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�Introduction

The metabolome represents the collection of all metabolites in a cell and includes 
all biomolecules, except for the genome, transcriptome, and proteome, and metals. 
Conventionally, low molecular weight biomolecules (<1500 Da) involved in endog-
enous metabolism are called metabolites. They play important roles as energy 
sources, signaling molecules, and metabolic intermediates in complex biological 
systems. Metabolite levels provide collective information on biomedical states and 
an instantaneous snapshot of biological responses caused by genetic and environ-
mental perturbations. Metabolite signals result from the interplay of biochemical 
reactions across the genome, transcriptome, and proteome, and serve as biological 
modulators across multilayer omics to maintain cellular homeostasis (Yugi and 
Kuroda 2018). Thus, the metabolome is crucial to understand biological responses 
to diseases, and genetic and environmental changes.

Metabolites and their related features have been used as diagnostic markers since 
ancient times. Ancient people monitored the characteristic odor of an individual’s 
breath in eastern traditional medicine for thousands of years. Recently, the sweet 
odor of a diabetic patient’s breath was shown to be caused by the presence of ace-
tone, which is related to high blood glucose level, the gold standard currently used 
in the diagnosis of diabetes (Wang and Wang 2013). In the Middle Ages, a urine 
chart was used to link the color, smell, and taste of urine to various medical condi-
tions (Nicholson and Lindon 2008). Such features are based on the chemical pat-
terns in response to biological conditions, and metabolites can represent these 
biochemical patterns with quantifiable data. Metabolites can define the molecular 
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phenotypes of living organisms and be directly associated with the biological out-
comes of diseases. In addition, the concentrations of metabolites are often highly 
correlated with biochemically related genetic variations (Gieger et al. 2008; Fendt 
et al. 2010; Bondia-Pons et al. 2011; Suhre et al. 2011a, b; Vander Heiden 2011; 
Jain et al. 2012). These characteristics allow metabolome alterations to be easily 
translated into disease states and can help us understand the pathophysiological 
mechanisms that contribute to various biomedical symptoms. Thus, translational 
research has included the metabolome and metabolomics (Fig. 1).

Metabolomics involves the systematic identification and quantification of metab-
olites. The physicochemical properties of metabolites vary widely, including in their 
polarity, acidity, and volatility. In addition, most metabolites consist of four to five 
atoms, including carbon, nitrogen, oxygen, hydrogen, and phosphorous, and many 
metabolites have the same elemental composition with slight variations in chemical 
bonds. Thus, the identification and quantification of metabolites are both difficult 
and challenging. Metabolomics has been implemented with various analytical plat-
forms to identify and quantify diverse intra- and extracellular metabolites.

Methods for metabolite analysis include nuclear magnetic resonance (NMR) 
spectroscopy, mass spectrometry (MS), Fourier transform-infrared (FT-IR) spec-
troscopy, high performance liquid chromatography (HPLC), gas chromatography 
(GC), Raman spectroscopy, and other analytical platforms (Fig. 2) (Bogdanov and 
Smith 2005; Want et  al. 2005; Villas-Boas et  al. 2005; Boskey and Mendelsohn 
2005; Defernez and Colquhoun 2003; Deleris and Petibois 2003). FT-IR and Raman 
spectroscopies are nondestructive and rapid techniques that can analyze various 
types of biological samples. Absorption spectra at specific wavelengths provide 
important clues crucial for determining the structure of unknown metabolic fea-
tures, whereas the peak area under the curve of absorption spectra is used for quan-
titation. The sensitivity and selectivity of FT-IR and Raman spectroscopy, however, 
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Fig. 1  Metabolomics provides the integrated information caused by complex biochemical reac-
tions and environment, thus plays an important role in translational research
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are not as high as those of other methods (Boskey and Mendelsohn 2005; Deleris 
and Petibois 2003). The detection methods used in HPLC and GC, such as UV 
absorption, electrochemical detection, and flame ionization, are non-selective, thus 
complete separation of metabolites is crucial in accurate quantitation of metabo-
lites, especially from complex biological samples (Gathungu et al. 2014; Keyfi and 
Varasteh 2016; Richins et al. 2018). NMR spectroscopy, another rapid and nonde-
structive analytical method, requires negligible sample preparation. Chemical shifts 
dependent on the nucleus’ chemical environment can be used to identify metabo-
lites. NMR spectroscopy, however, is relatively insensitive, and millimolar to high 
micromolar concentrations are often required. Thus, only the most abundant metab-
olites are detected (Emwas 2015). Because of its high sensitivity and broad dynamic 
range, MS has become the most suitable analytical tool in metabolomics research 
(Johnson et al. 2016). MS can also detect various types of metabolites because mass 
is a universal property. Selectivity among isobaric (identical masses) metabolites 
can be ensured by various MS/MS techniques and by combination with separation 
modules such as GC or LC (Metz et al. 2007; Lei et al. 2011; Xiao et al. 2012; Fiehn 
2016). MS-based metabolomics platforms have become more popular than NMR-
based platforms in recent research (Fig.  3). Thus, this chapter will emphasize 
MS-based metabolomics.

�Analytical Platforms for Mass 
Spectrometry-based Metabolomics

MS is an analytical method that measures charged molecules based on their mass-
to-charge ratios. The signal intensities of charged metabolites reflect the amounts of 
them present in biological samples. The mass analyzer, a primary component of the 
MS system, separates molecules based on their mass to charge ratios. Several types 
of mass analyzers are currently available, including quadrupole, time of flight 
(TOF), ion-trap, orbitrap, and Fourier transform-ion cyclotron resonance (FT-ICR). 
High resolution mass spectrometry (HRMS) methods, such as TOF, orbitrap, and 
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Fig. 2  Analytical instrumentations for metabolomics should be able to detect various kinds of 
metabolites present in biological systems
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FT-ICR, measure the exact masses of charged molecules. The exact mass is the 
theoretical mass of specific isotopic composition of a charged molecule (Murray 
et al. 2013). By contrast, low resolution mass spectrometry methods, such as quad-
rupole and ion-trap, measure the nominal mass, defined by the integer mass of the 
most abundant stable isotope of a molecular ion (Murray et al. 2013).

Various tandem mass spectrometric techniques (MS/MS) have been used to gen-
erate unique fragmentation patterns from different metabolites, which enables the 
specific characterization of unknown metabolites or differentiation among isobaric 
metabolites (Ceglarek et al. 2009). Upon collision with a neutral gas or interaction 
with activated electrons, any specific metabolite isolated from a mass analyzer pro-
duces characteristic fragment ions which are measured by a second mass analyzer. 
Sequential fragmentation (MSn) can be performed as needed. Several MS/MS meth-
ods are available for fragmenting molecular ions for tandem mass spectrometry 
(Fig. 4). Collision induced dissociation (CID) is the most common MS/MS tech-
nique, and fragment ions are generated from collision with neutral gases (Xiao et al. 
2012; Wang et al. 2008). By contrast, electron capture dissociation (ECD), electron-
induced dissociation (EID), and electron transfer dissociation (ETD) are electron-
based MS/MS methods, and their fragmentation patterns are normally different 
from those generated by CID (Johnson et al. 2016; Ongay et al. 2013; Yoo et al. 
2007, 2011). The structural information collected from different MS/MS methods is 
often complementary and crucial in revealing the identities of unknown metabolites 
(Yoo et al. 2007; Liang et al. 2007; Liu et al. 2008).

Chromatography-based separation modules are often combined with MS sys-
tems in MS-based metabolomics. Liquid chromatography-mass spectrometry (LC-
MS) and gas chromatography-mass spectrometry (GC-MS) have several advantages 
over MS alone. The matrix effect and ion suppression, caused by salts, ion pairing 
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agents, and any other interfering endogenous compounds in a complex biological 
matrix, can be alleviated by appropriate chromatographic separation among ana-
lytes and interfering compounds. In addition, metabolites in biological samples can 
be quantitated by measuring their chromatographic peak areas. GC-MS has been 
utilized to profile relatively more volatile and lower molecular weight metabolites, 
and chemical derivatization of metabolites is commonly required (Fiehn 2016; 
Papadimitropoulos et al. 2018; Garcia and Barbas 2011). By contrast, metabolites 
being analyzed by LC-MS are generally not subjected to chemical derivatization, 
and LC-MS has been applied to various types of metabolites with broad ranges of 
physicochemical properties and molecular weights (Table 1) (Zhou et al. 2012; 
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Fig. 4  Various tandem 
mass spectrometric 
techniques used for the 
structural characterization 
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Table 1  Comparison of GC-MS and LC-MS based metabolomics

GC-MS based metabolomics LC-MS based metabolomics
Metabolites Relatively nonpolar, small 

metabolites
Wide range of metabolites

Chemical 
derivatization

Generally necessary Generally not necessary

Total run time Longer run time (generally 
>1 h)

Shorter run time (generally 10–40 min)

Retention time drift Rarely observed Often observed
Ion source EI (Electron impact) ESI (Electrospray ionization)
Metabolite 
identification

Mass fingerprint generated 
from one metabolite is used

Molecular ion and/or its specific 
fragment ions during MS/MS (CID) are 
used

Dynamic range for 
quantitation

Shorter dynamic range (~102) Wide dynamic range (~103–4)
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Lu et al. 2008; Theodoridis and Wilson 2008). Capillary electrophoresis (CE) can 
be used with MS, especially for highly polar metabolites (Ramautar et  al. 2009, 
2017; Zhang et al. 2017).

An ion source is a device that produces molecular ions in a mass spectrometer. 
Commonly used ion sources in metabolomics are electrospray ionization (ESI), 
electron impact ionization (EI), and desorption electrospray ionization (DESI). ESI, 
which links LC to MS, uses high temperature to evaporate solvents and high voltage 
to generate charged molecular ions from metabolites. ESI is a soft ionization tech-
nique and produces molecular ions with very little fragmentation, which is advanta-
geous for database searches to identify unknown metabolites (Ho et al. 2003; Fenn 
et al. 1989; Yamashita and John 1984). EI is a harsh ionization technique in which 
high energy electrons (typically 70 eV) interact with molecules in the gas phase, and 
extensive fragmentation specific to each metabolite is generated. EI is used as an ion 
source in GC-MS, and is generally useful for small organic molecules (<600 Da) 
(Mark and Dunn 2013). DESI is a recently developed ionization technique, in which 
a fast-moving charged solvent stream extracts metabolites from the surfaces of sam-
ples (Takats et al. 2004). Like matrix-assisted laser desorption ionization (MALDI) 
and secondary ion mass spectrometry (SIMS), the DESI source is useful in reveal-
ing the location of selected metabolites on tissue samples (Petras et al. 2017). These 
techniques have allowed spatial localization and visualization of molecular distribu-
tion of target molecules (Fessenden 2016; Claude et al. 2017; Sun et al. 2019).

Metabolomics can be performed using two different approaches (Table  2). 
Nontargeted metabolomics can be performed to identify as many metabolites as 
possible in a biological sample, with the results generating novel hypotheses and/or 
metabolite targets. By contrast, targeted metabolomics can provide quantitative 
information for target metabolites involved in specific metabolic pathways. Targeted 
metabolomics is used to answer specific biochemical questions and hypotheses. 
These two approaches will be discussed in greater detail below.

Table 2  Nontargeted metabolomics and targeted metabolomics

Nontargeted metabolomics Targeted metabolomics
Purpose To generate hypothesis To prove hypothesis

To find metabolic features related to disease 
pathophysiology

To confirm metabolite levels in 
any disease states

Targets Not necessary Necessary
Analytical 
platform

Universal methods are preferable to observe 
as many metabolic features as possible

Specific quantification methods 
are needed to measure target 
metabolites

Outcomes Statistically meaningful changes in any 
metabolic features or metabolic pathways 
related to disease states or perturbations

Quantitative result of target 
metabolites for the specific 
disease states or perturbations

Validation Necessary Not necessary, but related 
biological experiments may be 
useful to interpret the result

S. J. Kim et al.
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�Nontargeted Metabolomics

The purpose of nontargeted metabolomics is to measure the entire metabolome in a 
biological sample, and to generate a hypothesis. However, it is not possible to mea-
sure all constituents of an entire metabolome from a biological sample, because 
their amounts and physicochemical properties are quite diverse. Thus, the number 
of metabolites identified in a sample is dependent on sample preparation and ana-
lytical instrumentation. Because accurate measurement of mass is critical in identi-
fying unknown metabolites, high resolution MS, such as TOF, orbitrap, or FT-ICR, 
should be utilized in nontargeted metabolomics. Advanced instrumentation and bio-
informatics tools are important in nontargeted metabolomics. The general workflow 
of global metabolome profiling involves sample preparation, instrumental analysis, 
data analysis using various bioinformatics tools, and verification including biologi-
cal interpretation (Fig. 5) (Want et al. 2013; Dunn et al. 2011; Osborn et al. 2013).

Sample preparation is designed to reduce the metabolome pool or sample matri-
ces, based on the physicochemical properties of metabolites. Metabolites from a 
complex biological sample can be separated into several fractions with similar 
physicochemical properties. Initially, a cold organic solvent is added to a biological 
fluid to precipitate large biomolecules, such as the genome and proteome. This is 
followed by liquid–liquid extraction, which separates a sample solution into two 
aliquots, one containing hydrophobic and the other containing hydrophilic metabo-
lites. When necessary, solid particulates from biological samples can be eliminated 
using a membrane filter.

Sample preparation

• Large molecule precipitation 

• Metabolite extraction (liquid-liquid extraction)

• Chemical derivatization

• LC-MS

• GC-MS

• MS only

• Alignment if necessary

• Metabolite features extraction

• Statistical analysis

• Metabolite Identification/pathway analysis

• Targeted metabolomics

• Correlation analysis to clinical phenotypes

• Related biological experiments

Instrumental analysis

Data analysis

Verification

Fig. 5  Workflow of nontargeted metabolomics
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Although nontargeted metabolomics using multiple metabolomics platforms 
may maximize the number of metabolites detected, access to multiple analytical 
platforms is often difficult. The choice of analytical platforms for nontargeted 
metabolomics depends on their availability and applications. If LC-MS or CE-MS 
is available for global metabolome profiling, metabolome profiles can be obtained 
from both positive and negative ion modes to maximize the number of metabolites 
observed. Basic and acidic metabolites can be detected better using positive and 
negative ion mode, respectively.

The data quality of global metabolome profiling is dependent on the types of 
sample, sample preparation, chromatographic separation, and types of mass ana-
lyzer. The data acquired from nontargeted metabolomics include a list of the mass-
to-charge ratio (m/z) with/without its retention time and signal intensity of each 
metabolic feature. If GC-MS is used for global metabolome profiling, extensive 
fragment ion peaks are obtained, rather than a single molecular ion peak of an intact 
metabolite. A list of metabolite features, consisting of m/z, retention time, and peak 
area or m/z and ion intensity, should be generated from the intensive processing of 
all detected peaks in global metabolome profiling.

The workflow of data processing for global metabolome profiling begins with 
peak alignment (Fig. 6). Inevitable retention time shifts in chromatograms over runs 
are often observed and need to be corrected. Two types of peak alignment can be 
performed, profile-based and feature-based peak alignment (Vandenbogaert et al. 
2008; Smith et al. 2015; Katajamaa and Oresic 2007). Profile-based methods align 
peaks using raw total ion chromatograms (Vahamaa et al. 2011; Tsai et al. 2013a), 
whereas feature-based methods align peaks after peak detection. Most feature-based 
alignment methods involve reference peaks as standard features for further retention 
time correction (Tsai et al. 2013b; Watrous et al. 2017). A typical LC-MS metabo-
lomics analysis can involve spiking a limited number of internal standards (stable 
isotope-labeled exogenous chemical compounds) to samples (Dunn et  al. 2011), 
and the peaks corresponding to these internal standards are used to align retention 
times (Li et al. 2016; Ren et al. 2016). In some cases, endogenous metabolites are 
preferred as reference standards.

To generate the list of metabolite features, consisting of m/z, retention time, and 
peak area or m/z and ion intensity, it is necessary to match peaks and group them by 
their m/z and/or retention times across samples. In some cases, data may be missing 
because low signal intensities are below the limit of detection. Most bioinformatics 
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Univariate DB searches
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HMDB, KEGG, etc.

Multi-
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Fig. 6  Workflow of data processing in nontargeted metabolomics
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tools used for global metabolomics provide several options to deal with missing 
values (Katajamaa et al. 2006; Smith et al. 2006; Xia and Wishart 2011; Chong et al. 
2018; Forsberg et al. 2018). For example, missing values can be replaced by a very 
small value, generally half of the minimum value found in the data set, or by esti-
mated values, such as the mean or median. If too many values are missing, the miss-
ing values can be automatically excluded. Data filtering can be performed to remove 
background noises and non-informative features in a data set, improving the statisti-
cal power of subsequent data analysis. Non-informative features, consisting of fea-
tures with constant intensities throughout the experiments, can be identified by 
comparing statistical analyses, such as standard deviation or the coefficient of 
variance.

Data are subsequently normalized to reduce any systematic error or bias over 
analytical experiments, and to allow meaningful biological comparisons. Data nor-
malization can be combined with data transformation and/or data scaling. Data can 
be normalized using several characteristics, including sum, median, reference sam-
ple, or a reference feature (Chong et al. 2018; Forsberg et al. 2018). If all samples 
are spiked with internal standards, then the internal standards can be used for data 
normalization as reference features. Data transformation, e.g., log transformation or 
cube-root transformation, is a method to alter features so that they exhibit a normal 
or Gaussian distribution. Data scaling is useful when features have very different 
orders of magnitude. Various scaling methods can be applied, such as auto-scaling, 
Pareto scaling, and range scaling. There is no optimal strategy for all types of 
metabolomics data. Users should perform trial-and-error testing by combining vari-
ous options for data normalization, transformation, and scaling to obtain a Gaussian-
shaped data distribution. Overall data quality should be assessed and apparent 
outliers should be checked prior to statistical analysis of metabolomics data.

Statistical analysis of metabolomics data can be univariate or multivariate, 
depending on the number of metabolic features. Univariate analysis evaluates dif-
ferences among groups on a parameter-by-parameter basis, with statistical compari-
sons including t-tests and analysis of variance (ANOVA). By contrast, multivariate 
analysis assesses not only differences in single metabolite among groups of metabo-
lites, but any relevant structures among individual metabolites. Commonly used 
multivariate analysis techniques are principal component analysis (PCA), cluster 
analysis, and partial least squares (PLS) regression. PCA and cluster analysis are 
unsupervised techniques, whereas PLS regression is a supervised technique. 
Multivariate analysis is able to visualize samples according to their groups or intrin-
sic similarities. The PCA and PLS techniques use a data matrix to evaluate the 
response vector using a linear regression model. The variables and metabolic fea-
tures that maximize the discrimination among sample groups can be determined, 
and these variables should be confirmed further as significant metabolic features to 
discriminate among sample groups using targeted metabolomics or other biochemi-
cal approaches (Worley 2013; Smkmrmstt 2012).

Metabolite identification is challenging in global metabolomics (Matsuda 2016). 
Successful metabolite identification requires accurate measurement of the masses 
of the metabolic features observed, and database searches to find accurate matches. 

Mass Spectrometry-based Metabolomics in Translational Research
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If available, MS/MS spectral libraries can be used for metabolite identification 
(Bowen and Northen 2010; Vaniya and Fiehn 2015). However, this approach does 
not result in a definitive identification of compounds, because a single chemical 
formula may have many valid chemical structures. In addition, the metabolite data-
bases (e.g., KEGG, HMDB, METLIN, and ChemSpider) are not complete, and 
many of the observed metabolic features remain unidentified (Sas et  al. 2015; 
Sreekumar et al. 2009). Thus, a list of potential candidates would be obtained, and 
the identification should be confirmed using authentic standards or additional analy-
sis. The process for the identification of all observed metabolic features requires 
considerable time and effort, suggesting that metabolite identification should be 
performed on the metabolic features that show statistical significance (Dunn et al. 
2011; Evans et al. 2009; Want et al. 2010; Theodoridis et al. 2012).

Another challenge in global metabolome profiling is the changes in signal inten-
sities or retention times over time. Various approaches have been applied to ensure 
that the results of metabolic profiling studies are valid. These include spiking of 
internal standards into all samples, use of QC samples, and randomized order of 
analysis. QC samples can be either pooled samples containing equal aliquots of all 
samples, or test mixtures containing a limited number of commercially available 
standards in solutions of a matrix similar to a real sample. QC samples should be 
used to assess experimental performance such as mass accuracy, signal response, 
retention time stability, and peak shape. Translational research would include at 
least tens of clinical samples for global metabolome profiling and may require long-
term experimental periods. In that case, QC samples should be analyzed at regular 
intervals, e.g., every five to ten samples, throughout the analysis, and the reproduc-
ibility of the data should be evaluated to ensure that metabolome profiling is reliable 
(Want et al. 2010; Broadhurst et al. 2018).

�Targeted Metabolomics

Targeted metabolomics can be used to obtain quantitative information on target 
metabolites involved in specific metabolic pathways. Targeted metabolomics is 
used to answer any specific biochemical questions and hypotheses (Yuan et  al. 
2012; Quehenberger et  al. 2010; Quehenberger and Dennis 2011; Roberts et  al. 
2012). Sample preparation, chromatographic conditions, and specific mass frag-
mentation methods can be established or optimized to identify any specific metabo-
lites in an analytical platform of targeted metabolomics. Low-level metabolites or a 
specific metabolite among several isobaric metabolites can be quantified selectively 
in complex biological samples. Greater effort is required to develop targeted than 
nontargeted metabolomics platforms, but, once targeted metabolomics platforms 
have been established, metabolites in specific metabolic pathways can be quanti-
tated relatively easily. As a result, targeted metabolomics can provide a better under-
standing and interpretation of a specific hypothesis.

The metabolome from human serum contains about 20 biochemical classes, 
including amino acids, carnitines, carbohydrates, fatty acids, and bile acids 
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(Psychogios et al. 2011; Boudah et al. 2014). Many metabolomics platforms should 
be needed to quantify various metabolites, and novel targeted metabolomics plat-
forms have been developed (Yoo et al. 2007; Yoo and Hakansson 2011; Strassburg 
et al. 2012; Han et al. 2013; Kim et al. 2017, 2012). Specific MS/MS and chromato-
graphic separation can be useful to discriminate metabolites from isobaric metabo-
lites or compounds having very similar chemical structures (Kim et al. 2014).

To outline the practical procedures encountered in targeted metabolomics, tar-
geted metabolomics platforms focusing on fatty acids and their oxidized derivatives 
are highlighted. Fatty acids and their oxidized derivatives include short-chain fatty 
acids, medium and long-chain fatty acids, and eicosanoids. Short-chain fatty acids 
have different physicochemical and biological characteristics comparing to other 
fatty acids (Zeng and Cao 2018; Gao et al. 2009a; Cooper et al. 1995; Fushimi et al. 
2006). Because short-chain fatty acids are more volatile and more water-soluble 
than medium and long-chain fatty acids, short-chain fatty acids are usually prepared 
from biological samples by aqueous extraction (Huda-Faujan et al. 2010). Organic 
phase extraction can be used to prepare longer chain fatty acids, with >5 carbons, 
from biological samples. Methyl esterification or trimethylsilylation is a commonly 
used chemical derivatization method for GC-MS analysis of medium- and long-
chain fatty acids. These chemical derivatives of medium- and long-chain fatty acids 
are generally quantified by GC-MS. Intact molecular ions are rarely observed due to 
the harsh ionization conditions used by the electron impact ion source of 
GC-MS.  Thus, the specific fragmentation pattern of each metabolite is used for 
identification and quantification (Antolin et al. 2008; Jayasinghe and Dias 2013). 
By contrast, short-chain fatty acids can be chemically derivatized using alanine, 
O-benzylhydroxylamine, methyl-/ethyl-/propyl-chloroformate, or a trimethylsi-
lylation agent, prior to GC-MS or LC-MS analysis (Zeng and Cao 2018; Tao et al. 
2008; Gao et al. 2009b; Zheng et al. 2013; Kvitvang et al. 2011; Qiu et al. 2007; 
Perez et al. 2016; Han et al. 2015; Chan et al. 2017).

Eicosanoids are oxidized derivatives of polyunsaturated fatty acids (PUFAs), and 
play a key role in human diseases related to inflammation and immune responses. 
The amounts of eicosanoids and their imbalances affect various biomedical pro-
cesses and the pathophysiology of human diseases (Wenzel et al. 2007; Sanak et al. 
2011; Pavord et al. 1999; Higashi et al. 2002; Dennis and Norris 2015; Huang and 
Peters-Golden 2008). In general, fatty acids are present at micromolar concentra-
tions in human blood, whereas many eicosanoids are present with less than nano-
molar concentrations (Psychogios et  al. 2011). Thus, these lipid mediators from 
biological samples should be specifically extracted and concentrated (Yang et al. 
2009, 2011). Eicosanoids share very similar chemical structures and some of them 
have the same molecular weight (isobaric). Thus, LC separation is crucial to dis-
criminate against these isobaric eicosanoids (Yang et al. 2009). For example, pros-
taglandin D2 (PGD2) and prostaglandin E2 (PGE2) have the same elemental 
compositions, differing only in their stereochemistry. Elaborate optimization of 
chromatographic separation conditions allows discrimination between PGD2 and 
PGE2. LC-MS/MS has been applied to specifically profile about 40 eicosanoids 
(Yang et al. 2009).
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Targeted metabolomics without authentic standard metabolites can also be use-
ful in exploring human diseases and their pathophysiological mechanisms, despite 
obtaining relative quantitative results. Quantitative profiling of phospholipids or 
sphingomyelins is a good example. In CID, fragment ions corresponding to the 
headgroups of phospholipids or sphingomyelins are commonly obtained in positive 
ion mode, whereas fragment ions corresponding to fatty acyl chains are obtained in 
negative ion mode. Thus, LC-MS/MS in both positive and negative ion modes can 
provide valuable structural information about phospholipids and sphingomyelins 
(Li et al. 2016; Knittelfelder et al. 2014; Anand et al. 2016). In addition, MS/MS 
strategies such as neutral loss or precursor ion scan can be useful in profiling differ-
ent types of phospholipids (Kim et al. 2017, 2012, 2014).

�Metabolomics Applications in Translational Research

Metabolites are intermediates involved in various biochemical processes of biologi-
cal systems. Metabolite levels change rapidly, depending on genomic or environ-
mental perturbations, and can provide instant snapshots of changes throughout the 
human body. Metabolomics can be used to investigate metabolite–biological inter-
actions and elucidate their roles in biomedical and clinical environments. The 
metabolome plays a crucial role in clinical applications, with about 95% of clinical 
assays based on metabolites and their related features (Wu 2006). One representa-
tive application is the blood glucose level in diabetic patients and sweetness in their 
urine samples (Karamanou et al. 2016). Human diseases are associated with adverse 
interactions of the genome or proteome with the metabolome. For example, many 
inherited metabolic disorders were found to be related to a specific organic acid or 
amino acid deficiency (Pitt et  al. 2002). Every molecule in a human body may 
respond to a perturbation, and a system-wide approach may be needed to explain the 
biological complexity. Recent tangible advances in analytical platforms have 
resulted in metabolomics becoming the optimal strategy for translational research. 
Like other omics, metabolomics has a great impact on biomedical and translational 
research, especially in the areas of biomarker discovery and drug development. 
Metabolomics analyses can enhance understanding of the mechanisms underlying 
diseases or the adverse influence of exposure to toxic substances, and provide cru-
cial clues to identify novel targets in drug development or treatment strategies. 
Thus, metabolomics should be a valuable tool in translational studies of novel drugs 
and treatments, of safety assessments, and in identifying clinical biomarkers for 
monitoring or diagnosing disease.

�Diabetes

One of the earliest metabolomics studies in diabetes was the comparison of phos-
pholipids in the plasma of patients with diabetes mellitus type 2 and normal controls 
(Wang et al. 2005). The study reported that metabolites could distinguish between 
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patients and normal controls using multivariate statistical analysis such as PLS and 
PCA. Moreover, the study identified several metabolites as potential biomarkers for 
group discrimination. A metabolomics analysis using LC-MS/MS and H-NMR to 
investigate metabolic pathways changed by insulin deficiency found that metabolic 
pathways related to amino acid oxidation, mitochondrial bioenergetics, and gluco-
neogenesis were altered due to insulin deficiency (Lanza et al. 2010). In another 
study, metabolome profiling revealed that metabolic signatures related to branched 
chain amino acids were changed due to obesity and contributed to insulin resistance 
(Newgard et al. 2009). Furthermore, monitoring of metabolome profiles in control 
and prediabetic groups for 12  years identified five branched chain and aromatic 
amino acids as possible prognostic biomarkers for an earlier risk of developing 
diabetes (Wang et al. 2011). The significance of these metabolites was confirmed 
using independent groups of patients. An evaluation of the predictive performance 
of these amino acids as prognostic biomarkers for the risk of diabetes involved the 
quantification of amino acids, nucleotide metabolites, and urea cycle metabolites 
using targeted metabolomics platforms. Use of nontargeted metabolomics to explore 
metabolome changes in the urine and plasma of prediabetic subjects showed that 
tryptophan, uric acid, fatty acids, bile acids, and lysophospholipids were major 
metabolites related to the prediabetes-associated alterations (Zhao et  al. 2010). 
Analysis of volatile organic compounds (VOCs) from human exhaled breath has 
been also investigated in the diagnosis of diabetes. Acetone is produced in mammals 
by lipolysis or amino acid degradation, and elevated levels of acetone have been 
reported in the exhaled breath of diabetes mellitus patients (Das et  al. 2016; 
Lebovitz 1995).

�Brain

The high-throughput quantitative nature of metabolomics studies can lead to a com-
prehensive mapping of mammalian brain function. These results are expected to 
lead to the development of sensitive and accurate diagnostic tools and the design of 
personalized therapeutic treatments. Metabolomics has been applied to the study of 
central nervous system (CNS) physiology and pathophysiology to better understand 
the metabolic complexity of the CNS and the onset, progression, and treatment of 
multifactorial neurodegenerative diseases (Vasilopoulou et  al. 2016). The blood–
brain barrier (BBB) is a contraindication to the analysis of blood in brain biology. 
Rather, cerebrospinal fluid (CSF) may better reflect brain physiology. Metabolomics 
studies and genetic validation using CSF and serum samples from hundreds of 
patients and healthy controls found that cerebral metabolism of tryptophan was 
closely related to outcomes in patients with tuberculous meningitis (van Laarhoven 
et al. 2018). The finding suggested that the tryptophan metabolic pathway may be a 
novel drug target in patients with tuberculous meningitis, and interventions target-
ing tryptophan metabolism may benefit these patients. Metabolome changes in mul-
tiple sclerosis have also been explored. Global metabolome profiling identified that 
metabolomics signatures, including hormones, lipids, and amino acids, were 
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associated with the severity of multiple sclerosis (Villoslada et al. 2017). Vitamin D 
supplementation had different effects on metabolomes induced by oxidative stress 
and xenobiotic metabolism in multiple sclerosis patients and healthy controls 
(Bhargava et al. 2017). Metabolomics also revealed that chronic inflammation acti-
vated the kynurenine pathway, exacerbating the progression of multiple sclerosis. 
These results were validated in an independent cohort, suggesting that kynurenine 
metabolites in patient serum were biomarkers of multiple sclerosis (Lim et  al. 
2017). Glycerosphingolipids, including cerebrosides, which are important myelin 
lipids in the brain, were assessed to determine whether myelin membrane lipids 
interacted with infection and immune responses in demyelinating neurological dis-
eases (Yang et al. 2011; Bergholt et al. 2018).

�Fibrosis

Fibrosis results in the excess formation of fibrous connective tissues and interferes 
with the normal architecture and/or function of affected organs and tissues (Birbrair 
et al. 2014; Neary et al. 2015). Fibrosis develops differently in different individuals 
and is often related to wound healing response or disease severity (Vilar-Gomez 
et al. 2018; Wynn 2008; Leask and Abraham 2004). However, reliable molecular 
biomarkers to predict or diagnose fibrosis susceptibility are still lacking. Disturbance 
in mitochondrial homeostasis was reported in radiation-induced fibrosis, suggesting 
that mitochondrial dysfunction was closely related to fibrosis through metabolic 
perturbations such as lipid accumulation due to reduced fatty acid oxidation (Maeda 
1982). Fatty acids and bile acids in fibrotic plasma were changed in cystic fibrosis, 
suggesting abnormal lipid metabolism in patients with cystic fibrosis (Guilbault 
et al. 2009; Teichgraber et al. 2008). In addition, the lipid mediator sphingosine-1-
phosphate was found to be elevated in the human fibrotic liver, due to upregulation 
of sphingosine kinase (Li et al. 2011). Disturbed lipid metabolism in the liver was 
found to result in inflammation and fibrosis (Moustafa et  al. 2012). Moreover, a 
high-fat diet resulted in cardiac fibrosis even before the development of obesity and 
hyperlipidemia (Aubin et  al. 2008). In addition, eicosanoids were reported to be 
involved in cardiac fibrosis (Levick et al. 2007). Changes in phosphatidic acid and 
lysophosphatidic acid were observed in the bronchoalveolar lavage fluids of patients 
with idiopathic pulmonary fibrosis (Crow and Wakeland 2012). Branched chain 
amino acids such as leucine and valine were reduced in liver fibrosis via TGFβ inhi-
bition (Cha et al. 2013). Exhaled ethane and pentane of systemic origin are pro-
duced by lipid peroxidation, a chain reaction induced by reactive oxygen species 
(ROS) (Miekisch et al. 2004; Larstad et al. 2007; Sarbach et al. 2013). Destructive 
oxidative stress was found to damage cells (Ross et al. 2011). Elevated levels of 
exhaled ethane in human breath have been reported in patients with asthma, chronic 
obstructive pulmonary diseases (COPDs), and cystic fibrosis (Paredi et al. 2000a, b, 
c). In addition, other VOCs, such as saturated hydrocarbons, were found in exhaled 
breath condensates of patients with COPD and idiopathic pulmonary fibrosis 
(Psathakis et  al. 2006; Cazzola et  al. 2015). These studies indicate that 
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metabolomics is likely a promising tool in identifying biomarkers of various lung 
diseases and in elucidating disease mechanisms.

�Cancer

Most cancer cells utilize highly activated glycolysis to produce energy or substrates 
for rapid cell proliferation. This pathway is characterized by lactic acid accumula-
tion, also called the Warburg effect (Liberti and Locasale 2016), which is responsi-
ble for adaptation to low oxygen and damage to mitochondria in a cancer environment 
(Warburg 1956). Metabolic modifications have been observed in tumors (Kim et al. 
2009; Griffin and Shockcor 2004), and metabolic changes in a cancer environment 
may involve energy metabolism, lipid metabolism, and nucleotide metabolism 
(Kim et al. 2015). In addition, investigation of eicosanoids would be very useful in 
understanding tumor development, progression, and metastasis (Wang and Dubois 
2010). However, the roles of lipid mediators in tumors remain incompletely under-
stood. Lipidome profiling showed that fatty acid synthesis was activated in breast 
cancer, possibly for the synthesis of membrane phospholipids (Hilvo et al. 2011). 
Exhaled breath was explored as a noninvasive tool for early detection of lung cancer 
and characterization of suspicious lung nodules (Nardi-Agmon and Peled 2017; 
Phillips et  al. 2015; Capuano et  al. 2015; Peled et  al. 2012; Broza et  al. 2013; 
Shehada et al. 2016). In one study, metabolome profiles were assessed in 968 breath 
samples from 484 patients with gastric cancer to identify diagnostic markers for 
reduced cancer incidence and mortality. Eight significant VOCs in breath were 
found to correlate with cancer risk, suggesting the use of breath tests for follow-up 
surveillance of high-risk patients (Amal et al. 2015).

�Conclusion

Metabolomics is a relatively new omics strategy, and is increasingly explored in 
translational research. Genomics can predict overall disease risk and potential drug 
responses, but has limitations in assessing alterations due to changes in diet and 
environmental factors. By contrast, metabolomics can quickly detect biochemical 
changes associated with specific disease states or detrimental environments, and 
provide valuable clues for novel drug targets or therapeutic interventions.

Significant time and effort are needed to identify metabolite biomarkers for diag-
nosis and surveillance that can replace traditional methods. These metabolite bio-
markers may constitute a powerful tool to aid or enhance the early detection of 
primary or recurrent disease as well as for the reliable characterization of suspected 
disease signatures. In addition, an in-depth understanding of metabolism related to 
disease progression may help identify novel targets for treatment. Thus, metabolo-
mics is expected to flourish as a valuable research platform in translational research.
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