
Chapter 4
Yuragi-Based Virtual Network Control

Yuki Koizumi

Abstract Reconfiguring a virtual network, which consists of a set of virtual links
and routers, on top of a physical network is a promising approach to accommo-
date time-varying traffic. However, optimization-based approaches are generally
incapable of quickly adapting to time-varying traffic due to their computational
complexity. For swift adaptation to changes in traffic patterns and network failures,
this chapter presents Yuragi-based virtual network control. This control is based
on attractor selection, which models behavior whereby biological systems adapt to
unknown changes in their surrounding environments. A biological system driven by
attractor selection adapts to environmental changes, selecting attractors, in which
the condition of the system is well suited for a certain environment, by using
noise, also referred to as Yuragi. There are two main challenges in achieving virtual
network control based on attractor selection. The first involves determining how
to map the behavior of a biological system to virtual network control, while the
second involves designing attractors for robust virtual network control. This chapter
summarizes previous studies that solved these two research problems.

4.1 Introduction

The emergence of new application layer services, such as video on demand and user-
generated content delivery, results in fluctuations in network environments, such
as network failures and traffic changes, as well as increased Internet traffic. The
Internet plays an increasingly vital role as social infrastructure; therefore, the ability
to withstand and recover from various changes in network environments has become
a crucial requirement.
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One promising approach to accommodate fluctuation in network environments
is to construct a virtual network, which consists of a set of virtual links and
routers, on top of a physical network according to the current network environment.
Several network virtualization technologies, such as overlay, multi-protocol label
switching (MPLS), and generalized MPLS (GMPLS) networks, have been pro-
posed [5]. Among such network virtualization technologies, this chapter focuses on
wavelength-division multiplexing (WDM) networks, which offer a flexible virtual
network infrastructure by using wavelength routing. WDM networks are suitable
for accommodating high Internet traffic owing to their high link capacity; therefore,
much research has been devoted to developing methods for carrying Internet
traffic over wavelength-routed WDM networks [1, 6, 10, 15, 18, 19, 23, 29, 30].
In a wavelength-routed WDM network, optical transport channels, referred to as
lightpaths, are established between routers via optical cross-connects (OXCs), and a
set of lightpaths and routers forms a virtual network. Virtual network control, which
configures a virtual network on the basis of a given network environment, has been
investigated in several studies [21, 24].

By reconfiguring virtual networks, wavelength-routed WDM networks offer a
means of adapting to changing network environments. Existing virtual network
control methods, which are based on the control paradigm developed in the area
of engineering, primarily consider a particular set of scenarios of environmental
changes and use an algorithm to perform predefined countermeasures to those
changes. Although these methods guarantee optimal performance for their assumed
environments, they cannot achieve expected performance in the case of unexpected
environmental changes.

A remarkable example of adapting to various environmental changes can be
observed in a biological system, which is studied in the field of life sciences [13].
This chapter focuses on attractor selection, which models the behavior of organisms
when they adapt to unknown changes in their surrounding environments and recover
their conditions. Kashiwagi et al. [14] proposed an attractor selection model for
an Escherichia coli cell that adapts to changes in nutrient availability. Furusawa
and Kaneko [8] introduced another attractor selection model for explaining the
adaptability of a cell consisting of a gene regulatory network and a metabolic
network. The fundamental principle of attractor selection is that a system adapts to
environmental changes by selecting an attractor suitable for the current surrounding
environment. This selection mechanism in attractor selection is based on determin-
istic behavior and stochastic behavior that are controlled by simple feedback on the
system condition.

The selection mechanism in attractor selection is one of the main differences
between attractor selection and heuristic or optimization approaches in the field of
engineering. In contrast to engineering systems, biological systems do not rely on
predefined algorithms. Instead, they exploit stochastic behavior, which is environ-
mental noise from various sources, to adapt to environmental changes. This chapter
refers to attractor selection as Yuragi-based control, where Yuragi is the Japanese
term for noise. On the one hand, biological systems do not guarantee optimal
performance, whereas engineering systems generally achieve optimal performance
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for assumed environments. On the other hand, biological systems are capable of
adapting to unknown environmental changes thanks to their stochastic behavior,
whereas engineering systems cannot handle environmental changes that are not
accounted for by their predefined algorithms. We therefore adopt attractor selection
as the key mechanism in our virtual network control method to achieve adaptability
to various environmental changes.

There are two main challenges in achieving virtual network control based on
attractor selection. The first challenge involves determining how to map attractor
selection in a biological system to virtual network control in a wavelength-routed
WDM network. The second challenge involves determining how to design attractors
for adaptive virtual network control. Previous studies [16, 17] solved the first
research problem. Focusing on the similarity between a wavelength-routed WDM
network, which consists of a physical and a virtual network, and a cell, which
consists of a gene regulatory and a metabolic reaction network, we developed a
virtual network control method based on attractor selection found in a cell [8].
In addition, we incorporated the knowledge of the Hopfield neural network [12]
into the proposed method to embed attractors into the deterministic behavior of
the proposed virtual network control method, focusing on the similarity between
attractor selection in a cell and the Hopfield neural network. Another study [22]
solved the second research problem by proposing a method for designing diverse
attractors to be stored in the attractor structure to handle various environmental
changes. This chapter summarizes this series of studies.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
concept of attractor selection, while Sect. 4.3 proposes an adaptive virtual network
control method based on attractor selection. Section 4.4 presents an algorithm for
designing attractors for adaptive virtual network control, while Sect. 4.5 summarizes
related approaches. Finally, Sect. 4.6 concludes the chapter.

4.2 Attractor Selection

This section describes attractor selection, which is the core mechanism in our
adaptive virtual network control method. The original model for attractor selection
was introduced in [8].

4.2.1 Concept of Attractor Selection

A dynamic system driven by attractor selection uses noise to adapt to environmental
changes. In attractor selection, attractors are a part of the equilibrium points in
the phase space in which the system condition is preferable. The underlying
mechanism consists of deterministic and stochastic behaviors. When the current
system condition is suitable for the environment, i.e., the system state is close to one
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of the attractors, the deterministic behavior drives the system to the attractor. When
the current system condition is poor, however, the stochastic behavior dominates
over the deterministic behavior. While the stochastic behavior is dominant in
controlling the system, the system state fluctuates randomly due to noise, and
the system searches for a new attractor. When the system condition recovers
and the system state approaches an attractor, the deterministic behavior again
controls the system. These two behaviors are controlled by simple feedback on the
system condition. Therefore, attractor selection adapts to environmental changes by
selecting attractors using the stochastic behavior, the deterministic behavior, and
the simple feedback. In Sect. 4.2.2, we introduce attractor selection that models the
behavior of the gene regulatory and the metabolic reaction networks of a cell.

4.2.2 Cell Model

Figure 4.1 presents a schematic diagram of the cell model used in [8]. It consists of
two networks: the gene regulatory network in the dotted rectangle at the top of the
figure and the metabolic reaction network in the dotted rectangle at the bottom of
the figure.

Each gene in the gene regulatory network has protein expression levels, and
deterministic and stochastic behaviors in each gene control the expression level. The
deterministic behavior controls the expression level due to the effects of activation
and inhibition from the other genes. In Fig. 4.1, the effects of activation and inhibi-
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tion are indicated by triangular-headed and circular-headed arrows, respectively. In
the stochastic behavior, inherent noise randomly changes the expression levels.

In the metabolic reaction network, metabolic reactions consume various sub-
strates and produce new substrates. Proteins in the corresponding genes catalyze
these metabolic reactions. In Fig. 4.1, metabolic reactions are illustrated as fluxes
of substrates, and catalyses of proteins are indicated by dashed arrows. Changes in
the concentrations of metabolic substrates are caused by metabolic reactions and
the transportation of substrates from outside the cell. Some nutrient substrates are
supplied from the environment by diffusion through the cell membrane.

The dynamics of the metabolic reactions determines the growth rate. Some
metabolic substrates are necessary for cellular growth; thus, the growth rate is
determined as an increasing function of their concentrations. The gene regulatory
network uses the growth rate as feedback on the condition of the metabolic reaction
network and controls the deterministic and stochastic behaviors using the growth
rate. If the metabolic reaction network is in poor condition and the growth rate is
low, the stochastic behavior dominates over the deterministic behavior, triggering a
search for a new attractor. During this phase, the expression levels are randomly
changed by noise, and the gene regulatory network searches for a state that is
suitable for the current environment. After the condition of the metabolic reaction
network is recovered and the growth rate increases, the deterministic behavior again
drives the gene regulatory network to a stable state. Section 4.2.3 describes the
mathematical model of attractor selection in greater detail.

4.2.3 Mathematical Model of Attractor Selection

The internal state of a cell is represented by a set of protein expression lev-
els of n genes (x1, x2, . . . , xn), and concentrations of m metabolic substrates
(y1, y2, . . . , ym). The dynamics of the protein expression level of the ith gene, xi ,
is described as

dxi

dt
= α

⎛
⎝ς

⎛
⎝∑

j

Wij xj − θ

⎞
⎠ − xi

⎞
⎠ + η. (4.1)

The first and second terms on the right-hand side represent the deterministic
behavior of gene i, while the third term represents the stochastic behavior. In the
first term, the regulation of the protein expression level of gene i by other genes
is indicated by a regulatory matrix Wij , which takes 1, 0, or −1 corresponding to
activation, no regulatory interaction, or inhibition of gene i by gene j , respectively.
The rate of increase in the expression level is given by the sigmoidal regulation
function, ς(z) = 1/(1 + e−μz), where z = ∑

Wijxj − θ is the total regulatory
input with threshold θ for increasing xi , and μ denotes the gain parameter of the
sigmoid function. The second term represents the rate of decrease in the expression
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level of gene i. This term signifies that the expression level decreases depending
on the current expression level. The last term on the right-hand side of Eq. (4.1),
η, represents molecular fluctuation, which is Gaussian white noise. Noise η is
independent of the production and consumption terms, and its amplitude is constant.
The change in expression level xi is determined by the deterministic behavior,
i.e., the first and second terms in Eq. (4.1), and the stochastic behavior η. The
deterministic and stochastic behaviors are controlled by the growth rate α, which
represents the condition of the metabolic reaction network.

In the metabolic reaction network, metabolic reactions, which are an internal
influence, and the transportation of substrates from the outside of the cell, which
is an external influence, determine the changes in the concentrations of metabolic
substrates yi . Proteins of the corresponding genes catalyze the metabolic reactions,
and the expression level xi determines the strength of the catalysis. A high xi

accelerates the metabolic reaction, while a low xi suppresses it. In other words, the
gene regulatory network controls the metabolic reaction network through catalysis.

Some of the metabolic substrates are necessary for cellular growth. The growth
rate of the cell, α, is determined as an increasing function of the concentrations
of these vital substrates. The gene regulatory network uses α as feedback on the
condition on the metabolic reaction network and controls the deterministic and
stochastic behaviors. The feedback value is referred to as activity in the framework
of attractor selection. If the concentrations of the required substrates decrease due
to changes in the concentrations of nutrient substrates outside the cell, α also
decreases. By reducing α, the effects of the first and second terms in Eq. (4.1) on the
dynamics of xi decrease, and the effects of η increase. Thus, xi fluctuates randomly,
and the gene regulatory network searches for a new attractor. The fluctuation in
xi leads to changes in the rate of metabolic reactions via the protein catalysis.
When the concentrations of the required substrates again increase, α also increases.
Then, the first and second terms in Eq. (4.1) again dominate the dynamics of xi

over the stochastic behavior, and the system converges to the state of the attractor.
Since we mainly use the gene regulatory network, we omit a detailed description
of the metabolic reaction network from this chapter, and readers can refer to [8] for
additional information. Section 4.3 describes the proposed virtual network control
method based on the attractor selection model.

4.3 Virtual Network Control Based on Attractor Selection

In this section, we present a virtual network control method based on the attractor
selection model of a gene regulatory network. We first introduce the network model
used in this chapter and then describe our proposed method.
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4.3.1 Virtual Network Control

A physical network consists of nodes having routes overlaying OXCs, with the
nodes interconnected by optical fibers, as illustrated in Fig. 4.2a. Optical demul-
tiplexers allow optical signals to be dropped at routers, and OXCs allow optical
signals to pass through them. In such wavelength-routed WDM networks, nodes are
connected with dedicated virtual circuits called lightpaths. Virtual network control
configures lightpaths between routers via OXCs, and these lightpaths and routers
form a virtual network, as illustrated in Fig. 4.2b. When lightpaths are configured
in the WDM network, as illustrated in Fig. 4.2a, the virtual network in Fig. 4.2b
is formed. The IP network uses a virtual network as its network infrastructure
and transports IP traffic on the virtual network. By reconfiguring virtual networks,
that is, by establishing lightpaths, wavelength-routed WDM networks offer the
means to adapt to changing network environments. Determining how to reconfigure
virtual networks is thus indispensable to develop an adaptive virtual network control
method.

OXC

WDM network

Router

Lightpath

Fiber

Electronic
signal

Optical signal
Optical demux Optical mux

OXC

Reciever Transceiver

Fiber

IP router
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IP network
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4

Fig. 4.2 Example of a wavelength-routed WDM network. (a) Physical view of the network. (b)
Logical view of the network, where the lower layer represents a WDM network, which consists
of OXCs and fibers, and the upper layer represents an IP network, which uses a virtual network
constructed due to the wavelength-routing capability as network infrastructure
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4.3.2 Overview of Virtual Network Control Based on Attractor
Selection

In a cell, the gene regulatory network controls the metabolic reaction network,
and the growth rate, which is the condition of the metabolic reaction network, is
recovered when it is degraded due to changes in the environment. Similarly, the main
objective of our virtual network control method is to recover the performance of the
IP network by appropriately constructing virtual networks when the performance
is degraded due to changes in the network environment. We therefore interpret the
gene regulatory network as a WDM network and the metabolic reaction network as
an IP network, as illustrated in Fig. 4.3. Using the stochastic behavior, our virtual
network control method adapts to various changes in the network environment by
selecting suitable attractors, which correspond to virtual networks in our method,
for the current network environment, and the performance of the IP network can be
recovered after it has degraded due to network failures.

A flowchart of the proposed virtual network control method is presented in
Fig. 4.4. Our proposed approach works on the basis of periodic measurements of
the IP network condition. One example of a condition measure is the load on links,
which is the traffic volume on links. The link load is converted into activity, which
is the value that controls the deterministic and stochastic behaviors. We describe the
activity and the deterministic and stochastic behaviors in Sect. 4.3.3. The proposed
method controls the deterministic and stochastic behaviors in the same way as
attractor selection depending on the activity. The method constructs a new virtual
network according to the system state of attractor selection, and the constructed
virtual network is applied as the new infrastructure for the IP network. By sending
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Fig. 4.3 Application of attractor selection to virtual network control
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Fig. 4.4 Flowchart of virtual network control based on attractor selection

traffic over this new virtual network, the link load on the IP network is changed, and
the method retrieves the link load to determine the IP network condition.

4.3.3 Dynamics of Virtual Network Control

We place genes on all candidates of possible lightpaths, where li denotes the ith
lightpath. Each gene has its protein expression level xi , and the li is controlled by
xi . The dynamics of xi is described as

dxi

dt
= α

⎛
⎝ς

⎛
⎝∑

j

Wij xj

⎞
⎠ − xi

⎞
⎠ + η, (4.2)

where η represents white Gaussian noise, ς(z) = 1/(1+ exp(−z)) is the sigmoidal
regulation function, and the activity α, which is equivalent to the growth rate in cells
introduced in Sect. 4.2, represents the IP network condition. We define α below. We
use the same formula as Eq. (4.1) to calculate xi , which is used to determine whether
li is established. In our method, we establish li if xi > 0.5; otherwise, we do not
establish li . Therefore, our method interprets xi as the virtual network.
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In a cell, α represents the condition of the metabolic reaction network, and
the gene regulatory network seeks to optimize α. Our method uses the maximum
link utilization on the IP network as a metric representing the condition of the IP
network. To obtain the maximum link utilization, we collect the traffic volume on
all links and select the maximum value. This information is quickly and directly
retrieved using simple network management protocol (SNMP). The activity must
be an increasing function of the condition of the target system (in this case, the IP
network), as mentioned in Sect. 4.2. Note that any metric that indicates the condition
of an IP network, such as average end-to-end delay, average link utilization, and
throughput, can be used to define α. We employ maximum link utilization as the
IP network condition because it is a major performance metric for virtual network
control that has been used in many studies [9, 24]. We convert the maximum link
utilization on the IP network, umax, into α as follows:

α = 1

1 + exp (δ (umax − ζ ))
, (4.3)

where δ represents the gradient of this function, and the constant ζ is the threshold
for α. If the maximum link utilization is greater than ζ , α rapidly approaches 0
due to the unsatisfactory condition of the IP network. Therefore, the dynamics of
our virtual network control method is governed by noise and the search for a new
attractor. When the maximum link utilization is less than ζ , we rapidly increase α

to improve the maximum link utilization.
A smooth transition between the current virtual network and the newly calculated

virtual network is another important problem in virtual network control, as discussed
in [7, 31]. Our virtual network control method constructs a new virtual network
on the basis of the current virtual network, and the difference between these two
virtual networks is given by Eq. (4.2). A high degree of activity signifies that
the current system state xi is near the attractor, which is one of the equilibrium
points in Eq. (4.2); therefore, the difference given by this equation is close to zero.
Consequently, our virtual network control method makes small changes to the
virtual network, enabling adaptation to changes in the network. When there is a
low degree of activity due to the poor IP network condition, the stochastic behavior
dominates over the deterministic behavior. Thus, xi fluctuates randomly due to
noise η to search for a new virtual network that has higher activity, i.e., the lower
maximum link utilization. Our method makes large changes to the virtual network
to efficiently discover a suitable virtual network from a multitude of possible virtual
networks. In this way, the proposed method modifies virtual networks depending
on the maximum link utilization in the IP network and adapts to changes in traffic
demand. We have already demonstrated that this method achieves smooth transition
between virtual networks in [16].

The proposed method constructs virtual networks according to xi , and xi

converges to one of attractors, which are a part of the equilibrium points in the phase
space; therefore, the definition of attractors is a challenging and essential aspect of
our proposed method. Section 4.3.4 presents how to define attractors in the phase
space.
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4.3.4 Attractor Structure

The regulatory matrix Wij in Eq. (4.2) is an important parameter since it determines
the locations of attractors in the phase space, referred to as the attractor structure.
Our method selects one of the attractors according to Eq. (4.2) and constructs a
virtual network corresponding to the selected attractor. Hence, defining Wij is a
challenging research problem. To define arbitrary attractors in the phase space, we
use knowledge about the Hopfield neural network, which has a similar structure to
gene regulatory networks.

The dynamics of our proposed method is expressed by Eq. (4.2). From the
perspective of dynamical systems, α is regarded as a constant value that determines
the convergence speed, and noise η is Gaussian white noise with mean 0. These
values do not affect the equilibrium points, i.e., attractors in our method, in the phase
space. Therefore, the equilibrium points are determined by the following differential
equation:

d

dt
xi = ς

⎛
⎝∑

j

Wij xj

⎞
⎠ − xi.

This is the same formula as for a continuous Hopfield neural network [12]. We
therefore use methods to use Hopfield neural networks as content-associative
memory to store arbitrary attractors in the phase space [3, 25].

Suppose that we store a set of virtual networks gk ∈ G in the phase space
defined by Eq. (4.2). Let x(k) = (x

(k)
1 , x

(k)
2 , . . . , x

(k)
i ) be the vector of the expression

levels corresponding to virtual network gk . To store x(k) in the phase space, we
adopt the method introduced in [3], which stores patterns in the phase space by
orthogonalizing them. Due to space limitations, we omit a detailed description of
this method, and readers refer to [3] for a more detailed description. We store m

virtual networks, x(1), x(2), . . . , x(m), in the phase space. LetX be a matrix of which
rows are x(1), x(2), . . . , x(m). The regulatory matrixW = {Wij }, of which attractors
are x(1), x(2), . . . , x(m), is defined as

W = X+X, (4.4)

where X+ is the pseudo-inverse matrix of X.
Although pattern orthogonalization results in the high stability of stored pat-

terns [3], our method can also use more straightforward memorization approaches,
such as Hebbian learning [11]. Using Hebbian learning, Wij is defined as follows:

Wij =

⎧⎪⎨
⎪⎩
0 if i = j∑
gs∈G

(2x(s)
i − 1)(2x(s)

j − 1) otherwise. (4.5)
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Our method can use either Eq. (4.4) or (4.5) to define the attractor structure. We
mainly use Eq. (4.4) to define the regulatory matrix, as Baram [3] reported that
pattern orthogonalization results in higher memory capacity than Hebbian learning.
In Sect. 4.4, we describe a method for dynamically reconfiguring the attractor
structure to adapt to a dynamic network environment.

4.4 Attractor Structure Design

According to Eq. (4.2), the expression levels converge to one of the attractors stored
in the attractor structure defined in Eq. (4.4). Convergence signifies that the proposed
method constructs any of the stored virtual networks. One approach to adapting to
various changes in the network environment is to store all possible virtual networks
as attractors. This approach is, however, impossible due to the memory capacity
limitations of the Hopfield network [3, 11]. We therefore must select candidates for
virtual networks embedded in an attractor structure.

There are two approaches to overcome the limitation on the number of attractors:
The first is to reconfigure the attractor structure dynamically in accordance with
the current environment, while the second is to design diverse attractors to be
stored in the attractor structure so that they cover various environmental changes.
This section presents methods to design virtual networks embedded in an attractor
structure as attractors. Section 4.4.1 formulates the problem of designing an attractor
structure, while Sect. 4.4.2 proposes a method to reconfigure an attractor structure
dynamically. Sections 4.4.3 and 4.4.4 describe other methods for designing diverse
attractors.

4.4.1 Problem Formulation

Suppose that we have a physical network consisting of n nodes. Under the
assumption that lightpaths can be established between any node pairs, the number
of possible lightpaths is approximately n2. In this case, the number of possible
topologies of virtual networks, which is the size of the solution space of virtual
network control, is 2n2 . In contrast, the number of attractors stored in an attractor
structure, of which dimension is n2, is approximately 10% of n2 [3]. The problem
is thus to select 0.1n2 virtual networks from 2n2 possibilities so that the following
objective is satisfied.

The objective of selecting virtual networks is to achieve adaptability to various
environmental changes; therefore, the attractor structure must have diverse virtual
networks as attractors. The problem of designing attractors thus involves selecting
diverse 0.1n2 virtual networks so that any of them can accommodate a variety of
environmental changes.
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4.4.2 Dynamic Reconfiguration of Attractor Structure

It is crucial to develop a method for increasing the number of attractors suitable
for the current network environment in the phase space. By incorporating new
attractors suitable for the current network environment into the attractor structure,
we achieve adaptability to various environmental changes when only a limited
number of attractors are stored in the attractor structure.

To achieve this, we update the regulatory matrixWij in the case that our proposed
method finds a virtual network that is suitable for the current network environment
and is not a member of G when α is low. Before describing this approach in detail,
we present the control flow of our proposed method in Fig. 4.4. For simplicity, we
use the terms used in Eqs. (4.2), (4.3), and (4.4) with time t , e.g., the expression
level at time t is expressed as xi(t). In Step 1 of Fig. 4.4, we calculate α from the
maximum link utilization at time t , α(t). In Step 2, we update xi(t) with Eq. (4.2).
Next, we convert xi(t) into the virtual network g(t) and provide it as the network
infrastructure of the IP network in Step 3. In Step 4, traffic flows on this virtual
network g(t). In Step 5, the resulting flow of traffic determines link utilization ui(t)

on lightpath li . Then, we calculate α at time t + 1, α(t + 1), from ui(t). α(t + 1)
indicates the quality of virtual network g(t), which is converted from xi . We can thus
determine the quality of virtual network g(t) for the current network environment
by observing α(t + 1).

We can determine whether the performance on virtual network g(t) is sufficiently
high if α(t + 1) > A, where A is a threshold value. We add g(t) to the set of
attractors G if α(t + 1) > A, α(t) ≤ A, and g(t) /∈ G. Then, we update Wij with
Eq. (4.4). We add another condition α(t) ≤ A to prevent unnecessary updates of
Wij . The expression levels xi(t) always fluctuate due to the constant noise term, η,
in Eq. (4.2). Even if α is high and the deterministic behavior dominates the dynamics
of xi over the stochastic behavior, xi changes slightly; thus, our method sometimes
constructs a slightly different virtual network from the already constructed network.
Without the condition α(t) ≤ A, this behavior generates many attractors similar to
one of the stored attractors, resulting in a lack of diversity of attractors. Therefore,
the condition α(t) ≤ A is necessary, and the algorithm adds g(t) as a new attractor
to the attractor structure only if the stochastic behavior dominates the dynamics of
xi .

Finally, we describe the deletion of attractors. Because the memory capacity of
the Hopfield network is limited, as mentioned above, we cannot keep all of the
virtual networks added in the attractor structure. We must delete some of the stored
attractors when we add virtual network g(t) as a new attractor. For this purpose, we
use the first-in first-out (FIFO) policy for managing attractors when a new attractor
is added Although we can use a more sophisticated policy to manage attractors, our
method achieves sufficient adaptability with the FIFO policy, as discussed in [17].



102 Y. Koizumi

4.4.3 Design of Diverse Attractor Structures

This section presents an algorithm for selecting diverse attractors. This algorithm is
summarized as follows:

1. Generate virtual networks with the isomorphic graph structure of a given virtual
network.

2. Classify the generated virtual networks into groups on the basis of their
characteristics.

3. Select representative virtual networks from each group.

The principle behind this algorithm is that virtual networks that are derived from
a desirable virtual network have the same desirable characteristics. In our case,
desirable virtual network signifies that a virtual network accommodates a given
traffic demand with low link utilization. Let us assume that a virtual network g

is designed to accommodate a given traffic demand matrix T with a sophisticated
algorithm, such as an optimization-based algorithm. In the first step, the algorithm
derives isomorphic virtual networks from g assuming that the generated virtual
networks accommodate T ′, which is different from T . Next, the algorithm generates
clusters of virtual networks with similar characteristics. Finally, the algorithm
selects a representative virtual network from each group and embeds it in the
attractor structure as an attractor. The steps of the algorithm are described below.

Step 1. Generation of Isomorphic Virtual Networks The algorithm first generates
virtual networks that have an isomorphic graph structure of a given virtual network
g. Such virtual networks are referred to as isomorphic virtual networks of g,
hereinafter. Figure 4.5 presents an example of isomorphic virtual networks. Virtual
network g1 consists of five nodes N0, N1, . . . , and N4, and g2 and g3 are isomorphic
virtual networks of g1. g2 is generated by shifting N0 of g1 to N1, N1 to N2, N2 to
N3, N3 to N4, and N4 to N0. g3 is also generated from g1 in the same way. Virtual
networks that do not satisfy the constraints on resources in the physical network,
such as the number of ports on a router, are eliminated from the candidate pool. In
this process, the algorithm generates at most n! virtual networks from a given virtual
network.

Isomorphic topologies

Fig. 4.5 Example of isomorphic virtual networks
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Let us assume that a virtual network g1 is designed to accommodate a given
traffic demand matrix T1 with a sophisticated algorithm, such as an optimization-
based algorithm. The load on the link betweenN3 andN4, indicated by a dashed line
in Fig. 4.5, is highest but is sufficiently low because g1 is designed for T1. Suppose
that a traffic demand matrix T2 is generated by randomly shuffling all the elements
in T1. In this case, at least one of the isomorphic virtual networks, such as g2, is
capable of accommodating T2 because g2 is derived from g1 by shuffling the nodes
in g1. This implies that the isomorphic virtual networks of a well-designed virtual
network are capable of accommodating changing traffic demand. In this study, the
proposed algorithm uses I-MLTDA [2], which is a heuristic algorithm to design
virtual networks for a given traffic demand matrix. However, the algorithm must
further reduce the number of candidates for virtual networks because the number
of the isomorphic virtual networks derived from g is still too high. Hereinafter, G

denotes the set of isomorphic virtual networks, including g.

Step 2. Classify Virtual Networks To further reduce the number of virtual network
candidates, the algorithm classifies the isomorphic virtual networks into groups on
the basis of the characteristics of the networks and selects one network from each
group as a representative virtual network. The algorithm uses edge betweenness
centrality, which is the number of shortest paths that pass through a link as a
characteristic. The principle behind the use of edge betweenness centrality is that
a link with the highest edge betweenness centrality is likely to be a bottleneck link
because a larger number of shortest paths travel this link than any other links. The
algorithm categorizes virtual networks with the same bottleneck link, i.e., highest
edge betweenness centrality link, into the same group, as illustrated in Fig. 4.6
and selects one representative virtual network from each group, thereby generating
diverse virtual networks in terms of bottleneck links.

A formal definition of the virtual network classification is summarized as
follows:

Gp = {gi | gi ∈ G,C(gi, lp) = max
q

C(gi, lq)}, (4.6)

Bottleneck link

Node

Link
(=Lightpath)

Candidate of virtual network

Group of virtual networks having the same bottleneck links

Fig. 4.6 Classification of virtual network candidates
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Candidate of virtual network

Merge groups that include virtual networks with similar characteristics

Traffic

Link

a

s

d

Node

a

s

d

Node

Bottleneck link

Fig. 4.7 Merging groups of similar virtual networks

where p = (s, d) denotes a node pair of source node s and destination node d, lp
denotes a link (lightpath) established between node pair p, and C(gi, lp) is the value
of edge betweenness centrality of lp in a virtual network gi . Virtual networks in the
group Gp are expected to contain the bottleneck link lp.

The number of groups is still high compared to the requirement 0.1n2. Specifi-
cally, the number of groups is at most n2 because the number of possible lightpaths
is n2. We must therefore reduce the number of groups further, and the algorithm
consequently merges the virtual network groups according to the similarity of
the location of bottleneck links. Figure 4.7 illustrates the condition of merging
virtual network groups. Let us assume that a large amount of traffic flows from
node s to d via a whose degree is low, and l(s,a) is the bottleneck of this virtual
network. In this case, a large part of the traffic on link l(s,a) also flows on link
l(a,d) because the degree of a is low. Thus, the load on l(a,d) is likely to be high.
In this sense, virtual network candidates that belong to group G(s,a) and G(a,d)

have similar characteristics. In the same way, virtual networks in G(s,d) also have
similar characteristics. According to this observation, the algorithm merges the
virtual network groups as

G(s,d) ← G(s,a) ∪ G(a,d) ∪ G(s,d). (4.7)

The algorithm selects three nodes, in this case, a, s, and d, in ascending order of their
degree since the correlation of the traffic load on l(s,a) and l(a,d) is high in the case
that the degree of a is low. Note that each group has many virtual networks, and the
degree of a of the virtual networks differs depending on the network topologies. The
algorithm thus selects the three nodes according to the degree of each node averaged
over all the virtual networks in the group. The algorithm repeatedly merges virtual
network groups, while the number of groups is greater than 0.1n2.
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Step 3. Selection of Representative Virtual Networks Finally, the algorithm selects
a virtual network whose maximum edge betweenness centrality is the lowest among
other virtual networks in the group as the representative of each group. The rationale
is that the maximum link utilization of a virtual network with low edge betweenness
centrality is likely to also be low. The algorithm then embeds the selected virtual
networks in the attractor structure.

4.4.4 Scalable Design of Attractor Structure by Graph
Contraction

Although the proposed algorithm is able to design diverse attractors, as demon-
strated in [22], it has scalability problems due to the high computational complexity
of the generation process of isomorphic virtual networks. The number of isomorphic
virtual networks for a given network is n!, and a commercial off-the-shelf computer,
for instance, was able to compute the algorithm for physical networks with up
to 10 nodes in a reasonable time in our experiment. This section thus extends
the algorithm proposed in Sect. 4.4.3 to design attractors for large-scale physical
networks.

The algorithm derives a graph minor of a given physical network to reduce the
number of nodes in the physical network and performs the procedures described
in Sect. 4.4.3 for the graph minor of the physical network. Instead of contracting
edges, the algorithm divides the given physical network into clusters and places
edges between the clusters, as illustrated in Fig. 4.8. The edge contraction procedure
is outlined as follows:

Step 1 Divide a physical network into clusters.

Cluster
Physical network

Minor of physical network

Inter-cluster link

Fig. 4.8 Contraction of physical network topology
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Bottom layer

Top layer

Step 1

Step 2

Step 3

Step 4

Fig. 4.9 Outline of hierarchical design of attractors

Step 2 Construct virtual network candidates in clusters at the bottom layer.
Step 3 Construct virtual network candidates at upper layers according to the

procedures explained in Sect. 4.4.3.
Step 4 Connect lightpaths between clusters to nodes in the clusters.

Figure 4.9 illustrates this procedure. The remainder of this section explains the
procedure step by step.

Step 1. Cluster Division of a Physical Network The algorithm divides a given
physical network into c clusters. If the number of vertices in a cluster is greater
than c, the algorithm divides the cluster into further small clusters recursively until
the number of vertices in all clusters is equal to or less than c. This procedure implies
that the algorithm creates a hierarchical structure for a given physical network, as
illustrated in Fig. 4.9. An upper layer consists of clusters containing nodes in a lower
layer.

Step 2. Construction of Virtual Networks Inside Clusters at the Bottom Layer The
algorithm starts constructing virtual networks from the bottom layer. In the bottom
layer, the algorithm constructs virtual networks possessing either a full-mesh or a
star topology inside each cluster so that each topology in the clusters can adapt to
changes in a cluster and maintain connectivity in the case of network failure.

Step 3. Construction of Virtual Networks in Upper Layers The algorithm then
designs virtual networks in the upper layers according to the procedures described
in Sect. 4.4.3. It should be noted that the algorithm does not need to merge virtual
network groups. This step prepares at most c(c − 1)/2 virtual network groups
because the algorithm sets up lightpaths bidirectionally to reduce the number of
possible virtual networks. The detailed procedure is summarized as follows:

Step 3–1: Construct a virtual network g using an existing heuristic method, i.e.,
I-MLTDA [2], and generate isomorphic virtual networks from g.
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Step 3–2: Categorize the isomorphic virtual networks into at most c(c − 1)/2
groups on the basis of edge betweenness centrality.

Step 3–3: Select the representative virtual network from each group.

Step 4. Establishment of Links Between Clusters The algorithm finally connects
clusters by creating lightpaths. This procedure corresponds to mapping lightpaths in
the upper layers to those in the bottom layer. The algorithm establishes lightpaths
between clusters from the kth layer to the (k + 1)th layer, i.e., from an upper layer
to a lower layer. The probability of a lightpath lki,j being established between u and

v (u ∈ V k
i and v ∈ V k

j ) is formulated as follows:

Pu,v = (kukv)
−1, (4.8)

where lki,j represents a lightpath bidirectionally established between Ck
i and Ck

j , C
k
x

represents the xth cluster in the kth layer, ku represents the number of lightpaths
connected to node u (the degree of u), and V k

x represents nodes belonging to Ck
x .

Equation (4.8) aims at balancing the traffic load. Because a large amount of traffic
is likely to travel via a node with a high degree, the algorithm connects nodes whose
degrees are low.

The proposed algorithm described in Sects. 4.3 and 4.4 exhibits high adaptability
to both changes in traffic and network failures. Readers can refer to [16, 17, 22] for
detailed descriptions of the performance evaluation.

4.5 Related Work

Before concluding this chapter, we briefly introduce engineering-based approaches
for recovering from network failures in wavelength-routed WDM networks. Such
approaches can be classified into two categories: protection and restoration [32].

With protection approaches, a dedicated backup lightpath for each working
lightpath is reserved for recovery from network failures at network design time.
Protection approaches generally enable fast recovery from expected network fail-
ures [20, 26, 27]. Such approaches, however, cannot handle unexpected network
failures because they exploit several assumptions or prior knowledge about network
failures and predefine backup lightpaths at network design time. For instance, most
protection approaches do not take into account a situation in which both working
and backup lightpaths fail simultaneously. Though several protection approaches
that enable recovery from dual-link failures have been proposed [28], they also
exploit several assumptions or prior knowledge about network failures. Therefore,
protection approaches are generally unable to handle unexpected network failures.

In contrast, restoration approaches dynamically reconfigure an alternative virtual
network for lightpaths affected by a network failure when the failure occurs [4].
Restoration approaches discover spare resources in the network by collecting
network information, such as surviving optical fibers and OXCs, to establish an
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alternative virtual network. Restoration approaches can maintain the connectivity of
virtual networks if they are able to collect network information. However, if they
are unable to collect network information changed by the failure, recovery from the
failure is not possible.

Protection and restoration approaches, which are based on the control paradigm
developed in the field of engineering, take into account a specific class of failures
and are optimized to achieve fast and efficient recovery from the assumed failures.
Hence, they may not be able to recover from unexpected network failures, such
as multiple and series of network failures caused by a disaster. It is difficult for
engineering approaches to adapt to various environmental changes as long as they
use predefined algorithms. Therefore, the development of a virtual topology control
method that adapts to various environmental changes in networks is indispensable.

4.6 Conclusion

This chapter presents a Yuragi-based virtual network control method, which is
based on attractor selection found in a gene regulatory network, focusing on the
similarity between gene regulatory networks and virtual network control. Unlike
most engineering-based virtual network control methods, the proposed method does
not rely on predefined algorithms. Instead, it exploits stochastic behavior in the
case that the performance of a system is degraded, thereby adapting to unknown
changes in the network environment. Since a system driven by attractor selection
converges to one of the attractors embedded in its attractor structure, it is a challenge
to design attractors to allow the system to adapt to various environmental changes.
This chapter proposes two approaches for designing attractors.

Although attractor selection is applied to virtual network control in a wavelength-
routed WDM network in this chapter, the proposed approach is applicable to other
networks, such as virtualized networks and software-defined networks, which have
recently attracted significant attention.
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