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Abstract. Considering graph embedding based dimension reduction methods
are easily affected by outliers and the fact that there exist insufficient labeled
samples in practical applications and thus degrades the discriminant perfor-
mance, a novel graph embedding discriminant analysis method and its semi-
supervised extension for face recognition is proposed in this paper. It uses the
intraclass samples and their within-class mean to construct the intrinsic graph for
describing the intraclass compactness, which can effectively avoid the influence
of outliers to the within-class scatter. Meanwhile, we build the penalty graph
through the local information of interclass samples to characterize the interclass
separability, which considers the different contributions of interclass samples
within the neighborhood to the between-class scatter. On the other hand, we
apply the low-rank representation with sparsity constraint for semi-supervised
learning, aiming to explore the global low-rank relationships of unlabeled
samples. Experimental results on ORL, AR and FERET face datasets demon-
strate the effectiveness and robustness of our method.

Keywords: Graph embedding � Low-rank representation � Semi-supervised
learning � Dimension reduction � Face recognition

1 Introduction

Over the past decades, dimension reduction has been one research hotspot of face
recognition, which aims to discover a low-dimensional representation from original
high-dimensional data and thus capture the intrinsic structure of data and finally
contribute to classification. Principal Component Analysis (PCA) [1] and Linear Dis-
criminant Analysis (LDA) [2] are the most classic methods. PCA seeks a set of optimal
projection directions to maximize the data covariance in an unsupervised way, while
LDA uses the label information to construct the within-class scatter and between-class
scatter and thus finds the discriminant projection directions. Therefore, LDA is better
than PCA in face recognition and other recognition tasks. However, both of them fail to
reveal the local structure due to their global linearity.

In order to capture the local information, the manifold learning-based methods have
been proposed, which generally assume that the closely located samples are likely to
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have the similar low-dimensional manifold embeddings. As the most representative
manifold learning method, Locality Preserving Projections (LPP) [3] applies k-nearest-
neighbor to explore the local structure of each sample. In contrast to LPP, Marginal
Fisher Analysis (MFA) [4] uses k1 nearest intraclass samples to build the intrinsic graph
and simultaneously employs k2 nearest interclass marginal samples to construct the
penalty graph. Both of these two graphs can describe the intraclass compactness and
the interclass separability respectively. It verifies that the manifold learning-based
dimensionality reduction methods can be well explained by graph embedding frame-
work [4]. However, compared with the k1 nearest intraclass samples and k2 nearest
interclass samples, the distant intraclass and interclass samples are not considered
during the process of graph construction. Therefore, it may cause the distant intraclass
samples are far from each other and the distant interclass samples are close to each
other in the projected feature space, which inevitably goes against classification. To
address this problem, Huang et al. proposed the Graph Discriminant Embedding
(GDE) [5] to focus on the importance of the distant intraclass and interclass samples in
the graph embedding framework. It uses a strictly monotone decreasing function to
describe the importance of nearby intraclass and interclass samples and simultaneously
applies a strictly monotone increasing function to characterize the importance of distant
intraclass and interclass samples. Consequently, the different contributions of nearby
and distant samples to the within-class and between-class scatters are fully considered.
For the most graph embedding methods, the importance of samples is directly based on
the similarity between two samples. Therefore, outliers have the influence to the graph
construction and especially affect the intraclass compactness.

On the other hand, considering there exist unlabeled samples in practical applica-
tion, Cai et al. [6] proposed the Semi-Supervised Discriminant Analysis (SDA) which
performs LDA on labeled samples and uses unlabeled samples to build k-nearest-
neighbor graph for preserving local neighbor relationships. It effectively applies semi-
supervised learning to achieve low dimensional embedding. However, the neighbor
parameter k is difficult to define. Inappropriate k even influences the quality of graph
construction and thus degrades the semi-supervised discriminant performance. In the
past few years, Low Rank Representation (LRR) [7] has been proposed to capture the
global structure of samples using low-rank and sparse matrix decomposition. The
decomposed low-rank part reflects the intrinsic affinity of samples. In other words, the
similar samples will be clustered into the same subspace. However, LRR is essentially
unconstrained and is likely to be sensitive to noise for the corrupted data. Therefore,
Guo et al. [8] performed the L1-norm sparsity constraint on low-rank decomposition
with the aiming of obtaining the more robust low-rank relationships.

Motivated by the above discussion, we introduce a novel graph embedding dis-
criminant analysis method and its semi-supervised extension for face recognition in this
paper. For the labeled samples, we redefine the weights of the intraclass graph through
the mean of intraclass samples. In other words, the similarity between two intraclass
samples is based on the similarities between them and the mean of intraclass samples,
instead of directly using the distance of them. It effectively avoids the influence of
outliers to the within-class scatter. Meanwhile we concentrate the different contribu-
tions of interclass samples to between-class scatter in view of the idea of GDE.
Consequently, we build the improved discriminant criterion to make the intraclass
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samples as close to each other as possible and interclass samples far from each other.
More critically, the constructed graph embedding framework can relieve the influence
of outliers to the intraclass compactness. On the other hand, considering there may exist
a large number of unlabeled samples in practical application, we apply the low rank
representation constrained by L1-norm sparsity to capture their global low-rank rela-
tionships, and then minimizes the error function through preserving the low-rank
structure of samples. Finally, we integrate the improved graph embedding discriminant
criterion and LRR error function for achieving semi-supervised learning. Experimental
results on ORL, AR and FERET face datasets demonstrate the effectiveness and
robustness of our method.

The remainder of this paper is organized as follows. Section 2 briefly reviews MFA
and GDE. Section 3 introduces the proposed method. Section 4 shows the experi-
mental results and the conclusion is given in Sect. 5.

2 Related Works

Given a set of n training samples X = [x1, x2, …, xn], containing C classes: xi 2 lc,
c 2 {1, 2, …, C}. By using the projection matrix A, the representation of the data set
X in the low-dimensional space can be represented as yi= ATxi. In this section, we will
briefly review MFA and GDE.

2.1 Marginal Fisher Analysis (MFA)

As the most representative graph embedding method, MFA [4] builds the intrinsic
graph to characterize the compactness of intraclass samples, and constructs the penalty
graph to describe the separability of interclass samples. Let Gintrinsic= {V, E, WMFA}
denotes the intrinsic graph, and Gpenalty= {V, E, BMFA} denotes the penalty graph,
where V is the samples, and E is the set of edges connecting samples. WMFA and BMFA

are two adjacency matrices identifying the similarity between samples. The weights of
these two matrices are defined [4]:

WMFA
ij ¼ 1; if xi 2 N þ

k1 ðjÞ or xj 2 N þ
k1 ðiÞ

0; otherwise

�
ð1Þ

BMFA
ij ¼ 1; if xi 2 Pk2ðjÞ or xj 2 Pk2ðiÞ

0; otherwise

�
ð2Þ

where N þ
k1 ðiÞ indicates the k1 nearest intraclass samples of xi, and Pk2ðiÞ indicates the k2

nearest interclass marginal samples of xi. The intraclass scatter SMFA
w and interclass

scatter SMFA
b can be formulated [4]:

SMFA
w ¼

X
ij
jjyi � yjjj2WMFA

ij ¼ 2tr ATXLMFAXTA
� � ð3Þ
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SMFA
b ¼

X
ij
jjyi � yjjj2BMFA

ij ¼ 2tr ATXLMFA0
XTA

� �
ð4Þ

where LMFA ¼ DMFA �WMFA and LMFA0 ¼ DMFA0 � BMFA are the Laplacian matrices;
DMFA

ii ¼ P
j W

MFA
ij and DMFA0

ii ¼P
j B

MFA
ij are the diagonal matrices. The discriminant

criterion function of MFA can be expressed as [4]:

JMFAðAÞ ¼ min
A

SMFA
w

SMFA
b

¼ min
A

trðATXLMFAXTAÞ
trðATXLMFA0

XTAÞ ð5Þ

2.2 Graph Discriminant Embedding (GDE)

The purpose of MFA is to construct two graphs by comprehensively considering the
local structure and discriminant structure of samples. However, MFA neglects the
importance of the distant samples which may influence the discriminant performance.
Therefore, GDE redefines the intrinsic graph Gintrinsic and the penalty graph Gpenalty.
The weight matrices WGDE and BGDE in these two graphs are redefined [5]:

WGDE
ij ¼

e�
jjxi�xj jj2

t ; if xj 2 N þ
k1 ðiÞ or xi 2 N þ

k1 ðjÞ; li ¼ lj

e
� t

jjxi�xj jj2 ; if xj 62 N þ
k1 ðiÞ and xi 62 N þ

k1 ðjÞ; li ¼ lj
0; if li 6¼ lj

8><
>: ð7Þ

BGDE
ij ¼

e�
jjxi�xj jj2

t ; if xj 2 Pk2ðiÞ or xi 2 Pk2ðjÞ; li 6¼ lj

e
� t

jjxi�xj jj2 ; if xj 62 Pk2ðiÞ and xi 62 Pk2ðjÞ; li 6¼ lj
0; if li ¼ lj

8><
>: ð8Þ

where the parameter t (t > 0) is used to tune the weight of samples. The intraclass
scatter SGDEw and the interclass scatter SGDEb can be computed [5]:

SGDEw ¼
X

ij
jjyi � yjjj2WGDE

ij ¼ 2tr ATXLGDEXTA
� � ð9Þ

SGDEb ¼
X

ij
jjyi � yjjj2BGDE

ij ¼ 2tr ATXLGDE0
XTA

� �
ð10Þ

where LGDE ¼ DGDE �WGDE and LGDE0 ¼ DGDE0 � BGDE are the Laplacian matrices;
DGDE

ij ¼ P
j W

GDE
ij and DGDE0

ij ¼ P
j B

GDE
ij are the diagonal matrices. Therefore, the

discriminant criterion function of GDE can be computed [5]:

JGDEðAÞ ¼ min
A

SGDEw

SGDEb

¼ min
A

trðATXLGDEXTAÞ
trðATXLGDE0

XTAÞ ð11Þ
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In GDE method, the similarity defined by monotonic functions can effectively solve
the effect of the distant samples on recognition results. However, the similarity of
samples is directly defined by the distance of samples, and outliers will have a certain
impact on the discriminant performance. Furthermore, GDE computes the similarity for
labeled samples without taking unlabeled samples into account.

3 Methodology

3.1 The Proposed Method

As described in Sect. 2.2, GDE does not study the influence of outliers and unlabeled
samples on the recognition performance. In this paper, we propose a novel graph
embedding discriminant analysis method where the similarity of samples is based on
the similarities between them and the mean of intraclass samples. It intends to eliminate
the impact of outliers on the within-class scatters and improves the recognition
performance.

Let Gintrinsic = {V, E, W} denotes the redefined intrinsic graph, and Gpenalty = {V,
E, B} denotes the penalty graph, and the weight matrices W and B are given as
follows:

Wij ¼ e�
jjxi�~xi jj2 þ jjxj�~xi jj2

2t ; if li ¼ lj
0; if li 6¼ lj

(
ð12Þ

Bij ¼
e�

jjxi�xj jj2
t ; if xi 2 DkðxjÞ or xj 2 DkðxiÞ; li 6¼ lj

e
� t

jjxi�xj jj2 ; if xi 62 DkðxjÞ and xj 62 DkðxiÞ; li 6¼ lj
0; if li ¼ lj

8><
>: ð13Þ

where ~xi denotes the mean of within-class samples and Dk(xi) denotes the k nearest
interclass neighbors of xi. However, unlike GDE, we redefine the weight matrix
W based on the distance between the sample and the mean of within-class samples
instead of directly using the distance of samples. Moreover, we also describe the
importance of samples through monotonic functions in view of GDE.

According to the constructed two graphs, the intraclass scatter Sw and the interclass
scatter Sb can be formulated:

Sw ¼
X
ij

jjyi � yjjj2Wij ¼
X
ij

jjATxi � ATxjjj2Wij ¼ 2trðATXLXTAÞ ð14Þ

Sb ¼
X
ij

jjyi � yjjj2Bij ¼
X
ij

jjATxi � ATxjjj2Bij ¼ 2trðATXL0XTAÞ ð15Þ

where L ¼ D�W and L0 ¼ D0 � B are the Laplacian matrices. Dij ¼
P

j Wij and
D0

ij ¼
P

j Bij are the diagonal matrices. Therefore, the proposed discriminant criterion
function is given:
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JOursðAÞ ¼ min
A

trðATXLXTAÞ
trðATXL0XTAÞ ð16Þ

Consequently, our method can avoid the influence of outliers to the within-class
scatter, making the intraclass samples close to each other and interclass samples far
away from each other in the projected space.

3.2 Semi-Supervised Extension (SSE)

For unlabeled samples, SDA [6] builds the k-nearest neighbor graph on unlabeled
samples to preserve local neighbor relationships. However, the neighbor parameter k in
SDA is difficult to define. In the past few years, LRR [7] is proposed, and it uses low-
rank and sparse matrix decomposition to express the global structure of the samples, so
that the low-rank structure can reflect the intrinsic affinity of samples. Nevertheless,
LRR is essentially unconstrained, and it may be affected by noise. In this paper, we use
the low rank representation with L1-norm sparsity constraint to capture their low-rank
relationships, and minimize the error function through preserving the low-rank struc-
ture of samples. For the given training samples X, we refactor the original samples
through the data dictionary D = [d1, d2, …, dm] 2 Rd�m. In other words, X = DZ,
where Z = [z1, z2, …, zn] 2 Rm�n is the refactor coefficient matrix. Besides, there may
exist noise in the distribution of samples, therefore the problem can be modeled as
follows [8]:

min
z

Zk k� þ k Ek k2;1 þ c Zk k1
s:t: X ¼ DZþE

�
ð17Þ

where ||Z||* denotes the kernel norm of Z, that is, the sum of the singular values of the

matrix. Ek k2;1¼
Pn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1 Eij

� �2q
is the l2,1-norm of the noise matrix E, which is

used to model samples of noise interference. ||Z||1 represents the L1-norm of the matrix,
which is used to ensure the sparsity of Z. the parameter k is used to balance the effects
of the noise part; and the parameter c is to balance the effects of the sparse part on the
results. By applying the L1-norm sparsity constraint and adding the error term to solve
noise pollution, we can obtain more robust low-rank relationships.

According to Eq. (16), we can see that xi = Xzi + ei, and ei is the column vector of
the noise matrix E. It is assumed that the xi remains the low-rank structure after linearly
projection into the low-dimensional feature space, and the influence of noise on clas-
sification can be avoided by minimizing the representation error ei. Therefore, we can
minimize the norm of ei as follows:X

i
ATei

�� ��2 ¼ X
i
AT xi � Xzið Þ�� ��2 ¼ tr ATSeA

� � ð18Þ

where Se can be computed by:
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Se ¼
X

i
xi � Xzið Þ xi � Xzið ÞT ¼ X I� Zð Þ I� Zð ÞTXT ð19Þ

Finally, we integrate the improved graph embedding discriminant criterion and
LRR error function for achieving semi-supervised learning. The discriminant criterion
function of our extension method is given as following:

JOurs�SSEðAÞ ¼ min
A

trðATXLXTAÞþ btrðATSeAÞ
trðATXL0XTAÞ ð20Þ

where the regularization parameter b (b 2 (0, 1)) is used to balance the loss of the
discriminant criterion function.

3.3 Algorithm

The dimensionality of face images is often very high, thereby we first use the PCA
projection APCA for dimensionality reduction. For the dataset X = [XL, XU] in the PCA
subspace, where XL is the subset of labeled samples and XU is the unlabeled samples.
The proposed algorithm is given as follows:

Step1: For XL, construct the two adjacency matrices W and B based on Eqs. (12) and (13),
and compute the intraclass scatter Sw and the interclass scatter Sb based on Eqs. (14)
and (15).

Step2: In consideration of unlabeled samples in datasets, compute the reconstruction
coefficient matrix Z based on Eq. (17), then compute the matrix Se based on
Eq. (19). Let a1, a2, …, ap be the eigenvectors associated with the p minimal
eigenvalues of the general eigenvalue problem XL0XTA ¼ kðXLXT þ bSeÞA, then
the optimal projection matrix learned by our extension method can be denoted as
AOurs-SSE = [a1, a2, …, ap], and the final projection is A = APCA � AOurs-SSE.

Step3: For a test samples x, the representation in the low-dimensional space can be
represented as y = ATx, and then we can use a classifier to predict its class.

4 Experiments

In this section, we verify the proposed method with multiple classifiers, i.e. NNC
(nearest neighbor classifier), SVM (support vector machine), LRC (linear regression
classifier) [9] and LLRC (locality-regularized linear regression classifier) [10], on three
public face datasets (ORL, AR and FERET), and particularly evaluates its performance
under noise and blur conditions. All the experiments are conducted on a computer with
Intel Core i7-7700 3.6 GHz Windows 7, RAM-8 GB, and implemented by MATLAB.

4.1 Experiments on ORL Dataset

The ORL face dataset contains 400 images of 40 people. All images are in grayscale
and manually cropped to 92 � 112 pixels. On ORL face dataset, we select 5 images of
each person for training samples and the remaining images for testing. Furthermore, the
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first r (r = 2, 3) images of each person are labeled. The NNC, SVM, LRC and LLRC
are picked for classification. Firstly, the dimension of PCA subspace is set to 50. In our
method, the value of the interclass neighbor parameter k is 4, and the tuning parameter
of adjacency matrices t is set to 23. The neighbor parameter k in LPP is 4. For MFA and
GDE, the intraclass neighbor parameter k1 is picked as 1, and the interclass neighbor
parameter k2 is 40.

Table 1 reports the maximal recognition rates of different methods on ORL dataset.
It can be seen that the recognition performance of our method is better than other
methods in various classifiers, especially GDE. When unlabeled samples are existing in
dataset, the L1-norm sparse constraint is introduced, which makes our extension
method is more effective in classifying these samples. Furthermore, the regularization
parameter b which is applied for the loss of the discriminant criterion function is critical
to the recognition performance, and too large value of b will make the recognition rate
degraded. In addition, Fig. 1 shows the recognition rate curves of all methods under
different classifiers as the projection axes varies. It can be easily found that the
recognition performance of all method outperforms under LLRC, and our extension
method achieves the best performance, that further proves the efficiency of our
extension method.

Table 1. Maximal recognition rates (%) and corresponding dimensions (shown in the
parentheses) of different methods under four classifiers on ORL dataset.

Methods r = 2 r = 3
NNC SVM LRC LLRC NNC SVM LRC LLRC

LDA 77.48
(25)

77.87
(32)

75.12
(30)

76.28
(28)

80.15
(20)

79.56
(30)

76.87
(35)

78.50
(35)

LPP 76.32
(50)

77.40
(50)

78.54
(45)

78.89
(45)

80.87
(45)

81.32
(45)

82.15
(40)

82.50
(40)

MFA 74.26
(25)

77.86
(25)

79.20
(30)

79.65
(30)

81.75
(20)

82.55
(25)

82.95
(25)

83.05
(25)

GDE 75.12
(30)

78.54
(30)

80.25
(30)

80.56
(35)

82.45
(30)

82.87
(35)

83.12
(30)

84.00
(30)

Ours 76.78
(35)

79.20
(30)

80.75
(35)

81.35
(35)

82.33
(35)

83.56
(30)

83.20
(35)

84.33
(35)

Ours-SSE
b = 0.3

78.36
(35)

79.47
(38)

80.97
(30)

82.87
(30)

82.93
(25)

84.77
(30)

84.65
(30)

84.75
(30)

Ours-SSE
b = 0.4

80.15
(35)

80.96
(35)

81.37
(35)

82.48
(35)

81.74
(40)

83.87
(34)

84.48
(38)

85.46
(33)

Ours-SSE
b = 0.5

80.75
(38)

81.25
(34)

82.75
(35)

82.84
(35)

82.67
(38)

83.95
(37)

84.84
(37)

85.87
(35)

Ours-SSE
b = 0.6

79.68
(35)

80.34
(37)

81.25
(35)

81.87
(36)

84.78
(38)

84.17
(35)

84.13
(34)

84.76
(38)
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4.2 Experiments on AR Dataset

The AR face dataset contains over 3000 face images of 120 people. All images are
manually cropped to 50 � 40 pixels. On AR face dataset, we only use the images
without occlusion, and the first 7 images of each person are taken for training and 14–
20 images are applied for testing. Furthermore, the first r (r = 3, 4, 5) images of each
person are labeled. The NNC, SVM, LRC and LLRC are employed for classification.
Before the experiments, the dimension of PCA subspace is set to 150. The parameters
in the experiments are set as follows: In our method, the value of the interclass
neighbor parameter k is 6, and the tuning parameter of adjacency matrices t is chosen as
24. The neighbor parameter k in LPP is set to 6. For MFA and GDE, the intraclass
neighbor parameter k1 is picked as 1, and the interclass parameter k2 is set to 120.

Table 2 reports the maximal recognition rates of different methods on AR dataset.
The results indicate that compared with GDE, our method has a small improvement
(<1%) under four classifiers, but the recognition performance of our extension method
has obvious advantages when unlabeled samples are existing in datasets. Meanwhile,
the more labeled samples, the better performance our extension method achieves. In
addition, the recognition rate curves of different methods under various classifiers as
the projection axes varies are shown in Fig. 2. We can see that LPP performs the worst,
but when the regularization parameter b is set to 0.3, the curves in Fig. 2 demonstrate
that our extension method performs better than other methods, which proves that the
L1-norm sparse constraint we introduced can eliminate the influence of unlabeled
samples on the experimental results.

Fig. 1. Recognition rate curves of all methods under different classifiers when the labeled
images of each class r = 3. (a) NNC; (b) SVM; (c) LRC; (d) LLRC.
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Table 2. Maximal recognition rates (%) and corresponding dimensions of different methods
under four classifiers on AR dataset.

Method r = 3 r = 4 r = 5

NNC SVM LRC LLRC NNC SVM LRC LLRC NNC SVM LRC LLRC

LDA 56.18
(125)

57.18
(125)

56.15
(130)

57.33
(110)

58.73
(110)

59.38
(110)

68.56
(110)

59.33
(110)

61.25
(115)

61.55
(115)

60.25
(120)

61.87
(125)

LPP 49.35
(120)

50.12
(120)

49.75
(125)

51.28
(125)

53.65
(115)

54.20
(120)

55.75
(125)

56.15
(120)

57.14
(120)

58.24
(130)

57.35
(125)

58.33
(125)

MFA 60.25
(135)

61.32
(125)

62.55
(130)

64.18
(130)

63.54
(130)

62.87
(125)

63.59
(125)

65.83
(125)

65.55
(140)

64.95
(130)

64.88
(125)

67.75
(125)

GDE 60.88
(130)

62.45
(130)

63.37
(130)

65.28
(130)

65.24
(135)

63.14
(135)

64.87
(130)

66.67
(130)

67.87
(130)

65.25
(130)

66.72
(125)

68.45
(125)

Ours 61.75
(125)

62.45
(125)

64.78
(130)

66.54
(130)

65.76
(130)

63.84
(130)

65.87
(130)

67.75
(130)

68.74
(130)

66.48
(135)

67.50
(135)

68.87
(135)

Ours-SSE
b = 0.1

63.54
(120)

65.47
(130)

66.34
(125)

67.25
(130)

66.48
(125)

66.78
(130)

67.85
(135)

69.45
(130)

68.88
(125)

67.96
(135)

68.85
(125)

69.34
(125)

Ours-SSE
b = 0.3

67.76
(110)

69.72
(135)

68.68
(135)

69.25
(130)

68.37
(120)

70.14
(134)

70.36
(130)

71.48
(135)

69.34
(125)

71.33
(135)

72.05
(125)

72.87
(125)

Ours-SSE
b = 0.5

66.87
(120)

67.26
(135)

66.28
(135)

67.39
(135)

67.46
(120)

68.24
(137)

67.52
(136)

68.25
(135)

68.90
(120)

69.26
(130)

68.98
(125)

70.34
(125)

Ours-SSE
b = 0.7

65.33
(130)

66.12
(130)

65.76
(130)

66.15
(135)

66.55
(125)

67.32
(125)

67.33
(125)

68.12
(130)

67.87
(130)

68.95
(130)

68.37
(125)

68.77
(125)

Fig. 2. Recognition rate curves of all methods under different classifiers when the labeled
images of each class r = 5. (a) NNC; (b) SVM; (c) LRC; (d) LLRC.
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4.3 Experiments on FERET Dataset

The FERET face dataset contains over 1000 face images of 200 people. All images are
in grayscale and manually cropped to 80 � 80 pixels. On FERET face dataset, the first
4 images of each person are employed for training and the remaining for testing.
Similar to the experiment on ORL dataset, the first r (r = 2, 3) images are labeled.
The NNC, SVM, LRC and LLRC are chosen for classification. First of all, the
dimension of PCA subspace is set to 150. The parameters of this experiment are set as
follows: In our method, the interclass neighbor parameter k is picked as 3, and the
tuning parameter of adjacency matrices t is 23. For LPP, the neighbor parameter k is set
to 3, and for MFA and GDE, the intraclass neighbor parameter k1 is set to 1 and the
interclass neighbor parameter k2 is 200.

Table 3 reports the maximal recognition rates of different methods on FERET
dataset. We can know that the overall recognition rate of all methods in this experiment
has decreased, but compared with other methods, our method still has certain advan-
tages. Furthermore, Fig. 3 represents the recognition rate curves of all methods under
four classifiers as the projection axes varies. The results show that compared with the
other three classifiers, all methods on LLRC will achieve better results, and when the
value of b is set to 0.3, in most cases the curve of our extension method reaches the best
performance, which also validates the efficiency of our extension method.

Fig. 3. Recognition rate curves of different methods under different classifiers when the labeled
samples of each class r = 3. (a) NNC; (b) SVM; (c) LRC; (d) LLRC.
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4.4 Experiments Under Noise Condition

In view of the effect of noise, in this section, Gaussian noise (mean l = 0, variance
r = 0.05), pepper & salt noise (noise density d = 0.1) and multiplicative noise (mean
l = 0, variance r = 0.1) are applied to face samples on ORL, AR and FERET datasets.
Face samples under three different noises on ORL, AR and FERET datasets are given
in Fig. 4. The comparative results of the recognition rates of different methods on three
datasets are shown in Tables 4, 5, and 6.

It can be seen from Tables 4, 5, and, 6 that under three noise conditions, our
method performs better than LDA, LPP, MFA and GDE, due to the improvement in the
definition of the similarities of intraclass samples. Especially, since the low rank

Table 3. Maximal recognition rates (%) and corresponding dimensions of different methods
under four classifiers on FERET dataset.

Method r = 2 r = 3
NNC SVM LRC LLRC NNC SVM LRC LLRC

LDA 48.85
(120)

47.36
(130)

49.32
(125)

50.87
(125)

55.20
(125)

50.36
(120)

53.27
(125)

55.96
(125)

LPP 53.00
(125)

49.63
(130)

51.76
(130)

54.16
(120)

56.33
(125)

51.48
(125)

53.25
(120)

56.14
(120)

MFA 57.25
(130)

54.37
(125)

56.84
(130)

58.21
(120)

59.78
(125)

57.87
(125)

58.65
(120)

60.20
(125)

GDE 58.13
(125)

57.33
(130)

58.67
(125)

59.72
(125)

59.89
(130)

60.32
(130)

59.96
(125)

60.74
(130)

Ours 58.87
(130)

58.67
(125)

59.17
(130)

60.78
(125)

61.63
(130)

60.75
(125)

63.28
(130)

63.86
(125)

Ours-SSE
b = 0.1

60.25
(135)

59.74
(130)

61.02
(130)

63.34
(130)

63.55
(135)

61.67
(140)

64.85
(135)

65.88
(130)

Ours-SSE
b = 0.2

63.11
(135)

61.24
(135)

62.95
(130)

64.72
(130)

65.67
(135)

62.57
(135)

65.28
(140)

66.25
(135)

Ours-SSE
b = 0.3

63.24
(135)

65.72
(140)

64.15
(140)

65.28
(135)

66.14
(140)

64.92
(140)

65.98
(140)

66.80
(140)

Ours-SSE
b = 0.4

62.17
(140)

60.36
(140)

63.24
(140)

63.62
(135)

64.90
(140)

62.34
(140)

64.05
(145)

65.73
(145)

Fig. 4. Face samples under three different noises on ORL, AR and FERET datasets.
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representation of L1-norm sparsity constraint is introduced, the recognition rate of our
extension method has obvious advantages under three noise conditions, which further
proves the anti-noise ability of our extension method. Furthermore, as the number of
samples increases and the faces become more complex, our method still has a better
and robust performance under three noise conditions.

Table 4. Maximal recognition rates (%) of different methods on ORL dataset under
different noise conditions (r = 3).

Method No noise Gaussian noise Salt & pepper noise Multiplicative noise

SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC

LDA 79.56
(30)

76.87
(35)

78.50
(35)

77.65
(30)

74.35
(25)

73.28
(27)

74.34
(15)

74.17
(20)

73.56
(35)

76.54
(20)

75.13
(18)

72.84
(26)

LPP 81.32
(45)

82.15
(40)

82.50
(40)

78.56
(35)

76.72
(28)

70.85
(32)

72.25
(30)

73.24
(25)

74.18
(27)

78.32
(25)

72.19
(28)

73.27
(20)

MFA 82.55
(25)

82.95
(25)

83.05
(25)

76.25
(25)

76.56
(30)

74.33
(26)

78.33
(25)

75.83
(28)

76.25
(28)

77.56
(30)

73.44
(30)

72.18
(30)

GDE 82.87
(35)

83.12
(30)

84.00
(30)

75.33
(25)

77.84
(32)

73.28
(25)

77.45
(30)

74.36
(31)

73.57
(32)

76.33
(35)

75.17
(23)

76.34
(25)

Ours 83.56
(30)

83.20
(35)

84.33
(35)

80.67
(38)

78.68
(30)

75.03
(26)

78.87
(35)

76.33
(25)

77.18
(19)

79.67
(30)

76.25
(31)

76.84
(27)

Ours-SSE
b = 0.3

84.77
(30)

84.65
(30)

84.75
(30)

84.25
(35)

79.34
(25)

76.56
(30)

82.67
(30)

77.54
(20)

78.65
(30)

81.25
(25)

76.87
(30)

77.25
(35)

Table 5. Maximal recognition rates (%) of different methods on AR dataset under different
noise conditions (r = 5).

Method No noise Gaussian noise Salt & pepper noise Multiplicative noise

SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC

LDA 61.55
(115)

60.25
(120)

61.87
(125)

57.50
(120)

54.25
(125)

53.75
(115)

54.72
(125)

53.86
(115)

55.47
(130)

57.36
(120)

57.43
(105)

55.71
(125)

LPP 58.24
(130)

57.35
(125)

58.33
(125)

54.20
(125)

55.18
(100)

53.87
(125)

56.74
(130)

55.74
(125)

55.98
(110)

55.25
(125)

56.33
(105)

54.87
(120)

MFA 64.95
(130)

64.88
(125)

67.75
(125)

59.34
(125)

57.65
(130)

56.73
(125)

58.37
(125)

56.35
(115)

57.76
(130)

57.87
(130)

57.48
(105)

58.67
(120)

GDE 65.25
(130)

66.72
(125)

68.45
(125)

58.78
(125)

56.98
(115)

57.47
(120)

59.25
(130)

56.44
(125)

53.85
(130)

56.74
(135)

56.48
(120)

57.65
(105)

Ours 66.48
(135)

67.50
(135)

68.87
(135)

60.67
(125)

58.36
(130)

58.45
(125)

61.33
(135)

57.68
(125)

56.38
(110)

58.56
(130)

58.37
(120)

58.87
(105)

Ours-SSE
b = 0.3

71.33
(135)

72.05
(125)

72.87
(125)

61.76
(135)

59.65
(125)

58.76
(130)

63.18
(130)

58.36
(120)

57.75
(130)

59.75
(125)

59.45
(130)

59.79
(135)
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4.5 Experiments Under Blur Condition

In consideration of the blurred images in dataset, in this section, motion blur (the
motion angle is 10o and the distance of motion is 5) and defocus blur (the radius is 5)
are employed to the face images on ORL, AR and FERET datasets. Figure 5 shows
face samples under different blur conditions on ORL, AR and FERET datasets. The
comparative results of the recognition rate of all methods on three datasets are shown in
Tables 7, 8, and 9.

According to the results in Tables 7, 8, and 9, it can be found that our method has
an advantage over other methods in recognition rate under two blur conditions.
Moreover, our extension method uses sparse representation to optimize the similarity of
intraclass samples, which makes it perform better than GDE. However, as the number
of samples increases and the faces become more complex, the recognition performance
will be degraded. It can be seen from Table 9 that when the defocused blurred images
are existing, the maximal recognition rate of various methods is low, not exceeding
40%, but the performance of our extension method still has a little advantage, which
indicates the anti-interference ability of our extension method.

Table 6. Maximal recognition rates (%) of different methods on FERET dataset under different
noise conditions (r = 3).

Method No noise Gaussian noise Salt & pepper noise Multiplicative noise

SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC

LDA 50.36
(120)

53.27
(125)

55.96
(125)

54.25
(100)

53.75
(125)

55.12
(90)

48.63
(85)

50.13
(95)

48.76
(80)

50.76
(75)

51.25
(115)

51.78
(135)

LPP 51.48
(125)

53.25
(120)

56.14
(120)

54.73
(95)

54.33
(125)

55.36
(130)

45.76
(100)

48.49
(110)

47.36
(120)

49.38
(95)

52.48
(90)

53.76
(120)

MFA 57.87
(125)

58.65
(120)

60.20
(125)

57.65
(90)

56.75
(80)

54.87
(95)

48.56
(95)

49.76
(85)

50.17
(110)

51.45
(80)

53.56
(130)

52.85
(115)

GDE 60.32
(130)

59.96
(125)

60.74
(130)

58.37
(85)

57.67
(120)

56.84
(125)

46.93
(90)

49.35
(120)

47.85
(110)

52.37
(80)

53.64
(120)

52.87
(125)

Ours 60.75
(125)

63.28
(130)

63.86
(125)

59.76
(110)

58.87
(115)

57.43
(110)

49.67
(80)

51.28
(125)

50.96
(100)

54.85
(75)

56.37
(120)

54.84
(100)

Ours-SSE
b = 0.3

64.92
(140)

65.98
(140)

66.80
(140)

62.43
(105)

59.17
(125)

58.25
(130)

51.27
(85)

51.45
(120)

51.73
(115)

56.84
(90)

57.74
(110)

55.28
(105)

Fig. 5. Face samples under two blurs on ORL, AR and FERET datasets.
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Table 8. Maximal recognition rates (%) of different methods on AR dataset under different blur
conditions.

Method Original Defocus blurred Motion blurred
SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC

LDA 61.55
(115)

60.25
(120)

61.87
(125)

49.75
(85)

53.84
(95)

46.72
(100)

50.88
(80)

49.76
(105)

51.74
(110)

LPP 58.24
(130)

57.35
(125)

58.33
(125)

48.26
(100)

50.25
(85)

48.83
(95)

49.20
(90)

48.75
(80)

50.37
(100)

MFA 64.95
(130)

64.88
(125)

67.75
(125)

50.33
(95)

47.26
(90)

51.87
(110)

52.83
(95)

50.78
(85)

51.34
(90)

GDE 65.25
(130)

66.72
(125)

68.45
(125)

49.76
(105)

48.20
(85)

49.25
(100)

51.56
(75)

49.95
(100)

50.83
(95)

Ours 66.48
(135)

67.50
(135)

68.87
(135)

50.68
(110)

51.78
(90)

52.50
(105)

55.47
(95)

52.67
(90)

52.86
(90)

Ours-SSE
b = 0.3

71.33
(135)

72.05
(125)

72.87
(125)

52.47
(115)

52.15
(95)

52.73
(105)

57.83
(90)

53.25
(75)

54.28
(105)

Table 7. Maximal recognition rates (%) of different methods on ORL dataset under different
blur conditions.

Method Original Defocus blurred Motion blurred
SVM LRC LLRC SVM LRC LLRC SVM LRC LLRC

LDA 79.56
(30)

76.87
(35)

78.50
(35)

52.18
(20)

51.37
(25)

53.24
(20)

53.61
(20)

51.48
(25)

53.74
(25)

LPP 81.32
(45)

82.15
(40)

82.50
(40)

50.37
(30)

51.48
(30)

52.65
(25)

43.56
(19)

47.96
(18)

46.47
(25)

MFA 82.55
(25)

82.95
(25)

83.05
(25)

53.65
(35)

52.87
(30)

53.76
(30)

55.78
(20)

54.76
(28)

56.83
(20)

GDE 82.87
(35)

83.12
(30)

84.00
(30)

53.87
(40)

54.73
(35)

53.76
(20)

46.52
(17)

48.75
(20)

50.34
(30)

Ours 83.56
(30)

83.20
(35)

84.33
(35)

57.34
(35)

55.15
(35)

54.87
(25)

52.96
(25)

55.46
(28)

57.75
(30)

Ours-SSE
b = 0.3

84.77
(30)

84.65
(30)

84.75
(30)

58.36
(25)

55.84
(20)

55.25
(30)

57.87
(22)

56.17
(25)

58.25
(25)
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5 Conclusion

In this paper, we propose a novel method to eliminate the influence of outliers in face
recognition. It builds the intrinsic graph in the light of the intraclass samples and their
with-class mean, and constructs the penalty graph from the perspective of GDE. In
addition, a low-rank representation with sparse constraints is introduced to explore the
global low rank relationship of unlabeled samples. The experimental results on three
datasets under different noise and blur conditions prove the effectiveness and robust of
the proposed method.
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