
Infrared Small Target Recognition
with Improved Particle Filtering Based

on Feature Fusion

Qian Feng(&), Dongjing Cao, Shulong Bao, and Lu Liu

Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China
fengqian_cast@foxmail.com

Abstract. Aiming at the problem of tracking weak targets in different scenar-
ios, an improved particle tracking method is proposed. This paper firstly uses
background prediction and extracts the gray and motion features of weak targets
to suppress the background of the image, then uses the krill herd algorithm to
update the particle weights, and finally uses three different types of scenes to
verify the tracking effect of the algorithm. It is experimentally demonstrated that
compared with the traditional algorithm, this algorithm enhances the tracking
ability of small targets in different infrared scenes.

Keywords: Infrared small target � Feature fusion � Krill herd optimization �
Particle filter

1 Introduction

Target recognition is one of the important research topics in computer vision, image
processing and machine learning. In recent years, with the rapid development of
infrared imaging technology in the field of remote sensing, infrared dim and small
moving target detection has also become a research hotspot in image processing
technology [1–5].

It is not easy to obtain shapes, textures and other features of the dim and small
target. As a result, methods like moment invariant based on the geometric feature of the
target, template matching based on the texture feature, mean shift based on the
grayscale, probability and density of the target and other traditional extended target
tracking methods are hard to guarantee the detection and tracking performance of weak
and small targets [6]. Only the information of the target on the sequence image can be
used to track and identify while detecting through the dynamic characteristics of the
inter-frame correlation. Particle filtering has developed into a critical research direction
of small target tracking algorithms for the better performance in the non-linear and non-
Gaussian scenes [7, 8]. However, traditional particle filtering is prone to tracking
missing under a single feature of the target under strong noise interference. Therefore,
extracting multiple features of the target and integrating the particle filter helps to
improve the stability of detection. For the detection of dim and small targets in the
complex background of infrared sequence images, this paper first uses the multi-frame
difference method to suppress the background and uses the grayscale and dynamic
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feature of small target to delete the false points. At the same time, considering the large
amount of calculation and the problem of sample depletion in resampling of particle
filter, the strategy of krill herd optimization algorithm to update particle weights is
added to track the dim and small targets in infrared sequence images.

2 Algorithm Framework

In this paper, the algorithm is divided into four modules: preprocessing, gray feature
extraction, motion feature extraction and improved particle filter algorithm optimized
by krill herd. The framework of the entire algorithm is as follows (Fig. 1):

The detail of the proposed algorithm is given in Sects. 2.1–2.4 below.

2.1 Preprocessing

It is no surprise that background suppression is an essential step in preprocessing to
improve the detection accuracy of infrared dim targets and accurately separate the
background, noise and target points. Common backgrounds can be divided into sta-
tionary backgrounds and non-stationary backgrounds. The pixels in the stationary
background have strong spatial correlation. The false points are mainly composed of
the noise of the detector, which will cause small changes in the background. They can
be suppressed by spatial filtering. Pixels in a non-stationary background have a strong
time-domain correlation so that the frame difference can be used before threshold
segmentation to highlight the target and suppress the background.

Infrared images containing small targets are consist of targets, noise and back-
ground. The specific model is as follows:

f x; yð Þ ¼ fT x; yð Þþ fB x; yð Þþ n x; yð Þ ð1Þ

Where f x; yð Þ is the infrared image, fT x; yð Þ, fB x; yð Þ, n x; yð Þ represent the target,
background and noise [9].

Because of the long distance, the target usually appears like a dot, and the back-
ground is a large area of gentle variation with strong pixel correlation. The infrared
radiation intensity of the target is generally higher than that of the surrounding back-
ground. Therefore, small targets and noises appear as isolated bright spots in infrared
images, and the gray value is much larger than the pixels in their neighborhood.

Considering the non-stationary background of common infrared remote sensing
images and the long distance of imaging, this article focuses on small targets moving at
a constant speed under non-stationary backgrounds. This paper adopts the first few

Fig. 1. Algorithm framework
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frames as the prediction background, and then segments the images to obtain suspi-
cious targets.

Since the target occupies very few pixels in a single-frame image, the image of the
previous k frames can be taken and averaged as the predicted background image. If the
original image is f x; y; tnð Þ and the predicted background image is f 0 x; y; tnð Þ, then the
predicted background image is:

f 0 x; y; tnð Þ ¼ 1
k

Pk
n¼1

f x; y; tnð Þ ð2Þ

The results show that k taking 10 can better balance the relationship between the
amount of calculation and robustness.

The difference processing is made between the original image f x; y; tnð Þ and the
predicted background image f 0 x; y; tnð Þ to obtain the sequence difference image
g x; y; tnð Þ after the background is removed:

g x; y; tnð Þ ¼ f x; y; tnð Þ � f 0 x; y; tnð Þj j ð3Þ

The results of the preprocessing experiment are as follows:

(a) (b) c

(d) (e) f

Fig. 2. Preprocessing results.
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Among them, (a), (b) and (c) in Fig. 2 are the three kinds of backgrounds in the video
sequence, and (d), (e) and (f) are the background suppression results calculated byEqs. (2)
and (3). As can be seen from the figure, the algorithm can suppress the background well
and highlight the target point using the gray and motion features of the targets.

2.2 Gray Feature Extraction

After predicting the background image, the obtained image can be subtracted with
value T to obtain a binary image F x; y; tnð Þ, in which the non-zero gray value are the set
of suspected target points:

F x; y; tnð Þ ¼ 0; g x; y; tnð Þ\T
g x; y; tnð Þ; g x; y; tnð Þ� T

�
ð4Þ

Where F x; y; tnð Þ is the binary map of the suspect target point set, g x; y; tnð Þ is the
sequence difference image after background removal, and T is the segmentation
threshold selected according to experience.

According to the 4 neighborhoods traversal image F x; y; tnð Þ, we can find all the
suspected target points with connected 4 domains. Cause the infrared weak small target
spots are usually slightly larger than the noise points, we will arrange the connected
domain according to the size and select top k largest connected domains, which will be
used as candidate target points, and the others are eliminated as noise. At this point, we
have obtained the grayscale features of the suspected target points with position
information.

2.3 Motion Feature Extraction

According to the positional correlation of the movement of the small targets between
frames, the distance of the candidate target points between frames can be used as the
basis for discrimination. In this paper, the shortest Euclidean distance is used as the
trajectory of the target points and the initial target position is determined from the
candidate target points.

Dn
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c xnk
� �� c xn�1

k

� ��� ��2 þ c ynk
� �� c yn�1

k

� ��� ��2q
ð5Þ

Where Dn
k represents the distance of the kth candidate target point between the nth

frame and the n−1th frame, and c xnk
� �

represents the centroid x coordinate of the kth
candidate target point in the nth frame, c xn�1

k

� �
represents the centroid x coordinate of

the k−1th candidate target point in the n−1th frame, c ynk
� �

represents the centroid y
coordinate of the kth candidate target point in frame n−1, c yn�1

k

� �
represents the x

coordinate of the centroid of the kth candidate target point in the n−1th frame.
According to the experimental results of this paper, k takes 4.
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Infrared dim targets move slowly on the imaging surface, and sometimes the dis-
tance between frames is less than one pixel. As a sequence of the random and messy
appearance and no correlation between frames of noise, it is helpful for us to use
motion distance of candidate target points between two adjacent frames as a criterion to
effectively eliminate noise points.

2.4 Improved Particle Filter Algorithm Optimized by Krill Herd

Assuming that the target is moving at a constant speed, the state variable of the target is
defined as S ¼ x; y; vx; vy

� �
, where x; yð Þ is the position of the center of the target,

vx; vy
� �

is the horizontal and vertical speed of the target. We define the state transition
matrix F and random noise Wk as:

F ¼
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

2
664

3
775; Wk ¼

Sp � rand
Sp � rand
Sv � rand
Sv � rand

2
664

3
775 ð6Þ

Where Sp represents the status constant variable in the horizontal direction, and Sv
represents the status constant variable in the vertical direction. According to the
experiment, Sp takes 25 and Sv takes 5.

The steps of the improved particle filter algorithm optimized by krill herd are as
follows (Fig. 3):

Fig. 3. The steps of the improved particle filter algorithm optimized by krill herd.
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Step 1: Initialization
Establish the target motion model:

Xk ¼ FXk�1 þWk ð7Þ

Where F is the state transition matrix, Wk is the random noise.

Sampling independent and identically distributed particles xik;
1
N

� �N
i¼1 according to

xik � q xikjxik�1; zk
� � ð8Þ

Set iterations I to 1, set krill group size N, maximum induction speed Nmax, max-
imum foraging speed Vf , maximum random diffusion speed Dmax, time interval Dt,
maximum number of iterations Imax, the inertia weight of induced motion wn and
inertial weight wf of foraging behavior.

Step 2: Prediction

Calculate the weight of the new particle set xik;w
i
k

� �N
i¼1 according to the current

observed value zk:

wi
k ¼ wi

k�1
p zk jxikð Þp xik jxik�1ð Þ

p xik jxik�1;zkð Þ ð9Þ

Use the state function of Eq. (7) to calculate the state value xik of the particle at the
next moment, then use Eq. (9) to calculate the weight of each particle. The particle state
value xik is used as the position of krill Xi.

Step 3: Update

Nnew
i ¼ Nmaxai þwnNold

i ð10Þ

ai ¼ alocali þ atargeti ð11Þ

Where N indicates the induced motion speed, max indicates the maximum speed, ai
indicates the individual induced direction, alocali indicates the neighboring individual
induced direction, atargeti indicates the optimal individual induced direction, wn 2 0; 1½ �
indicates the inertial weight of the original motion.

Fnew
i ¼ Vfbi þwf Fold

i ð12Þ

bi ¼ bfoodi þ bbesti ð13Þ
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Where Fnew
i is the speed vector of the foraging behavior of the ith krill, Vf is the

speed of foraging behavior, bfoodi is the effect of food on the ith krill, and bbesti is the
optimal fitness of the ith krill, wf 2 0; 1½ � is the inertia weight of foraging behavior, and
Fold
i is the speed vector of the last foraging behavior.

Dnew
i ¼ Dmax 1� I

Imax

	 

d ð14Þ

Where Dmax is the maximum speed of random diffusion, Imax is the maximum
number of iterations, and d is a directional vector with each variable obeying [−1, 1]
uniform distribution.

Xl
i ¼ Xl�1

i þDt Nnew
i þFnew

i þDnew
i

� � ð15Þ

Where Dt is the time interval.
Use Eqs. (10) (12) (14) to calculate the induced foraging and diffusion movement of

each krill individual, and finally calculate the position change of each krill in each
iteration according to Eq. (15).

Step 4: Cross operation

Cr ¼ 0:2K̂i;best ð16Þ

Where Cr is the crossover probability [10–12], K̂i;best represents the best fitness of
the ith krill.

Calculate the crossover probability according to Eq. (16) and perform crossover
operation on individual krill groups.

Step 5: Determine the Termination Conditions
Whether the maximum number of iterations Imax is reached, otherwise step 3.

Step 6: Weight Normalization

wi
k ¼ wi

kPNs

i¼1
wi
k

ð17Þ

x̂k ¼
PN
i¼1

wi
kx

i
k ð18Þ

Recalculate the weight of each particle, update the particle weight according to
Eq. (9), normalize the particles according to Eq. (17), and finally output the estimated
state value of each particle according to Eq. (18).

Step 7: Iteration
Repeat steps 2 to 6 until the prediction is completed.
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3 Simulation Results and Analysis

Three sets of video sequences with different backgrounds were selected for the
experiment to confirm the performance of the method in this paper. The first test video
came from the detection and tracking data set of small and weak aircrafts with infrared
images under the ground/air background of Hui Bingwei et al. [13], the simulation
experiment was performed on the hardware platform of AMD Ryzen 5 4600H CPU
3.00 GHz and memory 16 GB, and the development environment is MatlabR2017b
(Table 1).

The experiment compares the classical particle filtering algorithm and the improved
method in this paper from the tracking time per frame and error under three common
backgrounds. Define the tracking error as the Euclidean distance between the target
centroid in the tracking algorithm and the calibrated target centroid:

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x�ð Þ2 þ y� y�ð Þ2

q
ð19Þ

The number of particles in the algorithm is 300.
Video sequence 1 is the background with ground. (a) and (b) in Fig. 4 are the

tracking effects of the basic particle filtering algorithm and the improved particle
filtering algorithm on the video, respectively, from the 30th, 120th, 180th, and 220th
frames of the video. Figure 4(c) is the comparison of the single frame operation time of
the two algorithms, and Fig. 4(d) is the comparison of the tracking errors of the two
algorithms.

It can be seen from Fig. 4 (a1) (b1) that the basic particle filtering algorithm is
disturbed and the centroid shifted during the first few frames of the video, and the
particle filter algorithm optimized by krill herd can track the target more stably and has
better robustness. It can be seen from Fig. 4(c) that adding particle optimization does
not greatly extend the calculation time. The calculation time of the two algorithms is
similar, and the basic particle filtering algorithm is slightly faster. It can be seen from
Fig. 4(d) that the error of the optimized particle filter algorithm is smaller than that of
the basic particle filter algorithm in the middle of the video.

Table 1. Properties of experimental scenes.

Video sequence Backgrounds Frame length Image size Target size

1 Ground 256 256 � 256 2 � 2
2 Sea and sky 280 280 � 228 2 � 2
3 Clouds 245 250 � 200 2 � 2
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Video sequence 2 is the sea-sky background. (a) and (b) in Fig. 5 are the tracking
results of the basic particle filtering algorithm and the improved particle filtering
algorithm on the video, respectively from the 30th, 120th, 180th, and 220th frames of
the video. Figure 5(c) is the comparison of the single frame operation time of the two
algorithms, and Fig. 5(d) is the comparison of the tracking errors of the two algorithms.

As can be seen from Fig. 5(a1) (b1), the gray level of the background is similar in
the video, so the target characteristics are more obvious, and both algorithms have good
performance. Figure 5(c) displays that the calculation time of the two algorithms is
similar, and the basic particle filtering algorithm is slightly faster. What’s more, Fig. 4
(d) demonstrates that the error of the two algorithms are about the same in the front and
the end part of the video, and optimized particle filter algorithm is smaller than that of
the basic particle filter algorithm in the middle of the video.

(a1) (a2) (a3) (a4)
a

(b1) (b2) (b3) (b4)
(b)

(c) (d)

Fig. 4. Tracking results under background with ground in Experiment 1.
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Video sequence 3 is a background with clouds. (a) and (b) in Fig. 6 are the tracking
results of basic particle filtering algorithm and improved particle filtering algorithm on
the video, respectively from the 40th, 80th, 160th, and 200th frames of the video.
Figure 6(c) is the comparison of the single frame operation time of the two algorithms,
and Fig. 6(d) is the comparison of the tracking errors of the two algorithms.

It can be seen from Fig. 6(a1) (b1) that in backgrounds where the grayscale is close
to the target, the elementary particle filtering algorithm suffers some interference and
there are cases of loss. The particle filter algorithm optimized by the krill herd can track
the target more stable, and the robustness is better. In addition, Fig. 6(c) illustrates that
the calculation time of the two algorithms is similar, and the basic particle filter
algorithm is slightly faster. Furthermore, the particle filter algorithm with krill herd
optimization is highly robust under the background with large interference in Fig. 6(d).

(a1) (a2) (a3) (a4)
a

(b1) (b2) (b3) (b4)
(b)

(c) (d)

Fig. 5. Tracking results under background with sea and sky in Experiment 2.
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Considering that particle filtering is a probabilistic algorithm, the results of each
experiment will be different, so we have run each experiment twelve times and the
average of the results is taken. The calculation data of the two algorithms in three
backgrounds is shown in the following Tables 2 and 3:

(a1) (a2) (a3) (a4)
a

(b1) (b2) (b3) (b4)
(b)

(c) (d)

Fig. 6. Tracking results under background with clouds in Experiment 3.

Table 2. Processing time of algorithm

Video
sequence

Algorithm Average processing
time(s)

Total processing
time(s)

Average
error

1 PF 0.0374 9.8401 2.5438
IKH-PF 0.0398 10.1765 1.5007

2 PF 0.0374 9.0376 3.8052
IKH-PF 0.0378 9.4603 2.6754

3 PF 0.0362 8.7630 2.5502
IKH-PF 0.0377 9.6131 1.6163
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4 Conclusions

The above experiments demonstrate that the preprocessing algorithm using grayscale
and motion features proposed in this paper can effectively suppress background in
complex environments and highlight the small dim target. Then the algorithm uses the
particle filter algorithm based on krill herd optimization to track the target. As we can
see, although part of the operation speed is sacrificed, the robustness and accuracy of
tracking are effectively improved. As a result, the detection of infrared dim targets can
be accurately achieved.
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