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Chapter 9
Molecular Landscape in Ovarian Clear 
Cell Carcinoma

Nozomu Yanaihara and Aikou Okamoto

Abstract  Ovarian clear cell carcinoma (OCCC), one of five major histological 
subtypes of epithelial ovarian cancer (EOC), has unique clinical and molecular fea-
tures. There is no specific targeted therapy for OCCC, and studies on translational 
genomics underlying OCCC pathogenesis are still ongoing. This chapter focuses on 
the molecular landscape in the OCCC tumor and its microenvironment. Our find-
ings will help in the stratification of OCCC patients who may benefit from precision 
medicine for this unique histological subtype of EOC.
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9.1  �Introduction

Ovarian clear cell carcinoma (OCCC) is one of five major histotypes of epithelial 
ovarian cancer (EOC). The clinicopathological and biological features of OCCC 
include hypercalcemia, thromboembolism, a close association with endometriosis, 
and a higher prevalence in Eastern Asian women [1, 2]. In addition, compared to 
other histological subtypes, OCCC patients present at a relatively younger age and 
an early stage [3]. The 5-year survival rate for stage I OCCC is ~90%, with differ-
ences depending on the substage: patients with stage IA or IC1 OCCC have a favor-
able clinical outcome, while patients with stage IC2 or IC3 have a statistically 
poorer prognosis [4–6]. In addition, advanced-stage OCCC is resistant to conven-
tional platinum-based front-line chemotherapy, resulting in poor prognosis [6, 7].
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Because of the low prevalence of OCCC in Western countries, there is a lack of 
large randomized controlled clinical trials targeting OCCC with chemotherapy 
including molecular medicine. The current standard treatment is a one-size-fits-all 
approach, which includes debulking surgery with platinum agent + paclitaxel combi-
nation chemotherapy. A randomized phase III clinical trial conducted by the Japanese 
Gynecologic Oncology Group compared irinotecan and cisplatin (CPT-P) with pacli-
taxel plus carboplatin (TC) in stage I–IV OCCC patients. The authors reported no 
significant survival benefit in the CPT-P group [8]. In addition, studies on translational 
genomics underlying OCCC pathogenesis are ongoing [1, 9–12]. These findings 
highlight that other therapeutic approaches might improve survival in OCCC patients.

In this chapter, we reviewed recent advances in molecular profiling related to 
carcinogenesis and molecular targets of OCCC.

9.2  �Mutational Landscape

Several studies on large-scale genome-wide gene profiling for OCCC have reported 
actionable gene alterations that could lead to the development of a target therapy for 
OCCC (Table  9.1) [13–20]. Both AT-rich interactive domain 1A (ARID1A) and 

Table 9.1  Genetic alterations in OCCC

Alteration
Frequency 
(%) Affected pathway Reference

Somatic mutation

ARID1A 40–70 SWI/SNF chromatin remodeling 
complex

[13–19]

PIK3CA 40–50 PI3K/Akt/mTOR [14–16, 
18–20]

PPP2R1A 10–20 Akt/MAPK [16–19]
KRAS 5–20 Akt/MAPK [14–16, 18, 

19]
TP53 5–15 P53 pathway [15, 17–20]
PTEN 5–10 PI3K/Akt/mTOR [15, 16, 19]
Germline mutation

BRCA1/2 2–6 DNA repair [21, 22]
Copy number alteration

ZNF217 (20q13.2 
Amplification)

20–40 ZNF217 [23, 24]

MET (7q31.31 
Amplification)

30 Akt/MAPK [25]

AKT2 (19q3.2 
Amplification)

20 Akt/mTOR [25]

HER2 (17q12-q21 
Amplification)

14 HER [26]

PPM1D (17q23.2 
Amplification)

10 P53 mediated apoptosis [27]

CDKN2A/2B (9q21.3 
Deletion)

9 CDK inhibitors (p15/p16) [24]
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phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) are 
most frequently mutated and often coexist in OCCC [19]. The coexistence of these 
mutations initiated OCCC tumor formation in a genetically engineered mouse 
model [28]. Since cancer cells are vulnerable to ARID1A deficiency, synthetic 
lethal approaches to ARID1A mutation in OCCC are of considerable clinical interest 
[1, 12]. PIK3CA and phosphatase and tensin homolog deleted from chromosome 10 
(PTEN) mutations highly activate the phosphatidylinositol 3-kinase/protein kinase 
B/mammalian target of rapamycin (PI3K/Akt/mTOR) signal [14–16, 18–20]. In 
addition, KRAS and protein phosphatase 2 scaffold subunit A alpha (PPP2R1A) 
mutations have been found in 5–20% and 10–20% of OCCC patients, respectively 
[14–16, 18, 19]. Notably, mutations of these genes, where the mitogen-activated 
protein kinase (MAPK) signal could be a target candidate, also often coexist [18]. 
Compared to high-grade serous ovarian cancer (HGSOC), the most common form 
of EOC, germline mutations of germline breast cancer susceptibility 1 (BRCA1) 
and BRCA2 are infrequent and are found in 2–6% of OCCC patients [21, 22], indi-
cating that only a small percentage of OCCC patients might benefit from a newly 
innovated treatment strategy using poly-adenosine diphosphate (ADP)-ribose poly-
merase (PARP) inhibitors.

9.3  �Copy Number Landscape

Several molecular technologies, including single-nucleotide polymorphism (SNP) 
array, comparative genomic hybridization (CGH) array, and exome sequencing, 
have revealed copy number alterations (CNAs) in OCCC. Frequent amplification 
has been observed in chr8q, chr17q, and chr20q loci, while deletion has been 
observed in chr9q, chr13q, chr18q, and chr19p loci [16, 23, 29]. Notably, the whole-
arm-CNA ratio is higher in OCCC compared to HGSOC, although fewer CNAs are 
found in OCCC patients [29]. Interestingly, whole chr8q and chr20q13.2 amplifica-
tion, including zinc finger protein 217 (ZNF217), is more prevalent in Japanese 
OCCC patients compared to Korean or German OCCC patients [23]. Amplification 
or deletion of certain loci that contain several cancer-related genes might affect 
intracellular signals as potential therapeutic targets (Table 9.1).

9.4  �Signaling Pathway Landscape

9.4.1  �IL6/STAT3 Pathway

OCCC-specific expression signatures have been obtained using global gene expres-
sion assays. Compared to HGSOC, OCCC shows an enhanced interleukin 6 (IL6)/
signal transducer and activator of transcription 3 (STAT3) pathway [30–32]. In 
addition, high tumor and serum IL6 levels are significantly correlated with poor 
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prognosis in OCCC patients [5, 31]. IL6 is a pleiotropic pro-inflammatory cytokine 
that mediates critical processes, including cell proliferation, angiogenesis, and che-
moresistance. IL6 signal inhibition has antitumor effects in OCCC, indicating that 
this pathway is a promising therapeutic target [33]. Although anti-IL6 antibody (sil-
tuximab) has shown clinical activity in a phase II clinical trial of 18 patients with 
platinum-resistant ovarian cancer (1 OCCC patient) [34], no clinical trials specific 
for OCCC-targeting IL6/STAT3 signals have been conducted.

9.4.2  �Angiogenesis

Intertumoral hypoxia with high hypoxia-inducible factor 1-alpha (HIF-1α) expres-
sion, in which a malignant tumor commonly develops, leads to an increase in the 
activity of various angiogenesis-related signals. In OCCC, increased HIF-1α expres-
sion increases the intracellular glycogen content, causing cell chemoresistance [35]. 
In addition, in OCCC, IL6 signals via STAT3 activates the expression of down-
stream genes, including HIF1A [31]. Therefore, vascular endothelial growth factor 
(VEGF), induced by HIF-1α, is overexpressed in >90% of OCCC patients, and 
VEGF expression is correlated with the patient’s survival [36]. Notably, bevaci-
zumab, a monoclonal human VEGF antibody, has antitumor effects in OCCC both 
in vitro and in vivo.

On the basis of the findings that OCCC and renal CCC have similar gene expres-
sion profiles, one of which is characterized by the activated HIF pathway [37], 
researchers have focused on anti-angiogenetic therapy for OCCC (Table 9.2). The 
GOG-254 phase II study on sunitinib, which targets vascular endothelial growth 
factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), for 
recurrent or persistent OCCC treatment reported a median progression-free survival 
(PFS) and overall survival (OS) of 2.7 and 12.8 months, respectively [38]. The 
NRG-GY001 phase II study on cabozantinib, which targets VEGFR, MET, and 
RET, for recurrent or persistent OCCC reported that a single administration of cabo-
zantinib leads to a median PFS and OS of 3.6 and 8.1 months, respectively [39]. In 
addition, a phase II study on ENMD-2076, which targets Aurora A and VEGFR, for 
recurrent OCCC reported a median PFS of 3.7 months, and 22% of evaluable 
patients had a 6-month PFS, which did not meet the preset bar for efficacy [40]. 
Most of these trials showed limited efficacy. A randomized phase II international 
NiCCC (ENGOT-GYN1) study on nintedanib (BIBF 1120), which targets VEGFR, 
PDFGR, and fibroblast growth factor receptor (FGFR), versus chemotherapy in 
recurrent or persistent OCCC is ongoing (NCT02866370) [41].

9.4.3  �PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway plays a crucial role in the malignancy of human 
tumors and is involved in OCCC pathogenesis via frequent genetic alterations [14–
16, 18–20]. Notably, comprehensive genomic profiling of OCCC shows that ~70% of 
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samples harbor mutations in at least one component of the PI3K/Akt/mTOR pathway 
[46]. In addition, inhibitors of the PI3K/Akt/mTOR pathway shows antitumor effects 
in OCCC cells with high pathway activity [47]. These findings indicate the potential 
benefits of therapies targeting the PI3K/Akt/mTOR pathway in OCCC patients.

The GOG-268 phase II study on temsirolimus, which targets mTOR complex 1, 
in combination with paclitaxel and carboplatin, followed by temsirolimus, as a first-
line therapy in stage III–IV OCCC patients did not show an improved PFS com-
pared to historical controls (Table 9.2; NCT01196429) [42].

9.4.4  �HNF-1β Pathway

Hepatocyte nuclear factor 1β (HNF-1β), a transcription factor, is commonly 
expressed in OCCC and is therefore used as an OCCC diagnostic marker [1, 9, 11, 
12]. A decrease in HNF-1β expression is associated with a favorable clinical 

Table 9.2  Clinical trials based on the molecular landscape in OCCC

Title Drug Targets Condition RCT Phase
Trials 
identifier Reference

Anti-angiogenesis

GOG-254 Sunitinib VEGFR, 
PDGFR

Recurrent 
or 
persistent

No II NCT00979992 [38]

NRG-GY001 Cabozantinib VEGFR2, 
MET, 
RET

Recurrent 
or 
persistent

No II NCT02315430 [39]

A Study of 
ENMD-
2076 in 
OCCC

ENMD-2076 VEGFR, 
Aurora A

Recurrent No II NCT01104675 [40]

NiCCC 
(ENGOT-
GYN1)

Nintedanib VEGFR, 
PDGFR, 
FGFR

Recurrent 
or 
persistent

Yes II NCT02866370 [41]

Anti-PI3K/Akt/mTOR pathway

GOG-268 Temsirolimus mTOR Stage III 
or IV

No II NCT01196429 [42]

Synthetic lethal approaches for ARID1A

GOG-283 Dasatinib Abl, Src, 
c-Kit

Recurrent 
or 
persistent

No II NCT02059265 [43]

Immune checkpoint blockade

MOCCA Durvalumab PD-L1 Recurrent 
or 
persistent

Yes II NCT03405454 [44]

BrUOG 354 Nivolumab
Ipilimumab

PD-1
CTLA4

Recurrent 
or 
persistent

Yes II NCT03355976 [45]
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outcome in OCCC patients [48]. Epigenetic silencing via hypomethylation is one of 
the mechanisms underlying high HNF-1β expression [30]. In OCCC, HNF-1β plays 
an important role in cancer cell survival and chemoresistance by modulating glu-
cose metabolism and internal oxidative stress [49, 50].

9.5  �Synthetic Lethal Approaches for ARID1A

As mentioned before, cancer cells are vulnerable to ARID1A deficiency. Therefore, 
synthetic lethal approaches to targeting this vulnerability of OCCC cells are being 
developed. The small-molecule inhibitor of the enhancer of zeste homolog 2 (EZH2) 
methyltransferase (GSK126) inhibits growth in ARID1A-mutated ovarian cancer 
cells because ARID1A and EZH2 have an antagonistic association with regard to 
PI3K-interacting protein 1 (PIK3IP1) expression that promotes apoptosis via nega-
tive PI3K/Akt signaling regulation [51]. As another epigenetic concept of ARID1A 
deficiency, modulation of histone deacetylase 6 (HDAC6) activity using the HDAC6 
inhibitor (ACY1215) has a therapeutic effect in ARID1A-mutated tumors [52]. 
ARID1A transcriptionally represses HDAC6, so ARID1A mutation inactivates the 
apoptosis-promoting function of P53 via HADC6 upregulation. Notably, high 
HDAC6 expression, as shown by immunohistochemistry (IHC) assay, is correlated 
with unfavorable prognosis in OCCC with ARID1A loss [53]. In addition, HDAC6 
inhibition can synergize with anti-programmed death-ligand 1 (PD-L1) immune 
checkpoint blockade in an ARID1A-inactivated genetic OCCC mouse model [54].

ARID1A-deficient tumors show therapeutic vulnerability to PARP inhibitors 
[55]. ARID1A is recruited to the site of double-stranded DNA breaks (DNA DSBs) 
via interaction with ataxia–telangiectasia and RAD3-related protein (ATR), in addi-
tion to facilitating DNA DSB end processing and sustaining ATR activation for 
DNA damage signaling. Therefore, impaired DNA damage checkpoint regulation in 
ARID1A-deficient tumors sensitizes cancer cells to PARP inhibitors. In addition, 
high-throughput RNA interference (RNAi) chemosensitization screening shows 
that ARID1A is a synthetic lethal partner of the ATR inhibitor [56]. ARID1A defi-
ciency delays the cell cycle because of the inability to recruit topoisomerase II to 
chromatin, increasing dependency on ATR checkpoint activity. Therefore, ATR 
inhibition in ARID1A-deficient tumors induces premature mitosis, triggering 
genomic instability and cancer cell death.

A high-throughput drug screen targeting ARID1A synthetic lethal effects revealed 
dasatinib, a multitarget kinase inhibitor, as a clinically used selective drug for 
ARID1A-mutated OCCC cell lines [57]. The sensitivity of dasatinib in ARID1A-
mutated cancer cells is characterized by G1 cell cycle arrest, followed by p21- and 
Rb-associated apoptosis. Studies focusing on cellular metabolism as a new concept 
of synthetic lethal approaches have shown that ARID1A-deficient tumors are vul-
nerable to glutathione (GSH) metabolism [58]. ARID1A maintains GSH homeosta-
sis by modulating SLC7A11 expression (a transporter of cysteine, a key source for 
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GSH) and therefore maintains an intricate balance between GSH and reactive oxy-
gen species (ROS). Inhibition of the GSH metabolic pathway using either APR-246 
or buthionine sulfoximine (BSO, a rate-limiting enzyme in GSH synthesis) in 
ARID1A-deficient tumors collapses the GSH-ROS balance, followed by apopto-
sis by ROS.

The ARID1A deficiency status is used for OCCC patient stratification in both 
clinical settings and trials. OCCC with ARID1A mutation shows selective sensitivity 
to gemcitabine, although the underlying molecular mechanism is unclear [59]. 
Gemcitabine is commonly available for EOC treatment, so this finding might 
directly contribute to precision medicine for OCCC. In addition, a phase II retro-
spective study on dasatinib for recurrent or persistent ovarian and endometrial clear 
cell carcinoma to evaluate antitumor effects with regard to the ARID1A expression 
status is ongoing (NCT02059265) [43].

9.6  �Immunological Landscape

Pembrolizumab is a humanized monoclonal antibody against programmed death-1 
(PD-1) and is approved for any unresectable or metastatic solid tumor with micro-
satellite instability (MSI). MSI with a high tumor mutation burden arises from mis-
match repair (MMR) deficiency caused by either germline mutations in MMR gene 
components in Lynch syndrome patients or somatic hypermethylation of the MLH1 
promoter region in tumors. Histological subtypes of EOC associated with Lynch 
syndrome include endometrioid carcinoma and OCCC [60]. The frequency of aber-
rant MMR expression, as assayed by IHC, is 6–13% in OCCC [61–63], and MMR 
expression and MSI status are correlated [63, 64].

In the KEYNOTE-100 phase II study on pembrolizumab in 376 recurrent EOC 
patients, the objective response rate (ORR) of OCCC was 15.8%, although the over-
all ORR was 8% [65]. Importantly, this study also showed that higher PD-L1 
expression in tumors is correlated with a higher ORR; ~50% of OCCC patients 
showed positive PD-L1 expression regardless of the MMR status [62, 63], indicat-
ing that a large percentage of OCCC patients might benefit from this new therapeu-
tic approach of immune checkpoint blockade. ARID1A deficiency induced impaired 
MMR via interaction with MSH2, followed by increased PD-L1 expression, in a 
syngeneic ovarian cancer mouse model [66]. In another phase II study on the anti-
PD-1 antibody nivolumab in 20 platinum-resistant EOC patients, 2 patients (one 
with OCCC) showed a durable complete response [67]. Other ongoing clinical trials 
targeting immune checkpoint blockade for OCCC include the MOCCA phase II 
randomized study on durvalumab, which targets PD-L1, versus chemotherapy 
(NCT03405454) [44] and the BrUOG 354 phase II randomized study on nivolumab 
plus ipilimumab, which target CTLA4, versus only nivolumab (NCT03355976) 
[44] (Table 9.2).
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9.7  �Conclusion

The clinical need for OCCC treatment is still unmet. Alternative therapeutic strate-
gies using targeted therapies based on the molecular characteristics of OCCC might 
significantly affect the clinical outcome in OCCC patients. Given its low preva-
lence, the proof-of-concept via adequately designed clinical trials with international 
collaboration on the basis of the OCCC molecular landscapes are required in order 
to develop precision medicine for OCCC.
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