exhibiting typical Mees
lines (very rarely observed)
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In this village, the maximum arsenic concentration in handpump water was
172.6 μg/L, while blood arsenic concentration in one of the individuals was up to
245.6 μg/L. The subjects exhibited typical severe symptoms of arsenicosis such as

Table 7.2 Showing Arsenic caused common disease symptoms and their percentage in the village
population (Kumar et al. 2015)

Symptoms
Problems present in the
population

No problems
observed

Total
cases P-value

Hyperkeratosis in palm
and sole

428 (28%) 1102 (72%) 1530 <0.0001

Melanosis in palm and
trunk

473 (31%) 1057 (69%) 1530 <0.0001

Other skin problem—

irritation
351 (23%) 1179 (77%) 1530 <0.0001

Anaemia 872 (57%) 658 (43%) 1530 <0.0001

Gastritis 1315 (86%) 215 (14%) 1530 <0.0001

Liver problem 887 (58%) 643 (42%) 1530 <0.0001

Constipation 596 (39%) 934 (61%) 1530 <0.0001

Loss of appetite 979 (64%) 551 (36%) 1530 <0.0001

Infertility in male and
female

15 (1%) 1515 (99%) 1530 <0.0001

Irregular menstrual
cycle

137 (9%) 1397 (91%) 1530 <0.0001

Asthma or bronchitis 45 (3%) 1485 (97%) 1530 <0.0001

Cancer cases 12 (0.4%) 1518 (99.21%) 1530 <0.0001

Fig. 7.8 Aerial view of the arsenic exposed village Sabalpur along with inset river Ganga and river
Gandak
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hyperkeratosis in sole and palm along with the rain drop pigmentation. One subject
had cauliflower shaped tumour (squamous cell carcinoma) in his palm and had the
treatment of cancer in our institute (Fig. 7.9).

The village population had arsenic related diseases along with the arsenicosis
symptoms. We interviewed 637 individuals of the village who shared their health-
related problem with our team (Table 7.3).

4. Samastipur District: In Samastipur district, we surveyed the flood plain region of
river Ganges and river Bagmati. The village Hansopur is situated in the vicinity of
river Bagmati (25�52041.900N 85�57056.400E) (Fig. 7.10)

Hansopur Village In this village, the maximum arsenic concentration in handpump
water was 114.8 μg/L, while blood arsenic concentration in one of the individuals

Fig. 7.9 Arsenic exposed individuals showing skin manifestations along with skin cancer (cauli-
flower shaper squamous cell carcinoma) in his right palm

Table 7.3 Showing arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases

P-
value

Arsenicosis symptoms in
palm and sole

7 (0.01%) 630 (99.99%) 637 <0.001

Melanosis in palm and
trunk

7 (0.01%) 630 (99.99%) 637 <0.001

Other skin problems 91 (14.29%) 546 (85.71%) 637 <0.001

Anaemia 153 (24.01%) 484 (75.99%) 637 <0.001

General body weakness 114 (17.89%) 523 (82.11%) 637 <0.001

BP problem 96 (15.07%) 541 (84.93%) 637 <0.001

Diabetes 54 (8.477%) 583 (91.53%) 637 <0.001

Breathlessness 88 (13.81%) 553 (86.19%) 637 <0.001

Mental disability 19 (2.99%) 618 (97.01%) 637 <0.001

Lump in the body 113 (17.74%) 524 (82.26%) 637 <0.001

Cancer 6 (0.94%) 631 (99.05%) 637 <0.001

Other health problem 184 (28.88%) 453 (71.12%) 637 <0.001
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was up to 173 μg/L. The subjects exhibited typical severe symptoms of arsenicosis
such as hyperkeratosis in sole and palm along with the rain drop pigmentation. One
subject had cancer of two types skin cancer in finger (squamous cell carcinoma) and
suspected skin melanoma in his back and was having the treatment of cancer in our
institute. Two other subjects exhibited Bowen’s disease (Fig. 7.11).

Fig. 7.10 Aerial view of the arsenic exposed village Hansopur in the vicinity of river Bagmati in
Samastipur district

Fig. 7.11 Arsenic exposed individuals showing skin manifestations along with cancer diseases—
squamous cell carcinoma, Bowen’s disease and skin melanoma
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The entire village population is about 5200 while the survey was carried out in
one of the habitations named Babhantoli which comprised 2030 population while
there were 120 households in this habitation. We interviewed 465 individuals of the
village who shared their health-related problem with our team (Table 7.4).

Chapar Village The village Chapar is situated in the vicinity of river Ganga
(25�32056.400N 85�39058.800E) (Fig. 7.12).

Table 7.4 Showing arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases

P-
value

Arsenicosis symptoms in
palm and sole

28 (6.02%) 437 (93.98%) 465 <0.001

Melanosis in palm and
trunk

8 (1.72%) 457 (98.28%) 465 <0.001

Other skin problems 212 (45.59%) 253 (54.41%) 465 <0.001

Anaemia 108 (23.22%) 357 (76.78%) 465 <0.001

General body weakness 378 (103.56%) 87 (18.71%) 465 <0.001

BP problem 29 (6.23%) 411 (93.77%) 465 <0.001

Diabetes 16 (3.44%) 449 (96.56%) 465 <0.001

Breathlessness 102 (21.93%) 353 (78.07%) 465 <0.001

Mental disability 02 (0.430%) 463 (99.57%) 465 <0.001

Lump in the body 04 (0.86%) 461 (99.14%) 465 <0.001

Cancer 05 (1.07%) 460 (98.93%) 465 <0.001

Other health problem 126 (27.09%) 339 (72.91%) 465 <0.001

Fig. 7.12 Aerial view of the arsenic exposed village Chapar (in box) in the vicinity of river Ganga
(inset) in Samastipur district
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In this village, the maximum arsenic concentration in handpump water was
655 μg/L, while blood arsenic concentration in one of the individuals was up to
88.3 μg/L. The subjects exhibited typical severe symptoms of arsenicosis such as
hyperkeratosis in sole and palm along with the rain drop pigmentation (Fig. 7.13).

The entire village population is about 3600 while the survey was carried out in
one of the habitations which comprised 1800 village population while there were
60 households in this habitation. We interviewed 322 individuals of the village who
shared their health-related problem with our team (Table 7.5).

5. Bhagalpur District: In Bhagalpur district, we surveyed the flood plain region of
river Ganges. The village Kali Prasad is situated in the vicinity of river Ganga
(25�20045.900N 87�23040.100E) (Fig. 7.14).

Fig. 7.13 Arsenic exposed individuals showing skin manifestations

Table 7.5 Showing Arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases P-value

Arsenicosis symptoms in
palm and sole

44 (13.66%) 278 (86.34%) 322 <0.001

Melanosis in palm and
trunk

26 (8.07%) 296 (91.93%) 322 <0.001

Other skin problems 186 (57.76%) 136 (42.24%) 322 <0.001

Anaemia 54 (16.77%) 268 (83.23%) 322 <0.001

General body weakness 178 (55.27%) 144 (44.73%) 322 <0.0001

BP problem 47 (14.59%) 275 (85.41%) 322 <0.001

Diabetes 21 (6.52%) 301 (93.48%) 322 <0.001

Breathlessness 62 (19.25%) 260 (80.75%) 322 <0.001

Mental disability 04 (1.24%) 318 (98.76%) 322 <0.0001

Lump in the body 05 (1.55%) 317 (98.45%) 322 <0.001

Cancer 07 (2.17%) 315 (97.83%) 322 <0.001

Other health problem 83 (25.77%) 239 (74.23%) 322 <0.001

7 Assessment of Arsenic Contamination in Groundwater and Affected Population of. . . 177



In this village, the maximum arsenic concentration in handpump water was
340.3 μg/L, while blood arsenic concentration in one of the individuals was up to
78.2 μg/L. The subjects exhibited typical severe symptoms of arsenicosis such as
hyperkeratosis in sole and palm along with the rain drop pigmentation. One subject
had skin melanoma cancer in his back (Fig. 7.15).

The entire village population is about 2400 while the survey was carried out in
one of the habitations which comprised 1000 village population while there were
210 households in this habitation. We interviewed 234 individuals of the village who
shared their health-related problem with our team (Table 7.6).

6. Begusarai District: In Begusarai district, we surveyed the flood plain region of
river Ganges. The village Gyantoli is situated in the vicinity of river Ganga
(25�22060.000N 86�23008.400E) (Fig. 7.16).
In this village, the maximum arsenic concentration in handpump water was
535.7 μg/L, while blood arsenic concentration in one of the individuals was up
to 58.4 μg/L. The subjects exhibited typical severe symptoms of arsenicosis such
as hyperkeratosis in sole and palm, palmoplantar keratosis along with the rain
drop pigmentation (Fig. 7.17).

The entire village population is about 1300 while the survey was carried out in
one of the habitations which comprised 800 population while there were
55 households in this habitation. We interviewed 186 individuals of the village
who shared their health-related problem with our team. The village was near the
banks of the river Ganga with cancer incidences. There were many subjects who died

Fig. 7.14 Aerial view of the arsenic exposed village Kali Prasad (in box) in the vicinity of river
Ganga (inset) in Bhagalpur district
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Fig. 7.15 Arsenic exposed individuals showing skin manifestations along with cancer disease skin
melanoma

Table 7.6 Showing Arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases

P-
value

Arsenicosis symptoms in
palm and sole

82 (35.04%) 152 (64.96%) 234 <0.001

Melanosis in palm and
trunk

32 (13.6%) 202 (86.4%) 234 <0.001

Other skin problems 144 (61.53%) 90 (38.47%) 234 <0.001

Anaemia 24 (10.25%) 210 (89.75%) 234 <0.001

General body weakness 18 (7.69%) 216 (92.31%) 234 <0.001

BP problem 28 (11.96%) 206 (88.04%) 234 <0.001

Diabetes 37 (15.81%) 197 (84.19%) 234 <0.001

Breathlessness 29 (12.39%) 205 (87.61%) 234 <0.001

Mental disability 02 (0.85%) 232 (99.15%) 234 <0.001

Lump in the body 04 (1.70%) 230 (98.30%) 234 <0.001

Cancer 03 (1.28%) 231 (98.72%) 234 <0.001

Other health problem 65 (27.77%) 169 (72.33%) 234 <0.001
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Fig. 7.16 Aerial view of the arsenic exposed village Gyantoli (in box) in the vicinity of river
Ganga (inset) in Begusarai district

Fig. 7.17 Arsenic exposed individuals showing skin manifestations
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with cancer in this village habitation with gallbladder and liver cancer. The disease
burden in this village habitation was very high in comparison to the other arsenic
exposed area in Begusarai district (Table 7.7).

7.5 Disease Burden

The arsenic poisoning with time is increasing many folds in the exposed population
of the state. Our team carried out extensive study in the arsenic exposed area of the
state and observed that the village population are getting more or less with some
disease. The arsenicosis symptoms are very common in the exposed population in
the form of acute or chronic toxicity such as keratoses, melanosis, rain drop
pigmentation, leucomelanosis, anaemia, general body weakness, blood pressure
disorder, diabetes disorder, breathlessness, lumps in the body, mental disability
cases and finally cancer cases (Fig. 7.18).

This type of extensive health assessment has been rarely reported from the
researchers. However, few studies have been carried out which correlates with the
drinking arsenic contaminated water with disease burden (Chakraborti et al. 2016a;
Clewell et al. 2016; Karagas et al. 2012; Kippler et al. 2016; Kumar et al. 2016b; Lin
et al. 2013; Shankar and Shanker 2014; Quansah et al. 2015; WHO 2004). More-
over, the researchers have also reported the chronic arsenic exposure effect causing
increased risk of wide array of diseases such as skin manifestations (Sarma 2016;
Wei et al. 2017), lung cancer (Sherwood and Lantz 2016), bladder cancer (Medeiros
and Gandolfi 2016), liver cancer (Lin et al. 2013), skin cancer (Karagas et al. 2001),
kidney cancer (Cheng et al. 2017), neurological disorders (Fee 2016; Kumar et al.
2019), diabetes (Kuo et al. 2015), and cardiovascular diseases (Barchowsky and

Table 7.7 Showing Arsenic caused common disease symptoms and their percentage in the village
population

Symptoms
Problems present in the
population

No problems
observed

Total
cases

P-
value

Arsenicosis symptoms in
palm and sole

47 (25.26%) 139 (74.74%) 186 <0.001

Melanosis in palm and
trunk

18 (9.67%) 168 (90.33%) 186 <0.001

Other skin problems 87 (46.77%) 99 (53.23%) 186 <0.001

Anaemia 12 (6.45%) 174 (93.55%) 186 <0.001

General body weakness 53 (28.49%) 133 (71.51%) 186 <0.001

BP problem 11 (5.91%) 175 (94.09%) 186 <0.001

Diabetes 14 (7.5%) 172 (92.5%) 186 <0.001

Breathlessness 36 (19.35%) 150 (80.65%) 186 <0.001

Mental disability 01 (0.53%) 185 (99.47%) 186 <0.001

Lump in the body 02 (1.07%) 184 (98.93%) 186 <0.001

Cancer 08 (4.30%) 178 (95.70%) 186 <0.001

Other health problem 38 (20.43%) 148 (79.57%) 186 <0.001
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States 2016). Due to non-treatment of the acute toxicity disease, the disease burden
leads to the disease of cancer in the arsenic exposed population (Arita and Costa
2009; Benbrahim-Tallaa and Waalkes 2008; Chervona et al. 2012; Peana et al. 2013;
Zoroddu et al. 2019).

The mode of arsenic poisoning to human health mainly depends upon the
chemical forms of arsenic such as As3+ or As5+ (Ratnaike 2003; Collotta et al.
2013; Pimparkar and Bhave 2010). Both the forms are highly toxic but especially the
trivalent form causing major health hazard. The trivalent arsenic usually enters the
human body through drinking water and is absorbed in to the blood and is
transported to the vital organs of the body especially, the liver and kidney. The
liver however reduces the toxicity by converting it furthermore to the less toxic
compound dimethyl arsenic acid (DMA) and finally eliminating it by the kidney
(Ameer et al. 2017; Bhattacharjee et al. 2013; Bustaffa et al. 2014; Hubaux et al.
2013; Lesseur et al. 2012; Van Breda et al. 2015). However, the DMA is also a
carcinogen which if remains in the system, causes toxic effects to the vital organs
(Rossman 2003; Jomova et al. 2011; Bjørklund et al. 2020; Hughes et al. 2011; Wei
et al. 2017; Chen et al. 2009; IARC 1980, 2012; Bates et al. 1992; Kim et al. 2017). It
furthermore also hampers the normal hormonal functioning as it disrupts the
functions and acts as xenoestrogen. It influences the functions of the other hormones
such as thyroid hormone function, PPAR receptor function, testosterone, progester-
one and oestrogen receptor functions. Apart from this it also disrupts the functions of
glucocorticoid, mineralocorticoid and retinoic acid receptor functions (Sengupta
et al. 2015; Iavicoli et al. 2009; Wirth and Mijal 2010; Meeker 2010).

Fig. 7.18 Showing disease types in acute and chronic toxicity in arsenic exposed population
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Altogether from the various studies it can be speculated that arsenic toxicity
causes serious damage to the metabolic function of the body causing disease in the
exposed population and if the toxicity is not controlled, then leads to cause disease of
cancer. This can be correlated with studies which correlate with the increased disease
burden in the arsenic exposed population (Adamson and Polya 2007; Argos et al.
2012; Vahter 2008; Smith et al. 2000; Khan et al. 2003, 2006).

7.6 Mitigation Strategies in Bihar

Arsenic poisoning was firstly reported in 2002 in Semaria Ojhapatti village in
Bhojpur district of Bihar. After 10 years of the study, it was estimated that about
0.3 million population in the district were affected with the arsenic poisoning
(Chakraborti et al. 2003, 2016b). Since, then the state Government has planned
various plans to combat the arsenic problem in the exposed population. Following
are the technologies on which are working in the arsenic exposed area of the state.

1. Surface water usage
The surface water usage is the primary method for the arsenic mitigation but
requires huge investment but its impact is on large exposed population. In Bihar,
Moujampur plant in Bhojpur district is operational since 2014, catering about 0.3
million population residing in 48 villages of the district. The situation in these
areas before was very serious as health-related issues were in pathetic condition.
But, in the present times, the situation in these areas has relatively normalized as
the exposed population is using this arsenic free water. In this Moujampur plant,
the Ganges water is tapped, cleaned and is distributed to the 48 exposed villages
through pipe water system. This has become hallmark of the state in providing
arsenic free water to the exposed population of the state (Fig. 7.19).

Fig. 7.19 Moujampur plant in Bhojpur District utilizing Ganges water for arsenic exposed
population
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2. Deep aquifer groundwater usage
The state Government throughHar Ghar Nal Ka Jal (meaning each house getting
piped water) scheme is providing piped water supply in the arsenic exposed area.
In this connection, the wells are bored between 200 and 300 m depths. The deep
aquifer tapped was utilized for drinking purpose in the arsenic exposed area.

3. Arsenic filters
Various media based arsenic filters have been installed in the arsenic exposed area
of the state by the Government as well as by the private NGOs. This technology
based arsenic filters usually contain different medias (adsorption based or ion
exchange based or nano based) for the chelation of the arsenic from the arsenic
contaminated water. The Government based filters due to lack of community
participation have become defunct after 2 years of operation but few NGOs based
installed filters are perfectly working due to involvement of the exposed popula-
tion in the usage of arsenic filter. Mostly, 200–300 households are benefitted from
these filters. Through our intervention, three arsenic filters have been installed in
the two districts of the state Buxar and Saran. In Buxar, we have installed two
arsenic filter one sponsored by Tagore Sengupta Foundation, Kolkata installed in
2017 village Tilak Rai Ka Hatta and the second by Central Glass and Ceramic
Research Institute (CGCRI-CSIR), Kolkata installed in 2020 in Badka Rajpur
village of the district. The third arsenic filter, same CGCRI-CSIR filter has been
installed in 2020 in the village Sabalpur of Saran district. All of these three filters
are popular and operational due to the involvement of the community, hence are
successfully running (Fig. 7.20).

4. Open well usage
Various villages in North Bihar especially in Samastipur and Khagaria district
have now started reuse of open wells in the arsenic exposed villages. This
technique has not been so much popular due to its validity related to clean
water. However, in the exposed population, who are having no option of safe
water (arsenic free water) are utilizing this water for drinking purpose.

Fig. 7.20 Arsenic filters installed in Buxar and Saran districts of Bihar
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5. Rain water harvesting
Rain water harvesting is the best way to conserve the natural water and reuse for
the drinking as well as for the other purpose. But, this has not been very much
popular in the state of Bihar.

References

Acharyya SK, Shah BA (2007) Groundwater arsenic contamination affecting different geologic
domains in India—a review: influence of geological setting, fluvial geomorphology and quater-
nary stratigraphy. J Environ Sci Health: Tox Hazard Subst Environ Eng 42(12):1795–1805.
https://doi.org/10.1080/10934520701566744

Acharyya SK, Shah BA, Ashyiya ID, Pandey Y (2005) Arsenic contamination in groundwater from
parts of Ambagarh-Chowki block, Chhattisgarh, India: source and release mechanism. Environ
Geol 49(1):148–158

Adamson GC, Polya DA (2007) Critical pathway analysis to determine key uncertainties in net
impacts on disease burden in Bangladesh of arsenic mitigation involving the substitution of
arsenic bearing for groundwater drinking water supplies. J Environ Sci Health A Tox Hazard
Subst Environ Eng 42(12):1909–1917. https://doi.org/10.1080/10934520701567205

Ahamed S, Sengupta MK, Mukherjee A, Hossain MA, Das B, Nayak B, Pal A, Mukherjee SC,
Pati S, Dutta RN, Chatterjee G, Mukherjee A, Srivastava R, Chakraborti D (2006) Arsenic
groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and
middle ganga plain, India: a severe danger. Sci Total Environ 370(2–3):310–322. https://doi.
org/10.1016/j.scitotenv.2006.06.015

Ameer SS, Engström K, Hossain MB, Concha G, Vahter M, Broberg K (2017) Arsenic exposure
from drinking water is associated with decreased gene expression and increased DNA methyla-
tion in peripheral blood. Toxicol Appl Pharmacol 321:57–66. https://doi.org/10.1016/j.taap.
2017.02.019

Argos M, Kalra T, Pierce BL, Chen Y, Parvez F, Islam T, Ahmed A, Hasan R, Hasan K, Sarwar G,
Levy D, Slavkovich V, Graziano JH, Rathouz PJ, Ahsan H (2011) A prospective study of
arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J
Epidemiol 174:185–194. https://doi.org/10.1515/reveh-2012-0021

Argos M, Ahsan H, Graziano JH (2012) Arsenic and human health: epidemiologic progress and
public health implications. Rev Environ Health 27(4):191–195. https://doi.org/10.1515/reveh-
2012-0021

Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and
cadmium. Metallomics 1(3):222–228. https://doi.org/10.1039/b903049b

ATSDR (2005) Draft toxicological profile for arsenic U.S. Department of health and human
services. Agency for Toxic Substances and Disease Registry, Atlanta

Barchowsky A, States JC (2016) Arsenic-induced cardiovascular disease. In: States JC
(ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. Wiley, New Jersey,
pp 453–468

Bates MN, Smith AH, Hopenhayn RC (1992) Arsenic ingestion and internal cancers: a review. Am
J Epidemiol 135(5):462–476. https://doi.org/10.1093/oxfordjournals.aje.a116313

Benbrahim-Tallaa L, Waalkes MP (2008) Inorganic arsenic and human prostate cancer. Environ
Health Perspect 116(2):158–164. https://doi.org/10.1289/ehp.10423

Bhattacharjee P, Chatterjee D, Singh KK, Giri AK (2013) Systems biology approaches to evaluate
arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 216(5):574–586.
https://doi.org/10.1016/j.ijheh.2012.12.008

7 Assessment of Arsenic Contamination in Groundwater and Affected Population of. . . 185

https://doi.org/10.1080/10934520701566744
https://doi.org/10.1080/10934520701567205
https://doi.org/10.1016/j.scitotenv.2006.06.015
https://doi.org/10.1016/j.scitotenv.2006.06.015
https://doi.org/10.1016/j.taap.2017.02.019
https://doi.org/10.1016/j.taap.2017.02.019
https://doi.org/10.1515/reveh-2012-0021
https://doi.org/10.1515/reveh-2012-0021
https://doi.org/10.1515/reveh-2012-0021
https://doi.org/10.1039/b903049b
https://doi.org/10.1093/oxfordjournals.aje.a116313
https://doi.org/10.1289/ehp.10423
https://doi.org/10.1016/j.ijheh.2012.12.008


Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in ground-
water of West Bengal, India: a review of human health risks and assessment of possible
intervention options. Sci Total Environ 612:148–169. https://doi.org/10.1016/j.scitotenv.2017.
08.216

Bjørklund G, Oliinyk P, Lysiuk R, Rahaman MS, Antonyak H, Lozynska I, Lenchyk L, Peana M
(2020) Arsenic intoxication: general aspects and chelating agents. Arch Toxicol 94
(6):1879–1897. https://doi.org/10.1007/s00204-020-02739-w

Bustaffa E, Stoccoro A, Bianchi F, Migliore L (2014) Genotoxic and epigenetic mechanisms in
arsenic carcinogenicity. Arch Toxicol 88(5):1043–1067. https://doi.org/10.1007/s00204-014-
1233-7

Chakraborti D, Biswas BK, Chowdhury TR, Basu GK, Mandal BK, Chowdhury UK, Mukherjee
SC, Gupta JP, Chowdhury SR, Rathore KC (1999) Arsenic groundwater contamination and
sufferings of people in Rajnandangao, Madhya Pradesh, India. Curr Sci 77(4):502–504

Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D,
Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in middle
ganga plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201. https://
doi.org/10.1289/ehp.5966

Chakraborti D, Sengupta MK, Rahman MM, Ahamed S, Chowdhury UK, Hossain MA, Mukherjee
SC, Pati S, Saha KC, Dutta RN, Quamruzzaman Q (2004) Groundwater arsenic contamination
and its health effects in the ganga-Meghna-Brahmaputra plain. J Environ Monit 6(6):74N–83N

Chakraborti D, Singh EJ, Das B, Shah BA, Hossain MA, Nayak B, Ahamed S, Singh NR (2008)
Groundwater arsenic contamination in Manipur, one of the seven north-Eastern Hill states of
India: a future danger. Environ Geol 56(2):381–390

Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nayak B, Pal A,
Sengupta MK, Ahamed S, Hossain A (2009) Status of groundwater arsenic contamination in the
state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53(5):542–551. https://
doi.org/10.1002/mnfr.200700517

Chakraborti D, Rahman MM, Mukherjee A, Alauddin M, Hassan M, Dutta RN, Pati S, Mukherjee
SC, Roy S, Quamruzzman Q, Rahman M, Morshed S, Islam T, Sorif S, Selim M, Islam MR,
Hossain MM (2015) Groundwater arsenic contamination in Bangladesh—21 years of research. J
Trace Elem Med Biol 31:237–248. https://doi.org/10.1016/j.jtemb.2015.01.003

Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016a) Arsenic
groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle
ganga plain, India. Chemosphere 152:520–529. https://doi.org/10.1016/j.chemosphere.2016.02

Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016b) Arsenic
contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district,
Bihar state, India: Risk evaluation. Environ Sci Pollut Research Int 23(10):9492–9504. https://
doi.org/10.1007/s11356-016-6149-8

Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, Nayak B, Pal A, Chowdhury UK,
Ahmed S, Biswas BK, Sengupta MK, Lodh D, Samanta G, Chakraborty S, Roy MM, Dutta RN,
Saha KC, Mukherjee SC, Pati S, Kar PB (2016c) Fate of over 480 million inhabitants living in
arsenic and fluoride endemic Indian districts: magnitude, health, socio-economic effects and
mitigation approaches. J Trace Elem Med Biol 38:33–45. https://doi.org/10.1016/j.jtemb.2016.
05.001

Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Pal A, Chowdhury UK,
Ahmed S, Biswas BK, Sengupta MK (2017) Groundwater arsenic contamination and its health
effects in India. Hydrogeol J 25(4):1165–1181

Chakraborty M, Mukherjee A, Ahmed KM (2015) A review of groundwater arsenic in the Bengal
Basin, Bangladesh and India: from source to sink. Curr Pollut Rep 1(4):220–247

Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic
exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological
functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings

186 A. Kumar and A. K. Ghosh

https://doi.org/10.1016/j.scitotenv.2017.08.216
https://doi.org/10.1016/j.scitotenv.2017.08.216
https://doi.org/10.1007/s00204-020-02739-w
https://doi.org/10.1007/s00204-014-1233-7
https://doi.org/10.1007/s00204-014-1233-7
https://doi.org/10.1289/ehp.5966
https://doi.org/10.1289/ehp.5966
https://doi.org/10.1002/mnfr.200700517
https://doi.org/10.1002/mnfr.200700517
https://doi.org/10.1016/j.jtemb.2015.01.003
https://doi.org/10.1016/j.chemosphere.2016.02
https://doi.org/10.1007/s11356-016-6149-8
https://doi.org/10.1007/s11356-016-6149-8
https://doi.org/10.1016/j.jtemb.2016.05.001
https://doi.org/10.1016/j.jtemb.2016.05.001


from the health effects of arsenic longitudinal study (HEALS) in Bangladesh. Toxicol Appl
Pharmacol 239(2):184–192. https://doi.org/10.1016/j.taap.2009.01.010

Cheng YY, Huang NC, Chang YT, Sung JM, Shen KH, Tsai CC, Guo HR (2017) Associations
between arsenic in drinking water and the progression of chronic kidney disease: a nationwide
study in Taiwan. J Hazard Mater 321:432–439. https://doi.org/10.1016/j.jhazmat.2016.09.032

Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, Ali E, Uddin MN, Liu X, Zoroddu MA,
Gamble MV, Costa M (2012) Associations between arsenic exposure and global posttransla-
tional histone modifications among adults in Bangladesh. Cancer Epidemiol Biomark Prev 21
(12):2252–2260. https://doi.org/10.1158/1055-9965.epi-12-0833

Clewell HJ, Gentry PR, Yager JW (2016) Considerations for a biologically based risk assessment
for arsenic. In: States JC (ed) Arsenic: exposure sources, health risks, and mechanisms of
toxicity. Wiley, New Jersey, pp 511–534

Collotta M, Bertazzi PA, Bollati V (2013) Epigenetics and pesticides. Toxicology 307:35–41.
https://doi.org/10.1016/j.tox.2013.01.017

Edmunds WM, Ahmed KM, Whitehead PG (2015) A review of arsenic and its impacts in
groundwater of the Ganges-Brahmaputra-Meghna delta. Bangladesh Environ Sci Process
Impacts 17(6):1032–1046. https://doi.org/10.1039/c4em00673a

Engström KS, Vahter M, Fletcher T, Leonardi G, Goessler W, Gurzau E, Koppova K, Rudnai P,
Kumar R, Broberg K (2015) Genetic variation in arsenic (+3 oxidation state) methyltransferase
(AS3MT), arsenic metabolism and risk of basal cell carcinoma in a European population.
Environ Mol Mutagen 56:60–69. https://doi.org/10.1002/em.21896

Ersbøll AK, Monrad M, Sørensen M, Baastrup R, Hansen B, Bach FW, Tjønneland A, Overvad K,
Raaschou-Nielsen O (2018) Low-level exposure to arsenic in drinking water and incidence rate
of stroke: a cohort study in Denmark. Environ Int 120:72–80. https://doi.org/10.1016/j.envint.
2018.07.040

Fee DB (2016) Neurological effects of arsenic exposure. In: States JC (ed) Arsenic: exposure
sources, health risks, and mechanisms of toxicity. Wiley, New Jersey, pp 193–220

Goswami R, Kumar M, Biyani N, Shea PJ (2020) Arsenic exposure and perception of health risk
due to groundwater contamination in Majuli (river island), Assam, India. Environ Geochem
Health 42(2):443–460. https://doi.org/10.1007/s10653-019-00373-9

Guillot S, Charlet L (2007) Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. J
Environ Sci Health A Tox Hazard Subst Environ Eng 42(12):1785–1794. https://doi.org/10.
1080/10934520701566702

Hassan MM (2005) Arsenic poisoning in Bangladesh: spatial mitigation planning with GIS and
public participation. Health Policy 74(3):247–260. https://doi.org/10.1016/j.healthpol.2005.01.
008

Hassan M (2018) Arsenic in groundwater. CRC Press, Boca Raton
Hubaux R, Becker-Santos DD, Enfield KS, Rowbotham D, Lam S, Lam WL, Martinez VD (2013)

Molecular features in arsenic-induced lung tumors. Mol Cancer 12:20. https://doi.org/10.1186/
1476-4598-12-20

Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a
historical perspective. Toxicol Sciences 123(2):305–332. https://doi.org/10.1093/toxsci/kfr184

IARC (1980) Some metals and metallic compounds. In: IARC monographs on the evaluation of
carcinogenic risks to humans, vol 20. International Agency for Research on Cancer, Lyon, pp
39–141

IARC (2004) Working group on the evaluation of carcinogenic risks to humans. Some drinking-
water disinfectants and contaminants, including arsenic. In: IARC monographs on the evalua-
tion of carcinogenic risks to humans, vol 84. International Agency for Research on Cancer,
Lyon, pp 1–477

IARC (2012) A review of human carcinogens: arsenic, metals, Fibres, and dusts. International
Agency for Research on Cancer, Lyon

Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol
Environ Health B Crit Rev 12(3):206–223. https://doi.org/10.1080/10937400902902062

7 Assessment of Arsenic Contamination in Groundwater and Affected Population of. . . 187

https://doi.org/10.1016/j.taap.2009.01.010
https://doi.org/10.1016/j.jhazmat.2016.09.032
https://doi.org/10.1158/1055-9965.epi-12-0833
https://doi.org/10.1016/j.tox.2013.01.017
https://doi.org/10.1039/c4em00673a
https://doi.org/10.1002/em.21896
https://doi.org/10.1016/j.envint.2018.07.040
https://doi.org/10.1016/j.envint.2018.07.040
https://doi.org/10.1007/s10653-019-00373-9
https://doi.org/10.1080/10934520701566702
https://doi.org/10.1080/10934520701566702
https://doi.org/10.1016/j.healthpol.2005.01.008
https://doi.org/10.1016/j.healthpol.2005.01.008
https://doi.org/10.1186/1476-4598-12-20
https://doi.org/10.1186/1476-4598-12-20
https://doi.org/10.1093/toxsci/kfr184
https://doi.org/10.1080/10937400902902062


Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011)
Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.
org/10.1002/jat.1649

Karagas MR, Stukel TA, Morris JS, Tosteson TD, Weiss JE, Spencer SK, Greenberg ER (2001)
Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-
control study. Am J Epidemiol 153(6):559–565. https://doi.org/10.1093/aje/153.6.559

Karagas MR, Andrew AS, Nelson HH, Li Z, Punshon T, Schned A, Marsit CJ, Morris JS, Moore
JH, Tyler AL, Gilbert-Diamond D, Guerinot ML, Kelsey KT (2012) SLC39A2 and FSIP1
polymorphisms as potential modifiers of arsenic-related bladder cancer. Hum Genet
131:453–461. https://doi.org/10.1007/s00439-011-1090-x

Khan MM, Sakauchi F, Sonoda T, Washio M, Mori M (2003) Magnitude of arsenic toxicity in tube-
well drinking water in Bangladesh and its adverse effects on human health including cancer:
evidence from a review of the literature. Asian Pac J Cancer Prev 4(1):7–14

Khan MMH, Aklimunnessa K, Ahsan N, Kabir M, Mori M (2006) Case-control study of arsenicosis
in some arsenic contaminated villages of Bangladesh. Sapporo Med J 75(4):51–61

Kim TH, Seo JW, Hong YS, Song KH (2017) Case-control study of chronic low-level exposure of
inorganic arsenic species and non-melanoma skin cancer. J Dermatol 44(12):1374–1379.
https://doi.org/10.1111/1346-8138.13993

Kippler M, Skröder H, Rahman SM, Tofail F, Vahter M (2016) Elevated childhood exposure to
arsenic despite reduced drinking water concentrations: a longitudinal cohort study in rural
Bangladesh. Environ Int 86:119–125. https://doi.org/10.1016/j.envint.2015.10.017

Kumar A, Ali M, Rahman SM, Iqubal AM, Anand G, Niraj PK, Shankar P, Kumar R (2015)
Ground water arsenic poisoning in “Tilak rai Ka Hatta” village of Buxar District, Bihar, India
causing severe health hazards and hormonal imbalance. J Environ Anal Toxicol 5:290. https://
doi.org/10.4172/2161-0525.1000290

Kumar A, Rahman MS, Iqubal MA, Ali M, Niraj PK, Anand G, Kumar P, Srivastava A, Ghosh AK
(2016a) Ground water arsenic contamination: a local survey in India. Int J Prev Med 7:100.
https://doi.org/10.4103/2008-7802.188085

Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016b) Arsenic and other elements in drinking
water and dietary components from the middle Gangetic plain of Bihar, India: health risk index.
Sci Total Environ 539:125–134. https://doi.org/10.1016/j.scitotenv.2015.08.039

Kumar A, Rahman MS, Kumar R, Ali M, Niraj PK, Srivastava A, Singh SK, Ghosh AK (2019)
Arsenic contamination in groundwater causing impaired memory and intelligence in school
children of Simri village of Buxar district of Bihar. J Mental Health Hum Behav 24:132–138

Kumar A, Ali M, Kumar R, Rahman MS, Sivastava A, Chayal NK, Sagar V, Kumari R, Parween S,
Kumar R, Niraj PK (2020) High arsenic concentration in blood samples of people of village
Gyaspur Mahaji, Patna, Bihar drinking arsenic-contaminated water. Expos Health 12:131–140.
https://doi.org/10.1007/s12403-018-00294-5

Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, Goessler W, Lee E,
Guallar E, Navas-Acien A (2015) Arsenic exposure, arsenic metabolism, and incident diabetes
in the strong heart study. Diabetes Care 38(4):620–627. https://doi.org/10.2337/dc14-1641

Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas
MR (2012) A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes
and arsenic-related bladder cancer in New Hampshire. Toxicol Lett 210:100–106. https://doi.
org/10.1016/j.toxlet.2012.01.015

Lin HJ, Sung TI, Chen CY, Guo HR (2013) Arsenic levels in drinking water and mortality of liver
cancer in Taiwan. J Hazard Mater 262:1132–1138. https://doi.org/10.1016/j.jhazmat.2012.12.
049

Manju R, Hegde AM, Parlees P, Keshan A (2017) Environmental arsenic contamination and its
effect on intelligence quotient of school children in a historic gold mining area Hutti, North
Karnataka, India: a pilot study. J Neurosci Rural Pract 8(3):364–367. https://doi.org/10.4103/
jnrp.jnrp_501_16

188 A. Kumar and A. K. Ghosh

https://doi.org/10.1002/jat.1649
https://doi.org/10.1002/jat.1649
https://doi.org/10.1093/aje/153.6.559
https://doi.org/10.1007/s00439-011-1090-x
https://doi.org/10.1111/1346-8138.13993
https://doi.org/10.1016/j.envint.2015.10.017
https://doi.org/10.4172/2161-0525.1000290
https://doi.org/10.4172/2161-0525.1000290
https://doi.org/10.4103/2008-7802.188085
https://doi.org/10.1016/j.scitotenv.2015.08.039
https://doi.org/10.1007/s12403-018-00294-5
https://doi.org/10.2337/dc14-1641
https://doi.org/10.1016/j.toxlet.2012.01.015
https://doi.org/10.1016/j.toxlet.2012.01.015
https://doi.org/10.1016/j.jhazmat.2012.12.049
https://doi.org/10.1016/j.jhazmat.2012.12.049
https://doi.org/10.4103/jnrp.jnrp_501_16
https://doi.org/10.4103/jnrp.jnrp_501_16


Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Smith AH (2007) Fifty-year
study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl
Cancer Inst 99(12):920–928. https://doi.org/10.1093/jnci/djm004

Medeiros MK, Gandolfi AJ (2016) Bladder cancer and arsenic. In: States JC (ed) Arsenic: exposure
sources, health risks, and mechanisms of toxicity. Wiley, New Jersey, pp 163–192

Meeker JD (2010) Exposure to environmental endocrine disrupting compounds and men’s health.
Maturitas 66(3):236–241. https://doi.org/10.1016/j.maturitas.2010.03.001

Mondal P, Chattopadhyay A (2020) Environmental exposure of arsenic and fluoride and their
combined toxicity: a recent update. J Appl Toxicol 40(5):552–566. https://doi.org/10.1002/jat.
3931

Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM,
Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with empha-
sis on the Asian scenario. J Health Popul Nutr 24(2):142–163

Mukherjee A, Gupta S, Coomar P, Fryar AE, Guillot S, Verma S, Bhattacharya P, Bundschuh J,
Charlet L (2019) Plate tectonics influence on geogenic arsenic cycling: from primary sources to
global groundwater enrichment. Sci Total Environ 683:793–807. https://doi.org/10.1016/j.
scitotenv.2019.04.255

Murcott S (2012) Arsenic contamination in the world: an international sourcebook 2012. IWA
Publishing, London

Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano J, Thompson C, SukWA (2013) The
broad scope of health effects from chronic arsenic exposure: update on a worldwide public
health problem. Environ Health Perspect 121(3):295–302. https://doi.org/10.1289/ehp.1205875

Nickson R, Sengupta C, Mitra P, Dave SN, Banerjee AK, Bhattacharya A, Basu S, Kakoti N,
Moorthy NS, Wasuja M, Kumar M, Mishra DS, Ghosh A, Vaish DP, Srivastava AK, Tripathi
RM, Singh SN, Prasad R, Bhattacharya S, Deverill P (2007) Current knowledge on the
distribution of arsenic in ground water in five states of India. J Environ Sci Health A Tox
Hazard Subst Environ Eng 42(12):1707–1718. https://doi.org/10.1080/10934520701564194

Peana M, Medici S, Nurchi VM, Crisponi G, Zoroddu MA (2013) Nickel binding sites in histone
proteins: spectroscopic and structural characterization. Coord Chem Rev 257(19):2737–2751

Pimparkar BD, Bhave A (2010) Arsenicosis: review of recent advances. J Assoc Physicians India
58:617–624

Powers M, Sanchez TR, Grau-Perez M, Yeh F, Francesconi K, Goessler W, George CM, Heaney C,
Best LG, Umans J, Brown RH (2018) Low-to-moderate arsenic exposure and respiratory health
in American Indian communities. Ann Am Thorac Soc 15(Suppl 2):S128–S129

Profili F, Nuvolone D, Barbone F, Aprea C, Centi L, Frazzetta R, Voller F (2018) Health effects
among a cohort exposed to low-level arsenic in a geothermal area of Tuscany, Italy. Int Arch
Occ Env Hea 91(8):971–979. https://doi.org/10.1007/s00420-018-1340-5

Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-
Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M (2015) Association of arsenic with
adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ
Health Perspect 123(5):412–421. https://doi.org/10.1289/ehp.1307894

Rahman MS, Kumar A, Kumar R, Ali M, Ghosh AK, Singh SK (2019) Comparative quantification
study of arsenic in the groundwater and biological samples of Simri Village of Buxar District,
Bihar, India. Indian J Occup Environ Med 23:126–132. https://doi.org/10.4103/ijoem.IJOEM_
240_18

Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396
Richards LA, Kumar A, Shankar P, Gaurav A, Ghosh A, Polya DA (2020) Distribution and

geochemical controls of arsenic and uranium in groundwater-derived drinking water in Bihar,
India. Int. J. Env. Res Public Health 17(7):2500. https://doi.org/10.3390/ijerph17072500

Roh T, Lynch CF, Weyer P, Wang K, Kelly KM, Ludewig G (2017) Low-level arsenic exposure
from drinking water is associated with prostate cancer in Iowa. Environ Res 159:338–343.
https://doi.org/10.1016/j.envres.2017.08.026

7 Assessment of Arsenic Contamination in Groundwater and Affected Population of. . . 189

https://doi.org/10.1093/jnci/djm004
https://doi.org/10.1016/j.maturitas.2010.03.001
https://doi.org/10.1002/jat.3931
https://doi.org/10.1002/jat.3931
https://doi.org/10.1016/j.scitotenv.2019.04.255
https://doi.org/10.1016/j.scitotenv.2019.04.255
https://doi.org/10.1289/ehp.1205875
https://doi.org/10.1080/10934520701564194
https://doi.org/10.1007/s00420-018-1340-5
https://doi.org/10.1289/ehp.1307894
https://doi.org/10.4103/ijoem.IJOEM_240_18
https://doi.org/10.4103/ijoem.IJOEM_240_18
https://doi.org/10.3390/ijerph17072500
https://doi.org/10.1016/j.envres.2017.08.026


Rosenboom JW (2004) Not just red or green: an analysis of arsenic data from 15 Upazilas. Arsenic
Policy Support Unit (APSU), Dhaka

Rossman TG (2003) Mechanism of arsenic carcinogenesis. An integrated approach. Mutat Res
2003(533):37–65. https://doi.org/10.1016/j.mrfmmm.2003.07.009

Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected
blocks in West Bengal, India: status, distribution, health effects and factors responsible for
arsenic poisoning. Int J Hyg Environ Health 213(6):414–427. https://doi.org/10.1016/j.ijheh.
2010.09.003

Saha D, Sahu S (2016) A decade of investigations on groundwater arsenic contamination in middle
Ganga plain. India Environ Geochem Health 38(2):315–337. https://doi.org/10.1007/s10653-
015-9730-z

Sarma N (2016) Skin manifestations of chronic arsenicosis. In: States JC (ed) Arsenic: exposure
sources, health risks, and mechanisms of toxicity. Wiley, New Jersey, pp 127–136

Sengupta P, Banerjee R, Nath S, Das S, Banerjee S (2015) Metals and female reproductive toxicity.
Hum Exp Toxicol 34(7):679–697. https://doi.org/10.1177/0960327114559611

Shankar S, Shanker U, Shikha (2014) Arsenic contamination of groundwater: a review of sources,
prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524. https://doi.org/
10.1155/2014/304524

Sherwood CL, Lantz RC (2016) Lung cancer and other pulmonary diseases. In: States JC
(ed) Arsenic: exposure sources, health risks, and mechanisms of toxicity. Wiley, New Jersey,
pp 137–162

Singh SK (2017) Groundwater arsenic contamination in Bihar: causes, issues, and challenges. Int J
Curr Res 9(08):56787–56790

Sinha D, Prasad P (2020) Health effects inflicted by chronic low-level arsenic contamination in
groundwater: a global public health challenge. J Appl Toxicol 40(1):87–131. https://doi.org/10.
1002/jat.3823

Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in
Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N,
Freeman C, Galichet L, Cogliano V, WHO International Agency for Research on Cancer
Monograph Working Group (2009) A review of human carcinogens–part C: metals, arsenic,
dusts, and fibres. Lancet Oncol 10:453–454. https://doi.org/10.1016/s1470-2045(09)70134-2

Susko ML, Bloom MS, Neamtiu IA, Appleton AA, Surdu S, Pop C, Gurzau ES (2017) Low level
arsenic exposure via drinking water consumption and female fecundity—a preliminary investi-
gation. Environ Res 154:120–125. https://doi.org/10.1016/j.envres.2016.12.030

UNICEF (1998) Plan of action to combat situation arising out of arsenic contamination in drinking
water: plan to assist government of West Bengal report. United Nations Children’s Fund,
New York

Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 102
(2):204–211. https://doi.org/10.1111/j.1742-7843.2007.00168.x

Van Breda SG, Claessen SM, Lo K, Van Herwijnen M, Brauers KJ, Lisanti S, Theunissen DH,
Jennen DG, Gaj S, De Kok TM, Kleinjans JC (2015) Epigenetic mechanisms underlying
arsenic-associated lung carcinogenesis. Arch Toxicol 89(11):1959–1969. https://doi.org/10.
1007/s00204-014-1351-2

Wang X, Zhang J, XuW, Huang Q, Liu L, Tian M, Shen H (2016) Low level environmental arsenic
exposure correlates with unexplained male infertility risk. Sci Total Environ 571:307–313.
https://doi.org/10.1016/j.scitotenv.2016.07.169

Wei B, Yu J, Yang L, Li H, Chai Y, Xia Y, Wu K, Gao J, Guo Z, Cui N (2017) Arsenic methylation
and skin lesions in migrant and native adult women with chronic exposure to arsenic from
drinking groundwater. Environ Geochem Health 39(1):89–98. https://doi.org/10.1007/s10653-
016-9809-1

Weidemann D, Kuo CC, Navas-Acien A, Abraham AG,Weaver V, Fadrowski J (2015) Association
of arsenic with kidney function in adolescents and young adults: results from the National

190 A. Kumar and A. K. Ghosh

https://doi.org/10.1016/j.mrfmmm.2003.07.009
https://doi.org/10.1016/j.ijheh.2010.09.003
https://doi.org/10.1016/j.ijheh.2010.09.003
https://doi.org/10.1007/s10653-015-9730-z
https://doi.org/10.1007/s10653-015-9730-z
https://doi.org/10.1177/0960327114559611
https://doi.org/10.1155/2014/304524
https://doi.org/10.1155/2014/304524
https://doi.org/10.1002/jat.3823
https://doi.org/10.1002/jat.3823
https://doi.org/10.1016/s1470-2045(09)70134-2
https://doi.org/10.1016/j.envres.2016.12.030
https://doi.org/10.1111/j.1742-7843.2007.00168.x
https://doi.org/10.1007/s00204-014-1351-2
https://doi.org/10.1007/s00204-014-1351-2
https://doi.org/10.1016/j.scitotenv.2016.07.169
https://doi.org/10.1007/s10653-016-9809-1
https://doi.org/10.1007/s10653-016-9809-1


Health and nutrition examination survey 2009–2012. Environ Res 140:317–324. https://doi.org/
10.1016/j.envres.2015.03.030

WHO (2004) WHO guidelines for drinking-water quality. World Health Organization, Geneva
Wirth JJ, Mijal RS (2010) Adverse effects of low level heavy metal exposure on male reproductive

function. Syst Biol Reprod Med 56(2):147–167. https://doi.org/10.3109/19396360903582216
Yang T, Hsu L, Chen H, Chiou H, Hsueh Y, Wu M, Chen C, Wang Y, Liao Y, Chen C (2013)

Lifetime risk of urothelial carcinoma and lung cancer in the arseniasis- endemic area of
northeastern Taiwan. J Asian Earth Sci 77:332–337. https://doi.org/10.1016/j.jseaes.2013.03.
023

Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for
humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.jinorgbio.
2019.03.013

7 Assessment of Arsenic Contamination in Groundwater and Affected Population of. . . 191

https://doi.org/10.1016/j.envres.2015.03.030
https://doi.org/10.1016/j.envres.2015.03.030
https://doi.org/10.3109/19396360903582216
https://doi.org/10.1016/j.jseaes.2013.03.023
https://doi.org/10.1016/j.jseaes.2013.03.023
https://doi.org/10.1016/j.jinorgbio.2019.03.013
https://doi.org/10.1016/j.jinorgbio.2019.03.013


Current Scenario of Groundwater Arsenic
Contamination in West Bengal and Its
Mitigation Approach

8

Ranjit Kumar, Sunil Kumar, and Ashok Ghosh

Abstract

Arsenic is found in minerals of earth crust in variable concentration throughout
different geographical concentration. Leaching of arsenic from earth crust cause
groundwater arsenic contamination. It was found in variable organic and inor-
ganic form known as arsenate and arsenite compounds. Groundwater arsenic
concentration were very high in Ganga-Meghna and Brahmaputra plain, it was
very high in Bangladesh. In 1983 the first report on groundwater arsenic contam-
ination was highlighted. After that many research scientists worked there, but
research findings of Dr. Dipankar Chakraborti and Dr. Guha Majumdar have
significant contribution in awareness and detection of groundwater arsenic con-
tamination in West Bengal. They have even highlighted effect of groundwater
contamination on Public health of West Bengal. West Bengal is severely affected
with arsenic contamination and now reports on crop contamination are alarming.
According to 2006 reports only 6 districts are arsenic contaminated out of total
18 districts. While according to 2016 reports 9 districts were reported with high
level of arsenic contamination in Bengal. Still it was found in new areas. Severe
arsenic contaminated districts are Malda, Murshidabad, Nadia, Howrah,
Bardhaman, Hoogley, North and South 24 Pargana. Severe health hazards were
reported in these districts including skin pigmentation, arsenicosis, peripheral
vascular disease, blackfoot disease, skin lesions, and cancer. Many types of
mitigation approaches were practiced from last three decades in West Bengal
including traditional methods of rainwater harvesting, dug well, deep tube well,
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and surface water use, but all have limitations and not found very much suitable
for rural household uses. Government of West Bengal supplies treated Ganga
water in many villages as arsenic remedial measures. Government also puts some
deep tube well below 150 m in many villages for providing safe drinking water to
rural people at community level. These techniques are very costly and not feasible
at household level. Many technologies were tried including oxidation method,
coagulation-flocculation method, and adsorption techniques for removal of arse-
nic from groundwater but they also have some limitations. In current scenario
adsorption techniques using oxy hydroxides and iron hydroxides dominate the
current market in West Bengal. Use of biological arsenic removal techniques
through microbes is advancing scope in development of future arsenic mitigation
techniques.

Keywords

Dug well · Adsorption techniques · Coagulation–flocculation method · Leaching

8.1 Background on Arsenic

Arsenic (As) is common constituents in the earth’s crust and it was found in variable
concentration. Leaching of arsenic from rocks caused ground water arsenic contam-
ination. Still definitive cause of increased level of arsenic in ground water is not well
known. Arsenic is not very essential element required for human beings. Due to
variable reactive state, living organism is more vulnerable to arsenic induced toxicity
through groundwater and food. Now many research showed that arsenic contamina-
tion in agriculture products like pulses, cereals and vegetables. World Health
Organization fixed 10 ppb as safe level of arsenic in drinking water, while safe
level in human blood is less than 1 ppb. Arsenic toxicity is widely dependent on its
different chemical form found in environment. Two major forms of arsenic are found
in groundwater which include arsenate and arsenite. Arsenite is more toxic for
organism in comparison to arsenate. In groundwater various forms of arsenic are
found which include H2AsO3, H3AsO3, H3AsO4, HAsO3, HAsO4, and H2AsO4. The
groundwater arsenic concentration varies in different geographical locations and
confined to particular aquifer. Ore of arsenic like HAsO4 and H2AsO4 are domi-
nantly found in Korea and the USA, while H3AsO3, is more prominently found in
several regions of Bangladesh and few districts of West Bengal in India (Saxena
et al. 2004).

8.1.1 Chemistry of Arsenic Found in Ground Water

Arsenic are found in deprotonated or protonated oxyanions in groundwater known as
arsenites (AsIII) or arsenate (AsV) form. Arsenic compound exhibit variable level of
toxicity, which depends on its different oxidative sate present in environment. Redox
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state of arsenic and pH are very crucial in determination of arsenic toxicity. Toxicity
of different organic combinations is also exhibiting variability. Since arsenite a
trivalent form are most toxic form of arsenic, organo-arsine compounds are less
toxic than arsine, while arsenate and its oxides are less toxic than organo-arsine
compounds and arsenates are less toxic than arsenites. Arsonium metals and native
arsenic metal are least toxic in nature (Sanyal et al. 2015). In aquatic conditions
arsenites are very toxic, mobile, and soluble than arsenate. In oxidized environment
at pH 6–8 both H2As

VO4
� and HAsVO4

2� ions are found in significant proportions,
while under reduced conditions the arsenous acid, H3As

IIIO3, are found predominant
in aquatic system (Sadiq 1997). Mobilization of arsenic in aquatic system causes
reduction of compounds of arsenate into arsenite.

The organic forms of arsenic found in soil are cacodylic acid or dimethylarsinic
acid (DMA), which are converted into trimethyl arsines on reduction in soil.
Monomethylarsonic acids (MMA) are found in groundwater and soil. In aerobic
oxidized environment at pH 6, arsenic acid and arsenate oxy-anions are mostly
found in aquatic systems, while under reducing conditions like in flooded paddy soil
the H3As

IIIO3, arsenous acid and arsenite oxyanion are predominant species. Soil
with neutral pH contains more prevalent arsenic species in West Bengal and
Bangladesh, which is due to the fact that trivalent arsenic exists in neutral conditions,
it has uncharged molecule known as, arsenous acid and H3As

IIIO3
0, which are

predominantly found in most natural groundwater and neutral soils according to
the equation of Henderson’s (Sanyal et al. 2015), it shows least retention capacity on
charged surfaces of minerals in sediments and soils.

It would also known that soil or groundwater are facing affluxes, influxes and
circulation due to excess withdrawal of ground water it would make an open
thermodynamic system.

At high pH, the hydroxyl ion concentration increases leading to displacement of
trivalent and pentavalent form of arsenic, which can bind with competitive ligand
binding receptors. The natures of soil colloidal fraction are directly responsible for
arsenic sorption through pH of the particular sorption medium. Increase in pH of
media causes decreased arsenate adsorption and decrease in pH of media facilitates
arsenic adsorption in groundwater and soil. Arsenic showed different gradient of
electrostatic potential as well as variable-charge on soil colloidal media with
increased solubility, pH, and arsenic salt buffering action (Majumdar and
Sanyal 2003).

8.2 Groundwater Arsenic Contamination a Serious Issue
Worldwide

Groundwater arsenic contamination due to natural or anthropogenic activities shows
several social impact as well as health hazards in many countries of the world.
Several millions of people residing in many countries are forced to take arsenic
contaminated water because there is no alternate safe water source in these areas of
world. Arsenic is mobilized in aquifers and groundwater leading to arsenic
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contamination in water system due to hydraulic fracturing of arsenopyrite. Hence,
groundwater arsenic contamination affects large number of people in different
countries of world (Murcott 2012). Groundwater arsenic contamination are found
in more than 70 countries in different concentrations which range from 0.5 to 5000
ppb based on finding of different research groups (Ravenscorft et al. 2009). In
Bangladesh many severe cases of groundwater arsenic contamination were observed
with severe health manifestations. Where provisional guidelines of WHO for arsenic
in groundwater 10 ppb is changed to 50 ppb due to severe contamination in
maximum areas. Since the groundwater arsenic contamination is widespread global
phenomenon and few countries even set higher permissible limit due to existence of
higher arsenic level than the set guideline value. The people using arsenic
contaminated water for very long periods showed many types of health hazards in
different parts of the world.

8.3 Groundwater Arsenic Contamination Scenario in India

Leaching of soil and agriculture runoff introduces arsenic in soil and groundwaters,
weathering of rocks are also adding it. It would also be added in ground water
through anthropogenic activities. Many factors like redox potential, precipitation,
arsenic speciation, adsorption, pH, desorption, dissolution, and bio-transformation
can control arsenic transport in groundwater. The arsenic speciation, pH, solid-phase
dissolutions, adsorption and desorption reactions can vary in different aquifer, it
depends on geo-chemical and geoenvironment condition of particular aquifer. Due
to which there is need of detailed geochemical investigation of aquifer for revealing
geochemistry of arsenic under different geo-environmental and hydro geological
conditions of aquifers. The detailed investigation may be required to understand the
problem and development of sustainable solution. In 1983 first case of arsenic
contamination in groundwater were reported from West Bengal, then it were
found in different states like Bihar, Jharkhand, Ganga river flood plain of Utter
Pradesh; Manipur in river bed of Brahamaputra, Imphal, Assam and Chhattisgarh
has explored as severe arsenic contaminated areas. People residing in these areas are
exposed chronically to arsenic through consuming arsenic contaminated water from,
bore well, tube well and hand pumps above 10 μg/L of permissible limit. Many
regions of North Eastern States in flood area of different rivers has also considered
with high groundwater arsenic contamination. After studies on every new arsenic-
affected area, it would be reported that more villages and many more people are
affected with arsenic related health hazards. Major arsenic-affected areas of India
were covered by rivers originated from the great Himalayan region. In recent
decades the problem of groundwater contamination with arsenic becomes compli-
cated, and spreads to larger number of district where previously it was not reported,
concentration of arsenic contamination are also increased in groundwater in India in
the last few years. Groundwater arsenic does not only affects human being through
drinking but it also enters into food through irrigated water, which caused different
types of health hazards and affects socioeconomic dissolution in society.
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8.3.1 Arsenic Contamination in Groundwater in Delta Basin
of River Ganga

In the Indo-Gangetic plains arsenic level in groundwater was reported from 50 ppb to
1600 ppb in many areas of Bihar, Utter Pradesh, Assam, and West Bengal while
many alluvial aquifers of Punjab are showing arsenic contamination from 4 ppb to
688 ppb in general. At many places arsenic level is found higher than Indian
Standard for permissible arsenic limit of 50 ppb, which are considered Maximum
Acceptable Limit (MAL) in Bangladesh, India, and several other countries (Sanyal
et al. 2015) in contrast to WHO maximum permissible limit of 10 ppb in drinking
water.

Guha Mazumdar in 1998 has well documented health effect of arsenic in adult
who are regularly exposed to inorganic form of arsenic through water. The main
focus was indented to find arsenic contamination in drinking water exclusively
derived from groundwater. While in Ganga basin groundwater are exclusively
used for crop irrigation, more than 90% of agriculture were found with elevated
level of arsenic in agronomic food product. Several researches has illustrated arsenic
uptake mechanism of agriculture crop which are grown in arsenic containing
irrigated water and contaminated soil, it shows presence of arsenic in agriculture
product (Sanyal et al. 2015). Such findings alerts us because maximum research
group were focused on groundwater arsenic contamination, food contamination
through agriculture crop is very challenging new area in arsenic toxicity on human
being.

8.3.2 Current Scenario of Groundwater Arsenic Contamination
in West Bengal

West Bengal was the first state in India reported with groundwater arsenic contami-
nation in 1983 (Garai et al. 1984). Many states were also reported with high arsenic
contamination after Bengal finding. Chakraborti et al. (2008) reported that not only
West Bengal but other states of India are also chronically affected with arsenic
contamination. Ganges-Brahmaputra-Meghna plain is currently most arsenic
contaminated site in the world with concentration ranges up to>4000 μg/L (Rahman
et al. 2006). During 1980s only few cased with arsenical dermatitis, arsenicosis and
raindrop pigmentation were observed in two districts from the West Bengal
(Chakraborti et al. 2008). West Bengal was the first arsenic endemic state in India,
out of total 18 districts 9 districts were reported with high level of arsenic
contaminated in groundwater. Arsenic detected in these 9 districts were very higher
than the WHO’s maximum permissible limit of 10 ppb (Mukherjee et al. 2003). In
India the Ganga-Brahmaputra plains cover 7 states and the Padma-Meghna plains in
west Bengal and Bangladesh together were the world’s most widespread arsenic-
affected area (Ghosh and Singh 2015). Groundwater is used as the primary drinking
water source in rural area of West Bengal. Inorganic arsenic is not only reported in
drinking water but it was found in raw rice as 93.8% as well as cooked rice as 88.1%
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in the state (Halder et al. 2014). A epidemiological study done by Indian Institute of
Hygiene and Public Health and School of Tropical Medicine in 1980s has described
that arsenicosis is a major health crisis for public health around the whole world
(GWB PHED 2014). The West Bengal State Government has currently estimated
that almost 79 blocks in different districts of state are severely affected with arsenic
contamination, which causing threat to 26 million people in state across 2600
villages (Paul et al. 2013).

The West Bengal has divided its arsenic contaminated districts into three zones,
which are, respectively, severe zone, mild zone, and safe zone. There is overall
88,750 km2 area which were identified as arsenic contaminated zone in West Bengal,
out of which 38,861 km2 areas were severely contaminated zones, which include
North 24 parganas, South 24 parganas, Nadia, Murshidabad, and Kolkata
(Chakraborti et al. 2009). Mobilizations of arsenic compound under natural
conditions are responsible for hydrological arsenic contamination in environmental.
Bhattacharya et al. (2007) reported that morphology of land, hydrology, geology and
its land use pattern gives us better idea about arsenic contamination in particular
area. Different types of geological and biological factors are guiding arsenic
compounds release from soil sediment to groundwater. Irrigation of crops with
arsenic contaminated groundwater causes high amount of food grain and agriculture
product arsenic contaminated. In West Bengal majority of the agriculture products
shows arsenic contamination due to irrigation of crop with contaminated waters
(Christopher and Haque 2012). The arsenic uptake mechanism in different plants
varies widely. Many plants easily uptake large quantities of arsenic as well as
translocate the absorbed arsenic in plant tissues are known as hyperaccumulator.
Many other plants showed low level of translocation known as excluders because it
has developed restricted mechanism of arsenic translocations from roots hairs to
shoots. Rice is an ideal example of arsenic translocation as can efficiently uptake the
arsenic and accumulates more arsenic than wheat, barley, and cereals crop
(Bhattacharya et al. 2009, 2012). In West Bengal majority of crop and vegetables
can accumulate arsenic from irrigated water or soil and enters into human food chain
leading to many health hazards in them.

West Bengal State Government has identified need for community-based piped
water supply schemes development in different arsenic contaminated villages with
single-point arsenic treatment facilities (PC GOI 2007). The WHO also supports
comprehensive action plan for water testing, treatment, awareness-building
campaigns in villages and development of arsenic mitigation options through the
use of alternative water sources, which are microbiologically safe river, pond or
surface water, and development of advanced arsenic removal technologies for these
areas.

Planning Commission in 2007 has made a Task force, which has submitted their
report on “Formulation of action plan for arsenic contamination removal in West
Bengal”, it identifies the use of alternate source of surface water and arsenic-free
shallow dug wells as the best possible long-term remedies, with simultaneous
contamination source identification and permanent sealing of these source for
preventing future use. It was also found that only 2–3 arsenic removal plants are
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functional out of the 12 arsenic removal units were installed and started in 2006 in
Technology Park of Baruipur in West Bengal. The committee overwhelmingly
recommended for adopting the household-level arsenic removal technology at the
place where there is no alternative water supply system. While harvesting of
rainwater were recommended as a very much viable and eco-friendly alternative at
the places which are receiving abundant rainfall, artificial groundwater recharge is
also a very novel approach for people of West Bengal. The report has given extra
emphasis on generation of awareness and avoiding use of these contaminated
drinking water for both drinking and cooking purposes.

Household-level awareness and educational interventions through the local media
have been proven very much effective in community-based motivation for under-
taking fee based testing of their water source for identifying alternative safe drinking
water sources (George et al. 2013). Habitual use of arsenic-safe water use depends
upon self-efficacy, instrumental attitude to find safe water options, attitude to find
contaminated tube wells and vulnerability (Inauen et al. 2013). Thus, behaviour
change is base for development of sustainable long-term intervention. Many
research studies have identified that cooking rice in very low-arsenic-containing
water (<10 μg/L) is a best way for risk-reduction strategy (Halder et al. 2014).
Aerobic-flooded cultivation was found very effective in reduction of arsenic con-
tamination risk of rice (Sun et al. 2014). These findings give us way to prepare new
strategic plan to develop arsenic mitigation technology for risk reduction in West
Bengal.

8.4 Health Effect of Arsenic Toxicity in Human

Arsenic contamination through food and groundwater leads to serious health hazards
in many regions of world. It were very well established that trivalent arsenic is highly
toxic than pentavalent arsenic, while inorganic arsenic shows high toxicity than
organic forms of arsenic on health. However, different organic forms of arsenic
species exhibit variable degrees of toxicity. The organic metabolic form like
monomethylarsonic acid (MMAV) as well as dimethylarsinic acid (DMAV) are
very least toxic than inorganic form, while monomethylarsonous acid (MMAIII) and
dimethylarsinous acid (DMAIII) exhibit high toxicity level in comparison to inor-
ganic arsenic. The toxic level of arsenic metabolite in increasing toxicity order are as
follows; nitrate, MMAV, DMAV, Arsenite, MMAIII and DMAIII (Petrick et al.
2000) (Fig. 8.1).

8.4.1 Arsenic Uptake and Metabolism

Terrestrial environmental condition contains arsenic in inorganic form in pentavalent
condition in aerobic and trivalent form under anaerobic environmental condition.
Trivalent arsenic is found generally in neutral aqueous condition at neutral pH. The
mode of toxicity expression of trivalent and pentavalent arsenic is different (Gailer
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2007). Trivalent arsenic is transported into cells through aquaglyceroporins, because
it possesses structural similarity to glycerol. Aquaglyceroporins is a pore protein
responsible for transportation of small compounds like glycerol and urea (Liu et al.
2002). While pentavalent arsenic follows different pathways to express its toxicity in
animals and human cells. Pentavalent arsenic was found as oxy anions in water like
phosphate, they can use phosphate transporters for entry into cells (Huang and Lee
1996). After entry into the cells, pentavalent arsenic is suddenly reduced to trivalent
arsenic. Therefore, trivalent arsenic undergoes multi-steps transformation through
arsenite methyltransferase enzyme in cells and uses Sadenosylmethionine (SAM) as
the methyl donor motifs, it results in formation of methylated arsenic compounds
like MMAIII, MMAV, DMAIII, and DMAV (Kojima et al. 2009). A pathway of
Arsenic methylation is first given by Challenger (1945). According to him methyla-
tion of arsenic involves many oxidation and reduction steps. Zakharyan and
Aposhian (1999) observed that trivalent arsenic may be methylated without any
enzyme in the presence of glutathione (GSH) and methylcobalamin. Many research
studies described the role of different enzymes in methylation mechanism of arsenic.

Since DMAIII is an unstable compound, it directly oxidized to DMAV com-
pound, pentavalent DMA is major metabolite of arsenic excreted from cells
(Rehman and Naranmandura 2012). Naranmandura et al. (2006) described a unique
arsenic metabolism pathway through formation of intermediate hepatic and renal
metabolites, after experimentation on rats, which are intravenously administered
with trivalent arsenic compound. They found that trivalent arsenic binds to proteins
is metabolized by of step wise reductive methylation in presence of GSH and SAM
and this metabolite is excreted outward. On chronic exposure of arsenic trivalent and

Fig. 8.1 Showing raindrop pigmentation and arsenicosis in back and front side of people residing
in Deganga Block, North 24 Pargana, West Bengal
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pentavalent organic compound, inorganic arsenic compound was observed in urine
samples of exposed people (Devesa et al. 2004).

8.4.2 Toxicity of Arsenic

Arsenic toxicity in living organism like humans and animals were well documented
in many research papers. Arsenic is also considered as a potent carcinogen, leading
to many cancers including liver, lung, gall bladder, and skin (Yoshida et al. 2004;
Tapio and Grosche 2006). Arsenic causes induction of epidemiological toxicity.
Arsenic exposure caused the formation of excess ROS, which leads to degenerative
changes in organisms (Wang et al. 2001; Shi et al. 2004a, b). Cytotoxicity (Zhang
et al. 2003; Suzuki et al. 2007) and genotoxicity (Gentry et al. 2010; Benbrahim-
Tallaa et al. 2005) was reported after prolonged arsenic exposure. Chronic exposure
to arsenic compound through ingestion or inhalation can lead to skin pigmentation,
arsenicosis, peripheral vascular disease, blackfoot disease, skin lesions, and cancers.
While, many studies support that arsenicosis occurs due to prolonged exposure to
elevated arsenic content (Sharma et al. 2006) (Figs. 8.2, 8.3, and 8.4).

8.4.3 Epidemiology

Now on the basis of different study it was observed that arsenic is potent carcinogen
which induces carcinogenesis mechanism in many tissues especially skin and lung in
human. Evidences suggest that arsenic causes hindrance in multiple gene prolifera-
tion processes of cell cycle, DNA damage, DNA repair, and differentiation process.
Arsenic also distorts pathways of signal transduction through Nrf2-mediated

Fig. 8.2 Showing arsenicosis
in palm of people residing in
Deganga block, North
24 Pargana, West Bengal
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pathway, MAPK pathway, and protein signaling pathway (Wang et al. 2012; Sinha
et al. 2013). Reactive oxygen species formation caused by arsenic may leads to
cancer in human (Shi et al. 2004a). Many investigations suggests that methylation in
arsenic metabolite are significant initiator of carcinogens. Wei et al. (2002) observed
that DMA leads to urinary bladder cancer in animal model. It was known carcino-
gen, it exhibit many noncancerous multisystemic diseases, which includes hyperten-
sion, cardiovascular disease, dermal disease, and diabetes (Sharma et al. 2014;
Centeno et al. 2002). Many research studies reported that trivalent arsenic like
MMAIII, AsIII, and DMAIII would cause diabetes through glucose metabolism
pathway distortion caused due to malfunctioning of pancreatic beta cells of mice
(Douillet et al. 2013; Paul et al. 2007). Arsenic caused inhibition of α-ketoglutarate
dehydrogenases and pyruvate is the principal cause of diabetes induction (Navas-
Acien et al. 2006). Hypertension is always associated with many types of cardiovas-
cular disease. There are many pathways which explain mechanism of arsenic-

Fig. 8.3 Showing arsenicosis
in both palm of people
residing in Deganga block,
North 24 Pargana, West
Bengal

Fig. 8.4 Showing
amputation of right leg due to
arsenicosis related issues in
people residing in Deganga
block, North 24 Pargana,
West Bengal
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induced hypertension. It also includes inflammatory activity promotion, endothelial
cells dysfunction and blood vascular system alteration, which finally leads to
malfunctioning of kidney (Abhyankar et al. 2012). Many research groups worked
on detailed pathway of activation of reactive oxygen species and its role in arsenic-
induced noncarcinogenic effects (Nesnow et al. 2002; Halliwell 2007). Arsenic-
induced Reactive oxygen species are always associated with alteration in normal cell
signaling pathways, increased cytokine production, apoptosis, and inflammation, it
finally results in production of more Reactive oxygen species leading to mutagene-
sis, it is the key pathways in arsenic pathogenesis leading to different diseases (Eblin
et al. 2006).

8.4.4 Cytotoxicity

Cytotoxicity is development of cellular anomalies due to toxic contaminants expo-
sure. The mechanisms of arsenic-induced cytotoxicity in human cells through
different pathways were studied by many researchers (Selvaraj et al. 2013;
McKenzie et al. 2002). Arsenic causes Generation of reactive oxygen species
which induces cellular cytotoxicity (Sies et al. 1992). Reactive oxygen species levels
increase exponentially into cells when it is induced with arsenic toxicity. Arsenic
causes Reactive oxygen species generation through activation of NADPH oxidase
enzyme (Chou et al. 2004). Increased amount of Reactive oxygen species causes
damage in proteins and lipids which adversely affect mitochondrial functions (Kim
et al. 2002; Eun et al. 2007). Shen et al. (2001) observed that Reactive oxygen
species causes oxidative stress in mitochondria which reduces apoptosis. It were also
studied that Reactive oxygen species induces cytotoxic effects by causing activation
in c-Jun N-terminal kinases activity (JNK), which is a member of mitogen-activated
protein kinase, it directly controls many functions of cells including cell differentia-
tion, apoptosis and cell proliferation (Shen and Liu 2006). Reactive oxygen species
may act as modulator in signal transduction pathways; it finally affects different
cellular processes includes cell adhesion, apoptosis, cell growth and HIV activation
(Suzuki et al. 1997; Apel and Hert 2004). Arsenic causes suppression of tumor
suppressor protein leading to cytotoxicity (Yih et al. 2000; Huang et al. 1999).
Protein controls different cellular functions through controlling, regulations and
controlling cell growth, cell cycle, DNA synthesis, cellular differentiation, DNA
repair, and apoptosis (Ryan et al. 2001; Amundson et al. 1998). Yih and Lee (2000)
observed that arsenic leads to accumulation of protein in fibroblasts cells of human,
which leads to apoptosis by promoting translocation of Bax gene from cytosol to
mitochondria, it also releases cytochrome c and activates caspase-9 through
apoptosome and Apaf-1 (Kircelli et al. 2007; Bargonetti and Manfredi 2002). In
addition, arsenic causes cell cycle arrest at G2 stage of interphase through activating
the inhibitor of cyclin-dependent kinases (Vogelstein et al. 2000; Akay et al. 2004),
and it leads to autophagy through damage-regulated autophagy modulator system
(DRAM) (Crighton et al. 2006).

8 Current Scenario of Groundwater Arsenic Contamination in West Bengal and Its. . . 203



8.4.5 Genotoxicity

When any toxic exposure causes damage to nucleotide inside the cell is known as
genotoxicity it finally caused mutation. Several research studies were conducted on
genotoxic effect of arsenic (Valdiglesias et al. 2010; Lu et al. 1995). Arsenic also
induces genotoxicity by generating Reactive oxygen species like observed in cyto-
toxicity (Hei et al. 2004). Reactive oxygen species when present in excess in cell, it
reacts inside cellular machinery leading to genotoxicity. Genotoxicity were observed
due to reaction of ROS with deoxyribose and bases of DNA, it leads to base pair
lesions and DNA double strand breaks. Reactive oxygen species also caused alter-
ation in mechanism of DNA repair, oxidation of DNA, gene stability, and gene
regulation pathway (Ramana et al. 1998). Arsenic interacts with DNA zinc finger
motifs proteins, which are crucial for proper transcription mechanism, DNA repair
mechanism and it also facilitates protein–protein and DNA–protein ligand formation
(Hartwig 2001). Zhou (2011) has observed that trivalent arsenic affects zinc fingers
motifs which binds with PARP-1, which finally leads to DNA strand breaks and
DNA damage (Ho 2004).

8.5 Current Mitigation Measures Used for Arsenic Mitigation
in West Bengal

8.5.1 Deep Groundwater

It was studied through many studies that more arsenic contamination were found in
the shallow groundwater, while deeper aquifers are free from arsenic contamination.
According to British Geological survey data only 5% deep tube well below depth
150 m had more than 10 ppb and only 1% aquifer exceeds 50 ppb of arsenic
concentrations (BGS 2001). Water supplied from deep tube wells would be the
safe and best source. While the depth of these aquifer varies with geographical
locations. The deep water extraction unit installation is very costly, due to which
common people could not afford this; it may be applicability only on community
basis. The common drawback of this mitigation option is availability of the arsenic-
free aquifer in that region (Hoque et al. 2012).

8.5.2 Shallow Groundwater (Well Switching)

In shallow groundwater arsenic contamination varied widely. It may be persisting in
different strips of villages many non contaminated area were seen in same village.
The British Geological Survey (2001) in Bangladesh as well as Chakraborti et al.
(2004) found that arsenic contamination proportion of tube well varies from 20% to
50% in Ganga-Meghna-Brahmaputra plain. It were most probable to find non-
contaminated hand pump in adjacent nearby areas around contaminated source,
well switching to non-contaminated shallow tube well is best option at that place.
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Well switching to shallow hand pump was preferred method in West Bengal; it was
practiced by almost 29% populations (Ahmed et al. 2006). The major drawback of
this method is degree of the temporal and spatial variation in groundwater arsenic
contamination in the same area. This makes it very difficult and nonpredictable for
its long turn reliably. Many studies find that there is change in arsenic level in the
tube wells with time, and it was found very high in monsoon season in comparison to
winter season (Rahman et al. 2003; Rahman and Ishiga 2003). Due to which regular
monitoring and persistent analysis is required to ensure that the hand pump would
remain free from arsenic for longer time.

8.5.3 Dug Well Water

The open deep wells are known as dug well which contains arsenic free drinking
water; it may also obtain water through shallow aquifers. Dug wells are preferred for
getting safe drinking water and it was most used alternative water supply sources in
West Bengal in early 1990 before deep tube well installation (Ahmed and Rahman
2003). Several researches showed that level of arsenic were very limited in dug wells
and it was extremely lower than WHO limit (Warner et al. 2008; Bennett et al. 2010)
due to oxidative environment and mineral precipitation as well as regular ground
water recharge through rainwater (Hira-Smith et al. 2007). It was suggested for local
people of West Bengal in 1990 to 2000 and it was preferred alternatives of safe
drinking water due to less operational cost involvement and least maintenance cost
(DPHE 2004). The dug well performance was evaluated in Bengal and found it
suitable for implementation in society (Joya et al. 2006). But long tern observation
suggests that tube wells were preferred than dug wells due to easily availability of
water at house hold level by tube well (Milton et al. 2007). The dug wells become
not very popular due to obnoxious taste, smell, turbidity, microbial contamination
and distance as well as limitations for water fetches in particular time (Hoque et al.
2004). Microbial contamination were very commonly found in dug wells water.
Drinking water must be treated before use, without appropriate treatment this causes
many diseases including typhoid, cholera, dysentery, diarrhea, and hepatitis. Very
high frequency of coliform contamination was found in dug wells, it was
contaminated up to 94% in different season and were maximum in monsoon
(Ahmed et al. 2005).

8.5.4 Surface Water

Rivers, lakes, pond generally contains very low arsenic, due to which water supply
from these source would provide safe drinking water. Water from river Ganga is
treated for microbial contamination and supplied in major arsenic contaminated area
of West Bengal. Major arsenic-affected areas were found in close vicinity of
different rivers, this river water can be served in nearby village population as
mitigation approach for very long run over decades. The bacteriological
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contamination adds major health risk associated with use of river, lakes and ponds
water, microbial treatment plant must be needed at the point of water supply. This
was main limiting factor due to which groundwater is not replaced by surface water.
Introduction of surface water for drinking require proper treatment of microbe and
sand filters were used as disinfectants source (Yokota et al. 2001) or complex
treatment unit for surface water treatment. In West Bengal river Ganga water is
treated and supplied in different districts near river Ganga. The sand filter use is also
supported by National Policy for arsenic Mitigation in Bengal (DPHE 2004). More
than 95% pond sand filters would found contaminated with microbes in monsoon
season in comparison to summer season (Ahmed et al. 2005).

8.5.5 Rainwater Harvesting

Rainwater harvesting was used since historical time; it was widely applied method in
whole world. It is very old method which utilizes rainwater for domestic use and
drinking purpose (WHO 2011). It was widely used in water scars area at household
and community level worldwide. It was also community accepted method for getting
safe water. The rainwater harvesting method is safe method if water is stored
hygienically; it is practical in areas where average rainfall exceeds 1600 mm per
year (DPHE 2008). It is main drinking water source in coastal areas because water
found in shallow and deep tube wells is containing high salinity there. Rainwater was
stored there in very large tanks or pond (Islam et al. 2011) this practice may be
feasible to arsenic contaminated regions. The major limitations of this method is
high cost in building very large storage tank and roof for rainwater collection due to
uneven precipitation of rainwater throughout year. Microbial contamination were
also found in storage tank if not maintained properly is also a limiting factor
(Karim 2010).

8.6 Advanced Arsenic Mitigation Approach Applied in West
Bengal

Arsenic removal highly depends on chemical diversity and composition of arsenic in
contaminated water. Arsenic was found in trivalent form in maximum reported
cases, while oxidation of trivalent arsenic to pentavalent form is essential to obtain
arsenic removals satisfactorily.

8.6.1 Oxidation

It converts soluble arsenite to arsenate, which is responsible for precipitation of
arsenate. It was found in anoxic groundwater. Arsenite is the most common form
found at neutral pH (Masscheleyn et al. 1991). Arsenate adsorbs very effectively on
solid surfaces in comparison to arsenite. The process of oxidation and adsorption is
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required for effective arsenic removal (Leupin and Hug 2005). Several external
oxidants may be used for the oxidation process. The first order reaction kinetics
were shown by H2O2, NH2Cl, O3, Cl2, and ferrate, in both arsenite and their
oxidants. The arsenite concentrations and their oxidant level were the limiting factor
for monitoring effectiveness of arsenic removal from aqueous solution. This was
very rapid reaction for chlorine, ozone, and permanganate in comparison to chlora-
mine and H2O2 which were utilized for the oxidation of arsenite to arsenate (Dodd
et al. 2006). According to Bajpai and Chaudhuri (1999) ozone causes complete
oxidation of arsenite to arsenate while pure air oxygen can oxidize it up to 54–57%
in contaminated groundwater.

8.6.2 Coagulation-Flocculation

The introduction of coagulant and the floc formation is very effective method
applied for groundwater arsenic removal. During coagulation process positively
charged cationic coagulants decrease negatively charged colloids, results in forma-
tion of large particles due to particle aggregation (Choong et al. 2007). Due to
polymeric bridge formation between particles the flocs are formed through the
process of flocculation. Further agglomerate process were utilized for larger clus-
tered particle formation. Soluble arsenic easily precipitated from flock and
eliminated from water. Removal of arsenic from this type of flock requires iron
and aluminum based coagulants (McNeill and Edwards 1995).

While large amount of sludge formation with arsenic is critical limitation factor in
this process. Management of this contaminated sludge with arsenic is important for
preventing secondary pollution of environment, due to which this method is not
frequently applied in field.

8.6.3 Adsorption

Arsenic removal by adsorption is very popular method, it uses activated or coated
surfaces and its operation system is very simple and sludge free. This technology
may use many adsorbents, and it would be reused and regenerated, which makes this
technology very common in present scenario (Mohan and Pittman 2007). Arsenic
removal depends on pH and the arsenic speciation through adsorption techniques. It
removes arsenate in better way as in comparison to arsenite at lower pH than neutral
(Kanematsu et al. 2013). Grains of ferric hydroxide, ferrihydrite, and hydrated ferric
oxide was more commonly used iron hydroxides and oxides used for removal of
both arsenite and arsenate compound (Guan et al. 2008) (Figs. 8.5 and 8.6).

Groundwater contains high iron content caused major problems with aforesaid
adsorption technology as it clogged to the filter membrane and reduces filter
efficiency and lifetime (Bamwsp et al. 2001). Zero valent iron was used for removal
of arsenic in field (Klas and Kirk 2013) and laboratory (Khan et al. 2000). Hussam
and Munir (2007) observed that more than 350,000 zero valent iron filters are still
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functional in India, Nepal, Pakistan, Bangladesh and Egypt. Many studies showing
effective removal of arsenic in field (Neumann et al. 2013). These filters require
proper maintenance at regular intervals to prevent clogged on surface.

8.6.4 Latest Advancements in Arsenic Removal Through
Adsorption Technology in West Bengal

Large numbers of materials were tested for their adsorption potential to arsenic but
oxy hydroxides and iron oxides were the most reliable in present scenario, its

Fig. 8.5 Showing community level water filtration unit in Deganga, block, North 24 Pargana,
West Bengal
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commercial products already in use for removal of arsenic and these are preferred
over other technology. Iron oxy hydroxides were used in water treatment plant to
prepare fixed bed pressure columns for providing mechanical resistant. Iron oxy
hydroxides are cheap and easily produced, due to which it was popularly used in
water treatment plant. .

The amorphous hydroxides structure provides its high affinity, high surface area
values and high selective binding with the arsenate in groundwater at natural
pH. Tresintsi et al. (2012) prepared many iron oxy hydroxides at pH 3–12 with the
help of very low cost common salts of iron like FeCl2 �H2O and FeSO4 �H2O. It
serves as adsorbents of arsenic in high oxidative condition. Iron oxy hydroxides at
acidic pH 4.0 are very effective arsenic adsorbent in oxidizing condition.

8.6.5 Biological Arsenic Removal Through Microbes

Arsenic geochemical cycling was highly dependent on bacterial activities through
oxidation, reduction reactions, it also used in determination of its mobility and
speciation (Smedley and Kinniburgh 2002). Reduction of arsenate compound and
oxidation of arsenite are main mechanisms of detoxification induced by microor-
ganism (Silver and Phung 2005). Microbe causing conversion of organic arsenic
through anaerobic oxidation and changed it to arsenates. These are called arsenate
respiring bacteria (ARD) or dissimilatory arsenate reducing bacteria such as
Geospirillum barnesi, Geospirillum arsenophilus, Bacillus arsenicoselenatis,
Crysiogenes arsenatis, and Desulfotomaculum auripigmentum (Oremland and
Stolz 2005). These bacteria use pentavalent arsenic as acceptor of electron in
respiratory chain process. Oxidation of trivalent arsenic is performed through
many chemical such as H2O2, chlorine, potassium permanganate, ozone (Jekel
1994). Many chemical reagents used in treatment of groundwater are not supported

Fig. 8.6 Showing
community level Arsenic
removal unit by adsorption
techniques in Deganga, block,
North 24 Pargana, West
Bengal

8 Current Scenario of Groundwater Arsenic Contamination in West Bengal and Its. . . 209



due to formation of undesirable end products like trihalomethanes (THMs)
(Katsoyiannis et al. 2004).

Leptothrix ochracea and Gallionella ferruginea cause biological oxidation of
iron, it would be very effective technology for selective removal of groundwater
arsenic contamination. This enquires iron oxide coating on filter material with
introduction of microorganisms. It provides favorable environment for adsorption
and removal of arsenic from groundwater. Under optimum bacterial conditions, this
trivalent arsenic was oxidized by bacteria leading to 95% arsenic removal even if
arsenic level were more than 200 mg/L (Katsoyiannis and Zouboulis 2004). Arse-
nate was also removed by the same process leading to residual concentrations below
10 ppb. This technology was efficiently removing arsenic from groundwater and it
has many advantages over classical physicochemical process of water treatment. Use
of this technology avoids the chemical reagent use for removal of trivalent arsenic
through oxidation; hence, it is an eco-friendly and economical method.
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Abstract

Arsenic is considered a threat to human and ecosystem due to its serious impacts
on soil and water. Nanotechnology is a promising approach that offers significant
opportunities to develop green, sturdy, and economic approaches for remediation
of arsenic contaminated water and soil. Because nanomaterials possess high
specific surface area and reactivity, its use in water treatment applications has
shown great success in overcoming the restrictions of conventional treatment
technology. The current chapter deals with the green, low-cost, and easily
accessible nanosorbents that are used for arsenic removal from contaminated
water such as green cellulose nanocrystals, iron oxides/hydroxide nanoparticles,
green magnetic nanoparticles, biochar magnetic nanocomposites, and
nanoparticles derived from industrial and agricultural wastes. Adsorption
mechanisms responsible for arsenic removal by waste-based adsorbents have
been discussed. The green synthesis of nanosorbents using natural and abundant
bio-materials as well as surface modification and functionalization to overcome
constraints associated with sorbents derived from waste materials is also
discussed with respect to its potential for water remediation.
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9.1 Introduction

Arsenic, the 20th toxic element on earth, originates naturally and from anthropo-
genic activities as arsenate (HAsO4

2
–As(V)) and arsenite (H3AsO

3
–As(III)) spe-

cies. Arsenic is classified as one of the seven heavy metals strongly diffusing through
environment (USEPA 2001) that endangers ecosystem and human health due to its
serious impacts on plant, soil, and water (Ng et al. 2003). The predominant As
(V) species exist in soils and water under oxidized conditions as oxyanions of
arsenic acid (H3AsO4, H2AsO

4�, HAsO4
2� and AsO4

3�) and have multiple practi-
cal applications, such as agricultural pesticides, wood preservatives, and semicon-
ductor industries. Under saturated soil conditions or organic matter rich soils,
arsenite exists in the form of arsenious acid (H3AsO3, H2AsO

3�, HAsO3
2�).

Inorganic species like arsenate and arsenite undergo a series of methylation steps
to form tri and pentavalent methylated metabolites of methylarsonite (MMAIII),
methylarsonate (MMAV), dimethylarsinite (DMAIII), and dimethylarsinate
(DMAV) (Table 9.1) (WHO 2001). In general, organic arsenic species are
100 times less toxic than inorganic arsenic species whereas As(III) is 60 times
more toxic than As(V) (Jain and Ali 2000). Also, arsenite is more mobile than As
(V) which refers to the difference in pKa values for arsenic acid (H3AsO4) (2.3) and
arsenous acid (H3AsO3) (9.3) (Yaghi and Hartikainen 2018).

Arsenic is introduced in the surface water and soils through natural and anthro-
pogenic sources. It exists naturally in more than 200 mineral species and the most
abundant is arsenopyrite (FeAsS). Arsenic is released into sediments and groundwa-
ter by natural weathering of arsenopyrite according to the following reaction (Jones
2007; Muloin and Dudas 2005):

4FeAsS sð Þ þ 14O2 þ 16H2O! 4H3AsO4 aqð Þ þ 4Fe OHð Þ3 sð Þ þ 8Hþ

þ 4SO4
2�:

The main natural process responsible for arsenic distribution in environments are
minerals dissolution, microbial activity, natural organic complexation, geothermal
activities, wind-blown dust, and forest fires (Fang et al. 2018), whereas water and

Table 9.1 Some identified arsenic species in watera

Name Abbreviation Chemical formula Molecular weight

Arsenic, trivalent

Arsenous acid (arsenite) AsIII As(OH)3 125.94 g/mol

Monomethyl arsonous acid MMAIII CH3As(OH)2 123.97 g/mol

Dimethylarsinous acid DMAIII (CH3)2AsOH 122 g/mol

Arsenic, pentavalent

Arsenic acid (arsenate) AsV AsO(OH)3 141.94 g/mol

Monomethyl arsonic acid MMAV CH3AsO(OH)2 139.97 g/mol

Dimethyl arsinic acid DMAV (CH3)2AsO(OH) 137.99 g/mol
aNational Research Council (1999), Francesconi and Kuehnelt (2002)
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arsenic contamination with As can result from human activities such as mining,
metal industries, crop desiccation, and use of agricultural pesticides. These uses
introduced a large cumulative quantity of anthropogenic derived arsenic causing a
potentially hazardous environment and severe health problems for human (Hering
et al. 2017; Bissen and Frimmel 2003; Smedley and Kinniburgh 2002; Pott et al.
2001). Sarkar and Paul (2016) reported that the annual quantity of As emission into
the environment exceeds 60,000 tons (Fig. 9.1).

The contaminated drinking water and groundwater with arsenic are causing
serious health problems to more than 150 million people worldwide such as cancer,
hypertension, cardiovascular diseases, diabetes, blood vessels and nervous system
diseases (Tondel et al. 1999; Abdul et al. 2015; Mohan and Pittman 2007). Diseases
related to As contamination are causing great concern in many countries worldwide.
Arsenic concentrations in surface and groundwater in the range from 50 to 3000 ppb
are commonly found in Bangladesh, West Bengal, India, Pakistan, Argentina,
Mexico, Chile, Nepal, Vietnam, and Taiwan and recently China (Bibi et al. 2015;
Baig et al. 2009; Fatmi et al. 2009; Chowdhury et al. 2000). Around 50 million
people in Bangladesh and India are still consuming arsenic contaminated water
(Chakraborti et al. 2003, 2017; Chen et al. 2009).

The United States Environmental Protection Agency (USEPA 2001) and the
public health service (Mohan and Pittman 2007) have developed series of standards
to control As concentration in drinking water. The maximum concentration level
(MCL) of As in drinking water allowed in the USA is 10 μg/L, and in Australia the
MCL of As in drinking water is 7 μg/L (Smith and Smith 2004). Throughout the
world, drinking water containing more than MCL of 10 μg As/L represents 3.6%
whereas drinking water containing more than 20As μg As/L represents 5%
(Samadder 2011). Lowering MCL of As in drinking water will force water suppliers
to comply with the drinking water standard. Therefore arsenic contamination has
become an issue of concern worldwide and that necessitates developing cost-
effective yet efficient remediation technology (Qu et al. 2013; Shwe et al. 2012).

Recently, the use of nanomaterials in water remediation has shown great potential
due to their high surface area-to-volume ratio, which greatly enhances their removal
capability of As contaminant (Shak et al. 2018) as compared to bulk materials.
Environmental Scientists demonstrated the successful and effective removal of
different types of contaminants and bacteria (Elkhatib et al. 2015a, 2018; Leshuk
et al. 2018; Song et al. 2018) with different kinds of nanomaterials derived from
natural products and waste by-products. The nanomaterials mostly used as sorbents
for water and soil remediation are based mainly on metals and metal oxides,
cellulose, chitosan, active carbon and agricultural and industrial wastes. Therefore,
this review article highlights the performance and the sorption behavior of such
nanosorbents for the purpose of developing green and low-cost technologies for
remediation of As contaminated water and soils.
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9.2 The Adsorption Process

Contaminated environment with heavy metals is considered a major concern world-
wide, since it has bad impacts on human health and can damage the ecosystem.
Increasing industrial and agricultural activity causes heavy metals concentration to
increase in various environmental elements such as soils and water (Wang et al.
2017a, b). High concentration of heavy metals including As in soil may cause these
metals to reach growing plants and thus enter food chain (Caussy 2003; Liphadzi and
Kirkham 2006). With respect to contaminated water, discharging of effluents carry-
ing high concentration of As without sufficient treatment into water streams could
deliver these toxic metals to humans through aquatic organisms intake (Ventura-
Lima et al. 2011). Thus, it is imperious to employ suitable approaches to remediate
As contaminated soils and wastewater.

The major technologies developed and commonly used for the treatment of As
contaminated water and soil include oxidization, coagulation–flocculation (Bilici
Baskan and Pala 2010; Mólgora et al. 2013; Yusoff et al. 2018, Khalid et al. 2017),
membrane separation (Yoo 2018; Pal et al. 2014), ion exchange (Tresintsi et al.
2012), chemical extraction, electro-kinetics, phytoremediation (Wu et al. 2015; Li
et al. 2019; Yang et al. 2019), and adsorption (Elkhatib et al. 2015b; Chammui et al.
2014) (Fig. 9.2). Among these techniques, adsorption process is considered the best
and the most widely used technique for contaminants removal from water based on
its safety, simplicity, easy to modify, easy to operate, reusability, low toxic sludge
generation, and economic feasibility (Duru et al. 2016; Xiang et al. 2017; Li et al.
2018). Remediation technologies based on the use of natural materials derived from
locally available waste by-products are considered ecofriendly, more accessible, and
cost effective (Fig. 9.3). Therefore, low-cost, environment-friendly, and efficient
green sorbents should be utilized for remediation of contaminated wastewater and
soils (Moharem et al. 2019; Elkhatib et al. 2019). Adsorption process is defined as
the movement of adsorbate from the solution towards the adsorbent surface and
hereafter the surface-active site is gradually occupied by the adsorbate (Stumm
1992). Adsorption is occurred through physical and chemical bonds. Physical
bonds involve van der Waals forces and outer sphere complexes while chemical
bonds involve inner-sphere complexation, covalent/ionic bonding, and chelation
reaction (Caporale and Violante 2016). The sorption process—in general—is
influenced by multiple conditions such as sorbent capacity, sorbate concentration,
pH, time, and temperature (Elkhatib et al. 2019; Scheckel and Sparks 2001).
Recently, researches concerning the application of high adsorptive capacity
materials in arsenic contaminated soils and water have become a magnificent
attention. For instance, biochar magnetic nanocomposites (Tian et al. 2017), titanium
dioxide nanoparticles (Qu et al. 2013), nanostructured waste derived from
by-products of drinking water industry (Elkhatib et al. 2015b; Moharem et al.
2019), iron oxides-hydroxide (Fe3O4, hematite: α-Fe2O3 and maghemite γ-Fe2O3)
nanoparticles (Feng et al. 2012; Wong et al. 2017), and nanoscale
cellulose�cysteine fibers (Chen et al. (2019) have been examined. These materials,
in general, can immobilize arsenic in soil by reducing metal mobility and
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bioavailability due to binding of the metal with sorbents-functional groups (Basta
et al. 2005). Similarly, sorbent materials can scavenge arsenic into aqueous solution
and hence efficiently remove the toxic metal from wastewater (Almomani et al.
2020; Es-sahbany et al. 2019).

9.3 Low-Cost Nanomaterials for Environmental Remediation

9.3.1 Nanocellulose

Cellulose is a biodegradable, renewable, non-toxic, and the most abundant organic
compound in nature and easily obtained in great quantities at low cost. Around 33%
of annual plants, 50% of wood and 90% of cotton are cellulose which is composed of
44–45% carbon, 6–6.5% hydrogen, and 50% oxygen (Klemm et al. 2005; Tian et al.
2011). Recently researchers have produced nanosized cellulosic materials using
different chemical and mechanical methods. These materials are classified into
cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) (Barbash and
Yashchenko 2020). The CNCs look like short needles with nanoscale diameter
and length in 100–500 nm range, whereas CNFs are long nanofibers having micro
dimension length and nano-dimension diameter (Fig. 9.4). CNFs can be

Fig. 9.3 Selection criteria of arsenic remediation technology
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manufactured by various processes like grinding, homogenization, steam explosion,
whereas CNCs can be formulated by using strong acid like sulfuric acid to destroy all
the amorphous portion and lead to the nanocrystal structure. The cellulose source
and extraction conditions generally determine the CNCs dimensions and crystallin-
ity (Abdul Khalil et al. 2014; Nechyporchuk et al. 2016).

9.3.1.1 Green Technology for Production of Cellulose Nanocrystals
(CNCs) and Nanofibers

High energy ball milling is a green and efficient technique that can be used to
manufacture nanocellulose through mechano-chemical process. Generally, CNCs
are produced from natural fibers and require the following: (1) reduction of size
using ball milling; (2) chemical treatment (acid hydrolysis) to release CNCs; and
(3) ultrasound treatment (Gorrasi and Sorrentino 2015). Application of ball milling

Fig. 9.4 Morphological structure and production of cellulose nanocrystals and cellulose nanofibers
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for the production of CNCs is an easy-to-use, economic, and ecofriendly technique
which allows avoiding organic solvents (Lu et al. 2015, 2016). It has been used
efficiently to produce bamboo cellulose nanocrystals (BCNC) with the dissolving
effect of phosphoric acid. The resulting BCNC are rod-shaped particles with
100–200 nm length and 15–30 nm width (Fig. 9.5). Similarly, sphere-shaped
CNCs were also produced from cotton linters using precision milling for 24 h at
1000 rpm, freeze drying and then hydrolyzed by using sulfuric acid or hydrochloric
acid (Yang et al. 2013).

Zhang et al. (2010) have employed the green mechano-chemical technique to
produce NFCs from wood pulp. They first pretreated the dried wood pulp with water
and phosphoric acid to loosen the fibers, then the resulting fibers were milled in
aqueous medium for 2 h and the average diameter of NFCs produced was 32 nm.
Acid- and alkaline-assisted ball milling pretreatments of raw materials were also
described by many investigators (Harini et al. 2018; Rajinipriya et al. 2018; Huang
et al. 2016). Nowadays, nanocellulose materials are gaining exceptional attraction
from biomedical engineering and surface chemistry owing to its renewable nature,

Fig. 9.5 Production of bamboo cellulose nanocrystals using ball milling
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excellent mechanical and thermal properties, tailorable surface chemistry, high
aspect ratio, bio-degradability, and biocompatibility. On ground of these superior
material properties, huge market for nanocellulose as a renewable and sustainable
material for broad applications in our daily life is anticipated.

9.3.1.2 Nanocellulose-Based Adsorbents
The use of nanocellulose as a new nanosorbent derived from natural and abundant
resources for environmental remediation has attracted much attention lately.
Nanocellulose is considered an excellent natural adsorbent for wastewater treatment
due to its large surface area, high reactivity and availability of several functional
groups (Nath et al. 2016). Mishra et al. (2018) reported that the adsorption capacity
of nanocellulose-based adsorbents could be improved through surface
functionalization to enhance removal of specific contaminants. In addition, the
broad availability of nanocelluloses in low cost along with their capability for
physical and chemically modification makes CNCs excellent candidates to form
polymer-based nanocomposites. Pretreatments and functional modifications have
proven to enhance the adsorption capacity of the cellulose biopolymer.

More research is needed to devise means of employing cellulose-based materials
for large-scale removal of various contaminants including As from wastewater. Chen
et al. (2019) produced nanostructured dialdehyde cellulose�cysteine fibers, have
been prepared from wood pulp and determined its As(III) removal efficiencies and
mechanism. The maximum adsorption capacity of the nanostructured dialdehyde
based cellulose fiber for As(III) was estimated using Langmuir model and found to
be 357.14 mg/g. The X-ray diffraction and thermogravimetric analysis revealed that
thiol group on cysteine was responsible for the adsorption process.

9.3.2 Iron Oxides/Hydroxides Nanoparticle

Iron oxides-hydroxide (i.e., magnetite; Fe3O4, hematite:α-Fe2O3, maghemite;-
γ-Fe2O3 and FeOOH) nanoparticles are efficient sorbents for As removal due to its
high reactivity, surface charge, non-toxic nature, together with stability and low cost
(Feng et al. 2012; Wong et al. 2016). Iron oxide minerals are considered low-cost
sorbent for household water treatment. In addition, magnetite (Fe3O4) and
maghemite (γ-Fe2O3) nanoparticles are easy to handle and to recover in water
systems due to their magnetic character.

Prathna et al. (2018) determined the maximum sorption capacity of the iron oxide
nanoparticles for As(III) and As(V) at pH 7 using Langmuir model and found to be
909 and 3333 μg/g, respectively, which indicated that the synthesized iron oxide
nanoparticles could be used efficiently for As removal in small-scale water systems.
Feng et al. (2012) tested the nanosized superparamagnetic ascorbic acid-coated
Fe3O4 as adsorbent for As removal from wastewater. The adsorption data were
well fitted to Langmuir model and the maximum adsorption capacities of the sorbent
were 16.56 mg/g and 46.06 mg/g for As(V) and As (III), respectively. The efficiency
of oleic acid-coated Fe3O4 nanoparticles for As removal was examined for various
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sizes in the range of 12–300 nm and the results ascertained increases in the
adsorption capacities of the nanosorbents with decreasing nanoparticles dimensions
due to the increase in specific surface area (Yavuz et al. 2006).

Various methods are used to produce magnetic nanoparticles including hydro-
thermal synthesis, sol-gel process, and co-precipitation (Tuutijärvi et al. 2009; Haw
et al. 2010; Lin et al. 2012). However, these methods are energy consuming, use
toxic chemicals, and generate hazardous by-products. Thus, a green, ecofriendly,
low-cost, and efficient method has been introduced to synthesize magnetic
nanoparticles in a one-step process using plant extracts (Nikic et al. 2019). The
adsorption capacity of magnetite nanoparticles synthesized with a conventional
chemical process was much lower than that of magnetite nanoparticles synthesized
with the green approach using mint leaves extract (Table 9.2). The As adsorption

Table 9.2 Arsenic adsorption capacity of magnetic nanoparticles and magnetic nanoparticles
modified

Adsorbent

Adsorption
capacity
(mgg�1)

Reference
As
(III)

As
(V)

Green nano iron particle—mint leaves – 94.47 Prasad et al.
(2014)

nZVIn – 239 Li et al. (2014)

Magnetite nanoparticles 8.0 8.08 Roy et al. (2013)

Nanocrystalline magnetite 3.65 – Bujnáková et al.
(2013)

Magnetite particle size, at

300 nm
20 nm
11.72 nm

1.56
29.5
114.9

1.08
11.4
46.72

Yean and Cong
(2005)

γ-Fe2O3 nanoparticles 67.02 – Dave and
Chopda (2014)

Fe3O4 nanoparticles 46.06 16.56 Feng et al. (2012)

Fe2O3 nanoparticles 20.0 4.9 Luther et al.
(2012)

Iron oxide/alumina nanocomposites 1.000 2.500 Prathna et al.
(2018)

Chitosan modified iron oxide nanocomposite 267.2 – Gerard et al.
(2016)

magnetite-loaded amino modified nano/microcellulose
composite NC-MA/L-MG

– 85.3 Taleb et al.
(2019)

Ascorbic acid-coated Fe3O4 nanoparticle – 16.56 Feng et al. (2012)

Fe-hydrotalcite supported magnetite nanoparticle – 0.105 Türk and Alp
(2014)

Iron oxide nanoparticles— D. radiodurans strains – 131.5 Kim et al. (2019)
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data clearly indicate that the green synthesis is an inexpensive, efficient, and a
promising alternative for the treatment of arsenic contaminated water.

9.3.3 Green Synthesized Nanoparticles

9.3.3.1 Green Synthesized Magnetic Nanoparticles
Plant extracts contain natural sources of phytochemicals, proteins, enzymes,
polysaccharides, and alcoholic compounds that can be used for synthesis of green
nanoparticles to reduce sorbents production costs. Recently, green low-cost methods
were developed to synthesize magnetic nanoparticles using onion peel (OP) extracts
and corn silk (CS) for remediation of As contaminated wastewater (Fig. 9.6) (Niki
et al. 2019). The specific surface areas of magnetic nanoparticles produced using OP
and CS extracts exhibit much higher specific surfaces (243–261 m2/g) than that
produced using chemical method (72.1 m2/g). The calculated maximum adsorption
capacity (qmax) of magnetic nanoparticles produced using OP, Cs extracts, and
chemical method are 1.86, 2.79, and 1.30 mg/g, respectively (Table 9.3). As we
can see, the use of plant extracts to produce magnetic nanoparticles has proven to be

Fig. 9.6 Synthesis of green magnetic nanoparticles
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cost-effective, ecofriendly, and sustainable (Pathan and Bose 2018; Nikic et al.
2019).

9.3.3.2 Green Synthesized Zero-Valent Iron Nanoparticles
Nanoparticles of zero-valent iron (nZVI) have great capabilities to adsorb various
organic and inorganic aqueous contaminants due to their high adsorption capacity
and reaction activity. However, nZVI produced via chemical synthesis, presents
several limitations such as high cost and high tendency to agglomerate during the
process (Chrysochoou et al. 2012; Kanel and Choi 2017). To avoid such limitations,
use of natural product extracts having high antioxidant contents such as tree leaves,
fruits, etc. is recommended (Chrysochoou et al. 2012; Abbassi et al. 2013; Weng
et al. 2013; Machado et al. 2013). Green nZVI were successfully synthesized using
the leaves of oak (OA), mulberry (ML), or cherry (CH) tress grown in gardens of
Serbia. The leaves were collected, milled using a chopper, sieved to 2 mm and dried
(50 �C for 48 h). The sieved dried leaves (3.7 g) were water extracted by shaking the
mixture (sieved dried leaves and water) for 20 and 60 min at 80 �C for oak, cherry
leaves and mulberry leaves, respectively, then filtered with Buchner funnel. A
solution of 0.1 M Fe(III) was added to leaves extract in a 3:1 volume ratio to produce
nZVI (Machado et al. 2013; Poguberovic et al. 2016). The adsorption capacity data
for As(III) revealed that ML-nZVI is the highest in comparison with OA- nZVI and
CH- nZVI sorbents (Table 9.3). The green method offers multiple advantages
including the use of inexpensive, non-toxic, ecofriendly agents and valorization of
natural products.

Table 9.3 Maximum arsenic adsorption capacities of non-green and green magnetic nanoparticles
synthesized with different extracts

Adsorbent

Adsorption
capacity
(mg g�1)

Reference
As
(III)

As
(V)

Magnetic nanoparticles—onion peel 1.86 – Nikic et al. (2019)

Magnetic nanoparticles—corn silk 239 – Nikic et al. (2019)

Non-green magnetic nanoparticles 1.30 – Nikic et al. (2019)

nZVI—mulberry 1999 – Poguberovic et al. (2016)

nZVI—oak 877 – Poguberovic et al. (2016)

nZVI—cherry 1047 – Poguberovic et al. (2016)

Fe2O3-nanoparticles Aloe vera 8.475 – Mukherjee et al. (2016)

Magnetic Fe3O4 nanoparticle—tea waste – 158.8 Lunge et al. (2014)

nZVI—blueberries – 52.23 Manquian-Cerda et al.
(2017)

Iron oxide nanoparticles on chitosan beads—
eucalyptus

– 0.175 Martınez-Cabanas et al.
(2016)

α-Fe2O3 nanoparticles—banana peel – 2.715 Majumder et al. (2019)

Iron nano particles—Teucrium polium herb 61.7 – Karimi et al. (2019)
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9.3.4 Titanium Dioxide Nanoparticles

Nanosized titanium dioxide (TiO2) is widely used for the remediation of As
contaminated water due to its high affinity to arsenic, low-cost, ecofriendly, strong
oxidizing capability, and resistance to corrosion (Gupta et al. 2011; Mohammadi
et al. 2011; Guan et al. 2012; Deedar and Aslam 2009). Macroscopic investigations
on As(V) sorption have shown that amorphous TiO2 nanoparticles have larger
sorption capacities in comparison with the crystalline polymorphs due to the rela-
tively larger surface area of nanoparticles. Jegadeesan et al. (2010) and Jing et al.
(2009) reported that As (V) and As(III) formed binuclear bidentate inner-sphere
complexes on the surface of amorphous TiO2 at neutral pH. Experimental adsorption
isotherm data for single and multi-metal adsorption by TiO2 nanoparticles revealed
that Langmuir model was the best model that fits the As sorption data very well
which indicates a monolayer adsorption coverage on the surface of the TiO2

nanoparticles with no interaction between sorbate molecules. The calculated maxi-
mum adsorption capacity of TiO2 nanoparticles is much higher than that of TiO2

bulk particles (Pena et al. 2006; Qu et al. 2013). The results of the aforementioned
adsorption experiments suggest the potential of using Tio2 nanoparticles as efficient
sorbent for As removal from contaminated water due to its low-cost, high affinity for
As, stability, and environmentally-friendly (Deedar and Aslam 2009). However,
TiO2 nanoparticles have some limitations as they tend to agglomerate into larger
aggregates and that could be overcome through nanocomposites formation or metal
oxides coating. Lee et al. (2015) employed Ti-loaded basic yttrium carbonate
(Ti-loaded BYC) for arsenate removal from contaminated water. They reported the
high adsorption capacity of Ti-loaded BYC for As(V) (Table 9.4) and suggested the
applicability of Ti-BYC in As removal for long time adsorption process.

9.3.5 Nanosized Biochar

Biochar is the solid, carbon-rich material obtained by pyrolysis and it is considered a
solution to the potential global problems such as greenhouse gas emission and
environmental pollution (Creamer and Gao 2016; Xiong et al. 2019; Yoo et al.
2018; Yang et al. 2019). Because biochar is abundant, cheap, ecofriendly, and
possesses large surface area and diverse function groups, it is potentially suggested
to be largely used as a cheap sorbent to remove various contaminants from
contaminated surface water and groundwater (Yang et al. 2018; Sun et al. 2019;
Zhang et al. 2019a; Ahmed et al. 2018; Palansooriya et al. 2020; Xiang et al. 2020).
However, insufficient porosity, moderate surface area, and catalytic performance
may limit the biochar efficiency in water and soil remediation (Li et al. 2019). To
overcome such limitations, using inexpensive and reproducible procedure such as
ball milling could produce low-cost novel nanosized-biochar sorbents with enhanced
functional characteristics for ecofriendly applications (Wang et al. 2019; Li et al.
2020; Fan et al. 2016). It has been proven the successful role of precision milling
technology in particle size reduction, surface area improvement, functional groups
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enrichment, and catalytic enhancement (Elkhatib et al. 2015a, 2019, 2020; Shan
et al. 2016; Fan et al. 2016; Lyu et al. 2018, 2020; Naghdi et al. 2017; Wang et al.
2019; Li et al. 2020). Since nanostructured biochar is considered a better efficient
sorbent than traditional biochar, carbon-based nanomaterials are currently used for
arsenic and heavy metals removal from contaminated wastewater (Sadegh et al.
2016).

9.3.5.1 Biochar Magnetic Nanocomposites
Nanostructured iron materials exhibited higher removal efficiency of As from
contaminated water attributable to the relatively larger surface area to volume ratio
and multiple active sites compared with bulk iron materials (Saif et al. 2014; Tian
et al. 2017). Therefore, a new high-efficient and low-cost biochar magnetic
nanocomposite sorbent has been developed through pyrolysis process of
impregnated palm waste with Fe+2/Fe+3 for As removal from contaminated water
and soil (Fig. 9.7) (Cui et al. 2019). The efficiency of biochar magnetic
nanocomposite for As (III) removal from water was evaluated via adsorption
isotherms (Cui et al. 2019). The adsorption data revealed the higher maximum
adsorption capacity of biochar magnetic nanocomposite for As (III)
(16.23 mg g�1) at different pH values compared to the maximum adsorption
capacity of raw biochar (2 mg g�1). It is clear that incorporating iron nanoparticles
into biochar has significantly promoted As (III) removal efficiency (Hu et al. 2015;
Cui et al. 2019). Sun et al. (2019) investigated the impact of the Fe/Biochar mass
ratio on the capability of biochar magnetic nanocomposites to remove As (V) from
contaminated water. They indicated that the nanocomposites exhibited significantly

Table 9.4 Comparison of titanium dioxide nanoparticles; hybrid titania nanostructures and metal/
metal oxide—titania nanocomposites for As removal

Adsorbent

Adsorption
capacity
(mg g�1)

Reference
As
(III)

As
(V)

Ti-loaded basic yttrium carbonate – 348.5 Lee et al. (2015)

Titania nanotubes; Fe-TNTs – 80.67 Wang et al.
(2015)

Ce-Ti oxide (100–200 nm) 6.8 7.5 Deng et al. (2010)

Iron, titania/silica modified with zinc 7.0 – Sadeghi et al.
(2016)

Graphene oxide supported mesoporous Fe2O3/TiO2

nanoparticles
7.0 6.0 Babu et al. (2016)

TiO2 pillared montmorillonite 4.58 4.86 Li et al. (2012)

Protonated titanate nanotubes 7.0 3.0 Niu et al. (2009)

Titanium dioxide-coated carbon nanotube 1.8 1.13 Liu et al. (2014)

Zr-Ti oxide 28.6 – Iven et al. (2016)

Hydrous titanium dioxide nanoparticles 83.0 – Liu et al. (2012)
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higher As (V) removal capability (65.9–77.7%) compared to raw biochar (55.6%)
and increased with increasing of the Fe content.

A higher Fe impregnation ratio (1:1) promoted AsO4
3� (44.4–52.6%) formation

with a lower proportion of HAsO42� (23.5–24.7%). Increasing Fe-biochar ratio
(2:1) has caused H2AsO4

� to completely develop into AsO4
3� (80.7%) which

suggested Fe–O–As(V) complex formation as the primary mechanism of As
(V) adsorption (Bakshi et al. 2018; Zhang et al. 2019a).

Magnetization of biochar by Fe3O4 nanoparticles has proven to increase the
biochar capabilities of remediating As contaminated water (Table 9.3)
(Karunanayake et al. 2017, 2019). Alchouron et al. (2020) have assessed the As
(V) removal efficiency of raw biochar (B), activated biochar (BA), raw biochar
covered with Fe3O4nanoparticle (B-Fe), and BA covered with Fe3O4 nanoparticles
(BA-Fe). The results revealed that sorption equilibrium for As was achieved within
2 h and biochar activation with KOH increased the surface area of B from 6.7 m2/g to
1239.7 m2/g (BA). The highest maximum adsorption capacity of the four sorbents
studied were the sorbents covered with Fe3O4 nanoparticles (B-Fe ¼ 90 mg/g and
BA-Fe ¼ 85 mg/g).

Fig. 9.7 Biochar magnetic nanocomposite
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9.3.6 Nanoparticles of Industrial Waste

Several reports concerning arsenic and heavy metals immobilization/removal from
contaminated water and soils using mining and industrial waste/by-product based
adsorbents have been published. These adsorbents include steel manufacturing
waste (Chakraborty et al. 2014; Oh et al. 2012), nitrogen fertilizer industry waste
(Elkhatib et al. 2020), magnesia-loaded fly ash (Li et al. 2012), fly ash (Blissett and
Rowson 2012), sulfuric acid Acidified Laterite (ALS), a by-product produced
through ferric aluminum sulfate (FAS) production (Glocheux et al. 2013),
akhtenskite (ε-MnO2), coated waste goethite (Shih et al. 2015), copper slag coated
by silica gel (Li et al. 2020), plastic waste char (Miandad et al. 2017), and Fe-Mn
dual oxide waste (McCann et al. 2018).

The environmental-friendly approach of using the abundant and cheap industrial
by-product materials for removal of contaminants from water has become more
popular in recent years due to its advantages, such as cost-effective, efficient, low
maintenance, and waste valorization (Elkhatib et al. 2019).

Drinking Water Treatment Residual (WTRs), by-products of drinking water
industry, has been studied as a promising sorbent for remediation of contaminated
water and soil due to its amorphous nature and high sorption affinity toward heavy
metals including arsenic. The potential use of bulk DWTRs as efficient cost-effective
sorbent for As, Ni, Cu, Cd, and Pb has been reported by many researchers (Sarkar
et al. 2007; Elkhatib et al. 2013, 2015b; Elkhatib and Moharem 2015). However,
several studies reported that the specific surface area and reactivity of DWTRs are
greatly influenced by the size of the particles, decreasing the particle size greatly
increases the adsorption capacity and reactivity of DWTRs (Caporale et al. 2016;
Elkhatib et al. 2015a). Recently, Elkhatib et al. (2015a) produced a novel
nanosorbent derived from by-products of water industry for efficient remediation
of contaminated soil and water using precision milling. Briefly, the bulk DWTR was
collected from the DWT facilities that use aluminum sulfate for flocculation, air
dried, crushed, and passed through 2 mm (m DWTR) and 51 μm (μDWTR) sieves.
Subsamples of μDWTR (<51 μm) were milled using high energy ball mill (Fig. 9.8).
The surface area of DWTR nanoparticles greatly increased (129 m2 g�1) in compar-
ison with the surface area of bulk DWTR (53.1 m2 g�1).

To evaluate As(V) removal efficiency of nDWTRs from contaminated water, an
adsorption equilibrium study was performed (Elkhatib et al. 2015b). The results
revealed that As(V) sorption data best fitted to Langmuir model and the calculated
maximum adsorption capacity (MAC) of nDWTR is 16 times higher than that of
bulk DWTR. The high As(V) removal efficiency of nDWTRs from contaminated
water and its comparatively greater adsorption capacity and stability of nDWTRs
suggest its use as a promising low-cost and stable sorbent for As (V) removal from
contaminated water and wastewater.

Similarly, Yenial et al. (2019) successfully produced magnetic MnFe2O4

nanoparticles from industrial wastes of Li-ion batteries and pyrite ash. The scanning
electron microscope images ascertained that the average particle size of manganese
ferrite particles produced was 24.3 nm. The manganese ferrite nanoparticles
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Fig. 9.8 Production of low-cost and ecofriendly drinking water treatment residuals nanoparticles
(nDWTRs)
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produced were tested for their As removal capabilities from contaminated solutions.
The results indicated that the MAC of the manganese ferrite nanoparticles was found
to be 101� 0.5 mg/g at acidic pH. The residual As concentration in the solution was
found to be 0.78 mg/L, which is under the wastewater permissible limit (10 mg/L).

Utilizing industrial and agricultural wastes as cost-effective sorbents is attracting
many researchers worldwide. However, sorbents derived from industrial and agri-
cultural wastes may have other disadvantages such as low sorption capacity, low
surface area, and low selectivity. To overcome such setbacks, research should focus
on surface modification and functionalization to overcome constraints associated
with cheap sorbents derived from waste materials.

9.3.7 Silica Based Nanoparticles

Nowadays, nanoparticles are commonly used to improve the sorption capacity of
some sorbents since particles in nanoscale possess larger surface area, and permit
rapid uptake and ultimately enhance the internal mass transport (Mohan and Pittman
2007). For this purpose, Hocaoglu et al. (2019) tested the capacity of micrometer-
size silicate flakes and zirconium oxide nanoparticles or titanium oxide nanoparticles
as composite for remediation of As (V) contaminated water. They found that the
silicate flakes—zirconium oxide nanocomposites exhibit higher MAC (305 mg g�1)
and fast As removal (5 min.), whereas the MAC of the silicate flakes—titanium
oxide nanocomposite was much lower (125 mg g�1). Attinti et al. (2015)
synthesized goethite/silica nanocomposite and tested it for aqueous As removal.
They reported that the synthesized nanocomposite has shown MAC of 17.64 mg g�1

and high ability in removing As from aqueous media.
Barakan et al. (2020) studied arsenic removal from gold mine wastewater under

alkaline conditions using modified bentonite with Al, Fe-columns and Al, Fe,
Si-porous heterostructure framework. Adding Fe and Al has led to change the
negative surface charge of bentonite to more positive surface charge which in turn
favored the electrostatic attraction between the modified adsorbent and the As
oxy-anion at high pH media. The role of silicate was creation of mesoporous
structure due to the figuration of silica framework between montmorillonite layers.
The authors proposed that the high MAC of the modified nano-bentonite was due to
inner/outer sphere complexes formation at the surface, edge and interlayer. More
recently, the fabrication of Fe3O4 quantum dots (QDs) graced silica micro–nano
domain by a simplistic sol-gel method was achieved by Rakibuddin and Kim (2020).
The functionalization between surface silica and Fe3O4 QDs was done by silica
surface modification with APTES (amino-propyltriethoxy silane). The obtained
composite (Fe3O4 quantum dot@ silica) was examined for remediation of As
contaminated water. The results showed high efficient removal of As at various
pH values which is attributed to surface area and pore volume improvements of the
obtained composite due to the presence of Fe3O4 quantum dots (QDs) and
mesoporous silica. Their final results indicate the promising tool of using
nanocomposite in As contaminated water remediation field.
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9.3.8 Nanoparticles from Agricultural Waste

Agricultural waste is defined as unwanted organic materials which produced by man
through agricultural activities including plant waste, manure, agricultural products
processing, and rural domestic wastes (Liu 2017). The agricultural waste materials
mainly consist of lignin, cellulose, and hemicellulose (Salleh et al. 2011). Lignin
involves carbonyl, hydroxyl, methyl, and other functional groups, whereas hemicel-
lulose and cellulose involve carbonyl and hydroxyl groups and ether. These func-
tional groups can scavenge heavy metals using various mechanisms such as
chelation, ligand exchange, ion exchange, electrostatic forces, surface complexation
(Zhou et al. 2015; Qian and Chen 2013; Qian et al. 2016). In addition, nanocellulosic
biomass obtained from agricultural waste such as rice straw and cotton fiber can bind
As (Table 9.5) (Kardam et al. 2012; Yu et al. 2013). Nanocellulose can be obtained
from lignocellulose-rich plant residue and used in composites form with other
nanomaterials to increase its stability and removal capacity towards heavy metals.
Various nanocomposite sorbents have been tested for remediation of heavy metals
contaminated wastewater such as cellulose/carbon nanotube (CNT) cellulose/
graphene nanocomposites and cellulose/metal nanocomposites (Tshikovhi et al.
2020). A fast method for preparation of nanocellulose composite from residue of
Kapok fiber (KF)—a natural plant fiber—was developed by Chai et al. (2020). The
obtained nanocomposite (TEMPO-NC- PEI/GA) was tested for remediation of As
(V) contaminated wastewater. The sorption data revealed fast and high As

Table 9.5 Maximum adsorption capacity of arsenic species on nanoparticles derived from agri-
cultural waste

Adsorbent type

Adsorption
capacity mgg�1

ReferenceAs(III)
As
(V)

Lanthanum and magnetite nanocomposite incorporated
palm-shell waste based activated carbon

– 227.6 Jais et al. (2016)

Polysaccharide stabilized Fe–Mn oxide nanoparticles 338.0 272.0 Byungryul and
Zhao (2012)

Magnetic Fe3O4 nanoparticles from tea waste 189.0 – Lunge et al.
(2014)

Rice husk iron oxide nanoparticles composite 82.0 – Pillai et al.
(2019)

Starch-bridged magnetite nanoparticles – 248.0 An et al. (2011)

Green synthesized α-Fe2O3 nanoparticles – 38.47 Mukherjee et al.
(2016)

Zero-valent iron nanoparticles-produced leaf extracts of

Oak
Mulberry
Cherry

877.3
1999.0
1047.0

– Poguberovic
et al. (2016)

FeNPs-produced shoots/leaves blueberry extract – 38.85 Manquián-Cerda
et al. (2017)
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(V) removal efficiency of nanocellulose composite (TEMPO-NC- PEI/GA) at high
As concentrations (Table 9.5). No significant reduction in As removal capacity of the
nanocellulose composite was noticed after 8 generation cycles. Furthermore, Baruah
et al. (2020) investigated the effect of rice husk (RH) and sugarcane bagasse
(SB) waste-derived nanocellulose/iron oxide nano-biocomposites (SB and
RH-NIONs) on remediation of As polluted groundwater. The adsorption isotherm
and adsorption kinetic coupled with FTIR and XPS spectroscopy data were utilized
to study As adsorption mechanisms on SB and RH-NIONs. The obtained data
suggested formation of multi-dentate nuclear complexes with the involvement of
covalent bonding between Fe3O4 and As. These findings reflect the high stability of
adsorbed As on SB and RH-NIONs nanocomposite which could be successfully
used for As removal from real groundwater.

9.4 Potential Nanoparticles Derived from Water Industry
By-products for Arsenic Stabilization
in Contaminated Soils

Agricultural soils can be contaminated with excess amount of arsenic (As) due to
anthropogenic actions such as mining and industrial related activities and agricul-
tural practices. Under alkaline conditions, i.e. alkaline soils, As solubility increases
and causes widespread environmental contamination that poses a continuous threat
to human health.

Water treatment residuals (DWTRs), drinking water sludge, are considered one of
the most produced wastes rich in iron. These wastes are daily generated during the
drinking water treatment process and have been used as an efficient and budget
friendly approach for P, As, Ni, Cu, and Pb immobilization and stabilization in
contaminated soils (Sarkar et al. 2007; Elkhatib et al. 2013, 2015a, b; Elkhatib and
Moharem 2015). The unstable nature of arsenic species, mobility, and toxicity may
change under different soil conditions and components such as clays, carbonaceous
materials, and oxides of iron, aluminum, and manganese, may participate in adsorp-
tive reactions with arsenic. Therefore, successful remediation of As contaminated
soils necessitates understanding As chemistry in soils. Many investigators have
tested the capability of DWTRs in remediating contaminated soils. Garau et al.
(2014) investigated the influence of Fe DWTRs application at a rate of 3% on As
immobilization in contaminated soil. They reported 27% reduction in specifically As
sorbed. Nagar et al. (2015) examined the beneficial effect of Al and Fe DWTRs
application on As bio-accessibility in As-spiked soils. They reported 50–80%
decrease in bio-accessible As, compared to non-DWTRs treated soils.

Nowadays, the advance of nanosized materials enables the promotion of conven-
tional macro-sized (DWTRs) to nanostructured water treatment residuals (nDWTR).
Nano-DWTRs present exceptional characteristics like large ratio of surface area to
volume, efficient adsorption, and stability. Such characteristics can be useful in soils
decontamination. Since the conventional bulk WTRs have limited reactivity towards
contaminates, Elkhatib et al. (2015a) have been a pioneer in employing Nano-
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DWTRs for remediation of metal-contaminated soils. Sorption studies demonstrated
that the MAC of nDWTRs were 50 mg As g�1, 47 mg Cd g�1, and 50 mg P g�1

compared to bulk DWTRs to 3 mg g�1, 2.80 mg g�1, and 1.67 mg Pg�1for As, Cd,
and P, respectively (Elkhatib and Moharem 2015; Elkhatib et al. 2016). Elkhatib
et al. (2018) also ascertained that application of nWTRS at a rate of 0.3% by mass
greatly reduced Pb and Cd mobility and phytoavailability (Brassica napus L.) by
>99%. The use of nDWTRs as a low-cost efficient sorbent could eliminate the need
for DWTR disposal in landfill and be more effective in contaminant remediation and
cost feasibility.

9.5 Mechanism of As Adsorption by Nanoparticles
and Nanocomposites

Many investigators ascertained the high affinity of As towards Fe, Mn, Al, Cu, Co, Ti,
and Si oxide/hydroxide surfaces (Mandal and Suzuki 2002; Navarathna et al. 2019;
Zeng 2003; Zhang et al. 2019a, b. Goldberg and Johnston 2001; Sherman and Randall
2003). Furthermore, Fe oxides play a significant role in natural soil environments for
As scavengers and hence reducing their mobility and bio-accessibility (Jain et al.
1999; Nickson et al. 2000; Stüben et al. 2003; Mench et al. 2006). Exclusively, iron
oxide structured materials have a natural affinity for arsenic sorption and thus strongly
react with As through inner-sphere complexion (Simeonova 2000; Aredes 2013;
Goldberg and Johnston 2001; Sherman and Randall 2003).

Nowadays, utilization of nano-scaled materials derived from abundant natural
and waste materials such as Fe3O4, TiO2 nanoparticles, nanocellulose composite,
DWTRs nanoparticles, aluminosilicate nanotube-iron oxide composite, iron-
impregnated granular activated carbon, and green ZVI nanoparticles have been
introduced as promising tools for treatment of metal-contaminated water and soils
(Arancibia-Miranda et al. 2016; Stefaniuk et al. 2016; Elkhatib et al. 2017; Fang
et al. 2018; Sepúlveda et al. 2018; Kalaruban et al. 2019). Elkhatib et al. (2015b)
studied the adsorption reaction of As (V) on nDWTRs through adsorption equilib-
rium, fractionation, and kinetics experiments. The SEM-EDX and XRD study
ascertained that the nDWTRs sorbent contained Fe and Al elements in appreciable
amounts. Because of the high affinity of Fe and Al metals for As species and
selectively, the subsequent As(V) adsorption mechanisms are suggested:

9.5.1 On Iron Sites

As(V) complexes with iron oxyhydroxide are formed either through ligand exchange
mechanism, involving a hydroxyl groups from arsenate anion and iron
oxyhydroxides or through stable 2 C bidentate complexes to adjacent iron surface
sites. Fukushi and Sverjensky (2007) studied the surface complexation of As(V) and
concluded that the bidentate complexes are the governing arsenate species on
hematite at high surface coverage and low pH values.
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9.5.2 On Aluminum Sites

As(V) and the coordinated hydroxyl group form inner-sphere complexes as follows:

� Al� OHþ H2AsO4�  !� AlH2AsO4�þOH�
2 � Al� OHþ H2AsO4�  ! � Alð Þ2 HAsO4þ H2Oþ OH

Since arsenate is more strongly bound to Fe oxides compared to Al(OH)3, it is
suggested that the formation of inner-sphere complex could be the governing
adsorption mechanism. Catalano et al. (2008) introduced an X-ray scattering evi-
dence that supported the formation of inner- and outer-sphere complexes with As
(V) on aluminol sites of corundum. In addition, the As fractionation results (Fig. 9.9)

Fig. 9.9 Adsorbed As (V) on mWTRs and WTR nanoparticles (Elkhatib et al. 2015b)
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showed that the association of 67% of adsorbed As(V) on bulk DWTRs was with the
non-residual fraction (more mobile), whereas association of 80% of adsorbed As
(V) on nano-DWTR nano was with the residual (the less mobile) fraction. These
observations clearly indicate that application of DWTR nanoparticles has substan-
tially decreased the more labile fractions and increased the immobilized (stable)
fraction in soils.

Many researchers studied the mechanisms of As adsorption on nanoparticles and
nanocomposites materials using different tools. Kong et al. (2014) studied the type
of adsorption reaction of As(III) and As(V) on magnetic nanoscale Fe–Mn binary
oxides loaded zeolite (MFM) through adsorption thermodynamic and kinetic
experiments. They concluded that As(III) sorption on MFM is governed by both
oxidation and adsorption processes while As(V) sorption took place through sorp-
tion process only. The incorporation mechanisms of As into Al-magnetite
nanocrystals were examined using different microscopic and spectroscopic tools
(Freitas et al. 2016). They noticed that the existence of Al enhances the formation
and growth of the magnetite crystals leading to more As immobilization into the
formed crystal. The authors interpreted stabilization of As on the mesocrystals to
both As adsorption onto the newly formed nanoparticles (first) and As entrapment
into the grown crystals (second). Micro-spectroscopic characterization using syn-
chrotron radiation-based X-ray absorption spectroscopy (XAS) and X-ray

Fig. 9.10 Mechanism of arsenic adsorption on magnetite nanoparticles
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photoelectron spectroscopy (XPS) were conducted to understand in depth the
geometries of adsorbed As(V) and As(III), on magnetic nanoparticles (MNPs) (Liu
et al. 2015). EXAFS analysis proposed prevalent formation of bidentate binuclear
complexes for arsenate and tridentate hexanuclear complexes for arsenite on MNP
surfaces. Furthermore, XANES and XPS results demonstrated complex redox
reactions of MNPs-adsorbed As exposed to air (Fig. 9.10). A new study also was
conducted by Pranudta et al. (2020) to investigate the mechanisms of As adsorption
onto hybrid anion exchange with Fe/Mn binary oxides nanoparticles (HA502P-Fe/
Mn) using XANES to observe the change of oxidation state of the Mn oxides during
As(III) removal. Because the bond distance between As-Fe and was larger (3.35A)
than the distance between As-Mn(2.94A) of HA502PFe/Mn, the authors assumed
that As(III) was first oxidized to As(V) and hereafter adsorbed on the surface of
oxides nanoparticles through formation of inner-sphere complexes (Fig. 9.10).
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Biological Means of Arsenic Minimization
with Special Reference to Siderophore 10
Pratika Singh, Azmi Khan, and Amrita Srivastava

Abstract

Arsenic (As), a p-block element, is a metalloid common on earth crust in various
forms such as arsenopyrite and scorodite. It is known to be present in four
oxidation states that are �3, 0, +3 and +5 of which pentavalent and trivalent
forms are most toxic. Arsenic in its various forms proves hazardous to environ-
ment and all living beings including microbes, animals and plants. In animals, it
affects almost all vital organs including liver, kidneys, heart and lungs. As is a
known carcinogen too. In plants, As triggers production of reactive oxygen
species hence deteriorate development and metabolism of plants. To mitigate
these hazardous effects organisms have developed As detoxification mechanisms
such as arsenic transforming enzymes, phytochelatins, etc. An emerging discov-
ery in context of arsenic mitigation is utilization of siderophores. Siderophores
are secondary metabolites of microorganisms, some plants as well as mammalian
cells. These are low molecular weight peptides synthesized via ribosome inde-
pendent process using non-ribosomal peptide synthetase enzymes. Major func-
tion of siderophore was believed to be chelation of iron to make it accessible for
siderophore producers. However, studies proved that it can too binds with other
heavy metals and metalloids and form thermodynamically stable complex. The
complex formation between siderophores and different metals and metalloids
including As depends on various physiochemical parameters. This chapter
highlights different aspects of arsenic detoxification in organisms with special
reference to siderophore utilization in arsenic mitigation.
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10.1 Introduction

Heavy metals are well-defined as naturally occurring trace elements possessing
density relatively five times higher than water (Duffus 2002; Li et al. 2017). It is a
major threat in current scenario that has inflicted critical damage on environment and
all life forms. The biological availability of these metals are affected by physical,
chemical as well as biological factors that include temperature, sequestration,
adsorption, solubility, thermodynamic stability, adaptation, characteristics of spe-
cies, etc. (Hamelink et al. 1994). Being non-biodegradable in nature, most of them
can enter food chain and thereby their bioaccumulation is detrimental to living
organisms (Azeh Engwa et al. 2019). Sources of these metallic elements include
industrialization, urbanization, domestic effluents, agricultural route and technolog-
ical advancement (Florea et al. 2004). Some metals are utilized by organisms to
perform biochemical and physiological functions if present in optimum concentra-
tion (WHO/FAO/IAEA 1996; Stern 2010; Tchounwou et al. 2012). However,
metals/metalloids, namely silver (Ag), arsenic (As), aluminium (Al), lithium (Li),
gold (Au), platinum (Pt), uranium (U), tin (Sn), etc. possess no biological role, rather
affects body adversely if entered (Chang et al. 1996; Bhat et al. 2019). In biological
systems, toxic metals disturb organelles such as endoplasmic reticulum,
mitochondria, chloroplast, cell membrane and various enzymes associated with
metabolic pathways, DNA damage repair system, cell cycle checkpoints (Wang
and Shi 2001; Beyersmann and Hartwig 2008). These metals may compete metabol-
ically with essential elements like iron, magnesium, etc. Toxic metals interact with
nucleic acid leading to chromosomal aberrations and further cause conformational
changes thereby inducing carcinogenesis or apoptosis (Yedjou and Tchounwou
2006, 2007). Systemic toxicants cause cardiovascular diseases, neurobehavioural
and immunological disorder, produce reactive oxygen species, oxidative stress,
multiple organ failure and are considered as carcinogens as stated by United States
Environmental Protection Agency. Photosynthesis, fertility rate, metabolite and
chlorophyll synthesis are severely hit by heavy metals. There is no any biological
and chemical means for their degradation, thus can only be converted to less harmful
form. Among biological non-vital elements, for example, Cd, Pb, As, Hg, Cr are
ranked as priority elements owing to their high degree of noxiousness. The anthro-
pogenic and geological/natural source has caused uncontrolled increase beyond
permissible limit. Thus it affects riverine ecosystem, air quality, soil adversely as a
function of its toxicity, bioaccumulation and persistence.

Arsenic is considered as 20th most abundant element and present in all environ-
mental matrices. The increased amount of As in the environment is either due to
natural process, viz. volcanic activities, weathering, etc. or via anthropogenic
activities like mining, smelting, fertilizers, pesticides, etc. (Agency for Toxic
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Substances and Disease Registry (ATSDR) 2000; Tripathi et al. 2012; Rahman et al.
2014; Singh et al. 2017). Industrialization and technological advancement leads to
an accumulative problem on the surroundings by discharging huge amount of
harmful waste and heavy metals (Carlin et al. 2016). Accumulation of arsenic
(As) is imposing threat to human survival, affecting masses of people every year
across the world. As causes severe epigenetic and biochemical alterations
(Fig. 10.1).

Approximately millions of people are affected by As across the world. India,
Bangladesh, Taiwan, Chile, Mexico are worst hit by As stress as their groundwater
contain higher doses of As (Mukherjee et al. 2006; Brinkel et al. 2009). Nearly
40 million people belonging to various districts of West Bengal and Bihar (including
middle Gangetic plains) are severely affected by As stress (Mandal et al. 2011). The
present permitted limit for As in drinking water has been modified and is now 10 μg/
L (WHO/FAO/IAEA 1996). Several cases of groundwater arsenic pollution have
been informed across the world. Approximately four main events belonged to Asia:
in Taiwan (Tseng et al. 1968), West Bengal, India (Das et al. 1994), Inner Mongolia,
China (Xiao 1997) and Bangladesh (Biswas et al. 1998).

To combat As stress the utilization of plant growth promoting rhizobacteria were
recently explored for their capacity to detoxify or mitigate As from contaminated
regions. Various As-resistant microbes of genera, e.g., Brevundimonas,
Stenotrophomonas, Achromobacter, Comamonas, Microbacterium, Bacillus, Pseu-
domonas, Ensifer and Ochrobactrum were considered to improve harmful effects of
As thereby promote plant development through mobilization of As in vacuoles
(Cavalca et al. 2010; Wang et al. 2011; Mesa et al. 2017; Mallick et al. 2018).
Satyapal et al. (2018) isolated indigenous bacteria belonging to genes Pseudomonas
from middle gangetic plain from Bihar, India that revealed toxic metals resistance
against As, Cr (IV) Hg (II), Pb (II)Ag (I), Cd (II), Ni (II). Similarly, several plant
species have been investigated that detoxify As stress. Strategies for metal detoxifi-
cation in organisms include bioaccumulation, biotransformation, immobilization,
use of different chelators like siderophore that have been employed for metal uptake,
metal precipitation or metal detoxification. The chapter includes As minimization
strategies adopted by plants, microbes and animals. Role of siderophore as effective,
economic and eco-friendly measures for As mitigation has also been elaborated.

10.2 Biochemistry of Arsenic

Arsenic is considered as most toxic element and is placed under Group I carcinogen
according to the US Environment Protection Agency (USEPA) (Rosas-Castor et al.
2014; Niazi et al. 2018). In natural environment, it occurs as sulfidic ores (metal
arsenides), arsenates, arsenic trioxide and are found in rocks, soil, water, life forms
ranging from parts per billion (ppb) to parts per million (ppm).

Albertus Magnus was the first to put forward the metallic property of As. The
electronegative As has better oxidation potential thus increases cationic behaviour.
Therefore, it shows +3 and +5 oxidation states and generally bonds to sulphur and
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oxygen. Compared to As (V), As (III) is more toxic and mobile. It is due to the fact
that As3+ binds with sulfhydryl groups very strongly and binds weakly to thiol
groups (glutathione, cysteine and lipoic acid). The toxicity of As5+ occurs because it
is able to compete with PO4

3� for energetics and transport functions. It forms
organic species by combining methyl groups like monomethyl arsenic acid
(MMA) and dimethyl arsenic acid (DMA). MH2AsO3, M2HAsO3 and H3AsO3

(where M is a cation) are the known formulas for arsenites. Arsenates (AsO4)
3�

co-ordinate in tetrahedral or octahedral manner with alkaline earth metal or transition
metal with different anions like F�, OH�, Cl� in order to balance the charge. It is
noteworthy that As present in trivalent oxidation state because of its reactivity with
sulphur is more poisonous than organic arsenicals and pentavalent oxidation state
with the following toxicity level-

AsH3 arsineð Þ > arsenite > arsenate > RAs� X

Arsenic redox reaction depends upon pH and redox potential while the
oxyanions’ property depends upon pH condition (Masscheleyn et al. 1991; Valles-
Aragón et al. 2013). H2AsO

4� predominates at pH less than 7 while HAsO4�

dominates at alkaline condition. Metabolism of inorganic As occur through
biomethylation by two electron reduction of As (V) and oxidative methylation of
As (III). The process involves reduction of pentavalent oxidation form of As to
trivalent arsenicals by using arsenate reductase. As3+ methyltransferase (AS3MT)
uses S-adenosylmethionine (SAM) and donates methyl group to form
monomethylarsonic acid and then form dimethylarsenic acid by using MMAIII

methyltransferase and glutathione as cofactor (Palmgren et al. 2017)

10.3 Arsenic Detoxification in Organisms

Arsenic is a persistent toxicant. Research on arsenic detoxification proves significant
for controlling arsenic toxicity. Bio transformational mechanism of various
organisms might prove to be the best tool for detoxification of arsenic. Various
organisms can decrease toxicity of arsenic metalloid by incorporating metal
restricting proteins. Almost all organisms have arsenic detoxification or mitigation
process. Different mechanisms are described in case of plants, microbes and animals.

10.3.1 Arsenic Detoxification in Plants

Arsenic affects plant growth and productivity because of huge physiological and
molecular alterations. The most crucial is biochemical change where reactive oxygen
species generation occurs at subcellular level. The resulting superoxide molecules
cause irreparable injury to plant primary metabolites as well as macromolecules
(Srivastava et al. 2017; Talukdar 2017; Abbas et al. 2018). Various enzymatic and
non-enzymatic antioxidants are responsible for detoxification of ROS under metal
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stress (Ozturk et al. 2010; Pandey and Gupta 2015; Tripathi et al. 2017). Other
mechanisms include binding of As with various ligands, viz. phytochelatins (PCs)
and metallothioneins (MTs) so that to convert it into lesser/non-toxic forms.
Transporting As-ligand bound complexation in vacuolar compartment is another
strategy (Chandrakar et al. 2016; Dixit et al. 2016). The fundamental question about
translocation of As from soil to plant and then its uptake and transport to different
tissues have been comprehensively investigated and reviewed by different scientists
(Abbas et al. 2018; Shri et al. 2019; Susan et al. 2019; Abedi and Mojiri 2020).

The availability of inorganic species of As (V/III) in soil is solely dependent on
pH and also directly co-related to its bioavailability, mobility and toxicity (Shahid
et al. 2012). At low pH (<5.5) As changed to inorganic As (III) which is considered
as more soluble, mobile and toxic (Signes-Pastor et al. 2007; Adra et al. 2016). The
initial defence process of plants to cope up with metallic stress is to minimize or
inhibit the uptake of metal followed by gene regulation of metal associated
transporters, receptors or chelators. Approximately 450 varieties of plants are
reported to be hyperaccumulator of As (Sebastian and Prasad 2014). Apart from
classic example of Pteris vittata, several other species like Pteris umbrosa, Pteris
cretica, Pteris longifolia and other plants like Silene vulgaris, Pityrogramma
calomelanos are considered as As accumulator (Zhao et al. 2002; Meharg 2002).
The uptake of As depends on its chemical speciation thus As uptake mechanism
varies in plants. As (V) and As (III) uses phosphate (Pi) channels and silicon
(Si) transporters, respectively, because of being chemically analogous to phosphate
and silicon (Wu et al. 2011). Various low and high affinity Pi transporter proteins
(PHT) are involved in As uptake in plants. Since As and P compete for the same
transporter, increasing the concentration of P might minimize As uptake. PHT1
proteins are considered to be high affinity transporters while low affinity transporters
are not known yet (Nussaume et al. 2011; LeBlanc et al. 2013). After it enters, As
(V) is transformed to As (III) by the help of arsenic reductase (ACR2) (Dhankher
et al. 2006). Arsenite uptake occurs via bidirectional transporters called nodulin-26-
like intrinsic protein (NIPs) and Si transporter (such as Lsi1 and Lsi2 located at
epidermal and endodermal cells; Ma and Yamaji 2006; Bakhat et al. 2017). The thiol
rich peptide is responsible for As detoxification or its storage in vacuoles, etc.
thereby limiting its long distance travel in plant tissues (Liu 2010). Plants are
responsible for generating several ligands in order to minimize and control metal
stress like amino acids, organic non-ribosomal chelators, sulphur containing
compounds, etc. Phytochelatins and metallothioneins are considered to be
S-containing compounds that bind with metal in order to establish metal homeostasis
and tolerance towards toxic metals.

Role of Phytochelatins
Glutathione (GSH) derived phytochelatins (PCs) are peptides that can bind with
heavy metals. The detoxifying agent has an overall structure (Υ-Glu-Cys)n–Gly
(where n ¼ 2–11). PC synthase is constitutively expressed and thus allows
transpeptidation activity from Υ-glutamylcysteine dipeptides. Free metals are more
toxic than immobilized metals thus the detoxification process may occur through
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PCs (Zenk 1996). In Oryza sativa, two PCS homologues genes have been identified
termed as OsPCS1 and OsPCS2 on chromosome number 5 and 6 (Table 10.1).

It was found that expression of OsPCS1 and OsPCS2 were upregulated in root
and shoot, respectively, during As (III) stress (Yamazaki et al. 2018). The binding of
PCs-As and later sequestering complex to vacuole is mediated through ATP binding
cassettes (ABC) transporters, viz. AtABCC1 and AtABCC2 (Park et al. 2012).

Role of Metallothioneins
MTs are 4–8 kDa compounds belonging to a family of polypeptide rich in cysteine
(Cys) with strong affinity towards different heavy metals. It was first discovered in
renal cells of horse (Margoshes and Vallee 1957). These bind with different metal
ions and protect plant from oxidative stress by scavenging ROS as well as regulate
genes responsible for metal homeostasis. It consists of α (C-terminal domain) and β
(N-terminal domain) that binds with metal ions through sulfhydryl cys residues
thereby protecting plants (Sharma et al. 2016). These are classified on the basis of
its numbers, arrangements, sequence similarities as well as phylogenetic
relationships (Freisinger 2009). Plants MTs (pMTs) are classified as Type I (MT1)
whose genes are predominantly expressed in root as well as leaves; Type 2 (MT2)
group expresses genes during seed development, stems and leaves; Type 3 (MT3)
expresses their genes majorly in fruits and leaves; and Type 4 (MT4) group genes
gets expressed in tissues belonging to vegetation and reproduction (Waters et al.
2005; Leszczyszyn et al. 2013). Their function is not fully understood due to
difficulty in isolation procedure. However, pMTs sequentially involve the following
steps to promote metal homeostasis: metal binding with MTs, sequestration by
forming complex with chelators and storage site followed by protection against
oxidative stress (Saeed-ur-Rahman et al. 2020).

10.3.2 Arsenic Detoxification in Microbes

It is now clear that almost all bacteria and archaea possess arsenic resistance (ars)
operon. This confirms the fact that As is ubiquitous toxic metalloid in environment.
The biogeochemical cycle of As through microbial activity is ancient as well as
ubiquitous process. Microbes have evolved over a period of time in order to resist or
detoxify As. Genes associated with this function can be categorized into resistance or
detoxification genes and metabolic genes. Interestingly, these are present even in
those organisms that continue to live in low As concentration while absent in some,
which is still unclear (Jackson et al. 2005; Zhu et al. 2017; Dunivin et al. 2018). The
role of genes towards As biogeochemical cycle is still not fully understood and in
experimental stage. Thus the preliminary question about its distribution, role and its
impact on environment needs to be addressed. Dunivin et al. (2019) recently carry
out global survey on As genes present in soil microbes. With the help of computa-
tional analysis on 922 soil genomes and 38 metagenomes, they observed that unlike
common belief that all organisms possess As related genes, such was not observed
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after analysis. The presence of genes encoding arsenic methylase (arsM) was
predominant and this might play a pivotal function in As biogeochemical cycle.

Response of microbes for As minimization and detoxification involves the
following processes—immobilization of cells, increasing the affinity of phosphate
uptake thereby decreasing the amount of As entering inside cells, chelation through
glutathione, PCs, MTs, siderophore followed by reduction, methylation and oxida-
tion for detoxification (Silver and Phung 2005; Stolz et al. 2006; Paez-Espino et al.
2009; Yin et al. 2011a, b). Microorganisms sequester toxic metal ion in extracellular
environment of cells and prevent it from entering the cytoplasm. This helps in
inhibition of metal interaction with important cellular components. Even if As
tends to enter, chelation by different peptides/proteins and ligands limits its accumu-
lation. As (V) reduction mechanism involves two mechanisms where one is present
in all microbes while other is restricted in some bacteria and archaea. This detoxifi-
cation process is controlled by ars operon where ars genes encodes protein dedicated
to reduce As (V) to As (III) and then removal through efflux pump occurs (Pandey
et al. 2015; Brown et al. 2018).

ars Operon
ars operon possess mechanism for As resistance which is either plasmid or chromo-
some located (Silver and Phung 2005; Stolz et al. 2006). Such operons are exten-
sively studied in several Gram-negative and Gram-positive bacteria and are found to
be nearly homologous. As microbes are constantly exposed to varied range of metals
and metalloids since ages that leads to selective pressure in order to evolve resistance
mechanism operons which are conserved. The presence of ars operon in bacterial
and archeal species indicate the ubiquitous presence of As in the environment.
However, they are also found in those microorganisms which thrive in As free
surroundings. It contains generally three or five genes organized as one transcrip-
tional unit. In Escherichia coli plasmid R773 (accession number J02591) isolated
from urinary tract infection patient, the operon comprises of five genes in an order
arsRDABC controlled by single promotor (Hedges and Baumberg 1973; Ben Fekih
et al. 2018). arsR is responsible for encoding arsenic inducible repressor. ArsR
which is a member of SmtB/ArsR family binds with promotor and the transcription
of operon occurs with interaction between ArsR and arsenite that cleaves repressor
protein within DNA. arsD acts as a negative regulatory protein which is a weak
repressor (Wu and Rosen 1993). arsA and arsB encode ATP dependent arsenite
efflux pump. arsC works as arsenate reductase that reduces it to arsenite which is
released out by transport system (Carlin et al. 1995). These five genes have also been
found in Acidiphilium multivorum plasmid KW301 (accession number AB004659)
and Bacillus sp. (Fig. 10.2a)

Chromosome of E. coli, Pseudomonas stutzeri, Pseudomonas aeruginosa and
plasmid pI258 and pSX267 of Staphylococcus species consists of arsRBC while
cistron arsD and arsA are absent as illustrated in Fig. 10.2b (Rosenstein et al. 1992;
Ji and Silver 1992). The cistron encodes polypeptide ArsR, ArsB and ArsC with
molecular weight of approximately 12 kDa, 37 kDa and 24 kDa, respectively. This
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Fig. 10.2 String analysis showing protein-protein interaction in (a) Bacillus sp. Input protein is
ArsD (arsenical resistance operon repressor ArsD; COG0841 Cation/multidrug efflux pump,
118 aa) with predicted functional partners: ArsA (Arsenical pump-driving ATPase; 591 aa), ArsC
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operon is also present in transposons of Bacillus subtilis JH642, Acidithiobacillus
caldus, Leptospirillum ferriphilum (Ben Fekih et al. 2018). Prithivirajsingh et al.
(2001) cloned arsenic resistance gene in Pseudomonas fluorescens (MSA11 and
MSA12) and suggested that gene arsC requires glutathione reductase, glutathione
(GSH), glutaredoxin and ArsC protein. Presence of As-resistant gene operons in
plasmids and transposons provide an opportunity of transfer via horizontal gene
transfer.

It might be that during anoxic condition on the earth, arsRB operon first evolved
that conferred primitive cells to minimize arsenite toxicity. After the appearance of
oxic condition, arsenate prevailed in environment and thus arsC evolved. This gave
rise to arsRBC operons that enabled detoxification of arsenate. arsD originated
during later phase of evolution of life on earth where arsRDABC operon lead to
tighter regulation of arsenic tolerance. Besides traditional genes for ars operons,
there are various additional genes encoding proteins responsible for arsenic detoxi-
fication or resistance like arsH, arsI, some proteins like Acr3, AqpS and transporters
of major facilitator superfamily (MFS). Acr3 is an arsenite efflux pump present in
prokaryotes, fungi and some plants. However, ArsB is confined to prokaryotes only.
These two are excellent examples of convergent evolution as the transporters and
As5+ reductase enzyme families have evolved independently but address the same
stress, i.e. As exposure (Mukhopadhyay et al. 2002). With advancement in
technologies governing prokaryotic genome sequencing, it was concluded that ars
operons are evolving as a result of convergent evolution (Silver and Phung 2005).
Role of ars operon in encoding aquaglyceroporin (AqpS) whose function is similar
to ArsB transporters is established to extrude arsenite (Mukhopadhyay et al. 2014).

Zhao et al. (2015) demonstrated the utility of As-dedicated multi operons in
Rhodopseudomonas palustris strain CGA009. Expression of operon ars2 and ars3
was differentially regulated and enhanced upon increasing As3+ concentration up to
1 mM. Marine bacteria also process ars operon (Singh et al. 2014). Marine isolated
Vibrio showed presence of arsC gene with 98–99% homology with ars operon of
E. coli. Extremely resistant strain of Brevibacterium linens AE038-8 can tolerate
inorganic As species, i.e. up to 75 mM of arsenite and approximately 1M of arsenate
even in minimal media (Maizel et al. 2016). This is because of the occurrence of
ACR3, arsC gene and arsO. Yang and Rosen (2016) recently described the role of
arsM, arsI and arsH which encodes As (III) S-adenosylmethionine
methyltransferases, C–As bond lyase and methylarsenite oxidase, respectively, for
organic arsenicals detoxification.

Dissimilatory arsenate reduction is prominent in bacteria and archaea only where
As (V) being electro positive in nature gets used in respiratory chain for growth and

⁄�

Fig. 10.2 (continued) (Arsenate reductase; helps in catalysing reduction of arsenate [As(V)] to
arsenite [As(III)], 139 aa), ArsB (Arsenic efflux pump; 436 aa), ArsR1 (COG0640 Predicted
transcriptional regulators, 116 aa), ADC51661.1 (COG0798 Arsenite efflux pump ACR3 and
related permeases, 318 aa); (b) Escherichia coli. Input protein is ArsR with major predicted
functional partner viz. ArsB and ArsC
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survival (Ahmann et al. 1994). As (V) respiration is quite evident in proteobacteria,
thermophilic and Gram-positive eubacteria present in different environmental
conditions (Stolz et al. 2006). After reduction to As (III), it gets potentially oxidized
with the help of arsenite oxidase which was first reported in Bacillus arsenoxidans
(Green 1918). Arsenite acts as electron donor hence reduces oxygen or nitrate
(Richey et al. 2009; Sun et al. 2010). Currently, two different arsenite oxidase
enzymes have been reported, viz. AoxAB (AroBA or AsoBA) and ArxAB. This
oldest procedure of detoxification method is carried out by heterotrophic and
chemoautotrophic bacteria while ArxAB is restricted to purple sulphur bacteria,
ectothiorhodospiraceae family (Oremland et al. 2002; Kulp et al. 2008; Huang
et al. 2012). The small and large subunit of arsenite oxidase encoded by genes called
as aioA and aioB, although dedicated nomenclature has not been assigned to the
genes. The process of As (III) oxidation occurs in bacteria’s periplasm. In periplasm,
sensor kinase aoxS detects arsenite and triggers aoxR which is a regulatory protein
(Oremland and Stolz 2003). This results in activating transcription factors for As
(III) oxidase in bacteria and expression of aioA and aioB genes (Huang et al. 2012).

Arsenic methylation is another detoxification procedure used by bacteria, fungi,
archaea, algae, plants, animals, humans and recently in some protozoans
(Shariatpanahi et al. 1981; Michalke et al. 2000; Wang et al. 2004; Yin et al.
2011a, b). The organisms convert As (III) into methylated form of As which is
volatile. The volatile compounds are mono-, di-, trimethylarsine (MMA, DMA and
TMA). Some non-volatile compounds include methylarsonate and dimethylarsinate.
The process is considered to be detoxification procedure, however, the products like
MMA and DMA are more toxic than inorganic form (As (III/V). Thus some
researchers do not consider this process as a detoxification procedure (Bentley and
Chasteen 2002; Stolz et al. 2006; Dopp et al. 2010). The physiological function and
biochemical basis of methylation is still unclear. arsM encoded As (III)-S-
adenosylmethyltransferase, ArsM protein catalyses the formation of As methylation
and its homologs are quite widespread (Qin et al. 2006). The multistep process
involves S-adenosylmethionine as a methyl donor to As (III) through ArsM protein.
Here, glutathione acts as electron donor. Demethylation process is being carried out
in some of the microbes in order to use it as source of energy. Such process is
observed in species of Pseudomonas, Burkholderia, Mycobacterium, Alcaligenes,
etc. but mechanism is still not clear (Maki et al. 2004; Yoshinaga et al. 2011).

10.3.3 Arsenic Detoxification in Animals

As toxicity can be seen in animals as binding of As (III) with sulfhydryl group
induce alteration in protein structures thereby inactivates several critical enzymes.
Arsenite inhibit pyruvate dehydrogenase thus block citric acid cycle. This damages
electron transport chain. Soil contaminated with As adversely affects invertebrates.
PCS genes are found in few species of metazoans belonging to mollusca, chordate,
annelida, cnidaria and echinodermata (Clemens 2006; Clemens and Persoh 2009).
However, very little is known about their functional attributes. According to study
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conducted by Liebeke et al. (2013), Lumbricus rubellus produces PCs when exposed
to arsenic in dose dependent manner, however, not regulated transcriptionally. There
are evidences of response due to metal stress which are reported in aquatic animals
after exposure to As. Cytotoxicity and oxidative stress are evident in fishes like
Clarias batrachus and polychaeta (Bhattacharya and Bhattacharya 2007; Ventura-
Lima et al. 2009a). Taking into account, the aquatic animals minimize As toxicity by
increasing antioxidative responses and even alters antioxidant system which can be
seen in zebra fish (Danio rerio), gold fish (Carassius auratus) and common carp
(Cyprinus carpio) (Bagnyukova et al. 2007; Ventura-Lima et al. 2009b).

In mammals, arsenite gets methylated via arsenite methyltransferase where
S-adenosylmethionine acts as methyl donor (Thomas et al. 2001; Akter et al.
2005). The conversion of As in less/non-toxic form occurs with the help of
methylarsonate reductase that require GSH which is an isoform of glutathione-s-
transferase (GST). GST omega genes are found in humans (identical to
monomethylarsenic acid reductase, MMAV), aquatic animals like Takifugu rubripes,
Tetraodon nigroviridis, D. rerio, Xenopus tropicalis, etc. (Ventura-Lima et al.
2011). The osmolarity of cells are governed by aquaporins. In invertebrates, these
channel proteins, viz. AQP7 and AQP9 are found in kidney and liver, respectively.
The aquaglyceroproteins are found to uptake As (III). Similarly four human
aquaporins (AQP3, AQP7, AQP9, AQP10) can uptake arsenite (Liu 2010).

10.4 Chemistry of Siderophore Metal Chelation

Siderophores are non-ribosomal peptides widely known to chelate iron to make it
accessible to their producers (Neilands 1995). It encompasses various classes of
molecules bearing different functional groups such as catechol containing
catecholate siderophores, alkylamine or hydroxylated ornithine containing
hydroxamate siderophores, carboxylate siderophores with citric acid and some
siderophores termed mixed type containing combinations of these functional groups
(Khan et al. 2018). Besides iron chelation, siderophores are also capable of binding
with other metals. However, this binding differs in terms of binding affinity,
chirality, denticity and other physiochemical parameters. Also, different classes of
siderophore might bind in different ways with metals including iron. Denticity (ƙ),
i.e. number of atoms from a ligand or chelator bound to metal plays a key role in
metal-siderophore complexation. They might form bidentate, tridentate or a
hexadentate complex with iron (Boukhalfa and Crumbliss 2002). Another aspect is
the chirality at the metal centre or peptide backbone that plays important role during
recognition by cell surface receptor (Matzanke et al. 1984; Raymond et al. 2015).
Such stereospecificity was observed in case of rhodotorulic acid (RA; hydroxamate
type of siderophore) where transport of iron complexed with RA proves much
efficient than the complex with its enantiomer (Matzanke et al. 1984). Metal–ligand
interactions including metal-siderophore interaction are widely studied in context of
hard and soft acid and base theory (Pearson 1963). According to this theory, based
on charge density, charge-to-size ratio, polarizability and nature of interactions
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metals are categorized into hard and soft acids/bases. Also, hard acids (high +ve
charge and smaller ionic size) are known to bind with hard bases (small anionic
neutral molecules) while softer ones (transition metal with +1/+2 charge) are known
to bind bases categorized as soft (large anionic neutral molecules).

Beginning with iron, its ferric form is a hard lewis acid and forms complex with
siderophore by binding generally with its hard oxygen donor (however, sometimes
nitrogen or sulphur are also involved) that governs the iron hydrolysis making it
accessible for utilization (Dhungana and Crumbliss 2005). Siderophore forms bi-,
tri- as well as hexadentate complex with iron of which hexadentate is thermodynam-
ically most stable structure. However, a tetradentate structure is easier to reduce than
hexadentate complexes which are also essential for efficient iron transport
(Boukhalfa and Crumbliss 2002). Siderophores chelates iron in both ferric (Fe3+)
and ferrous (Fe2+) form by mineral dissolution facilitated either by ligand exchange
or by reduction, respectively (Dhungana and Crumbliss 2005). During Fe3+ ion
chelation, for metal dissolution, a ligand exchange event occurs whereby an iron
chelating moiety of siderophore replaces oxygen/hydroxide groups of ferric ions
(Hersman 2000; Kraemer 2004). In yet another mechanism of reduction ferric ion is
reduced to ferrous and then its chelation by siderophores occurs (Albrecht-Gary and
Crumbliss 1998; Dhungana and Crumbliss 2005), thermodynamically shifting the
equilibrium of solubility making iron more soluble and also making iron-hydroxide
protonation easier. Iron dissociation is further enhanced by introducing dissociation
in first co-ordination shell of iron by displacing already present labile water
molecules in the shell.

Of all the known siderophores, enterobactin is known to form strongest complex
with iron using its three catecholate moieties arising from triserine lactone backbone.
Generally, siderophores upon protonation releases bound metal but such is not the
case with enterobactin. Protonation results in conversion of catecholate mode of
enterobactin to salicylate mode of enterobactin in turn allowing metals to remain
co-ordinated with the siderophore (Cass et al. 1989; Raymond et al. 2003). Another
factor that governs the stability and complex formation of iron and siderophore is
cyclization. Macrocyclization forms a metal-binding pocket and are known to form
more stable complex with iron than a linear form of siderophore. For example, a
macrocyclic siderophore alcaligin (a dihydroxamate siderophore from Bordetella
sp.) binds with a stability constant of 1037 M�1 and forms 32 times more stable
complex than linear RA at physiological pH (Hou et al. 1998; Brickman and
Armstrong 2007). Siderophores produced by the same organisms might also bind
with iron with different affinity, e.g. two siderophore from Pseudomonas sp., namely
pyoverdine and pyochelin binds iron with an affinity of 1024 M�1 (neutral pH) and
2 � 105 M�1 (in ethanol) respectively (Neilands 1981; Cox et al. 1981). Also the
stoichiometry of siderophore versus iron differs for these two siderophores as
pyoverdine forms complex with iron in a ratio of 1:1 while for pyoverdine iron
complex the ratio is 2:1 (Tseng et al. 2006).

Siderophores also binds with copper ions as seen in case of bacterial siderophore
such as those of Bacillus megaterium and cyanobacterial siderophore of Anabaena
flosaquae and A. cylindrica (McKnight and Morel 1980; Arceneaux et al. 1984).
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However, unlike ferric ions copper is a softer acid and forms complex with
siderophores with softer donor atoms (Johnstone and Nolan 2015). Strong copper-
hydroxamate complexes were detected when cultures were deprived of iron in turn
leading to release of hydroxamates (McKnight and Morel 1980). Certain bacteria are
known to produce siderophores that enhance copper toxicity while others aids in Cu
(II) binding and in turn provide resistance against copper. For example,
uropathogenic strains of Escherichia coli principally produce enterobactin that
chelates iron and also are responsible to chelate and reduce Cu(II) to more toxic
Cu(I) form (Henderson et al. 2009; Chaturvedi et al. 2012). Such conversion proves
fatal to these pathogenic strains. However, at the same time these strains produce
another siderophore yersiniabactin that binds cupric ions preventing their conversion
to cuprous form by enterobactins. This occurs probably by utilization of thiazolines/
thiazolidine present in yersiniabactin. In yet another siderophore from Pseudomonas
sp. known as pyochelin (Pch) two Pch ligands are involved for a cupric bischelate
formation; one forms a tetradentate complex while other binds loosely to cupric ion
(Brandel et al. 2012). Apart from Pch Pseudomonas sp. are also known to produce
another siderophore pyoverdine which shows greater affinity towards iron unlike
Pch that prefers divalent ions such as Cu (II) due to presence of nitrogen binding sites
that prefers softer metal ions.

Similar to copper, zinc is also prevalent in divalent form and is known to form
tetrahedral or octahedral complexes (Steinbrueck et al. 2020). Zinc gets chelated by
siderophores, however, with lower affinity than iron (Braud et al. 2009). The
formation of a complex between Zn (II) and pyochelin occurs either through
interaction between phenolate oxygen or via deprotonated thiazoline/thiazolidine
units (Brandel et al. 2012). In Pseudomonas putida siderophore called pyridine-2,6-
dithiocarboxylic acid (ptdc) are known to be secreted that bind with zinc by using its
soft sulphur donor atom via formation of a tridentate binding pocket involving two
sulphur and one nitrogen atom (Sebat et al. 2001; Cortese et al. 2002). Namiranian
et al. (1997) reported a red shift from 455 nm to 459 nm when Zn (II) was added to a
pyochelin and subjected to fluorescence. They suggested that Zn (II) forms complex
with phenolate of pyochelin in ground state that breaks upon excitation. The small
shift of 4 nm suggested weak complex between pyochelin anion and Zn (II).

Another metal, manganese widely present in three oxidation states, i.e. Mn (II),
Mn (III) and Mn (IV) is also known to form complex with siderophores.
Siderophores possessing different functional groups are known to oxidize manga-
nese and form strong Mn (III)-siderophore complex (Harrington et al. 2012). Not
only does co-ordination between iron, copper, zinc and manganese have been
studied with siderophore but there are a number of other metals such as cobalt,
gallium, silver, aluminium, cadmium, etc. that forms complexes with various types
of siderophore. Khan et al. (2020) reported bioaccumulation of cadmium ions that
forms a thermodynamically stable complex with triacetylfusarinine C
(a hydroxamate siderophore from Aspergillus nidulans) with a binding energy
(Etotal) of �44.24 kcal/mol. In yet another instance several other metals including
those mentioned have been confirmed to bind pyochelin siderophore, however, with
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affinity lower than iron (Braud et al. 2009). Binding of arsenic with siderophores of
different origins has been studied widely.

10.5 Siderophore Mediated Arsenic Mitigation

Like iron and other heavy metals siderophores are known to bind arsenic also. This
property of siderophore acting as a metallophore is being analysed to use for
mitigation of arsenic and minimizing its toxic effect (Fig. 10.3). Numerous bacteria
such as Pseudomonas are known to oxidize and reduce different forms of arsenic,
i.e. As (III) and As (V) mitigating its toxic effect (Ghosh et al. 2015). Such activity
has been successfully co-related with siderophore producing capacity of these
bacteria. The amount of siderophore production varies among different strains of
arsenic resistant P. fluorescens grouping them into high, moderate and low
siderophore producers. Higher siderophore production led to better oxidation of
As (III) while low siderophore producers were efficient in As (V) reduction, thus
resisting both the forms of arsenic in an efficient way. This has been attributed to
activation of As (III) oxidase by iron internalized via siderophore mediated uptake
mechanism.

Mobilization of arsenic serves one of the important factors in mitigating arsenic
toxicity as it is known that As (V) is less mobile than As (III). In one instance, arsenic
resistant bacteria, i.e. Staphylococcus sp. TA6 possessing ars operon and thus
resistant to arsenic with high siderophore production capacity showed much stronger
reduction of As (V) than non-siderophore producing mutant strain of Pseudomonas
(Das and Barooah 2018). Such strong reduction occurs in an arsenic rich environ-
ment whereby siderophore is basically responsible for releasing As (V) from arse-
nopyrite by scavenging iron from it. Further, this free As (V) gets reduced to As (III)
by arsenate reductase enzyme upon getting inside cells via phosphate channels. This
toxic form of arsenic then gets expelled out by arsB transporters. In another instance,
siderophore acts similarly upon scorodite composed of iron and As (V) resulting in
mobilization and further mitigation of arsenic toxicity (Drewniak et al. 2008).

One of the deleterious effects of As in plants involves formation of iron arsenate
(AsFeO4) when As interacts with iron plaques formed on root surfaces of plants (Liu
et al. 2006; Bhattacharya et al. 2012). Siderophores produced by microbes at
rhizospheres solubilize these plaques either through proton promoted (protonation
of O/OH groups of iron) or by ligand promoted (involving organic or inorganic
ligands) mechanisms (Kraemer 2004). In another study, three different bacteria
namely Bacillus pumilus, Bacillus thuringiensis and Pseudomonas in combination
with leonardite (oxidation product of lignite with high affinity towards As) success-
fully reduced accumulation of As in rice grains (Dolphen and Thiravetyan 2019).
Bacteria producing more siderophore, i.e. B. pumilus were better in reducing As
accumulation in grains than Pseudomonas followed by B. thuringiensis. Also,
efficiency of reducing As accumulation was much better in combination of
leonardite and microbes when compared with administration of leonardite alone.
Expression of silicon and phosphate transporters also responsible for As (III) and As
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(V) uptake, i.e. Lsi1, 2 and OsPT4, increases upon As exposure in these plants.
Addition of leonardite together with siderophore producing bacteria causes
downregulation of these transporters further reducing As accumulation and toxicity.

Arsenic in its As (III) form presents high binding affinity with siderophores
isolated from different actinobacteria (Retamal-Morales et al. 2018). Exogenous
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Fig. 10.3 Schematic representation of siderophore mediated As mitigation
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application of siderophore isolated from different organisms or co-culture of
siderophore producing microbes is being tested nowadays for their ability to reduce
toxic effects of arsenic in different organisms. As is known to damage cellular
membrane and increase ROS generation as evident in level of antioxidative enzyme
(SOD, POD, etc.) production in wheat (Zhang et al. 2007). Siderophore produced
from fungus, i.e. Aspergillus nidulansmitigates the harmful effect of As and restored
the SOD, CAT, POD as well as MDA level in wheat genotype NW1014 growing
under arsenic stress (Kumari et al. 2019). Such inhibition was attributed to greater
affinity of siderophore towards arsenic than towards iron. Formation of siderophore-
arsenic complex rendered entry of As inside plants reducing toxic effect of As.

Arsenic hyperaccumulator Pteris vittata gets benefitted in terms of biomass upon
addition of siderophore producing bacteria like Delftia sp., Variovorax sp. among
others in the rhizosphere (Lampis et al. 2015). Application of siderophore from
P. aeruginosa releases arsenic from ferrihydrites (composed of iron and arsenic)
which further forms complex with available siderophore (Jeong et al. 2014). The
siderophore-arsenic complex gets transported to leaves as seen in Pteris cretica
which can easily be removed. These approaches suggest use of these plants along
with siderophore producing bacteria as a means of phytoremediation in arsenic
contaminated soils. Also, siderophore produced from Pseudomonas azotoformans
also serves as washing agent in arsenic as well as other heavy metal contaminated
soil removing about 92.8% of arsenic without damaging soil microbial community
(Nair et al. 2007).

Not only bacteria siderophore from some saprotrophic fungi like Purpureocillium
lilacinum, Absidia spinosa among others have been investigated for their capacity of
As mycoremediation (Ceci et al. 2020). These fungi possess high tolerance against
As and are able to produce siderophore at the same time suggesting similar utiliza-
tion of siderophore as in bacteria for As mobilization. However, exact mechanism
and suggested co-relation between siderophore mediated mycoremediation of As
needs to be established. We may state that mitigation of arsenic toxicity in microbes,
plants and environment is possible using a number of different siderophores from
numerous organisms, however, more clear understanding of mechanisms and devel-
opment of efficient methods to use them is still required.

10.6 Conclusion

The toxicological effects of arsenic in the surrounding possess serious threat affect-
ing millions of people worldwide. Contamination deteriorates environment, agricul-
tural sector, health even at low concentration. In order to cope up its deleterious
effect organisms have evolved detoxification system. Oxidation, reduction and
biomethylation of arsenic play a crucial role in converting arsenic into less toxic
form. The biological based heavy metal minimization approach is turned out to be
most effective, economic and environmental friendly. Last few years have further
revealed the role of secondary metabolites in arsenic mitigation. Siderophore which
was earlier believed to chelate iron is now considered as metallophore due to its
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ability to chelate several other elements including arsenic. Although binding affinity
of different siderophores based upon chemical structure and origin with arsenic
varies, it is interesting to explore the interaction and mitigation mechanisms. This
will further help the investigators to develop genetically engineered microbes and
plants based upon their potential application to remove arsenic which is yet not
established.
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Mechanisms of Arsenic Transport,
Accumulation, and Distribution in Rice 11
Akshay Shinde and Kundan Kumar

Abstract

Arsenic (As) is a prevalent form of metalloid in the environment, which exists in
its organic as well as inorganic forms. Arsenic is a well-known carcinogen and its
prolonged exposure and intake may lead to several health disorders in humans.
Contamination of arsenic in the soil results in arsenic accumulation in the food
crops and thus enters the food chain. Rice being a staple food in many countries is
at a higher risk for arsenic accumulation since it is capable of accumulating
various heavy metals as well as metalloids present in the soil, out of which,
arsenic is the most common. Several transporters were identified in rice roots
which were found to have a function in arsenic uptake and translocation to grain.
Rice, OsLsi1, and OsLsi2 are widely studied silicon transporters which actively
participate in collection and transport of arsenic. Proteins from the Nodulin-26
like Intrinsic Protein (NIP) family, namely, OsNIP2;1, and OsNIP3;2 and Plasma
membrane Intrinsic Protein (PIP) family, namely OsPIP2;7, OsPIP2;6, and
OsPIP2;4 also play a vital role in arsenic translocation from soil to root and
root to grain. In the plant, arsenic efflux from root to shoot occurs through xylem
while the transport from shoot to grain occurs through phloem. In the rice grain,
the rice bran and brown rice were found to have more arsenic concentration as
compared to polished rice. This chapter highlights the critical factors responsible
for uptake, transport, distribution, and accumulation of arsenic in rice.
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11.1 Introduction

Arsenic (As), a well-known carcinogen, is introduced into the soil by numerous
environmental factors as well as human activities and thus considered as a global
contaminant (Mandal and Suzuki 2002; Zheng et al. 2013). Arsenic in the
contaminated crops or drinking water has a major health impact on humans and
animals (Ng et al. 2003) as well as phytotoxic to plants leading to decline of crop
growth and yield (Islam et al. 2017). Arsenic is a metalloid, present in the nature in
its organic and inorganic form. The inorganic form constitutes of oxygenated and
complexation of As with sulfur and iron, viz. As anions or arsenopyrite (FeAsS)
abundantly (Brewster 1992). The inorganic form mainly comprises of arsenate [As
(V)], which is pentavalent in nature and arsenite [As(III)], which is trivalent.
Arsenate is found in aerobic environments, while arsenite occurs in anaerobic
environments. However, inter-conversion among them occurs with respect to the
changed pH, redox potential of soil, and the existing microflora (Zhao et al. 2010;
Nearing et al. 2014). The uptake of As by the rice plant is affected by the concentra-
tion of Fe, Mn, N, S, P and also the pH of the soil (Abedi and Mojiri 2020). As(III)
readily cohere to sulfhydryl groups that are present on cysteine residue, thus
hampering number of crucial metabolic processes such as ATP synthesis, oxidative
phosphorylation, and fatty acid metabolism. Moreover, the fastening of As(III) to
glutathione, a known reducing agent, would lead to decrease in the levels of
glutathione and thus increase in reactive oxygen species (ROS) (Bhattacharjee
et al. 2008). Arsenate, a phosphate analogue, substitutes inorganic phosphate
which hampers synthesis of nucleotides and also energy regulation of the cell by
interfering with ATP synthesis (Mead 2005). Among the organic forms, methylated
arsenic species, viz. monomethylarsonic acid (MMA) and dimethylarsinic acid
(DMA) are prevalent in nature (Meharg and Hartley-Whitaker 2002). Arsenate is
predominantly present in the rice straw followed by As(III) and MMA (Abedin et al.
2002a). Apart from those, other organic arsenic species derived from preservatives,
and chemicals like herbicides and pesticides may also be present. Most of the study
on arsenic in plants is being focused upon rice since it is the crucial source of As
intake through diet and is cultivated in areas having water-logged soil that contains
high amounts of As. As(III) is the most commanding arsenic species in reductive
environment in mostly flooded paddy soils (Takahashi et al. 2004; Xu et al. 2008).
Flooding in paddy soils results in a rise of As bioavailability to rice plants via
mobilization of arsenite throughout the soil (Xu et al. 2008). The concentrations of
arsenite in the soil of flooded rice ranges from 0.01 to 3 μM which is higher in
comparison to arsenate level present in aerobic environment (Zhao et al. 2009). It is
anticipated that approximately 100 million individuals are exposed to water
containing arsenic over the WHO safety limit of 0.01 ppm (Nordstrom 2002). The
range of 5 mg/kg–2553 mg/kg arsenic is present in agricultural field by
As-comprising pesticides and defoliants (Anawar et al. 2018).

Majorly two species, Oryza glaberrima (African rice) and Oryza sativa (Asian
rice) are cultivated in various parts of the world (Pathaichindachote et al. 2019). Rice
is the chief diet food consumed by major part of the world’s population and is
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described as a natural sponge, knowing its ability to accumulate number of metalloid
and heavy metals present in the water and soil (Zheng et al. 2013). Due to the rising
population in Asia, the production of rice is expected to rise by 60–70% by the year
2050 (Ma et al. 2019). Shrivastava et al. (2020) suggested that there is considerable
amount of As toxicity by consuming rice and products made from rice as a staple
dietary source. In comparison to other cereal crops, rice paddy accumulates more
arsenic because arsenite is mobilized in flooded soil and then taken up by the silicon
uptake pathway. Arsenic is accumulated in larger amounts in the consumable parts
of rice, where the concentration in grains is the highest, which ranges from 0.08 to
0.20 mg/kg (Zavala and Duxbury 2008). Reports on As contamination throughout
the world showed 150 million people being affected and include many countries
such as Bangladesh, Argentina, china, India, Chile, Columbia, and Turkey
(Bundschuh et al. 2012; Gan et al. 2014; Tong et al. 2014; Welna et al. 2015). The
accumulation of As in soils in Taiwan (157,000 μg/L in root) and Bangladesh
(51,900 μg/L in root) is significantly higher compared to other countries (Abedi
and Mojiri 2020). As indicated by the organization for toxic substances and disease
registry list 2017, As is one of the most toxic metals to the human beings. Around
two hundred million humans in 70 nations are exposed to this metalloid (Sodhi et al.
2019).

Toxic effects of As are based on the form of As species and vary from one form to
other (Jomova et al. 2011). Both the organic and inorganic forms of As are available
in the rice grains, out of which, inorganic As (iAs), DMA, and As(III) are the most
common forms. Moreover, rice grain may also contain MMA, As(V), and in some
cases tetramethylarsonate. Organic forms of arsenic include different subgroups
such as arsenic betaine, methylated species, arsenolipids, and arsenosugars
(Heuschele et al. 2017). It was found that inorganic As exposure is linked to various
epigenetic alterations in specific genes throughout the genome. Most of these genes
are functional in development of a disease, especially having the potential to either
prevent or cause cancers. These disease-associated genes have some important
functions, such as monitoring optimum utilization of nutrients by the cell, assisting
in DNA repair or triggering programmed cell death (Zheng et al. 2013; Bastias and
Beldarrain 2016). Disruption of such vital genes may lead to detrimental health
consequences in near future. There is an urgent need to develop strategies to
decrease the widespread contamination of As in the food chain. This requires a
better understanding of the mechanisms that are responsible for the uptake and
transport of arsenic in the rice plant and its accumulation and distribution into the
rice grain. Many options are explored to reduce the toxic As uptake by rice including
plant breeding, water management, genetic approaches, and Si management
(Saifullah et al. 2018). This chapter focuses on the mechanism of uptake and
transport of arsenic in rice and its extent of accumulation in the edible parts such
as rice grains. The representative genes from O. sativa involved in As uptake,
accumulation and distribution are given in Table 11.1.
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11.2 Arsenic Transport in Rice

11.2.1 Arsenic Uptake

The highest amount of As taken up by rice plant is As(III) followed by MMA, As
(V) and DMA (Marin et al. 1992). These As species are taken up and transported
with the help of plant cell through specific transporter proteins (Mitra et al. 2017).
Rice plant transports silicon from the soil as a part of its requirement to protect and
strengthen its stalk and hull. However, the mechanism by which silicon is taken up in
rice is responsible for the uptake of arsenic as well, since both the elements follow
the same pathway of transportation. The forms of arsenic that are taken up by rice
depend upon the water and soil chemistry as well as the variety of rice growing in the
field. Therefore, certain varieties of rice are more susceptible than others and hence
accumulate more arsenic (Zheng et al. 2013). In most plants grown under water-
logged environments, taking up of As(III) is the major cause of As toxicity. Arsenic
in its organic form is present in a tiny amount, and mainly consists of arsenic in
methylated forms, such as DMA and MMA. Trivalent MMA(III) is partially reduced
in the rice roots by MMA(V), although only MMA(V) is translocated to shoots
(Guillod-Magnin et al. 2018; Kumar et al. 2019). However, plants take up these
compounds in lesser amounts when compared to the inorganic As species (Raab
et al. 2007). Li et al. (2009a) demonstrated that OsLsi1 is crucial for the uptake of
DMA and MMA by the rice roots. The rice mutant having loss of function for
OsLsi1 had reduced the uptake activity for MMA and DMA by around 80% and
50%, respectively (Li et al. 2008). There are four significant elements that are
responsible for As accumulation in rice: P, Si, S, and Fe (Zhao et al. 2009). In the
biogeochemical pattern of As, Iron (Fe) plays a significant role. Iron oxyhydroxides
in the plant root surface or in the soil, acts as a solid adsorbent. A reducing
environment is created by the presence of Fe oxyhydroxides, releasing As, which
is further adsorbed by the rice roots resulting in higher bioavailability of the
metalloid. To transfer O2 from shoot to root, rice plant develops aerenchyma,
which results in oxidation of ferrous to ferric iron and thus Fe oxides or hydroxides
precipitation takes place on the surface of the roots (Pan et al. 2014). The Fe covering
can sequester metals in wetland plant roots, structure a buffer zone and hence modify
the passage of arsenic into the plant roots (Hansel et al. 2001; Liu et al. 2004;
Rahman et al. 2014).

11.2.2 Translocation of Arsenic from Root to Rice Grains

The transport of As in the xylem of rice plants co-relates with the As accumulation in
the shoots. Xylem harbors several membrane proteins that function in loading of As
into the xylem, however, key transporters of As are yet to be explored.
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11.2.2.1 Xylem Loading
In rice, Si and As(III) follow the same pathway for xylem-mediated loading and root
uptake. Xylem loading of As(III) in the roots of rice plants is by OsLsi2 (Ma et al.
2007; Ma et al. 2008), and OsLsi2 mutations in the rice grains affects the concentra-
tion of As(III) in xylem sap and grains significantly. On the other hand, marginal
effects are seen in the As(III) uptake by the roots. This suggests that OsLsi2 has a
role in As(III) efflux to the xylem (Ma et al. 2008). Khan and Gupta (2018)
demonstrated that rice seeds primed with Si and As, helped the plant to tolerate
the As stress for a longer duration. The expression of OsLsi6, OsLsi2, and OsLsi1
was higher in the case of As(III)+ Si treatment when compared to Si + control, but
lesser than only As(III) treatments, which finally leads to the reduced accumulation
of As in the presence of Si. Reports also show the role of NRAMP (natural
resistance-associated macrophage protein) in the accumulation of As via xylem-
mediated loading (Tiwari et al. 2014). Expression of OsNRAMP1 conferred toler-
ance to As(III) in Arabidopsis. However, in rice, the function of OsNRAMP1 in
transport of As is not clear. Inorganic phosphorous (Pi), As(V) generally enters the
rice roots by phosphate transporters (PHTs), essentially PHT1 (phosphate trans-
porter1) type transporters (Luan et al. 2018). Constructive expression of phosphate
transporter (OsPht1;8) showed increase in the xylem loading and As(V) uptake.
Significant increase in As(V) translocation was seen from roots to shoots by the
overexpression of OsPht1;8 (Wu et al. 2011; Li et al. 2015).

The transport of As(V) through xylem from the root to shoot utilizing X-ray
absorption spectroscopy imaging was demonstrated by Smith et al. (2008). After the
translocation of As(V) to shoots, it is transported by phosphate transporters
(Punshon et al. 2017). Phytochelatins complexes the As(III) and eventually
sequestered in the vacuoles (Zhao et al. 2010). In addition to sequestration and
complexation in root vacuoles, transport of As(III) occurs through the xylem to the
shoot (Su et al. 2010; Ren et al. 2014). Translocation of arsenic into grains depends
on the rate by which As is taken up by the roots, concentrations of As present in soil,
forms, and xylem flow rate, complexes with phytochelatins, cultivar to reduce As
and sequester into vacuoles (Suriyagoda et al. 2018). Thiol complexation interferes
with As(III) movement but not with organic As species. Additional, factor
recommended to be accountable for mobility changes is hydrophobicity of organic
and inorganic As. MMA(V) and DMA(V) were the only pentavalent organic As
species existed in the xylem sap (Li et al. 2009b; Ye et al. 2012). Even though, few
reports show xylem transport of As, there is almost no data that shows the procedure
of phloem mediated transport of As to grains. DMA(V) and MMA(V) have likewise
been observed in phloem sap and their concentration was relatively higher than
xylem sap (Ye et al. 2012). A transcription factor OsARM1 (ARSENITE-
RESPONSIVE MYB1) is responsible for the uptake and transport of As(III) from
the soil and also from root to shoot translocation in rice through regulating the
expression of OsLsi6, OsLsi2, and OsLsi1. OsLsi6, OsLsi2, and OsLsi1 were
significantly upregulated in OsARM1-knockout lines in comparison to wild type
and downregulated in OsARM1-over-expressing lines (Wang et al. 2017).
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Arsenic concentration in the node and internode of lsi2 mutant and wild type of
excised panicles as well as soil grown plants were analyzed with the help of
synchrotron mX-ray fluorescence (m-XRF) (Chen et al. 2015). lsi2 mutants have
lesser As accumulation in phloem of the top and internode compared to wild types.
Similarly, in lsi2 mutant, lower As distribution in grain was found in excised
panicles containing As(III) compared to wild types. Whereas, when DMA was
supplied externally there was no difference noticed. The production of PC is
inhibited by L-buthionine sulfoximine (BSO) hinders the synthesis of PC leading
to increase As accumulation in grains. Therefore it was concluded that rice nodes
acts as filters and limits As(III) translocation to the grain with crucial roles of PC and
Lsi2 levels (Chen et al. 2015).

11.2.2.2 Phloem Loading
The As translocation was studied in excised panicles from shoot to grain, which
revealed that 90% of As(III) transport is involved in phloem activity and 55% of
DMA transport to the grain (Carey et al. 2011). It suggests that translocation of
inorganic As is majorly via the phloem, while transportation of DMA is via both
xylem and phloem (Carey et al. 2010). DMA and MMA showed the highest
translocation to the rice grain. While As(III) was not at all translocated and As
(V) was translocated in very minute amount and was promptly reduced to As(III) in
the flag leaves (Carey et al. 2011; Norton et al. 2012). Hence for the accumulation of
As in grains, phloem transport plays a crucial role (Carey et al. 2010; Song et al.
2014). However, till date, the transporters that carry out As species from the phloem
and influx it inside the grains are not identified (Punshon et al. 2017). Arsenic
transportation follows a similar route by which nutrient transport is facilitated in
rice (Krishnan and Dayanandan 2003). The transfer takes place in the nodes. These
nodes have various kinds of vascular bundles which control the transfer of minerals
to panicles and leaves (Yamaji and Ma 2017). In the intravascular transfer of As(III)
the efflux transporter Lsi2 plays a crucial role (Chen et al. 2015). Lsi2 is more
expressed in roots and nodes, higher accumulation of As in companion cells of
phloem and enlarged vascular bundles in rice nodes was observed (Moore et al.
2014). For hampering the transfer of As(III) to the grains, vacuolar sequestration in
roots and sequestration of As(III)-PC complexes in phloem companion cells of
nodes are essential. Since, DMA is neither permeable through Lsi2 nor complexed
by PCs, hence this mechanism is not applied to DMA. Carey et al. (2010) fed broken
panicles with As(III) or DMA to the developing rice caryopsis to investigate the role
of inorganic As and DMA transport. In spite of the concentration of DMA(13.3 mM)
to AS (III) (133 mM), only one-tenth in the feeding solution, DMA was more
efficiently transported to rice grains. However, higher As accumulation (17-folds)
was seen in rice grain by the DMA treatment. The stem-girdling method of phloem
removal caused As reduction of 55% in the grains and 90% and 55% in the As(III)
and DMA treatments, respectively. This concluded that essential ways of DMA
transport are phloem and xylem, while for AS(III), phloem alone is crucial. Study
conducted by Carey et al. (2011) stated that iAs in grains is less transported via
phloem, but efficient transport of organic species occurs.
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The characterization of rice OsPTR7, a peptide transporter was performed (Tang
et al. 2017). Transporter was significantly expressed during grain filling stages of
nodes, roots, and leaves. Under field conditions, WT plants had 35% more As in the
form of DMA in grains, while no DMA was found in mutants of OsPTR7 in grain.
Hence, OsPTR7 is considered as a grain transport of DMA and transporter for root to
shoot translocation at longer distances (Duan et al. 2016). AtINT2 and AtINT4
(inositol transporters) might be responsible for As(III) accumulation in seeds (Duan
et al. 2016). The most mobile As species in plants is DMA which can be easily
transported from root to shoot. The OsPTR7 plays an important role in transport of
DMA in the xylem and phloem (Abedi and Mojiri 2020).

11.3 Major Intrinsic Proteins (MIPs) in Arsenic Transport

MIPs plays vital role in arsenic translocation and transport. The family of MIPs has
been divided into five subfamilies, of which, PIPs and NIPs have been well
characterized in rice for As transport (Kumar et al. 2015).

11.3.1 Plasma Membrane Intrinsic Proteins (PIPs)

PIPs comprise of the most ample subfamily of plant MIPs. PIPs maintain water
homeostasis as it forms water intrinsic channel of the plasma membrane (Maurel
et al. 2015; Saddhe et al. 2018). Apart from water, PIPs also transport molecules
such as urea, H2O2, CO2 and also different metalloids of uncharged forms including
arsenite (Mosa et al. 2012). PIPs are classified into two subgroups, namely PIP1 and
PIP2, having the identity sequence of more than 50% (Chaumont et al. 2001; Mosa
et al. 2016; Kumar et al. 2018). The level of expression of five rice PIPs, viz.
OsPIP2;7, OsPIP1;3, OsPIP2;6, OsPIP2;4, and OsPIP1;2 and 13 of Brassica juncea,
viz. five from subgroup PIP1 and 8 from subgroup PIP2, was decreased by arsenite
(Mosa et al. 2012; Srivastava et al. 2013). This decrease in expression of specified
PIP genes was directly related with a reduced water concentration in plants under the
As(III) stress, which ultimately resulted in hindrance of the growth of seedling
(Srivastava et al. 2013). OsPIP2;7, OsPIP2;6, and OsPIP2;4 proteins increased
influx of As(III) when expressed in Xenopus laevis oocytes. OsPIP2;7 OsPIP2;4,
and OsPIP2;6 were overexpressed in Arabidopsis and exhibited increased tolerance
to As(III) and led to its active influx and efflux in plant roots. However, long-term As
(III) treatment in plants had no evidence of As accumulation (Mosa et al. 2012). On
the other hand, an increased ROS level in plant root was seen at the same time, and it
was shown that ROS propelled the subduing of PIP2 transcript accumulation in the
root (Wudick et al. 2015). Further studies should be conducted to explain whether
the oxidative stress generated by As toxicity or direct As(III) stress cause change in
levels of PIPs expression.
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11.3.2 Nodulin-26 like Intrinsic Proteins (NIPs)

NIPs constitute one of the five subfamilies of the plant MIPs (Maurel et al. 2008).
Transporters of NIP subfamily are permeable to arsenite (Ma et al. 2008). NIPs have
lower permeability to water and can transfer different uncharged solutes that include
boric acid, silicic acid, urea, ammonia, glycerol (Wallace et al. 2006), and toxic
metalloids such as arsenite (Isayenkov and Maathuis 2008; Ma et al. 2008). NIPs
show similarity to a bacterial homologue of aquaporin GlpF, which is also able to
transport arsenite (Wallace et al. 2006). The rice genome constitute 10–13 members
of the NIP subfamily (Forrest and Bhave 2008; Maurel et al. 2008). The aromatic/
arginine (ar/R) selectivity filter and the highly conserved asparagine-proline-alanine
(NPA) motifs regulate the substrate selectivity of aquaporins (Wallace et al. 2006;
Maurel et al. 2008; Karle et al. 2020). NIPs have been divided into two or three
subgroups based on the pore structure at ar/R selectivity filter region (Wallace et al.
2006; Mitani et al. 2008). The archetype nodulin 26 is the NIP I subgroup which is
porous to lactic acid, water, and glycerol. The subgroup NIP II has larger pore size
compared to the NIP I subgroup, and is porous to solutes such as formamide, urea,
and boric acid, however, has lower permeability to water (Wallace et al. 2006). NIP
III have smaller sized residues on the ar/R regions which make them permeable to
silicic acid and thus have the largest pore diameter. However, arsenite permeability
is observed in all NIP subgroups, which suggest that ar/R selective filters do not
control the transport of arsenite and there is a possibility of having more proteins
permeable to arsenite. The transport of arsenite into rice root cells is through Lsi1,
while Lsi2 causes efflux of arsenite towards the xylem (Ma et al. 2008). Lsi2 was
first known to be a Si efflux transporter and present at the proximal side, in contrast
to Lsi1 (Ma et al. 2007). Therefore, the Lsi2 transporter necessitates the influx of
silicic acid from external medium to stele in the Si transporter pathway, and the Lsi2
mediates the efflux of Si towards the stele (Ma and Yamaji 2006; Ma et al. 2007).
When compared to the wild types a tremendous reduction (66–75%) in the pooling
up of As in shoots was seen in two independent lsi2 mutants (Ma et al. 2008).
Moreover, As(III) level in xylem sap was much lesser then those of xylem sap in
wild-type plants. The effect of Si to the nutrient solution was studied which resulted
in inhibition of transport and accumulation of arsenite to the xylem and the shoots in
the wild-type rice, but not in the lsi2 mutant plants (Zhao et al. 2009). Similar study
was performed for lsi1 mutant. The concentration of As in the mutant shoots was
71% lower and in the roots was 53% lower than the wild type. A decrease in As
concentrations in both shoot and root of wild-type plants was observed to larger
extents upon the addition of silicic acid but decreased As was not observed in case of
the mutants. To confirm if the decreased As accumulation in mutant roots was not an
effect of As translocation, a short-term arsenite uptake study for 30 min was
performed. The results obtained stated that, when compared to the wild types the
mutant plants showed 57% lower uptake of As by the roots, thus indicating Lsi1 play
a role in arsenite influx to the roots. The major As species present in the xylem sap in
case of the lsi2 mutant and wild type was found to be As(III), and the concentration
in mutant plant was only 9% of the wild type. Ma et al. (2008) reported that Lsi2
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have a very crucial role in As transport to the shoot in comparison with the Lsi1 and
firmly suggested that the root to shoot translocation plays a critical step in the control
of As accumulation in shoots. Rice Lsi2 was found to have a similarity to E. coli
ArsB which functions as an As(OH)3-H antiporter and shared 18% identity. How-
ever, there is a fundamental difference in the arsenite transport system between both
of them at the organism level, viz. arsenite is effluxed by bacteria for detoxification,
whereas the Lsi2 mediated efflux of arsenite which results in pooling it up in grains
and shoot. Hence, transporters for influx and efflux were identified in the roots of
rice. These transporters are involved in accumulation and uptake of As(III) (Ma et al.
2008).

Bienert et al. (2008) demonstrated complementation analysis of various NIP
genes in yeast. It was noticed that the expression of LjNIP6;1 and LjNIP5;1 from
Lotus japonicas, AtNIP6;1 and AtNIP5;1from A. thaliana and OsNIP3;2 and
OsNIP2;1 from rice showed an increase in yeast sensitivity to antimonite and
arsenite, and increased As accumulation in the yeast cells. Physiological studies
recommend that OsNIP2;1 (Lsi1) is involved in transport of As(III), which has a role
in Si uptake pathway. An increase in As(III) uptake was seen on expression of Lsi1
in the yeast and Xenopus oocytes, while in short-term analysis there was a decrease
in As(III) uptake of about 60% due to loss in functions in rice Lsi1. An increase in As
(III) uptake was noticed in the Xenopus laevis oocytes upon expression of rice
aquaporins such as OsNIP2;2 (Lsi6) and OsNIP1;1 but these had minute expression
levels in rice (Ma et al. 2008). Similarly, an increase in sensitivity towards As(III)
was noticed in yeast upon heterologous expression of OsNIP3;2 and OsNIP2;1
(Bienert et al. 2008). These data suggest that As(III) and Si share the same transport
pathway for entering the rice root cells because arsenite and silicic acid both have a
high pKa value of 9.2 and 9.3, respectively, and both molecules are tetrahedral in
shape having similar size. As(III) transport activity was possessed by OsNIP3;3 and
HvNIP1;2 in yeast cells (Katsuhara et al. 2014). Expression of HvNIP1;2 and
OsNIP3;3 in yeast cells caused an increase in sensitivity to 5 mM As(III) in yeast
DACR3 mutants that needed the As(III) efflux transporter ACR3 (arsenical com-
pound resistance 3), which indicated that HvNIP1;2 and OsNIP3;3 are transporters
of As(III) (Ali et al. 2012). Rice treated with As(III) did not induce the expression of
OsNIP3;3. Further research is needed for confirmation of OsNIP3;3 function in rice
(Katsuhara et al. 2014).

11.4 Transporters of Arsenic Other Than PIPs and NIPs

A protein named Natural Resistance-Associated Macrophage Protein 1 (NRAMP1)
from rice was proposed to facilitate the translocation and uptake of As(III) from root
to shoot. OsNRAMP1 may enable the transfer of As(III) to xylem resulting in As(III)
xylem movement from root to shoot. OsNRAMP1 gene expression in A. thaliana
and yeast resulted in enhancement of As and cadmium accumulation (Tiwari et al.
2014). Hence OsNRAMP1 accompanied by OsLsi2, helps in As(III) loading in
xylem as well as transportation of As(III) from root to shoot. The presence of a
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putative peptide transporter (PTR7) was postulated in rice, having function of
transporter of DMA from roots to grains. A significant gene expression of PTR7
was found in rice leaves, roots, and first node during grain ripening. Moreover, low
level of DMA was observed in grain of OsPTR7 mutant as compared to the wild-
type grain which contained 35% DMA (Tang et al. 2017). Zhou et al. (2008)
demonstrated that overexpression of a homolog of Arabidopsis PHR1 and a
MYB-CC transcription factor upregulates a numerous Pi transporter genes in rice
when grown with enough Pi supply, further results in huge accumulation of P in the
shoots. Phosphate transporter 1 (Pht1) family is engaged in expression of over
100 phosphate transporters, which strongly express in the roots (Dutta and
Bandopadhyay 2016). Furthermore, the effects of Pi transporters such as PT8 or
PHR2 overexpression and the mutation of PH1 on Pi and As uptake were studied in
rice. The study revealed that in hydroponically grown rice loading and uptake of
arsenite in xylem occurs via Pi pathway. However, the phosphate uptake pathway
does not appear to facilitate much to arsenic uptake and transport to grains of rice
plants grown in flooded soil (Wu et al. 2011).

11.5 Proposed Mechanism of Arsenic Transport in Rice

Arsenic has an ability of translocation in rice plants from the region of roots to grain.
The inorganic form of arsenic, As(III) mainly translocate from roots to shoot, that
accounts 60–100% of the whole arsenic (Pickering et al. 2006; Zhao et al. 2009).
Limited translocation occurs in roots as As(V) gets reduced to As(III), which along
with PCs form complexes and is excluded to the vacuoles (Zhao et al. 2009). Plants
that accumulate metals can transport arsenic very fast and effectively through xylem
towards the grain. This infers that the xylem is stacked with this metalloid, transfers
it to the vacuoles and because of the qualities of the root cell tonoplast (Rascio and
Navari-Izzo 2011). Arsenate penetration is attainable due to its similarity to the Pi
transporters which belongs to the PHT1 family (Ali et al. 2009). Arsenite is absorbed
through NIPs and LSi1 transporters (Meharg and Jardine 2003; Rascio and Navari-
Izzo 2011). DMA, and MMA which are the methylated forms of As are taken up
through aquaporins and use the similar glycerol mechanism (Rahman et al. 2011).
Arsenate is reduced by As reductase (AR) to As(III) in the root cells and in-turn form
oxidized form of glutathione(GSSG) from (GSH). Arsenite is transformed into
trimethylarsine oxide (TMAOIII) and trimethylarsenic oxide (TMAOV). The meth-
ylation path make As volatile species that are delivered into the atmosphere. Another
As detoxification pathway is seen by PC synthesis due to the buildup of three amino
acids: glutamate (Glu), glycine (Gly), and cysteine (Cys). The segregation of the As
III-PC compound take place with the help of ABC transporters within the vacuole
(Rahman and Hassler 2014). Toxicity of As(III) is much higher compared to As
(V) and has the ability to bind to peptides and proteins containing thiol groups,
mainly phytochelatins and glutathione and thus an inactive compound is formed
(Tsai et al. 2009). The mechanism of sequestration of As(III) by the vacuole is
unknown (Kumar et al. 2015). The proposed mechanism of uptake, transport,
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detoxification, and accumulation of arsenic in rice plant is shown in Fig. 11.1. The
transport from root to shoot along with xylem and phloem loading of different
arsenic species has been shown.

11.6 Arsenic Accumulation

Rice is known to be a strong Si accumulator due to its active Si uptake pathway,
which allows uptake of arsenite along with Si. Lsi1 being an aquaporin function as a
passive influx transporter, on the other hand Lsi2 functions as an anion channel
which is an energy-dependent efflux transporter. The lsi1 and lsi2mutant plants were
studied for As accumulation in rice by Ma et al. (2008). It was observed that the lsi2
mutants contained lesser concentrations of As in grain and straw with respect to the
wild type, however, there was no significant difference between the lsi1 mutant and
wild type. Hence, it was concluded that Lsi2 was more crucial than Lsi1 as the
former mediates the efflux of arsenite towards xylem, while the latter functions
accumulation and short-term arsenite influx in rice. Arsenate is reduced to arsenite in

Fig. 11.1 Schematic representation of uptake, transport and accumulation of different As species
in rice. [Modified from Chen et al. 2017; Awasthi et al. 2017; Saifullah et al. 2018]
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the root cells, and is then transported to the xylem via Lsi2, which is Si/arsenite
effluxer for which Si plays a role of a potent competitive inhibitor. Applying silicic
acid fertilizers to rice fields may help to mitigate the complication of excess transfer
of As from soil to grain (Zhao et al. 2009). In case of methylated arsenic species, it
was observed that the influx of MMA and DMA into rice roots was significantly low
when compared to arsenite and arsenate (Abedin et al. 2002b). A similar finding was
reported in Zea mays by Abbas and Meharg (2008) with respect to DMA. The uptake
rate of DMA and MMA was lower than arsenite and arsenate, however, their
translocation from root to shoot was quicker. The reason postulated was poor thiol
complexation of DMA and MMA which leads to lesser retardation during translo-
cation (Raab et al. 2007). Moreover, DMA was highly accumulated into the rice
grain with respect to its rate of transport from root to shoot and majorly distributed
around the pericarp/aleurone/subaleurone zone (Zhao et al. 2009). Furthermore, the
stem-girdling results showed that phloem transport is the major reason for most of
the arsenite transport to the grain, with phloem interruption reducing grain As
concentration by 90% (Carey et al. 2010). The effect of sulfur on As accumulation
in rice was studied. It was found that high S supply resulted in low As accumulation
in the shoot, improved plant growth by alleviating the stress symptoms through
activating antioxidant defense system, and enhanced thiol metabolism, which can
create a hindrance for the translocation of As from root to shoot (Dixit et al. 2016).

Rice bran, which makes up 7–10% of whole grain weight, contains 24–70% total
As in whole grain. The average arsenic percentage in bran is 45% of whole grain,
which suggests that As is preferentially concentrated in the bran. However, even in
the rice bran, the distribution of arsenic is not uniform. It is accumulated in a small
area on the surface that is located at the ovular vascular trace (Meharg et al. 2008;
Lombi et al. 2009). It is reported that nutrient transport to the endosperm is facilitated
through ovular vascular trace which might be the way for As transport into the
endosperm (Krishnan and Dayanandan 2003). It has been suggested that for the
redistribution of As to grains, the processes of phloem loading and unloading are
essential. In experiments conducted to study translocation of As species from shoot
to grain, 90% of the As(III) was accounted by phloem transport and 55% of the
DMA to the grain (Carey et al. 2010). Despite thiols being present at sufficient
concentrations in the phloem sap, thiol complexes were not formed by As(III) since
phloem had a neutral pH (7.5–8.0) (Ye et al. 2010). Moreover, in ovular vascular
trace (OVT) accumulation of As(III) along with Mn and Fe was observed, and DMA
was not seen in the OVT, but it was spread into the endosperm and across the
external parts of the grain (Carey et al. 2010; Carey et al. 2011). However, no As
species were present in the embryo.

A putative vacuolar As(III)-PC transporter called OsABCC1 was reported to
confine to the phloem companion cells in rice nodes which are important for
distribution of nutrients (Moore et al. 2014). It was reported that knockout lines of
osabcc1 tend to accumulate lower level of arsenic in the nodes but higher arsenic
level in their grains compared to wild type (Song et al. 2014). These outcomes
recommended that OsABCC1 sequesters As into the vacuoles of rice nodes and
hence hindered the As translocation into grains (Li et al. 2015).
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Arsenate reductase (AR) is an important enzyme in plants, which converts As
(V) to As(III). In plants a numerous AR genes are present, two of them being in rice,
viz. OsHAC1;1 and OsHAC1;2 which are the orthologs of HAC1 (Shi et al. 2016).
In roots, OsHAC1;2 and OsHAC1;1 are expressed, but their localization differs as
OsHAC1;1 is abundant in pericycle, epidermis and root hair while OsHAC1;2 is
abundant in outer cortex layers, epidermis, and endodermis. Among the two,
OsHAC1;1 is significantly expressed in stems and nodes (Xu et al. 2017). Another
protein HAC4 was recognized as As(V) reductase in rice (Xu et al. 2017). The
mutation in OsHAC1;2, OsHAC1;1 (Shi et al. 2016), and OsHAC4 (Xu et al. 2017)
resulted in lower levels of As(V) reduction in roots and further increased As
accumulation in shoots and decreased As(III) efflux, while over expression of
these genes resulted in contrasting effects in the rice plant (Awasthi et al. 2017).
Hence, to avoid accumulation of arsenic in the rice grain, such transporters can be
targeted which can sequester the arsenic into the roots or shoots and hence unable to
translocate and accumulate it into the edible parts of the plant.

11.7 Arsenic Distribution in Rice Grain

The intake and transport of arsenic from root to grain results in distribution of
various types of arsenic species in different parts of the plant which depends on
their affinity to the particular plant tissue. A study involving analysis of 121 samples
having 12 different rice types revealed that As(III) had the highest concentration in
rice grain, which was accompanied by DMA, followed by MMA and As(V). On the
contrary, As(V) was found to be the predominant species in rice straw, followed by
As(III) and DMA (Latowski et al. 2018). Arsenic concentrations in plant parts were
found to be the highest in the flag leaf, with decreasing levels in straw, brown rice,
husk, and polished rice. A similar distribution pattern was observed in other studies
performed (Liu et al. 2006; Rahman et al. 2007; Xu et al. 2008). During cultivation,
the concentration of As in rice straw increased in all sample sets. This observation
was consistent with the experiments performed by Zheng et al. (2011). Xu et al.
(2008) showed that the As accumulation in the straw intensified for rice plants which
were grown under flooded conditions after flowering. The concentration of As was
higher the straw than in polished and brown rice, and this finding was in accordance
with previous reports. On comparison, the polished rice showed one third lesser
concentration of As than brown rice. It can be co-related to the bran removal, as the
rice bran accumulates more arsenic as compared to the endosperm (Lombi et al.
2009). In brown rice, bran As was found to be mainly inorganic, while endosperm
mostly contained organic species, such as DMA (Sun et al. 2008).

Silicic acid is also crucial for the uptake and distribution of arsenic in rice. The
effects of silicic acid on the concentration of As in grain and straws were in line with
other studies (Guo et al. 2005; Li et al. 2009b). The transporters responsible are
present in the exodermis and endodermis of rice roots, which were earlier known to
be silicic acid transporters (Ma et al. 2007). Lsi1 and Lsi2 are present at the distal
side and at the proximal side of endodermis and exodermis, respectively. Higher
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uptake of Si and As occurs in roots due to the coupling of the above transporters
(Ma and Yamaji 2008). Once As travels from endodermis to stele, it is further
translocated to the shoot via xylem. Ma et al. (2007) demonstrated that the expres-
sion levels of Lsi1 and Lsi2 decreased by supplementing Si, which might result in
lesser uptake of As(III). Another hypothesis postulated was that the decrease in As
(III) uptake is because of competitive inhibition between silicic acid and As(III)
(Guo et al. 2009; Li et al. 2009a, b; Zhao et al. 2009). Application of silicon to paddy
soils reduces the concentration of As in polished rice and straw, despite the concen-
tration of As in the soil being higher. The decrease in As level in polished rice was
completely dependent on decrease in As(III) concentration while there was no effect
of Si application on the concentrations of As(V) and DMA. Other studies also
revealed that soil fertilization with silicic acid is beneficial since it reduces the
concentration of As in rice straw and grain (Fan et al. 2013; Tripathi et al. 2013;
Bastias and Beldarrain 2016). The diminished As(III) movement to the shoot was the
aftereffect of either decrease in transporter density because of reduced expression of
Lsi1 and Lsi2 or competitive inhibition of As(III) take up by Si at Lsi2, or a mix of
both (Lombi et al. 2009; Fleck et al. 2013; Chen et al. 2017). Thus, it can be stated
that silicic acid plays a crucial role in distribution of arsenic in rice grain.

Rice nodes are one of the factors that help in the regulation of distribution and
storage of As to the rice grain (Yamaji and Ma 2014; Zhao et al. 2012). Study
conducted by (Moore et al. 2014) showed As concentration in the nodes was found
to be higher as compared to the internodes and leaves. In line with the previous
reports (Chen et al. 2015) revealed that the rice nodes acted as As(III) filter by
limiting the distribution of arsenite. The PC-As(III) complex transport to vacuoles is
mediated by the ABCC transporter which is confined in tonoplast of phloem cells in
nodes. osabcc1 knockout mutants showed lower As accumulation in nodes but
higher in grains when compared to wild type (Song et al. 2014). As OsABCC1 is
a vacuolar PC-As(III) transporter, it sequesters PC-As in vacuoles in nodes of wild
type and does not sequester in mutant. OsABCC1 was reported to be localized in
nodal vascular bundle of phloem companion cells thus confirming that the translo-
cation of As into grains is inhibited by OsABCC1 via vacuole sequestration of As
(Moore et al. 2014).

Arsenic transport and accumulation was found to be hampered by sulfur
(S) supply, however, variable results were seen (Hu et al. 2007; Zhang et al. 2011;
Dixit et al. 2016). Srivastava et al. (2016) studied the effect of different concentration
of sulfur (S) supply on As distribution and accumulation in rice plants. A consider-
able decrease was found in the accumulation of As at zero S (0.003 mM) supply
compared to normal S (0.798 mM). This was followed by the changes in the arsenic
subcellular distribution. At zero S supply, increased synthesis of thiols including
phytochelatins was observed. Thus, availability of S is a crucial factor to tackle As
stress and when the supply of S is limited, the plants continue to rely on thiol
metabolism. Zhang et al. (2016) showed 44% decrease in grain As concentration
when supplied with high amount of sulfur. The high sulfur supply resulted in
downregulation of the aquaporin genes OsTIP4;2 (Tonoplast Intrinsic Protein) and
phosphate transporter OsPT23,while upregulation of phytochelatin synthase genes
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(OsPCS13, OsPCS3, and OsPCS1). The study suggested that high sulfur supply led
to high amount of PCs synthesis and hence transport As into the vacuoles. Moreover,
sulfur supply seemed to reduce As(III) and As(V) uptake in roots by down regulating
aquaporin channel and the phosphate transporter, respectively. Yang et al. (2016)
and He et al. (2016) identified a rice transporter which was found to be localized to
plastids and named OsCLT1 (Chloroquine-resistance transporter Like Transporter).
When the mutant Osclt1 lines were exposed to As(V)or As(III), they showed lower
level of PC2 compared to WT and also a decrease in concentration of As. Thus, the
biosynthesis is regulated by OsCLT1 of phytochelatins by monitoring homeostasis
of glutathione (Awasthi et al. 2017). Similar to silicic acid, supplementation of sulfur
to the soil alters the distribution of arsenic in the rice grain by reducing As accumu-
lation of the grain.

Rice varieties from distinct parts of the world vary considerably in arsenic
accumulation, distribution, and speciation. Williams et al. (2005) initially performed
the comparative study of rice for arsenic distribution. Quantification of arsenic in rice
grain was performed using High Performance Liquid Chromatography (HPLC)
along with (ICP-MS) inductively coupled plasma mass spectrometry. The rice
samples from European Union (EU) and the US was found to have huge amounts
of DMA with contrast to Indian and Bangladeshi rice (Williams et al. 2005). The
Chinese rice had a higher amount of inorganic arsenic species. Meharg et al. (2009)
reported that rice of Ghana (20 ng/g) had lower amount of arsenic concentration
which was followed by India (50 ng/g). On the contrary, Thailand, USA, and Italy
had elevated arsenic concentration, with Bangladesh and China being intermediate.
Vast survey was performed by Zavala and Duxbury (2008) for rice from the USA
along with a few samples for Thailand, Pakistan, India Spain, Italy, and Venezuela
produced rice. The survey revealed a similar kind of results as obtained by Meharg
et al. (2009). Another finding related to the rice color revealed that arsenic concen-
tration in brown, white and other colors is 0.196–0.111 mg/kg, 0.127–0.087 mg/kg,
and 0.07–0.05 mg/kg, respectively (Zavala and Duxbury 2008). The brown rice has
the highest amount of arsenic due to larger concentration of metalloid in the outer
layers (Meharg et al. 2008).

11.8 Conclusion

Rice being a staple food is consumed worldwide and any toxicity entering the food
chain through food should be treated with great concern. Arsenic being a potent
carcinogen and having a greater affinity towards rice has become a major subject of
interest for investigating its transport mechanisms and finding a solution to reduce
the arsenic accumulation in the edible parts of rice. In the past few years, research has
progressed to study the mechanism of arsenic contamination in rice and the factors
responsible for it. However, many of the details regarding the study are yet to be
revealed and also a lot of factors need to be investigated with respect to the transport
and accumulation of arsenic in rice grains. Use of silicone fortified fertilizers is one
of the affordable solutions so far. However, there is a need to explore and find a way
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that can alleviate the effects of arsenic contaminated soils on the crops and can
sustain in the long run.

References

Abbas MH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and
tolerance in maize (Zea mays L.). Plant Soil 304:277–289

Abedi T, Mojiri A (2020) Arsenic uptake and accumulation: mechanisms in rice species. Plants
9:129

Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002a) Arsenic accumulation
and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

Abedin MJ, Feldmann J, Meharg AA (2002b) Uptake kinetics of arsenic species in rice plants. Plant
Physiol 128:1120–1128

Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci
66:2329–2339

Ali W, Isner JC, Isayenkov SV, LiuWJ, Zhao FJ, Maathuis FJM (2012) Heterologous expression of
the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress.
New Phytol 194:716–723

Anawar HM, Rengel Z, Damon P, Tibbett M (2018) Arsenic-phosphorus interactions in the soil-
plant-microbe system: dynamics of uptake, suppression and toxicity to plants. Environ Pollut
233:1003–1012

Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain
in rice. Front Plant Sci 8:1007

Bastias JM, Beldarrain T (2016) Arsenic translocation in rice cultivation and its implication for
human health. Chil J Agric Res 76:114–122

Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient
channels for metalloids. J Biol 7:33

Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A
subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH)3 and Sb(OH)3
across membranes. BMC Biol 6:26

Brewster MD (1992) Removing arsenic from contaminated wastewater. Water Environ Technol
4:54–57

Bundschuh J, Liu CW, Jean JS, Armienta MA, MorenoLópez MV, Cornejo L (2012) Arsenic in the
human food chain: the Latin American perspective. Sci Total Environ 429:92–106

Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J,
Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice. Plant Physiol
152:309–319

Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A,
Newville M, Choi Y, Price AH (2011) Phloem transport of arsenic species from flag leaf to grain
during grain filling. New Phytol 192:87–98

Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and
highly divergent protein family in maize. Plant Physiol 125:1206–1215

Chen Y, Moore KL, Miller AJ, McGrath SP, Ma JF, Zhao FJ (2015) The role of nodes in arsenic
storage and distribution in rice. J Exp Bot 66:3717–3724

Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and
biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD
(2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated
improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol
Biochem 99:86–96

11 Mechanisms of Arsenic Transport, Accumulation, and Distribution in Rice 295



Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG
(2016) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis
seeds. Nat Plants 2:15202

Dutta P, Bandopadhyay P (2016) Arsenic pollution in agriculture: its uptake and metabolism in
plant system. Agric Res Technol 15:59

Fan J, Xia X, Hu Z, Ziadi N, Liu C (2013) Excessive sulfur supply reduces arsenic accumulation in
brown rice. Plant Soil Environ 59:169–174

Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by
limiting arsenite transport. J Soil Sci Plant Nutr 176:785–794

Forrest KL, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family
with unique gene structures and functionally important features. Funct Integr Genomics
8:115–133

Gan Y, Wang Y, Duan Y, Deng Y, Ding X (2014) Hydrogeochemistry and arsenic contamination
of groundwater in the Jianghan Plain, central China. J Geochem Explor 138:81–93

Guillod-Magnin R, Brüschweiler BJ, Aubert R, Haldimann M (2018) Arsenic species in rice and
rice-based products consumed by toddlers in Switzerland. Food Addit Contam 35:1164–1178

Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by
rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173–181

Guo W, Zhang J, Teng M, Wang LH (2009) Arsenic uptake is suppressed in a rice mutant defective
in silicon uptake. J Soil Sci Plant Nutr 172:867–874

Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated
metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868

He Z, Yan H, Chen Y, Shen H, XuW, Zhang H, Shi L, Zhu YG, Ma M (2016) An aquaporin PvTIP
4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

Heuschele DJ, Pinson SR, Smith AP (2017) Metabolic responses to arsenite in rice seedlings that
differed in grain arsenic concentration. Crop Sci 57:2671–2687

Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of
iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.)
seedlings. Environ Pollut 147:387–393

Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a
pathway for arsenite uptake. FEBS Lett 582:1625–1628

Islam S, Rahman MM, Islam MR, Naidu R (2017) Geographical variation and age-related dietary
exposure to arsenic in rice from Bangladesh. Sci Total Environ 601:122–131

Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011)
Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

Karle SB, Kumar K, Srivastava S, Suprasanna P (2020) Cloning, in silico characterization and
expression analysis of TIP subfamily from rice (Oryza sativa L.). Gene 761:145043

Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and
molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen
peroxide and arsenite. Plant Biotechnol (Tokyo) 31:213–219

Khan E, Gupta M (2018) Arsenic-silicon priming of rice (Oryza sativa L.) seeds influence mineral
nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and
nutrient transporter genes. Sci Rep 8:10301

Krishnan S, Dayanandan P (2003) Structural and histochemical studies on grain-filling in the
caryopsis of rice (Oryza sativa L.). J Biosci 28:455–469

Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of
arsenic stress and detoxification in plants: current updates and prospective. Environ Int
74:221–230

Kumar K, Mosa KA, Meselhy AG, Dhankher OP (2018) Molecular insights into the plasma
membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in
plants. Indian J Plant Physiol 23:721–730

296 A. Shinde and K. Kumar



Kumar, K., Gupta, D., Mosa, K.A.,Ramamoorthy, K., Sharma, P., 2019. Arsenic transport, metab-
olism and possible mitigation strategies in plants. In Sudhakar Srivastava, Ashish K. Srivastava,
Penna Suprasanna Plant metal interaction. Springer, New York. 141-168.

Latowski D, Kowalczyk A, Nawieśniak K, Listwan S (2018) Arsenic uptake and transportation in
plants. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and
tolerance in plants. Springer, Cham, pp 1–26

Li X, Cournoyer JJ, Lin C, O’Connor PB (2008) Use of 18 O labels to monitor deamidation during
protein and peptide sample processing. J Am Soc Mass Spectrom 19:855–864

Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009a) The rice
aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009b) Mitigation of arsenic accumulation in rice
with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

Li N, Wang J, Song WY (2015) Arsenic uptake and translocation in plants. Plant Cell Physiol
57:4–13

Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do phosphorus nutrition and iron plaque alter
arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162:481–488

Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006)
Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants
(Oryza sativa L.). Environ Sci Technol 40:5730–5736

Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) Speciation and
distribution of arsenic and localization of nutrients in rice grains. New Phytol 184:193–201

Luan M, Liu J, Liu Y, Han X, Sun G, Lan W, Luan S (2018) Vacuolar phosphate transporter
1 (VPT1) affects arsenate tolerance by regulating phosphate homeostasis in arabidopsis. Plant
Cell Physiol 59:1345–1352

Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci
11:392–397

Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci
65:3049–3057

Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An
efflux transporter of silicon in rice. Nature 448:209

Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao FJ (2008) Transporters of arsenite
in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A
105:9931–9935

Ma X, Han B, Tang J, Zhang J, Cui D, Geng L, Zhou H, Li M, Han L (2019) Construction of
chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon
Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). Plant
Physiol Biochem 144:274–282

Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235
Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration

of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183
Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with

multiple integrated functions. Annu Rev Plant Biol 59:595–624
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants.

Physiol Rev 95:1321–1358
Mead MN (2005) Arsenic: in search of an antidote to a global poison. Environ Health Perspect

113:378
Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and

nonresistant plant species. New Phytol 154:29–43
Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol

157:39–44
Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y, Islam R (2008)

Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol Lett
42:1051–1057

11 Mechanisms of Arsenic Transport, Accumulation, and Distribution in Rice 297



Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G,
Zhu YG, Feldmann J, Raab A (2009) Geographical variation in total and inorganic arsenic
content of polished (white) rice. Environ Sci Technol Lett 43:1612–1617

Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon
transporter, Lsi1. Pflugers Arch 456:679–686

Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in rice and probable
mitigation approaches: a review. Agronomy 7:67

Moore KL, Chen Y, Meene AM, Hughes L, Liu W, Geraki T, Mosselmans F, McGrath SP,
Grovenor C, Zhao FJ (2014) Combined Nano SIMS and synchrotron X-ray fluorescence reveal
distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol
201:104–115

Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012)
Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite perme-
ability and tolerance in plants. Transgenic Res 21:1265–1277

Mosa KA, Kumar K, Chikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron
tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic
proteins. Sci Rep 6:21640

Nearing MM, Koch I, Reimer KJ (2014) Complementary arsenic speciation methods: a review.
Spectrochim Acta Part B Atmos Spectrosc 99:150–162

Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources.
Chemosphere 52:1353–1359

Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 269:2143–2145
Norton GJ, Pinson SR, Alexander J, Mckay S, Hansen H, Duan GL, Rafiqul Islam M, Islam S,

Stroud JL, Zhao FJ, McGrath SP (2012) Variation in grain arsenic assessed in a diverse panel of
rice (Oryza sativa) grown in multiple sites. New Phytol 193:650–664

Pan W, Wu C, Xue S, Hartley W (2014) Arsenic dynamics in the rhizosphere and its sequestration
on rice roots as affected by root oxidation. J Environ Sci 26:892–899

Pathaichindachote W, Panyawut N, Sikaewtung K, Patarapuwadol S, Muangprom A (2019)
Genetic diversity and allelic frequency of selected Thai and exotic rice germplasm using SSR
markers. Rice Sci 26:393–403

Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006)
Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ
Sci Technol 40:5010–5014

Punshon T, Jackson BP, Meharg AA,Warczack T, Scheckel K, Guerinot ML (2017) Understanding
arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total
Environ 581:209–220

Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by
a yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and
methylated arsenic species by plants. Environ Chem 4:197–203

Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for
microorganisms? Aquat Toxicol 146:212–219

Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Accumulation of
arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain.
Chemosphere 69:942–948

RahmanMA, Kadohashi K, Maki T, Hasegawa H (2011) Transport of DMAA andMMAA into rice
(Oryza sativa L.) roots. Environ Exp Bot 72:41–46

Rahman MA, Rahman MM, Naidu R (2014) Arsenic in rice: sources and human health risk. In:
Watson RR, Preedy VR, Zibadi S (eds) Wheat and rice in disease prevention and health.
Academic, New York, pp 365–375

Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it?
And what makes them so interesting? Plant Sci 181:169–181

298 A. Shinde and K. Kumar



Ren JH, Sun HJ, Wang SF, Luo J, Ma LQ (2014) Interactive effects of mercury and arsenic on their
uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–744

Saddhe AA, Shweta M, Kumar K, Prasad M, Dhankher OP (2018) Genome-wide characterization
of major intrinsic protein (MIP) gene family in Brachypodium distachyon. Curr Bioinforma
13:536–552

Saifullah D, Naeem A, Iqbal M, Farooq MA, Bibi S, Rengel Z (2018) Opportunities and challenges
in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: a critical
review. Chemosphere 194:171–188

Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao F (2016) OsHAC1; 1 and
OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol
2016:01332

Shrivastava A, Barla A, Majumdar A, Singh S, Bose S (2020) Arsenic mitigation in rice grain
loading via alternative irrigation by proposed water management practices. Chemosphere
238:124988

Smith PG, Koch I, Reimer KJ (2008) An investigation of arsenic compounds in fur and feathers
using X-ray absorption spectroscopy speciation and imaging. Sci Total Environ 390:198–204

Sodhi KK, Kumar M, Agrawal PK, Singh DK (2019) Perspectives on arsenic toxicity, carcinoge-
nicity and its systemic remediation strategies. Environ Technol Innov 16:100462

Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma
JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc
Natl Acad Sci U S A 111:15699–15704

Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Quantitative real-time expression
profiling of aquaporins-isoforms and growth response of Brassica juncea under arsenite stress.
Mol Biol Rep 40:2879–2886

Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2016) Arsenic toxicity
in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of transporters
and thiol metabolism. Geoderma 270:33–42

Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than
wheat and barley. Plant Soil 328:27–34

Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg
AA (2008) Inorganic arsenic in rice bran and its products are an order of magnitude higher than
in bulk grain. Environ Sci Technol 42:7542–7546

Suriyagoda LD, Dittert K, Lambers H (2018) Mechanism of arsenic uptake, translocation and plant
resistance to accumulate arsenic in rice grains. Agric Ecosyst Environ 253:23–37

Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic
behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci
Technol 38:1038–1044

Tang Z, Chen Y, Chen F, Ji Y, Zhao FJ (2017) OsPTR7 (OsNPF8. 1), a putative peptide transporter
in rice, is involved in dimethylarsenate accumulation in rice grain. Plant Cell Physiol
58:904–913

Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in
Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP 1, in
arsenic transport and tolerance. Plant Cell Environ 37:140–152

Tong J, Guo H, Wei C (2014) Arsenic contamination of the soil-wheat system irrigated with high
arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Sci Total Environ 496:479–487

Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D et al (2013) Silicon mediates arsenic
tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant
defence system. Ecol Eng 52:96–103

Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on
arsenic remediation. Curr Opin Biotechnol 20:659–667

Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP (2016) Overexpression of
rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and
increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740

11 Mechanisms of Arsenic Transport, Accumulation, and Distribution in Rice 299



Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin
26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta Biomembr
1758:1165–1175

Wang P, ZhangW, Mao C, Xu G, Zhao FJ (2016) The role of OsPT8 in arsenate uptake and varietal
difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059

Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J,
Qiu R, Shu W, Xiao S, Chen QF (2017) OsARM1, an R2R3 MYB transcription factor, is
involved in regulation of the response to arsenic stress in Rice. Front Plant Sci 8:1868

Welna M, Szymczycha-Madeja A, Pohl P (2015) Comparison of strategies for sample preparation
prior to spectrometric measurements for determination and speciation of arsenic in rice.TrAC.
Trends Anal Chem 65:122–136

Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic
speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol
39:5531–5540

Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate
transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

Wudick MM, Li X, Valentini V, Geldner N, Chory J, Lin J, Maurel C, Luu DT (2015) Subcellular
redistribution of root aquaporins induced by hydrogen peroxide. Mol Plant 8:1103–1114

Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases
arsenic accumulation. Environ Sci Technol 42:5574–5579

Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z (2017) OsHAC4 is
critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol
215:1090–1101

Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants.
Trends Plant Sci 19:556–563

Yamaji N, Ma JF (2017) Node-controlled allocation of mineral elements in Poaceae. Curr Opin
Plant Biol 39:18–24

Yang J, Gao MX, Hu H, Ding XM, Lin HW, Wang L (2016) OsCLT1, a CRT-like transporter 1, is
required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211:658–670

Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP, Feldmann J, Zhao FJ (2010)
Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513

Ye XX, Sun B, Yin YL (2012) Variation of As concentration between soil types and rice genotypes
and the selection of cultivars for reducing As in the diet. Chemosphere 87:384–389

Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice
grain. Environ Sci Technol 42:3856–3860

Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and
metabolism in rice seedlings. Environ Exp Bot 72:34–40

Zhang J, Zhao CY, Liu J, Song R, Du YX, Li JZ, Sun HZ, Duan GL, Zhao QZ (2016) Influence of
sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol Biol
Report 34:556–565

Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New
Phytol 181:777–794

Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of
plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

Zhao FJ, Stroud JL, Khan MA, McGrath SP (2012) Arsenic translocation in rice investigated using
radioactive 73As tracer. Plant Soil 35:413–420

Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG (2011) Spatial
distribution of arsenic and temporal variation of its concentration in rice. New Phytol
189:200–209

Zheng MZ, Li G, Sun GX, Shim H, Cai C (2013) Differential toxicity and accumulation of
inorganic and methylated arsenic in rice. Plant Soil 365:227–238

Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in
phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant
Physiol 146:1673–1686

300 A. Shinde and K. Kumar



The Healing Art of Arsenic in Various
Malignancies 12
Archana Chaudhary and Rizwanul Haque

Abstract

Malignant growth is a significant weight of illness around the world. Internation-
ally, one in every five men and one out of six women will become a potential
victim of malignancy prior to the age of 75. The World Health Organization
(WHO) is alerted of a worldwide “tsunami” of malignant growth and declared
that by 2035, around 24 million individuals will have the ailment. Along with
recognizable discoveries in therapy as well as in counteraction of cardiovascular
illnesses, malignancy has or will turn into the main executioner in numerous
places of the world. Malignant growth is a main source of monetary misfortune
through sudden passing and inability around the world in view of the immense
whole spent on treatment yet additionally in lost monetary and social action.
Arsenic trioxide (As2O3) is an aged medication that has lately been restored as a
therapeutic option for different malignancies. All in all, arsenic is known to be a
natural toxic substance fit for evoking an assortment of risky antagonistic
impacts. In spite of its present reputation as a toxic substance, arsenic is viewed
as one of the world’s most miracle medications, utilized for quite a long time as a
therapy for diseases running from contamination to malignancy. Arsenic trioxide
(As2O3) is a successful forthright enemy of disease, has been utilized as a
medication for more than 2000 years, and has been revived due to its exceptional
therapeutic efficacy in case with APL (acute promyelocytic leukemia). Arsenic
trioxide (ATO) alone or in blend with different therapeutics has been found to be
effective against different cancer types of human origin. Notwithstanding, the
specific systems by which ATO hinders malignancies are not completely
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clarified. In this chapter we will explain the likely mechanisms of action about the
healing craft of ATO towards different human malignancies. These data will most
likely urge clinical examiners to sanely join ATO with extra chemotherapeutic
agents in treating patients determined to have malignant growth is a main sources
of death on this planet.

Keywords

Arsenic trioxide (ATO) · Malignancies · Therapeutics

12.1 Introduction

Malignant growth is yet one of the pronounced well-being confrontations around the
world. Reports recommend that every year, tens of millions of whole population are
determined to have malignant growth around the globe, and the greater part of the
patients inevitably lose the battle against it. The current situation implies that cancer
positions the second most basic reason for death following cardiovascular sickness.
At this moment, 14 million people a year are analyzed to have harmful development.
WHO says that it will increase to 19 million by 2025, 22 million by 2030, and
24 million by 2035 (Ma and Yu 2006). Researches around the world showed that
ATO additionally has bioactivity against several tumor types, and its system of
activity may incorporate DNA damage, apoptosis, and changes in stress-related
proteins and so on (Walker et al. 2016). Arsenic is a strange compound of the
world’s covering; it is criticized by the environmentalist and classified as a cancer-
causing agent. It is an established fact that arsenic and its compounds have been used
as a cure and rejuvenator for many diseases yet shockingly it lost its prime spot in
medication during mid-twentieth century. Aside from this, in the late 1990s, these
compounds were restored by Chinese clinical investigators as well as subsequently
adapted by western oncologists (De Thé et al. 2012). Arsenic has a key part in
different cancer treatments particularly in hematopoietic cancer along with some
positive response in solid tumors also verified (Yang et al. 2020). Presently, the
therapy of any malignant growth incorporates medical procedure such as surgery and
radiation, sometimes upheld by adjuvant chemotherapy or hormone treatment.
Although critical investigations have been made in understanding the pathogenesis
of this ailment, remedial issues, for example, the selective killing of normal versus
tumor cell growth (Falzone et al. 2018). Our earth is gifted with a natural reservoir of
arsenic which has been utilized as a remedial agent for over 2400 years for different
ailments. Analysts at Harbin Medical University, China in the 1970s effectively
found its capacity to fix intense promyelocytic leukemia. This urged various
researchers to test the adequacy of arsenic trioxide in the treatment and control of
any solid tumors and other hematological malignancies (Lo-Coco and Cicconi
2011). In this chapter we have summed up the results of clinical preliminaries that
use ATO alone or just as in blend with different spices in patients determined to have
different tumor types. Furthermore, this part likewise gives a conceivable
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mechanism of action by which ATO might be helpful as a chemosensitizer in mix
treatments.

12.2 Historical Background of ATO in Medicine

Arsenic has obtained a situation ever, both as a suggested poison and as a miracle
medicine. Few decades back arsenic is once in a while hears word in terms of
toxicity. For more than 2400 years, arsenic and its compounds, for example,
orpiment and arsenic sulfides minerals are used to medicate ulcers and particular
sorts of infections (Adams 2008). Since then, arsenic and its different forms have
been discovered to be helpful in treating illnesses, for example, malignancy and
syphilis. However in recent years, the poisonous reports of arsenic have grown up
drastically with more than 20 nations from various parts of the world declaring
arsenic contamination. So arsenic is a metalloid that has been notable as a “poison”
or a “healer” since forever. English pioneer Thomas Fowler during the 1700s built
up a solution of ATO in potassium bicarbonate (1% w/v) that was applied to treat
dermatitis, asthma, psoriasis, pemphigus, iron deficiency, lymphoma, and leukemia
(Ho and Lowenstein 2016; Adams 2008; Hu et al. 2005). In 1878 researchers found
“Fowler’s solution” was helpful to bring down white blood cell count in those with
chronic myelogenous leukemia and relieved in 10 weeks. After this examination
Fowler’s solution was applied as a centerpiece in the therapy for blood cancer until it
was winning by radiations in the twentieth century. However, ATO therapy
constructs a hurried return in 1931 after a record of those nine patients with CML
praises to the treatment at Boston City Hospital (Adams 2008). The patients’ white
platelet tallies tumble from a few hundred thousand for each cubic millimeter to
about normal; their spleens and livers decreased in size. Bone marrow biopsy
specimens betray ordinary hematopoiesis and patients had an overall feeling of
comfort. The therapy’s remeasure was fleeting after analysts outline interminable
arsenic toxicity in five of the six patients medicated for CML. Based on these reports,
the analysts endorse cautious patient assessment with the utilization of the solution.
In time, the utilization of arsenic trioxide limited and was again restored—this time
by radiotherapy and cytotoxic chemotherapy (Antman 2001; Ho and Lowenstein
2016).

12.3 Arsenic in Ayurveda Medicine

Arsenical have long history of use in pharmacological utilities and conventional
practices. Arsenical compounds are deliberately added to Ayurveda formulations as
main agile ingredients or an auxiliary agent to assist the effectiveness of herbal drugs
(Panda and Hazra 2012). Clinical demonstration due to arsenic containing
Ayurvedic medicine has also been reported from our country. Several efficacy
aspects and side effects of arsenic compounds used in Ayurveda are scattered in
classical text of Ayurveda and modern literature. Arsenic trioxide is now welcomed
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in allopathic medicine as first line therapeutics representative in case of
hematopoietic cancer and other malignancy.

12.4 Arsenic Trioxide Against Various Tumors

Arsenic trioxide is a chemotherapeutic negotiator of idiopathic capacity applied to
medicate leukemia that is lethargic to initial line agents. Researchers have found that
arsenic in blend with a current leukemia drug cooperates to focus on a master
malignant growth controller (Jagust et al. 2019). Numerous investigations showed
that As2O3 additionally has some significant function in shutting down the develop-
ment of other solid tumors too. While arsenic at a specific dose in public drinking
water has been connected convincingly to a variety of cancer, surprisingly, its
presence at different dosages has been connected to abnormally low paces of
different tumorigeneses (Hughes et al. 2011). ATO, when given at a clinically safe
dose, the medications successfully repressed various malignancy driving pathways
and eliminate cancer stem cells (Kozono et al. 2018) in cell and creature models just
as patient-inferred tumor models of different tumor subtypes.

12.4.1 Leukemia

12.4.1.1 Arsenic a Key Enzyme Blocker in Acute Promyelocytic
Leukemia

Acute promyelocytic leukemia (APL) reports for around 5–10% of cases of acute
myeloid leukemia (AML) (Mohammad et al. 2014). This intricacy is one of the basic
enduring reasons for early death in the time of initial detection and start of treatment.
Arsenic trioxide is the current expectation or a chemotherapeutic agent that has been
appeared to trigger apoptosis in various tumor cell lines. ATO is extremely powerful
against a particular kind of blood cancer holding chromosomal translocation
between 15 and 17 (Cingam and Koshy 2020; Zhou et al. 2007). It has been
shown that this medication is successful against all phases of leukemia, including
suppression induction in initial therapy. It is additionally valuable in the combined
phase of treatment. Various clinical trials are going to decide the optimum and ideal
approach for this medication as a monotherapy or in amalgamation with different
medications (Cingam and Koshy 2020). Later on, its indication may stretch out to
different malignancies. Researcher around the world worked with models of leuke-
mia, breast, and liver malignancy, and they had the option to find that the blend of
ATO with ATRA (all-trans retinoic acid) was appeared to apply synergistic cytotox-
icity against Fms-like tyrosine kinase 3 inside pair replication, leukemic cells
through co-restraint of Fms-like tyrosine kinase 3 signaling pathways these mix of
the ATO-ATRA additionally obliterated a catalyst known as Pin1. Pin1 assumes a
key function in regulating the signaling network in malignancy; it induces more than
40 proteins that feed disease tumors, while likewise hindering more than 20 proteins
that would typically smother tumor development. This enzyme is overactive in many
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kinds of malignancy found in people especially so in cancer stem cell, which drive
tumor development and frequently lead to malignant growths’ protection from
conventional medicines. ATO ties to Pin1, hindering its activity and eventually
results in enzyme deformation. Simultaneously, ATRA additionally ties to Pin,
debases it and permitting it to encourage and expand cells’ take-up of ATO. This
prompts the increased expression of a protein explicit to cell membrane, which
supports cells retention of ATO (Alimoghaddam 2014). In larger part of the APL
cases a new chromosomal aberration, t(15,17), is the most extreme hereditary
deformation, and PML-RARαchimeric gene development has an essential function
in APL pathogenesis. Directed treatments generally disorganize these fusion genes
or its signaling pathways in cells to cope with this ailment. So also, patients with
recently analyzed APL and chimeric fusion protein of PML/RARα are generally
restored after standard all-trans retinoic acid (ATRA) with chemotherapy. A few
reports recommend that predominance of ATRA and arsenic trioxide combination
for the treatment of patients with APL as relapse free survival, event free survival,
backslide free endurance, and reduced hematologic poisonousness contrasted with
ATRA + chemotherapy. Combinational therapy of ATRA and arsenic trioxide
differentially tie PML/RARα protein, the proteasomal debasement of which
promptly activates terminal differentiation, and resulting apoptosis in acute
promyelocytic leukemia APL (Alimoghaddam 2014; Sever and Brugge 2015).

Ongoing ex vivo and in vivo investigations of APL strongly indicates that
different mechanisms are proposed for the effect of ATO in leukemic cells such as.

12.4.1.2 Induction of Differentiation
Arsenic trioxide prompts the let go of blood cancer cells into peripheral blood in
certain patients and a huge number of naive cells, which may increment leukemic
cells to greater than 100,000 per mm3 (Alimoghaddam 2014; Pavlovic et al. 2015;
Portilho et al. 2016). During suppression induction, bone marrow does not set off
hypoplastic, and bone marrow creates without cytotoxicity to hematopoietic cells
(Alsaleh et al. 2018).

12.4.1.3 Triggers Apoptosis
Arsenic trioxide persuades apoptosis in leukemic cells at a suggested dose (between
0.5 and 2 mmol). The direct mechanism by which ATO induces apoptosis is by
triggering cytotoxicity in leukemic cell or indirectly by affecting various regulatory
pathways in this cell type. All things considered arsenic causes the arrangement of
ROS (responsive oxygen species) and reduces GSH substance of cells. It likewise
straightforwardly harms RNA and DNA. Arsenic can persuade mitochondrial
caspase framework for the initiation of apoptosis which can be averted by azidothy-
midine (Alimoghaddam 2014).

12.4.1.4 Other Related Mechanisms
Arsenic has anti-angiogenesis approach and can cut the quantity of new vessels
framed while leukemia changes. It additionally has some spin-off on telomere length
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and telomerase activity, just as on microvascular robustness of bone marrow during
remission introduction (Alimoghaddam 2014; Portilho et al. 2016).

12.4.2 Breast Cancer

Breast cancer is one of the most widely recognized diseases among women and one
of the main sources of cancer related death among them around the world. Ongoing
reports recommend that arsenic trioxide downregulates DNA methyltransferase-1
expression in this type of malignancy and upregulates estrogen receptor α whose
expression profile has been epidemiologically seen to extend disease-free survival
and determine a general understanding of apoptosis (Shi et al. 2017). In human
breast malignant cell line MDA-MB-435S ATO in mix of antiestrogen tamoxifen
(TAM) therapy hampers the cell proliferation both in vivo and in vitro. Researches
additionally propose that in breast cancer ATO improves 89Sr radiation therapy
initiated apoptosis by mostly directing the Bcl-2/Bax proportion. ATO has function
in interruption of rapamycin (explicit inhibitor of mTOR)—provoked ERK and Akt
(Ser473) phosphorylation, which at last results in the improvement of the
rapamycin’s anticancer effect in vivo. Scientist additionally implies that arsenic
trioxide when co-incubated with cotylenin A (CN-An), a growth controller of
plant, shows a great antitumor impact on breast cancer cells in vitro condition.
This combinational treatment of ATO-CN-A altogether downregulates expression
of survivin and upregulates caspase-7 by mostly conciliating ROS production.
Several cancer preventing agents, for example, melatonin, increase ATO-initiated
apoptosis by activating ROS production which triggers MAPK activation
incorporating JNK and p38 in human breast cancer. In MCF-7 cells arsenic along-
side cryptotanshinone (a characteristic quinoid diterpene secluded from Salvia
miltiorrhiza roots) remarkably induces apoptosis by umpiring endoplasmic reticu-
lum (ER) stress as well as ROS production. ATO-persuaded cell cycle arrest is
mostly because of demethylation and adjustments of cell cycle-related genes. Arse-
nic mixes downregulate malignant growth property of breast cancer cells. However,
the specific mechanism of arsenic-mediated anticancer effect still not been
completely clarified. Ongoing reports showed that arsenic could regulate micro-
RNAs in human malignancies. One such miRNA is let-7a which is strongly
upregulated in response of ATO in breast cancer cell and this activated let-7a
consequently suppress cell development and provoked apoptosis related genes, for
example, caspase-3, p53, and Bcl-2 (B-cell lymphoma 2) which retarded cell
invasion and metastasis. In expansion, this microRNA additionally controls
mammosphere arrangement limit by Ras/MAPK (mitogen-actuated protein
kinase)/ERK and by Ras/NF-κB (atomic factor kappa B) pathway in breast cancer
stem cell. Let-7a has an extreme role in tumor suppression through targeting on
HMGA1 (high versatility bunch A1) in breast cancer (Shi et al. 2017; Darakhshan
and Ghanbari 2013; Sweeney et al. 2012). Thus, ATO induced let-7a may be another
potential objective in the therapy of human breast cancer.
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12.4.2.1 ATO and let-7a in Notch Signaling
The oncogenic part in numerous tumor types can be best described by Notch
signaling pathway. Various reports suggest that arsenic trioxide has been accounted
to disturb Notch signaling pathway in various human malignancies. For instance,
ATO exhausted the malignant cell growth population in gliomas through suppres-
sion of Notch pathway. ATO likewise prompts the hindrance of neurosphere repop-
ulation got from glioblastoma by suppressing Notch pathway (Shi et al. 2017). Hu
et al. found that ATO restrained the expansion of myeloma cell line through
downregulation of Notch signaling pathway (Hu et al. 2013). Yang et al. revealed
that ATO shows anti-lung cancer activity via suppression of Notch-1 (Yang et al.
2013). In accordance with these discoveries, it was investigated that arsenic and its
compounds downregulate the expression of Notch-1 in breast cancer cells. These
reports distinguished that arsenic trioxide could repress Notch-1 expression in
human tumors. Researchers have investigated that Notch-1 repressed let-7a expres-
sion. Out and out, ATO applies its anticancer effect via means of hindrance of
Notch-1/let-7a in breast cancer. It is notable that arsenic trioxide is essentially
utilized for PML (promyelocytic leukemia) therapy (Shi et al. 2017). Along these
lines, further examination is needed to investigate whether arsenic applies its
physiological capacity by upregulating let-7a using mouse models in this
cancer type.

12.4.3 Prostate Cancer

Around the world, prostate malignant growth is the most usually analyzed male
threat and the fourth driving reason for malignancy demise in men. In 2018, this
added up to 1,280,000 recently analyzed cases and 359,000 deaths around the globe
from this ailment (Leslie et al. 2020). Luckily, the limit of prostate diseases has
moderate development rate and is short-grade with generally little danger and
diminished aggressiveness.

12.4.3.1 ATO in Prostate Disease
It was accounted that ATO boosts the radiation affectability by moderating suppres-
sion of the Akt/mTOR signaling pathway in androgen-subordinate (LNCaP) and
PC-3 (androgen-autonomous) human prostate cancer cells both in vitro and in vivo.
Notwithstanding this ATO likewise suppresses the expansion of PC-3 by repressing
the Hh (Hedgehog) signaling pathway and the anticancer impact was strengthen by
an exemplary Hh pathway inhibitor cyclopamine in vivo (Tai et al. 2017).
ATO + RAD001 (mTOR inhibitor) combination therapy synergistically activates
both autophagy and apoptosis in prostate malignant cells, where upgraded
autophagy was joined by activated Beclin1 mRNA expression and ATG5-ATG12
upregulated form, LC3-LC2 and Beclin1, as detailed by Tai et al. (2017). The mix of
ATO + RAD001 altogether suppresses LNCaP xenograft tumor expansion than
monotherapy without improving weight loss. The inhibitor of PI3K-AKT-mTOR
pathway, for example, Rad001, has not demonstrated therapeutic adequacy as a
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single agent in prostate malignant growth. ATO triggers the autophagy pathway in
this cancer type (Tai et al. 2017). It synergizes with Rad001 to activate cytotoxic cell
death of prostate malignancy cells alongside synergistic acceptance of apoptosis and
autophagy as the basic mechanism. This upgraded autophagy is joined by enhanced
Beclin1 mRNA stability and activation of ATG5-ATG12 conjugates, LC3-2 and
Beclin1. ATO and Rad001 likewise can synergistically repress malignancy in
prostate malignancy xenograft animal model (Leslie et al. 2020; Tai et al. 2017).
These reports approve a new mechanism to grow the current targeted therapeutic
agents for the treatment of prostate malignant growth. ATO with Rad001 synergisti-
cally stimulates the cytotoxic effect in prostate malignancy, accordingly altogether
gives a noble therapeutic possibility to advance prostate disease.

12.4.4 Cervical Malignancy

Cervical malignancy is the most well-known disease among females around the
world. Radiotherapy has been commonly utilized for the ministration of patients
with cervical malignant growth. ATO + radiation therapy was expectably reported to
apply an antitumor impact on cervical malignant growth cells in vitro or potentially
in vivo. Studies propose that ATO diminishes radiation-accelerated metastases rate
presumably by means of subduing radiation-prompted MMP-9 expression and
furthermore upregulates the phosphorylation level of Bcl-2 as well as translocation
of Bax protein to mitochondria, which were joined by activation of JNK andMAPKs
including p38 (Segovia-Mendoza et al. 2015; Wei et al. 2005). Since NAC unmis-
takably upsets the ATO-intervened cell killing just as MAPK induction, ROS
generation may assume a significant function in ATO-radiation-stimulated apopto-
sis. Notwithstanding arsenic and its compounds like ATO, TAO (tetra arsenic
oxide), and As4O6 was appeared to possibly apply an antitumor impact on cervical
malignancy. ATO in blend with radachlorin/photodynamic treatment helpfully
dysregulates and restrains the multiplication of mouse TC-1 cells, where p53
tumor silencer and the p21 inducible protein improved particularly in mix treated
tumor cells both in vitro and in vivo. ATO was likewise shown to synergistically
reduce growth and development of CaSki (human cervical carcinoma cell line) when
co-incubated with CDDP. The mix ATO-CDDP treatment significantly expanded
the rate of apoptosis, as comparatively saw in different kinds of malignant growth
cells when arsenic trioxide was combined with CDDP (Kang and Lee 2008; Kim
et al. 2012; Byun et al. 2013).

12.4.5 HCC

HCC (hepatocellular carcinoma) is the sixth most frequent tumor and the subsequent
driving reason for cancer demise especially in males around the world. Hepatocellu-
lar carcinoma (HCC) is the most well-known kind of essential liver malignancy,
including 75–85% of cases (Bray et al. 2018). A few multikinase inhibitors, for
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example, Sorafenib, can upgrade the survival rate of patients with cutting edge HCC.
As per Zhai et al. (2015) ATO in collaboration with sorafenib hinders the multipli-
cation and advances the apoptosis of liver cancer cells by decreasing the sorafenib-
mediated upregulation of Akt or potentially its downstream factors, like glycogen
synthase kinase-3β, ribosomal protein S6 kinase, mTOR, and eukaryotic
translational initiation factor 4E-binding protein 1. ATO was additionally shown
to intensify the anticancer impact of genistein (Chen et al. 2011a), 30-azido-3-
0-deoxythymidine (AZT) (Chen et al. 2011b), oridonin (Chen et al. 2012), MDM2
inhibitor nutlin-3 (Zheng et al. 2014), metformin (Yang et al. 2015), as well as
survivin mutant (T34A) (Ling et al. 2017) in HCC cells.

12.4.5.1 ATO in Liver Cancer
Arsenic and its related compounds are strong anticancer specialist applicable for
both leukemia and solid tumors treatment. The concentration of arsenic needed to
inhibit human xenografts in mice is extraordinarily higher than that used to medicate
APL in people. Paradoxically, As2O3 at low concentration stimulates angiogenesis,
which may be required to improve tumor development. Obviously, recommended
dose of As2O3 is needed to get patients to avoid toxicity and unfortunate symptoms.
In the current examination, we researched As2O3 concerning its harmfulness and
consequences for malignant growth, cell apoptosis and angiogenesis utilizing H22
hepatocellular carcinoma cells in a mouse model of HCC. As2O3 hindered tumor
development and angiogenesis and improved cancer cell apoptosis at dose more than
1 mg/kg; however, mice shed weight and not able to thrive at dosages of 4 mg/kg and
more prominent. Arsenic trioxide has evident antitumor activity on HepG2 liver
tumor. The system of arsenic trioxide may basically be prompting liver malignant
growth cells to go through apoptosis, which might be identified with downregulated
bcl-2 genes and upregulated bax expression (Liu et al. 2006). It is likewise revealed
that As2O3 limits the development of tumor cells by activating apoptosis more in
malignant cells when contrasted with normal cells. These findings recommend that it
may be a promising therapeutic option against liver malignant growth which further
needs to be tested by in vivo examinations (Sadaf et al. 2018).

12.4.6 Lung Malignant Growth

Since 1985, lung malignant growth has been the most widely recognized disease
around the world, both as far as rate and mortality. Globally, cellular breakdown in
the lungs is the largest contributor of new malignant growth examine (1,350,000
new cases and 12.4% of absolute recent disease cases) and to death rate (1,180,000
death and 17.6% of all tumor related death). The 5 year endurance rate is under
15.6%, and instead of the fact that there has been some advancement in endurance
during the past few decades, the endurance rate that has been realized in other regular
malignancies is yet to be attained in lung cancer (Dela Cruz et al. 2011). Apoptosis
of A549 (human lung cancer cell line) by mediating the NF-κB pathway and the
mitochondrial pathway and by intervening p53-induced suppression of surviving
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was firmly triggered in response of ATO in mix with sulindac treatment (Zhang et al.
2018; Jiang et al. 2004). This blend synergistically enhances the cytotoxicity in
human lung cancer cell lines NCI-H1299 and NCI-H157 by interceding reactive
oxygen species-induced MAPK phosphorylation and through phosphorylation of
Bcl-xL as well as by c-Jun NH2—terminal kinase-subordinate (Park et al. 2008; Jin
et al. 2008). Various reports propose that a nonselective cyclooxygenase inhibitor
like indomethacin (an auxiliary isoform of sulindac) induces the ATO-intervened
cytotoxic impact in A549 cells by activation of ERK and additionally p38 MAPKs
(Mandegary et al. 2013). A glutathione inhibitor like buthionine sulfoximine (BSO)
likewise strikingly inspires ATO-mediated apoptosis in lung cancer cell line (A549),
in which the apoptosis was identified with the amplified level of ROS (Han et al.
2008). Besides, joined ATO-CDDP therapy triggers apoptosis and synergistically
represses the expansion of human A549 and H460, with CI esteems 0.5 and 0.6,
separately, where CI < 1.0 (Li et al. 2009).

12.4.7 Pancreatic Disease

Pancreatic disease is the seventh driving reason for cancer related death around the
world. It spreads mainly in more developed nations. The possible reason for huge
contrasts in death rate of pancreatic tumor is not totally clear yet; however, it might
be due to shortfall of appropriate diagnosis, therapy, and recording of malignancy
cases (Rawla et al. 2019). It is commonly acknowledged that the counter leukemic
impact of ATO is mediated by apoptosis induction. Arsenic trioxide likewise
represses multiplication and prompts apoptosis in solid tumor of different types
including inadequately separated and very much separated pancreatic malignant
growths. Nonetheless, little consideration has been paid to the action of the
apoptosis-induced effect of ATO, especially in pancreatic disease which is a signifi-
cant reason for malignant growth demise in the western world. Studies report that
arsenic trioxide chunks multiplication and activates apoptosis in pancreatic malig-
nant growth cells at less, non-poisonous concentration. The mechanisms by which
ATO triggers apoptosis was by activating caspase-3, caspase-7, and caspase-9 along
with breakdown of the downstream caspase-3 target poly ADP ribose polymerase
(PARP) as described in PANC-1 cell that have been recently demonstrated to be
responsive to ATO. The expression profile of anti-apoptosis proteins, Bcl-2 and
Mcl-1 decreases, while Bax expression enhanced in a time dependent manner.
Subsequently Bcl group of proteins, like activation of the caspase cascade and
other mitochondrial pathway is responsible for arsenic-prompted apoptosis. Infor-
mation acquired by flow cytometric examination show changes of cell cycle distri-
bution from a G0/G1 phase arrest to G2/M phase arrest after 24–72 h following
arsenic treatment. Simultaneously the sub-G0/G1 cell population of apoptotic cells
was enhanced. Arsenic altogether upregulates P21 protein expression as well as
downregulates the level of cyclin A, cyclin D1, and cyclin B1; however, expression
of CDK4, CDK2, CDK6, and cyclin E was not influenced. Arsenic trioxide particu-
larly increases the expression of GADD45 and GADD153 in a period subordinate
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manner. ATO has significant function in apoptosis induction in pancreatic cancer
cells by triggering the caspase cascades by means of the mitochondrial pathway,
GADD activation, and by adjusting cell cycle progression and changes in a various
cell cycle-modulating proteins (Li et al. 2003). This matured natural drug might be
important for therapy of pancreatic disease. Researchers revealed that a sesquiter-
pene lactone from the clinical spice feverfew like parthenolide (PTL) triggers
apoptosis in human pancreatic disease cell lines BxPC-3 and PANC-1 by interceding
ROS production and subsequent caspase stimulation by means of the mitochondrial
pathway (Wang et al. 2009). ATO and PTL combinational treatment fundamentally
suppresses tumor development rates of PANC-1 xenografts in contrast with those
treated with either ATO or PTL alone. Studies additionally showed the purpose for
the restricted viability of arsenic on cytotoxicity in pancreatic ductal adenocarcinoma
which most likely as a result of the high-cell ROS scavenging activities. It is likewise
described that a hypoxia-inducible factor-1 inhibitor (like-PX-478) strongly boosts
the anticancer and pro-apoptosis impact of ATO on BxPC-3 and Panc-1 pancreatic
malignant growth cells in vitro by directing ROS accumulation (Wang et al. 2009;
Lang et al. 2016).

12.4.8 Oral Cancer

Diseases of the oral cavity and pharynx represent 3% of all tumors in the USA. Oral
malignant growth generally incorporates disease of the lip, tongue, salivary organs,
and different locales in the mouth, while pharyngeal disease incorporates tumors of
the nasopharynx, oropharynx, and hypopharynx. Over 90% of oral or pharyngeal
tumors are squamous cell in cause. Oral cancer is a definitive basic head and neck
neoplasm and is primarily connected with helpless guess, notwithstanding a few
headway in its symptomatic and therapy systems. As referenced above ATO was
clinically depicted as a combinatorial medication with chemotherapy as well as a
platinum-based antineoplastic medication cisplatin (CDDP), combination of both
compounds retains cancer type CI value mechanism of activity (Ota et al. 2018;
Kumar et al. 2008; Nakaoka et al. 2014). More similar combination like ATO with
buthionine sulfoximine (BSO) in ovarian malignancy it brought about reduction of
GSH, likewise improves ROS level alongside upregulation of different stress-related
pathways (Ong et al. 2011). ATO with bortezomib (BOR) and p38 inhibitor
(SB203580) likewise leads to downregulation of anti-apoptotic proteins, for exam-
ple, Bcl-2 in myeloma malignancy type (Wen et al. 2010; Ota et al. 2018). Recent
reports additionally characterized that arsenic trioxide triggers apoptosis as well as
diminishes intracellular nicotinamide adenine dinucleotide levels in patients with
oral cancer, when ATO applied moreover with specific inhibitors, for example,
nicotinamide phosphoribosyl transferase inhibitor (NAMPT) (Wang et al.
2017a, b). Tsai et al. demonstrated that the mixture of ATO and DTT (dithiothreitol)
therapy brought about developed number of pro-apoptotic molecules Bak and Bax
while reduction of p53 and Bcl-2, which at last resulted to a suggested cell death of
oral malignancy cells with no damage on ordinary cell type (Tsai et al. 2017).
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12.4.9 Ovarian Malignant Growth

Ovarian malignant growth (OC) is the seventh most ordinarily analyzed tumor type
among female world. Epithelial OC is the most prevalent cancer subtype, with five
significant histotypes that vary in pathogenesis, origination, molecular alteration,
risk factor, and prognosis (Reid et al. 2017). The death rate from ovarian disease is
nonsensical among malignant cancer of the female genital tract. In this kind of
malignancy growth ATO when applied with CDDP which is one of the standard
chemotherapeutics option for ovarian disease, or potentially RAD001 (mTOR
inhibitor) have strong cytotoxic and cell killing effect against this specific tumor
type (Zhang et al. 2009; Liu et al. 2012a, b; Ota et al. 2018).

12.4.10 Glioma and Glioblastoma (GBM)

GBM (glioblastoma) is the most aggressive malignant primary cerebrum cancer.
This kind of malignant growth is uncommon in kids but its frequency is higher in
middle age of 64 years. GBM rate is 1.6% more in males contrasted with females.
This is generally situated in the supratentorial area (frontal, worldly, parietal, and
occipital projections) and is once in a while situated in cerebellum. It has been
examined that genetic and ecological elements are significantly related with GBM.
Risk factors includes prior radiotherapy, diminished susceptibility to allergy,
immune genes and immune factors, and some single nucleotide polymorphisms
distinguished by genomic examination (Tamimi and Juweid 2017). Recent
examinations explain that ATO essentially includes in the upregulation of DR5
(death receptor 5) which is a death receptor of tumor necrosis factor-related apopto-
sis-induced ligand (TRAIL) in a group of human glioma cell lines yet not in
astrocytes (Ota et al. 2018). These reports likewise shed light on function of ATO
in improvement of autophagy by rising mitotic arrest and regulation of ERK1/2 and
PI3K/Akt signaling pathways. It likewise brings about suppression of glioma cell
development with a CI < 1.0. ATO treatment activates G2/M phase cell cycle arrest
in human fibrosarcoma and osteosarcoma. Certain normal polyphenols like silibinin
when applied in mix with ATO significantly inhibit invasiveness and activate
apoptosis in U87MG a human GBM cell line, this combination likewise
downregulates cathepsin B, MMP-2, uPA, MMP-9, survivin, Bcl-2, layer type
1-MMP, and CA9 expression (Dizaji et al. 2012) and declines the feasibility of
A-172 by refereeing intracellular ATO accumulation (Gülden et al. 2017).
Literatures depict that c-Myc is likewise required for the regulation of CSCs (cancer
stem cells) of several tumors like GBM (Wang et al. 2008). Yoshimura et al.
legitimized that ATO + 10,058-F4 (c-Myc inhibitor) coordinately enhances differ-
entiation of GBM CSCs and relapsed GBM CSC tumor development in vivo
(Yoshimura et al. 2015).
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12.4.10.1 ATO in Gliomas
ATOmix therapy regimen appears to have more suppressing efficacy compared with
single therapy on all kinds of malignant growth fundamentally in GBM. In GBM this
treatment principally downregulates the anti-apoptotic proteins like Bcl-2 and
upregulates pro-apoptotic proteins like caspase-3 and Bax (Moloudi et al. 2017).
These molecular discoveries describe that the planned therapy mechanism may
trigger the characteristic pathway of apoptosis. Additionally, in vivo animal
examines are expected to affirm the capability of ATO for the therapy of GBM
disease.

12.4.11 Lymphoma

Lymphoma particularly non-Hodgkin lymphoma (NHL) is the fifth most normal
malignancy in several developed nations like the USA, with around 55,000 new
cases assessed for the year 2000. The expanding occurrence of NHL is generally
unexplained (Baris and Zahm 2000). Reports connote that arsenic alone and in blend
with BOR have likely anticancer impact in mantle cells which is a hopeless B-cell
non-Hodgkin lymphoma (Ota et al. 2018; Abou-Merhi et al. 2007; Darwiche et al.
2001). ATO with cucurbitacin B, from trichosanthes kirilowii maxim, synergisti-
cally upregulates the rate of apoptosis by draining STAT3 phosphorylation in
Burkitt lymphoma cell lines (Bornhauser et al. 2007) both in vivo and in vitro.

12.4.12 Multiple Myeloma (MM)

Although MM (multiple myeloma) is uncommon cancer, yet it is the second most
basic hematologic harm. MM is a disease of the older population and related with
critical morbidity because of its end-organ destruction. It is found in the range of
plasma cell dyscrasias which starts with monoclonal gammopathy of unknown
significance to overt plasma cell leukemia and extramedullary myeloma (Kazandjian
2016). In MM cell lines ATO treatment in blend with desired concentration of
ascorbic acid reduces GSH levels and induces ATO-mediated cell death (Shin
et al. 2009). One of the most attractive combinations in the case of refractory MM
patients is ATO + melphalan + ascorbic acid therapy (Doudican et al. 2012). Other
important mix with ATO is different proteasome inhibitors, for example, bortezomib
(BOR) and carfilzomib along with these immunomodulatory medications, for exam-
ple, thalidomide, lenalidomide (LEN), pomalidomide improve the survival rate of
MM patients (Du et al. 2006). Researchers additionally showed that ATO-BOR
connected with augmented STAT3 depletion, activation of JNK, and upregulation of
p21, p27, Bim, and p53, and downregulation of apoptotic gene like Bcl-2 (Wang
et al. 2015a, b, c). The effect of ATO enhances with nutrient or vitamin E simple
Trolox (Li et al. 2010) which is a MEK inhibitor PD325901 a characteristic quinoid
diterpene cryptotanshinone and a phytochemical sulforaphane (Bazarbachi et al.
1999; El Eit et al. 2014; El-Sabban et al. 2000) and brought about inhibition of
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MM cells it likewise upregulates cereblon (Xia et al. 2013) which is an antimyeloma
target of LEN.

12.4.13 Colon Malignant Growth

Colorectal malignant growth (CRC) is the third driving cause for tumor related death
on the planet, and its incidence consonantly increases in developing nations. Other-
wise called colorectal adenocarcinoma, CRC normally gets out of the glandular,
epithelial cells of the large intestine. ATO alongside sulindac, a nonsteroidal drug,
triggers ATO dependent apoptosis by suppressing NF-κB initiation mediated by the
de-phosphorylation and destruction of IκB-alpha in HCT-116 cells as announced by
Lee et al. (2008). Besides mix of ATO and PI3K inhibitor LY294002 prompts a
decline in the development rate of colon cancer cell lines, where ATO inhibits Hh
pathway record factor Gli1 and its related gene activation including CCND1 and
BCL2 (Ota et al. 2018; Cai et al. 2015).

12.4.13.1 Potential Mechanism of Action of Arsenic in Different
Malignancies

Arsenic and its related mixes twins a various mechanism lead to different signal
transduction pathways to impact different cell reaction, for example, growth inhibi-
tion, triggering apoptosis, angiogenesis hindrance, and some more. Arsenic may
activate its biological impacts by communicating with firmly dispersed cysteine
residues on basic cell proteins. Arsenic increases a potential achievement particu-
larly in one sort of malignancy called APL. In greater part of APL cases, it is
described by the t(15:17) translocation which leads to the arrangement of PML
and RAR gene fusion. This combination is a delegate of several transcription factors
(Yu et al. 2014; Levine 1997; Miller Jr et al. 2002). The above protein helps in the
blockage of genes which is dependable of myeloid differentiation. Gene sequences
of PML describe that it has cysteine rich region which aids arsenic cooperation. This
PML protein typically restricted in nuclear body present inside the nucleus (Davison
et al. 2002; Alimoghaddam 2014). The association of PML-RAR in leukemia
prompts the suppression of nuclear bodies which at last dispersed the PML proteins
into smaller fragments. ATO along with RA also hinders the myeloid separation by
PML-RAR combination which executes in ATRA treatment for APL (Davison et al.
2002). Arsenic also leads to reduction of PML-RAR combination protein and it was
demonstrated as a new option for the therapy of ATR as in both RA-resistant and
RA-sensitive APL patients it shows total abrogation (Jing 2004; Zhang et al. 2001).
Arsenic trioxide impacts the advancement of a molecular protein which co-localizes
with PML in nuclear bodies and inhibits transcription of gene called Daxx
(Lallemand-Breitenbach and de Thé 2010). Daxx which has a significant function
in regulation of death related genes transcription in Fas initiated apoptosis (Bernardi
and Pandolfi 2007; Percherancier et al. 2009). So a slight rise in arsenic concentra-
tion legitimately impacts acute promyelocytic leukemia inside nuclear bodies and
adequate to induce Daxx-subordinate apoptosis. ATO additionally has some effect
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on the covalent alteration of PML with SUMO-1 which is an ubiquitin like protein,
so it related in the growth of PML-containing nuclear bodies in the nucleus.
Accordingly it assumes a lead function in pro-apoptotic signal transduction (Zhang
et al. 2001). Subsequently an ideal dose of arsenic upgrades the SUMO-1 modifica-
tion of PML-RAR and eventually prompts apoptosis.

12.4.13.2 ATO on Cell Signaling Pathways
Scientific literatures already asserted that arsenic associated with upregulation of
several pro-apoptotic pathways in various tumor cell lines might be subject to PML
and P53. ATO enhances the P53 expression in MBC-1, a B-cell lymphoma gastric
malignant cells, ultimately results in apoptosis followed by caspase activation (Kang
et al. 2019; Ma et al. 2014; Zhong et al. 2018). In human T-cell lymphotropic virus
type 1 cells the recommended dose of ATO brings about the accumulation of P53,G1
phase arrest, expands the level of Cip1/p21 and p27KIP1, dephosphorylation of
retinoblastoma protein, and inevitably prompts collection of P53 which triggers
apoptosis (Yih and Lee 2000; John et al. 2000). In human fibroblast cells, ATO
prompts the double strand breaks which likewise finish up in phosphorylation or
enhanced expression of P53, so it additionally helps in enhanced expression of P53
downstream proteins (P21 and others) (Ishitsuka et al. 2000; Williams and
Schumacher 2016). Scientists likewise provided the insight that arsenic treatment
in certain concentration insists P53 aggregation mainly because of the inclusion of
phosphatidylinositol-3-kinase related proteins, inside an ataxia-telangiectasia
transformed pathways (Yu et al. 2014; Levine 1997; Shiloh 2003; Zannini et al.
2014). Bcl-2 mainly involved in binding with the regulation of arsenic-mediated
apoptosis, ATO strongly upregulates p53, other growth arrest related genes in
apoptosis while it cause downregulation of Bcl-2 in APL patients (Carr and Jones
2016; Zheng et al. 2010; Kumar et al. 2018). Arsenic also regulates the binding of
PML, Bax, p27KIP1 to nuclear bodies (Liu et al. 2016; Lam et al. 2014), alongside
PML-containing cells, which synergistically move with IFNs (interferons) so that
induce PML, to insists tumor cell death.

12.4.13.3 ATO in Apoptosis
ATO mainly involved in caspases activation recent reports on myeloma cells shows
that caspases-9 is fundamentally initiated in arsenic-mediated apoptosis in combina-
tion with dexamethasone where as in neuroblastoma cell lines and in myeloid
leukemia cells ATO prompted apoptosis by stimulating caspases-3 a definitive
system by which arsenic triggers apoptosis might be by suppressing telomerase
activity (Hayashi et al. 2002; Ishitsuka et al. 1999). In NB4 cells arsenic trioxides
brought about decrease in the expression of telomerase genes and its activity
(Xu et al. 2014; Chou et al. 2001) this may be because of quick reaction of arsenic
trioxide on transcription factors, for example, Sp1 and Myc.
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12.5 Arsenic and ROS

ATO upsets the natural oxidation and oxidative reduction equilibrium by managing
different pathways including various redox responses with intimate oxidants and
other cellular antioxidant systems. As arsenic has high affinity for thiol gatherings,
proteins with approachable and firmly spaced thiol moieties with high thioldisulfide
oxidation potentials might be redox-sensitive and redox-regulating distinctly medi-
ate principal cell functions. Arsenic suggests it is both remedial and poisonous
impacts by targeting redox-sensitive enzymes and proteins (Chen et al. 1998).
Endogenous glutathione and thioredoxin have a significant function in regulating
the redox signaling and subsequently shielding cells from toxic effects of arsenic
compounds likewise recommends that arsenic incomprehensibly shares numerous
properties of tumor promotors as impacts the various redox sensitive signaling
molecules, for example, AP-1, P52, P21, and S-nitrosothiols which bring about
the dysregulation of different cell signaling gene expressions (Pace et al. 2017).

12.6 Summary

While intensive attempts have been made for the treatment of malignancy, this threat
is yet the subsequent driving reason for death in various nations and their worldwide
frequency and mortality are probably going to enhance in the coming decades.
Arsenic trioxide significantly modulates several mechanisms prompt different signal
transduction pathways to impact different cell reactions, for example, development
hindrance, enlistment of apoptosis, angiogenesis restraint, and many more. Here we
have demonstrated the likely mechanisms of action about the healing specialty of
ATO toward different human malignancies as shown in Table 12.1. Arsenic, alone
or in mix with other anticancer therapeutics, for example, molecular targeted drugs,
radiation, chemotherapy helps in the induction of apoptosis in various malignant
growth cell types. Because of ongoing headway in innovations and utilization of
numerous anticancer treatments quite possibly several cellular biological processes
may produce an alternate dangerous population of malignant growth cells, some of
which may secure a specific medication obstruction. Thus noble therapeutic options
are earnestly needed to beat drug obstruction and upgrade both the disease results
and the personal satisfaction for patients with disease. Currently number of clinical
trials under path in a few sorts of tumorigenesis to examine the restorative capability
of arsenic and it related compounds. Arsenic in its desired concentration
demonstrated to have remedial potential which previously represented by APL and
subsequently it is suggested as a potential guarantee for preclinical model of
different sorts of malignancy as well. Moreover, studies are required to comprehend
the connection between apoptosis activation and hereditary changes in malignant
cells because of arsenic which may upgrades the investigations in selectivity for
disease treatment. Further progressions are needed to comprehend the part of arsenic
and its synergistic anticancer methodologies with other regular combination with
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Table 12.1 ATO combinational therapy

Serial
no Cancer type

ATO in
combinational
therapy Pathways if known References

1 Acute
promyelocytic
leukemia

ATO in mix with
ATRA (all-trans-
retinoic acid)
(ATO + ATRA)

Blend of ATO and
APL prompts
proteasomal
debasement of
PML-RARα and
destroys Pin1
protein

Ota et al. (2018),
Kozono et al.
(2018),
Mohammad et al.
(2014), and Wang
et al. (2017a, b)

2 Acute myeloid
leukemia
(AML)/FLT3

(ATO + ATRA) Co-restraint of
Fms-like tyrosine
kinase 3 (FLT3)
signaling pathways

Wang et al.
(2017a, b)

Lymphoma
and leukemia

ATO + buthionine
sulfoximine (BSO)

ROS-mediated
upregulation of
death receptor 5 and
phosphorylation of
JNK

Ota et al. (2018)
and Chen et al.
(2006)

3 Hepatoma (ATO + BSO) Decreased GSH
level

Lin et al. (2005)

4 Glioma (ATO + BSO) Suppression of
cancer stem cell
(CSC) properties

Karsy et al. (2014)

5 Lung cancer (ATO + BSO) GSH depletion Han et al. (2008)

6 Ovarian cancer (ATO + BSO) GSH exhaustion,
expanded
intracellular ROS
production,
activation of stress-
related pathway

Ota et al. (2018)
and Ong et al.
(2011)

7 Cervical
cancer

ATO
(As4O6) + CDDP

Synergistic
initiation of caspase-
3

Ota et al. (2018)
and Byun et al.
(2013)

8 Ovarian cancer (ATO + CDDP) Upregulation of
BAX and TP53

Zhang et al. (2009)

9 Lung cancer (ATO + CDDP) Decrease in Bcl-2
and clusterin and
increase in Bax

Li et al. (2009)

10 Prostate cancer ATO + radiotherapy Inhibition of
Akt/Mtor signaling
pathway

Chiu et al. (2012)

11 Oral cancer ATO + radiotherapy Inhibition of
metastasis, tumor
growth, and
angiogenesis

Kumar et al. (2008)

12 Breast cancer ATO + radiotherapy Bcl-2/Bax ratio Liu et al. (2012a, b)

(continued)
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respect to ATO-based mix remedial to develop a novel consolidated treatment for
malignant growth.
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Abstract

Arsenic is an extremely hazardous metalloid affecting the health of millions of
people worldwide. Numerous technologies have been developed to remove As
from drinking water/wastewater, of which adsorption is considered as the most
effective technique. Nanoadsorbents such as nano-scale zero valent metals,
carbon nanotubes (CNTs), and biochar/biomaterial-based nanocomposites are
being widely used by the researchers for water treatment. In this chapter, recent
developments in the nanoadsorbents to eliminate As from water/wastewater are
discussed. Application of raw and engineered nanoparticles (NPs) such as iron
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oxide/hydroxide, alumina, copper oxide, titanium oxide, bi-metal oxides and
carbonaceous NPs are primarily focused. Different techniques for the physico-
chemical characterization of nanoadsorbents, including Fourier transform infra-
red (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), scan-
ning electron microscopy (SEM), transmission electron microscopy (TEM) and
X-ray photoelectron spectroscopy (XPS) have been discussed briefly. The influ-
ence of numerous factors (e.g., pH, synthesis method, initial concentration,
particle size, competing ions, and contact medium) on As adsorption capacity
by nanoadsorbents are deliberated. Furthermore, the chapter also discusses As
adsorption mechanisms and regeneration and separation of nanoadsorbents from
water/wastewater.

Keywords

Nanoparticles and nanotechnology · Carbon nanotubes · Metal oxides ·
Remediation · Drinking water and wastewater treatment

13.1 Introduction

Water is an important element for the existence of life in the biosphere. The Earth has
only 2.5% of water resources, of which 30% is groundwater, which is used for
drinking, industrial, and agricultural purposes worldwide. However, increased
urbanization and industrialization presented a significant threat to groundwater
safety. Of the numerous causes of pollution, groundwater contamination due to the
geogenic release of arsenic (As) is known as a major environmental and public
health concern for millions of people in the world (Raza et al. 2017; Shahid et al.
2018a; Amen et al. 2020b). Arsenic is ranked first in 20 highly-hazardous substances
as per the ASTDR (Agency for Toxic Substances and Disease Registry) (Jaggard
et al. 2010).

The As toxicity is directly linked to its oxidation state and speciation. In water,
inorganic As species are predominantly As(III) and As(V), whereas organic As
species are arsenobetaine, dimethyl arsenic acid (DMA), and monomethylarsonic
acid (MMA) (Niazi and Burton 2016; LeMonte et al. 2017). Chemical speciation of
As relies primarily on the redox potential (Eh) and pH of aqueous medium. Arsenate
is prevalent in the acidic conditions with oxidized conditions, however, the As(III)
predominates in the alkaline pH under reduced conditions. Arsenite is 60 times more
toxic relative to As(V), whereas the As organic species, e.g. DMA and MMA are
70 times less harmful compared to inorganic As species (Shakoor et al. 2016; Amen
et al. 2020b).

Increased concentration of As in the aquatic environment is due to the natural
causes including volcanic eruptions, weathering, and hot springs (Tabassum et al.
2019a; Shah et al. 2020). Arsenic is used as insecticide and to preserve wood as it is
bactericidal and resistant to decay. Moreover, the primary drivers of As pollution in
water are mining operations, pharmaceuticals, and electronic industries (Amen et al.
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2020a). Nearly 200 million people in the world are at risk due to the naturally
existing As in the groundwater and surface water (Shakoor et al. 2015). In Pakistan,
approximately 47 million people are susceptible to As-contaminated drinking water
according to the recent scientific report (Shahid et al. 2018b). The key causes of As
build-up in the human body include As-contaminated food and drinking water. The
As concentration beyond the suggested level (10 μg/L) by World Health Organiza-
tion (WHO) is the reason of harmful diseases, such as arsenicosis, hyperkeratosis,
diabetes mellitus, cancer, diarrhea, and hypothyroidism (Mohan and Pittman
Jr. 2007; Abdul et al. 2015; Sarkar and Paul 2016; Amen et al. 2020a).

A number of treatment strategies has been suggested to tackle pervasive As,
which are summarized by researchers in the form of review (Lata and Samadder
2016; Kumar et al. 2019; Sanjrani et al. 2019; Tabassum et al. 2019b; Amen et al.
2020b). Water treatment techniques for the As removal comprises membrane sepa-
ration, lime-softening, electrochemical methods, coagulation/flocculation, and ion
exchange. However, such procedures do have serious disadvantages like the higher
cost and energy needs, excessive waste generation, higher maintenance and opera-
tional cost, inadequate contaminant removal, etc. (Thekkudan et al. 2016). Among
these conventional methods, adsorption is known as the most desirable strategy due
to its sustainability, efficient processing, high adsorption potential, and cost-
effectiveness. Therefore, there is a need of continuous research on ease to synthesize,
economically viable, environment friendly, and reproducible adsorbents for the fast
and effective As removal (Fu and Wang 2011; Ray and Shipley 2015; Siddiqui et al.
2020).

Adsorption has become the most promising process amid other techniques,
because it does not introduce unwanted by-products and a single adsorbent have
capability to be reused after regeneration over a relatively considerable number of
cycles (Raval and Kumar 2020). Different types of adsorbents have been used for
adsorption including mineral products, surfactants, industrial wastes, synthetic
activated carbon, and ferrous materials, etc. (Hashim et al. 2011). In order to attain
the goal of fast and efficient adsorbent fabrication, scientists have produced nano-
sized adsorbents. The intra-particle diffusion capability of macromolecules reduces
the adsorption efficiency and potential of the adsorbent, whereas nanoparticles (NPs)
possess low diffusion resistance, which increases the value of NP adsorbents (Attia
and Hu 2013).

Nanoparticles have several unique attributes including fast separation, strong
reactivity, catalytic potential, higher quantity of active sites, and small size that
allows the removal of As more effectively than other adsorbents (Lata and Samadder
2016). Nifty nanocomposites consisting of metal oxides, polymers, and carbon were
fabricated as a prospective adsorbent for the treatment of contaminated water (Hua
et al. 2012; Qu et al. 2013; Ray and Shipley 2015). Their distinctive qualities like the
relatively low cost, high surface-to-volume ratio, reusability, surface modifiability,
and biocompatibility have allowed them to become increasingly important as effec-
tive adsorbents (Hua et al. 2012; Wang et al. 2012).

Among the metal nanoadsorbents, the iron oxide NPs generally known as mag-
netic nanoparticles (MNPs) are the most studied (Shen et al. 2009; Dave and Chopda
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2014). Iron oxide core-based NPs including akaganéite (β–FeOOH), magnetite
(Fe3O4), maghemite (γ–Fe2O3), and geoethite (α–FeOOH) are among the best
adsorbents due to their convenient reusable property. This aspect allows their
multiple reuses for the adsorption and thus decreases the issue of secondary pollution
(Raval and Kumar 2020). The presence of iron provides them magnetic
characteristics which enables them to be separated quickly from contaminated
water by applying basic magnetic field. There are several drawbacks if the MNPs
are of too small size because they need a large magnetic field for removal, which also
increases the overall cost of treatment process (Shen et al. 2009; Thekkudan et al.
2016). The other metal oxide NPs comprise zinc, titanium, and cerium. When
reduced to nano-scale, they possess higher surface area. Furthermore, the carbon
nanotubes (CNTs) are also investigated to analyze their ability to remove heavy
metals from the polluted water (Tian et al. 2012; Gangupomu et al. 2014). The
presence of carbon makes it favorable for the adsorption due to the availability of
high energy binding sites (Gangupomu et al. 2014).

Bare NPs are susceptible to oxidation via atmospheric oxygen accumulated in
water which highlights the need of surface modification to stabilize the NPs and their
consequent utilization as an adsorbent (Maity and Agrawal 2007). Henceforth, the
NPs surface ought to be functionalized with organic/inorganic layer to enhance the
biocompatibility and functionality of adsorbent and to minimize instability. Relative
to the inorganic molecules, organic molecules layering improves the possible usage
of NP through retaining their magnetic characteristics and assembling of reactive
functional groups (hydroxyl, aldehyde, amino, and carboxyl groups) (Dong et al.
2009).

The modified NPs possess higher adsorption capacity because modification
imparts characteristics in the surface layer that promote improved adsorption
(Wang et al. 2012; Qu et al. 2013; Ray and Shipley 2015). The polydispersion and
size regulation are useful characteristics which must also be taken into account when
designing new methods of separation as they play a major role in specifying the NP
properties. We have summarized the recent developments in the usage of different
NPs to remove As from water/wastewater.

13.2 Nanoadsorbents Application for As Removal

Different types of NPs including metal oxide, metallic, bimetallic, zeolite, ferrite,
carbonaceous, polymer-based NPs, etc. are studied to evaluate their potential to
eliminate metal(loid)s from the contaminated water (Fig. 13.1). The As is primarily
removed using NPs by the process of adsorption on their surfaces. Different types of
nanoadsorbents along with their adsorption capacity are mentioned in Table 13.1.
Below is the detailed account of the various kinds of NPs reported in the scientific
investigations for As removal from water.
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13.2.1 Metal Oxides

13.2.1.1 Iron Oxide/Hydroxide NPs
The metal oxides are further divided into metallic NPs, bimetallic NPs, and metal
oxide NPs (Fig. 13.2). Iron oxide NPs are very likely used to remediate a broad
spectrum of contaminants based on low cost, simple processing, and modification.
Nano-iron oxides possess chemical inertness, high surface area-to-volume ratio,
biocompatibility, low toxicity and are superparamagnetic due to which they could
conveniently immobilize different adsorbents on their surfaces for enhanced opera-
tion (Sanaei et al. 2020). Some iron compounds such as granular ferric hydroxide
(GFH), hematite, iron oxide-layered materials, and goethite are considered as ideal
adsorbents for As adsorption, as low amount of As leaching has been indicated from
the depleted adsorbent (Lata and Samadder 2016).

Raval and Kumar (2020) coated the iron oxide NPs to fabricate bilayer
nanoadsorbent (bilayer-OA@FeO NPs) to remove As(V). The bilayer-OA@FeO
NPs exhibited maximum adsorption capacity (32.8 μg/g) for As(V). Various forms
of iron oxides, for example, wustite (FeO), α-Fe2O3, Fe3O4, and g-Fe2O3 and iron
hydroxides including bernalite (Fe(OH)3), feroxyhyte (d-FeOOH), b-FeOOH, and

Fig. 13.1 Flow chart indicating the removal of As using nanoadsorbents
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α-FeOOH, are reported by Nassar (2012). These iron NPs are taken out of water
using high magnetic gradient separation (HGMS) method after adsorption due to
their magnetic properties. Mamindy-Pajany et al. (2011) analyzed the As
(V) adsorption on magnetite, goethite, and hematite. They indicated that the adsorp-
tion capacity was directly proportional to the iron concentration in the adsorbent, and
goethite possess maximum adsorption compared to hematite and magnetite, whereas
ZVI exhibited lowest adsorption capacity for As(V). This was due to high iron
contents in goethite than hematite and magnetite.

Chen et al. (2014a, b, c) have developed ultrafine porous α-Fe2O3 NPs with high
refined surface hydroxyl groups to remove As(V) from wastewater. They faced the
issue of poor aggregation and adsorbent separation, which was resolved by forming
magnetic γ-Fe2O3 nanostructures via atmospheric calcination of Fe3O4/phenol–
formaldehyde resin. In another study, the ascorbic acid was used to coat the Fe2O3

NPs for As removal, which enhanced the porosity and productively hindered the Fe
release into solution (Feng et al. 2012).

13.2.1.2 Alumina NPs
The alumina (A2O3) is one of the crucial metal oxides that exists in natural soils and
possesses variety of structures i.e. α, β, ɤ, ɵ, and χ. The α-Al2O3 is used in
conventional techniques as a natural adsorbent having high stability. Alumina is
considered as a prominent adsorbent possessing solid interatomic bonding as it has
interesting characteristics, like electrical insulation, thermal conductivity, corrosion
resistance and its compressive strength is very high. Saha and Sarkar (2012)
fabricated chitosan-grafted polyacrylamide (CTS-g-PA) alumina NPs adsorbent for
the As removal. The modification of NPs by grafting new functional groups is done
due to numerous benefits, such as (1) to enhance sorption sites density, (2) to alter
the pH range for metal removal, (3) to modify the sorption site and uptake mecha-
nism according to the targeted metal. Darban et al. (2013) used precipitation method
for the fabrication of nanoporous g-alumina using low-cost raw material (kaoline)
which possess surface area of 201.53 m2/g and particle size of 22–23 nm. This
alumina powder exhibited high potential for adsorption and regeneration.

Fig. 13.2 Schematic representation of different types of metal oxides

13 Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water 333



13.2.1.3 Copper Oxide NPs
The copper oxide (CuO) is considered as promising nanoadsorbent as it effectively
removes As from water without oxidation of As(III) to As(V) and changes in the
pH. Moreover, it performs well under the influence of co-existing ions. Such NPs
can be regenerated quickly and retrieved for As removal from water. The sand was
used as a support material with cupric oxide for a batch study in the polypropylene
centrifuge tubes for the removal of As. The outcomes suggested the use of CuO NPs
in the field applications for As removal from water (Reddy et al. 2013; Lata and
Samadder 2016).

13.2.1.4 Titanium Dioxide NPs
The titanium dioxide (TiO2) NPs are chemically stable, non-toxic, simple to synthe-
size and cost-effective. They present photocatalytic behavior, rendering them an
effective water/wastewater treatment agent. Titanium is used in the form of TiO2 and
nanoporous titania for As removal in numerous studies (Hung et al. 2007). The
surface complexation model (SCM) was used to describe the characteristics of
nanoporous titania adsorbent (NTA) surface. Using SCM, Han et al. (2010) reported
the type of surface specie involved in the noticeable removal of As at a defined
pH. The monodenate surface complexes have been found more productive across a
large pH spectrum for As adsorption, whereas bidenate surface complexes adsorbed
the As(V) at pH 8 (Han et al. 2010).

The specific organic polymers were used to fabricate economical magnetic
polyaniline and strontium-titanium (MP-SrTiO3) composites. The surface area for
metal adsorption was increased due to integration of accumulated magnetic NPs and
SrTiO3 in the coatings of polyaniline. From 50 ppm As(III) solution, the fabricated
composite eliminated 95.24% of As(III). The electrostatic interaction among posi-
tively charged nanocomposite and As ions due to the existence of imine–N and
amine–N< groups on polyaniline results in As elimination. The maximum removal
of As(III) (67.11 mg/g) was observed at pH 6, temperature 303 K, contact time
250 min and at 2 mg/mL of adsorbent dosage (Nodeh et al. 2018).

13.2.1.5 Bi-Metal Oxide NPs
The hybrid bi-metal oxides possess an increased adsorption capacity due to syner-
getic effect of both metal oxides compared to individual metal oxide. Different metal
oxide hybrids have been used to remove As, including Fe-Mn (Kong et al. 2014),
magnetite-graphene oxide (Chandra et al. 2010), Fe-Ti (Gupta and Ghosh 2009),
Mn-Co (Zhang et al. 2010), and Fe-Cu (Zhang et al. 2013). Parsons et al. (2009)
produced MnFe2O4, Fe3O and Mn3O4 NPs and recorded comparatively improved
adsorption potential in bi-metal oxides. Zhang et al. (2010) utilized a technique of
chemical co-precipitation for the production of MnFe2O4 and CoFe2O4 magnetic
NPs. The paramagnetic characteristic of these nanomaterials allows them to be
separated easily after adsorption and desorption by applying the external magnetic
field. Chandra et al. (2010) produced magnetic-graphene oxide hybrids to remove As
and observed that the As(III) was separated via surface complexation while As
(V) removal was because of electrostatic attraction. The adsorption of As(V) was
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higher when pH < pHzpc indicating the presence of higher number of positively
charged functional groups, however, in As(III) case, the pH > pHzpc represents
more availability of negatively charged As which reduced its adsorption.

Ghosh et al. (2012) used hydrazine sulfate to modify the goethite NPs (HS-GN)
for As(V) removal from wastewater. The 99% of As(V) was eliminated from the
water using 6 g/L of HS-GN from 50 mg/L of initial As concentration at 240 min of
contact time. The HS-GN was successfully regenerated using NaOH solution
(pH 10.3) without losing the adsorption effectiveness. Fast magnetic separation
was accomplished through doping Mg(II) into α-Fe2O3 via solvothermal technique
to generate ultrafine superparamagnétic nanocrystallites. Improved adsorption of As
(III) and As(V) at 10% concentration of Mg was detected in lower As equilibrium
concentration which is credited to modification of microstructure using Mg(II) (Tang
et al. 2013). Deedar and Aslam (2009) produced pristine and iron-doped TiO2 NPs
via sol-gel method and evaluated their efficiency for As removal from water. The
iron-doping assist to increase the TiO2 NPs adsorption potential by avoiding increase
in particle size and thereby preserving the surface area needed for the adsorption.
The titania NPs having high affinity for As have been fabricated via the fluid
impregnation technique (Danish et al. 2013). Both forms, pristine and metal-doped
titania, presented 90% As removal with an initial metal concentration of 2 mg/L in
water. The influence of NPs coated glass bead for As(III) elimination in fixed bed
columns was also studied under optimized conditions (Parsons et al. 2009). The NPs
coated glass beads were easily regenerated using 10% NaOH solution.

13.2.2 Carbonaceous NPs

Carbon-based NPs are being utilized largely for the removal of heavy metals for the
past few decades (Bassyouni et al. 2020). Many types of NPs, for example, CNTs,
carbon fiber, activated carbon (AC), and graphene have exhibited very important
characteristics in the course of wastewater treatment by successfully eliminating the
As from the samples.

13.2.2.1 Carbon Nanotubes
The most effective carbon-based NPs are the CNTs discovered by Iijima (1991).
CNTs have very remarkable properties such as distinctive structure, mechanical,
electrical, physiochemical, and semiconducting properties. CNTs have been utilized
widely in the process of wastewater treatment for eradicating the dyes and heavy
metals due to their exceptional properties and distinctive structure (Li et al. 2003;
Madrakian et al. 2011). These are grouped as single-walled and multi-walled carbon
nanotubes as indicated by their superstructure (Fig. 13.3). A single layer of graphene
sheet in cylindrical form is single-walled carbon nanotube while multiwalled carbon
nanotubes are made of several layers of graphene sheets in the form of cylinder. The
space between the adjoining layers of graphene in multiwalled CNTs is 0.34 nm (Lal
et al. 2020). The distinctive properties of carbon nanotubes can be enhanced through
surface modification by conjugating different kind of metals. This results in the
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increase of many surface functional groups with specific surface area and improved
dispersion rate. Carbon nanotubes can be modified through oxidation, consolidating
with organic compounds and combining with other metal ions in order to increase
the sorption capacity (Mubarak et al. 2014). The process of adsorption of metal ions
on carbon nanotubes was credited to the chemical and electrostatic interaction
between surface functional group of carbon nanotube and metal ions (Lal et al.
2020).

The deep eutectic solvents (DESs) consisted of glycerol and N,N-diethyl ethanol
ammonium chloride were used to functionalize the CNTs to remove As(III) from
wastewater (Al Omar et al. 2017). Through the deployment of response surface
methodology central composite experimental design setup, the optimal requirements
for the removal of As(III) (17 mg/g) by consuming 20 mg of adsorbent dosage were
found to be at pH 6.0 and contact time of 55 min. Budimirović et al. (2017)
established the multistage functionalized multiwalled carbon nanotubes (MWCNTs)
by successive modification using iron hydroxide followed by improved terminal
amino groups on the surface to remove the As(V) (Budimirović et al. 2017). This
research showed the 91–97% elimination of As using the modified MWCNTs at a
pH level of 7.12 because of the interaction between negatively charged monovalent
anion H2AsO4

� and positively charged adsorbent surface.
Polystyrene nanocomposites were modified using CNTs and 4-aminophenyl

methyl sulphone were used as nanofillers, followed by analyzing their capabilities
for the sorption of As(V) and their biodegradation behavior. The results revealed the
development of a link between CNT and polystyrene that can effectively remove As
(V) with 99% efficacy (Kausar 2017). A technique has been established by Aranda
et al. (2016) to determine the very less quantity of As(V) in wastewater adsorbed on
tertiary amine aliquot modified MWCNTs using X-Ray fluorescence (XRF) method.
For best detection limit, better selectivity, reproducibility, wide range of pH, and

Fig. 13.3 Structure presenting adsorption sites on MWCNTs (Reproduced with permission from
Bassyouni et al. (2020))
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exception of organic solvents to estimate the trace amount of As in wastewater, the
researchers recommended the application of this technique (Aranda et al. 2016).

Many studies on alteration and functionalization of CNTs have been conducted to
control the accumulation issues and insolubility problems in aqueous conditions.
Particularly, the quick and successful elimination of heavy metal ions from waste-
water through integration of the CNTs adsorption behavior with the magnetic
properties of iron oxide is of considerable importance. A magnetic iron oxide carbon
nanotube was made via a solid phase technique and afterwards it was functionalized
using glutathione via a simplistic chemical technique to improve the adsorption
ability of 19.12 mg/g As(III). Chen et al. (2014a, b, c) have established a one-pot
solid phase synthesis method to prevail monotonous, unproductive, and ecologically
unfavorable liquid phase synthesis. This also helps to enhance magnetic iron oxide
CNTs for the effective removal of As (Chen et al. 2014a, b, c). The developed
magnetic iron oxide carbon nanotubes carry the properties of perfect adsorbent, such
as high specific surface area, greater dispersibility, and desired magnetic
characteristics including great capacity of adsorption, i.e. 24.04 mg/g As(V) and
47.41 mg/g for As(III).

A graphene@CNT@iron oxide nanostructure was developed by Vadahanambi
et al. (2013) by microwave route and further functionalized it with amino groups,
that displayed extraordinary efficient As removal because of its permeable structural
composition and high ratio of surface-volume (Vadahanambi et al. 2013). The data
of As adsorption was well-fitted to Langmuir model and displayed the highest
capability of adsorption such as 111 mg/g for As(III) and 66 mg/g for As(V). The
adsorption of As on the synthesized MWCNTs highly depends on the availability of
surface functional groups, such as carboxyl, amino, and hydroxyl groups. This
adsorbent exhibited a great performance without any significant decrease in the
adsorption capability up to five cycles as indicated by recycling studies. In a
research, a network of carbon nanotubes layered with TiO2 was developed by
using the filtration steam hydrolysis technique and additionally assessed for the
removal of As from water (Liu et al. 2014). A thick layer of TiO2 about 5.5 nm
completely enclosed the surface of carbon nanotube and increased the surface area
by two times up to 196 mg/g that is more beneficial than the immaculate carbon
nanotube.

The sorption potential of Cu/MCE (MCE-mixed cellulose ester) was compared
with the Cu/CNT for As(III) elimination. The Cu/CNT removed 90% of As(III),
however, the adsorption potential of Cu/MCE for As(III) was comparatively lower
(75%). The adsorption of As(III) occurs in two stages. Firstly, the conversion of As
(III) to As(V) occurs by Cu and after that As(V) is adsorbed efficiently on the
membrane (Fig. 13.4). Veličković et al. (2012) studied the carbon nanotubes
functionalized with Polyethylene glycol (PEG) for As removal from wastewater.
They showed that the maximum As adsorption was 13 mg/g at initial concentration
of 10 mg/L. The magnetron sputtering technique was used to embed the Cu on the
CNTs membrane (Cu/CNTs) without any chemical treatment (Luan et al. 2018). The
As(III) removal with Cu/CNT was contrasted with mixed cellulose ester (Cu/MCE)
that had comparative absorptivity. The efficiency for removing the As(III) with
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(Cu/CNT) was more than 92% while efficiency noted with (Cu/MCE) was only
75%. The elimination of As ions from the water occurred in two stages. Initially, As
(III) was oxidized to As(V) by Cu and afterwards, the As(V) was efficiently absorbed
on the membrane.

Ntim and Mitra (2012) applied MWCNTs and zirconia nanohybrids to remove As
(III) and As(V). The maximum adsorption capacity for As(V) and As(III) was 5 mg/
g and 2 mg/g, respectively. The removal rate for As(V) was greater than As(III). This
process of adsorption is finely depicted by pseudo-second-order kinetics. The
optimal pH for removing the As(V) is 6. At this pH, the dominant As species was
HAsO4

�2 and the pHPZC (point of zero charge) (the pH at which the net charge on
adsorbent surface is zero) for MWCNTs-zirconia nanohybrid was 6.9 (Ntim and
Mitra 2012). This huge difference in charge produced a strong attraction and
enhanced the adsorption for As(V). On the contrary, A(III) kept up a practically
steady elimination rate in the pH range of 5–8. Past reports displayed that CNTs
modified by iron oxide have a great ability of As adsorption (Mishra and
Ramaprabhu 2010; Ntim and Mitra 2012).

The thermodynamic studies revealed that process of adsorption is endothermic.
The most extreme adsorption limits of As(V) elimination were seen as 24.69 mg/g
utilizing e-MWCNTs/Fe2+ and 14.45 mg/g by using e-MWCNTs/Fe3+ at 45 �C. The
ideal pH for As(III) adsorption was seen as pH 8. At this pH level, the kinetic energy
for As(V) adsorption was more rapid than As(III). Usually, e-MWCNTs/Fe2+

accomplished higher adsorption capabilities than e-MWCNTs/Fe3+, because the
surface of the adsorbent turns out to be more positive at higher iron load (Maiti
et al. 2012). Hence, more attraction was found towards the negatively charged As
species that were referenced previously. The enhanced As(III) removal rate at pH
8 may be credited to the presence of As (III) as a negative anion which advances the
adsorption on the active site of iron oxide surface (Issa et al. 2010).
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Cu CNT
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Purified
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As(III)

Oxidation

Cu
As(V)
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Fig. 13.4 Arsenic removal mechanism using Cu/CNT membrane (Reproduced with permission
from Chen et al. (2014a, b, c))
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Mixture of MWCNTs and MnO2 (manganese dioxide) (MWCNT/MnO2) was
fabricated for the As(III) and As(V) removal from water (Saleh et al. 2011). During
As removal, the MnO2 oxidizes As(III) and itself gets reduced from Mn(IV) to Mn
(II). Consequently, this nanoadsorbent joins the oxidative characteristics of MnO2

with the adsorption properties of MWCNTs for the higher As removal from waste-
water (Saleh et al. 2011).

The Fe-MWCNTs is produced by doping MWCNTs with Fe�. The Fe-MWCNTs
eliminated 77% of As(V) and 74% of As(III) in 60 min at pH 6–7. In water, Fe�

oxidized from Fe2+ and Fe3+ hydroxides, results in As removal through complexa-
tion. The maximum adsorption capacity for As(III) and As(V) was 200 mg/g and
250 mg/g, respectively (Alijani and Shariatinia 2017).

13.2.2.2 Graphene-Based NPs
The graphene has an extraordinary potential of adsorption and earned significant
consideration in the process of water treatment. The use of graphene is very
economical and beneficial as it could be easily produced from graphite and hence
lowers the ultimate cost of water treatment process. Graphene has a large surface
area with a structure of a sp2 hybridization and available in the form of carbon sheets.
After adsorption of pollutants, the isolation of graphene from the water is a tough
task that can prompt recontamination or nano-toxicity. To improve the graphene
characteristics, scientists have been investigating numerous functionalized graphene
materials (Sweetman et al. 2017). Graphene oxide (GO) is an excellent adsorbent
with various hydrophilic oxygenated functional groups, such as carboxyl (–COOH),
epoxy (C–O–C), hydroxyl (–OH), and carbonyl (–C¼O) (Gao 2015). By using a
modified Hummers method, it is very easy to obtain graphene oxide from the
graphene by reacting with acid (Han et al. 2013). The oxygenated functional groups
on GO increase its permeability for water resulting in enhanced adsorption (Hu and
Mi 2013).

To remove organic and inorganic contaminants from wastewater, the modifica-
tion of graphene oxide with the magnetic NPs is being studied extensively. The
utilization of water-dispersible magnetite reduced graphene oxide to eliminate the
As from wastewater has been reported by Chandra et al. (2010). The maximum
adsorption capacity according to Langmuir model was 13.10 mg/g and 5.83 mg/g for
As(III) and As(V) removal, respectively. In another study, the magnetic iron
oxide@GO was produced using 51% of iron, the highest adsorption capability of
26.76 mg/g and 54.18 mg/g for As(V) and As(III), respectively, was reported
(Yu et al. 2015). The As(V) linked to the functional groups containing iron oxides
during the adsorption phenomenon and the Fe and As dispersal was interrelated as
suggested by the elemental dispersion map created through the XRF method.

Yu et al. (2015) reported the 3D nanostructured Fe3O4 aerogel/grapheme fabri-
cation to remove As for wastewater treatment. The aerogels display a significant
adsorption ability up to 40.048 mg/g for the As(V). The superlative adsorption
characteristics of nanohybrids of magnetic manganese ferrite (MnFe2O4) and
single-layered GO for As removal are reported by Kumar et al. (2014). The heavy
metals are removed by the GO-MnFe2O4 adsorbent efficiently and the
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nanoadsorbent is retrieved from the water with magnet. The conversion of As(III) to
As(V) is ascribed to the existence of a massive numbers of the available functional
groups in the presence of Mn to assist the adsorption mechanism. The adsorption
mechanism is also favored by the decrease in the pH of solution due the Mn and As
(V) precipitation (Sverjensky and Fukushi 2006).

The two new hybrid nanomaterials TMF (Titania nanotube-manganese ferrite)
and GMF (GO-manganese ferrite) have been introduced by Shahrin et al. (2018) for
their utilization in the water treatment to remove As through adsorption. As
(V) adsorption capabilities recorded by GO-manganese ferrite and titania
nanotube-manganese ferrite were 102 mg/g and 80.8 mg/g, respectively (Shahrin
et al. 2018). The GO-nanocomposite membranes have been fabricated by Rezaee
et al. (2016) to remove As(V) from the wastewater. It was identified that the increase
in GO coating decreased the adsorption capacity for As(V) which might be due to
extraordinary hydrophilic nature of GO (Rezaee et al. 2016).

13.2.2.3 Activated Carbon (AC)-Based NPs
Carbonaceous materials have different forms and activated carbon is one of its types
which has extremely porous inner structure and could be fabricated using diverse
feedstock like nutshells, bamboo, wood, coal, and different organic materials by
applying pyrolysis or chemical treatment. When the carbon material is treated for
activation, its surface area increases and possesses higher ratio of binding sites which
assist the adsorbent interaction with metal ions. The AC is composed of 20% oxygen
or nitrogen and 80% of carbon (Figueiredo 2013). The AC generally binds to other
moieties via π-π interactions; but some variations such as acidic treatment increases
its binding capacity. The AC-metal composites presented greater efficiency for the
removal of contaminants and heavy metals from wastewater by introducing higher
adsorption sites (Reed et al. 2000). The metal saturation of ACs can be accomplished
effortlessly via adsorption of already produced metal NPs on ACs or via decreasing
the solution of metal salt (Reed et al. 2000; Lata and Samadder 2016).

Though the AC adsorption is the latest technology for the elimination of
pollutants, but its application is costly and this could be managed through fabrication
of AC using natural biomass (Hoskins et al. 2002). Economical plant Prosopis
spicigera L resultant silver-saturated carbon (SIC) was fabricated, characterized,
and explored to remove As(III) (Murugan et al. 2017). Higher pH exhibits that there
is no consistent trend in the elimination of As, because the highest adsorption of As
have been identified at two pH values 10 and 4 for 207.5 mg/g and 98.2 mg/g,
respectively. In the acidic environment, the conversion of metallic Ag to Ag+ by
oxidation causes reaction among AsO3

� and the developed Ag3AsO3 precipitate on
the adsorbent surface. While, in the alkaline environment, the adsorption of
H2AsO3

� and HAsO3
2� on the surface of SIC was also observed, which improved

the adsorption potential. With the increasing temperature, the As removal was also
enhanced, and at 45 �C the adsorption capacity for As(III) was 59.19 mg/g (Murugan
et al. 2017). The adsorption data followed the pseudo-second-order kinetics model
and Langmuir adsorption isotherm.
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In a study, the AC was produced using shea cake to remove As. The highest
adsorption capacity for As removal by shea cake AC was 7.87 μg/g which followed
the Langmuir adsorption and first order kinetics model. Activated charcoal was
obtained from the walnut shell utilizing phosphoric acid (5% v/v) and it was assessed
for its ability to remove As from aqueous medium (Fazeli et al. 2016). This
modification enhances the adsorbent surface area from 1067 to 1437 m2/g by, with
the mean pore size decreased from 3.28 nm to 2.08 nm. The 98% of As was removed
in an equilibrium time of 3 min from aqueous media. The maximum adsorption
capacity for As was 120 μg/g and followed Langmuir adsorption isotherm. It is
proposed that the modification of AC by introducing high quantity of free carboxyl
groups causes plenty of chemical and physical interactions on AC surface to absorb
As ions. The ceria-coated powder was utilized for AC fabrication to eliminate As
from aqueous media which exhibited high adsorption capacity for As(V) and As(III)
(12.2 and 10.3 mg/g, respectively) (Sawana et al. 2017).

The robust interaction among adsorbent and As(III) is assumed to be relatively
appropriate over a broad pH range. At pH 8, the maximum adsorption of As(V) has
been reported, as it exists in the anionic form at pH range of 4–10 (Li et al. 2010).
The highly negative nature of As supports its efficient removal by the positively
charged functional groups on adsorbent surface at pH 8. Iron compounds were
broadly inspected to remove As from the water (Payne and Abdel-Fattah 2005;
Gallios et al. 2017). Various investigations have been done to remove As by utilizing
Fe impregnated AC, which substantially enhanced their As adsorption potential. The
Mn/Fe modified AC was produced through an easy and effective technique, that was
then examined and characterized to remove As(V) from water (Gallios et al. 2017).

The Fe impregnation increased the adsorption efficiency of AC from 4 mg/g
(pristine charcoal) to 11.05 which was enhanced further to 19.35 mg/g by the
introduction of Mn on Fe activated charcoal (Fe-MnO AC). The complexation of
As(V) at the particular Fe-MnO interface is the possible mechanism of As
(V) adsorption on the Fe-MnO AC. The As(III) adsorption via iron oxide-layered
AC is also studied (Ananta et al. 2015). The most reliable pH range for highest As
(III) adsorption was detected in the range of 7.5–9.5, at which the 10 μg/L of As was
eliminated in 90 min from an initial level of 100 μg/L. The pHzpc was observed at
pH 8.2 for iron oxide coated activated charcoal.

The adsorbent surface becomes positively charged at the pH higher than 8.2,
which enables the effective adsorption of As(III) on adsorbent surface through
electrostatic interaction. The iron layered AC was utilized to examine the As
behavior under optimized conditions (Raychoudhury et al. 2015). The Fe-modified
AC was produced using ferric in varied concentrations, which presented 42–65%
and 92–98% removal efficiency for As(III) and As(V), respectively. The Langmuir
isotherm adopted well the adsorption pattern indicated 98.4 mg/g and 125 mg/g
adsorption potential for As(III) and As(V), respectively. Yao et al. (2014) also
reported the efficiency of Fe-modified AC for the removal of As(V), which removed
98% of As(V) in 60 min in the pH ranging from 3.5 to 8.
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13.3 Characterization of Nanoadsorbents

It is important to characterize the nanoadsorbents, in order to recognize their
physiochemical features and functional properties as well as the mechanism of As
removal. Different analytical methods are used to characterize the nanoadsorbents
including confocal micro μ-XRF, X-ray adsorption near-edge structure (XANES),
Brunauer Emmett Teller (BET), X-ray diffraction (XRD), Fourier transforms infra-
red spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray absorp-
tion fine structure (EXAFS) (Ijaz et al. 2020). The detail of some imperative
characterization techniques is given below.

13.3.1 FTIR Spectroscopy

The FTIR spectroscopy is used for the characterization of functional groups and to
study the structural properties of different sorbents including nanoadsorbents. The
difference between functional groups on the nanoadsorbent surface is determined
using FTIR and it also determines shifts in functional groups before and after the
sorption of As. The FTIR spectra of pristine MWCNTs and carboxylate MWCNTs
(MWCNTs-OCH2CO2H) were examined and are given in Fig. 13.5. Due to the
presence of carboxylic group on the MWCNTs-OCH2CO2H, the strongest band was
observed at 1603 cm�1 and 1765 cm�1 by the bending and stretching vibration of
C¼O (Fig. 13.5). The vibration band on the surface of MWCNTs-OCH2CO2H was
more distinct which is credited to functional groups on the MWCNTs surface as a
result of carboxylation (Egbosiuba et al. 2020). Wang et al. (2020) synthesized
Fe3O4@poly(p-phenylenediamine) @TiO2 (Fe3O4@PpPDA@TiO2) core-shell NPs

Fig. 13.5 Fourier transform
infrared (FTIR) spectra of
MWCNTs and MWCNTs-
OCH2CO2H (Reproduced
with permission from
Egbosiuba et al. (2020))

342 R. Amen et al.



for the As adsorption. The PpPDA was characterized using FTIR, which indicated
two peaks at 1502 and 1569 cm�1, that is attributed to the stretching in C¼N and
C¼C structures, respectively. The outcomes confirmed the integration of PpPDA on
nanocomposites. The peak at 671 cm�1 confirmed the properties of TiO2 in
Fe3O4@PpPDA@TiO2. The higher mass of TiO2 hides the Fe3O4 properties in
these types of core-shell NPs. However, the presence of Fe2O3 is presented via
peak at 578 cm�1 for Fe3O4 PpPDA. Xi et al. (2020) fabricated cellulose
nanocrystals (CNC) with various modifications with polyethyleneimine (PEI) and
Fe. The FTIR spectrum showed varied O–H vibrations, as the absorbance peak for
CNC and CNC-PEI-Fe(III) was observed at 3399 cm�1 whereas the absorbance
peak for CNC-PEI-Fe(III) and CNC-PEI-Fe(III)/Fe(II) was observed at 3248 cm�1.
In Fe-modified CNC, the peak at 583 cm�1 was attributed to FeO vibration. These
outcomes somehow indicated the Fe and PEI integration on CNCs (Fig. 13.6).

13.3.2 Raman Spectroscopy

The Raman spectroscopy identifies the crystalline structure of nanoadsorbents.
Wang et al. (2020) analyzed chemical composition of the Fe3O4@PpPDA structure
using Raman spectroscopy. The Fe3O4 phonon frequency caused formation of three
peaks 396, 282 and 218 cm�1. The two distinctive peaks were formed at 1530 and
1591 cm�1 using Raman spectra which were attributed to C–C deformation of
benzenoid and quinoid rings in PpDA, respectively (Fig. 13.7). The outcomes of
Raman spectra reveal the vigorous adsorption of TiO2. The Fe3O4@PpPDA
presented the properties of both PpDA and Fe3O4 representing effective fabrication
of Fe3O4@PpPDA. However, after the addition of TiO2, only TiO2 characteristics
were determined noticeably because of higher quantity of TiO2 loading.

The Raman spectra of Fe@NCNT-rGO was determined at vibration frequency of
514 nm, exhibiting three peaks at 538, 226, and 496 cm�1 parallel to Fe moieties.
The dynamic G band peak of Raman is credited to the vibrational frequency and the
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Fig. 13.6 Fourier transform
infrared (FTIR) spectra of
different forms of cellulose
nanocrystals (Reproduced
from Xi et al. (2020))
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disorder formed peak at 1352 cm�1 was attributed to the existence of CNTs on
graphene structure. The reduction in ID/IG ratio (D band intensity ratio/G band
intensity ratio) from 0.882 to 1.282 was detected in graphene oxide compared to
Fe@NCNT-rGO, respectively, which exhibited the flaws in the graphene structure
which occurred during its fabrication (Sridhar et al. 2020).

13.3.3 XRD

The information regarding mineral phases in nano-scale and other sorbents could be
gained using XRD, which also examines the crystalline structure of the powdered
materials. Rakibuddin and Kim (2020) prepared the composites of silica-
nanospheres and Fe3O4 quantum dots (QDs) using sol-gel technique. The purities
of phase and structure of QDs@silica composites and silica were determined using
powder XRD (Fig. 13.8). For silica, a distinctive strong peak of (001) plane was
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Fig. 13.7 Raman spectra of grapheme oxide and Fe@NCNT-rGO (Reproduced with permission
from Sridhar et al. (2020))
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observed at 20.5�, representing that the nature of silica is amorphous. Just like the
silica peak, distinct diffraction peaks were presented in the XRD patter for Fe2O3.
The fabricated composites were perfectly pure in nature, as there were no impurity-
related peaks. The average size of Fe3O4 QDs crystals was ~5 nm. The PXRD thus
supports the existence of mesoporous silica and Fe3O4 in the composites.

The magnetite ore and FeCl2 were used as a substrate to fabricate magnetic NPs
by microbial synthesis using Fusarium oxysporum (Balakrishnan et al. 2020). The
XRD spectrum confirmed the spherical structure and purity of magnetic NPs as no
distinguishing impurity peak was observed. The average particle sizes of the natural
magnetite ore and synthesized magnetic using microbes were 39.52 nm and
31.29 nm, respectively (Balakrishnan et al. 2020). Zeng et al. (2020) fabricated
magnetic NPs using iron sludge (iMNP) and chemical reagents (cMNP). With the
crystalline γ-Fe2O3 structure, the iMNP XRD also showed quartz phase and few
wide and low intensity peaks compared to cMNP which confirmed that during
fabrication the impurity from iron sludge was not removed.

13.3.4 XPS

X-ray photoelectron spectroscopy (XPS) is used for the surface examination of
nanoadsorbents and makes available significant data on the percentage and form of
elemental species. It is particularly known technique to identify the As distribution
on nanoadsorbent surface. Xi et al. (2020) further confirmed the alterations in
chemical structure of CNCs, CNC-PEI-Fe(III)/Fe(II), CNC-PEI-Fe(III), and
CNC-DW-Fe(III) using XPS. In XPS spectra, the peak in C1s was altered from
two sharp peaks to a large peak after the impregnation of Fe and PEI in contrast to
CNC. In addition, the Fe impregnation in Fe-modified CNCs is confirmed by the
shape of peaks in O1s region. The outcomes of XPS spectra revealed that the
bonding of PEI with CNC was improved due to bridging effect of Fe ions. Sridhar
et al. (2020) used the vitamin B3 (Niacin) to fabricate nitrogen doped CNTs (NCNT).
The Fe 2p binding region is presented in XPS spectra of NCNT which indicated two
different peaks at 710.12 and 723.6 eV compared to electronic states of Fe 2p1/2 and
Fe 2p3/2. Compared to Fe-ligand, Fe 2p3/2 is then deconvoluted to three peaks, i.e.,
covalency, iron oxynitride moieties, and Fe–N bonds. The XPS spectra confirmed
the iron presence as iron carbides and iron nitride and small amount of oxynitride
impurities.

Chai et al. (2020) produced nanocellulose NPs modified using glutaraldehyde
(GA) and polyethyleneimine (PEI). The O 1s, C 1s, and N 1s XPS spectra of
NC-PEI/GA and 2,2,6,6-tetramethylpiperidine 1-oxyl nano cellulose (TEMPO-
NC) were examined to explore the linked surface chemical characteristics alterations
before and after the As adsorption. The O 1s spectra somewhat enlarged while N 1s
signal decreased to some extent after the adsorption of As(V). These alterations were
ascribed to the reaction of PEI amino groups with As(V). The clear changes in N1s
signal of NC-PEI/GA was observed before and after the As(V) adsorption
(Fig. 13.9). Shift in three peaks was detected after As(V) adsorption. The outcomes
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confirmed the strong bond among N and As(V) atoms. A new peak was formed in
NC-PEI/GA-As(V) spectrum which indicated the covalent bond between N atoms
and As(V) (Chai et al. 2020).

13.3.5 SEM

Using scanning electron microscopy (SEM), the output image of nanoadsorbent is
generated using electron rather than light. The nanoparticle distribution, morphol-
ogy, size, and shape are studied using SEM. Balakrishnan et al. (2020) used high
resolution SEM to explore the morphology and size of the microbial synthesized
magnetic NPs. The micrograph represented that the structure of magnetite NPs was
round, globular, and occasionally asymmetrical having narrow size range between
27.54 and 81.22 nm. The morphology of CNC-PEI-Fe(III), CNC-PEI-Fe(III)/Fe(II),
and CNC-DW-Fe(III) was studied using SEM which represented the bulk presence
of CNC-PEI-Fe(III) and CNC-PEI-Fe(III)/Fe(II) and high rate of polymerization.
Compared to it, lower polymerization was detected for CNC-DW-Fe(III)
(Fig. 13.10). So, it could be assumed that the presence of PEI makes CNC-PEI-Fe
(III) and CNC-PEI-Fe(III)/Fe(II) more stable by improving the polymerization and
interaction among Fe ions and CNC (Xi et al. 2020).

13.3.6 TEM

The crystalline structure and size of NPs is determined using transmission electron
microscopy (TEM). Raza et al. (2020) used TEM to identify the morphology of
Fe3O4 NPs. The Fe3O4 NPs were of spherical morphology having diameter of 39 nm
(Fig. 13.11). The agglomeration is observed in Fe3O4 NPs and the reason could be
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strong forces between magnetic NPs. In another study, starch functionalized
maghemite (C2) and non-functionalized maghemite (C1) were used for the removal
of As(III) from the water. The TEM analysis showed that the average particle size of
C2 was 9.65 nm and C1 was 11.05 nm. The C2 formed smaller NPs compared to C1
and the morphological structure of C2 was spherical, whereas the C1 possessed large
quantity of cubic NPs (Siddiqui et al. 2020). So, it was confirmed that the surface
functionalization enhanced both the functional and structural properties of NPs.

Fig. 13.10 SEM images of CNC-PEI-Fe(III)/Fe(III) (a, b); CNC-PEI-Fe(III) (c, d) and CNC-DW-
Fe(III) (Reproduced with permission from Xi et al. (2020))
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13.4 NPs-Arsenic Adsorption Mechanisms

The adsorption procedure could be occurred in a single step or series of steps might
require for its completion including pore diffusion, pore surface adsorption, and
external diffusion (Gulipalli et al. 2011). The adsorption of As(V) and As(III) on the
adsorbent surface takes place in three phases: (1) Surface migration,
(2) deprotonation of complex aqueous As(III)/As(V), and (3) surface complexion
(Zhu et al. 2009; Kong et al. 2014) (Fig. 13.12). The potential mechanisms for As
(V) adsorption on bilayer-OA@FeO were inner-sphere complex creation, ion–
dipole/charge–dipole interaction, electrostatic attraction, intra-particle diffusion,

Fig. 13.11 TEM image of Fe2O3 NPs (Reproduced with permission from Raza et al. (2020))

Fig. 13.12 Possible mechanism of arsenate (As(V)) adsorption on bilayer-OA@FeO NPs
(Reproduced with permission from Raval and Kumar (2020))
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and coulombic interaction (Raval and Kumar 2020) (Fig. 13.13). The adsorbate was
diffused on the nanoadsorbent surface based on the available functional groups on its
outer surface. After diffusing on the adsorbents outer surface, the adsorbate diffused
onto the accessible adsorbent pores. The active sites on adsorbent surface were
completely occupied in the adsorption phase via physiosorption or chemiosorption
mechanism.

The adsorption performance of As on alumina impregnated polymer beads was
controlled through electrostatic adsorption and complexation (Saha and Sarkar
2012). Kong et al. (2014) stated the adsorption of As(V) and As(III) through the
formation of inner-sphere surface complexes. The adsorption of As(V) on NC-PEI/
GA was significantly attributed to NH2 functional groups on its surface. The high
amount of C-OOH and -NH2 on the NC-PEI/GA surface results in swelling which
makes available extra adsorption sites for As(V) (Chai et al. 2020).

Fig. 13.13 Schematic illustration of adsorption process of adsorbate on nanoparticles
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13.5 Influence of Different Parameters

13.5.1 Impact of pH

A range of NPs have been identified so far to eliminate the As from water in pH
range of 6.5–8.5 such as β–FeOOH, nano-alumina powder, Fe3O4 with coating of
ascorbic acid, chitosan graft poly-acryl-amide of alumina nano particles, activated
carbon supported by zero valent nano particles, activated carbon nanoparticles
dipped with iron, Al2O3/Fe(OH)3, and mesoporous silica-media. The bilayer-
OA@FeO exhibited higher adsorption capacity of 32.8 μg/g to remove the As
(V) at neutral pH (Raval and Kumar 2020). However, some other identified
nanoparticles have capacity to adsorb As from water at lower pH which is good
for As removal from wastewater instead of drinking water. These identified
nanoparticles are; titanium dioxide, maghemites (Deedar and Aslam 2009), and
zeolite impregnated magnetic NP (Salem Attia et al. 2014). Siddiqui et al. (2020)
also observed the increase in As(III) adsorption by starch modified maghemite
nanoadsorbents with a decrease in the pH. Mostly, multi metal (MMO) NPs show
strong adsorption potential for both As(III)/As(V) and As(III), at pH range of
drinking water (Lata and Samadder 2016).

13.5.2 Impact of Synthesis Method

The reduction technique is usually employed to synthesize the NZVI (Kanel et al.
2006; Chandra et al. 2010; Rahman et al. 2011). Synthesis of other adsorbents was
done by different methods like hydrolysis (Vitela-Rodriguez and Rangel-Mendez
2013); polymerization (Sharma et al. 2010; Savina et al. 2011); chemical precipita-
tion (Darban et al. 2013; Zhang et al. 2013; Türk and Alp 2014) sol-gel method
(Deedar and Aslam 2009); hydrothermal method (Feng et al. 2012); sonication
method (Salem Attia et al. 2014). The reverse micro-emulsion and incipient wet
impregnation were used to fabricate the aluminum oxide (Jang et al. 2003; Saha and
Sarkar 2012). However, CuO is usually fabricated using thermal refluxing and
microwave irradiation technique (Martinson and Reddy 2009; Goswami et al.
2012). The polymerization method was used to prepare activated carbon NPs
based on doped phenolic resin (Sharma et al. 2010). Incorporation of iron by
polymerization process was done to improve the access of iron to As ions. More
research is the much needed to develop new methods for upgrading nanoadsorbents
availability to As ions in a sustainable way.

13.5.3 Impact of Initial Concentration

Numerous studies were directed so far to evaluate the higher adsorption of As on
nanoparticles with maximum As availability initially to NPs for adsorption. In real
circumstances, the concentrations of As in groundwater may range from lower to
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higher concentrations (up to 5000 μg L�1) (Shakoor et al. 2015). The adsorption of
As(V) on bilayer-OA@FeO was increased from 10 to 150 μg/g when the As
(V) initial concentration was increased from 10 to 150 μ/L. The reason might be
due to high driving force which caused transference of higher As(V) concentration in
the solution (Raval and Kumar 2020). Some of the authors evaluated higher adsorp-
tion capacities for As(V) and As(III), even though As(III) adsorption was adequate
under pH range of 6.5–8.5. For instance, at 2 mg/L of initial concentration, the
adsorption capacity for As(III) was calculated as 296.23 mg/g whereas for As(V), the
adsorption capacity was 201.10 mg/g (Kong et al. 2014). At the initial concentration
of 10 mg/L, the adsorption capacities for As(V) and As(III) were recorded as
82.7 mg/g and 122.3 mg/g (Zhang et al. 2013).

On the other hand, Deliyanni et al. (2003) observed that the As(V) adsorption
capacity ranges between 100 and 200 mg/g at pH 7 with varying initial
concentrations of 5–20 mg/L. The NPs of aluminum oxides showed great efficiency
to eliminate high As concentrations which assisted in As elimination from highly
contaminated wastewater. Siddiqui et al. (2020) investigated the variation in adsorp-
tion efficiency of starch modified maghemite nanoadsorbent for As(III) removal by
varying initial concentration from 1.0 to 6.0 mg/L. They reported that with the
increase in initial concentration As(III) from 1.0 to 6.0 mg/L an insignificant
reduction in As(III) from 99 to 95% was detected.

13.5.4 Impact of Particle Size

Generally, the higher adsorption trend with the reduction of particle size is observed
but it is not observed in all the adsorbents. For example, the particles of zeolite
contain large surface area but larger crystals show higher adsorption capacity than
small-sized particles (Vignola et al. 2005) because of intra-crystalline pore structure
of zeolite (Rouquerol et al. 2013). Jegadeesan et al. (2010) also studied the influence
of TiO2 NPs particle size on As adsorption. They found the adsorption capacity of
TiO2 NPs for As removal is dependent on the particle size of TiO2 NPs. The small
particle size and high specific surface area of TiO2 NPs makes it an effective
adsorbent.

13.5.5 Impact of Competing Ions

It is known that As is naturally found in groundwater with other co-existing anions
(SiO4

�, F�, CO3
2�, F�, SO4

2�, PO4
3�, and Cl�) and cations (Fe2+, Ca2+, and Mg2

+). These species can influence the As adsorption in a synergistic or antagonistic
way. Therefore, Raval and Kumar (2020) determined the adsorption efficiency of
bilayer-OA@FeO NPs for As(V) removal in the presence of PO4

3–, F�, SO4
2�, Cl�,

and NO3
�. The As(V) removal was least affected in the presence of NO3

�, SO4
2�,

and Cl�, whereas it decreased notably in the existence of PO4
3� and F�. The

decrease in adsorption capacity of As(V) by bilayer-OA@FeO NPs was might be
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due to similar structure of As(V) with PO4
3� and F� which might cause competition

between them for the binding sites available on bilayer-OA@FeO NPs (Raval and
Kumar 2020).

To evaluate the influence of co-existing ions on the removal of As using NZVI,
Tanboonchuy et al. (2012) tested six different species which includes humic acid
(HA), Ca2+, SO2�, HCO�, PO3�, and Cl�. They found that HA, SO4, and PO4 have
inhibitory influence, however, Ca2+ has escalating effect. Occurrence of HCO�3

showed inhibitory influence on elimination of the both species of As. Decreased
PO3� and HA and increased Ca2+ concentrations increased the removal efficiency of
both As(III) and As(V). For removal of As, phosphate and silicate were observed to
show lower adsorption than NO�3, SO2�, and HCO� (Kanel et al. 2006; Zhu et al.
2009). However, Savina et al. (2011) evaluated that these interfering agents have
negligible impact on As adsorption capacity. Kong et al. (2014) also observed the
influence of the co-existing ions (sulfate, phosphate, and silicate) on adsorption and
removal of As. On the other hand, their influence on As(V) adsorption was insignifi-
cant (Martinson and Reddy 2009; Ntim and Mitra 2012).

13.5.6 Impact of Contact Medium

The NPs coated packed bed media, fluidize bed and packed beds are the varied
contact mediums mentioned in literature to elucidate the application methods for As
removal from wastewater. There are some articulate studies mentioned in literature
for As removal and mostly mentioned and supported the pack bed column
researches. However, for different types of adsorbents, both fluidize bed and packed
bed column studies can be conducted. For instance, the hydraulically accepted
adsorbent conductivity is the best for fixed bed, however, lower hydraulically
conducted adsorbents are observed to be inappropriate for packed bed. This issue
can be resolved by coating high hydraulic conductivity material by NPs. The nano
adsorbents must have enough compression force to survive the hydraulic pressure
that may contribute to adsorbent damage in packed bed (Chen et al. 2011).

The fluidize bed technique is also an effective technique for NPs synthesis where
adsorbents are covered with such materials which curb the agglomeration of fluidize
nanoadsorbents. Due to less coating, the adsorption capacity deceased and
contributed in the secondary pollution due to the leaching of coated sand which
compelled the usage of a binding agent named as acrylic-styrene copolymer latex
(Chen et al. 2009).

Similarly, the different polymers like polyvinyle alcohol and polyacrylamide
(PAM) were also found to be good binding agents. A cheaper green starch is used
to stabilize and avoid the clustering of magnetic NPs. This acts as a linking media for
nanoadsorbents fluctuation and precipitation while maintaining the higher adsorp-
tion capacity for As (An et al. 2011). The removal of both As(III) and As(V) from
wastewater is found to be efficient with application of NPs with comparatively lower
adsorbent amount and lesser time interval. The material used as nanoadsorbent must
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not percolate in treated water beyond prescribed limits for drinking water, therefore a
suitable coating material should be used to avoid leakage.

13.6 Nanomaterials Separation

The numerous techniques such as magnetic separation, filtration, and centrifugation
are used to separate the NPs after the adsorption procedure. A stainless steel column
was used in magnetic field separator for separation of magnetite NPs (Chandra et al.
2010; Khodabakhshi et al. 2011). Commonly, the magnetic NPs are impregnated
with magnetic elements such as Co, Ni, and Fe which could be separated easily using
HGMS (Ali 2012). Size, magnetic properties, magnetic field gradients of the NPs are
the main factors affecting their separation by using HGMS technique (Moeser et al.
2004).

The Fe NPs are simply taken out from the water using magnetic separator due to
their higher magnetic property (Nassar 2012). Taking into account the type and size
of the membrane, many researchers preferred to use filtration technique for separa-
tion of FeO NPs, Fe3O4, β-FeOOH, and CNTs supported NPs (Deliyanni et al. 2003;
Deliyanni and Matis 2005; Niu et al. 2005). The non-magnetic NPs can be removed
effectively by using centrifugation technique due to its higher density, high effi-
ciency, no NPs aggregation, and scalable production (Bai et al. 2010; Chen et al.
2010). Usually, NPs are able to be removed from water using a centrifuge speed
range between 20,000 and 50,000 rpm.

13.7 Regeneration of Nanoadsorbents

The recycling of nanoadsorbents is key process to reduce the cost of adsorbent when
used at a larger scale. Adsorbent usually gets exhausted after adsorbing As from
water. Regeneration of adsorbent is required to reuse the nanoadsorbent and also for
recovering As for safe disposal to protect environment. The main purpose of
regeneration is to reuse the adsorbent without losing its adsorption potential which
will save money and will make it economically acceptable.

Raval and Kumar (2020) used 0.1M NaOH to regenerate bilayer-OA@FeO NPs
efficaciously up to five desorption cycles. The adsorption potential of bilayer-
OA@FeO NPs for As(V) was 14.85% by using bilayer-OA@FeO NPs in the 5th
cycle which was 5.6% less compared to fresh bilayer-OA@FeO NPs. In a study by
Ali (2012), the importance of pH for adsorbent regeneration is evaluated. In this
study it was observed that there is insignificant cations adsorption in the acidic
solution while significant adsorption of anions is observed in acidic solution. Thus,
desorption can be easily done by just adjusting pH of the solution. Nano particles can
be used again after regeneration to remove heavy metals from water because they
gave shown capability to maintain their adsorption capacity after number of cycles
(Sharma et al. 2010).
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Alkalis have been found to be more efficient desorption agents to make the
modified chemical adsorbents reusable (Lata et al. 2015). The desorption potential
of NaOH for regeneration of adsorbents is reported in numerous studies. Deliyanni
et al. (2003) revealed that the nanocrystals of β–FeOOH had lost about 25–30% of
adsorption capacity after every regeneration cycle of As (V) (Deliyanni et al. 2003).
In another study, zerovalent impregnated activated carbon exhibited 2/3 of the
adsorbate recovery using 0.1M solution of NaOH (Zhu et al. 2009).

Chai et al. (2020) analyzed the regeneration potential of NC-PEI/GA up to eight
cycles for As(V) adsorption. Of note, the recovery efficiency in the first cycle
reached 100% and was relatively stable even after eight cycles. These outcomes
suggest a simple reuse of NC-PEI/GA adsorption with the NaOH solution, making it
a convenient adsorbent for real acidic wastewater treatment. Zhang et al. (2013)
showed that reduction in adsorption capacity for As(III) was observed to be only
10.6% and only 6.2% for As (V) after four cycles of regeneration of binary oxide of
Fe-Cu. They concluded that NaOH is an effective desorption agent for binary oxide
of Fe-Cu. In another study, the CTS-g-PA exhibited more better regeneration
potential using NaOH (0.5M) where only 6% decrease in the adsorption capacity
was observed after the regeneration cycle (Saha and Sarkar 2012).

13.8 Conclusion and Future Recommendations

The nanomaterials possess high surface to volume due to which they are extensively
used to remove As from water/wastewater treatment. In this chapter, the role of
various nanoadsorbents iron oxide/hydroxide, alumina, copper oxide, titanium
oxide, bi-metal oxides, and carbonaceous NPs has been summarized. All types of
nanoadsorbents exhibited different adsorption potential for As and for its different
species.

The modified nanoadsorbents were proved as more efficient compared to pristine.
The physiosorption, electrostatic attraction, diffusion, surface complexation, and
ion–dipole/charge–dipole interaction are the observed mechanisms of As
(V) adsorption on nanoadsorbents. Some nanoadsorbents presented excellent regen-
eration potential after numerous cycles without losing their adsorption capacity.

The regeneration of nanoadsorbents could minimize the overall cost of treatment,
therefore more research is needed in this concern. Furthermore, more investigation is
needed on a pilot-scale to evaluate the efficiency of nanoadsorbents for the adsorp-
tion of As from real water in the presence of co-existing ions.

In modified adsorbents, the strong modification for a long time is required as due
to weak bonding the material used for the modification could cause its release into
the water which could further deteriorate the water quality. The use of biomaterials
for NPs modification is highly recommended due to their low cost and eco-friendly
nature, therefore, future research is needed to explore the adsorption potential of
biomaterials modified NPs for As removal.
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Understanding the Bioaccumulation
and Biosorption of Arsenic [As(III)] in Plants
and Biotechnological Approaches for Its
Bioremediation

14

Ujjwal Kumar, Ashok K. Jha, and Ravi S. Singh

Abstract

The efforts are being made globally regarding the development of low-cost,
eco-friendly, and novel methods of remediation of arsenic from aqueous medium
and soil. Biotechnological approaches of bioaccumulation and biosorption have
emerged as an important tool in the ongoing research including the latest appli-
cation of novel CRISPR/Cas9 technology that can enhance the rate of
bioaccumulation. Expression modulation of genes and proteins including tran-
scription factor, transporter, and mi-RNAs during As(III) accumulation plays an
important role in bioaccumulation besides other factors such as statistical factor,
percentage removal, and adsorption isotherm. Biosorption mechanisms that
include coordination, chelation, ion exchange, reduction, complexation, and
movement through different parts of plants are also important. In this chapter,
keeping in view the importance of bioaccumulation and biosorption by plants, we
have discussed the mechanism of bioaccumulation and biosorption of As(III) in
plants, different kinetic models including pseudo-first order and pseudo-second
order model and thermodynamic parameters like entropy change, enthalpy
change, and Gibbs free energy change determine the spontaneity and criteria of
reaction and biotechnological approaches for As(III) bioremediation.
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14.1 Background

Resources of arsenic contamination have been explored worldwide because arsenic
is the 20th most abundant metalloid found in the earth crust (NRC 1977). Its
abundance is 14th and 12th in seawater and human body, respectively, that is
about 5 mg kg�1 of earth crust which has an average concentration of 2 mg kg�1

in igneous and sedimentary rocks (Mandal and Suzuki 2002). The four oxidation
states of arsenic are �3, 0, +3, and + 5. More than 200 minerals of arsenic are found
in which 60% are arsenate, 20% are sulfides, and 20% are arsenides, arsenites,
oxides, silicates, and elemental arsenic (Bissen and Frimmel 2003). Eruptions from
volcanoes and sea salt sprays are also considered as source of arsenic contamination
(Fitz and Wenzel 2002).

Oxidation states of arsenic exhibit a wide range of solubility, which depends on
the ionic condition and pH (Finnegan and Chen 2012). More than 80% of ground-
water contamination is due to As(III) (Kumar et al. 2016; Kumar and Jha 2020).
When arsenic is present in +3 oxidation state, it is more toxic (Kumar et al.
2015a, b, c). Trivalent arsenic species (Arsenite) has formula reported as
M2HAsO3, MH2AsO3, M2HAsO3, and M3AsO3 where M represents a universal
metal cation or one equivalent of a multivalent cation. Arsenites of group-I alkali
metals of periodic table are soluble and alkaline earth arsenites are sparingly soluble,
whereas arsenites of heavy metals are insoluble. Arsenic is one of the carcinogenic
agents which has posed alarming threat (Mueller et al. 2001).

Irrigation of crops with arsenic contaminated groundwater in South Asia leads to
accumulation in plant biomass and accelerated the transfer of arsenic in the food
chain that leads to adverse health effect such as arsenicosis (Williams et al. 2005).
Despite this, the most widespread threat is the leaching of naturally occurring arsenic
into groundwater aquifers I (Rathinasabapathi and Ma 2006). Therefore arsenic
contamination in groundwater is the most common results of its higher assemblage
in soils. Approximately one-third population of the world consumes groundwater for
drinking and other household uses that adversely affect human health (Malik 2007;
United Nations Environment Program (UNEP) 1990). Many technical applications
have been established to overcome or remove arsenic contamination from water and
soil resources. Some chemical and physical methods including chemical reduction,
cementation, solvent extraction, electrodeposition, and reverse osmosis have been
successfully implemented. But these applications require vast machinery, large setup
including high operational cost and need lots of equipment. Due to their complex
applicability, it is difficult to set up the unit everywhere for arsenic decontamination.

Bioaccumulation and biosorption are the two most emerging mechanism of
phytoremediation techniques in a few decades that may be applicable as low-cost
and eco-friendly, requiring less equipment and easy operating for removal of arsenic
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from their contaminated sites. In the twenty-first century, many plant species includ-
ing medicinal and aromatic plants have risen as new hope for decontaminating
metallic pollutants from their active sites. These metal/metalloid bioaccumulating
specific plants can be reused after bioaccumulation and their byproduct can be
separated and purified after treatment. In this study we will discuss about detailed
application, mechanism, and biotechnological advances in bioaccumulation and
biosorption of arsenic(III) by plants.

14.2 Bioaccumulation

Bioaccumulation of arsenic by medicinal plants is a green approach using root intact
live plant to remediate arsenic from contaminated site. This approach requires high
growth rate, metallic or metalloid tolerant to large amount of arsenic contamination,
and the metabolic capacity to accumulate large amount of arsenic in their above
ground parts (more than 100–1000 mg/kg�1) (Ghori et al. 2016). Arsenic species
considered as nonessential for plant (Khalid et al. 2017). Plants accumulate inor-
ganic form of As(III) or As(V) (Neidhardt et al. 2015). When As(III) enters in plant
cell by their root via aquaglyceroporins (Bhattacharjee et al. 2008), As(III) translo-
cate from root to shoot through different metal transporter export metal ions out of
the root symplast into the xylem apoplast (Mills et al. 2003). In this process,
translocation of metallic cations through xylem may also take place by chelation
(Pilon-smits and Pilon 2002; Kim et al. 2005) including malate, citrate, histidine
(Krämer et al. 2007), nicotianamine (NA) (Stephan et al. 1996; Von wiren et al.
1999). NA supports in metallic translocation in the phloem (Mari et al. 2006). The
rate of arsenic bioaccumulation by plants also depends upon soil type, their pH and
soil constituents. Ferric hydroxide plays an important role in stabilizing arsenic
concentration in soil and aqueous medium too. This phenomenon can be shown
by the following reaction (Naidu and Bhattacharya 2006):

Fe3þ þ 3H2O Ð Fe OHð Þ3 þ 3Hþ

in the Bengal delta plain, clays, sulfates, phosphate, and sulfides of Al, Fe, and
Mn are attributed to the occurrence of arsenic (Foster 2003).

In natural condition, plants essentially take up mineral nutrients together with
arsenic and other contaminants from the soil or aqueous medium. Therefore equilib-
rium is an important factor that governs their bioavailability, i.e. their potential
ability to take up and accumulate by plants. Plant nutrient uptake is an active process,
requires energy to accumulate essential elements at higher level in plant tissue than
in soil solution while the presence of arsenic and other toxic metals or excess of
nutrients requires mechanism to modulate the accumulation of ions (Leao et al.
2017). Arsenic and other heavy metal contaminants are generally transported and
accumulated in the vacuole as metal chelators. Metal ion in the soil and aqueous
medium are taken up by plants into their tissues. These are reduced as metal chelate
using oxygen, sulfur, and nitrogen donor ligands. The abundance of carboxylic acid
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anions in the terrestrial plants cells facilitates complex formation with di- and
trivalent metal ions. Generally the major charge balancing anions present in the
cell vacuoles of photosynthetic tissues are malate, aconitate, malonate, oxalate,
tartrate, citrate, and isocitrate. Many of these carboxylates get associated with
metal concentration in plants (Ma et al. 1997; Homer et al. 1995).

Chelation compartmentalization and biotransformation are some of the
mechanisms employed by plants for detoxification of arsenic (Salt et al. 1998).
The external mechanism includes exudations which charge rhizospheres pH, metal
speciation, and binds metal ions on the cell walls. In intracellular mechanism
alteration of structural protein takes place to minimize metal toxicity and thus
transport of metallic/metalloid ions to vacuoles takes place.

14.2.1 The Uptake Mechanism

For arsenic and other metallic contaminants, passive uptakes take place through
micropores in the root cell to the root where degradation occurs. The apoplast is
nothing but a hydrated free space in between the soil colloid and the cell membrane
of the root cortex. A network of cellulose, hemicellulose, pectins, and glycoproteins
in cell wall micropores has ion exchange capacity and binding sites too. Di- and
polyvalent cations get attracted to these sites within root cortex cell wall. Active
transport processes are responsible for translocation of the metal ions through
plasma membrane of living cells to the ground parts of the plants. Endodermis
forms the outer limit of the root vascular system (Mirza et al. 2014).

The As species enter from plant roots through aquaporin channels, mainly using
the nodulin 26-like intrinsic proteins (NIPs, a subfamily of the aquaporin family)
(Ma et al. 2008; Mitani-Ueno et al. 2011; Xu et al. 2015). In some plants N1P1:1 and
NIP3 play an important action in As(III) accumulation (Kamiya et al. 2009; Xu et al.
2015). In rice plant, the Si influx transporter Lsi1 (low silicon rice 1; OsNIP2:1) is
responsible for As(III) uptake, while Si efflux transporter Lsi2 (low silicon rice 2)
mediates As(III) efflux (Ma et al. 1997, 2001, 2008). Besides Lsi (OsNIP2;1), other
NIPs including OsNIP1;1, OsNIP2;2, OsNIP3;1 and OsNIP3;2 also show perme-
ability to As(III) (Bienert et al. 2008; Ma et al. 2008).

Furthermore, some plasma membrane intrinsic proteins (PIOs, another subfamily
of the aquaporin family), including OsPIP1;2, OsPIP1;4, OsPIP1;6 are additionally
involved in As(III) transport (Mosa et al. 2012). In some other cases NRAMP
(natural resistance-associated macrophage protein) transporter OsNRAMP1 is
involved in As(III) bioaccumulation. Some studies state that OsNRAMP1 localizes
on plasma membrane of endodermis and pericyclic cells may involve in As(III)
xylem loading for root to shoot As(III) translocation (Tiwari et al. 2014).

Some other studies have reported that complexation of As(III) takes place with
glutathione (GSH) or phytochelatin (PCS) (Raab et al. 2005). Fourteen different
complexes with arsenic have been known in sunflower plant. Transportation of As
(III) complexes takes place across tonoplast and sequestrated in vacuoles. Studies
have revealed that translocation of As(III) from roots to tissue takes place via
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methylation giving rise to monomethyl arsenate, dimethyl arsenate, and trimethyl
arsenate in plants (Bhattacharjee et al. 2008; Mukhopadhyay and Rosen 2002; Xu
et al. 2007; Wu et al. 2002: Raab et al. 2005).

Complexation of As(III) with PCs or GSH is an effective way to detoxify As(III)
probably because the complexes are pumped and sequestrated in the vacuole
catalyzed by the homology of multidrug resistant proteins (MRPs) membrane of
ABC superfamily (Lu et al. 1997; Tommasini et al. 1998). Inside the cells, the
metalloids/metals ions are translocated to final destination for storage and chelation
involving membrane metal transporters identified such as ATP-binding cassette
(ABC) (Song et al. 2003; Vande Mortel et al. 2006), cation diffusion facilitators
(CDP) (Peiter et al. 2007), zinc transporter of Arabidopsis thaliana (HMA, ZAT
renamed as AtMTP1) (Becher et al. 2004; Willems et al. 2007), and Ca2+/cation
antiporter (CaCA/CAX) superfamily MHX (Elbaz et al. 2006).

Another metal/metalloid chelating agents are metallothionins that also play role in
detoxification of arsenic species. The production of metallothionins is upregulated
when metallic concentration was increased (Guo et al. 2008a, b); its size is about
~3.5–14 kDa that is cysteine-rich metal binding proteins almost found in all plant
species (Cobbett and Goldsbrough 2000). Some metal chaperons are also involved
in intracellular transport of nonessential metals and metalloids that bring nonessen-
tial element at specific site in the cell where the elements can create least damage to
vital cellular processes (Roosens et al. 2004). Metal chaperons have specific
transporters such as ZAT1, aCDF-type transporter (Verbruggen et al. 2009). Reports
also studied that in some of the plant, arsenic bioaccumulation is induced by
oxidative stress that generates different reactive oxygen species (ROS),
i.e. hydroxyl radicals (H2O2 and OH

�), sulfur oxide anions (O2
�) (Hartley-Whitakar

et al. 2001), whereas oxidative stress generally affected adversely and damaged
DNA, lipids, proteins, and other plants biomolecules (Singh and Ma 2006). It also
interferes with electron transport system in the thylakoid membrane, photosynthesis,
metabolic processes, membrane permeability, and enzymatic processes that leads to
leaf chlorosis and necrosis (Tu and Ma 2005; Karabal et al. 2003; Nguyen et al.
2003). In those methods, plant uses there antioxidant molecules and antioxidant
enzyme for detoxifying of different ROS. It has strategy of binding nonessential
element such as arsenic species to plant cell wall (Bringezu et al. 1999) or chelating
metals in the cytosol by peptides (Schmoger et al. 2000). Pteris vittata has been
described as applying the strategies to detoxifying As(III) (Verbruggen et al. 2009).

14.2.2 Differential Gene Expression Modulation During As(III)
Accumulation

The genome expression has been studied in different types of plant species under As
(III) stress (Pandey et al. 2020; Abbas et al. 2018; Kumar et al. 2015a, b, c; Tripathi
et al. 2012a, b). During As(III) exposure in rice, different types of transporters like
glutathione S-transferase (GST), glutaredoxins, heat shock proteins,
metallothioneins, multidrug resistance proteins, helix-turn-helix protein, and sulfate
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transporters were upregulated. While only one downregulated protein is aquaporin
gene in AS(III) stress, whereas zinc-finger C3HC4-type protein is both up- and
downregulated in As(III) stress. The large number of heat shock proteins here
upregulated expression during As(III) stress (Chakrabarty et al. 2009).

Another observation of As(III) stress on A. thaliana and Oryza sativa revealed
catalases, acid phosphatases, cationic peroxidase, zinc-finger protein, xyloglucan
endotransglucosylase/hydrolases. Serine/threonine protein kinase, patatins, integral
membrane family protein, hydrolases, glycosyl hydrolase family 17 proteins, and
ferritins were always downregulated in both A. thaliana and O. sativa, while
peptidyl-prolyl-cis-trans isomerase and metallothionein-like protein1 are
upregulated in both plants. NAC domain-containing proteins, lipoxygenases, glyco-
syl hydrolase family 1 proteins, and glutathione S-transferases gene show both up-
and downregulated during As(III) exposure in O. sativa, whereas peroxidases and
glutathione S-transferases both up- and downregulated in A. thaliana. Germin-like
proteins only show upregulation in O. sativa and glycosyl hydrolase family1 and
ferredoxin chloroplast show upregulated expressions in A. thaliana. Cytochrome
P4583B1, germin-like proteins, lipoxygenases, and NAC domain-containing
proteins show downregulation in A. thaliana (Chakrabarty et al. 2009; Abercrombie
et al. 2008; Tripathi et al. 2012a, b).

Expression patterns of proteins during arsenic accumulation in Maize have been
described that 10% of detectable proteins in their root were differentially regulated
by arsenic species (Requejo and Tena 2005, 2006). Root proteins of Zea mays plants
show upregulation of antioxidant enzymes related protein like as SODs, GPXs, and
peroxiredoxin (prex) during arsenic stress, while succinyl-CoA synthetase, ATP
synthase, cytochrome P45, and guanine nucleotide-binding protein are responsible
for oxidative stress, a major process underlying arsenic toxicity in plants (Tripathi
et al. 2012a, b). In shoot protein of Z. mays such as guanine nucleotide-binding
protein, protein kinase C inhibitor, Tn10 transposase-like protein, malate dehydro-
genase, CS, ATP synthase and elF-SA are reported as downregulated during arsenic
stress (requejo and Tena 2006). In P. Vittata, enolase, phosphoglycerate kinase and
glyceraldehyde-3-phosphate proteins were upregulated during arsenic accumulation
and may play a central role in arsenic metabolism (Bona et al. 2010).

14.2.3 Expression Modulation of miRNAs During Arsenic
Accumulation

Function of miRNAs play a responsive and an important role during arsenic
bioaccumulation by plants from roots. From the last decades, several studies state
that 69 miRNAs from Brassica juncea belonging to 18 plant miRNA families
respond to arsenic accumulation or stress (Srivastava et al. 2012). In addition to
this miRNA from Indica rice belonging to miR827, miR528, miR444, miR408,
miR397, miR393 and miR319 were upregulated expression during As(III)
bioaccumulation or stress, whereas miR3979, miR2121, miR1432, miR1427,
miR1318, miR819, miR818, miR815, miR812, miR810, miR396, miR390,
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miR172, miR171, miR169, miR167, miR166, and miR164 were downregulated
during As(III) exposure (Liu and Zhang 2012). Accepted target prediction for
these miRNAs in B. juncea identified a number of genes related to signal transduc-
tion, photosynthesis, plant development, sulfur uptake, metabolism, assimilation of
hormonal biosynthesis, and transport (Srivastava et al. 2012; Liu and Zhang 2012).

14.2.4 Recombinant DNA Technology to Modulate Arsenic
Bioaccumulation

Application of plant species known as bioaccumulator of arsenic with native genes
has limited success to decontaminate arsenic species from affected sites. To improve
their efficiency, origins of microbial genes are a wide source to develop genetically
modified plant species to sequestration of arsenic species more effectively (Vasupalli
et al. 2020). This term is also known as genoremediation that involves the genetic
transformation of plants with genes regulating metals or metalloids transport and
homeostasis response to oxidative stress or detoxification (Mani and Kumar 2014).
Genoremediation is the most important technique for accumulation of toxic element
in plants. Similarly, gene engaged in glutathione and other phytochelatin biosynthe-
sis is also being widely utilized (Li et al. 2004).

As(III) uptake enhancement using transgenic technology has been successfully
implemented by the overexpression of PvACR3 transporter from P. vittata in
A. thaliana (Indriolo et al. 2010). This transporter helps in the translocation and
storage of As(III) into vacuolar system in P. vittata. A. thaliana overexpression
plants show a considerable increase of As(III) export from root to shoot and
increased of arsenic tolerance. The strong expression of this transporter makes it to
localize in the plasma membrane of the transgenic plants which increased As(III)
extrusion to the external medium. This technology enhanced translocation of As(III)
in aerial parts has been reported (Wang et al. 2018). Thus, it appears useful to
constitutively express PvACR3 transporter in vigorous crops for facilitation of
translocation from root to shoot.

Dhankher et al. (2012) demonstrated that utilization of two bacterial genes
γ-glutamyl cysteine synthetase, As(V) reductase (arsC), and their expression showed
enhanced arsenic bioaccumulation in transgenic line of A. thaliana. This mechanism
to develop arsenic removal plant with increased accumulation of arsenic via gene
pyramiding of arsC and γ-ECSmay be helpful in arsenic remediation. Another study
reported that transgenic lines harboring cdPCS1 isolated from phytochelatin
synthase gene from Ceratophyllum demersum (cdPCS1) was expressed in transgenic
A. thaliana and Nicotiana tabacum showed enhancement of PC content with
enhanced heavy metals bioaccumulation without any impediment in plant growth
(Shukla et al. 2012, 2013). Expression of A. thaliana metallothionein gene, AtMT2b
in N. tabacum observed significant decreased accumulation of arsenic in shoots
where arsenic uptake by plants remains unchanged (Grispen et al. 2009). Besides
this, greater accumulation potential of As and Cd has been reported by
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overexpression of genes encoding for gamma-glutamyl cysteine synthase and gluta-
thione synthase in B. juncea, respectively (Navaza et al. 2006).

Some reports also state that enhancement of bioaccumulation of different heavy
metals including arsenic species takes place by modulation of phytochelatin (PC)-
Cd-transporter, SpHMT1 of Schizosaccharomyces pombe in A. thaliana (Huang
et al. 2012). Other transgenic lines such as overexpression of As PCS1 and GSH1
derived from garlic and baker’s yeast in Arabidopsis also showed enhanced toler-
ance and accumulation arsenic along with cadmium (Guo et al. 2008a, b).

To regulate the As(III) accumulation in plant species, transcriptional regulation
also is significant in the regulation of the capacity of plants to bioaccumulate arsenic
(Clemens 2001). Recent studies show that OsARM1, a MYB transcription factor, has
been identified in rice. This gene, strongly induced by As(III) adversely regulates
arsenic associated transporter genes, namely OsLsi1, OsLsi2, and OsLsi6 which play
an important role in the transcriptional regulation of arsenic response in rice (Wang
et al. 2017). The discovery of such transcription factors is fundamental for the
development of genetically modified crop for As(III) removal.

14.2.5 Hyperaccumulator Plants

Plants species which have capacity to bioaccumulate arsenic more than 1000 μg g�1

of dry weight is considered as hyperaccumulator plants (Reeves et al. 2018; Van der
Ent et al. 2013). Metal/metalloid hyperaccumulation is not common in terrestrial
higher plants. At least 400 plant species have been established as hyperaccumulators
of arsenic and heavy metals. Due to this unique behavior, these are used as
bioaccumulator of arsenic species from contaminated sites (Kumar et al. 2014,
2015a, b, c, 2017). A Chinese brake fern (P. vittata) was first established as arsenic
hyperaccumulator (Ma et al. 2001). This plant can uptake up to 22,630 mg As kg�1

in the ground by dry weight from standard experimental condition (Ma et al. 2001).
After this finding many Pteridophytic and angiospermic plants have been reported as
As(III) hyperaccumulator. As hyperaccumulation mechanism in P. vittata takes
place through As accumulation and detoxification by cellular compartmentalization
into different tissues including minor veins (Bondada and Ma 2003). A number of
fern, angiosperm, and aquatic plant species are also known to hyperaccumulate huge
amount of arsenic and perform their tolerance (Sridokchan et al. 2005). Some recent
established As(III) hyperaccumulator plants are listed in Table 14.1.

14.2.6 Role and Prospects of CRISPR/Cas9 in Arsenic
Bioaccumulation

Recently, the next-generation gene editing technology, clustered regularly
interspaced short palindromic repeats (CRISPR) Cas (CRISPR associated protein)
system is nowadays an emerging tool for phytoremediating plants (Jaganathan et al.
2018). This application is selective and allows targeting multiple genes in the
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genome with increased efficiency and specificity. Thereby, this system explores
possibilities to obtain precisely edited plants with greater arsenic extraction and
accumulation. Recent studies have been done on engineering the aquatic plant
Lemna minor with CRISPR/Cas9 for point mutations in the As(V)/phosphate
transporters and As(III)-PCs vacuolar transporters at the same time may be a suitable
option for removal of arsenic from water resources (Mateo et al. 2019). In addition to
this, several studies suggested involvement of plant glutathione S-transferase (GST)
gene family in As response due to the requirement of sulfur and GSH in the
decontamination of As(III). Using CRISPR-Cas9 in human and mice cells,
genome-wide, targeted loss of function pooled screens has been studied which
provided information regarding the inactivated genomic loci and strategies to mod-
ulate transcriptional activities (Sharma et al. 2014). Apart from other genes, gluta-
thione S-transferase Mu class gene (GSTM1) from the human genome has been
edited using CRISPR-Cas9 system (Sanjana et al. 2014).

In this perspective, it becomes essential to know how CRISPR-Cas9 system can
be helpful in the improvement of crops by harnessing the precision of genome
editing of GSTs in different plant species. Hence, thorough study is required to
unravel multifactorial role in GSTs in plant stress and development (Kumar and
Trivedi 2018). Another recent report established that site-specific mutagenesis of
OsNramp5 is induced by CRISPR/Cas9 system in indica rice with low Cd accumu-
lation capacity without compromising their yield. This mechanism may be applica-
ble in case of arsenic accumulation to regulate their effect by plants (Tang et al.
2017).

Table 14.1 List of As(III) hyperaccumulator plants

S. no. Plant species References

1 Pteris cretica Zhao et al. (2002)

2 Pteris umbrosa Zhao et al. (2002)

3 Pteris vittata Ma et al. (2001)

4 Salvinia species Rahman and Hasegawa (2011)

5 Cymbopogon flexuosus Jha and Kumar (2017)

6 Azolla filiculoides Rahman and Hasegawa (2011)

7 Azolla microphylla Jha et al. (2015)

8 Silene vulgaris Schmidt et al. (2004)

9 Azolla pinnata Rahman and Hasegawa (2011)

10 Isatis cappadocica Souri et al. (2017)

11 Eichhornia crassipes Jha et al. (2015)

12 Cyperus difformis Tripathi et al. (2012a, b)

13 Portulaca oleracea Tiwari et al. (2008)

14 Vetiveria zizanioides Gunwal et al. (2014)

15 Chrysopogon zizanioides Gautam et al. (2017)
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14.2.7 Statistical Factor of Bioaccumulation

The relationship between arsenic species accumulated by plants and those in soil or
aqueous medium can be recognized and calculated by bioaccumulation factor (BAF)
and bioconcentration factor (BCF).

BAF ¼
As in plant biomass mg

kg

� �

Total As in soil or aqueous medium mg
kg

� � ð14:1Þ

BCF ¼
As in plant biomass mg

kg

� �

Soluble Extractableð Þ As in soil
ð14:2Þ

The rate of translocation of As from root to upper aerial parts (shoot and leaf) is
examined by translocation factor (TF) which is given below

TF ¼ As in shoots
As in roots

ð14:3Þ

In arsenic contaminated area, for processing of plant sample during
phytoremediation, the element enrichment factor (EF) was calculated as follows:

EF ¼ Cpolluted=Ccontrol ð14:4Þ
where Cpolluted are the arsenic concentration (mg/kg) in plant biomass (leaves,
shoots, and roots) collected from As contaminated sites. Ccontrol are the As concen-
tration (mg/kg) in plant biomass collected from control site (uncontaminated area).

Pollution indices (PI) of As and other metallic contaminant are also an important
factor in bioaccumulation techniques which also reveal the interaction between
metals in soil and plants. The PI is the ratio of As concentration in an abiotic or
biotic medium to that of the regulatory standard of international bodies such as
World Health Organization (WHO), United States Environmental Protection
Agency (USEDA), Federal Environmental Protection Agency (FEPA) of Nigeria,
etc. (Jamali et al. 2007). PI indicates the contamination of soil or plant. If it is less
than unity, it shows that soil and plants are not contaminated. If PI is greater than
unity, it shows pollution. If PI is equal to one, it indicates a critical state making the
involved plant helpful in environment monitoring (Chukwuma 1994). Mathemati-
cally PI is explained as

PI ¼ Csoil or plants=CUSEPA‐Standard ð14:5Þ
Let PI be the individual pollution index of study material. Csoil or plants be the

concentration of the metal or metalloid in soil or plants. CUSEPA-Standard be the value
of the regulatory limit of heavy metals by USEPA.
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14.3 Biosorption

Waste plant materials or dead biomass are such type of substances that can be able to
remove/bind metallic ions or desired substances from aqueous solution. This process
takes place without supplement of any external energy and takes place through
intraparticle interaction in which chemical and physical mechanisms of molecules
and compounds are involved (Michalak et al. 2013). Naturally abundant plant waste
biomass has been reported as biosorbent of As(III) (Volesky 1990). Several
researches have been carried out to develop effective, relatively cheap, and easy to
use biosorbent that has capacity to remove significant amount of arsenic from
aqueous medium. The application of low-cost biosorbent for arsenic biosorption
has gained significance (Maind et al. 2012, 2013). As any application of biosorption
does not require or involve any type of metabolism.

The adsorbate per unit mass of adsorbent has been calculated by the equation
given below.

qt ¼ C0 � Ctð Þ V=W ð14:6Þ
where

qt (mg/g) is the amount of As (III) adsorbed after time t in minutes. C0 represents
initial concentration and Ct final concentration. V is the volume of As(III) in solution
(ml) and W is the weight of biosorbent (g).

The removal percentage (%) of As(III) ions from aqueous solution after
biosorption was calculated by applying the following equation:

Removal %ð Þ ¼ C0 � Ctð Þ=Ct � 100 ð14:7Þ
where

C0 and Ct were the initial and final concentration of As(III) after the biosorption
process.

A variety of plant biomass based biosorbent for As(III) ions were reported for
removal, e.g. mango leaf powder, rice husk, Psidium guajava leaf (Roy et al. 2017),
Azadirachta indica bark powder (Ahalya et al. 2005), leaves of Acacia
auriculiformis (Al-Mamuna et al. 2013), leaves of Bambusa vulgaris (Srivastava
and Dwivedi 2016) have been reported. These are some recent researches that
reported different plant biomass as remover of arsenic contamination from aqueous
medium. Many other plant species are also under continuous investigation for
remediation in different parts of the world.

14.3.1 Biosorption Mechanism

The biosorption of As(III) includes As(OH)3, As(OH)4
�, AsO2OH2

�, and AsO3
3�

using plant material that complexes with these ions using their functional group
presented on biomass surface. This mechanism takes into account a solid phase
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(biosorbent) and dissolved adsorbate in water (arsenic ion) (Sahmoune 2016). Plant
biomass involves the binding of arsenic ions by electrostatic interaction on Vander
walls forces, precipitation, ion exchange, complexation, and chemical adsorption
including chelation, reduction, and ion exchange or proton binding (Kanamarlapudi
et al. 2018).

The key factor in removing As(III) by plant biosorbents is different complex
organic compounds that contain amide, amine, thioether, imidazole, carboxyl,
sulfonate, sulfhydral, phenolic imine, phosphodiester, and phosphate groups that
can attract and scavenge metal ions (Park et al. 2010; Tsezos et al. 2006). Besides
this, the stereochemical, chemical, and coordination characteristics such as molecu-
lar weight, oxidation state, and ionic radius of targeted arsenic species are also
important. Other factors such as initial concentration of arsenic ions in solution,
effect of contact time of biosorbent and sorbate, effect of pH, temperature, and other
competing metal ions present in solution combinedly influence the rate of
biosorption (Park et al. 2010; Tsezos et al. 2006).

14.3.1.1 Chelation
During interaction of arsenic ions present in solution with plant biosorbent, chelating
agents present on biosorbent surface bind to the arsenic ions to form a complex
known as chelates. Polydentate ligands have different donor atoms to bind and as a
result stability of the complex is increased. Chelates formed from polydentate
ligands are more stable than other complexes (Witek-Krowiak and Reddy 2013).

14.3.1.2 Coordination
In biosorption phenomenon the arsenic and other heavy metals in the complex are
bound to its neighbors with covalent bond by accepting long pair of electrons from
the donor atom. Here nonmetal acts as donor atom of a ligand and the central atom is
known as acceptor. A co-ordinate bond is thus formed between central metal and
ligand. Some examples of coordinating groups are, e.g. –NH2, ¼O, –N¼, –NH, –S–
, –OH, ¼NOH, and –O–R (Kanamarlapudi et al. 2018).

14.3.1.3 Ion Exchange
Removal of arsenic and heavy metals by minerals takes place both by adsorption and
ion exchange. Ion exchange process also takes place partly in biosorption where
adsorbate ion exchanges with the ions present on the surface of biosorbent. The main
exchangers in biosorption are carboxyl group, amino and imidazole groups present
on the surface of biosorbent. Phosphate hydroxyl groups have also been identified as
exchangers (Ding et al. 2012; Chojnacka et al. 2005; Liu et al. 2012).

14.3.1.4 Reduction
Reduction is the important property of biosorption in which sorbed metal ions
interact with surface functional group such as carboxyl, get reduced, and leads to
the growth of crystals. The metallic ions get reduced once it is attached to the
biosorbent at discrete places (Park et al. 2010, 2005, b). The mechanism of
biosorption involves the functional groups on the surface of adsorbents and ion
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exchange properties (Michalak and Chojnacka 2010). Nature of the bonds present in
the functional group present in the adsorbent is determined by Fourier transform
infrared spectrometry (FTIR). FTIR peaks explain the presence of carboxyl, amino,
amide, hydroxyl, ether, and ester groups (Pistorius et al. 2009). Scanning electron
microscopy (SEM) explains the morphological changes before and after adsorption.
This has emerged as an important technique to determine the extent of biosorption.
Energy dispersive X-ray (EDX) provides the information of extent of arsenic
adsorption which can clearly be visualized in the peaks. X-ray photoelectric spec-
troscopy (XPS) is also a modern technique which helps in quantitative state and
empirical formula of elements present and oxidative states of adsorbate are also
confirmed by XPS (Michalak and Chojnacka 2010).

14.3.1.5 Complexation
Complexation is a phenomenon of biosorption in which complex is formed by the
association of two or more ions and compound. Mononuclear complexes are formed
when monodentate ligands co-ordinate the central metal ion. Polydentate complexes
are formed by the donation of electrons from multidentate ligands to central atom.
Ligands may be negative or neutral having lone pair of electrons so that electron pair
might be donated to the central metal ions. The complexes with monodentate ligands
are preferable to multidentate ligands due to stability and stability constants. Thus it
has become crystal clear that metal ions form bonds with ligands by co-ordinate
bond and this complexion facilitates biosorption (Wu et al. 2012; Hu et al. 2012).

14.3.2 Biosorption Isotherm

Adsorption isotherm models describe an empirical relation between solute
concentrations with adsorbent surface. The applicability of different isotherms is
analyzed by linear regression coefficient (R2) by using their linear plots. Most widely
applicable isotherm in arsenic biosorption was linear form of Langmuir and
Freundlich isotherm (Ayawei et al. 2017). Langmuir isotherm depends on the
basic assumption that biosorption materializes at specific homogenous site with
the biosorbent. Freundlich model supports the heterogeneous surface energies and
gives the experimental diffusion of active site (Gaur et al. 2018). Some of the most
studied isotherm in arsenic biosorption are Elovich isotherm, Temkin isotherm,
Halsey isotherm, Harkin–Jura isotherm and Dubinin–Radushkevich isotherm
(Ayawei et al. 2017).

The Elovich isotherm system has also been used for aqueous media to evaluate
adsorption mechanism. The basic mechanisms of linear Elovich model theory
describe application of the absolute rate theory to adsorption on an energetically
heterogeneous surface along with rectangular scattering of activation energies for
biosorption. It describes the adsorption isotherm which implies that adsorption
process is at quasi-equilibrium, takes place in a stepwise fashion, and the activation
energy increases linearly with surface coverage (Wu et al. 2009).
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As far as Temkin isotherm is concerned, indirect adsorbate interaction has been
considered as the basic assumption. The heat of adsorption (ΔHads) of the molecules
in the layer decreases with increase in surface coverage area (Ringot et al. 2007).
Halsey isotherm has also been used to know multilayer adsorption on the surface
(Ayawei et al. 2015). Harkin–Jura isotherm also considers multilayer adsorption
with heterogenous pore distribution (Foo and Hameed 2010).

Dublin–Radushkevich isotherm model (Travis and Etnier 1981) is expressed by
an empirical relation which is applicable to adsorption mechanism with Gaussian
energy distribution onto heterogenous surface (Celebi et al. 2007). This model is
applicable to intermediate range of adsorbate concentrations because it exhibits
unrealistic asymptotic behavior and does not predict Henry’s low at low pressure
(Theivarasu and Mylsamy 2011). The semiempirical equation of this model explains
pore filling mechanism. This adsorption is multilayer applicable to physisorption and
this fundamental equation explaining the adsorption of gases on micropores of
sorbent (Israel and Eduok 2012). It makes difference between physisorption and
chemical adsorption (Vijayaraghavan et al. 2006). A distinguishing feature of the
Dublin-Radushkevich isotherm is the fact that it is temperature dependent. In this,
log of amount adsorbed at different temperatures is plotted against square of
potential energy. A fit for suitable isotherm is thus determined by analysis of all
useful models (Gunay et al. 2007).

The expression of linear equation with their linear plot of all above mentioned
isotherm models has been classified in Table 14.2.

14.3.3 Kinetic Model of Biosorption

Kinetic analysis is very essential in arsenic and other metallic biosorption batch
studies. The rate of arsenic biosorption by biosorbent was analyzed using different
kinetic models (Nayak and Pal 2017). Kinetic study of biosorption has gained
importance in view of optimization of contact time (Kongarapu et al. 2018).

In most arsenic biosorption studies pseudo-first order (Barrett et al. 1951) and
pseudo-second order kinetics model were applied (Ho and McKay 2000). Some
other kinetic models that are important into understand the mechanism of
biosorption are intraparticle diffusion (Weber Jr. and Morris 1963), Elovich
(Wu et al. 2009), Bangham model (Aharoni and Ungarish 1977), and Modified-
Freundlich model (Kuo and Lotse 1973) whose linear equation are mentioned
below, respectively.

ln qe � qtð Þ ¼ ln qeð Þ � K1t ð14:8Þ
t=qt ¼ 1=K2q2 þ t=qe ð14:9Þ

qt ¼ K intt
0:5 þ C ð14:10Þ
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qt ¼ 1=β ln αβð Þ þ 1=β ln tð Þ ð14:11Þ
ln ln C0= C0‐qtmð Þf g½ � ¼ ln K0m=V½ � þ α ln tð Þ ð14:12Þ

ln qtð Þ ¼ ln KMFC0ð Þ þ 1=M1 ln tð Þ ð14:13Þ
In Eq. (14.8) qe and qt (mg/g) are the amount of ions adsorbed by biosorbent at

equilibrium and time t (min.), respectively. K1 (1/min) is the pseudo-first order rate
constant; In Eq. (14.9) K2 [g/(mg min)] is pseudo-second order rate constant; in
Eq. (14.10), Kint [mg(g min0.5)] is the rate constant of intraparticle diffusion, C is the
diffusion constant; in Eq. (14.11), α [mg/(g min)] and β (g/mg) are the Elovich
constant related to initial rate of adsorption and extent of surface coverage for
chemosorption, respectively; in Eq. (14.12), C0 (mg/L) is the initial metallic ion
concentration dissolved in the aqueous solution. V (mL) refers to the volume of
medium or solution,m (g/L) is the weight of the adsorbent employed, α0 (<1) and K0

[mL/(g/L)] are related to the Bangham constant; and in Eq. (14.13), KMF (L/g min) is
apparent adsorption rate constant and M1 is the Kuo–Lotse constant. These
frameworks of all the kinetic models were calculated by linear regression plots by
using origin pro software or MS Excel word.

Table 14.2 Linear equation of different isotherm models with their linear plot’s equation

S. no. Isotherm model Linear equation
Linear
plot References

1 Freundlich
isotherm

log qt ¼ log KF þ 1
n log Ct Log qt

versus
log Ct

Freundlich
(1906)

2 Langmuir
isotherm

1
qt
¼ 1

KLqm
1
Ct

� �
þ 1

qm

1
qt

versus
1
Ct

Langmuir
(1961)

3 Elovich
isotherm

ln qt
Ct

� �
¼ ln Keqm � qt

qm
Ln qt

Ct

� �

versus qt

Elovich (1959)

4 Temkin
isotherm

qe ¼ Rt
b ln Ktþ Rt

b ln Ce qe versus
Ce

Shahbeig et al.
(2013)

5 Halsey
isotherm

qe ¼ (1/nH) ln KH � (1/nH) ln Cqe Ln qe
versus ln
Ce

Fowler and
Guggenheim
(1939)

6 Harkin–Jura
isotherm

1/qe
2 ¼ (B/A) – (1/A) log Ce 1/qe

2

versus
log Ce

Foo and
Hameed (2010)

7 Dubinin–
Radushkevich
isotherm

ln qe ¼ ln qm – βE2 qe versus
qm

Travis and
Etnier (1981)
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14.3.4 Role of Thermodynamics in Biosorption

It has been reported that the temperature is widely affected by the rate of biosorption.
Therefore thermodynamic parameters such as ΔG, ΔH, and ΔS usually evaluated
because it influences the adsorption potential and explores the nature of adsorption
(Maji et al. 2007). These thermodynamic parameters have been calculated using
these equation mentioned below (Aydin et al. 2008; El-Sayed et al. 2011).

Ke ¼ C0 � Ceð Þ=Ce ð14:14Þ

ln Ke ¼ ΔS
R

� ΔH
RT

ð14:15Þ

ΔG ¼ �RT ln Ke ð14:16Þ
where Ke is the equilibrium constant, C0 is the initial ion concentration, Ce is the

concentration of ions in solution after equilibrium, ΔS is the entropy change, ΔH is
the enthalpy change, and ΔG is the Gibb’s free energy. R is the universal gas
constant (8.314 JK�1 mol�1), T is the temperature (K).

ΔS and ΔH are calculated by slope and intercept of the Van’t Hoff plot (ln Ke

versus 1/T ). Negative value of Gibbs free energy change (ΔG) and positive value of
entropy change (ΔS) show the spontaneity of the reaction, i.e. surface of adsorbent
accumulates metallic ions. So the favorable thermodynamic condition for adsorption
is the negative value of ΔG and positive value of ΔS (Aydin et al. 2008). If ΔH is
positive, biosorption process is endothermic in nature (Rajic et al. 2010).

14.3.5 Biosorption by Hairy Root Biomass

In recent years production of hairy root biomass through tissue culture techniques
has been exploited as a potential approach for biosorption through different plant
species to adsorb organic and inorganic contaminants including metals and
metalloids from environment (Agostini et al. 2013). The hairy root originates from
infection of explants with Agrobacterium rhizogenes strains that is gram negative
soil bacteria during the operation of genetic transformation by tissue culture
techniques. T-DNA of A. rhizogenes transfers to targeted explants. It comprise the
loci in between TR and TL region of the Ri (root inducing) plasmid into the plant
genome. A number of genes of pRi, e.g. vir, chromosomal virulent genes (ehv)
are instrumental in transformation. T-DNA also belongs to this class of genes.
In particular, rol genes present in T-DNA promote rhizogenic growth with the
massive adventitious roots and abundant root hairs (Singh et al. 2020).

Among several available plants for phytoremediation/bioremediation, hairy roots
(HRs) emerged as an important option of detoxification of environmental pollution
such as organic and inorganic hazards including arsenic and other heavy metals
without interference of soil microbes (Agostini et al. 2013). Hairy root does not
require any additional growth hormone and their undifferentiated growth properties
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suitable for arsenic removal. Some reports have been published on application of
HRs in removal of environmental pollutants. Development of HRs in B. juncea and
their application in removal of textile dyes have been successfully experimented
(Telke et al. 2011). In addition this hairy root of tobacco has potential to decolorize
malachite green, a complex organic dye from aqueous medium (Escudero et al.
2017). Arsenic and different heavy metals including radionuclides, e.g. Cs, P and U
which occur naturally may be removed by hairy root from aqueous medium (Malik
et al. 2017; Escudero et al. 2017). Hairy roots biomass should be considered as
effective and optimal model system may potentially lead to detoxification of arsenic
and other organic and inorganic pollutants from water resources. It will be a cost
effective and an ecofriendly approach that leads to definite trends of results of
phytoremediation because a vast data is available related to genes and enzymes
(Malik et al. 2017).

14.3.6 Chemically Modified Biosorbent

Nowadays, some chemically modified biosorbents have been developed to enhance
the As(III) removal potential of plant biosorbents. Chemical modification procedures
enhance complexion. Common chemicals used in pretreatment of plant biomass are
as acid, alkaline, acetone, and ethanol (Vijayaraghavan and Yun 2007; Göksungur
et al. 2005). The modified biosorbents treated from suitable chemicals have proved
to be suitable for effective biosorption. Pretreatment of the biosorbents depends
mainly on the cellular structure of the biomass. In some cases acid treatment has
been preferred to device best result of removal of arsenic. Modification of the
biosorbents increases the binding capacity of the sites available for adsorption.
Amides, carboxyl, phosphate, hydroxyl, and sulfonate groups on the surface of
biosorbents have already been established as binder of adsorbates. The binding
capacity of these functional groups is enhanced by modification or treatment with
suitable chemicals, e.g. ferric hydroxide and several nanoparticles. In addition of this
chloroacetic acid is used to initiate carboxyl in the place of hydroxyl group (Jeon and
Höll 2003). The carboxylated biomass was then chemically treated with
ethylenediamide and carbodiimide to give an aminated biomass. Such treatment of
amine group enhanced the removal of Hg (Li et al. 2007).

Functional groups onto the biomass surface can also be introduced by grafting of
long polymer chains onto the biomass. There may be direct grafting or polymeriza-
tion for this. Deng and Ting (2005a, b, c, 2007) worked extensively with
polyethylemide, composed of a large number of primary and secondary amine
groups, which on cross-linking with biomass showed good biosorption abilities for
arsenic and other heavy metals. Deng and Ting (2005a, b, c) showed that copoly-
merization of acrylic acid on biomass surface enhanced the activity of carboxyl
groups manifold for uptake of copper and cadmium.

Studies on plant biosorbent prepared from spruce (Picea abies) (Saw dust) after
modification with Fe(III) oxyhydroxide exhibit high removal efficiency of arsenic
with respect to untreated control (Urík et al. 2009). Natural watermelon rind (WMR)
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treated with citric acid shows excellent potential to sorb As(III). This study shows
that citric acid modification enhanced the efficiency of functional group such as –
OH, –COOH, C¼S, S ¼ 0, and S–S which were involved in As(III) sequestration
(Shakoor et al. 2018).

Cellular fiber chemically modified by hyperbranched polyethylenimide (HPE1)
prepared from microwave (MW) irradiation shows the high adsorption capacity to
remove arsenic from aqueous medium with respect to general cellular fiber. This
report presents MW irradiation method to treat biosorbent and has great potential in
dealing with arsenic species present in wastewater (Deng et al. 2016).

14.4 Conclusion

It has been established that biotechnological interventions enhance the rate of
bioaccumulation of As(III) by plants. During exposure of plants to As(III), several
enzymatic activities and gene expressions change including the expression of tran-
scription factors, different types of transporters, and miRNAs that possibly confer
metallic tolerant properties in plants. Several plants species such as Azolla,
Eicchornea, and Cymbopogon flexuous have been found as potential biosorbent of
arsenic from aqueous medium as well as soil. Hairy root biomass through tissue
culture techniques has also proved to be a success in removal of different metallic
contaminant, so it may be applicable to use as an As(III) remover. Though a number
of adsorption isotherms are known, Freundlich and Langmuir adsorption isotherms
are employed frequently during biosorption studies. Thermodynamic studies such as
entropy change, Gibbs free energy change, and enthalpy change control the reaction
processes. Biosorption mechanism includes complexation, ion exchange, reduction,
and transportation. SEM, EDX, and FTIR take part in deciding the extent of
adsorption by researchers. Biosorbent when modified chemically becomes more
effective towards removal of As(III). There is good prospect of developing
low-cost, eco-friendly, and novel methods of remediation of arsenic from aqueous
medium and soil, and the use of plants could be comparatively better option.
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Genes and Biochemical Pathways Involved
in Microbial Transformation of Arsenic 15
Hareem Mohsin, Maria Shafique, and Yasir Rehman

Abstract

Arsenic exists as a ubiquitous toxic metalloid in both organic and inorganic
forms. Most predominant forms are arsenate [As(V)] and arsenite [As(III)].
Both natural processes and anthropogenic activities play part in arsenic entry in
the environment and the water bodies. Environmental arsenic is biologically
cycled by many microbial species. These microbial species possess certain
genes and corresponding proteins to ensure survival in metal contaminated
sites. Microbial resistance to arsenic can accompany with oxidation, reduction,
or methylation of arsenic. The relevant genes are often plasmid borne but can also
be found in the chromosome of the bacteria. Various operons, gene products, and
biochemical pathways are involved in biotransformation of arsenic. Arsenic also
serves as electron acceptor for many bacterial species under anaerobic conditions.
All these processes take place in coordination within a bacterial cell depending
upon the valence state of arsenic and types of genes and proteins present in the
bacteria. The current chapter highlights the microbial genes, proteins, and the
biochemical pathways involved in microbial transformation of arsenic. These
processes not only play important roles in maintaining the environment, but also
have the potential for biotechnological interventions.
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15.1 Introduction to Arsenic

15.1.1 Sources/Origin of Arsenic

Arsenic (As) is a metalloid present ubiquitously with a molecular weight of 75 and
atomic number of 33. The dominant forms are arsenate and arsenite with valence
states of +5 and +3, respectively (Garland 2018). It is found in Earth’s crust with a
relative abundance of 54 and is a part of almost 245 minerals in association with
copper, lead, gold, sulfur, zinc, and other elements. Many areas in the world have
high concentration of arsenic owing to the processes of natural mineralization
(Cullen 2008). Arsenopyrite (FeAsS) is the most commonly found mineral
comprised of iron, arsenic, and sulfur (Corkhill and Vaughan 2009). Literature
reports that the average arsenic concentration in earth’s crust is approximately
5 ppm (ug/g) (Garelick et al. 2008).

It is known that one-third of arsenic flux in the environment is of natural origin
(Chatterjee et al. 2017). Major sources that release arsenic in the environment are
volcanic eruptions and hydrothermal vents followed by the volatilization process
taking place at low temperatures. Anthropogenic activities such as mining, smelting,
and combusting processes also release arsenic in the environment. Moreover, use of
arsenic-containing herbicides and pesticides (e.g., monomethyl arsenate (MMA) and
dimethyl arsenate (DMA), preservatives for wood, animal feed, paints, dyes, and
semi-conductors (Bhattacharjee and Rosen 2007; Shen et al. 2013) also act as source
of arsenic contamination in the environment.

Arsenic naturally forms organic and inorganic compounds which are mobile and
cannot be eliminated (Chung et al. 2014). The inorganic form is usually found in
combination with chlorine, oxygen, and sulfur in igneous and sedimentary rocks
while the organic forms of arsenic are widely present in combination with hydrogen
and carbon. The inorganic form is prevalent in groundwater. Likewise, the drinking
water of many countries such as Bangladesh, India, and Taiwan has high arsenic
concentration. This inorganic form also enters the food web via the agricultural
practices where contaminated water is used. The crops having arsenic is then used in
further food preparation and thus, arsenic travels to the higher trophic levels (Sharma
et al. 2016). Organic form of arsenic can be chiefly found in many aquatic animals,
meat, poultry, and dairy products. However, arsenic concentration in food products
is lower as compared to its concentration in groundwater (Upadhyay et al. 2019;
Awasthi et al. 2020).

15.1.2 Arsenic Toxicity

Arsenic is categorized as a carcinogen by Environmental Protection Agency (EPA)
and International Agency for Research on Cancer (IARC) (Chen et al. 2011). Strong
relatedness of arsenic and prevalent cancers (Smith et al. 2009) has been observed
which includes lung and skin cancers. Arsenic is ranked number 1 by The United
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States Agency for Toxic Substances and Disease Registry (ASTDR) in the ASTDR
Substance Priority List (https://www.atsdr.cdc.gov/SPL/index.html#2019spl).

Humans Arsenic has been known to people for centuries. During war times in the
past, it had been used to preserve dead bodies (Konefes and Mc Gee 2001). In the
1930s–40s, arsenic was most commonly used as a pesticide for apple trees (Murphy
and Aucott 1998). Long ago people were of the view that depending on the dose,
arsenic can either be used for treatment of various illnesses like syphilis (Vrotsos
et al. 2014) or it can be a poisonous that may lead to death (Cullen and Reimer 2017).

Arsenic is notorious for being the largest potential threat towards living
organisms, microorganisms, and environment as well. Arsenic contamination leads
to arsenicosis (Yu et al. 2007; Mohsin et al. 2019). In case of humans, it is
responsible for being one of the major risks of cancer and other related diseases in
more than 100 million people globally (Jain and Ali 2000). Research based on
epidemiology has revealed that populace is mostly affected with arsenic by drinking
groundwater especially in places like Taiwan (Chen et al. 2016), Argentina
(Steinmaus et al. 2010), Chile (Shen et al. 2013), and China (Mo et al. 2006). As
reported in literature, the lethal dose of arsenic trioxide upon ingestion is 70 mg to
300 mg. Ingestion of lethal dose results in death within 12–24 h. This toxicity
induced by arsenic includes stress by reactive oxygen species, apoptosis, thiamine
deficiency, and reduced activity of acetyl cholinesterase (Mochizuki 2019). Further,
arsenic is also reported to cause neurotoxic effects on the brain cells (Yoshinaga-
Sakurai et al. 2020).

Plants Plants gain no health benefits from arsenic. It has been reported that the
phosphate fertilizers, when used in excess, can lead towards arsenic toxicity by the
release of retained arsenic from the soil. These two anions have more compatibility
with the soil components and are highly mobilized as compared to other ions, thus
resulting in arsenic uptake by plants (Moreno-Jiménez et al. 2012). Uptake of arsenic
by plant can lead to its entry into the apoplastic phase of the plant from where
transpiration process takes the metal towards the foliar regions of the plant. In lesser
concentrations, arsenic is transported to short distances in the plant. However, in
high concentrations, arsenic affects the membranes and cause degradation (Zhao
et al. 2009; Wang et al. 2011b; Abbas et al. 2018). These uptake mechanisms by
plants become a potential reason of entry of arsenic into the human diet and
ultimately the food web.

Microorganisms Arsenic equally effects the microorganisms and their metabolic
processes. Microorganisms interact with environmental arsenic via a number of
mechanisms such as absorption, adsorption, mobilization, precipitation, redox
reactions, methylation, and the metal efflux outside the cell (Mohsin et al. 2019).
These microbial processes can cause biotransformation of arsenic and thus can affect
its fate in the environment.
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15.1.3 Biogeochemical Cycling

There is a directional flow of energy in an ecosystem. Starting from the entry of
sunlight as the primary energy source, it is released as heat during energy transfor-
mation processes between various trophic levels. However, the energy does not
escape from the ecosystem, but is recycled and conserved. Major elements in the
earth’s crust include carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus.
These elements are recycled during the geological processes like weathering, min-
eralization, erosion, etc. and when this recycling occurs between living and
non-living environment, this is termed as biogeochemical cycling (Johnson and
Van Hook 2012).

15.1.4 Environmental Arsenic and Microorganisms

Microbial life forms play a very vital role in biogeochemical cycling of ubiquitous
elements and minerals by fundamentally affecting the environment with the pro-
cesses of electron and elemental transfer in the ecosystem (Tamaki and
Frankenberger 1992; Huang 2014).

Microbes play a chief role in the fate of environmental arsenic where they are
capable of converting arsenic into two predominant valence forms, i.e. pentavalent
arsenate (+5) and trivalent arsenite (+3) (Bhattacharjee and Rosen 2007). The
relation of microbial diversity with the prevalence of arsenic in the environment
has been deeply studied. Studies regarding geochemistry in relation to microbiology
and molecular ecology have played an important role in comprehending the micro-
bial association with geochemistry. Islam et al. (2005) reported that arsenic was
released from the environmental samples of West Bengal where arsenic and iron
were in combination. Arsenate reduction was carried out by Clostridium species
while iron (III) reduction was carried out by Geobacter species. Arsenic methylation
was also studied to be microbially assisted by Jia et al. (2013). Research on
geochemistry and microbial activities was done by Demergasso et al. (2007)
where the role of microorganisms in arsenic precipitation from arsenic-sulfur
minerals was studied. All such studies clearly state that microorganisms play a
critical role in the arsenic cycling (Huang 2014).

Oxidation Arsenite oxidation is a detoxification process where microorganisms
become capable enough to tolerate arsenite toxicity and convert arsenite to arsenate.
This results in lower mobility rate of arsenic as arsenate is more compatible with
minerals compared to arsenite (Wang and Zhao 2009; Huang et al. 2011b). Several
microorganisms are involved in this process which includes Alcaligenes faecalis,
Hydrogenophaga sp., Alcaligenes ferrooxidans, T. aquaticus, and T. thermophilus.
This method is also considered as a potential process for bioremediation of arsenic
(Ito et al. 2012).
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Reduction Reduction of arsenate results in the formation of arsenite which
enhances the mobility of environmental arsenic. Many microbial species also exhibit
arsenate reduction via the detoxification process (Stolz et al. 2006). Several microbes
perform this mechanism which includes E. coli, Staphylococcus aureus, and Staph-
ylococcus xylosus. The detoxification process usually occurs in aerobic conditions.
Corsini et al. (2010) conducted a research that showed Bacillus and Pseudomonas
species to detoxify arsenate into arsenite in the soil under aerobic conditions (Huang
et al. 2011b).

Many microorganisms can also carry out respiratory reduction of arsenic under
anaerobic conditions where arsenate acts as an electron acceptor in the electron
transport chain of many bacteria such as Rhodopseudomonas sp., Rhodobacter
sp. (Mohsin et al. 2019), Sulfurospirillum barnesii, Bacillus arsenicoselenatis,
Bacillus selenitreducens, Sulfurospirillum arsenophilum, Chrysiogenes arsenatis,
and Desulfomicrobium sp. It is evident that arsenic present in the environment is
bounded or adsorbed with a wide range of minerals in which sulfur and iron-based
minerals are predominant. According to the research conducted by Zobrist et al.
(2000), the rate of arsenic reduction is also influenced by the extent of binding and
adsorption. The microbially assisted reduction rate is fastest in dissolved form of
arsenate. It then reduces with the passage of time when bounded or adsorbed on an
iron-containing mineral. Shewanella sp. strain ANA-3 has been reported by
Malasarn et al. (2008) to carry out arsenate reduction by the help of an enzyme
arsenate respiratory reductase and release the reduced form, i.e. arsenite, in the
environment. Newman et al. (1997) reported the arsenate reduction bounded with
sulfate by microorganism D. auripigmentum, but this microbe preferred to act on
sulfate part of the minerals (Huang 2014).

Methylation Both aerobic and anaerobic microbes are involved in arsenic methyl-
ation. The methylation process results in the transformation of solid or aqueous
inorganic arsenic compounds into a variety of gaseous arsines which escape and is
considered as a detoxification mechanism (Huang 2014). There is production of
monomethyl arsonic acid (MMAA), dimethyl arsenic acid (DMAA), and trimethyl
arsine oxide (TMAO), while demethylation results in the reconversion of methylated
forms into inorganic forms. Microbes further act on the methylated arsenic products
by producing methylarsine (MMA), dimethylarsine (DMA), and trimethylarsine
(TMA) (Dhuldhaj et al. 2012). The arsines formed are mobile as compared to the
solid or aqueous forms of arsenic, thus travelling across long distances in the
environment. This increased mobility of methylated arsenic owes to the limited
adsorption of arsenic. The production and mobilization of methylated arsenic is
highly supported by reducing environment, i.e. lower redox potentials (Frohne et al.
2011). Such reducing conditions, converting As+5 to As+3, can enhance the
dissolved arsenic levels in the environment (Bennett et al. 2012), thus increasing
arsenic microbial methylation. Cullen et al. (1994) reported that Apiotrichum
humicola and Scopulariopsis brevicaulis are able to perform arsenic methylation.
The pathways include the conversion of inorganic arsenic to MMAA followed by
the formation of DMAA and then TMAO. MMAA was subjected to internal
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metabolic process of microbes having lower permeability while DMAA easily
crossed the microbial membranes easily. This proved the presence of DMMA in
higher concentrations in natural environments as compared to MMAA which was
found to be in lower concentrations (Fauser et al. 2013; Huang 2014). The produc-
tion of MMAA and DMAA is found in a number of environmental samples and
reported to be intermediate products during the Challenger’s Pathway of arsenic
methylation (Huang et al. 2011a). Literature also reports the As+5 methylation
intracellularly by Trichoderma asperellum, Penicillium janthinellum, and Fusarium
oxysporum. Metabolic processes in these microbes lead to the production of As+3,
MMAA, and DMAA (Su et al. 2012). The methyl arsines MMA, DMA, and TMA
are produced via the microbial action on aqueous methyl arsenic. Microorganisms
involved include Methanobacterium bryantii, Methanobacterium formicium, Clos-
tridium collagenovorans, Desulfovibrio gigas, and Desulfovibrio vulgaris
(Michalke et al. 2000). Most reported is the arsenite S-adenosyl-methionine
methyltransferase enzyme which is involved in the methylation process converting
the inorganic arsenic into various arsines. Several other enzymes have been reported
which are involved in microbial methylation like arsenate reductase, MMAA reduc-
tase, arsenite methyltransferase, and monomethyl arsonous acid methyltransferase
(Wu 2005).

Demethylation Demethylation of arsenic refers to the methylated arsenic degrada-
tion. The arsines that are produced are subjected to photooxidative degradation
(Mestrot et al. 2013). Yoshinaga et al. (2011) conducted a study which revealed
that Burkholderia sp. and Streptomyces sp. are involved in the monomethylarsonic
acid reduction and monomethylarsonous acid demethylation. The study also
concluded that Mycobacterium neoaurum has the ability to perform demethylation
on MMAA and monomethylarsonous acid (Lehr et al. 2003). However, demethyla-
tion of arsenic via the microbial involvement still needs to be deeply studied (Huang
2014).

15.2 Microbial Transformation of Arsenic

In the continuous exposure of toxic metals and metalloids in the microenvironment,
microbes acquire resistance genes which provide a selective advantage for survival
and propagation. A wide range of microbes have developed resistance against
arsenic that can involve reduction, respiratory reduction, oxidation, and methylation.
Following is the detailed description of the genes and gene products which confer
arsenic resistance via different mechanisms.

15.2.1 Genes Involved in Resistance

The genetic makeup of microorganisms is ever evolving, and with the increasing
arsenic concentration in the environment, the resistance genes have developed
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against it. The resistance system against arsenic toxicity includes the ars operons
which are extensively present in bacterial and archaeal species. It has been reported
in literature that ars operons are present in prokaryotes more commonly as compared
to the genes responsible for tryptophan synthesis (Silver and Phung 2005a). This
evolution and development of arsenic resistance genes reflects the presence of
arsenic in the environment ubiquitously (Yang and Rosen 2016; Ben Fekih et al.
2018).

Arsenic resistance genes were identified 50 years back during the research of
resistance genes against antibiotics in clinical isolates (Novick and Roth 1968). A
plasmid pI258 isolated from Staphylococcus aureus was found to confer resistance
against antibiotics, As (V), As (III), and other heavy metals and metalloids. Another
plasmid named R773 was also identified from E. coli that had arsenic resistance
genes (Hedges and Baumberg 1973). According to literature, a collaborated research
project was conducted which was based on exploring and isolating the plasmids
exhibiting arsenic resistance in gram-positive and gram-negative bacteria. Energy-
dependent efflux system was discovered, first in case of antibiotics (McMurry et al.
1980) and shortly afterwards, for arsenite efflux from the cell (Mobley and Rosen
1982; Silver and Keach 1982). arsRDABC operon was identified from R773 plasmid
isolated from E. coli. The plasmids, i.e. pI258 and pSX267 from Staphylococcus
aureus revealed the presence of arsRBC operons that code for the arsenic resistance
genes having homology with R773 genes (Ben Fekih et al. 2018). Other
microorganisms which comprise of arsenic-resistant genes residing plasmids include
Yersinia sp., Acidiphilum multivorans AIU 301, Serratia marcescens, archaea
Halobacterium sp. NRC-1, and Sinorhizobium sp. M14 (Ben Fekih et al. 2018).

arsR gene codes for ArsR protein that belongs to SmtB/ArsR family. ArsR
protein binds to the promoter region of ars operon and acts as a transcriptional
repressor protein, thus acting as a regulator (Zhu et al. 2014). The interaction of this
protein with arsenite allows the transcription of this operon.

The ArsA is a protein which works in interaction with ArsB. This combination
works as a system for arsenite efflux which gets the energy via ATP hydrolysis
(Yang et al. 2015). Along with the interaction of ArsB, ArsA ATPase leads to the
formation of arsenite transporters associated with membrane embedded proteins
(Castillo and Saier 2010).

ArsB alone is an important protein in the membrane which removes arsenite from
the cytoplasm. This helps in reduction in arsenite accumulation.

ArsC is another protein that was identified from pI258 and R773. It works as
arsenate reductase enzyme resulting in the conversion of arsenate into arsenite before
the removal of arsenite oxyanion from the cell cytoplasm (Zhu et al. 2014).

Another protein is ArsD that acts as a weak repressor of ars operon which is
inducer independent. Its major function is the binding of arsenite followed by its
transfer to ArsA ATPase before it is expelled from the ArsB protein pump (Yang and
Rosen 2016).

Variants of ars genes have also been identified in several microbial species which
include Acidithiobacillus ferrooxidans, Pseudomonas fluorescens MSP3,
Synechocystis sp. PCC 6803, Shewanella oneidensis ANA-3 a gamma
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proteobacterium, and Campylobacter jejuni (Ben Fekih et al. 2018). Archaeal specie
Ferroplasma acidarmanus has the ability to resist arsenic because of the chromo-
somal ars operons (Lin et al. 2006).

Silver and Phung (2005b) were the first ones to report arsenic gene islands in
microbial specie Alcaligenes faecalis playing a role in metabolism and resistance
against arsenic. pSinA plasmid isolated from Sinorhizobium also contained arsenic-
resistant gene islands that might be acquired by horizontal gene transfer
mechanisms.

arsRB operon evolved conferring arsenic resistance encoding the regulator pro-
tein ArsR and the arsenite efflux pump protein ArsB. This arsRB operon evolved to
form arsRBC encoding for ArsC enzymes. ArsA ATPase and ArsD developed with
the evolution of a complex called as arsRDABC after the operon arsRBC, thus
providing resistance to increased levels of environmental arsenic and having a much
tighter regulatory effect. arsD and arsA are the genes placed adjacent to each other in
ars operon which reflects that both genes act in combination. arsBC comprise of
genes arsB and ars C leading to the formation of protein product ArsB and ArsC,
respectively. Plasmids bearing these genes in combinations lack arsA gene and are
usually found in gram-negative bacteria. However, literature reports that it is not
necessary for ArsB and ArsC to work in combination as reported in P. aeruginosa
and Neisseria gonorrhoeae, while the proteins ArsR and ArsC have been identified
coordinating with each other in arsRBC operons in species like L. ferriphilum and
Sinorhizobium. Such functioning of ArsC provides the evidence of its working as
fusion proteins because of having a relatively smaller molecular weight of 130–140
amino acid residues (Wu et al. 2017). This ultimately provides advantage to the
bacterial cell in terms of sensing and detoxifying arsenite (Ben Fekih et al. 2018).
The ars genes are also reported to be present in prokaryotic genetic makeup in
redundant manner, via gene duplication or horizontal gene transfer mechanism, more
frequently owing to the increased arsenic levels in the environment (Li et al. 2014).
Some species like Bacillus CDB3 strain possess simple repeating ars genes while
P. putida possess two ars operons together. The function is not symbiotic against
arsenic resistance but depends on the bacterial growth and external environment
temperature. Moreover, industrially important microbial strains also possess multi-
ple genes which include Corynebacterium glutamicum ATCC 13032, anaerobic
Rhodopseudomonas palustris CGA009, and Ochrobactrum tritici SCII24.
R. palustris resist different levels of arsenite according to the concentrations in
harsh environments owing to the presence of redundant ars genes (Zhao et al. 2009).

Other resistance genes have also been reported that encode for the proteins
conferring arsenic resistance.

acr3 gene has been identified in many strains like Microbacterium sp.,
R. palustris, C. jejuni, etc. that confers arsenic resistance to the microbe. The protein
product Acr3 (also called as ArsY) transporter is also reported to work in coordina-
tion with AcrC as a fusion protein inM. tuberculosis. This fused transporter complex
functions as an efflux pump against arsenite limiting the arsenic accumulation in the
bacterial cell (Achour-Rokbani et al. 2010). Achour-Rokbani et al. (2010) have
reported the prevalence of arsB genes in gamma proteobacteria as well. Both
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genes can be present in symbiotic relation within an organism but genes coexisting
in a same operon have not yet been discovered (Yang et al. 2015; Ben Fekih et al.
2018). Yang et al. (2015) have reported the presence of ArsB proteins only in
prokaryotes while the protein Acr3 is reported in bacteria, archaea, fungi, and plants
as well (Ben Fekih et al. 2018). ars operons also comprise of genes that encode for
aquaglyceroporin product, i.e. AqpS performing the function of an arsenite efflux
pump that is used as a substitute for transporter ArsB. AqpS also has the ability to
sensitize the arsenite in the external environment after which ArsC protein will
reduce arsenate in internal environment. Two genes gapdh and arsJ are located in
ars operon conferring resistance against arsenic encoding for enzyme glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) and MFS transporter ArsJ, respectively.
The enzyme GADPH catalyzes the reaction for the formation of arsenate phospho-
glycerate followed by its expulsion via the ArsJ transporter after the disassociation of
arsenate from the complex resulting in detoxification of arsenic. arsN gene has also
been identified via metagenomic studies by Chauhan et al. (2009) which is
associated with ars operon. In some cases, it functions in fusion with arsC and
arsD, thus playing a role in arsenic resistance. However, the functioning of arsN
genes has not been completely studied (Ben Fekih et al. 2018).

15.2.2 Genes Involved in Dissimilatory Reduction (Anaerobic)

Bacterial species perform reduction of heavy metals and metalloids to prevent the
metal accumulation in the cells. In the same way, a wide range of bacterial species
have developed mechanisms to succor arsenate reduction into arsenite in anaerobic
environment. Species like Chrysiogenes arsenatis (Krafft and Macy 1998),
Shewanella sp. strain ANA-3 (Malasarn et al. 2008), and B. selenitireducens
(Afkar et al. 2003) have the ability to reduce arsenate into arsenite by using arsenate
as a terminal electron acceptor. The genes in bacterial genomes are responsible for
encoding of respiratory arsenate reductase (Arr) which is composed of two further
subunits named as ArrA and ArrB (Duval et al. 2008). Shewanella sp. strain ANA-3
has been studied where the expression of arrA gene was observed only under
anaerobic conditions when other electron acceptors like oxygen, nitrate, and fuma-
rate were not used. The gene arrA has been identified from Geobacter sp. from a
variety of sites which include Bengal delta (Héry et al. 2010), Mekong Delta (Ying
et al. 2015), Cambodia (Lear et al. 2007), and China paddy soils (Qiao et al. 2018).
Mirza et al. (2017) have recovered almost 62,056 arrA genes out of which 16%
sequences of 16S gene were identified as Geobacter sp. It has also been reported that
Geobacter sp. OR-1 also possess arsenic islands (Ehara et al. 2015) which is having
arrB genes as well. These genes are flanked by ars operons and they play a pivotal
role in utilization of arsenic ferrihydrite as an electron acceptor. These genes thus
play a role in arsenic respiration by which electron transport chain in bacteria is
driven by using arsenic as an electron acceptor. After this, the reduced arsenite is
transferred outside the cells via the transporter proteins and chaperons which are
encoded by ars operons (Tsuchiya et al. 2019) as described in the previous section.
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15.2.3 Genes Involved in Arsenic Oxidation

Microorganisms are also involved in arsenite oxidation in natural environments
contaminated with arsenic. Several microbial species carry out arsenite oxidation
for arsenic detoxification converting more toxic arsenite into less toxic arsenate.
However, in this detoxification process, microorganisms are also capable of respir-
ing arsenite as a source of electron. aioA refers to arsenite oxidation in aerobic
environment and is the recently accepted nomenclature (McDermott et al. 2020) for
the previously identified arsenite oxidation genes, i.e. aoxB, asoA, and aroA. A new
gene family has also been identified as arxA that supports growth mechanism of
chemoautotrophy using arsenite (Escudero et al. 2013). Examples include
Herminiimonas arsenicoxydans, Thiomonas sp., and Rhizobium sp. strain NT26
(Heinrich-Salmeron et al. 2011). This oxidation of arsenite is catalyzed by arsenite
oxidase and encodes a small and large subunit. Small subunit comprises of genes
aoxA/aroB/asoB and the large subunit comprises of genes aoxB/aroA/asoA (Cai
et al. 2009).

Another system has also been reported for arsenite oxidation. The system is of arx
genes that work in the anaerobic conditions (Zargar et al. 2010). The anoxic
oxidation process of arsenite is coupled either with the nitrate respiration process
or the anoxygenic photosynthesis electron transport chain (Zargar et al. 2012).
Alkalilimnicola ehrlichii MLHE-1 from the family of gammaproteobacterial has
been identified as the first organism comprising of this oxidation system by Zargar
et al. (2010). The homologs for arx system were further identified via comparative
genomics techniques in other microbial species which include Ectothiorhodospira
sp. PHS-1 and Halorhodospira halophila SL1 (Andres and Bertin 2016). Watanabe
et al. (2014) also identified arxA present in this oxidation system from the bacterial
species isolated from arsenic-contaminated environments (Andres and Bertin 2016).

15.2.4 Genes Involved in Arsenic Methylation

As microorganisms are involved in arsenic metabolism, methylation and demethyl-
ation are also important mechanisms by which toxicity of arsenic is reduced. Two
genes arsM and arsI are involved in this process where they encode for arsenite
methyltransferase enzyme and Cas lyase enzyme, respectively. The erstwhile is
involved in the methylation process starting from arsenite (Rahman and Hassler
2014) while the latter enzymes regulate the demethylation process of
methylarsonous acid (Yoshinaga and Rosen 2014). These are the processes that
confer resistance against arsenic and make microbes capable enough to tolerate this
toxic metal. However, it is also considered simply as the detoxification process
(Andres and Bertin 2016). Literature reports that arsM genes are prevalent in
bacteria and archaea while arsI genes and their orthologs are restricted only to
bacterial species (Yoshinaga and Rosen 2014).
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15.3 Biochemistry of Microbial Arsenic Transformation

Metals are required by the microbes in small quantities thus function as
micronutrients. Many other metals are nonessential for microbes and have no
biological role thus posing toxic effect. Biotransformation of these metals is carried
out either for redox reactions resulting in the stability of molecules or turning
inorganic form to organic or vice versa. When microbes interact with metals, it
leads to cell membrane damage, alteration in enzyme function, genetic material
impairment particularly when exposed to high levels of nonessential as well as
essential metals (Dey et al. 2016). Many arsenic compounds are readily solubilized
in water followed by microbial uptake, thus exhibiting increased levels of bioavail-
ability, depending on the physical and chemical environmental conditions. The
ubiquity of arsenic (Williams and Silver 1984) results in the development of multiple
strategies for microorganisms to grow in metal contaminated environment. Biotrans-
formation readily occurs due to various metabolic functions such as detoxification,
oxidation, anaerobic respiration, and methylation (Satyapal et al. 2016). The specia-
tion and mobility of arsenic can be influenced by microbes via redox reactions along
with arsenate resistance and respiration. Two different arsenate reductases are
encoded by arr and ars genes which are linked to cellular respiration and detoxifi-
cation mechanisms, respectively. On the other hand, arsenite oxidase is encoded by
aox and aso genes responsible for oxidation to gain energy (Gupta 2015). Various
mechanisms help microbes to interact with arsenic like chelation, compartmentation,
exclusion, and immobilization (Zhu et al. 2017). These microbes either increase the
arsenic bioavailability and toxicity or immobilize arsenic for toxicity reduction.
Biotransformation plays significant part in biogeochemical cycles which is utilized
for bioremediation of contaminated environmental sites (Lloyd and Lovley 2001).
Microorganisms evolved a number of strategies to combat arsenic toxicity (Plewniak
et al. 2018).

(a) Active exclusion of arsenic
(b) Intercellular chelation by several metal binding peptides such as glutathione

(GSH), metallothioneins (MTs), or phytochealtins (PCs)
(c) Transformation of arsenic to other less harmful organic forms
(d) Extracellular sequestration

15.3.1 Biochemical Pathways Involved in Resistance

Microorganisms mitigate different forms of arsenic through oxidation, reduction,
methylation and intracellular bioaccumulation. Two distinct mechanisms are found
in Escherichia coli for arsenic resistance; chromosomal and plasmid encoded
systems (Tamaki and Frankenberger 1992). Resistances conferred by plasmids is
the result of accelerated extrusion of arsenate from the cell. It is wide spread among
various bacterial species resulting in stimulation of an anion for translocation of
ATPase with improved arsenate and arsenite selectivity. Arsenate and arsenite but
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not phosphate exported out of the cell by highly specific membrane associated
pumps. Three genes ArsA, ArsB, and ArsC mainly responsible for the arsenate
export were revealed via molecular analysis of plasmid encoding resistance. ArsA
and ArsB export arsenite while ArsC conferred arsenate resistance. The oxyanion
pump comprises of ArsA and ArsB protein. ArsA protein is mostly cytosolic but a
part is embedded in cell membrane which forms a complex with ArsB. ArsB is
present in the inner membrane of E. coli. It is reported to be the part of pump
responsible for the anions transport from the cell. ArsC polypeptide transforms
ArsB-ArsB complex, thus allowing the arsenate pumping. ArsC is not necessary
for the efflux of arsenite. It is highly selective in inhibiting the phosphate transport
out of the bacterial cell (Tamaki and Frankenberger 1992).

Arsenic has molecular similarity with various membrane transporter proteins thus
allowing the uptake of arsenic. Arsenate has structural similarities with phosphates
and is taken up by the cell via membrane phosphate transporter proteins (Pandey
et al. 2015). The well-defined bacterial resistance mechanism involves the reduction
process from arsenate to arsenite. This process is either exuded from the cells or
seized in intracellular compartments. Chromosomally encoded resistance is
conferred by triggering of pumps for phosphate uptake because of structural
similarities between arsenate and phosphate. Arsenate is transported via the phos-
phate pumps. As(V) gains entry via the PhoE protein (outer membrane porin),
followed by transportation into the cytoplasm through inorganic Pi transport (Pit)
and phosphate-specific transport (Pst) (Willsky and Malamy 1980). Pit system is
expressed constitutively and does not differentiate between phosphate and arsenate
(Jackson et al. 2008). Under phosphate rich conditions, Pit system achieves the cell’s
requirement regarding phosphate and results in arsenate accumulation. However, in
the case of phosphate deficiency, particular Pst system is activated resulting in the
higher level of arsenate resistance due to reduced uptake of arsenate. S. cerevisiae
codes phosphate transporter which is comparable to the low-affinity transporter of
the prokaryotes and the expression is controlled through a feedback mechanism. In
case of increased phosphate concentrations, Pit transporters, belonging to the cate-
gory of permease channel transporters, are expressed exhibiting low affinity. Pst
exhibits 100 times more efficiency in differentiating between phosphate and arsenate
as compared to Pit (Saona et al. 2019). Inactivating Pit system by pit mutation is a
method that adopts arsenate stress. It leads to moderate tolerance of arsenate owing
to discrimination between phosphate and arsenate by Pst system (Hudek et al. 2016).

Arsenic exclusion is done via two mechanisms by microbes. One is the arsenite
efflux through an arsenite carrier protein, where energy is derived from the mem-
brane potential. Second is the arsenic exclusion by an arsenite-translocating ATPase.
The three-gene operon arsRBC has the capability to expel arsenite by ArsB alone
whereas the five-gene operon, arsRDABC, expels arsenite by ArsAB pump. An
ArsAB complex forms when ArsA is co-expressed with ArsB. E. coli is capable of
producing ArsA protein from plasmid R773. arsRDABC operon confers increased
resistance to arsenite as ArsAB ATPase can remove arsenite more effectively in
complex form than alone (Slyemi and Bonnefoy 2012).
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Arsenite occurs as As(OH)3 in aqueous solution which is structurally similar to
the glycerol thus is taken via the membrane proteins like glyceroporin membrane
proteins, transporters like hexose transporters or glucose permease (Yang et al.
2012). As(OH)3 is transported by aquaglyceroporins (AQP) into cells at neutral
pH in bacteria, yeast, and mammals. As(OH)3 is similar to a polyol, GlpF, which
results in the capability of the glycerol transporters to carry arsenite (Meng et al.
2004). These transporters are responsible for the osmoregulation. It appears that
arsenic oxyanion also acts as a GlpF substrate. High osmolality shuts down Fps1p
channel thus providing resistance against As(III). The aqpS gene of Sinorhizobium
meliloti was mutated to study the role of AQP in arsenic resistance. It resulted in
higher tolerance to arsenite specifying that AqpS assists the arsenite uptake (Meng
et al. 2004; Yang et al. 2005).

15.3.2 Biochemical Pathways Involved in Reduction

Arsenate reduction by microbes mobilizes the arsenite which is a more toxic form as
compared to arsenate thus contaminating the groundwater. The reduction of arsenate
to arsenite in the course of detoxification appears counterproductive. Arsenite
resistance mechanisms first developed under anoxic atmosphere when nearly no
arsenate was present. The development of oxygenic conditions results in the evolu-
tion of arsenate reductases in presence of increase arsenate content. Arsenite allows
easy recognition as compared to the arsenate probably playing a role in the evolution
of these pathways (Chen et al. 2020). Microbes take up the arsenate followed by the
reduction of arsenite which is carried out either at periplasmic or cytosolic site. ArrA
is a periplasmic respiratory arsenate reductase enzyme associated with cellular
respiration. Arsenate uptake via Pit or Pst is followed by reduction of arsenate to
arsenite occurs by the enzymatic reaction of arsenate reductase enzyme, ArsC
leading to extrusion of arsenite via ArsAB pump (Silver and Phung 2005b; Rensing
and Rosen 2009). In cytoplasmic reduction arsenate first binds to the anion site in the
ArsC leading to the formation of an arsenate thioester intermediate. This intermedi-
ate is reduced in two phases by glutaredoxin and glutathione, leading to the forma-
tion of an intermediate Cystic2-S-As(III). This intermediate results in the release of
arsenite upon hydrolysis. The reduced arsenite is released from the cell or
sequestered in the intracellular compartments, either in conjugation with glutathione
or other thiols or as free arsenite (Satyapal et al. 2016).

15.3.3 Biochemical Pathways Involved in Anaerobic Reduction

Arsenate reducing organisms are found in diverse environments like freshwater,
sediments, soda lake, hot springs, estuaries, and gold mining areas. Arsenate reduc-
ing bacteria are also inhabiting gastrointestinal tract of animals along with subsur-
face aquifer materials show the occurrence of arsenate reducing bacteria.
Dissimilatory arsenate respiring prokaryotes (DARPs) are the group of
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microorganisms that can oxidize various organic or inorganic electron donors.
Heterotrophic DARPs reduce arsenate to arsenite anaerobically. In anaerobic
conditions, dissimilatory arsenate reducing bacteria perform respiratory oxidation
by the utilization of arsenate. Arsenate resistance microorganisms (ARMs) reduce
arsenate (used as electron acceptor) to arsenite or expel the metal out of the cell via
precipitation under anaerobic conditions. Arsenic mobilization from solid to soluble
phase takes place by the process of microbial arsenate respiration in various habitats
worldwide. In particular, microbial respiratory reduction of As(V) to As(III)
prevents the re-adsorption of arsenic once it is taken away from environments rich
in iron (Cavalca et al. 2013).

DARPs belong to groups such as Gram positives, β-, γ-, and ε Proteobacteria,
thermophilic Eubacteria, Chrysiogenes arsenatis, Crenarchaeota, Epsilon
proteobacteria, Firmicutes, Aquificae, Deferribacteres. These are metabolically
diverse groups and can use wide range of inorganic compounds as electron donors
such as H2 to small organic acids and sugars to complex aromatic substrates like
benzoate and toluene.

Ahmann et al. (1994) reported the first arsenate respiring bacterium as
Geospirillum arsenophilus strain MIT-13. The bacterial specie was isolated from
anoxic sediments which was characterized with the presence of arsenite owing to the
removal of lactate and arsenate. DARPs can also use other terminal electron
acceptors such as nitrate, various sulfur compounds, selenate, Fe(III), or fumarate
except strain MLMS-1 isolated from Mono Lake rely obligatory on arsenate reduc-
tion combined to sulfide oxidation (Hoeft et al. 2002).

DARPs can utilize arsenate as terminal electron acceptors in anoxic arsenate
respiration and can deliver energy needed for the microbial growth (Cavalca et al.
2013). Membrane associated enzymes from Bacillus selenitireducens and
Chrysiogenes arsenatis were found in periplasm and are different from the
non-respiratory arsenate reductases of E. coli and S. aureus (Afkar et al. 2003).
Ars detoxification system of E. coli plasmid R773 is beneficial but is not required for
respiratory arsenate reduction mediated by arr operon. ArrA has the ability to reduce
arsenate into arsenite, whereas ArrB channels the electrons from c-type cytochromes
in the respiratory chain. It is proposed that arsenic may hinder diverse ecologically
important anaerobic respiratory processes (Saltikov et al. 2003) as arsenic was
revealed to obstruct denitrification in subsurface aquifer sediments. It is possible
arsenic toxicity has limited the distribution among bacteria. However, little is known
about dissimilation and the related regulatory genes.

15.3.4 Biochemical Pathways Involved in Oxidation

Arsenite oxidase was first studied in 1918, when 15 strains of heterotrophic arsenite
oxidizing bacteria were isolated. Arsenite oxidizing microorganisms can be
categorized as heterotrophic arsenite oxidizers (HAO) and chemolithoautotrophic
arsenite oxidizers (CAO). Heterotrophic oxidation is also a detoxification process
which results in arsenite conversion in outer membrane of the cell. This reaction in
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oxic conditions, when combined with nitrate reduction, produces CO2 from the
organic matter. HAOs use organic carbon as an energy source for cell growth
(Heinrich-Salmeron et al. 2011; Hassan et al. 2019).

Bacteria are more resistant to arsenate than arsenite and results in arsenite
oxidation. Arsenite oxidase performs arsenite oxidation in periplasmic space of
bacterial cell. A. faecalis isolated from sewage was able to oxidize arsenite. Respira-
tory inhibitors suppress further arsenite oxidation signifying the role of oxygen as
terminal electron acceptor. In extreme environments like acid mine water, the
concentration of arsenic is very high and main inorganic species is arsenite (Santini
and vanden Hoven 2004; Hassan et al. 2019).

AoxS acts as a sensor kinase and detects the presence of arsenite resulting in the
activation of AoxR involved in regulation. AoxR regulates the aox operon expres-
sion functioning simultaneously with RpoN. This RpoN is indispensable for activa-
tion of arsenite oxidase transcription in A. tumefaciens. AoxAB complex is produced
after aox operon expression and is transported to the periplasmic space via a TAT
(Twin-Arginine Translocation) export pathway. It carries out the oxidation of
arsenite into arsenate in the periplasmic space (Santini and vanden Hoven 2004;
Zargar et al. 2012).

15.3.5 Biochemical Pathways Involved in Anaerobic Oxidation

Oremland et al. (2002) reported an arsenite oxidizing bacterium Alkalilimnicola
ehrlichii sp. strain MLHE-1 from anaerobic environment with high arsenic concen-
tration. It was chemolithoautotrophic bacterium that has the capability to perform
arsenite oxidation along nitrate reduction under anoxic conditions.
Ectothiorhodospira sp. PHS1, a purple-sulfur bacterium isolated from
red-pigmented biofilms in Mono Lake can utilize arsenite as the electron donor for
anoxygenic photosynthesis and yields arsenate under continuous illumination.
ArxAB was discovered in A. ehrlichii strain MLHE-1 and Ectothiorhodospira strain
PHS-1 which is responsible for the arsenite oxidation in presence of nitrate in
absence of oxygen. It was categorized under the DMSO reductase family but was
distinct from AioAB. Hoeft et al. (2002) reported that Arx enzymes may have
evolved in ancient times in the absence of oxygen where they would have played
a part for arsenite oxidation in the presence of light and absence of oxygen (Zargar
et al. 2012).

They have the capability to use arsenite as an energy donor for chemoautotrophic
growth occurring simultaneously with oxygen reduction, e.g., Rhizobium strain
NT-26 or T. arsenivorans. Chemoautotrophs can oxidize arsenite by nitrate and
selenite dependent respiration, or phototrophy in environments lacking oxygen.
These include Alcaligenes, Agrobacterium/Rhizobium, Ectothiorhodospira, Pseu-
domonas, and Thermus. Another strain, ML-SRAO, anaerobically oxidizes arsenite
while reducing selenite. These findings suggest a possibility that microbial oxidation
of arsenite led to the incomplete arsenic detoxification in the archaic anoxic world
(Cavalca et al. 2013).
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15.3.6 Biochemical Pathways Involved in Methylation

Various microorganisms methylate arsenic into volatile forms. Morphologically,
methanogenic bacteria comprise diverse group containing cocci, bacilli and spiral
forms but all produce methane as chief metabolic end product. Most of them thrive in
anaerobic environments in large numbers like sewage, freshwater, and composts that
involve the decomposition mechanism. Generally, methylation of arsenic is a detox-
ification process, although some compounds of the pathway are found to be more
toxic to eukaryotic cells as compared to inorganic forms.

The methylation mechanism based on S. brevicaulis was first reported by Chal-
lenger (1945). It comprises arsenate reduction followed by oxidative addition of
methyl groups producing gaseous arsines, monomethylarsonic acid (MMAA),
dimethyl arsonic acid (DMAA), trimethylarsine oxide (TMAO), and final product
trimethylarsine (TMA) (Cullen 2014). Thiol groups such as glutathione contributes
in reduction, methyl group is given by is S-adenosyl methionine (SAM), and some
anoxic microbes utilize methylcobalamin as the electron donor (Páez-Espino
et al. 2009).

Higher eukaryotes and bacteria have been described to yield monomethylarsine
and dimethylarsine, fungi produce trimethylarsine, and methanogens and aerobic
bacteria lead to the production of methylated arsines. Corynebacterium sp.,
Escherichia coli, Flavobacterium sp., Proteus sp., and Pseudomonas sp. function
in the reduction of arsenate followed by the production of dimethylarsine. Pseudo-
monas sp. forms all the above-mentioned forms from arsenic-containing pesticides.
Nocardia sp. was the only organism to produce methylarsines from arsenical
herbicides. It is revealed that soil bacteria Pseudomonas sp. and Alcaligenes
sp. produce arsine only in the presence of nitrate and nitrite where oxygen is not
present (Bentley and Chasteen 2002).

An alternate pathway was suggested by Hayakawa et al. (2005) after studies of
the human arsenic methyltransferase Cyt19 where arsenite glutathione conjugates
are methylated without undergoing oxidation. The process of arsenic methylation
has been described for aerobic and anaerobic bacteria as well as for photosynthetic
organisms. For anaerobes, methylcobalamin is important, but a defined role remains
unidentified (Hayakawa et al. 2005).

15.4 Future Perspective

A large information has been reported regarding arsenic metabolism, genes
involved, and regulatory mechanism. The biosorbent, bioaccumulation, and geneti-
cally engineered bio-containers prove to be promising candidates for metal bioreme-
diation processes (Satyapal et al. 2016). Microbially mediated metabolism adds on to
the environmental pollution due to the release of arsenic in water bodies used by
humans. It is speculated that anaerobic respiratory arsenate reductase releases
underground arsenate into water that was previously immobilized. Arsenite oxidase
along with precipitation can be harnessed for practical bioremediation of arsenic in
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water. Through a variety of processes of detoxification and respiration,
microorganisms influence the arsenic speciation acting as an important element in
the arsenic cycling. Sustainable technologies need to be established for remediation
of the arsenic- contaminated sites. For this purpose, extensive research is required to
advance the biotransformation of arsenic, viz., improving bacterial strain and
improving the process (Silver and Phung 2005b; Cavalca et al. 2019).

15.4.1 Strain Improvement

They are used for neutralizing arsenite inside the cells by the plants. Expression of
such PCs in the bacterial host enhanced the arsenic accumulation by 50 times by
arsenite sequestration with efflux machinery. Another approach for increasing arse-
nic buildup in microbial cells includes expression of arsenic-binding proteins with
properties like metallothionein (MT). These low-molecular weight Cys-rich proteins
bind with metal ions such as Zn, Cd, Cu, Hg, and Ag (Zhu et al. 2017).

The intracellular accumulation by bacteria is preferred. A bacterial strain
B1-CDA cells accumulate different arsenic forms inside the cells, such as free
forms, meta-arsenite, orthoarsenite, and arsenate. A mutant C. glutamicum strain
was engineered for intracellular arsenic accumulation. The removal of ArsC
increased the accumulation by 28–30 folds in the mutant strain than the control
strain. Arsenite bio-containers were also engineered by the removal of arsenite efflux
system. Overexpression of GlpF protein can result in enhanced arsenite uptake in
C. glutamicum (Rahman 2016).

15.4.2 Process Improvement

Combination of physicochemical and biological arsenic remediation resulted in
increased rate of arsenic removal with reduced consumption of energy (Lim et al.
2014). Biofilms are single or mixed and diversified bacterial populations which
adhere to different biotic or abiotic surfaces. They are more resistant to a number
of toxic heavy metals and metalloids. Exopolymer secretion is one of the main
resistance strategies of cells, which results in immobilization of toxic metals via
sequestration. Recently, H. arsenicoxydans and Thiomonas spp. are reported to
produce high content of exopolysaccharides (EPS) in the presence of arsenic.
These properties may be used to develop bioreactors (Plewniak et al. 2018).

Active or passive treatments can be applied for bioremediation purposes. Passive
system comprises of wetlands or bioreactors and offer enhanced removal of metal
with low energy consumption. This system is reported to perform sequestration of
almost 99% of arsenic, zinc, and cadmium. Active system offers an efficient control
with the possibility of heavy metal recovery, but demands high energy consumption
(Baldwin et al. 2015). Arsenic immobilizing bacterial cultures are sustained in these
bioreactors. The performance is analyzed and measured by the addition of particular
nutrients along with electron acceptors or donors. In arsenic-contaminated soils, the
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most common tool for bioremediation is phytoremediation. Plants accumulate arse-
nic resulting in arsenic removal from the soil. Wang et al. (2011a) conducted a
research which revealed that Populus deltoides with arsenic-resistant Agrobacterium
resulted in improved growth and arsenic uptake showing the potential of
bioaugmentation by bacteria.
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