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Preface

Future demands for information and communications technology will require new
technologies that can operate much more efficiently and dynamically with its energy
resources than current systems. To reach this goal, the design of new technologies
could draw inspiration from the human brain that consumes only a fraction of the
power that is used by a computer. For example, in 2016, Deep Mind’s artificial
intelligence (AI) system AlphaGo was able to beat the human world champion in
the ancient board game of Go. While this achievement was a milestone indicating
the great strides AI has taken over the recent years, researchers have also warned
about the limits of deep learning due to its severe reliance on computationally
intensive hardware. For example, AlphaGo required about 250 kW of electricity,
while measurements have shown that the human brain consumes on average only
about 20 W for operation. In addition, unlike AlphaGo that is only limited to the
single task of playing Go, the human brain is able to simultaneously perform a wide
variety of complex cognitive and motor tasks.

The secret of the brain’s efficiency is believed to lie in the way how it utilizes
“Yuragi,” which is the Japanese term describing the noise or fluctuations that can be
found in all biological systems including the human brain. Instead of computers
utilizing vast amounts of input data and trying to eliminate noise to follow
unambiguous rules, biological systems can actually take advantage of noise, which
helps drastically to reduce the number of possible next actions with a high degree of
freedom. When brain activity is actually measured, it undergoes large spontaneous
fluctuations around various states in what is called the resting state (default mode
network). We can consider this as the brain preparing possible attractors that
represent candidate states that could be taken next. After fluctuating back and forth
between these candidate states, one of these states is probabilistically selected as an
appropriate attractor for the current situation. Whenever the environment situation
changes, noise would drive the system state out of this attractor state toward a more
suitable attractor. Such probabilistic behavior of the brain can also be described in
terms of Bayesian statistics. By combining information from multiple modalities,
such as visual or auditory information, the brain must decide on the next actions
to take according to the uncertainty of the information. The perceptual model of
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vi Preface

the Bayesian attractor model (BAM) can handle three kinds of such uncertainties,
which can be utilized to perform an adequate control in the presence of noisy input
information.

In this book, we summarize key research work that is based on this Yuragi
concept utilizing attractors in the presence of noisy dynamics. This book consists of
two parts. Part I includes four chapters that are the direct result of interdisciplinary
work performed at various research groups at Osaka University, Japan, between
2004 and 2008. Part II includes additional contributions that extend the original
Yuragi concept to a BAM and presents applications to various fields in information
network control and AI. With the growing complexities of mechanisms that are
nowadays involved in network protocols, we believe that Yuragi control provides
a simple, yet effective means of dynamically controlling large-scale systems and
networks by following ideas that can be observed from models in biology and
neuroscience. With predictions that its future demands for computing power will
impose a limit on how far deep learning can improve in performance, progress in
machine learning is expected to move more toward less computationally intense
methods, such as Yuragi-based learning. While it may still be not fully proven
whether the brain is in fact operating in a probabilistic manner or not, its ability
to handle uncertainty can nevertheless be used as inspiration to develop simple and
efficient control mechanisms in dynamically changing systems.

Finally, we would like to take this opportunity to thank all authors who supported
this book with their contributions.

Osaka, Japan Masayuki Murata
Osaka, Japan Kenji Leibnitz
September 2020
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Chapter 1
Introduction to Yuragi Theory
and Yuragi Control

Kenji Leibnitz

Abstract Noise and fluctuations are phenomena that are frequently observed in
biology and nature, but also intrinsically occur in various types of technological
and engineered systems. In this chapter, we provide an introduction to the concepts
and methods that underlie Yuragi-based control mechanisms. Yuragi is the Japanese
term for fluctuations, and this concept can be utilized for simple yet effective
control mechanisms to adaptively control information and communication systems
depending on the environment with simple rules. In this chapter, we present
several examples to illustrate how fluctuations occur in biological systems and how
stochastic biological models can be utilized to design new robust and flexible control
algorithms, such as attractor selection and attractor perturbation mechanisms.

1.1 Introduction

During transmission over any type of communication medium, noise or fluctuations
eventually appear as variations in the received signal level or transmission speed.
This is caused by a multitude of natural and artificial factors that influence the
quality of the wired or wireless communication channel, as well as by the non-
deterministic behavior of the traffic sources.

The most basic form of noise is thermal noise (Johnson–Nyquist noise), which is
generated by the random thermal motion of electrons at the receiver and depends on
the temperature of the environment. The received amplitude of this noise resembles
a Gaussian probability density function; therefore, communication channels are
often modeled as additive white Gaussian noise channels. Another type of noise
is shot noise [32], which is caused by fluctuations of the electric current due to the
discrete nature of the arrival of electrons in the devices. Flicker noise (1/f noise or
pink noise) has a frequency spectrum that is inversely proportional to the frequency

K. Leibnitz (�)
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4 K. Leibnitz

of the signal, while burst noise consists of sudden step-like transitions between two
or more discrete voltage or current levels, resulting in the crackling sounds often
experienced in audio circuits. Finally, transit-time noise reflects the time it takes for
the current to travel from the input to the output and appears as a random noise
proportional to the frequency of operation.

Due to the various types of noise as well as the presence of nearby transmitters
with interfering traffic, a key metric for evaluating the received signal quality over
a communication channel is the signal-to-noise ratio (SNR), which represents the
proportion of the level of the desired signal to the level of noise. By designing
communication protocols that can maintain a high SNR, systems can achieve a high
transmission speed as well as high channel utilization.

Following this traditional engineering viewpoint, it is generally considered that
noise is detrimental to communication quality and should be eliminated as much
as possible. However, there are cases in which utilizing noise is beneficial for the
system. For example, in code division multiple access (CDMA) [62], noise-like
random codes are used as carriers for modulating individual user signals. CDMA-
based systems have proven to be very efficient by operating close to the Shannon
capacity of the communication channel.

In biological systems, noise can also be observed in various forms. On a
microscopic level, for instance, cells may be of the same type; however, the
quantities describing them or their concentrations vary among cells and fluctuate
over time [25]. The entire process of signal transduction within a cell is driven by
diffusion and fluctuations. On a macroscopic level, the dynamics of populations of
species and their entire genetic evolution is influenced by noise, such as the random
mutation of genes in DNA. Thus, noise is a fundamental component that is inherent
to many types of biological processes [68], and it is of great importance for the
adaptability and robustness of biological systems.

By algorithmically mimicking the behavior of noise-driven biological mecha-
nisms, researchers have developed probabilistic solutions of NP-hard optimization
problems with heuristics such as genetic algorithms (GAs) [23] and simulated
annealing [1]. These noise-driven algorithms share the property that they generally
do not operate on fixed rules in searching for solutions; instead, they utilize random
search to find adequate solutions in a significantly shorter time.

In the remainder of this chapter, we discuss how noise can be utilized to find
solutions that solve problems in a simple and efficient way. We refer to these
methods as Yuragi methods, using the attractor selection method as a key example.
In Sect. 1.2, we first discuss the fundamentals of self-organization and the key
role that noise plays. In Sect. 1.3, we present examples in which noise is essential
for characterizing and solving problems. In Sect. 1.4, we provide a mathematical
formulation of noise-driven systems, and review the concept of attractors and
stability. In Sect. 1.5, we define the basic Yuragi model for attractor selection and
present three examples of how attractors can be formulated. Finally, in Sect. 1.6,
we conclude this chapter with a discussion of the benefits of utilizing noise in
information networking.
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1.2 Principles of Self-organization

Self-organization is a key feature of biological systems. In this section, we briefly
describe the difference between centralized and distributed control, and summarize
the characteristic features of self-organized systems. We then discuss how utilizing
noise can contribute to self-organization.

1.2.1 Centralized and Distributed Control

Networking protocols were originally designed to operate in a client/server struc-
ture, in which a single server controls access to resources, and to access these
resources, each client must be connected to the server. Because the central server
has access to the state of the entire system, it can assign resources in a globally
optimal way. However, due to the finite capacity of the server, this method quickly
reaches a limit when the number of accessing client nodes dramatically increases.

This limitation can be alleviated by introducing a distributed type of control of
the resources. In self-organized network protocols, such as peer-to-peer networks,
each node simultaneously acts as a server and client and manages the available
resources among its peer nodes without requiring a central entity. Each node
makes its own control decisions based entirely on locally available information.
This can lead to inferior results in performance compared to centralized control;
however, the mechanism becomes scalable with the number of participating nodes,
and more robust when faced with unforeseen events. Biological systems generally
operate in a self-organized manner without having explicit centralized control, and
each individual contributes to the group. Such behavior is referred to as swarm
intelligence [8] and can be observed in the collaboration of social insects, such as
ant foraging.

Figure 1.1 illustrates the relationship between scalability and controllability
depending on the types of control [15]. The left part of the figure displays a system
with centralized control (e.g., a traditional star-shaped client/server system), while
the right part of the figure displays a fully self-organized system (e.g., a peer-to-
peer network). Distributed systems can be considered intermediate structures that
are combinations of both architectures, thereby allowing for the management of
a large number of nodes in a more scalable way while preserving the benefits of
centralized control.

It should be noted that security can become a concern when dealing, for instance,
with content distribution systems. Here, content provided by centralized servers
can be easily authenticated and verified, whereas in distributed and self-organized
systems, methods must be implemented to secure the content from tampering [35].
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Fig. 1.1 Trade-off between centralized, distributed, and self-organized systems in terms of
controllability and scalability

1.2.2 Characteristics of Self-organized Systems

Self-organization occurs in systems consisting of autonomous agents, such as cells
or insects that collaborate in various structures without utilizing explicit rules. Self-
organization is closely related to the emergent property of biological systems [8], in
which the outcome of the system depends on the collection of individual behaviors
and their interactions, rather than each individual task performed.

In general, four fundamental features can be observed in the self-organization
of biological systems: positive feedback, negative feedback, distributed and
autonomous operation, and randomness and fluctuation. Positive feedback (e.g.,
recruitment or reinforcement) permits the system to evolve and promotes the
creation of structure. Positive feedback serves as an amplifier for a desired
outcome, whereas negative feedback regulates the influence from previous bad
adaptations. Negative feedback prevents the system from becoming trapped in local
solutions, and may take the form of saturation, exhaustion, or competition. Nature-
inspired systems also tend not to rely on a global control unit, but operate in an
entirely distributed and autonomous manner. This signifies that each agent acquires
information, processes it, and stores it locally. However, to generate a self-organized
structure, agents must exchange information with each other, which is achieved
either by direct or indirect interaction. Another characteristic commonly observed
in self-organized structures is that these structures often rely on randomness and
fluctuation to enable the discovery of new solutions and enhance the stability and
resilience of the system.
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Fig. 1.2 Comparison of the recovery of a centralized and self-organized system after a critical
error. Whereas the centralized system operates at a higher performance level than the self-organized
system under normal conditions, it suffers more severely when critical errors occur and often
requires manual intervention to recover

1.2.3 Role of Noise in Self-organized Systems

Whereas most engineered systems are designed to function optimally under certain
controlled operational conditions, biologically inspired systems utilize fluctuations
and randomness in their adaptations and can thus better cope with changes in their
environment. This can be observed in the systems’ reactions to critical error, as
illustrated in Fig. 1.2. When a centralized system encounters a critical error due,
for example, to the failure of a bottleneck server or a drastic change in operational
conditions, its performance will decrease until the failure is manually corrected.

In contrast, self-organized systems are less dependent on individual network
elements, because the system output emerges from a collaboration between units.
Thus, a self-organized system is able to maintain an adequate operational level.
However, because each element in the system is not aware of the global objective of
the system, each node may only have a small contribution to the overall recovery,
signifying that many adaptation steps may be necessary to reach an acceptable level
of performance after failure.

Figure 1.2 also reveals that the variance of the performance metric likely differs
between centralized and self-organized systems. The amount of fluctuation can
therefore be regarded as being indirectly proportional to the cost necessary to return
the performance to an adequate level. This effect is discussed in greater detail in
Sect. 1.4.3.

1.3 Examples of Nature-Inspired Models Utilizing Noise

The cumulative dynamic behavior of any biological or technical system is often
heavily influenced by an inherent stochastic component. The natural shapes of
individual units are never perfect, nor are their actions truly deterministic, which
leads to variations in the shape and behavior of biological cells [25]. In this section,



8 K. Leibnitz

we examine several examples of fluctuations being utilized in natural or nature-
inspired systems to drive the systems toward certain states. In their simplest form,
these fluctuations can be modeled as a stochastic process in which the numerical
values of a system metric vary randomly over time.

We now present a brief introduction to several well-known mathematical models
of biological mechanisms that make use of system-inherent noise to control and
optimize the system. Our focus is mainly on the models themselves. As a result, we
provide only a brief description, and the interested reader is referred to the literature
for further details. It should be noted that the following examples are not intended to
be exhaustive, but instead are limited to well-studied models that have been applied
to information science in the past.

1.3.1 Random Walks and Brownian Motion

A random walk describes a path of successive random steps performed in some
form of mathematical space. This makes it a special case of a Markov process.
In biology or physics, random walks are often observed in the form of Brownian
motion, which describes the random motion of a particle immersed in fluid. In
mathematics, such a process is defined as a Wiener process. A particle undergoes
continuous-time random motion due to collisions with the molecules of the fluid,
and its spatial displacement over time is characterized by the Langevin equation,
which is expressed in Eq. (1.1).

dv(t)

dt
= −γ v(t) + η(t). (1.1)

In Eq. (1.1), v(t) is the velocity of the Brownian particle as a function of time t ,
γ is the friction coefficient of the underlying fluid, and η(t) is a Gaussian random
noise term that characterizes the fluctuations inherent in the system. The Langevin
equation can be solved by the Fokker–Planck equation to obtain the temporal
evolution of the probability density function of the position and velocity of the
particle. An example of Brownian motion is depicted in Fig. 1.3a.

In Brownian motion, the distribution of diffused distances follows a bell-shaped
curve. In contrast, in a Lévy flight, these distances follow a power law, which results
in a pattern with many short steps that are occasionally interrupted by long steps
spanning multiple orders of magnitude. Such distributions have been observed in
real-world data of the foraging patterns of numerous marine animals [58] and the
human mobility patterns of mobile phone users [21].

It should be noted that while Brownian motion or Lévy flight is performed over a
continuous state space, a random walk can also be performed on discrete structures,
such as along the edges of graphs [44]. Here, as illustrated in Fig. 1.3b, a random
walk is performed from one node to one of its neighbors, where the probability of
selecting a link is proportional to the node’s outgoing degree. Additional variants
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(a) (b)

Fig. 1.3 Simulated trajectories of (a) Brownian motion (1000 steps) and (b) a random walk on a
graph (10 steps)

of random walks exist, such as the maximum entropy random walk, in which the
selection probabilities of the next-hop node are biased according to the principle
of maximum entropy, leading to a more uniform visiting probability distribution
among all paths in the graph [10, 59].

A random walk on a graph can also be used as a metric for characterizing the
importance of individual nodes within the graph structure. For example, consider
an agent that continuously hops from one node to one of its neighbors at random.
Depending on the graph’s connectivity structure, this agent will visit nodes that
have many incoming links from other nodes more frequently. This is the underlying
mechanism behind the PageRank [9] algorithm, which determines the order of
importance of nodes in a graph and has become the basis of modern Internet search
engines.

1.3.2 Impact of Noise on Visual Perception and
Decision-Making in the Brain

The relationship between noise and neural signals in the human brain is multi-
faceted. In general, the influence of physiological noise and other confounds is
considered detrimental [6]. For instance, it is common to remove the contributions
of heartbeat and respiration from recorded signals after acquisition. Other variables
derived from the data are also usually corrected, such as the average signal
fluctuations in white matter and cerebrospinal fluid.

In addition to these imperfections in recording, noise can also be caused by
the underlying biophysical mechanisms of neurons [66], such as responses to
repeated stimuli, which differ per trial due to the randomness in the opening and
closing of ion channels at neural synapses. Noise can also emerge in the synaptic
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process due to multiple causes, such as the random nature of diffusion and chemical
reactions within the synaptic cleft, and the unpredictable responses of ligand-gated
ion channels.

In the literature, it is speculated that noise may serve a number of purposes
in the nervous system [66]. For example, noise can expand the dynamic behavior
of neurons as well as assist in enhancing signal detection. Ermentrout et al. [16]
suggested that aspects of neuronal responses that appear as noise may in fact be
a fundamental component in which information is propagated or represented in
neurons.

On a more macroscopic level, diffusion models have been used to characterize
how noise influences neural population dynamics involved in the process of
decision-making. In [11], it was demonstrated that diffusion models are well suited
for describing the perceptual performance of an experimental subject and the
resulting reaction time required to make a decision. In these models, the information
from a stimulus is represented by a differential equation with the mean drift rate of
a random variable, which is then accumulated over time until reaching an upper
or lower boundary, as illustrated in Fig. 1.4. The time required to cross one of
the decision boundaries reflects the process of making a specific decision. These
boundaries can also be adjusted to reflect the speed of decision-making.

A similar model has also been applied to a process called emergent recognition of
partially degraded images without possessing any prior top-down information [50]
(see also Chap. 2). Experiments with functional magnetic resonance imaging and
behavioral tests verified that such a diffusion model is consistent with the human
process of recognizing an image depending on two parameters: the difficulty of the
image and the capability of the subject.

In a different experiment, multi-stable states were used for modeling bistable per-
ception and binocular rivalry. Binocular rivalry occurs when one image is presented

Fig. 1.4 Sketch of drift diffusion model for characterizing the orientation of a Necker cube with
two simulated diffusion paths. The time needed for recognizing whether the cube is facing to top
right (blue) or bottom left (red) corresponds to the time of the diffusion process crossing either of
the decision boundaries
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to a person’s left eye and a different image to the right eye, leading the person to
alternate in conscious perception [7]. Perceptions can change spontaneously from
one interpretation to another even when the visual input is constant. One example is
the Necker cube, as illustrated in Fig. 1.4, in which visual perception occasionally
flips to make a different edge of the cube appear closer to the observer.

Neuronal fluctuations can thus be advantageous to brain function because they
lead to a probabilistic behavior in decision-making by preventing deadlocks and are
also important in signal detection. The presence of neuronal or synaptic noise makes
neurons more sensitive to a broader range of inputs and improves the temporal and
spatial discrimination of input signals.

1.3.3 Signal Enhancement Through Stochastic Resonance

As demonstrated in the examples presented in Sect. 1.3.2, all biological systems
must handle noise that is inherent in the environment. Stochastic resonance occurs
when the SNR of a nonlinear system increases through the addition of a moderate
amount of noise [20, 47, 65, 67]. The frequencies of the white noise that correspond
to the original signal resonate and amplify the original signal, resulting in an
increase in the SNR. This effect can be observed in nature, for instance, when
crawfish (Procambarus clarkii) make use of fluctuations in the water flow to detect
approaching fish through small and inconspicuous movements [48].

Consider the bistable potential illustrated in Fig. 1.5, in which a particle exists
in one of two basins [63]. The potential changes between the two different states
are indicated by different colors. Now, consider that we introduce a certain amount

Fig. 1.5 Influence of noise intensity on stochastic resonance dynamics. The particle can cross the
barrier only if the noise intensity is in the optimal range
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of noise as the source of perturbation in the potential. If the noise intensity is too
small, the particle cannot cross the barrier and remains trapped in its basin (top
left of Fig. 1.5). However, if the noise is sufficiently strong, the bottom of the basin
with the particle rises above the barrier, and the particle can easily move into the
other basin (top right of Fig. 1.5). With an appropriate level of noise intensity, the
probability that the particle can move across basins is highest when the source signal
is strongest. However, if the noise intensity is too large, the movement of the particle
becomes completely independent of the weak original signal. This implies that the
correlation, or SNR, between the particle movement and weak original signal has a
peak at a certain noise intensity (bottom of Fig. 1.5).

These dynamics can be formulated by the following first-order Langevin equa-
tion

dx(t)

dt
= −dU(x(t))

dx
+ ε sin(ωt) + η(t), (1.2)

where x(t) is the position of the particle at time t , function U(x) defines the
base potential, ε sin(ωt) corresponds to the weak original signal, and η(t) is white
Gaussian noise. An example of the potential is U(x) = −αx2+βx4, where α = 1/2
and β = 1/4. For a bistable potential model, the output signal has only two different
ranges of values, namely the left and right basins that can be discretized by placing
a threshold at the center. The transition between the two states is well synchronized
with the original signal at double the frequency when the noise intensity is at an
appropriate level.

A network of multi-threshold devices also stochastic resonance behavior even
for suprathreshold signals, whereas with a single threshold, stochastic resonance is
observed only for subthreshold signals [46, 60]. For the input signal x(t) containing
noise, the output signal y(t) of a multi-threshold network is defined as

y(t) =
N∑

i=1

yi(t) with yi(t) =
{

1, if x(t) + ηi(t) > θ

0, otherwise
, (1.3)

where N is the number of threshold devices, ηi(t) is the local noise at the threshold
device i, and θi is its threshold.

There have been various applications of stochastic resonance. For example,
Mizutani et al. [49] used stochastic resonance to consider the noise-assisted
detection of binary signals in a distributed sensor network. Here, noisy signals
from multiple binary detectors are combined at a single data fusion center. Other
applications used stochastic resonance to enhance processing in both theoretical
models of neural systems and experimental neuroscience [45].
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1.3.4 Evolutionary and Genetic Algorithms

As discussed in Sect. 1.1, biological systems often rely on feedback-based control
loops to adapt to changes in the environment. Such phenomena are also observed in
the natural selection process of evolution. Species evolve over many generations to
better adapt to a dynamically changing habitat by modifying their genetic building
blocks. Mutations introduce diversity through generations to increase adaptability
to new challenges.

Genetic algorithms (GAs) are a popular class of evolutionary algorithms that are
commonly used as a heuristic to solve optimization problems. In GAs, candidate
solutions of a problem are encoded as individuals (genomes), and evolution is
performed over several generations where operations of natural selection, mutation,
and reproduction are applied to these individuals. Selection is the process in which
the fitness of individuals is evaluated, upon which the new generation is selected.
From the pool of individuals, parents are selected, which then produce offspring
by crossover and mutation, as illustrated in Fig. 1.6a. In crossover, parts of the
chromosomes of the parents are split and recombined to form new offspring
chromosomes. Mutation further increases the diversity by randomly modifying
the genetic material. This process is repeated over several generations until a
termination condition is reached. The resulting solution corresponds to an individual
with the best adaptation to its environment.

GAs are commonly used as a heuristic to determine solutions for problems that
remain static and have a single fitness function. However, when the environment
changes over time, the system may need to reflect this property by also adapting
its goals, and thus, its fitness. By dynamically alternating between two or more
varying objectives, the system can evolve toward intermediate states that are highly
adaptable by easily reaching all of the goals. Such a meta-algorithm, known as
modularly varying goals (MVG), was proposed by Kashtan et al. [28] and is
illustrated in Fig. 1.6b. It controls an underlying GA so that it can more easily adapt
to multiple varying environments, which can also help accelerate evolution [29]. In
an application for placing network functions in software-defined networks, modified
versions of MVG were used in [54, 55].

(a) (b) 

Fig. 1.6 (a) Standard GA, in which mutations and crossovers shift the genetic population toward
the highest peak in the fitness landscape. (b) MVG, in which the system iterates between two
different fitness goals to reach a solution that is midway between both
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1.3.5 Routing Methods Inspired by Social Insects

Another example in nature where randomness in biological dynamics is utilized to
solve problems in computer science is the ant colony optimization (ACO) meta-
heuristic introduced by Dorigo et al. [14]. ACO can provide near-optimal solutions
for finding shortest path routes between source and destination nodes in a graph.
This is an essential problem in networking, and many variants of ACO have been
applied to routing in scenarios with stationary and mobile nodes [17]. Some of these
variants are introduced in the Sects. 1.3.5.1–1.3.5.4, and additional information can
be found in [2].

1.3.5.1 Ant Colony Optimization (ACO)

ACO is a probabilistic optimization scheme for finding the shortest path in a graph.
It is based on the foraging behavior of ants finding their way from a food source
to their nest. ACO can thus find a solution to the traveling salesman problem, and
its strength lies in its ability to dynamically adapt to temporal changes in the graph
topology, when links are added or removed.

The fundamental mechanism of ACO is illustrated in Fig. 1.7. Artificial ants
(agents) wander randomly along the graph in search of food and return to their
nest once they find a food source. Along their paths, the ants lay trails of chemical
pheromones that act as orientation landmarks to indicate to themselves and other
ants the paths that were taken. As these pheromones evaporate over time, inefficient
paths that are not refreshed are discarded following the principle of negative
feedback described in Sect. 1.2. Positive feedback, in contrast, rewards successful
paths leading to the food source, as these paths are reinforced by other ants that
follow the same trail and increase the pheromone density.

Fig. 1.7 In ant colony optimization, new paths are first randomly selected by ants. When a
successful path is found, an ant lays a trail of pheromones on its return trip to the nest. Other
ants finding this trail will also follow it, strengthening it over time. As pheromones evaporate over
time, the probability of selecting inefficient paths decreases
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1.3.5.2 AntNet in Packet-Switched Networks

AntNet, an algorithm proposed by Di Caro and Dorigo [12], is an application of
ACO to routing in packet-switched networks. The operation of AntNet is performed
by two different types of ants. At regular intervals, each router in the network
sends forward ants toward randomly selected destinations to probe the network for
a minimal-cost route. Whenever forward ants encounter a router on their way, they
randomly select the next hop depending on the probabilities in the router table. If the
destination node is unknown at a router, the next hop is selected uniformly at random
among all possible candidates. Once the forward ants reach their destination, they
transform into backward ants and follow the same reverse path back to the source
node. During their return trip, backward ants update the entries of the routing tables
at each intermediate router according to a metric that evaluates the quality of the
path. When a backward ant reaches its original node, it dies and is removed from
the system.

1.3.5.3 AntHocNet in Mobile Ad-Hoc Networks

Due to its capability of operating in a changing environment, ACO also provides
an effective solution for routing in mobile ad-hoc networks. AntHocNet [13] is built
on ACO routing and uses a hybrid approach to multipath routing. Whereas AntNet
uses a proactive scheme by periodically generating ants for all possible destinations,
AntHocNet consists of both proactive and reactive components. Paths are only
established to destinations when they are needed by reactive forward ants that are
launched by the source node to find multiple paths to the destination. Backward
ants return to the source to establish the paths. Data are routed stochastically over
different paths stored in the pheromone tables, and the tables are continuously
updated by proactive forward ants. The algorithm reacts to link failures either with
a local route repair or by warning preceding nodes along the paths. In [13], the
authors demonstrated that AntHocNet can outperform ad-hoc on-demand distance
vector (AODV) routing in terms of performance and scalability.

1.3.5.4 BeeHive for Wired Connectionless Networks

The social behavior of not only ants, but other social insects such as bees, has been
modeled for their swarm behavior in routing [64]. Similar to AntNet, in Beehive,
new paths are continuously examined to discover and update routes according to
the current network conditions. BeeHive uses two different types of bee agents: one
for covering short distances and the other for covering long distances within the
network. Both types of bees are generated at the nodes and perform the same task
of exploration of the network and evaluation of the traversed paths to update the
routing tables. Their only distinction is in the distances they cover in the network.
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The network is subdivided into foraging zones and foraging regions. A foraging
zone is the local neighborhood of a node in which short-distance bee agents can
reach the node. Thus, any node can simultaneously belong to multiple foraging
zones of different nodes. From a global perspective, the network is also a collection
of non-overlapping clusters (foraging regions) to which each node exclusively
belongs. Each foraging region has a single representative node from which long-
distance bee agents are launched. Each node maintains the routing information for
all nodes within its foraging zone as well as for representative nodes of different
foraging regions. If the destination of a packet lies outside the foraging zone of a
node, it is forwarded to the representative node of the foraging region containing the
destination node.

1.3.6 Tug-of-War Model for Solving the Multi-Armed Bandit
Problem

In [51], Nakagaki et al. experimentally demonstrated that slime mold Physarum
polycephalum can be used to empirically find the shortest path in a maze. The slime
mold maintains a constant volume of the entire cell while collecting environmental
information by concurrently expanding and shrinking its branches utilizing intrinsic
fluctuations. This behavior was formulated in [3, 30] as a concurrent decision-
making scheme for solving the multi-armed bandit problem (MABP). In the MABP,
a player faces N different slot machines in an exploration–exploitation dilemma
to select the machines that the player wishes to play. The dynamics and expected
payout of each slot machine are unknown a priori, and the goal of the player is
to select a sequence of machines that will maximize the winnings. The authors
formulated a solution to this problem that they called tug-of-war, and additional
studies in [31, 52] demonstrated its applicability in a physical implementation
with quantum dots and optical near-field interactions. The tug-of-war concept has
also been applied in the field of communication networks as an adaptive channel
selection scheme in Internet of Things (IoT) environments [34, 43].

1.4 Mathematical Formulation of Noise-Driven Systems

In this section, we follow the notations in [41] to provide a formal introduction
to dynamic systems before presenting the mathematical definitions of the Yuragi
model and introducing its extensions. We provide only the basics in this section,
and the reader is referred to well-known mathematics textbooks, such as [61], for
further details.
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1.4.1 Stability and Attractors

In the following, we consider an arbitrary, time-dependent N-dimensional system
with N > 1, where time will be denoted t . The system state is described as a vector
x(t) as follows:

x(t) =
⎛
⎜⎝

x1(t)
...

xN(t)

⎞
⎟⎠ ,

where we assume that xi(t) is well defined in a real-valued, non-negative domain
D ⊂ R

+
0 for all i = 1, . . . , N . Note that for the sake of simplicity, we only indicate

the variable denoting time t if it is explicitly required.
The dynamic behavior of this system is described by its derivatives over time

t . We formulate this through a vectorized function F(x) in a differential equation
system, as given in Eq. (1.4):

dx
dt

= F(x) =
⎛
⎜⎝

f1(x)
...

fN(x)

⎞
⎟⎠ , (1.4)

where functions fi : DN → D, i = 1, . . . , N determine the dynamic behavior in
each dimension of the system. When we observe the system state asymptotically
over time, we can formulate the steady state vectors x∗ as solutions of Eq. (1.5)
when there is no change over time; that is,

dx
dt

= 0. (1.5)

We call a solution of Eq. (1.5) the equilibrium point x∗ of the system. Depending
on the structure of the functions fi(x), one or more equilibrium point may exist in
the entire state space. The following formal definitions of stability of an equilibrium
point x∗ are generally used [61] as illustrated in Fig. 1.8.

x*

x(0)

Lyapunov 
stable

attracting

x(0)

Fig. 1.8 Definitions of stability of x∗ for a dynamic trajectory starting at x(0)
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Definition 1.1 (Stability) Let x∗ be an equilibrium point of a system, as given in
Eq. (1.4). Then, x∗ is defined as attracting if

∃δ>0 : ‖x(0) − x∗‖ < δ ⇒ lim
t→∞ x(t) = x∗.

We state that x∗ is Lyapunov stable if

∀ε>0 ∃δ>0 : ‖x(0) − x∗‖ < δ ⇒ ∀t≥0 : ‖x(t) − x∗‖ < ε.

If x∗ is both attracting and Lyapunov stable, it is called asymptotically stable.
Finally, point x∗ is exponentially stable if

∃α,β,δ>0 : ‖x(0) − x∗‖ < δ ⇒ ∀t≥0 : ‖x(t) − x∗‖ < α ‖x(0) − x∗‖ e−β t .

We are interested in a very specific type of equilibrium point, namely the
attractors of the system. Attractors are equilibria toward which all neighboring
trajectories converge, and their properties are described in Definition 1.2 [61].

Definition 1.2 (Attractor) A closed set A is an attractor, if it is the minimal set
that satisfies the following two conditions:

1. A is an invariant set, that is,

∀x(0)∈A ∀t≥0 : x(t) ∈ A.

2. A attracts all trajectories that start sufficiently close to it, that is,

∃U⊃A ∀x(0)∈U : lim
t→∞ x(t) ∈ A.

The largest such superset U ⊃ A is called the basin of attraction.

Note that the definition of attractors only refers to closed sets, which can lead
to complex structures, such as the well-known three-dimensional butterfly-shaped
Lorenz attractor [42].

The Lorenz attractor is also called a strange attractor due to its unique behavior,
which is governed by the equation system in Eq. (1.6). Sample trajectories in a
three-dimensional phase space are illustrated in Fig. 1.9 for two different parameters
ρ = 14 and ρ = 28.

dx

dt
= σ (y − x)

dy

dt
= x (ρ − z) − y

dz

dt
= x y − β z. (1.6)

Figure 1.9 also illustrates the bifurcative influence of parameter ρ. While a small
value of ρ = 14 in Fig. 1.9a results in a stable system that deterministically evolves
toward a single equilibrium point, a large value of ρ = 28 in Fig. 1.9b causes
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(a) (b)

Fig. 1.9 Trajectory of the Lorenz attractor in three-dimensional phase space with σ = 10, β =
8/3: (a) stable orbit for ρ = 14, (b) chaotic behavior for ρ = 28

Fig. 1.10 Schematic illustration of attraction of trajectories in phase space

a highly complex and chaotic orbit, where the stable points repel the dynamic
trajectory so that it never crosses itself. Note that although the system trajectory
does not necessarily lead to a single point as an attractor, the entire structure itself
forms a strange attractor in this specific case. In the following, however, we only
consider point attractors, although several other types of attractors, such as cycle
attractors and torus attractors, exist as well.

The general dynamic properties of attractors in the phase space are illustrated
in Fig. 1.10. When, the initial state x(0) lies within the basin of an attractor, its
trajectory will always lead it toward the attractor. However, if x(0) initially lies
outside of the attractor’s basin, the system state can only reach the attractor if its
trajectory enters the attractor’s basin. If the system always converges to certain
attractors for any initial state x(0), these attractors are called global attractors;
otherwise, as in the cases depicted in Fig. 1.10, these attractors are called local
attractors.

To assess the stability of an attractor, its Jacobian matrix is computed, which
contains the first-order partial derivatives of ∂fi(x)/∂xj over all i, j = 1, . . . , N as
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expressed in Eq. (1.7).

JF(x) =

⎛
⎜⎜⎝

∂f1(x)
∂x1

. . .
∂f1(x)
∂xN

...
...

∂fM(x)
∂x1

. . .
∂fN (x)
∂xN

⎞
⎟⎟⎠ . (1.7)

Then, it can be demonstrated that the equilibrium point x� is a stable attractor,
if the real part of all eigenvalues λj of the matrix JF(x)

∣∣
x=x� is strictly negative; that

is, ∀j Re
{
λj

}
< 0.

1.4.2 Dynamic Systems Under the Influence of Noise

Thus far, we have discussed several fundamental definitions describing dynamic
systems. In the following, we extend our formulation to include the concept of noise
in the dynamics. Real-world data, regardless of whether they are obtained from
biological or engineered systems, usually do not exhibit the “smooth” dynamics
described in Sect. 1.4.1, but are rather faced with stochastic perturbations caused by
transmission errors or noisy communication channels.

We now extend Eq. (1.4) to include a noise vector η in the dynamics of x.

dx
dt

= F(x) + η. (1.8)

Here, η is an N-dimensional vector consisting of independent and identically
distributed (i.i.d.) white noise terms ηi that are all zero-mean Gaussian random
variables with standard deviation σi , i = 1, . . . , N . Note that if the noise introduced
by η is sufficiently small, the system still converges to an attractor in the same way
as in Sect. 1.4.1, as long as the state vector remains within its basin of attraction
despite the perturbations. Such types of stochastic differential equation systems can
be solved numerically using the Euler–Maruyama method [22].

1.4.3 Relationship Between Fluctuation and Its Response

Before discussing the formulation of the Yuragi model, we introduce another
related concept. For a classical thermodynamic system in physics, the fluctuation-
dissipation theorem [33] describes the direct relationship between the response of
a system when it is in equilibrium and when an external force is applied. However,
the underlying assumption is that the metric of the system is a thermodynamic
quantity. In [56], the authors revealed via biological experiments that the speed
of fluorescence evolution of proteins in bacteria has a positive correlation with
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the phenotypic fluctuation of fluorescence in clone bacteria. They formulated a
mathematical model of a biological system with a variable for a measurable quantity
x that describes the system state and that can be influenced by parameter a.

Let E[xa] be the average of x under the influence of a. Then, if an external force
is applied such that a → a+�a, the change in the average value of x is proportional
to its variance at the initial parameter value a.

E[xa+�a] − E[xa]
�a

∝ Var[xa]. (1.9)

The underlying assumption of this relationship is that x is approximately
Gaussian distributed. The formulation of Eq. (1.9) is similar to the fluctuation-
dissipation theorem; however, it is also valid for non-thermodynamic quantities
and cases in which the fluctuation-dissipation theorem is not applicable at all. This
fluctuation-response relationship can be considered a fundamental model that can
help explain how the existence of noise enhances the adaptability of a dynamic
system, as described in Sect. 1.5.

Based on this concept of fluctuation and its response, a model framework
was proposed in [36] for selecting different networks and services based on the
robustness of each network’s performance. In this model, selection is performed
based on observations of the system’s responsiveness to inherent fluctuations. Due
to the explicit utilization of the inherent fluctuations in the system, the proposed
selection scheme can operate smoothly to select the most suitable and robust
network.

1.5 Yuragi Model for Attractor Selection

In this section we introduce the Yuragi model, which is the main topic of the
following chapters. The first model was introduced by Kashiwagi et al. in [27].
Before presenting the details of the model, we first consider its basic dynamic
behavior as an adaptive feedback-based control mechanism that is driven by the
interaction of two dynamic equations.

First, let us assume a system that must select among N possible choices. In
this section, we only consider the principle mechanism with N = 2; however, in
the following chapters, larger values of N are also considered in the discussion of
realistic networking applications.

The basic mathematical model consists of two parts: the system state vector
and activity. The state vector is expressed as a time-dependent vector x(t), and
its dynamics is defined by a system of N stochastic differential equations that we
express as F(x). The activity controls the level of trade-off between “exploration
and exploitation” and is a function that maps the N-dimensional state vector to a
non-negative real value (e.g., within the interval [0, 1]). Finally, η is a zero-mean
N-dimensional Gaussian random variable. We now define the basic dynamics of the
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Fig. 1.11 Attractor selection illustrated as a noise-driven control loop influenced by activity

system state, as expressed in Eq. (1.10).

dx
dt

= F(x) α(x) + η. (1.10)

Before providing a more detailed explanation of function F in Sects. 1.5.1–
1.5.3, we first examine the fundamental behavior of the system in Eq. (1.10). It
can be seen that there is permanent noise influence due to η. Function F must be
defined according to the objectives of the system, and characterizes the attractors
to which the system state will converge, regardless of the small perturbations
introduced by η. However, as α(x) approaches 0, the influence of the first summand
in Eq. (1.10) decreases, leaving the entire dynamics influenced by only the noise
term, and a random walk in the phase space is performed. The basic behavior of
attractor selection can thus be regarded as a noise-driven control loop as illustrated
in Fig. 1.11.

In the following, we consider several examples of how this model has been
defined in practical applications. Namely, we present three approaches to attractor
selection that were proposed in [18, 19, 27] in various contexts. The commonality of
these approaches is that they utilize the model described in Eq. (1.10). However, all
three approaches define their attractors through individual functions F and activity
α depending on their respective model scenarios.

1.5.1 Adaptive Response of Gene Network to Nutrient
Availability

In [27], the attractor selection model was designed based on experiments of bistable
switching behavior of two mutually inhibitory operons in Escherichia coli bacteria
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cells. An operon is a unit in the protein transcription process that creates messenger
RNA (mRNA) and consists of an operator, promoter, and associated structural
genes. In general, cells change their gene expression through their regulatory
network, which occurs in response to environmental changes or external signals.
The regulatory network is essentially a network of activating or inhibiting genes,
and is controlled through specialized signal transduction networks to quickly react
to frequently occurring signals. Thus, a specific reaction in the transduction network
is activated if a certain event in the environment is detected. However, the number
of all possible environmental changes is so large that a transduction pathway cannot
exist for all cases. In [27], the authors investigated how adaptation toward a stable
expression state is nevertheless achieved.

To study this phenomenon, Kashiwagi et al. [27] used a synthetic gene network
composed of two mutually inhibitory operons that were attached with a green
fluorescence protein and red fluorescence protein to visualize their dynamics.
Exposure to a neutral medium resulted in a single monostable attractor, where
the mRNA concentrations of both operons exhibited only weak expression. In
contrast, when the network was exposed to a medium that was lacking either one
of the key nutrients, it resulted in a bistable condition with two attractors: one with
high green and low red fluorescence expression and one with high red and low
green fluorescence expression. Thus, the former single stable attractor with weak
expression became unstable, and fluctuations due to the noise inherent in gene
expression caused the system to shift toward either one of the attractors due to their
mutually inhibitory behavior.

A mathematical model of this phenomenon was derived in [27], describing the
dynamics of the mRNA concentrations xi of each operon i = 1, 2.

dx1

dt
= S(α)

1 + x2
2

− D(α) x1 + η1
dx2

dt
= S(α)

1 + x2
1

− D(α) x2 + η2. (1.11)

The functions S(α) and D(α) denote the rate coefficients of the synthesis and
degradation of cell growth, respectively, and can be defined over a function α, which
represents the cell activity.

S(α) = 6 α

2 + α
D(α) = α. (1.12)

The activity dynamics is explained in the supplemental material of [27] and
defined using a classical model for the cell growth rate [53].

dα

dt
= P

N∏
i=1

[(
θi

xi+Ni

)ni + 1
] − C α. (1.13)

An example of a numerical simulation is presented in Fig. 1.12 using the same
parameters as in [27]. Here, the production and consumption rates of activity α are
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Fig. 1.12 Simulation of dynamics of two mutually inhibitory operons following the model in [27]

P = C = 0.01, respectively. Ni ∈ {0, 10} represents the external supplementation
of the respective nutrients, θi = 2 are the thresholds of nutrient production, and
ni = 5 are their sensitivities for i = 1, 2. The bars at the top of the figure represent
the nutrient availability over time, while the lower part of the figure depicts the
expression levels of the two operons x1 and x2. We note that roughly between time
steps 2000 and 4000, the system state lies outside the basin of the proper attractor.
Thus, the activity decreases to 0 (black line), and a random walk is performed until
the system finally converges to the attractor, causing activity to increase to about
0.5.

This model has been extended to multiple dimensions and applied to selection in
various networking problems [37–40], as discussed in greater detail in Chap. 3.

1.5.2 Modeling the Interactions of Gene Expression and
Metabolic Flux

An alternative model for the dynamics of a gene regulatory network was proposed
by Furusawa and Kaneko in [19]. In this model, the dynamics of the protein
concentrations xi are described by the differential equation system in Eq. (1.14).
However, in this model, the growth rate of the cell α (written as vg(t) in [19]) is
obtained from the metabolic flux in the cell caused by the current expression level
in the on/off type of gene regulation.

dxi

dt
=

⎡

⎣f

( M∑

j=1

wij xj − θ

)
− xi

⎤

⎦ α(x, y) + ηi i = 1, . . . ,M. (1.14)
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The weights are discrete values wij ∈ {−1, 0, 1} depending on whether protein
i inhibits, is neutral to, or activates protein j , and the activation is performed by a
sigmoid function f using a bias term θ . The focus in [19] was on the investigation of
the cell growth dynamics. In their experiments, Furusawa and Kaneko used M = 96
and randomly selected weights wij with positive auto-regulatory values of wii = 1.
Their results yielded an optimal range for the noise amplitude to achieve high cell
growth rates without converging to suboptimal attractors. Cell growth is influenced
by the dynamics of the concentration of the ith substrate in the metabolic network:

dyi

dt
= ε

M∑

j=1

N∑

k=1

Con(k, j, i) xj yk

i = 1, . . . , N

− ε

M∑

j=1

N∑

k=1

Con(i, j, k) xj yi + D (Yi − yi),

(1.15)

where Con(i, j, k) is a binary variable representing the metabolic reaction, where
the ith substrate to the kth substrate is catalyzed by the j th protein. Term D is the
diffusion coefficient, and Yi is the extracellular concentration of the ith substrate.
Cell growth itself is assumed to be such that it requires at least r metabolites for
growth and is selected as

α ∝ min {y1, . . . , yr} .

Note that in [19], the weights remain constant as they represent the evolved signal
transduction pathway for expressing certain genes. A study of the robustness to
noise in the gene expression of this model is provided in [26], where mutations in
the pathways reflect evolutionary changes. For the sake of simplicity, we assume a
generalized model inspired by Kaneko [26], as given in Eq. (1.16).

dxi

dt
=

⎡

⎣tanh

⎛

⎝β

M∑

j=1

wij xj

⎞

⎠ − xi

⎤

⎦ α(x, y) + ηi i = 1, . . . ,M. (1.16)

Unlike in the model described in Sect. 1.5.1, the activity is dependent on x
and y. The constant β represents the sensitivity of activation. In [26], the weights
were adapted over several generations taking into account the fitness of the system.
Similar equations to those in Eq. (1.16) are also often used as models of artificial
neurons in recurrent neural networks [57], where the weights are adapted during
the learning iterations and can take continuous values. Additional details about this
model and its applications to virtual network control are provided in Chap. 4.
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1.5.3 Gaussian Mixture Model Attractors

When the possible target values are known in advance, the attractors can be designed
in an appropriate way. Such an approach was proposed in [18] to control a two-link
robotic arm. A Gaussian mixture model was used to formulate the global potential
function F(x), which consists of the superposition of N-dimensional Gaussian
functions around K predetermined target candidate values ξ1, . . . , ξK ,

F(x) = − 1

Kν
√

2π

K∑

i=1

e
− 1

2ν2 ‖ξ i−x‖2

(1.17)

and the dynamics is obtained as derivative ∂F (x)/∂xi for i = 1, . . . , N .
Thus, the target vectors ξ i form attractors with standard deviation ν, which

influences the attractor basins, and the activity can be formulated as inversely
proportional to ν, which makes the potential function steeper when activity is
high and flatter when it is low. The authors of [18] proposed further extensions
to rearranging the attractors using a clustering technique, where high activity can
be maintained. Unlike in the methods described in Sects. 1.5.1 and 1.5.2, activity is
updated by the sum of an instantaneous achievement of the robot with a decaying
moving average of the previous activity values.

1.6 Conclusion

In this chapter, we examined how noise is utilized in biological systems to adapt to
changes in the environment. We observed that many biological systems often use
simple control loop mechanisms that can operate robustly when failures occur, as
they are not bound to individual control units, but rather, each entity in the system
contributes to finding a solution.

Specifically, we introduced Yuragi control, which uses a mathematical formula-
tion of system dynamics using attractors. Depending on the feedback it receives, the
Yuragi controller can control the balance between exploration and exploitation of
the current solution. In the following chapters, additional information is presented
to explain how the Yuragi method can be implemented in the control and traffic
engineering of information networks. The main benefit we expect to observe by
applying the attractor selection concept to information networks is not a system that
can perform optimally in a controlled environment, but a system that can operate
without much configuration in a robust and self-adaptive way in an unknown,
unpredictable, and fluctuating environment.

In this chapter, we presented several variations of implementing Yuragi control
through the attractor selection. When transferring attractor selection from biology
to information networks, we must carefully consider how to map the corresponding
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components and perform modifications to make its application feasible and mean-
ingful.

The first point to be addressed is the appropriate definition of the activity or cell
growth. In the biological models discussed thus far, there is a functional relationship
between the environmental input, current system state, and activity. However, this
is because the models focus on single cells only and the activity or growth rate can
be mapped directly to the cell’s gene expression or metabolic flow. When applying
the attractor selection method to an information network setting, we must be aware
of what the cell, and ultimately the state vector x correspond to. If we consider that
a state consists of certain parameter settings on an end-to-end connection that is
oblivious to the state of the entire network, our decisions may have implications
that are unknown a priori, and the activity and influence of the current selection
of attractors may be only quantified by means of feedback. In fact, the growth rate
can be defined as a quantity perceived from the end user’s viewpoint, consisting of
either objective Quality of Service (QoS) or subjective Quality of Experience (QoE)
metrics.

Another important problem is the interpretation of the noise terms. In biological
systems, noise is an inherent feature, and its amplitude may be considered indepen-
dent of the current state of gene expression or activity. This is reflected in using a
constant and independent noise term η; however, in designing an engineered system,
we take into account the following two possibilities for including fluctuations: (a)
noise is system-inherent and can only be observed, but not influenced, and (b) the
application can modify the noise amplitude to increase the robustness and speed
of adaptation. At this point, we only focus on (a) and assume that noise is not
influenced by our approach. Attractors are by definition representations of the stable
states of an entire system. In neural networks, attractors correspond to the patterns
that are stored within the network for classification, such as the minima of the energy
function in Hopfield networks [24].

The future of networking must accommodate a growing number of services and
users that exhibit self-star capabilities [4]. Many of the bio-inspired approaches
discussed in this chapter only focus on individual specific mechanisms to solve a
particular problem. However, from the future Internet perspective, we also need to
take a step back to see how these existing bio-inspired solutions can be integrated to
meet the many requirements of the future Internet [5].
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Chapter 2
Functional Roles of Yuragi in Biosystems

Toshio Yanagida and Tsutomu Murata

Abstract What are the underlying principles that explain how complex biosystems
work in such a remarkably energy-saving and flexible manner? In this chapter we
explore this question based on our research of muscle and brain, both of which
are typically complex biosystems. Our state-of-the-art imaging technology of direct
observation of individual molecular motor motion has revealed the surprising fact
that muscle contraction is produced by utilizing the Brownian motion of molecular
motors in a very skillful manner. This indicates that the muscle can utilize thermal
fluctuations of molecules in an effective way, such that the energy efficiency
of muscle is extremely high compared to artificial energy conversion systems.
Although the research methods are quite different, we have also observed analogous
findings in human brain function. Our research on human visual recognition showed
that the time taken for recognizing a difficult figure follows the same exponential
function as the “Arrhenius equation,” which describes how the rate of a chemical
reaction is driven by thermal fluctuation. This finding, as well as our related
modeling, strongly supports the idea that stochastic activity, possibly resting-level
spontaneous activity, may also help make human recognition flexible and energy
saving. Based on these findings, we would argue that fluctuations in biosystems,
both thermal fluctuation of motor molecules in muscle and stochastic activity of
neurons in the brain, play an essential role in flexible and energy-saving functioning.
To emphasize these positive aspects of fluctuations in biosystems, we would propose
the concept of “Yuragi,” which is a word of Japanese origin with the meaning
of fluctuations for flexible adaptation to the environment. We would suggest that
the utilization of Yuragi is one of the principles for efficiency and flexibility of
biosystems.
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2.1 Introduction

Artificial intelligence (AI) recently defeated the Go game world champion Lee
Sedol and became a big topic. The progress of AI technology in recent years
is striking. However, AI is still far from reaching the capability of the human
brain. One problem is energy cost. In 2016, DeepMind’s αGO consumed an
estimated 200,000 W when it played against Lee Sedol [26]. On the other hand, how
much energy did Lee Sedol’s brain consume? We have developed MRI (magnetic
resonance imaging) and MRS (magnetic resonance spectroscopy) technologies that
measure brain temperature with an accuracy of 0.1◦. Then, the temperature change
of the brain was measured when the brain was thinking deeply and when not
thinking about anything. And from this temperature change, we estimated the energy
consumption when the brain was actively thinking. Surprisingly, the result was that
the brain additionally consumed only 1 W during activity (up to 20 W even including
the energy consumption in the cell metabolism and default mode fluctuations in the
resting state) [26], see Fig. 2.1. It is 1/200,000 compared to AI. In 2017, αGO was
specialized in the Go game to significantly reduce the energy costs (αGO Zero), but
still a few kilowatts. The human brain does not specialize in specific tasks such as
Go, but works for various tasks. Still, the energy cost is 1 W. How can the brain
work with so little energy? The brain is by no means a simple organization. In the
cerebrum, 14 billion nerve cells (neurons) form a complex network. One neuron
is connected to other neurons by thousands of synapses. There are tens of trillions
of connections in the entire brain. The number of these combinations is 2 to the
power of 1013, even if it is simply turned on and off. If this enormous combination
is to be calculated strictly with supercomputers, a huge amount of energy would be
required, probably the energy of more than hundreds of millions of nuclear power
plants to operate many supercomputers. But the brain works at only 1 W. Solving
this energy-saving mechanism of the brain is expected to make a major contribution

Fig. 2.1 Energy consumption of human brain and AI
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to the elucidation of the mechanism of life, and at the same time, it will greatly
contribute to IT development such as AI that will continue to develop and become
more complex.

This chapter introduces our research, focusing on the fundamental differences
between artificial and biological machines. We have been paying attention to
fluctuations (noise). Fluctuation has a negative image from the viewpoint of artificial
machines, but here we will show that it works positively in biosystems, taking
biological molecular machines and human brain as examples. So, instead of an
English word, fluctuation, we will use a Japanese word, “Yuragi,” which has a
positive nuance that represents more than just fluctuation.

2.2 How Muscle Works

2.2.1 Biological Molecular Motor in Muscle

Our body is made up of cells. Many molecular machines made of protein molecules
are working in the cells. They play various roles essential for cellular activities
in reading genetic information of DNA, synthesizing proteins, sending signals to
cells by receiving stimuli from the outside, digesting food and converting it into
chemical energy of ATP, and so on. And the molecular machine responsible for
the movement, which is the symbol of living things, is molecular motors. Here, we
will introduce our research on a molecular motor that works in muscle. Figure 2.2
shows the structure of the striated muscle. Muscle contraction occurs due to the
interaction of actin with the globular domain of myosin molecule (hereinafter called
myosin head). The energy for contraction is the chemical energy generated when
ATP (adenosine triphosphate) is hydrolyzed into ADP (adenosine diphosphate) and
Pi (phosphate). The problem is how the myosin head and actin convert chemical
energy into mechanical energy to cause the flexible and energy-saving muscle
contraction [9]. The problem has been studied extensively over the years, but no
clear model based on direct experimental evidences has been proposed. This is
because the movement of myosin head on actin filament has been indirectly inferred
by observing from outside of muscle cells. Therefore, we have developed techniques
for directly observing them and challenged this problem.

2.2.2 Single Molecule Imaging and Nano-Detection

We have developed a single molecule imaging and nano-detection technology that
directly observes the movement of one myosin head and the hydrolysis reaction
of ATP. Since the size of the myosin head is only 10–15 nm (nm = 10−9 m), it
cannot be observed with an optical microscope due to light diffraction in principle.
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Fig. 2.2 Structure of striated muscle and myosin molecular motor. Muscle contraction is gener-
ated by myosin motors that convert the chemical energy of ATP hydrolysis into the mechanical
energy with actin

The reason for using an optical microscope is to directly observe the movement
of myosin head in an aqueous solution. We can observe the stars in the night sky if
they shine no matter how many light years away. The myosin head should look like a
star if it glows by labeling it with a fluorescent molecule. However, the fluorescence
intensity emitted by a single dye molecule is extremely weak. The sensitivity of an
ultra-sensitive camera is high enough to detect it but the problem is how to reduce
background noise to create deep darkness. Dusts, stray light from lenses and filters,
Raman scattering from water molecules, and so on generate huge background noise
against the fluorescence from a single dye molecule. We used a local illumination
method that illuminates only the fluorescent molecule and its immediate vicinity
using a special light called evanescent wave generated by total internal reflection.
We also removed dusts from the aqueous solution and carefully selected lenses
and filters. And finally, we were able to reduce the background noise 2000-fold
compared with conventional fluorescence microscopy. In 1995, we succeeded in
directly observing single fluorescently labeled myosin heads and the ATP hydrolysis
reaction by a single myosin head [5]. Furthermore, we have combined the nanometer
detection technique that allows us to measure the movement and force of myosin
heads with the accuracy of 1 nm and piconewton, respectively, [3, 10] with the single
molecule imaging. Thus, we have succeeded in simultaneous observation of the ATP
hydrolysis reaction and movement of myosin head (Fig. 2.3) [11].



2 Functional Roles of Yuragi in Biosystems 35

AActin filament

ATP ADP
Pi

Force

Evanescent 
field

Chemical reaction
measurement

Displacement, 
force measurement

Green laser

Coverslip

Bead in
Optical trap

Near
infrared laser

Bead in
Optical trap

One myosin 
molecule

Fig. 2.3 Single molecule imaging and nanometer detection. The chemical reaction (ATP hydrol-
ysis) and mechanical reaction (movement) of a single myosin motor are simultaneously observed

2.2.3 Bias Brownian Motion Model (Yuragi Model)

The single molecule imaging and nano-detection of the movement of myosin heads
have led to very exciting results. We have found that during one ATP hydrolysis
reaction, the myosin head fluctuates back and forth on the actin filament in which
actin molecules are arranged at intervals of 5.5 nm and proceeds forward [4, 14].
The observed 5.5 nm steps should be caused by Brownian motion because they are
not accompanied by the ATP hydrolysis. That is, chemical energy is not used for
the 5.5 nm steps meaning that the muscle contraction is caused by thermal noise!
Unlike macroscopic artificial machines, the myosin heads of tens of nanometers
undergo Brownian motion in aqueous solution due to collisions of water molecules,
so it is not surprising that this happens. But does the Brownian motion caused by
the collision of water molecules have enough power to cause muscle contraction?
Indeed, the average Brownian motion power is about a tenth smaller than the power
required for muscle contraction. However, the power of Brownian motion is not
constant and fluctuates greatly and so it is possible to use the Brownian motion
that happens to fluctuate with large power. Even if Brownian motion provides
sufficient power, another problem is that it is random and in order to use it for
muscle contraction, it is necessary to bias the random motion in one direction.
Recently the myosin head has been found to have a strain sensor that senses forward
and backward Brownian motion [12]. This suggests that the myosin head moves
rectifying random Brownian motion to the forward motion with the strain sensor.
If this reaction takes place without energy, the muscle becomes a perpetual motion
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Fig. 2.4 Biased Brownian motion of myosin motor. The myosin motor fluctuates back and forth
while weakly interacting with an actin filament by Brownian motion. When it happens to move
forward, it binds strongly to actin by the action of strain sensor, which senses the direction of
movement of myosin motor, and stopped the Brownian motion. In this way, random Brownian
motion of myosin motor is biased in the forward direction and the directional motion is generated

machine. The chemical energy of ATP is not used to drive the movement of myosin,
but it is used to operate the sensor, that is, to rectify the random Brownian motions
to the forward movement, not inconsistent with the 2nd law of thermodynamics. We
call this model Bias Brownian motion model, or Yuragi model (Fig. 2.4).

This model can be expressed by the Langevin equation (refer to Chap. 1)
representing the Brownian motion with a bias term B added.

dx

dt
= − 1

ρ

∂U(x, t)

∂x
B +

√
2kT

ρ
η(t).

We call this the Yuragi equation of molecular motor. Using computer simulation
based on this equation, we have investigated whether the Yuragi model of molecular
motor can improve our understanding of the basic mechanical properties of muscle
[17, 18]. Many studies have been conducted on the molecular mechanism of
muscles, but there has been no model that fully explains the mechanical charac-
teristics of muscle in steady state and transient states based on direct experimental
evidences. This “bottom-up” approach is becoming more and more common in
muscle modeling literature, following the improvements in single molecule experi-
mental techniques that allow for quantitative estimation of molecular properties, as
described above. These “bottom-up” models are opposite to “top-down” models,
which start from the muscle behavior to infer molecular properties. Bottom-up
models instead try to conciliate the experimental evidences at the molecular level
with these at the fiber or whole muscle level and can exploit the importance of
thermal fluctuations in muscle contraction. We have found that a model [17] based
on the Brownian motion of myosin heads along the actin filament (B term in the
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above equation), and where the ATP is not used to directly produce force in the
actomyosin complex, can successfully explain the relationships between muscle
contraction speed and force, and between efficiency and power. Furthermore, the
model is able to simulate the responses of the muscle when mechanical perturbations
are applied. We have also shown the importance of unbiased Brownian motion in the
efficiency of muscle contraction [18], introducing it in an otherwise classic model
(i.e., where the ATP energy is mainly used to generate force within the actomyosin
complex). In fact, also in the bottom-up models, the classic approach is to define the
actomyosin potential energy as a series of infinitely-steep minima. In this approach,
the effect of Brownian motion is hidden in the ad-hoc definition of the rate constants
for the transitions between stable states, used to simulate a desired behavior. Instead,
we allow some degree of fluctuations even within the actomyosin stable states,
which mathematically corresponds to define its potential energy with wider minima.
The model shows that, including thermal fluctuations also in the stable states,
the total efficiency of the contraction is increased, as well as the force per motor
predicted by the model. The Yuragi model is a hopeful molecular mechanism that
can solve the long-standing problem of how muscle works (Fig. 2.5). From the
perspective of engineering, muscles are an ideal actuator that is highly efficient,
energy saving, and responds flexibly to changes in the external world. These ideal
properties of muscle as an actuator are realized by the positive effects of Yuragi
as explained above. Recently there have been many reports that the mechanism
that uses Yuragi works in various biological molecular machines that function in
other type of molecular motors [2, 13, 20–22], Ca ion pump [24], gene expression

1 ( , ) 2
( )

dx U x t B kT t
dt x

Yuragi equation

, B     Bias

Tension-velocity Efficiency-velocity 

Response to mechanical

perturbation

Computer simulation

Molecular motor

Muscle

Fig. 2.5 Simulation of mechanical characteristics of muscle contraction based on the Yuragi
equation. The steady state and transient reactions of muscle contraction are well explained by
the bias Brownian motion
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[1, 8], cell signal transduction [6, 7], etc. The Yuragi mechanism is now the common
working principle of biological molecular machines.

2.3 How the Human Brain Recognizes Puzzling Figures by
Means of Yuragi Activity

2.3.1 Yuragi Activity in the Human Brain

An outstanding enigma of the human brain is its low energy consumption in contrast
to its high-level flexibility of information processing. The brain’s superiority of
energy efficiency over the contemporary computers is evident typically in “mind-
sport” games such as Go and Shogi as introduced above in this chapter. In these
games, solutions must be selected from an immense number of possibilities, which
cannot be counted up in seconds even from the beginning of the universe. The
computers must encode and process each possibility using an extremely small but
certain amount energy so that a vast number of possibilities inevitably require huge
energy in total (e.g., 200 kW). By contrast, energy requirements of the brain of a
mind-sport player grow only a little, possibly by one more piece of chocolate cake.
This evident difference in the energetics of computation demands us to reconsider
the way how the brain processes information.

In this chapter we are proposing that Yuragi is a key concept to answer
this problem. As Yuragi we refer to disordered neural activity that plays an
important functional role in encoding and processing information of the brain. In
neuroscience it is well known that a substantial proportion of neurons of the brain
are intermittently active even without any particular stimulation [15, 16]. This kind
of neural activity is spontaneous, disordered (almost stochastic), low firing-rate, and
consuming only resting-level energy. In our proposition, the resting-level disordered
neural activity provides the basis of Yuragi activity of the brain because they
can keep potentially a vast number of functions through intermittent interactions
among any possible functional ensembles although their activity magnitudes are
under certain thresholds of exerting particular functions. Once a particular external
stimulation is given, the input-driven activity instantly interacts with the preexisting
Yuragi activity, which spontaneously provides various activity patterns one after
another from a vast number of possibilities, to search for a solution candidate.
Because this search process is caused by resting-level spontaneous activity, the
energy consumption grows only a little from the resting state. There could also be an
advantage for disorder of Yuragi activity to search for unexpected solutions making
use of its actions free from expectation.
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2.3.2 Psychophysical Experiment of Hidden-Figure
Recognition

As a successful example of Yuragi concept application, here we show our experi-
mental study which found stochastic property of the visual system in resolving diffi-
cult (puzzling) recognition tasks, and in the next subchapter we show a Yuragi model
of this phenomenon. When we see a severely degraded image such as Fig. 2.6 for
the first time, only meaningless black-white patterns are seen. After observing for a
while, however, you suddenly recognize some familiar objects hidden in the image
in an emergent manner even without being given any prior knowledge of the objects.
(The not-degraded image as the answer is shown below in this chapter.) To recognize
such hidden figures is challenging because these kinds of images do not keep most of
information of the depicted objects owing to binarization, so that missing informa-
tion of objects must be complemented for recognition. In general this complemen-
tation will cause an explosion of the number of possibility because many potential
image features can be candidates to be complemented before the hidden objects
are recognized. Calculations of the explosive possibility are energy consuming for
the contemporary computer systems, while the brain can often solve such problems
under normal observation in seconds or minutes as you might experience above.

To investigate the way how the human visual system recognizes hidden figures,
we conducted a psychophysical experiment in which we measured the time needed
to recognize correct objects hidden in binarized images [19]. To avoid any prior
knowledge and categorical inference of the hidden objects, we created 90 binarized

Fig. 2.6 An example of hidden-figure image
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Fig. 2.7 Psychophysical experiment of hidden-figure recognition. Upper panel: Examples of
hidden-figure images used in the experiment. Lower panel: Distributions of search times over
participants. Each line represents one of the 90 degraded images. The numerical labels from 1 to
10 indicate the example images of the upper panel. Inset: Normal probability plots of logarithmic
search times versus standard scores for the example stimuli, each of which is optimally fitted by a
line that represents a normal distribution (from [19])

images each of which contained distinct objects that could be verbally described,
and the objects were selected from various categories such as animals, transporta-
tion, flowers, and buildings (Fig. 2.7: upper panel). We employed 91 participants
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and measured reaction times of the first correct recognition. The net time needed
to recognize the hidden object was obtained by subtracting a reaction time of the
undegraded version from one of the degraded versions for each hidden-figure image
for each participant. We refer to this difference as a search time. (Reaction times
of the undegraded versions were measured after the degraded versions.) Figure 2.7
(bottom panel) shows the cumulative distributions of search times on a logarithmic
scale over participants, each line of which represents one of the 90 hidden-figure
images. As the examples in the inset show, each distribution well fitted a normal
distribution, whose mean m and standard deviation σ were found to have a linear
relationship, i.e., σ = Am + B. For each image, search time of each participant
was standardized as z-score, z = − log t−m

σ
, which indicates relative position of the

search time in the distribution. Here the mean m represents the difficulty of the
hidden-figure image, and the mean of z values of a participant over images, z̄ ,
represents the ability of the participant. Then we have obtained the formulation of
search time as follows:

t̂ = Ce
M
Z , (2.1)

where t̂ is the mean on logarithmic time scale, t̂ = 10log t , and M and Z,
respectively, represent the image difficulty and the participant’s ability, being
defined by the following transformations:

M = 1

log e

(
m + B

A

)
, Z = 1

1 − Az̄
, C = 10− B

A .

We should note that the formulation (2.1) has the same mathematical structure as
the Arrhenius equation, t = Le

E
kT , which describes time for a chemical reaction

to proceed with the parameters of activation energy E, the Boltzmann constant k,
temperature T , and a constant L. (The original form of the Arrhenius equation is
of the chemical reaction rate, that is, the inverse of the time.) In this analogy, the
image difficulty and the participant’s ability correspond to the activation energy and
the temperature of chemical reaction, respectively. In this sense we may refer to
the participant’s ability as “cognitive temperature of the brain” of the participant.
Since the physical basis of the Arrhenius equation is random collisions of chemical
molecules, some stochastic process may underlie the emergent recognition of
hidden objects.

We have found another surprising property of image difficulty M , which was
periodicity of their distribution of the 90 images as shown in Fig. 2.8. Divided by
the period the difficulty could be scaled by a set of natural numbers and their decimal
fractions showed a significantly higher concentration around 0 as displayed in the
inset, so that the image difficulty can be regarded as a natural number although
the observed values included some variation around it. Since the 90 degraded
images were made manually using binarization which was set at arbitrary levels
for individual images, it is highly unlikely that the degradation itself was done
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Fig. 2.8 Histogram of image difficulty M scaled by the distribution period κ

selectively in specific discrete levels. This indicates that the search time is given
by an exponential function of a natural number. This type of exponential function
is given by simultaneous occurrence of multiple discrete stochastic events. For
example, the mean number of trials until you hit all the same assigned numbers
with a gambling machine having n reels of 10 numbers is 10n. Since hidden-figure
recognition is related to stochastic process as shown above, it seemed hopeful to
construct a theoretical model based on Yuragi (stochastic) activity to explain the
observed properties of the phenomenon.

2.3.3 Yuragi Model of Hidden-Figure Recognition

To construct a theoretical model, we referred to neurophysiological studies regard-
ing neural representations of visual objects in the brain. Many studies have shown
that high-level visual areas (of human and monkey) such as the inferior temporal
cortex contain neurons which selectively respond to local features of objects
(e.g., a rectangle or a star shape). The studies support the “combination coding”
theory in which an object is represented by a combination of simultaneously
activated neurons, each of which represents a visual feature of the object [23, 25].
According to this theory, sensory information of a hidden-figure image should fail
to activate the object representation because the image degradation eliminated some
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of local features necessary to achieve the combination of activity for the object
representation.

We have constructed the Yuragi model based on the combination coding theory,
assuming that neurons in the high-level visual areas exhibit Yuragi activity even
in the absence of the selective sensory information [19]. There are many reports
of neurophysiology that cortical neurons generate spontaneous firings even in the
absence of selective sensory signals and that these firings can be approximated by
a Poisson process (i.e., a fundamental stochastic process of independent discrete
events) [15, 16]. In our model Yuragi activity occurs stochastically in a Poisson
process and coincident activation (i.e., simultaneous activation by chance) of all
the neurons that represent missing features of the hidden object completes the
combination representing the object to be recognized. The scheme of our Yuragi
model is illustrated in Fig. 2.9. The search time of a hidden figure was defined as a
time until the coincidence of multiple activation. Let ν denote the number of missing
features of the object, and let τ denote the time interval within which all the ν

neurons representing the missing features must become active for their coincident
activation to be effective. Let p denote the probability of a Poisson process of Yuragi
activation during the interval τ , and the rate of the coincident activation is given by
pν

τ
. Thus we have obtained the model value of the search time by

t̂ = 10log t = τe−γ e−ν ln p.

Comparing this theoretical relation with the experimental formulation (2.1), we
have obtained the relations between macroscopic (psychophysical) values and
microscopic (of neural model) values as follows:

M = κν, Z = − κ

ln p
, C = τe−γ , (2.2)

where γ is the Euler’s constant (=0.577) and κ is a constant that is equivalent to
the distribution period of M (=1.17). In the third relation, the interval for effective
coincident activation is obtained as τ = Ceγ = 0.082s. In the second relation,
for the participant whose z-score is the group mean (z = 0, equivalently Z = 1),
p = e−κ = 0.310, so that the mean rate of activity was estimated to be p

τ
= 3.8 Hz.

It should be noted that Yuragi activity estimated using the experimental data was at
such a low rate and seemed to be energy saving.

Using values of ν and p determined by the relation (2.2) with the experimental
results, we have obtained the consistent results between the model computer
simulations of coincident activation (Fig. 2.10) and the experimental results (Fig. 2.7
and Fig. 2.11). The consistent results between the experiment and the Yuragi model
strongly support the idea that hidden-figure recognition is based on coincident
activation which is characteristically stochastic. In this chapter we showed that
Yuragi provides an effective concept to understand flexible energy-saving operations
of the brain as well as cellular and molecular-level machinery.
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Fig. 2.9 Schematic drawing of our Yuragi model of hidden-figure recognition. First level: Neurons
of high-level visual areas generate spontaneous firings (Yuragi activity) before receiving sensory
input. Second: An incomplete input of degraded image causes local feature-selective activity.
Third: Coincidence of Yuragi activity with the input-driven activity forms the combination coding
of the hidden object. Fourth: The hidden figure is recognized in an emergent manner, being
separated from the background
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Fig. 2.10 Distributions of logarithmic search times which were obtained by the Monte Carlo
simulations of the theoretical model. The numerical labels correspond to Fig. 2.7

Fig. 2.11 The original images (answers) of Fig. 2.7
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2.4 Conclusion

It is commonly thought that Brownian motion and fluctuations are negative factors
for artificial machines. They try to block fluctuations and operate at high speed and
accuracy controlling their parts precisely. This will work up to some complexity
level. However, as the number of parts increases and the complexity increases,
the number of combinations of parts to be controlled increases exponentially. As
a result, enormous calculation and energy cost for control come to be needed. On
the other hand, the muscle, a typical example of biological machines, is packed with
hundreds of billions and even trillions of molecular motors. If the parts of muscle
are molecular motors and individual molecular motors are precisely controlled
like the parts of artificial machine, the muscle would consume a huge amount
of energy. As explained in this chapter, however, the simulation using the Yuragi
model showed that motions of individual molecular motors look ambiguous but
when they assemble to form muscle, this ambiguity enhances their cooperativity in
the muscle as a whole, and thus achieves the autonomous response of the muscle
to changes in the external world. We obtained the same aspects about the brain
function. Activity of an individual neuron of the brain is much slower and less
reliable (i.e., more ambiguous) than a device element of the contemporary artificial
computer systems. The brain as a system, however, can solve difficult recognition
tasks within a reasonable time consuming little energy, which is sometimes very
hard and energy consuming for artificial systems. As we showed in this chapter, it
is plausible that the brain utilizes stochastic activity (possibly spontaneous activity
at the resting level) in order to solve difficult tasks of recognition. To emphasize its
positive function, we refer to the stochastic activity as Yuragi activity. We would
argue that the Yuragi not only saves energy but also works effectively for flexible
and autonomous operation of complex systems.
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Chapter 3
Next-Generation Bio- and Brain-Inspired
Networking

Naoki Wakamiya

Abstract The Yuragi model can be regarded as a meta-heuristic algorithm for
an optimization problem whose conditions change over time. The activity in the
Yuragi equation dynamically strikes a balance between reinforcement learning,
which contributes to stability, and random search, which aims to find a solution
appropriate for a new condition. Network control methods must provide stable
network service by continuously adapting to changing conditions. No information
networks are stable; instead, they are exposed to internal and external perturbations,
thereby leading the perceived quality and performance to always fluctuate. Using
the Yuragi model, a system can adaptively select a state or control option that is
appropriate for the current environmental condition, stably remain there as long as
the condition does not significantly change, and switch to a new appropriate state
once the condition changes. In this chapter, we introduce examples of applications
of the Yuragi model to network control.

3.1 Yuragi-Based Routing and Other Network Control
Methods

In applying the Yuragi model dx
dt

= f (x)α + η to network control, the following
steps must be taken.

1. Associate the attractors (i.e., equilibrium points of vector x) with network control
options
In the case of adaptive nutrient synthesis of E. coli cells, attractors correspond to
states with which a cell synthesizes either of two types of nutrients. In the case of
network control, vector x represents the system state. Therefore, we call vector
x the state vector here. Attractors correspond to control options, such as the path
used for packet transmission in routing, the sleep/wake state of duty cycling in
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a wireless sensor network, and the power mode of a transceiver in a wireless
network.

2. Define activity α as an objective function to be maximized
In the case of E. coli cells, the activity corresponds to the growth rate. In network
control, the activity corresponds to the performance of the system, as it is the
optimization target. The one-hop/end-to-end/round-tripdelay, throughput, packet
loss probability, bit/frame error rate, link utilization, and even user-level metrics,
such as Quality of Experience (QoE), can all be used to define the activity
depending on the requirements of the system, application, or user. The activity is
a monotonically increasing function of the performance measurement and ranges
from 0 to 1.

3. Design function f (x) to have the desired behavior
In the case of E. coli cells, function f (x) represents the mutually inhibitory
relationship between two metabolic pathways synthesizing different nutrients. In
applying the Yuragi model to network control, function f (x) must be carefully
designed for the system to converge to and remain at the desired attractor
when activity α is high and take a random walk when the activity is low.
Noise is important for exploring attractors by a random walk and escaping from
local optima. However, excessively strong noise threatens the control stability.
Furthermore, the desired structure of the state space depends on network control.
If distinct and discrete control is required for different environments, such as path
selection, the basin of the attractor must be deep to avoid occasionally escaping
from a desirable attractor. However, in the case of load distribution, state vector x
can be interpreted as the ratio of tasks to be assigned to servers. Because the ratio
is continuous, the state space should be somewhat smooth to allow the system to
have intermediate states.

A detailed mechanism is presented below that consists of the following steps.

(a) Perform network control represented by state vector x
In Step 1 above, state vector x is associated with the system state. It is possible to
map each attractor to a control option, where, for example, the system performs
control A for an attractor x1 and B for x2. However, to take advantage of the
Yuragi model, which is in the form of a temporal differential equation and
enables continuous adaptation, it is more effective to directly use state vector
x. Consider that state vector x has M elements, where M is the number of
control options. Here, we call the elements of a state vector the state value,
which represents the quality of the corresponding control option. Then, there
are two simple alternatives for mapping from the state vector to the control
options. The first option is to take the maximum, that is, to adopt the control
option with the maximum state value in the state vector. This option is effective
in deterministically selecting one option from the alternatives. The second
option is to regard the normalized state values as the probability of taking
corresponding control options. In the case of load distribution, the probability
is regarded as the ratio of tasks to be assigned to servers. It is also possible
to select one alternative among several based on the derived probability (i.e.,
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stochastic control). The control option with the largest state value is likely to
be selected; however, there remains the possibility of selecting another option,
which contributes to exploration for an improved solution.

(b) Evaluate the quality of the current control and derive activity α

The activity represents the quality of the current control and plays the role of
feedback in Yuragi-based adaptive control. A mechanism to obtain measure-
ments is necessary to derive the activity defined in Step 2 above. Depending on
the performance measures, either active or passive measurement techniques, or
both, are available. In some cases, an additional mechanism is not required to
obtain measurement. For example, Transmission Control Protocol (TCP) allows
a sender to obtain the round-trip time of a session.

(c) Update state vector x by the Yuragi model and return to Step a
State vector x is updated by substituting the derived activity into the Yuragi
equation to reflect the quality of the current control and adapt to the current
environmental conditions. A change in state vector x would cause changes in
the network control, such as changing the primary routing path.

The frequency of performing Steps b and c must be determined by taking into
account the trade-off between the control adaptability and stability. An appropriate
control interval for performing Steps b and c is related to the time scale of changes
in the environmental conditions to which the system must adapt. However, if the
interval is too short, the system will respond to a small change with high sensitivity.
In addition, because it takes time for the system to converge to an attractor, exces-
sively frequent control behaves like random control. Furthermore, especially when
an active measurement technique is used to derive the activity, the measurement cost
becomes non-negligible. However, excessively slow control delays adaptation, and
the control becomes inappropriate for a dynamic environment.

In Sect. 3.2, we extend the Yuragi model to have multiple attractors to apply
it to network control. Then, in Sect. 3.3, we provide examples of the application
of the Yuragi model to a network control method. In Sect. 3.4, we consider the
combination of multiple Yuragi-based control methods, and finally, in Sect. 3.5, we
discuss the active exploration of attractors that improves the adaptability of Yuragi-
based control.

3.2 Multi-Dimensional Yuragi Model

To apply the Yuragi model to the optimization of network control in a dynamic
environment, we must design a function f (x) that defines attractors corresponding
to control options, and activity α, which represents the quality of control x in
the given environment. The original Yuragi model has only two attractors; that is,
M = 2, where M is the number of attractors. In general, network control adopts the
most appropriate control option among M ≥ 2 alternatives. For example, each node
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selects one of its neighbor nodes to forward packets to a specified destination in a
multihop network.

We first define a multi-dimensional state vector x as

x = (mi | i = 1, . . . ,M) ,

where mi is called the state value, which represents the relative quality of option i

among M options. Then, the temporal dynamics of mi (1 ≤ i ≤ M) is determined
by the following stochastic differential equation [6]:

dmi

dt
= s(α)

1 + max
1≤j≤M

mj
2 − m2

i

− d(α)mi + ηi. (3.1)

Here, α is the activity, and 0 ≤ α ≤ 1. η is a noise term, and Gaussian white noise
with mean 0 and variance 1 is usually adopted.

Equation (3.1) has equilibrium points of the condition

dmi

dt
= 0, ∀i = 1, . . . ,M.

Assuming that mi is maximal for index i = k without loss of generality, we obtain
the following M vectors at the equilibrium points:

x(k) =
(
x

(k)
i , . . . , x

(k)
M

)
, k = 1, . . . ,M

with components

x
(k)
i =

{
φ(α), i = k

1
2 [√4 + φ(α)2 − φ(α)], i �= k,

where

φ(α) = s(α)

d(α)
.

Finally, we have M attractors in the form

x(1) = (H,L, . . . , L)

x(2) = (L,H,L . . . , L)

...

x(k) = (L,L . . . ,H, . . . , L)
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...

x(M−1) = (L, . . . ,H,L)

x(M) = (L, . . . , L,H) .

In an attractor xk (1 ≤ k ≤ M), only the kth entry has a high value, while
the other entries have low values. The fact that Eq. (3.1) reinforces state value
mi = max1≤j≤M mj by a large activity indicates that an attractor with a larger state
value is superior to others. Therefore, the system can accomplish effective control
by selecting option k with a high value H (xk = H ) at the converged attractor.
Furthermore, while the activity is high, the system can stably remain at the effective
attractor.

It should be noted that at

φ∗ = 1√
2

,

there is a special point at which the attractors x(k) are only defined when φ(α) ≥ φ∗.
For φ(α) = φ∗, we have a single attractor

x = (x1, . . . , xM) with xi = φ(α), ∀i = 1, . . . ,M.

In the following applications, we mainly use s(α) and d(α) defined as

s(α) = α(βαγ + φ∗)

and

d(α) = α.

Here, parameter β > 0 is related to the stability of an attractor. With a large β, the
difference between the high value H = β + φ∗ and the low value L ≈ 0 increases,
and the system state is rarely affected by the noise term ηi when the activity α is
high. In addition, parameter γ > 0 is related to the degree of entrainment of an
attractor. With a large γ , the activity α must be sufficiently large to pull the system
state to a desirable attractor. Finally, we have

dmi

dt
= α(βαγ + φ∗)

1 + max1≤j≤M mj
2 − m2

i

− αmi + ηi . (3.2)

An example of the temporal change of state values is presented in Fig. 3.1, where
M = 10, β = 10, and γ = 3. There are 10 fluctuating lines of state values mi

(1 ≤ i ≤ 10) and one thick red line representing the activity α. Initially, the state
values are set at random between 0 and 1, and the initial activity α is 0. Therefore,
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Fig. 3.1 Example of state value dynamics. 10 fluctuating lines represent state values mi (1 ≤ i ≤
10) and one thick red line represents the activity α

the dynamics of the state values is fully governed by the noise term ηi , and the
state values change randomly. This corresponds to the random search phase of
optimization, where the system selects control options at random.

At time 300, the activity α is manually set to 1.0, signifying that the option
with the largest state value (indicated by a black line) is appropriate for the current
condition and leads to reasonably high performance. The high activity reinforces
the current control by raising the state value mk , where k = argmaxjmj , toward
the high value H while reducing the other state values to the low value L. By
this differentiation, the system stably maintains the current control without being
affected by the noise term insofar as the activity remains sufficiently high. Then,
at time 500, the activity α is set to 0.5 assuming that there is an unexpected
change in the operating condition, which leads the current control to no longer be
ideal and decreases the performance. Although the former option k is favored for
some time due to possessing a larger state value, it eventually competes with other
options. Once the state value mk begins to be occasionally overtaken by a state
value of another option due to the noise term, it begins to decrease by the stochastic
differential equation of Eq. (3.2). At time 800, when the state value of the green-
colored option is the largest, the activity α is manually set to 1.0. Then, the system
converges to a state in which it stably adopts the green-colored option, which is the
most appropriate for the new condition.

Next, Fig. 3.2 illustrates how noise influences state values with different β and γ

values. The activity α decreases from 1.0 to 0.0 at intervals of 300 units of time. In
Fig. 3.2, noise becomes capable of causing a rank change among state values when
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(a)

(b)

(c)

Fig. 3.2 Influence of noise with different parameter settings: (a) β = 10 and γ = 3, (b) β = 20
and γ = 3, and (c) β = 10 and γ = 5
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activity α = 0.5. At this point, activity α is sufficiently small to allow other state
values to exceed the former maximum state value. With a larger β in Fig. 3.2b, the
point shifts to approximately α = 0.3 because the difference between the high value
H and the low value L increases. This indicates that the system does not change its
control unless the performance considerably decreases. With a larger γ , the strength
of entrainment decreases, and as a result, the point shifts to the left at α = 0.6, as
illustrated in Fig. 3.2c.

3.3 Application to Single Network Control

In this section, we present examples of applications of the multi-dimensional Yuragi
model to a single control method for adaptive, robust, and error-tolerant networking.

3.3.1 Multipath Routing

Routing is the task of finding and maintaining a path to achieve message delivery
with high performance. Here, we focus on multipath routing, which is the selection
of one path among several candidate paths pre-established between a pair of source
and destination nodes [5, 6, 9]. In this case, path selection is performed on a
per-session basis at the source node. Path selection must take into account the
current environmental conditions, such as the link congestion levels in a wired or
overlay network, to achieve the best performance (see Fig. 3.3). A multipath routing
mechanism consists of path establishment and path maintenance, which includes
path selection [13].

In the path establishment phase, M paths are established between the source
node and destination node when the source node has data to send to the destination
node and a path has not yet been established between the two nodes. This can be
accomplished by a decentralized method similar to the ad hoc on-demand distance
vector (AODV) protocol [14], for example. The source node broadcasts route

source
node destination

nodeprimary

new primary

failure
congestion occurs

adaptively switch to 
alternative path

Fig. 3.3 Behavior of multipath routing
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request (RREQ) messages with an identical sequence number to that of each of
its neighbor nodes. When a neighbor node receives the RREQ message for the first
time, it broadcasts the message to all other neighbors. Such rebroadcasting-based
message dissemination is called a flooding scheme. If a neighbor node has already
received a RREQ message with the same sequence number, it silently discards it
to avoid wasting bandwidth by duplicated transmissions. Furthermore, a RREQ
message is given a time-to-live (TTL), which decreases by 1 for each broadcasting.
When a neighbor node receives a RREQ message with TTL = 0, it also discards it
to avoid infinite propagation of the message.

When a RREQ message arrives at the destination node or a node that already
has a path to the destination, the node first discards the RREQ message and sends
a route reply (RREP) message to the source node. The RREP message returns to
the source node by taking the reverse path traversed by the corresponding RREQ
message. On the way back to the source node, the RREP message sets up the routing
information at each intermediate node, as the next-hop node toward the destination
is the neighbor node from which the RREQ message arrives at the intermediate
node. When the source node receives the first RREP message, it starts using the
path in its transmission. The fact that a RREP message arrives first at the destination
indicates the quality of the path; therefore, the corresponding path is considered
primary. Due to flooding, the source node receives multiple RREP messages taking
different paths and takes the first M paths as candidates for multipath routing. From
the viewpoint of robustness to node and link failures, it is preferable to have node-
or link-disjoint paths as M alternatives. Initially, the primary path is given a high
state value, while the other paths are given a low state value. The initial activity α is
set to 1.0, signifying that the primary path is the best at the beginning.

The source node performs the above process at the beginning of message
transmission to a certain destination node. However, when the number of available
paths decreases to Mmin due to node or link failures, the source node reinitiates the
procedure to obtain new M alternative paths.

In the path maintenance phase, the source node performs Yuragi-model-based
path selection. At regular intervals, the source node transmits a control message to
the destination node to evaluate the quality of the current path. Here, we consider
using the one-way delay from the source node to the destination node as the
performance measure; however, other metrics, such as throughput and delay jitter,
can also be used. By using one-way delay d(h) obtained by the hth control message,
the source node first derives the instant activity α′(h) as

a′(h) = min0≤k≤W−1 d(h − k)

d(h)
,

where W is the measurement window (W ≥ 2). If the latest delay d(h) is
the minimum of the previous W measurements, the instant activity α′(h) is 1.0,
signifying that the current path is optimal for the current environmental conditions.
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Then, activity α(h) is updated as

α(t) =
{

α′(h), if α(h − 1) ≤ α′

ρα′(h) + (1 − ρ)α(h − 1), otherwise
. (3.3)

The reason for not directly using α′(h) as α in updating the state values is to avoid
flapping, where the primary path frequently changes in response to sudden small
changes in α′(h). In general, because network bandwidth is shared among multiple
source–destination pairs, one-way delay is not constant and continuously fluctuates.
If we substitute the instant activity α′ into Eq. (3.2), the state values mi are
easily affected by sudden changes in the one-way delay. Consequently, the source
node frequently changes its primary path, which leads to unstable communication
performance. Furthermore, because changing paths in a single session directly and
indirectly affects other sessions, cascading reactions are triggered, and the entire
network becomes unstable.

After updating state values mi , the source node selects the path with the
maximum state value as the primary path and uses it in message transmission.
However, such a strategy sometimes degrades the adaptive behavior of the system.
The system stably remains at an attractor (i.e., path) that was considered optimal in
the past unless the activity sufficiently decreases for the noise term to be significant
in the Yuragi model. Therefore, even if one of the alternatives can provide better
performance, the system is not aware of this and cannot move to the corresponding
attractor. One solution is to stochastically select an attractor using

pi = mi∑
1≤j≤M

mj

, (3.4)

where pi is the probability of selecting attractor i. However, to accomplish effective
control by stochastic attractor selection, the high value H and the low value L should
be close to each other. Furthermore, the secondary path is not necessarily better
than the primary path. The performance thus deteriorates and becomes unstable.
Therefore, there is a trade-off between adaptability and stability. In Sect. 3.5, we
discuss the exploration of attractors.

Figure 3.4 presents the results of a simulation. A network of 100 nodes and
219 links was generated using the Waxman model [17], and the capacity and
propagation delay of each link were 50 Mbps and 100 ms, respectively. There were
a number of continuous-bit-rate sessions that continuously transmitted messages
at 8 Mbps. Node pairs were selected such that the total load on the network
amounted to approximately 0.5. At time 600 s, a randomly selected 5% of links
were simultaneously removed; however, no sessions were completely disconnected.
For comparison purposes, we used a simple multipath routing scheme called Greedy
that had the same set of candidate paths as the Yuragi-based method. This scheme
periodically measured the delays of all candidate paths at the same regular intervals
as the Yuragi-based method. Then, it selected the path with the minimum delay. For



3 Next-Generation Bio- and Brain-Inspired Networking 59

 0.35

 0.4

 0.45

 0.5

 0.55

 400
(a) (b)

(c)

 500  600  700  800  900  1000

A
ve

ra
ge

 d
el

ay
 [s

]

Simulation time [s]

Greedy
Yuragi

 0.7

 0.8

 0.9

 1

 400  500  600  700  800  900  1000

M
es

sa
ge

 a
rr

iv
al

 r
at

io

Simulation time [s]

Greedy
Yuragi

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 400  500  600  700  800  900  1000

P
at

h 
ch

an
ge

 r
at

io

Simulation time [s]

Greedy
Yuragi

Fig. 3.4 Performance of Yuragi-based multipath routing: (a) average delay, (b) message delivery
ratio, and (c) path change ratio

the Yuragi-based method, the parameters were set to β = 10, γ = 3, and ρ = 0.1,
and the number of candidate paths (i.e., M) was 3.

As illustrated in Fig. 3.4a, the average delay was similar for the Yuragi and
Greedy methods. However, the Yuragi method achieved more stable communication
with less fluctuating delays than the Greedy method. In Fig. 3.4b, the Yuragi method
initially achieved a higher message delivery ratio than the Greedy method. When
failures occurred, the message delivery ratio decreased for both the Greedy and
Yuragi methods. Because the Greedy method examined all candidate paths, it was
able to recover from failures faster than the Yuragi method. However, the message
delivery ratio after recovery was higher in the Yuragi method. The fast recovery of
the Greedy method was achieved at the cost of stability. Figure 3.4c indicates that
the path change ratio, which is the ratio of sessions changing the primary path, was
much higher in the Greedy method than in the Yuragi method.

3.3.2 Routing in Mobile Ad Hoc Networks

Here, we consider routing in mobile ad hoc networks (MANETs) as another
application of the multi-dimensional Yuragi model. In a MANET, there is no fixed
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infrastructure, such as routers in a wired network. Instead, the network consists of
end devices, such as laptops and mobile terminals. There are also no physical links,
such as optical fibers, and a link in a MANET is virtual. A pair of nodes is considered
to have a link when the nodes are within the wireless signal range and can send and
receive packets to and from each other. As a result, routing in MANETs is not a
trivial task. Nodes can move, and wireless communication is unstable; thus, a link
is temporary and unreliable. Furthermore, unlike a wired link, a wireless link is
not necessarily bidirectional because it is not guaranteed that a pair of nodes can
transmit and receive packets to and from each other. The nodes themselves are not
reliable because they are the equipment of users and are thus more fragile than
routers. For example, they may be suddenly turned off by users.

Therefore, routing in MANETs does not involve the selection of one path by
relying on the sustained existence of paths for a certain duration of time. Instead,
it involves the selection of a neighbor node as a next-hop node expecting that a
packet reaches the destination by being relayed by other nodes. Considering the
aforementioned challenges, Yuragi-based control is promising and feasible due to
its adaptability and robustness [1, 7, 8].

Similar to Yuragi-based multipath routing in wired networks, an initial path
is established by flooding RREQ packets [1]. However, unlike multipath routing
in which routing information is managed on a per-session basis, all intermediate
nodes maintain routing information on a per-destination basis. Specifically, route
information for a certain destination consists of a state vector m = (m1, . . . ,mM),
where M is the number of neighbors, and activity α. A node maintains a list of
neighbor nodes by exchanging HELLO packets, as in AODV. Here, neighbor nodes
are nodes that are within the wireless communication range and can exchange
packets with each other (i.e., bidirectional links). When a node receives a RREP
packet for the first time for a certain destination, it sets the corresponding activity to
1, indicating the availability of a route to the destination.

The source node transmits a packet to a neighbor node with the maximum
state value. Each intermediate node forwards the received packet to the designated
destination node by selecting a next-hop node in the same manner (see Fig. 3.5a).
During route establishment or exploration, state values can be close to each other. In
this case, due to random next-hop selection, a node occasionally receives a packet
to a destination for which it does not have any routing information. It then sets up
new route information with initial random state values. Consequently, a packet is
forward to a randomly selected neighbor node due to the effect of noise.

When the destination node receives a packet, it generates a feedback packet and
sends it back to the source node. The feedback packet returns to the source node
by being relayed by the same intermediate nodes of the received packet. At the
same time, it calculates the number of hops from the destination node to each
intermediate node, which is used by intermediate nodes and the source node to
update the activity for the destination (see Fig. 3.5b). In forwarding a feedback
packet, an intermediate node uses broadcasting, which allows neighbor nodes along
a path that do not directly participate in data forwarding to update their routing
information for the destination node. In addition, by receiving a feedback packet,
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neighbor nodes can update the list of neighbor nodes without exchanging HELLO
messages. This contributes to a reduction in control overhead.

When a node receives a feedback packet at time t , it evaluates the activity using
the number of hops d(t) to the destination node embedded in the feedback packet
as

α(t) = min0≤k≤T d(t − k)

d(t)
, (3.5)

where W > 0 is the measurement window. If the number of hops increases, this
signifies that the current route to the destination node is no longer appropriate
and attempts to determine that a superior route should be made. Therefore, the
activity decreases by Eq. (3.5), and the noise induces a random walk. The reason
for not using the moving average, as in Yuragi-based multipath routing, is that the
environmental changes are faster and more significant in MANETs. Smoothing,
such as in Eq. (3.3), delays reactive control, such as of the movement of nodes and
thus reduces the adaptability of Yuragi-based routing, which results in performance
deterioration and even route disconnection.

In addition, to handle the instability of environmental conditions, Yuragi-based
MANET routing has a mechanism to initialize the information of a route that is
no longer available. When a node does not receive any feedback packets from the
destination node due to, for example, link disconnection, it loses the opportunity to
update the routing information. To allow the system to escape the stalling condition,
the activity decays over interval τ by the following equation:

α(t) =

⎧
⎪⎪⎨

⎪⎪⎩

α(t0), if t − τ ≤ kτ < t0 < t

α(t0) − δ, if t − τ ≤ t0 ≤ kτ < t

α(t − τ ) − δ, otherwise

,

where t0 is the time at which the most recent feedback packet is received, and δ is the
decay constant. The activity decay mechanism is performed regardless of feedback
packet reception. Therefore, when a feedback packet does not arrive, the activity
continuously decreases. Consequently, the state values become random, and next-
hop selection returns to the random walk phase.

In MANETs, a route can be easily disconnected for a variety of reasons, such as
node movement and wireless interference. Conventional routing protocols require
a designated route recovery mechanism; however, Yuragi-based MANET routing is
inherently robust to route disconnection. Packets occasionally take a random walk
seeking a new route to the destination node due to the noise term and random state
values (see Fig. 3.5c).

Figure 3.6 presents the performance of Yuragi-based MANET routing in compar-
ison with AODV. A total of 256 nodes were randomly but evenly distributed in an
area of 1500 × 1500 m2, and the average communication range was approximately
510 m. During a simulation of 1000 s, a randomly selected 25% of nodes were
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Fig. 3.6 Performance of Yuragi-based mobile ad hoc network (MANET) routing

removed from the network, simulating a sudden switch off. After a certain amount
of time, which was determined by dividing the simulation time by the number of
failure occurrences on the x-axis, the nodes resumed operation and returned to the
network, simulating the switch-on condition, and a newly selected 25% of nodes
were removed. Therefore, a larger number of failure occurrences corresponded
to the frequent switching on/off or joining/leaving of nodes. When a node was
removed, all links from the removed node to neighbor nodes were lost. Thus, routes
were very likely to be disconnected. However, when a node rejoined the network,
new links became available, indicating that there may appear a better route than the
current one. The occasional random walk explained in the previous paragraph thus
contributes to finding an improved route. As illustrated in Fig. 2.6, independent of
the number of failure occurrences, Yuragi-based MANET routing achieved a higher
delivery ratio than AODV in a dynamic environment.

For other types of applications, the reader is referred to coverage control
in a wireless sensor network [3] and mobility management in a mobile core
network [18].

3.4 Application to Multi-Network Control

Thus far, we have introduced examples of applications of the Yuragi model to single
network control. In this section, we consider scenarios in which multiple Yuragi-
based network control methods are incorporated with each other to accomplish a
system-wide goal.
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Assuming that there are C Yuragi-based network control methods, a naive
application is to consider the following equation:

dxi

dt
= fi(xi )αi + ηi . (3.6)

Method i attempts to maximize its own activity αi by adaptively selecting the
most appropriate state xi through independent noise ηi . For example, routing in the
network layer finds, establishes, and maintains the best path from a source node
to a destination node, where the activity is derived from the delay. In addition,
flow control in the transport layer effectively uses the available bandwidth of the
established path by using the activity defined based on the throughput. Routing
and flow control generally behave independently of each other; however, due to the
layered network control architecture, they inherently interact with each other. As
indicated in Eq. (3.6), control methods attempt to maximize their own activity in an
independent and selfish manner; therefore, maximization of global performance is
not always guaranteed. It should be noted that the control entities are not necessarily
on the same network equipment. In the above case, routing is performed by both end
hosts and routers; however, flow control is performed by end hosts alone.

System-level optimization can be achieved by introducing more direct interac-
tion between Yuragi-based control methods. There are various formulations. For
example,

dxi

dt
= fi(xi )α + ηi (3.7)

signifies that all C control methods share and maximize the common global activity
α. Although such Yuragi model-based control is useful, careful design is required
to avoid harmful interaction, where methods degrade each other’s performance
similarly to the above naive application. The behavior of a control method to
improve global activity sometimes disturbs other control methods. The disturbed
methods then apply control that is considered necessary to improve the global
activity, which further affects other control methods. Consequently, the system
states fluctuate considerably, and globally optimal control cannot be expected. A
mechanism is also necessary to share the global activity α among control entities
without loss of consistency.

A more general Yuragi model with shared activity is formulated as

dxi

dt
= fi(xi )Ai(α) + ηi ,

where control method i takes into account the quality of other control methods by
function Ai(α), where α = (α1, . . . , αC). Therefore, this method can be regarded
as a heuristic algorithm for a multiobjective optimization problem.
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Another direction to achieve explicit interaction among control methods is to use

dxi

dt
= fi(x)αi + ηi ,

where x = (x1, . . . , xC), signifying that control method i takes into account the
states of other control methods. The control methods are more tightly coupled with
each other in this case, and finer cooperative control can be achieved. However,
the control methods must exchange and share information about their internal state
values. In addition, the dimension of the state space increases considerably. As a
result, the adaptive and stable selection of an effective attractor becomes difficult.

3.4.1 Multipath Routing in Layered Networks

The first scenario of multi-network control is multipath routing in layered net-
works, which is an extension of Yuragi-based multipath routing discussed in
Sect. 3.3 [15, 16]. Figure 3.7 illustrates a targeted system, where we assume that
network virtualization technology, such as software-defined networking (SDN) or
network function virtualization (NFV), is used. Network virtualization enables the
construction of virtual networks over physical networks, with which application- or
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Fig. 3.7 Layered network
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service-specific network functions are delivered. Unlike overlay networking, virtual
nodes and virtual links appear as physical entities dedicated to a tailored virtual
network. Virtual networks can adopt independent network functions even at lower
layers of network protocols.

In Fig. 3.7, the global physical network at the bottom consists of physical domain
networks composed of physical nodes (e.g., routers or switches) and physical links
(e.g., optical fibers). For network virtualization, each physical domain network is
managed by a controller. The controller performs resource management to share
and assign physical network resources, such as the computational/memory capacity
of nodes and bandwidth of links, to virtual networks. It also performs other network
control, such as routing. Controllers constitute an inter-domain virtual network in
which virtual links correspond to inter-domain physical links between border nodes
(i.e., physical nodes at the border of domain networks). Furthermore, by virtualizing
domain controllers and inter-domain links, several application- or service-oriented
virtual networks are constructed above the inter-domain virtual network. For the
purpose of network management, each virtual network has a controller. Due to
resource limitations, it is generally impossible to allocate dedicated and independent
resources to each virtual network. Instead, for the efficient use of resources,
resources are shared among virtual networks. Therefore, when a session in a virtual
network changes its path, not only other sessions in the same virtual network, but
also sessions in other virtual networks, are affected, and in the worst case, the
cascading effect is triggered on a system-wide level.

Each of the virtual nodes s performs multipath routing to each of the des-
tination nodes d in the same virtual network by using state vector ms,d =
(ms,d,1, . . . ,ms,d,Ms,d ), where Ms,d is the number of candidate paths from a source
node s to a destination node d , activity αs,d , and the Yuragi equation

dms,d

dt
= f (ms,d)αs,d + ηs,d. (3.8)

We use Eq. (3.2) to update the state values; however, for the sake of simplicity,
we use the general form of the Yuragi model here. At regular intervals of T s, the
source node emits a control packet to measure the one-way end-to-end delay to the
destination node. Upon receiving a feedback packet from the destination node for
the hth control packet, the smoothed delay d̄s,d(h) is derived as

d̄s,d(h) = ρ min
0≤k≤W

ds,d(h − k) + (1 − ρ)d̄s,d(h − 1) ,

where ρ (0 < ρ < 1) is the smoothing factor and W > 0 is the measurement
window. Then, the activity is updated as

αs,d = d̄s,d(h)

ds,d(h)
.
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Similarly, a physical node x performs Yuragi-based multipath routing to a des-
tination node y in the same physical domain network by using the state vector
mx,y = (

mx,y,1, . . . ,mx,y,Mx,y

)
, activity αx,y (which is defined similarly to αs,d ),

and the equation

dmx,y

dt
= f (mx,y)αx,y + ηx,y. (3.9)

Because virtual nodes and physical nodes use their own state values and activity, we
call this method Independent.

For cooperative routing, we consider three other methods: BottomUp, TopDown,
and Both. In BottomUp, a virtual node s takes into account the quality of routing in
the corresponding physical domain network. In place of the activity αs,d in Eq. (3.8),
the following activity As,d is used:

As,d = αs,d

∑
x,y αx,y

Ns(Ns − 1)
. (3.10)

Here, the denominator
∑

x,y αx,y is the sum of the activities of all pairs of physical
nodes in a physical domain network s corresponding to a virtual node s. Ns is the
number of physical nodes in the domain network s. Therefore, the activity As,d

reflects both the quality of virtual layer routing and the average quality of physical
layer routing. The selection of paths at a virtual node corresponds to the selection of
border nodes in the corresponding physical domain network. All traffic for a virtual
node d (i.e., physical domain network d) generated in the physical network s is
destined for the selected border node. Therefore, routing in a virtual layer affects
the performance of intra-domain routing. Using Eq. (3.10), we can achieve lower-
layer-aware routing, and the performance of physical layer routing is improved.
Consequently, the performance of virtual layer routing increases because the end-
to-end delay consists of both the intra-domain and inter-domain transmission delays.

In contrast, a physical node uses the following activity Ax,y in TopDown:

Ax,y = αx,y

∑
v

∑
d αs,d

Nv(Nv−1)

Vs

. (3.11)

Here, s is a virtual node of physical domain network s in which physical node x

resides. Denominator
∑

s

∑
d αs,d

Nv−1 is the sum of the average activities αs,d in the
virtual network v to which virtual node s belongs. Nv is the number of virtual nodes
in virtual network v, and Vs is the number of virtual networks to which virtual
node s belongs. A virtual node can be a member of multiple virtual networks. For
example, the rightmost virtual node in Fig. 3.7 is a member of two virtual networks.
As discussed, routing in a physical domain network affects the performance of
packet delivery to border nodes. Thus, TopDown favors upper-layer routing.
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Finally, Both is a combination of BottomUp and TopDown. A virtual node uses
Eq. (3.10), and a physical node uses Eq. (3.11) as the activity in updating the
state values. Virtual nodes and physical nodes cooperatively aim at minimizing the
one-way end-to-end delay in both the virtual and physical layers simultaneously.
Although system-level optimization is expected, there is a risk of routing instability
due to the mutual and potentially harmful interaction between layers.

In Fig. 3.8, the results of a simulation are presented. A random physical network
consisted of 100 domain networks, and each domain network consisted of 100
physical nodes. These networks were generated using the Waxman model. Three
random virtual networks were overlaid on the physical network, each of which
consisted of 50 virtual nodes. These virtual networks were subgraphs of a global
inter-domain network of 100 nodes (i.e., domains). All pairs of virtual nodes had a
traffic demand of 1 unit. Thus, there were 50 × 49 × 3 = 7350 sessions in a virtual
layer. Furthermore, inter-domain traffic was distributed among physical nodes with
additional traffic, such that the ratio of traffic generated by a single physical node
was inter-domain : intra-domain = 8 : 2. The capacity was set to 10,000 units
for each inter-domain link and randomly selected from 40,000, 20,000, 10,000, and
5000 units for intra-domain links. We called the sessions using bottleneck links that
accommodated the largest number of shortest paths between pairs of virtual nodes
bottleneck sessions. At 100 s, the traffic of the bottleneck sessions was increased to 2
units to cause congestion. At 2000 s, we further caused a second and drastic change

 0

 0.05

 0.1

 0.15

 0.2

 0  500  1000  1500  2000  2500  3000  3500  4000

av
er

ag
e 

d
el

ay
 i

n
 v

ir
tu

al
 n

et
w

o
rk

s 
[m

s]

time

Independent
Both

BottomUp
TopDown

Fig. 3.8 Average delay in virtual networks



3 Next-Generation Bio- and Brain-Inspired Networking 69

by reducing the traffic of the bottleneck sessions to 1 and increasing the traffic of
the other sessions to 2. For the Yuragi-model-based routing parameters, we used
β = 20, γ = 5, ρ = 0.5, and W = 50. Each of the virtual and physical sessions
had at most three candidate paths (M = 3). Initially, all sessions used the shortest
path among the candidates independently of the methods.

As illustrated in Fig. 3.8, when the traffic demand changed, the average delay
instantaneously increased independently of the methods. However, as time passed,
the average delay decreased and reached a stable condition (i.e., stable attractor).
The Independent method converged the fastest among the four methods. This
indicated that independent adaptive control was simpler than the other methods,
and competition was successfully mediated by Yuragi-based stochastic control.
However, the obtained solution was not optimal, as the average delay was larger
than that of the other methods. In contrast, explicit inter-layer interaction led to
better performance in Both, BottomUp, and TopDown. In particular, Both achieved
the best performance; however, it took the largest amount of time to adapt to the
changes.

3.4.2 Cluster-Based Routing in Wireless Sensor Networks

The second scenario in which multiple Yuragi-based network control methods are
incorporated with each other is a combination of clustering and routing in wireless
sensor networks (WSNs). A WSN consists of small devices equipped with one or
more sensors, a processor, a wireless transceiver, and a battery. Each device monitors
the surroundings and reports the sensed data to another wireless device called a base
station, or sink, using wireless communication. The sink processes the received data
and/or sends them to an external server via a wired or wireless network. Owing
to the simplicity and ease of deployment of WSNs, a variety of applications have
been developed and are available on the market, such as automatic meter reading,
factory monitoring, and environmental surveillance. As a result, WSNs have become
key technologies in the era of Internet of Things (IoT), in which an enormous
number and variety of devices are connected to the Internet, and big data is gathered,
analyzed, and utilized to promote safety and comfort in society.

A WSN generally has a tree topology whose root is a sink and whose nodes
and leaves correspond to sensor nodes, as illustrated in Fig. 3.9a. The majority of
communication in a WSN is data gathering, where sensed data are sent from nodes
to a sink. Each sensor node appoints a neighbor node that is closer to the sink as the
parent node. The distance from the sink is defined as the number of hops from the
sink rather than the Euclidean distance. Data messages are then sent to the parent
node, which further forwards the received messages to its parent node. By being
relayed by ancestors, messages reach the sink.

For decades, energy savings have been the primary concern in developing and
operating WSNs. For example, in a power plant, a WSN is expected to operate
without maintenance for at least 10 years. In addition to miniaturization, weight
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Fig. 3.9 Data gathering in a wireless sensor network: (a) tree-based data gathering and (b) cluster-
based data gathering

savings, and power savings of circuitry and devices, much effort has been devoted
to achieve energy-efficient communication. A sensor node consumes energy in
transmitting and receiving messages using a wireless transceiver; thus, reducing
the number of transmissions and receptions as well as the transmission power is
important. Clustering is a technique used for this purpose. In clustering, nodes are
first grouped into clusters. One node in each cluster becomes a cluster head (CH)
and is responsible for collecting sensor data from the other nodes, called cluster
members (CMs), in the same cluster by intra-cluster routing and for transmitting
aggregated data to a sink by inter-cluster routing. Sensor nodes in tree-based data
gathering consume energy in the reception and transmission of messages; however,
in a clustered WSN, the CH performs most of the tasks, and members only send
their data to the CH.

Because nodes appointed as the CH have a high burden, a mechanism to
distribute or rotate the role of the CH among nodes is required to balance the energy
consumption among nodes and prolong the lifetime of the WSN. Selecting a node
with the maximum residual energy in the vicinity is simple and somewhat effective.
However, such greedy selection often converges to local optima, and global opti-
mization leading to the maximum lifetime of the WSN is not achieved. In addition,
the cluster structure continuously changes because the residual energy changes over
time. As a result, inter-cluster routing becomes unstable and continuously searches
for suitable paths.

If a central controller (e.g., a sink) has complete knowledge of the entire system,
an optimal schedule to select nodes to appoint CHs can be derived. However,
information such as the amount of residual energy, the neighborhood relationship,
and the amount of data to send for optimization is not necessarily available at
the sink, as it changes depending on uncontrollable and unexpected conditions.
The neighborhood relationship is not stable due to the unstable and unreliable
wireless communication, and the amount of data to send is also not constant in some
applications. For example, if an irregular value is obtained by a sensor, additional
data will be collected by multiple measurements or by additional sensors, and the
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amount of data to send will increase. As a result, energy consumption will also
change, and the amount of residual energy will not decrease linearly.

Furthermore, we must consider a method for collecting aggregated data from
CHs, that is, inter-cluster routing, even if we can assume that CMs directly send
their data to a CH owing to their proximity. In inter-cluster routing, each CH
selects a node to send aggregated data toward a sink among nodes in the wireless
communication range. Here, we also require an effective and efficient mechanism
of next-hop selection. A simple algorithm involves selecting the node with the
minimum number of hops from the sink and with the maximum residual energy
in the vicinity. However, there is a possibility that a long, unreliable, and even
disconnected path will be constructed, thereby reducing the probability of successful
data gathering. Furthermore, such an algorithm can cause significant congestion
due to traffic concentration on the shortest and most energy-rich paths, thereby
reducing the lifetime of the WSN. Centralized control is thus not feasible for inter-
cluster routing. Therefore, an autonomous, distributed, and adaptive mechanism is
necessary for both clustering and routing.

Application of the Yuragi model is a feasible solution to the combination of these
challenges. A layered model of clustering and routing is considered, as illustrated in
Fig. 3.10 [11]. In the clustering layer, nodes aim to balance energy consumption by
autonomously appointing a node with large residual energy as the CH in the vicinity.
In the routing layer, CHs aim to perform efficient and reliable data gathering by
minimizing the data gathering delay. As illustrated in the figure, an aggregated data
message of the CH is first sent to a gateway (GW) node, which is a CM residing in
an overlapping area with a neighboring cluster. A GW node can reach both CHs.

The Yuragi-based clustering and data gathering method consists of a clustering
phase, a data gathering phase, and a routing phase. The clustering phase is repeated
at regular intervals of Tclustering, which is synchronized among all nodes. During
the clustering phase, each node determines its state as either CH, GW, or CM.
Then, at regular intervals of Tdata < Tclustering, sensor data of GWs and CMs are
gathered at a designated CH. After Taggregate < Tclustering, during which the received
data are deposited and aggregated by a CH, all CHs and GWs move to the routing
phase. Each CH and GW selects a next-hop node from neighboring GWs and CHs,
respectively, to send aggregated data to the sink.

At the beginning of the clustering phase, all nodes are in the NULL state.
First, the sink broadcasts a cluster head claim (CHC) message to all neighbors
and becomes a CH. Hearing the CHC message, nodes in the vicinity become CMs
of the sink. Next, those CMs broadcast a cluster formation (CF) message to their
neighbors. Each node i receiving a CF message first evaluates the quality of the
current cluster structure by computing the clustering activity αc

i by the following
equation:

αc
i (h) = ρcα

c
i (h − 1) + (1 − ρc)

mink∈CHi rk

maxj∈Ni rj
.
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Here, ρc is the smoothing factor, and Ni is the set of neighbor nodes of node i

including node i itself. CHi is a set of CHs from which node i receives a CHC
message, including node i itself, and rk is the amount of residual energy of node k.
Therefore, the clustering activity reflects the ratio of the minimum residual energy
of nearby CHs to the maximum residual energy of nodes in the vicinity.

Next, node i updates the state vector mc
i =

(
mc

i,1, . . . ,m
c
i,|Ni |

)
. The state value

mc
i,j indicates the quality of node j ∈ Ni as a CH. mc

i,1 corresponds to node i itself.
We also use Eq. (3.2) to update the state vector mc

i by substituting αc
i (h); however,

we replace ηi with (1 − αc
i ) ηi,j to have more stable clustering control. While the

activity is relatively high (not necessarily close to 1), the influence of the noise term
remains sufficiently small not to initiate a random walk search. However, when the
activity becomes very small, indicating that the current cluster structure is no longer
appropriate, another cluster structure is examined to adapt to the new conditions.
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Then, upon receiving a CF message, node i in the NULL state sets its backoff
timer ti as

ti(h) = Tbackoff

(
1 − min

(
maxj mi,j (h),mi,1(h)

)

maxj mi,j (h)

)2

. (3.12)

Here, Tbackoff is the maximum waiting time. When the backoff timer expires without
receiving any CHC messages from neighbors, node i broadcasts a CHC message,
moves to the CH state, and becomes a CH. Equation (3.12) expresses that the more
residual energy is in the vicinity, the shorter the backoff timer is. Therefore, a node
with more residual energy is more likely to broadcast a CHC message and become
a CH. When a node in the NULL state receives a CHC message independently of
setting of a backoff timer, it cancels the timer, becomes a CM of the CH from which
it first receives the CHC message, and broadcasts a CF message.

When a CM receives multiple CHC messages, it becomes a GW by setting its
state to GW. A GW mediates inter-cluster message forwarding and broadcasts a
gateway claim (GWC) message to inform nearby CHs of its existence. By receiving
GWC messages, a CH obtains a list of nearby GWs. In this way, cluster formation
propagates from the sink to the edge of the WSN. Eventually, all nodes determine
their state and obtain a list of CHs and GWs.

At the beginning of the hth routing phase, node i, which is either a CH or GW,
first evaluates the routing activity αir by the following equation:

αir(h) = ρrαir (h − 1) + (1 − ρr)
dmin

dlatest
. (3.13)

Here, ρr is the smoothing factor, dmin is the minimum data gathering delay since
the last clustering, and dlatest is the latest delay. For a CH or GW to evaluate the
routing activity, the sink sends a feedback message by flooding at a regular interval
Tfeedback < Tdata from the beginning of the data gathering phase. The feedback
message contains a list of the reception time of all data messages received in the
previous period of Tfeedback. Similar to clustering, using the routing activity αir, a
CH or a GW i updates another state vector for routing, which consists of mr

i =(
mr

i,2, . . . ,m
r
i,|Ni |

)
. The state value mr

i,j indicates the quality of node j ∈ Ni as a

next-hop node in inter-cluster routing. A CH or GW selects a GW or CH with the
maximum state value as the next-hop node and sends the aggregated data.

The two control methods influence each other. Yuragi-based clustering defines
the activity as the relative residual energy based on which a backoff timer is set.
It aims at balancing energy consumption by rotating the role of CH. In contrast,
Yuragi-based routing defines the activity based on the delay in order to achieve fast
and reliable data gathering. Yuragi-based clustering affects Yuragi-based routing
by changing the cluster structure. At the same time, Yuragi-based routing affects
Yuragi-based clustering by consuming energy in data gathering.
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We now consider a combination of the two control methods. There are three
alternatives: routing-aware clustering, clustering-aware routing, and mutual incor-
poration. Each node takes into account the routing activity in the derivation of the
clustering activity in routing-aware clustering. Therefore, clusters are organized to
decrease the delay at the cost of the system lifetime. In contrast, clustering-aware
routing takes into account the clustering activity in the derivation of the routing
activity. Thus, a next-hop node is selected to balance the energy consumption of
nodes; however, such selection worsens the delay and reliability of data gathering.

Here, we present results of routing-aware clustering. Freedom of selection is
more limited in inter-cluster routing than clustering. Only CHs and GWs are
involved in inter-cluster routing, and selection is only among neighboring GWs and
CHs. In the Coupled method, the clustering activity αic is combined with the routing
activity αir as

αicr(h) = ωαic(h) + (1 − ω)αir(h) ,

where ω (0 < ω < 1) is a weight to balance both activity values.
Figure 3.11 presents the simulation results. We randomly and evenly distributed

81 nodes in an area of 2000 × 2000 m2. The node at the center was the sink, and the
wireless communication range was set to 250 m. The control parameters were set
as follows: Tclustering = 200 s, Tdata = 5 s, Taggregate = 0.4 s, Tbackoff = 0.1 s,
Tfeedback = 2 s, ρc = 0.6, ρr = 0.8, and ω = 0.5. The Yuragi parameters
were set to β = 20 and γ = 10. The number of neighbors of a node was
approximately 5 (M = 5) on average. At 3000 s, we generated background traffic to
cause environmental changes and evaluate the adaptability. The background traffic
generated a message each 0.01 s from one corner of the area to the other corner.
As displayed in Fig. 3.11a, both the Independent and Coupled methods achieved
the same data gathering ratio. However, Fig. 3.11b reveals that the Coupled method
produced a shorter one-way delay than the Independent method, especially after the
introduction of background traffic. This implies that the clusters were organized so
that aggregated data could detour around the congested area. To evaluate the balance
of energy consumption, we used the fairness index F , defined as

F =

(
N∑

i=1
ri

)2

(
N

N∑
i=1

r2
i

) ,

where N is the number of nodes. The fairness index was 0.8953 for Independent
and 0.8931 for Coupled. Thus, faster inter-cluster routing was accomplished without
sacrificing either reliability or lifetime by the Yuragi-based routing-aware clustering
method.
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3.4.3 Network Resource Allocation to Multiple Applications on
Multiple Vehicles

The first example of layered multipath routing involves combining the same control
methods operating on different layers, while the second example of routing-aware
clustering involves combining different control methods operating on different
layers. The third example introduced here involves combining the same control
methods operating on a single entity but competing for shared and limited network
resources.

Specifically, we consider a vehicular network in which various applications,
such as WWW, Voice over Internet Protocol (VoIP), and video streaming, operate
on each vehicle, as illustrated in Fig. 3.12. Each of the applications has different
requirements for the quality of communication, that is, Quality of Service (QoS),
in terms of the bandwidth, delay jitter, and transmission cost. Here, we assume that
dedicated short-range communications (DSRC), Wi-Fi, Worldwide Interoperability
for Microwave Access (WiMAX), and cellular networks are available for use in the
area. A Wi-Fi network is only available around an intersection of roads, whereas the
other networks are available in the entire region. To maximize performance, applica-
tions compete for shared network resources. Furthermore, there exists competition
among vehicles in the region. Therefore, the problem is to allocate heterogeneous
network resources to vehicles in the region and to heterogeneous applications on

Web
video streaming

Web
car navigation
VoIP

Wi-Fi access area

WiMAX

cellular

DSRC

vehicles

Fig. 3.12 Wireless network allocation to vehicles and applications
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each vehicle. This must be accomplished by a distributed mechanism because no
central server can manage such a dynamic and complex situation.

For adaptive inter-application resource allocation in a vehicle, we use a coupling
model dxi

dt
= fi(xi )α + ηi (Eq. (3.7)). This model signifies that applications

share a common activity represented as α, which is defined as a function of the
effectiveness of resource allocation to each application on a vehicle. Adaptive
and efficient resource allocation to vehicles is accomplished by the Yuragi-based
adaptive behavior of vehicles as in Yuragi-based routing, where the performance of
the entire system is maximized by the autonomous and distributed behavior of each
session to maximize its activity [4].

We assume that each vehicle has a controller that mediates the resource allocation
of applications running on the vehicle. At regular intervals, the applications declare
their QoS requirements in terms of the required bandwidth, tolerable delay jitter, and
acceptable transmission cost. The controller obtains information about the current
status of available networks, such as the available bandwidth, delay jitter, and
transmission cost, using cognitive radio technology. Next, the controller evaluates
the degree of satisfaction Qi of each application i with the allocated resources.
Qi is derived from the weighted average and weighted variance of the degree of
satisfaction of each QoS requirement. Then, the degree of satisfaction S of a vehicle
is derived as

S =

N∑
i=1

ωiQi

1 + bσQ

,

where N is the number of applications running on a vehicle, and σQ is the weighted
standard deviation defined as

σQ =
√√√√

N∑

i=1

ωi

(
Q̄ − Qi

)2
,

where Q̄ is the average of Qis. Weight ωi (0 < ωi < 1) reflects the importance of
application i in the vehicle. For example, while a user talks over a VoIP application,
Web and video streaming have lower priority in resource allocation.

Using the degree of satisfaction S of a vehicle, the controller derives the activity
α as

α =

W−1∑
k=0

α∗
h−k

W
.

Here, α∗
h is called the instant activity derived at the hth control timing, and W is

the measurement window. Therefore, activity α is the average of the instant activity
over the past W measurements. The instant activity α∗

h of the current measurement
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is derived from the degree of satisfaction S of a vehicle using a hysteresis function
of the play model [2]:

α∗
h = 1

P

P∑

l=1

hl(pl(S
′)).

Here, S′ = 1.5S −0.5 to have an effective operating range by shifting the hysteresis
curve to the right. P is the number of play hysterons, and pl (1 ≤ l ≤ P) is a play
hysteron operator defined as

pl(S) = max
(
min

(
p−

l , S′ + ζ
)
, S − ζ

)
,

where p−
l is the value of pl at a previous time point, and ζ is the width of the play

hysteron. hl is the shape function of the play hysteron pl , which is defined as a
sigmoid function by the following equation:

hl(pl(S)) = 1

1 + exp(−gpl(S))
.

Here, g (g > 0) is the gain of the sigmoid function.
A hysteresis function is used to prevent control from being overly sensitive to

sudden small changes in the degree of satisfaction. In the application examples
provided above, smoothing measurements or activity plays a similar role in avoiding
sensitive control. Figure 3.13 presents an example of a trajectory taken by the instant
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activity, which draws a loop. Starting from any point, the trajectory is entrained
to the loop. When the degree of satisfaction of a vehicle increases from zero, the
instant activity remains low to allow the controller to seek better resource allocation
until the degree of satisfaction becomes sufficiently large. Then, the instant activity
exponentially increases beyond a certain point to accelerate convergence to a
desirable attractor. However, when the environmental conditions change and the
current satisfactory allocation is no longer appropriate, the degree of satisfaction
decreases. However, the instant activity remains high until a certain point. Therefore,
sudden small changes do not trigger exploration of better resource allocation, and
control stability is maintained in a dynamic environment. However, once the degree
of satisfaction is lower than a certain point, the instant activity drastically decreases
to initiate a random walk search to adapt to the environmental changes.

Based on the activity α, the state vectors are updated. A state vector mi of
application i consists of

mi = (
mi,1, . . . ,mi,M

)
,

where M is the number of wireless networks available to a vehicle. Here, mi

is updated by Eq. (3.2), replacing mi with mi,j . Then, the wireless network of
index j whose state value mi,j is the maximum in mi is selected and assigned to
application i.

Simulation results are presented in Fig. 3.14 for a video application running on
a vehicle. We considered an area of 300 × 300 m2 that had a horizontal road with
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four lanes and a vertical road with two lanes crossing at the center of the area (see
Fig. 3.12). A total of 60 vehicles drove at a speed of 40 km/h on the horizontal
road and 20 km/h on the vertical road and were affected by traffic lights at the
intersection. The area was vertically and horizontally connected, that is, a torus.
The Wi-Fi network had a limited access area that was circular with a radius of
100 m and centered jitter. In addition, the network transmission costs were set to
(4 Mbps, 100 ms, 10−7 unit/b), (20 Mbps, 500 ms, 10−9 unit/b), (40 Mbps, 200 ms,
10−8 unit/b), and (2 Mbps, 100 ms, 10−5 unit/b) on DSRC, Wi-Fi, WiMAX, and
cellular networks, respectively. Three applications ran on each vehicle, whose
QoS requirements for the bandwidth, delay jitter, and transmission cost were set
to (300 kbps, 10,000 ms, 0.1 unit/s), (64 kbps, 150 ms, 1 unit/s), and (3000 kbps,
1000 ms, 0.1 unit/s) for Web, VoIP, and video applications, respectively. These
applications had different QoS weights as follows: (0.3, 0.1, 0.6), (0.5, 0.4, 0.1),
and (0.6, 0.1, 0.3), respectively. For example, the Web application valued low-cost
networking, while the VoIP application valued guaranteed bandwidth and small
jitter.

Initially, the activity was low (bottom of Fig. 3.14), and as a result, the state
values randomly changed (center of Fig. 3.14). Because the wireless network
with the largest state value was allocated to the video application, we observed
frequent changes in the allocated network (top of Fig. 3.14). However, as time
passed, allocation converged to the Wi-Fi network, which offered the second-largest
bandwidth with the lowest cost. After some time, as the vehicle exited the Wi-Fi
access area, the activity gradually decreased, and other networks were tentatively
allocated. The video application resumed using the Wi-Fi network once; however,
it finally switched to the WiMAX network, which provided a stable, high-speed
connection at a lost cost.

Next, we compared Yuragi-based resource allocation with an ad hoc optimization
method. At regular intervals, a controller with the ad hoc optimization method
obtained information about applications and networks, as in the Yuragi-based
method. Then, it derived and adopted the optimal resource allocation with which
the degree of satisfaction of a vehicle was maximized by solving an optimization
problem. That is, the vehicles used resources in a greedy and selfish manner.
Figure 3.15 presents the mean and variance of the degree of satisfaction of
vehicles against a different number of vehicles from 10 to 120. Lines correspond
to the average degree of satisfaction of vehicles on the left y-axis, while crosses
correspond to the average variance of the degree of satisfaction of vehicles on the
right y-axis as an indicator of the fairness of resource allocation among vehicles.

As illustrated in Fig. 3.15, the average degree of satisfaction with the ad hoc
optimization method suddenly decreased when the number of vehicles exceeded
50. This is because the network resources were insufficient to accommodate too
many vehicles with an equally high degree of satisfaction. In contrast, the Yuragi-
based resource allocation method sustainably provided network service to a large
number of vehicles. This is because the Yuragi-based method did not insist on
determining the optimal solution. Due to its stochastic behavior, the Yuragi-based
method sometimes converged to the near-optimal solution, causing an increase
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in the average variance of the degree of satisfaction. The QoS requirements of
all applications of all vehicles were not fully satisfied; however, they achieved
moderately high performance.

3.5 Exploration of Better Attractors

As reviewed in the above subsections, Yuragi-based network control methods are
adaptable to a dynamic environment, robust to failures, sustainable in infeasible
conditions, and stable. Such characteristics are obtained by reinforcement learning
with function f (x) incorporated with random walk search with a noise term η.
Activity α in the combined equation dx

dt
= f (x)α + η balances reinforcement

learning and random walk search by providing a bias to either function f (x) or
noise term η depending on the quality of the current state x with respect to the
current environmental conditions.

However, the structure of the Yuragi model is inherently problematic. Once
the system converges to an attractor, it does not change its state until the activity
decreases sufficiently. Therefore, even if another attractor has better performance,
the system is not aware of it and cannot move to it. For example, assume that
a session considers one path as primary and uses it for packet transmission with
Yuragi-based multipath routing. In this case, the activity is high. Then, for a certain
reason, such as a flash crowd, the primary path becomes heavily congested. Driven
by the decreased activity, the session randomly tries other alternative paths. The
session then finds a new optimal path and begins to use it as a primary path
through reinforcement by the increased activity. However, at that time, the former
primary path becomes vacant due to the disappearance of sudden traffic congestion.
The former path can provide the session with better performance than the current
primary path; however, the session is not aware of this due to the stability of the
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current attractor with high activity. For the system to find a new optimal attractor, it
must examine alternative attractors and evaluate the activity.

Another problem inherent to the Yuragi model is that increasing the intensity
of noise to allow a stable system to search for a new optimal attractor does not
necessarily improve performance. Instead, it often degrades the control stability,
and the performance fluctuates because the system continuously moves from one
attractor to another. It is thus necessary for the system to remain at an attractor
for some time. Changing an attractor affects other systems competing for shared
resources and causes a cascading reaction, and measurements taken during such
a transient phase are unreliable. Therefore, to obtain a reliable observation of the
system conditions and derive the activity, it is necessary to wait for the entire system
to stabilize. In addition, there is a possibility that the system will become trapped
at a local optimum. During the random search phase, the performance is likely to
be low. When the system finds an attractor that provides better performance than
the visited attractors, the activity increases. Consequently, the system converges to
the found attractor even if the obtained performance is lower than that of the former
stable attractor.

To address this problem, we consider a Yuragi model with stochastic attractor
exploration with short-term memory [12]. With the new extended model, even when
the activity is high, the system temporarily tries another attractor, which we call
exploration, by increasing the noise intensity. However, a mere increase in noise
disturbs convergence to a desirable attractor. Therefore, we adaptively adjust the
intensity of noise to explore attractors with moderate frequency and guarantee
convergence. Furthermore, for the system to return to a former desirable attractor
from a temporary poorer attractor that it reaches, we introduce short-term memory
into the model.

The extended new Yuragi model is given as

dmi

dt
= α(βαγ + φ∗)

1 + max
1≤j≤M

mj
2 − m2

i

− αmi + σηi − K(1 − α)(mi − xi)R
C. (3.14)

Here, two new factors are added to Eq. (3.2). First, noise strength σ is introduced
to strike a balance between active exploration and stabilization of a system. It is
derived by the following equations:

{
σ = σmin, when path change occurs
dσ
dt

= − 1
τσ

(σ − σmin + δ)(σ − σmax), otherwise
,

where σmin and σmax are constant parameters, and 0 < σmin < σmax. When a session
changes a path to use, the noise strength σ is set to its minimum, σmin, to allow the
session to remain at the path until the noise strength σ becomes sufficiently large.
This is intended to avoid frequent path changes and promote reliable measurement.
The noise strength σ then gradually increases σmin to σmax with time constant τσ . δ

is a small constant to prevent the noise strength σ from being fixed to σmin.
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The second factor added to Eq. (3.2) is the short-term memory expressed by the
fourth term on the right-hand side of Eq. (3.14). K and R are constants related to
memory strength, and x = (x1, . . . , xM) is the memory of state vectorm. The vector
x develops as

dxi

dt
= − 1

τx

(xi − mi) , (3.15)

where τx (τx > 1) is a time constant. The equation represents the exponential
dependency of xi on mi , similar to the forgetting curve of human short-term
memory [10]. When activity α is large at the current attractor during exploration, the
memory term is less effective, and the system can remain at the attractor. However,
when the activity is low (α < 1), the memory term returns the system state to
the memorized state, whereas old memory expressed by the vector x gradually
disappears by Eq. (3.15). R corresponds to the distance between the current state
m and the state x in the memory as

R =
√√√√

M∑

i=1

(mi − xi)2 .

The influence of R becomes significant when the current effective attractor is no
longer appropriate. Because the current state m is very similar to the memorized
state x, R is small, and the memory term becomes negligible, which allows the
system to start a random walk.

Finally, the activity is derived as

α(t) = min

((
y

d(t)

)n

, 1

)
,

where

dy

dt
= − 1

τy
(y − d(t)) .

Here, d(t) is the performance (e.g., delay) obtained at the t th control timing, y is
the memory of the performance d(t), n (n ≥ 1) is an exponent parameter, and τy

(τy > 1) is a time constant.
Figure 3.16 presents an example of Yuragi model behavior with stochastic

attractor exploration with short-term memory. At the beginning, State 2 is selected
due to the high state value m2, and memory x2 changes in accordance with state
value m2. At approximately 6000 s, state value m1 becomes larger than m2, and the
system examines State 1 due to active exploration caused by the increased σ (see
Fig. 3.16b). Immediately, σ returns to σmin. Because the performance of State 1 is
low, the system soon returns to State 2 by being pulled back by the memory, which
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does not occur in the original Yuragi model. The activity decreases at approximately
10,000 s; consequently, the system changes to State 1. However, memory value x2
remains high for some time to enable the system to return to State 2 if State 1 is
found to be inappropriate. Memory value x2 gradually decreases by a forgetting
function because State 1 is satisfactory in this example.

Figure 3.17 presents the comparative results between a multipath routing method
adopting the Yuragi model with stochastic attractor exploration with short-term
memory and other methods. The network consisted of 128 nodes, and the capacity
and propagation delay of each link were set to 10 Mbps and 10 ms, respectively. All
pairs of nodes generated packets at a rate of 20 kbps. From 10,000 to 20,000 s, the
amount of traffic between a pair of neighbor nodes was increased to increase the
link utilization to 100%. The number of candidate paths was three (i.e., M = 3),
and the control interval was 100 s. One-way delay was used as the indicator d(t) of
the quality of a path. The other parameters were set as follows: β = 10, γ = 3,
σmin = 2, σmax = 6, K = 0.4, C = 1, n = 2, δ = 0.1, τx = 8, τy = 8, and τσ = 50.
In Fig. 3.17, Memory refers to the new method, Yuragi refers to the original method
described in Sect. 3.3, Minhop refers to a method that always stays on the shortest
path, and Exp refers to a method that uses Eq. (3.14) but without the fourth memory
term.

As illustrated in Fig. 3.17, the Memory method achieved the best performance.
In contrast, Yuragi could adaptively move to a better path but failed to find a
significantly better path, which Memory could accomplish, especially during the
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highly congested period. The flat delay of the Yuragi method signifies that the
method remained at the suboptimal solution without further exploration. After
20,000 s, the Memory method successfully returned to the original path that was
used before congestion. The reason why the delay of Memory slightly fluctuated
was active exploration. However, short-term memory successfully pulled the session
back to the former desirable path. In contrast, the Exp method continued searching
for a better path and did not converge.

3.6 Conclusion

The Yuragi model combines reinforcement learning, which contributes to stability,
and a noise-induced random walk, which searches for superior solutions. As
discussed in this chapter, by applying the Yuragi model, highly robust, adaptive,
and error-tolerant network control can be achieved without prior knowledge of
a dynamic environment and without deterministic adaptation rules, similarly to
biological systems. In essence, it is only necessary to define attractors corresponding
to control options and the activity as an objective function of the control. It should
be noted that the system must be tolerant of suboptimal solutions and occasional
fluctuations when adopting Yuragi-based control. However, optimal performance
cannot be maintained by any control mechanism in a complex, dynamic, and unpre-
dictable environment. Yuragi-based control can maintain suboptimal performance,
and the application area is not limited to network control.
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Chapter 4
Yuragi-Based Virtual Network Control

Yuki Koizumi

Abstract Reconfiguring a virtual network, which consists of a set of virtual links
and routers, on top of a physical network is a promising approach to accommo-
date time-varying traffic. However, optimization-based approaches are generally
incapable of quickly adapting to time-varying traffic due to their computational
complexity. For swift adaptation to changes in traffic patterns and network failures,
this chapter presents Yuragi-based virtual network control. This control is based
on attractor selection, which models behavior whereby biological systems adapt to
unknown changes in their surrounding environments. A biological system driven by
attractor selection adapts to environmental changes, selecting attractors, in which
the condition of the system is well suited for a certain environment, by using
noise, also referred to as Yuragi. There are two main challenges in achieving virtual
network control based on attractor selection. The first involves determining how
to map the behavior of a biological system to virtual network control, while the
second involves designing attractors for robust virtual network control. This chapter
summarizes previous studies that solved these two research problems.

4.1 Introduction

The emergence of new application layer services, such as video on demand and user-
generated content delivery, results in fluctuations in network environments, such
as network failures and traffic changes, as well as increased Internet traffic. The
Internet plays an increasingly vital role as social infrastructure; therefore, the ability
to withstand and recover from various changes in network environments has become
a crucial requirement.
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One promising approach to accommodate fluctuation in network environments
is to construct a virtual network, which consists of a set of virtual links and
routers, on top of a physical network according to the current network environment.
Several network virtualization technologies, such as overlay, multi-protocol label
switching (MPLS), and generalized MPLS (GMPLS) networks, have been pro-
posed [5]. Among such network virtualization technologies, this chapter focuses on
wavelength-division multiplexing (WDM) networks, which offer a flexible virtual
network infrastructure by using wavelength routing. WDM networks are suitable
for accommodating high Internet traffic owing to their high link capacity; therefore,
much research has been devoted to developing methods for carrying Internet
traffic over wavelength-routed WDM networks [1, 6, 10, 15, 18, 19, 23, 29, 30].
In a wavelength-routed WDM network, optical transport channels, referred to as
lightpaths, are established between routers via optical cross-connects (OXCs), and a
set of lightpaths and routers forms a virtual network. Virtual network control, which
configures a virtual network on the basis of a given network environment, has been
investigated in several studies [21, 24].

By reconfiguring virtual networks, wavelength-routed WDM networks offer a
means of adapting to changing network environments. Existing virtual network
control methods, which are based on the control paradigm developed in the area
of engineering, primarily consider a particular set of scenarios of environmental
changes and use an algorithm to perform predefined countermeasures to those
changes. Although these methods guarantee optimal performance for their assumed
environments, they cannot achieve expected performance in the case of unexpected
environmental changes.

A remarkable example of adapting to various environmental changes can be
observed in a biological system, which is studied in the field of life sciences [13].
This chapter focuses on attractor selection, which models the behavior of organisms
when they adapt to unknown changes in their surrounding environments and recover
their conditions. Kashiwagi et al. [14] proposed an attractor selection model for
an Escherichia coli cell that adapts to changes in nutrient availability. Furusawa
and Kaneko [8] introduced another attractor selection model for explaining the
adaptability of a cell consisting of a gene regulatory network and a metabolic
network. The fundamental principle of attractor selection is that a system adapts to
environmental changes by selecting an attractor suitable for the current surrounding
environment. This selection mechanism in attractor selection is based on determin-
istic behavior and stochastic behavior that are controlled by simple feedback on the
system condition.

The selection mechanism in attractor selection is one of the main differences
between attractor selection and heuristic or optimization approaches in the field of
engineering. In contrast to engineering systems, biological systems do not rely on
predefined algorithms. Instead, they exploit stochastic behavior, which is environ-
mental noise from various sources, to adapt to environmental changes. This chapter
refers to attractor selection as Yuragi-based control, where Yuragi is the Japanese
term for noise. On the one hand, biological systems do not guarantee optimal
performance, whereas engineering systems generally achieve optimal performance
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for assumed environments. On the other hand, biological systems are capable of
adapting to unknown environmental changes thanks to their stochastic behavior,
whereas engineering systems cannot handle environmental changes that are not
accounted for by their predefined algorithms. We therefore adopt attractor selection
as the key mechanism in our virtual network control method to achieve adaptability
to various environmental changes.

There are two main challenges in achieving virtual network control based on
attractor selection. The first challenge involves determining how to map attractor
selection in a biological system to virtual network control in a wavelength-routed
WDM network. The second challenge involves determining how to design attractors
for adaptive virtual network control. Previous studies [16, 17] solved the first
research problem. Focusing on the similarity between a wavelength-routed WDM
network, which consists of a physical and a virtual network, and a cell, which
consists of a gene regulatory and a metabolic reaction network, we developed a
virtual network control method based on attractor selection found in a cell [8].
In addition, we incorporated the knowledge of the Hopfield neural network [12]
into the proposed method to embed attractors into the deterministic behavior of
the proposed virtual network control method, focusing on the similarity between
attractor selection in a cell and the Hopfield neural network. Another study [22]
solved the second research problem by proposing a method for designing diverse
attractors to be stored in the attractor structure to handle various environmental
changes. This chapter summarizes this series of studies.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
concept of attractor selection, while Sect. 4.3 proposes an adaptive virtual network
control method based on attractor selection. Section 4.4 presents an algorithm for
designing attractors for adaptive virtual network control, while Sect. 4.5 summarizes
related approaches. Finally, Sect. 4.6 concludes the chapter.

4.2 Attractor Selection

This section describes attractor selection, which is the core mechanism in our
adaptive virtual network control method. The original model for attractor selection
was introduced in [8].

4.2.1 Concept of Attractor Selection

A dynamic system driven by attractor selection uses noise to adapt to environmental
changes. In attractor selection, attractors are a part of the equilibrium points in
the phase space in which the system condition is preferable. The underlying
mechanism consists of deterministic and stochastic behaviors. When the current
system condition is suitable for the environment, i.e., the system state is close to one
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of the attractors, the deterministic behavior drives the system to the attractor. When
the current system condition is poor, however, the stochastic behavior dominates
over the deterministic behavior. While the stochastic behavior is dominant in
controlling the system, the system state fluctuates randomly due to noise, and
the system searches for a new attractor. When the system condition recovers
and the system state approaches an attractor, the deterministic behavior again
controls the system. These two behaviors are controlled by simple feedback on the
system condition. Therefore, attractor selection adapts to environmental changes by
selecting attractors using the stochastic behavior, the deterministic behavior, and
the simple feedback. In Sect. 4.2.2, we introduce attractor selection that models the
behavior of the gene regulatory and the metabolic reaction networks of a cell.

4.2.2 Cell Model

Figure 4.1 presents a schematic diagram of the cell model used in [8]. It consists of
two networks: the gene regulatory network in the dotted rectangle at the top of the
figure and the metabolic reaction network in the dotted rectangle at the bottom of
the figure.

Each gene in the gene regulatory network has protein expression levels, and
deterministic and stochastic behaviors in each gene control the expression level. The
deterministic behavior controls the expression level due to the effects of activation
and inhibition from the other genes. In Fig. 4.1, the effects of activation and inhibi-

Fig. 4.1 Schematic diagram
of a gene regulatory and a
metabolic reaction network Metabolic

reaction

Metabolic network

Gene regulatory network

Catalysis

GeneActivation
Inhibition

Substarate

Input/Output

Feedback
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tion are indicated by triangular-headed and circular-headed arrows, respectively. In
the stochastic behavior, inherent noise randomly changes the expression levels.

In the metabolic reaction network, metabolic reactions consume various sub-
strates and produce new substrates. Proteins in the corresponding genes catalyze
these metabolic reactions. In Fig. 4.1, metabolic reactions are illustrated as fluxes
of substrates, and catalyses of proteins are indicated by dashed arrows. Changes in
the concentrations of metabolic substrates are caused by metabolic reactions and
the transportation of substrates from outside the cell. Some nutrient substrates are
supplied from the environment by diffusion through the cell membrane.

The dynamics of the metabolic reactions determines the growth rate. Some
metabolic substrates are necessary for cellular growth; thus, the growth rate is
determined as an increasing function of their concentrations. The gene regulatory
network uses the growth rate as feedback on the condition of the metabolic reaction
network and controls the deterministic and stochastic behaviors using the growth
rate. If the metabolic reaction network is in poor condition and the growth rate is
low, the stochastic behavior dominates over the deterministic behavior, triggering a
search for a new attractor. During this phase, the expression levels are randomly
changed by noise, and the gene regulatory network searches for a state that is
suitable for the current environment. After the condition of the metabolic reaction
network is recovered and the growth rate increases, the deterministic behavior again
drives the gene regulatory network to a stable state. Section 4.2.3 describes the
mathematical model of attractor selection in greater detail.

4.2.3 Mathematical Model of Attractor Selection

The internal state of a cell is represented by a set of protein expression lev-
els of n genes (x1, x2, . . . , xn), and concentrations of m metabolic substrates
(y1, y2, . . . , ym). The dynamics of the protein expression level of the ith gene, xi ,
is described as

dxi

dt
= α

⎛

⎝ς

⎛

⎝
∑

j

Wij xj − θ

⎞

⎠ − xi

⎞

⎠ + η. (4.1)

The first and second terms on the right-hand side represent the deterministic
behavior of gene i, while the third term represents the stochastic behavior. In the
first term, the regulation of the protein expression level of gene i by other genes
is indicated by a regulatory matrix Wij , which takes 1, 0, or −1 corresponding to
activation, no regulatory interaction, or inhibition of gene i by gene j , respectively.
The rate of increase in the expression level is given by the sigmoidal regulation
function, ς(z) = 1/(1 + e−μz), where z = ∑

Wij xj − θ is the total regulatory
input with threshold θ for increasing xi , and μ denotes the gain parameter of the
sigmoid function. The second term represents the rate of decrease in the expression
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level of gene i. This term signifies that the expression level decreases depending
on the current expression level. The last term on the right-hand side of Eq. (4.1),
η, represents molecular fluctuation, which is Gaussian white noise. Noise η is
independent of the production and consumption terms, and its amplitude is constant.
The change in expression level xi is determined by the deterministic behavior,
i.e., the first and second terms in Eq. (4.1), and the stochastic behavior η. The
deterministic and stochastic behaviors are controlled by the growth rate α, which
represents the condition of the metabolic reaction network.

In the metabolic reaction network, metabolic reactions, which are an internal
influence, and the transportation of substrates from the outside of the cell, which
is an external influence, determine the changes in the concentrations of metabolic
substrates yi . Proteins of the corresponding genes catalyze the metabolic reactions,
and the expression level xi determines the strength of the catalysis. A high xi

accelerates the metabolic reaction, while a low xi suppresses it. In other words, the
gene regulatory network controls the metabolic reaction network through catalysis.

Some of the metabolic substrates are necessary for cellular growth. The growth
rate of the cell, α, is determined as an increasing function of the concentrations
of these vital substrates. The gene regulatory network uses α as feedback on the
condition on the metabolic reaction network and controls the deterministic and
stochastic behaviors. The feedback value is referred to as activity in the framework
of attractor selection. If the concentrations of the required substrates decrease due
to changes in the concentrations of nutrient substrates outside the cell, α also
decreases. By reducing α, the effects of the first and second terms in Eq. (4.1) on the
dynamics of xi decrease, and the effects of η increase. Thus, xi fluctuates randomly,
and the gene regulatory network searches for a new attractor. The fluctuation in
xi leads to changes in the rate of metabolic reactions via the protein catalysis.
When the concentrations of the required substrates again increase, α also increases.
Then, the first and second terms in Eq. (4.1) again dominate the dynamics of xi

over the stochastic behavior, and the system converges to the state of the attractor.
Since we mainly use the gene regulatory network, we omit a detailed description
of the metabolic reaction network from this chapter, and readers can refer to [8] for
additional information. Section 4.3 describes the proposed virtual network control
method based on the attractor selection model.

4.3 Virtual Network Control Based on Attractor Selection

In this section, we present a virtual network control method based on the attractor
selection model of a gene regulatory network. We first introduce the network model
used in this chapter and then describe our proposed method.
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4.3.1 Virtual Network Control

A physical network consists of nodes having routes overlaying OXCs, with the
nodes interconnected by optical fibers, as illustrated in Fig. 4.2a. Optical demul-
tiplexers allow optical signals to be dropped at routers, and OXCs allow optical
signals to pass through them. In such wavelength-routed WDM networks, nodes are
connected with dedicated virtual circuits called lightpaths. Virtual network control
configures lightpaths between routers via OXCs, and these lightpaths and routers
form a virtual network, as illustrated in Fig. 4.2b. When lightpaths are configured
in the WDM network, as illustrated in Fig. 4.2a, the virtual network in Fig. 4.2b
is formed. The IP network uses a virtual network as its network infrastructure
and transports IP traffic on the virtual network. By reconfiguring virtual networks,
that is, by establishing lightpaths, wavelength-routed WDM networks offer the
means to adapt to changing network environments. Determining how to reconfigure
virtual networks is thus indispensable to develop an adaptive virtual network control
method.

OXC

WDM network

Router

Lightpath

Fiber

Electronic
signal

Optical signal
Optical demux Optical mux

OXC

Reciever Transceiver

Fiber

IP router

OXC

IP network

WDM network

(a)

(b)

Router

Lightpath

Fiber

Virtual network1

2

3

4

Fig. 4.2 Example of a wavelength-routed WDM network. (a) Physical view of the network. (b)
Logical view of the network, where the lower layer represents a WDM network, which consists
of OXCs and fibers, and the upper layer represents an IP network, which uses a virtual network
constructed due to the wavelength-routing capability as network infrastructure
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4.3.2 Overview of Virtual Network Control Based on Attractor
Selection

In a cell, the gene regulatory network controls the metabolic reaction network,
and the growth rate, which is the condition of the metabolic reaction network, is
recovered when it is degraded due to changes in the environment. Similarly, the main
objective of our virtual network control method is to recover the performance of the
IP network by appropriately constructing virtual networks when the performance
is degraded due to changes in the network environment. We therefore interpret the
gene regulatory network as a WDM network and the metabolic reaction network as
an IP network, as illustrated in Fig. 4.3. Using the stochastic behavior, our virtual
network control method adapts to various changes in the network environment by
selecting suitable attractors, which correspond to virtual networks in our method,
for the current network environment, and the performance of the IP network can be
recovered after it has degraded due to network failures.

A flowchart of the proposed virtual network control method is presented in
Fig. 4.4. Our proposed approach works on the basis of periodic measurements of
the IP network condition. One example of a condition measure is the load on links,
which is the traffic volume on links. The link load is converted into activity, which
is the value that controls the deterministic and stochastic behaviors. We describe the
activity and the deterministic and stochastic behaviors in Sect. 4.3.3. The proposed
method controls the deterministic and stochastic behaviors in the same way as
attractor selection depending on the activity. The method constructs a new virtual
network according to the system state of attractor selection, and the constructed
virtual network is applied as the new infrastructure for the IP network. By sending

Feedback
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of IP network
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reaction

Metabolic network
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Input/Output
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Fig. 4.3 Application of attractor selection to virtual network control
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Fig. 4.4 Flowchart of virtual network control based on attractor selection

traffic over this new virtual network, the link load on the IP network is changed, and
the method retrieves the link load to determine the IP network condition.

4.3.3 Dynamics of Virtual Network Control

We place genes on all candidates of possible lightpaths, where li denotes the ith
lightpath. Each gene has its protein expression level xi , and the li is controlled by
xi . The dynamics of xi is described as

dxi

dt
= α

⎛

⎝ς

⎛

⎝
∑

j

Wij xj

⎞

⎠ − xi

⎞

⎠ + η, (4.2)

where η represents white Gaussian noise, ς(z) = 1/(1 + exp(−z)) is the sigmoidal
regulation function, and the activity α, which is equivalent to the growth rate in cells
introduced in Sect. 4.2, represents the IP network condition. We define α below. We
use the same formula as Eq. (4.1) to calculate xi , which is used to determine whether
li is established. In our method, we establish li if xi > 0.5; otherwise, we do not
establish li . Therefore, our method interprets xi as the virtual network.
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In a cell, α represents the condition of the metabolic reaction network, and
the gene regulatory network seeks to optimize α. Our method uses the maximum
link utilization on the IP network as a metric representing the condition of the IP
network. To obtain the maximum link utilization, we collect the traffic volume on
all links and select the maximum value. This information is quickly and directly
retrieved using simple network management protocol (SNMP). The activity must
be an increasing function of the condition of the target system (in this case, the IP
network), as mentioned in Sect. 4.2. Note that any metric that indicates the condition
of an IP network, such as average end-to-end delay, average link utilization, and
throughput, can be used to define α. We employ maximum link utilization as the
IP network condition because it is a major performance metric for virtual network
control that has been used in many studies [9, 24]. We convert the maximum link
utilization on the IP network, umax, into α as follows:

α = 1

1 + exp (δ (umax − ζ ))
, (4.3)

where δ represents the gradient of this function, and the constant ζ is the threshold
for α. If the maximum link utilization is greater than ζ , α rapidly approaches 0
due to the unsatisfactory condition of the IP network. Therefore, the dynamics of
our virtual network control method is governed by noise and the search for a new
attractor. When the maximum link utilization is less than ζ , we rapidly increase α

to improve the maximum link utilization.
A smooth transition between the current virtual network and the newly calculated

virtual network is another important problem in virtual network control, as discussed
in [7, 31]. Our virtual network control method constructs a new virtual network
on the basis of the current virtual network, and the difference between these two
virtual networks is given by Eq. (4.2). A high degree of activity signifies that
the current system state xi is near the attractor, which is one of the equilibrium
points in Eq. (4.2); therefore, the difference given by this equation is close to zero.
Consequently, our virtual network control method makes small changes to the
virtual network, enabling adaptation to changes in the network. When there is a
low degree of activity due to the poor IP network condition, the stochastic behavior
dominates over the deterministic behavior. Thus, xi fluctuates randomly due to
noise η to search for a new virtual network that has higher activity, i.e., the lower
maximum link utilization. Our method makes large changes to the virtual network
to efficiently discover a suitable virtual network from a multitude of possible virtual
networks. In this way, the proposed method modifies virtual networks depending
on the maximum link utilization in the IP network and adapts to changes in traffic
demand. We have already demonstrated that this method achieves smooth transition
between virtual networks in [16].

The proposed method constructs virtual networks according to xi , and xi

converges to one of attractors, which are a part of the equilibrium points in the phase
space; therefore, the definition of attractors is a challenging and essential aspect of
our proposed method. Section 4.3.4 presents how to define attractors in the phase
space.
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4.3.4 Attractor Structure

The regulatory matrix Wij in Eq. (4.2) is an important parameter since it determines
the locations of attractors in the phase space, referred to as the attractor structure.
Our method selects one of the attractors according to Eq. (4.2) and constructs a
virtual network corresponding to the selected attractor. Hence, defining Wij is a
challenging research problem. To define arbitrary attractors in the phase space, we
use knowledge about the Hopfield neural network, which has a similar structure to
gene regulatory networks.

The dynamics of our proposed method is expressed by Eq. (4.2). From the
perspective of dynamical systems, α is regarded as a constant value that determines
the convergence speed, and noise η is Gaussian white noise with mean 0. These
values do not affect the equilibrium points, i.e., attractors in our method, in the phase
space. Therefore, the equilibrium points are determined by the following differential
equation:

d

dt
xi = ς

⎛

⎝
∑

j

Wij xj

⎞

⎠ − xi.

This is the same formula as for a continuous Hopfield neural network [12]. We
therefore use methods to use Hopfield neural networks as content-associative
memory to store arbitrary attractors in the phase space [3, 25].

Suppose that we store a set of virtual networks gk ∈ G in the phase space
defined by Eq. (4.2). Let x(k) = (x

(k)
1 , x

(k)
2 , . . . , x

(k)
i ) be the vector of the expression

levels corresponding to virtual network gk . To store x(k) in the phase space, we
adopt the method introduced in [3], which stores patterns in the phase space by
orthogonalizing them. Due to space limitations, we omit a detailed description of
this method, and readers refer to [3] for a more detailed description. We store m

virtual networks, x(1), x(2), . . . , x(m), in the phase space. Let X be a matrix of which
rows are x(1), x(2), . . . , x(m). The regulatory matrix W = {Wij }, of which attractors
are x(1), x(2), . . . , x(m), is defined as

W = X+X, (4.4)

where X+ is the pseudo-inverse matrix of X.
Although pattern orthogonalization results in the high stability of stored pat-

terns [3], our method can also use more straightforward memorization approaches,
such as Hebbian learning [11]. Using Hebbian learning, Wij is defined as follows:

Wij =

⎧
⎪⎨

⎪⎩

0 if i = j∑

gs∈G

(2x
(s)
i − 1)(2x

(s)
j − 1) otherwise. (4.5)
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Our method can use either Eq. (4.4) or (4.5) to define the attractor structure. We
mainly use Eq. (4.4) to define the regulatory matrix, as Baram [3] reported that
pattern orthogonalization results in higher memory capacity than Hebbian learning.
In Sect. 4.4, we describe a method for dynamically reconfiguring the attractor
structure to adapt to a dynamic network environment.

4.4 Attractor Structure Design

According to Eq. (4.2), the expression levels converge to one of the attractors stored
in the attractor structure defined in Eq. (4.4). Convergence signifies that the proposed
method constructs any of the stored virtual networks. One approach to adapting to
various changes in the network environment is to store all possible virtual networks
as attractors. This approach is, however, impossible due to the memory capacity
limitations of the Hopfield network [3, 11]. We therefore must select candidates for
virtual networks embedded in an attractor structure.

There are two approaches to overcome the limitation on the number of attractors:
The first is to reconfigure the attractor structure dynamically in accordance with
the current environment, while the second is to design diverse attractors to be
stored in the attractor structure so that they cover various environmental changes.
This section presents methods to design virtual networks embedded in an attractor
structure as attractors. Section 4.4.1 formulates the problem of designing an attractor
structure, while Sect. 4.4.2 proposes a method to reconfigure an attractor structure
dynamically. Sections 4.4.3 and 4.4.4 describe other methods for designing diverse
attractors.

4.4.1 Problem Formulation

Suppose that we have a physical network consisting of n nodes. Under the
assumption that lightpaths can be established between any node pairs, the number
of possible lightpaths is approximately n2. In this case, the number of possible
topologies of virtual networks, which is the size of the solution space of virtual
network control, is 2n2

. In contrast, the number of attractors stored in an attractor
structure, of which dimension is n2, is approximately 10% of n2 [3]. The problem
is thus to select 0.1n2 virtual networks from 2n2

possibilities so that the following
objective is satisfied.

The objective of selecting virtual networks is to achieve adaptability to various
environmental changes; therefore, the attractor structure must have diverse virtual
networks as attractors. The problem of designing attractors thus involves selecting
diverse 0.1n2 virtual networks so that any of them can accommodate a variety of
environmental changes.
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4.4.2 Dynamic Reconfiguration of Attractor Structure

It is crucial to develop a method for increasing the number of attractors suitable
for the current network environment in the phase space. By incorporating new
attractors suitable for the current network environment into the attractor structure,
we achieve adaptability to various environmental changes when only a limited
number of attractors are stored in the attractor structure.

To achieve this, we update the regulatory matrix Wij in the case that our proposed
method finds a virtual network that is suitable for the current network environment
and is not a member of G when α is low. Before describing this approach in detail,
we present the control flow of our proposed method in Fig. 4.4. For simplicity, we
use the terms used in Eqs. (4.2), (4.3), and (4.4) with time t , e.g., the expression
level at time t is expressed as xi(t). In Step 1 of Fig. 4.4, we calculate α from the
maximum link utilization at time t , α(t). In Step 2, we update xi(t) with Eq. (4.2).
Next, we convert xi(t) into the virtual network g(t) and provide it as the network
infrastructure of the IP network in Step 3. In Step 4, traffic flows on this virtual
network g(t). In Step 5, the resulting flow of traffic determines link utilization ui(t)

on lightpath li . Then, we calculate α at time t + 1, α(t + 1), from ui(t). α(t + 1)

indicates the quality of virtual network g(t), which is converted from xi . We can thus
determine the quality of virtual network g(t) for the current network environment
by observing α(t + 1).

We can determine whether the performance on virtual network g(t) is sufficiently
high if α(t + 1) > A, where A is a threshold value. We add g(t) to the set of
attractors G if α(t + 1) > A, α(t) ≤ A, and g(t) /∈ G. Then, we update Wij with
Eq. (4.4). We add another condition α(t) ≤ A to prevent unnecessary updates of
Wij . The expression levels xi(t) always fluctuate due to the constant noise term, η,
in Eq. (4.2). Even if α is high and the deterministic behavior dominates the dynamics
of xi over the stochastic behavior, xi changes slightly; thus, our method sometimes
constructs a slightly different virtual network from the already constructed network.
Without the condition α(t) ≤ A, this behavior generates many attractors similar to
one of the stored attractors, resulting in a lack of diversity of attractors. Therefore,
the condition α(t) ≤ A is necessary, and the algorithm adds g(t) as a new attractor
to the attractor structure only if the stochastic behavior dominates the dynamics of
xi .

Finally, we describe the deletion of attractors. Because the memory capacity of
the Hopfield network is limited, as mentioned above, we cannot keep all of the
virtual networks added in the attractor structure. We must delete some of the stored
attractors when we add virtual network g(t) as a new attractor. For this purpose, we
use the first-in first-out (FIFO) policy for managing attractors when a new attractor
is added Although we can use a more sophisticated policy to manage attractors, our
method achieves sufficient adaptability with the FIFO policy, as discussed in [17].
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4.4.3 Design of Diverse Attractor Structures

This section presents an algorithm for selecting diverse attractors. This algorithm is
summarized as follows:

1. Generate virtual networks with the isomorphic graph structure of a given virtual
network.

2. Classify the generated virtual networks into groups on the basis of their
characteristics.

3. Select representative virtual networks from each group.

The principle behind this algorithm is that virtual networks that are derived from
a desirable virtual network have the same desirable characteristics. In our case,
desirable virtual network signifies that a virtual network accommodates a given
traffic demand with low link utilization. Let us assume that a virtual network g

is designed to accommodate a given traffic demand matrix T with a sophisticated
algorithm, such as an optimization-based algorithm. In the first step, the algorithm
derives isomorphic virtual networks from g assuming that the generated virtual
networks accommodate T ′, which is different from T . Next, the algorithm generates
clusters of virtual networks with similar characteristics. Finally, the algorithm
selects a representative virtual network from each group and embeds it in the
attractor structure as an attractor. The steps of the algorithm are described below.

Step 1. Generation of Isomorphic Virtual Networks The algorithm first generates
virtual networks that have an isomorphic graph structure of a given virtual network
g. Such virtual networks are referred to as isomorphic virtual networks of g,
hereinafter. Figure 4.5 presents an example of isomorphic virtual networks. Virtual
network g1 consists of five nodes N0, N1, . . . , and N4, and g2 and g3 are isomorphic
virtual networks of g1. g2 is generated by shifting N0 of g1 to N1, N1 to N2, N2 to
N3, N3 to N4, and N4 to N0. g3 is also generated from g1 in the same way. Virtual
networks that do not satisfy the constraints on resources in the physical network,
such as the number of ports on a router, are eliminated from the candidate pool. In
this process, the algorithm generates at most n! virtual networks from a given virtual
network.

Isomorphic topologies

Fig. 4.5 Example of isomorphic virtual networks
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Let us assume that a virtual network g1 is designed to accommodate a given
traffic demand matrix T1 with a sophisticated algorithm, such as an optimization-
based algorithm. The load on the link between N3 and N4, indicated by a dashed line
in Fig. 4.5, is highest but is sufficiently low because g1 is designed for T1. Suppose
that a traffic demand matrix T2 is generated by randomly shuffling all the elements
in T1. In this case, at least one of the isomorphic virtual networks, such as g2, is
capable of accommodating T2 because g2 is derived from g1 by shuffling the nodes
in g1. This implies that the isomorphic virtual networks of a well-designed virtual
network are capable of accommodating changing traffic demand. In this study, the
proposed algorithm uses I-MLTDA [2], which is a heuristic algorithm to design
virtual networks for a given traffic demand matrix. However, the algorithm must
further reduce the number of candidates for virtual networks because the number
of the isomorphic virtual networks derived from g is still too high. Hereinafter, G

denotes the set of isomorphic virtual networks, including g.

Step 2. Classify Virtual Networks To further reduce the number of virtual network
candidates, the algorithm classifies the isomorphic virtual networks into groups on
the basis of the characteristics of the networks and selects one network from each
group as a representative virtual network. The algorithm uses edge betweenness
centrality, which is the number of shortest paths that pass through a link as a
characteristic. The principle behind the use of edge betweenness centrality is that
a link with the highest edge betweenness centrality is likely to be a bottleneck link
because a larger number of shortest paths travel this link than any other links. The
algorithm categorizes virtual networks with the same bottleneck link, i.e., highest
edge betweenness centrality link, into the same group, as illustrated in Fig. 4.6
and selects one representative virtual network from each group, thereby generating
diverse virtual networks in terms of bottleneck links.

A formal definition of the virtual network classification is summarized as
follows:

Gp = {gi | gi ∈ G,C(gi, lp) = max
q

C(gi, lq )}, (4.6)

Bottleneck link

Node

Link
(=Lightpath)

Candidate of virtual network

Group of virtual networks having the same bottleneck links

Fig. 4.6 Classification of virtual network candidates
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Fig. 4.7 Merging groups of similar virtual networks

where p = (s, d) denotes a node pair of source node s and destination node d , lp
denotes a link (lightpath) established between node pair p, and C(gi, lp) is the value
of edge betweenness centrality of lp in a virtual network gi . Virtual networks in the
group Gp are expected to contain the bottleneck link lp.

The number of groups is still high compared to the requirement 0.1n2. Specifi-
cally, the number of groups is at most n2 because the number of possible lightpaths
is n2. We must therefore reduce the number of groups further, and the algorithm
consequently merges the virtual network groups according to the similarity of
the location of bottleneck links. Figure 4.7 illustrates the condition of merging
virtual network groups. Let us assume that a large amount of traffic flows from
node s to d via a whose degree is low, and l(s,a) is the bottleneck of this virtual
network. In this case, a large part of the traffic on link l(s,a) also flows on link
l(a,d) because the degree of a is low. Thus, the load on l(a,d) is likely to be high.
In this sense, virtual network candidates that belong to group G(s,a) and G(a,d)

have similar characteristics. In the same way, virtual networks in G(s,d) also have
similar characteristics. According to this observation, the algorithm merges the
virtual network groups as

G(s,d) ← G(s,a) ∪ G(a,d) ∪ G(s,d). (4.7)

The algorithm selects three nodes, in this case, a, s, and d , in ascending order of their
degree since the correlation of the traffic load on l(s,a) and l(a,d) is high in the case
that the degree of a is low. Note that each group has many virtual networks, and the
degree of a of the virtual networks differs depending on the network topologies. The
algorithm thus selects the three nodes according to the degree of each node averaged
over all the virtual networks in the group. The algorithm repeatedly merges virtual
network groups, while the number of groups is greater than 0.1n2.
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Step 3. Selection of Representative Virtual Networks Finally, the algorithm selects
a virtual network whose maximum edge betweenness centrality is the lowest among
other virtual networks in the group as the representative of each group. The rationale
is that the maximum link utilization of a virtual network with low edge betweenness
centrality is likely to also be low. The algorithm then embeds the selected virtual
networks in the attractor structure.

4.4.4 Scalable Design of Attractor Structure by Graph
Contraction

Although the proposed algorithm is able to design diverse attractors, as demon-
strated in [22], it has scalability problems due to the high computational complexity
of the generation process of isomorphic virtual networks. The number of isomorphic
virtual networks for a given network is n!, and a commercial off-the-shelf computer,
for instance, was able to compute the algorithm for physical networks with up
to 10 nodes in a reasonable time in our experiment. This section thus extends
the algorithm proposed in Sect. 4.4.3 to design attractors for large-scale physical
networks.

The algorithm derives a graph minor of a given physical network to reduce the
number of nodes in the physical network and performs the procedures described
in Sect. 4.4.3 for the graph minor of the physical network. Instead of contracting
edges, the algorithm divides the given physical network into clusters and places
edges between the clusters, as illustrated in Fig. 4.8. The edge contraction procedure
is outlined as follows:

Step 1 Divide a physical network into clusters.

Cluster
Physical network

Minor of physical network

Inter-cluster link

Fig. 4.8 Contraction of physical network topology
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Bottom layer

Top layer

Step 1

Step 2

Step 3

Step 4

Fig. 4.9 Outline of hierarchical design of attractors

Step 2 Construct virtual network candidates in clusters at the bottom layer.
Step 3 Construct virtual network candidates at upper layers according to the

procedures explained in Sect. 4.4.3.
Step 4 Connect lightpaths between clusters to nodes in the clusters.

Figure 4.9 illustrates this procedure. The remainder of this section explains the
procedure step by step.

Step 1. Cluster Division of a Physical Network The algorithm divides a given
physical network into c clusters. If the number of vertices in a cluster is greater
than c, the algorithm divides the cluster into further small clusters recursively until
the number of vertices in all clusters is equal to or less than c. This procedure implies
that the algorithm creates a hierarchical structure for a given physical network, as
illustrated in Fig. 4.9. An upper layer consists of clusters containing nodes in a lower
layer.

Step 2. Construction of Virtual Networks Inside Clusters at the Bottom Layer The
algorithm starts constructing virtual networks from the bottom layer. In the bottom
layer, the algorithm constructs virtual networks possessing either a full-mesh or a
star topology inside each cluster so that each topology in the clusters can adapt to
changes in a cluster and maintain connectivity in the case of network failure.

Step 3. Construction of Virtual Networks in Upper Layers The algorithm then
designs virtual networks in the upper layers according to the procedures described
in Sect. 4.4.3. It should be noted that the algorithm does not need to merge virtual
network groups. This step prepares at most c(c − 1)/2 virtual network groups
because the algorithm sets up lightpaths bidirectionally to reduce the number of
possible virtual networks. The detailed procedure is summarized as follows:

Step 3–1: Construct a virtual network g using an existing heuristic method, i.e.,
I-MLTDA [2], and generate isomorphic virtual networks from g.
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Step 3–2: Categorize the isomorphic virtual networks into at most c(c − 1)/2
groups on the basis of edge betweenness centrality.

Step 3–3: Select the representative virtual network from each group.

Step 4. Establishment of Links Between Clusters The algorithm finally connects
clusters by creating lightpaths. This procedure corresponds to mapping lightpaths in
the upper layers to those in the bottom layer. The algorithm establishes lightpaths
between clusters from the kth layer to the (k + 1)th layer, i.e., from an upper layer
to a lower layer. The probability of a lightpath lki,j being established between u and

v (u ∈ V k
i and v ∈ V k

j ) is formulated as follows:

Pu,v = (kukv)
−1, (4.8)

where lki,j represents a lightpath bidirectionally established between Ck
i and Ck

j , Ck
x

represents the xth cluster in the kth layer, ku represents the number of lightpaths
connected to node u (the degree of u), and V k

x represents nodes belonging to Ck
x .

Equation (4.8) aims at balancing the traffic load. Because a large amount of traffic
is likely to travel via a node with a high degree, the algorithm connects nodes whose
degrees are low.

The proposed algorithm described in Sects. 4.3 and 4.4 exhibits high adaptability
to both changes in traffic and network failures. Readers can refer to [16, 17, 22] for
detailed descriptions of the performance evaluation.

4.5 Related Work

Before concluding this chapter, we briefly introduce engineering-based approaches
for recovering from network failures in wavelength-routed WDM networks. Such
approaches can be classified into two categories: protection and restoration [32].

With protection approaches, a dedicated backup lightpath for each working
lightpath is reserved for recovery from network failures at network design time.
Protection approaches generally enable fast recovery from expected network fail-
ures [20, 26, 27]. Such approaches, however, cannot handle unexpected network
failures because they exploit several assumptions or prior knowledge about network
failures and predefine backup lightpaths at network design time. For instance, most
protection approaches do not take into account a situation in which both working
and backup lightpaths fail simultaneously. Though several protection approaches
that enable recovery from dual-link failures have been proposed [28], they also
exploit several assumptions or prior knowledge about network failures. Therefore,
protection approaches are generally unable to handle unexpected network failures.

In contrast, restoration approaches dynamically reconfigure an alternative virtual
network for lightpaths affected by a network failure when the failure occurs [4].
Restoration approaches discover spare resources in the network by collecting
network information, such as surviving optical fibers and OXCs, to establish an



108 Y. Koizumi

alternative virtual network. Restoration approaches can maintain the connectivity of
virtual networks if they are able to collect network information. However, if they
are unable to collect network information changed by the failure, recovery from the
failure is not possible.

Protection and restoration approaches, which are based on the control paradigm
developed in the field of engineering, take into account a specific class of failures
and are optimized to achieve fast and efficient recovery from the assumed failures.
Hence, they may not be able to recover from unexpected network failures, such
as multiple and series of network failures caused by a disaster. It is difficult for
engineering approaches to adapt to various environmental changes as long as they
use predefined algorithms. Therefore, the development of a virtual topology control
method that adapts to various environmental changes in networks is indispensable.

4.6 Conclusion

This chapter presents a Yuragi-based virtual network control method, which is
based on attractor selection found in a gene regulatory network, focusing on the
similarity between gene regulatory networks and virtual network control. Unlike
most engineering-based virtual network control methods, the proposed method does
not rely on predefined algorithms. Instead, it exploits stochastic behavior in the
case that the performance of a system is degraded, thereby adapting to unknown
changes in the network environment. Since a system driven by attractor selection
converges to one of the attractors embedded in its attractor structure, it is a challenge
to design attractors to allow the system to adapt to various environmental changes.
This chapter proposes two approaches for designing attractors.

Although attractor selection is applied to virtual network control in a wavelength-
routed WDM network in this chapter, the proposed approach is applicable to other
networks, such as virtualized networks and software-defined networks, which have
recently attracted significant attention.
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Chapter 5
Introduction to Yuragi Learning

Shin’ichi Arakawa and Tatsuya Otoshi

Abstract Yuragi learning is a paradigm that uses attractors as state templates of
network systems. Under uncertain or fluctuating traffic in the network systems,
template matching with predefined attractors is first examined, and the state of the
network system is then changed to the most appropriate attractors. In this introduc-
tory chapter to Yuragi learning and its applications, we present a fundamental model
of human perceptual decision-making, which is the core of Yuragi learning.

5.1 Yuragi Learning: An Introduction

As discussed in Chap. 1, Yuragi theory and Yuragi control enable the adaptive
control of network systems. Attractors characterize the deterministic behavior of the
control and are selected through the activity and Yuragi. Although the trial-and-error
paradigm driven by Yuragi achieves adaptiveness, many trials may be required to
find a favorable solution. From an engineering perspective, this is not preferable, as
a large number of trials require a long time to adapt and disrupt application services
over the network system.

One way to eliminate the trial-and-error paradigm in network control is to change
the role of the attractors. In Yuragi control, attractors are a type of landmark in
dynamical systems that require a trial-and-error paradigm to reach a system state at
one of the landmarks. An alternative paradigm is to use attractors as state templates
of the network systems. Specifically, under uncertain or fluctuating traffic in network
systems, template matching with predefined attractors is first examined, and the state
of the network systems is then changed to the most appropriate attractor. This type
of paradigm is also observed in the human brain and is known as decision-making.
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Decision-making in the human brain is the most familiar example of decision-
making under uncertainty. In daily life, the human brain estimates various scenarios
using sensory stimuli from the environment and decides which actions to take. Thus,
introducing this brain mechanism into network control is a promising approach for
handling uncertain observations to determine the appropriate network state. The
current consensus in cognitive science states that the brain accumulates sensory
information over a period of time, and makes a perceptual decision (i.e., categorizes
observed information) when sufficient information has been collected [2, 4, 6].

In this chapter, we first present the fundamentals of the Bayesian attractor model
(BAM) [2] as a model of human perceptual decision-making. Then, we introduce
Yuragi learning, where the state of network systems is controlled with the assistance
of the BAM.

5.2 Bayesian Attractor Model for Human Perceptual
Decision-Making

5.2.1 Overview

The BAM models the behavior of the human brain. For example, when a traffic light
turns green at an intersection, we see a green light and make the decision to proceed.
More precisely, the color categories of traffic lights are retained in our brains, and
we judge which category the observed sensory information belongs to. Even when
the sensory information contains a large amount of noise (e.g., when it is difficult to
see a traffic light due to bad weather or backlight), the brain is able to accumulate
evidence extracted from this noisy sensory information over time, and makes the
appropriate perceptual decisions.

The BAM has a state variable z that eventually settles to a fixed point φ that is
defined by the attractor dynamics (i.e., winner-take-all dynamics [7]) as evidence
is accumulated. Internally, the BAM has several fixed points φi , each of which
corresponds to a choice for the long-term average μi of an observed value. At time
t , the model infers the posterior distribution of the state variable zt , denoted by
p(zt |X1:t ), given observations up to time t , denoted by X1:t = {x1, · · · , xt }. The
model selects μi as soon as a confidence criterion, such as

p(zt = φi |X1:t ) ≥ λ,

is satisfied. Here, the posterior belief p(zt = φi |X1:t ) is the confidence measure for
making a decision for choice μi . Thus, the BAM accumulates observation values
and makes a decision when the confidence for the decision is sufficiently large.
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5.2.2 Inference Mechanism for Decision-Making by Bayesian
Attractor Model

The BAM has a generative model for Bayesian inference by the decision maker
(i.e., brain). The generative model calculates the likelihood of observations for all
possible scenarios considered by the decision maker. More precisely, the generative
model predicts a probability distribution over observation values based on the
current state variable and its attractor dynamics.

The generative model defines a change in the state variable from one-time step
to the next as

zt − zt−�t = �t · f (zt−�t) + √
�t · wt , (5.1)

where zt is the D-dimensional state variable at time t , and f (z) is the attractor
dynamics [7].

The noise term wt follows the normal distribution N(0,Q), where Q = (q2/�t)·
I is the variance–covariance matrix of the noise, and q represents the dynamic
uncertainty. The dynamic uncertainty represents the amount of noise with which
the decision maker expects the state variable to be changed, which is interpreted as
the tendency for state variables to switch between fixed points.

The generative model predicts a probability distribution over the observation
values, given the state variable z. The equation for the prediction is

x = M · σ (z) + v (5.2)

= [μ1, · · · ,μD] · σ (z) + v

= σ(z1) · μ1 + σ(z2) · μ2 + · · · + σ(zD) · μD + v,

where M = [μ1, · · · ,μD] contains the averages of observation values that
correspond to choices and σ (z) is a sigmoid function that maps all zj ∈ z to values
between 0 and 1. Due to the winner-take-all dynamics of z, the fixed point φi is
mapped to a vector σ (φi), where one element is approximately 1 and the other
elements are approximately 0. Thus, the linear combination M · σ (z) associates
each fixed point φi with the choice (average of observations) μi . The noise term
v follows the normal distribution N(0,R), where R = r2 · I is the variance–
covariance matrix of the noise, and r represents the sensory uncertainty. The sensory
uncertainty represents the amount of noise in observations that the decision maker
expects. In contrast, the actual amount of noise by which observations deviate from
the average values is denoted by s. We summarize the key parameters of the BAM
in Table 5.1.

At time t , the BAM infers the posterior distribution of the state variable zt ,
denoted by p(zt |X1:t ), using the generative model and the unscented Kalman
filter (UKF) [5]. The UKF is a statistical sampling method that approximates the
posterior distribution p(zt |X1:t ) with a normal distribution. In the following, we
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Table 5.1 Key parameters of Bayesian attractor model

Parameter Explanation

s (noise level) Actual amount of noise in observation values

q (dynamic uncertainty) Tendency for state variables to switch between fixed points

r (sensory uncertainty) Amount of noise in observation values that the decision maker
expects

briefly describe the flow of the Bayesian inference in the BAM. First, the generative
model predicts the posterior distribution of the state variable at time t using Eq. (5.1)
and approximates it with a normal distribution N(ẑt , P̂t ), where P̂t represents the
variance–covariance matrix of the predicted state variable, ẑt . Second, the generative
model predicts the probability distribution of the corresponding observation values
using Eq. (5.2) and approximates it with a normal distribution N(x̂t , �̂t ), where
�̂t represents the variance–covariance matrix of the predicted observation values,
x̂t . Finally, the BAM calculates the observation residual between the predicted
observation values x̂t and the actual observation values xt ,

εt = xt − x̂t , (5.3)

and updates the estimate of the state variable z̄t and its posterior variance–covariance
matrix P̄t via the Kalman gain Kt as follows:

z̄t = ẑt + Kt · εt ,

P̄t = P̂t − Kt ĈT
t .

The Kalman gain represents the relative importance of the observation residual and
is given by

Kt = Ĉt �̂
−1
t ,

where Ĉt is the covariance matrix between the predicted state variable ẑt and the
predicted observation values x̂t . In this way, the BAM approximates the posterior
distribution of the state variable p(zt |X1:t ) with a normal distribution N(z̄t , P̄t ).

5.2.3 Design Choices for Bayesian-Attractor-Model-Based
Network Control

In [2], the authors examined the behavior of the BAM, focusing on two-alternative
forced choice tasks, which are commonly employed when investigating perceptual
decision-making. Specifically, the authors considered random dot motion tasks that
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identify the direction in which a randomly moving cloud of dots moves on average.
Several problems must be solved in order to apply the BAM-based approach to
network control, which usually involves many alternatives.

5.2.3.1 Setting Parameters r and q

Parameter r denotes the sensory uncertainty, which represents the amount of noise
in observations that the decision maker expects. Thus, r should be the empirical
standard deviation s of observations. In fact, it was demonstrated in [2] that the
optimal Bayesian decision maker should have a generative model in which r is
ideally equal to s.

Parameter q denotes the dynamic uncertainty, which controls the propensity of
decision makers to change their decision and affects the balance between flexibility
and stability in decision-making. When q is small, the state variable z is too
stable to switch between fixed points. That is, it is difficult for decision makers
to change their decision even when the actual choice (i.e., average of observation
values) changes, since they dismiss evidence for another choice as noise. When q is
large, although decision makers can change their decision rapidly, they sometimes
change their decision due to sensory noise. Therefore, it is necessary to set q to an
appropriate value with which decision makers can make fast and accurate decisions.
By examining the effects of parameters r and q on the BAM-based approach in
advance by offline simulations, we can obtain appropriate parameter sets {r, q}.

5.2.3.2 How to Determine a Criterion for Decision-Making

The criterion for decision-making should be suitable for a VN (virtual network)
reconfiguration method. In [1], the authors introduced several definitions of confi-
dence for decision-making: the posterior belief itself, the logarithm of the posterior
belief, and the log change in the posterior belief.

5.2.3.3 Preparing Attractors

In the BAM, it is crucial to design attractors properly, as attractors represent state
templates in network control. An extreme approach is to prepare all network states
as attractors. However, this requires a long recognition time. Thus, a limited number
of attractors should be prepared in the BAM.

One problem is to determine how to design attractors in BAM-based network
control and how and when to update attractors in dynamic systems. However, there
are no clear guidelines for designing or updating attractors, and this problem must
be investigated separately in each application. A possible guideline can be obtained
from a form of Eq. (5.2). The first term of the right-hand side of the equation forms
a linear combination; thus, the attractors should have linear independence, and the
dimension of the space spanned by attractors becomes maximal.
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5.3 Virtual Network Reconfiguration Based on Yuragi
Learning

5.3.1 Overview of Virtual Network Reconfiguration

Figure 5.1 illustrates how to apply the BAM-based approach to the VN reconfigu-
ration problem. When the traffic situation is identified as μi given the observation
values X1:t , the corresponding VN gi suitable for the identified traffic situation μi

is retrieved and configured. More precisely, we select VN gi when the confidence in
decision-making for the choice μi is sufficiently large. Here, we use the amount of
incoming and outgoing traffic at edge routers as the observation values X1:t . Note
that the VN gi is prepared in advance such that the VN is suitable for the traffic
situation μi .

Applying only the BAM-based approach is insufficient for a VN reconfiguration
framework because the retrieved VN gi may not be able to accommodate the traffic
demand even when the identification succeeds. To handle this case, we incorporate
the Yuragi control discussed in Chap. 4 into our VN reconfiguration framework to
find favorable VNs. That is, we prepare a set of control phases and change the
control phase based on both the confidence from the BAM-based approach and the
service quality of the VN. More precisely, our VN reconfiguration framework is
an online algorithm that reconfigures a VN by the following steps based on the
observation of the amount of incoming and outgoing traffic at edge routers and the
service quality of the VN (here, the maximum link utilization in the VN).

(Step 1) Calculate the confidence of the BAM-based approach using the measured
amount of incoming and outgoing traffic at edge routers.

(choice )

| : High Confidence 
in choice

Observe

Bayesian Attractor Model
Observe outgoing /incoming 

traffic at edge routers 

VNs

Physical Network

(choice ) (choice )

Configure VN that works 
well for the traffic situation 

Fig. 5.1 Application of Bayesian attractor model to virtual network (VN) reconfiguration
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(Step 2) Change the control phase based on the confidence of the BAM-based
approach and the service quality of the VN, and execute the control.

Note that the amount of incoming and outgoing traffic at edge routers and the link
utilization in the VN can be retrieved more easily than information of the end-to-end
traffic demand matrix. The control phases are as follows:
(Phase 1) Stay until a new traffic situation is identified.

• We do not reconfigure a VN until the current traffic situation is identified.

(Phase 2) Reconfigure the VN based on the identified traffic situation.

• We select the VN candidate gi that is suitable for the identified traffic situation
μi (Phase 2-1).

• If VN gi cannot accommodate the traffic demand, we search for a suitable VN
using Yuragi control (Phase 2-2).

In summary, our VN reconfiguration framework first identifies traffic situations
using the BAM-based approach (Phase 1) and immediately changes the VN after
successful identification (Phase 2-1). Then, we measure the service quality of
the VN and reconfigure the VN if necessary (Phase 2-2). Note that this VN
reconfiguration framework does not cover the case in which the identification of
traffic situations fails, that is, where the confidence is stable at a small value. We
investigate ways to handle the case in which the identification fails in Sect. 5.5.

5.3.2 Virtual Network Reconfiguration Algorithm

The details of the VN reconfiguration framework are presented in the following
subsections.

5.3.2.1 Preparation

We prepare VNs gi , (1 ≤ i ≤ D), that are well suited for traffic situations μi in
advance. Examples of VN preparation include the following:

• Extracting VNs from the control history of VN configurations that indicate
adequate performance in specific traffic situations.

• Calculating VNs using traffic demand matrices that can be predicted from past
traffic fluctuations.

We also prepare sets of the parameters {r, q} of the BAM with which the traffic
situation can be successfully identified by offline simulations.
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5.3.2.2 (Step 1) Calculate Confidence Using the BAM-Based Approach

At time t , we observe the amount of incoming and outgoing traffic at edge routers
and calculate the confidence in decision-making for the various choices.

First, we determine the parameters r and q used for inference. Specifically, we
calculate the empirical standard deviation st using the observations up to time t ,
X1:t , and set r to st . Then, we set q to the value corresponding to r obtained in
the above preparatory phase. Here, we sequentially update the empirical standard
deviation st using Welford’s method [8], as it is not necessary to retain past
observation values from time 1 to time t − 1. Second, we infer the posterior
distribution of the state variable, p(zt |X1:t ), and calculate the posterior belief for
each choice, p(zt = φi |X1:t ). Finally, we calculate the confidence of the decision
that the current traffic situation is identified as μi . Here, following the method in
[1], we use as the confidence the left-hand side of Eq. (5.4), which represents the
difference between the logarithms of the posterior beliefs. That is, we identify the
current traffic situation as μi when

log10
p(zt = φi |X1:t )
p(zt = φj |X1:t )

≥ λ, (5.4)

where the posterior belief in choice μi , p(zt = φi |X1:t ), is the largest among all
the choices, and the posterior belief in choice μj , p(zt = φj |X1:t ), is the second
largest.

5.3.2.3 (Step 2) Change the Control Phase and Execute the Control

We change the control phase based on the confidence obtained in Step 1 and the
service quality of the VN and execute the control. The state transition diagram
of the control phases is presented in Fig. 5.2. The label at each edge represents
the transition condition, which consists of the confidence from the BAM-based
approach and the service quality of the VN. The confidence becomes stable at a
high value when Eq. (5.4) is satisfied for a total of c consecutive times. The details
of each control phase are as follows:
(Phase 1) Stay until a new traffic situation is identified.

• This phase is the initial state of our VN reconfiguration framework. The control
phase also changes to this phase when the confidence falls below threshold λ.

• We do not reconfigure a VN in this phase.

(Phase 2-1) Configure the VN candidate that is well suited for the identified traffic
situation.

• The control phase changes from Phase 1 to this phase when the confidence
becomes stable at a high value.
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Fig. 5.2 State transition diagram for the virtual network reconfiguration framework

• We configure one of VN candidates gi that is well suited for the traffic situation
μi in this phase.

(Phase 2-2) Reconfigure the VN using the attractor-selection-based method.

• The control phase changes to this phase when the confidence takes a high value
and the service quality of the VN is low.

• We search for suitable VNs using Yuragi control in this phase.

(Phase 0) Stay (because the VN shows favorable performance).

• The control phase changes to this phase when the service quality on the VN
improves.

• We do not reconfigure the VN in this phase.

5.4 Performance Evaluation of Yuragi Learning

In this section, we first investigate the characteristics of our VN reconfiguration
framework based on Yuragi learning and then evaluate the advantages of our
VN reconfiguration framework when the traffic demand fluctuates. We use VN
reconfiguration over an elastic optical network for evaluation. Here, we evaluate the
advantages of our VN reconfiguration framework by comparing it with an approach
using Yuragi control (called the reference method hereafter), as neither method uses
traffic demand matrix information.
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Table 5.2 Parameters of the
USNET physical network
topology

Parameter Value

Number of nodes 24

Number of links 43

Number of bandwidth-variable transceivers 10

Bandwidth of each BVT 100 Gbps

5.4.1 Evaluation Environments

We used an elastic optical network that had the USNET topology, and the parameters
of the physical network topology are provided in Table 5.2. The number of nodes,
each of which consisted of an IP router and a bandwidth-variable wavelength cross-
connect (BV WXC), was 24, and the number of links (i.e., bidirectional optical
fibers) was 43. Here, all IP routers were edge routers. Each BV WXC had 10
bandwidth-variable transponders (BVTs) that offered up to 100 Gbps of bandwidth.
The goal of the control was to cause the maximum link utilization in a VN to be
less than 0.5. We generated traffic demand matrices T1, · · · ,T5 that followed a
log-normal distribution. We denoted the amount of incoming and outgoing traffic at
edge routersE1, · · · ,E5, which were predefined traffic situations μ1, · · · ,μ5, when
the traffic demand matrices were T1, · · · ,T5, and calculated the configurations of
VN candidates g1, · · · , g5, which could accommodate T1, · · · ,T5. It should be
noted that the predefined traffic situations are attractors in Yuragi learning. The VN
candidates were determined by the virtual topology using the most subcarriers first
algorithm[3], and frequency slots were allocated to lightpaths using the first–last fit
algorithm[11]. We set c to 3 and λ to 10.

For the evaluation, at every unit time step, the end-to-end traffic demand matrix
was generated based on the normal distribution N(T1,�) until time 100; then, it
was generated based on the normal distribution N(T2,�) until time 200, where
Ti = (Ti,11, · · · , Ti,NN ) and � = CV 2diag(T 2

i,11, · · · , T 2
i,NN ). N denotes the

number of nodes, and CV is the coefficient of variation that represents the degree
of traffic fluctuation. In [9], the authors analyzed real traffic data and fit the data to
a traffic fluctuation model that followed a normal distribution. The results indicated
that the CV of real traffic is approximately within the range [0.5, 1.5]. The reference
method changed its control phase based on the service quality of the VN, as
illustrated in Fig. 5.3. The method searched for desirable VNs in Phase 2-2 and
then changed to Phase 0 when the performance of the VN improved.

5.4.2 Characteristics of Virtual Network Reconfiguration
Framework

Figure 5.4 presents the transitions between control phases for each method when
CV was 0.5 and demonstrates the behavior of our framework. Our method started in
Phase 1 and remained in Phase 1 until the traffic situation was identified. At time 5,
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Fig. 5.4 Transition of the control phase (CV = 0.5)

the method shifted to Phase 2-1 and reconfigured the VN to the most promising VN
among the predefined VN candidates. Thereafter, the method entered Phase 0, as the
VN was able to accommodate the traffic. Because the confidence in the identification
of the current traffic situation decreased at time 101, the method returned to Phase 1.
At time 104, the method shifted to Phase 2-1, having detected a change in the
traffic situation. It should be noted that our method was able to detect a change
in the traffic situation even though it accumulated past observations. Thereafter, the
method returned to Phase 0 because the VN was able to accommodate the traffic.
Even when the method shifted to Phase 2-2 due to a traffic fluctuation at time
137, it immediately returned to Phase 0 by the attractor-selection-based method.
This is because the VN was reconfigured to the most promising candidate, and
therefore, the attractor-selection-based method required little effort to identify an
effective VN. In contrast, the reference method repeatedly changed the control phase
between Phase 2-2 and Phase 0. That is, although the reference method searched for
a suitable VN for the current traffic situation and temporarily identified one, the VN
was unable to adapt to traffic changes after that.
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5.4.3 Advantages of Virtual Network Reconfiguration
Framework

In this section, we evaluate the advantages of our VN reconfiguration framework.
Our VN reconfiguration framework aims to detect changes in the traffic situation
and configure a VN that is suitable for the current traffic situation. We therefore
evaluated the advantages of our framework by considering the performance after the
traffic situation changed (i.e., after time 100). We executed 100 trials with different
seeds to generate different traffic demand matrices.

First, we evaluated the time required for identification of the traffic situation, and
the distribution is presented in Fig. 5.5. Here, the required time is defined as the
time from when the traffic situation changed (i.e., time 100) to the time when the
confidence became stable at a high value and the control phase changed to Phase 2-1
for the first time. Figure 5.5 demonstrates that our VN reconfiguration framework
identified the traffic situation within 10 time steps in all trials. It should also be noted
that our framework identified the current traffic situation as μ2 in all trials. That is,
our framework correctly identified the traffic situation because the traffic demand
matrix was generated by following N(T2,�). We also observed that the required
time increased as CV increased. This is because it took a longer time to accumulate
evidence for a choice when the traffic demand fluctuated more and the observations
were more likely to deviate from the attractors.

Second, we evaluated the performance of the VN configured in Phase 2-1.
Figure 5.6 illustrates the distribution of the maximum link utilization of the VN
configured in Phase 2-1 after the traffic situation changed (i.e., after time 100). It
can be seen that in most trials, the VN configured in Phase 2-1 achieved the control
goal of keeping the maximum link utilization less than 0.5. However, the maximum
link utilization of the VN tended to increase as CV increased. That is, although
our VN reconfiguration framework was able to adapt to changes in traffic situations
by configuring the most suitable VN among the candidates in Phase 2-1 when the

Fig. 5.5 Cumulative
distribution of the time
required to identify the traffic
situation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

CD
F

CV = 0.25

CV = 0.5

CV = 0.75

CV = 1.0

CV = 1.25

CV = 1.5



5 Introduction to Yuragi Learning 125

Fig. 5.6 Distribution of the
maximum link utilization of
the virtual network
configured in Phase 2-1
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traffic fluctuation was small, the VN reconfiguration framework had to search for a
suitable VN in Phase 2-2 when the traffic fluctuation was large.

5.4.4 Impact of the Number of Attractors

In this section, we discuss the impact of the number of attractors (i.e., number of
predefined traffic situations) on the network control performance. We expected that
our proposed VN reconfiguration framework would be able to adapt to a larger
number of traffic situations when it could identify them. However, it was likely to
be more difficult to distinguish traffic situations as their number increased. Thus, we
evaluated the effect of the number of choices on our VN reconfiguration framework.

We denoted the number of attractors D, which is the evaluation parameter in this
section. That is, we generated traffic demand matrices T1, · · · ,TD that followed
a log-normal distribution. Then, we denoted the amount of incoming and outgoing
traffic at edge routers by E1, · · · ,ED , which was the traffic situation μ1, · · · ,μD ,
when the traffic demand matrix was T1, · · · ,TD , and calculated configurations
of the VN candidates g1, · · · , gD that could accommodate the traffic demand
T1, · · · ,TD . We calculated the configuration of these VN candidates in the same
way as in Sect. 5.4.1. For the evaluation, CV was 0.5, and the other parameters were
identical to those in Sect. 5.4.1.

We considered the maximum time taken to identify the traffic situation for
various numbers of choices. Figure 5.7 presents the maximum time required to
identify the traffic situation over 100 trials with different seeds used to generate
different traffic demand matrices. It can be seen that it took longer to identify
traffic situations as their number increased. Specifically, although the required time
was at most approximately 10 time steps when the number of choices was 15 or
less, the required time increased when the number of choices became larger than
20. Therefore, there is a trade-off between the ability to identify a larger number
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Fig. 5.7 Maximum time
required to identify the traffic
situation
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of traffic situations and the ability to adapt to traffic changes in a shorter time
period. It is thus desirable to limit the number of attractors to effectively deploy
our VN reconfiguration framework and accommodate changing traffic demand. In
this evaluation environment, the limit is 15.

5.5 Yuragi Learning with Linear Regression

The VN reconfiguration framework discussed in Sect. 5.3 can be extended to handle
the case in which the identification of traffic situations fails. When the identification
of traffic situations by the BAM-based method fails, we can calculate and configure
a new VN using linear regression [10] by following the steps below. Figure 5.8
presents an outline of the VN reconfiguration method based on the BAM with linear
regression.

(Step 1) Fit the current traffic situation, denoted by μnew , by linear regression
using attractors μ1, · · · ,μD .

(Step 2) Calculate and configure a new VN, denoted by gnew , using the obtained
regression coefficients w1, · · · , wD .

Applying only the linear-regression-based approach is not sufficient when the
identification of traffic situations fails because the VN gnew may not be able to
accommodate the traffic demand. In this case, we apply Yuragi control to identify
a suitable VN. However, by introducing the linear-regression-based method, it
is expected that the number of VN reconfigurations to accommodate the traffic
demand can be reduced even when the identification of traffic situations fails, as we
calculate a suitable VN gnew using the information obtained by fitting the current
traffic situation. Note that because this linear-regression-based method utilizes only
the information used in the above VN reconfiguration framework, such as the
observed amount of incoming and outgoing traffic at edge routers and attractors
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Fig. 5.8 Outline of the virtual network reconfiguration based on the Bayesian attractor model with
linear regression

(μ1, · · · ,μD), there is no information to be additionally observed to configure
the VN gnew . We incorporate this linear-regression-based method into the VN
reconfiguration framework proposed in Sect. 5.3.

5.5.1 Virtual Network Reconfiguration Algorithm with Linear
Regression

The details of the linear-regression-based VN reconfiguration algorithm are pre-
sented in the following subsections.

5.5.1.1 (Step 1) Fit the Traffic Situation by Linear Regression

The BAM as a state-space representation has the output equation Eq. (5.2), where
the observation value (observed amount of incoming and outgoing traffic at edge
routers in our VN reconfiguration framework) is represented by a linear sum of
the predefined traffic situations of attractors. We apply this equation to handle the
case in which the identification of traffic situations fails. That is, we fit the current
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traffic situation μnew by linear regression using attractors μ1, · · · ,μD to satisfy the
equation

μnew = w1μ1 + · · · + wDμD + ε =
D∑

i=1

wiμi + ε, (5.5)

where w1, · · · , wD are the regression coefficients, and ε represents the error term.
More precisely, we calculate regression coefficients w1, · · · , wD so that the residual
sum of squares (RSS) defined by the equation,

RSS(wi) = εT ε = (μnew − μ̂new)T (μnew − μ̂new) (5.6)

=
(

μnew −
D∑

i=1

wiμi

)T (
μnew −

D∑

i=1

wiμi

)
,

is minimized by the least squares method. In the BAM-based approach, the
coefficient of each traffic situation μi , which is denoted by w′

i = σ(zi), is defined
to satisfy 0 ≤ w′

i ≤ 1. However, there are no constraints on coefficient wi when
we fit the current traffic situation μnew by linear regression. Even when the traffic
volume increases and coefficient wi is thereby greater than 1, it does not become
more difficult to calculate a new VN gnew , as we can assume that the traffic pattern,
which is the relationship between the traffic volume at every edge router, does not
change. It should be noted that in this study, we do not consider the case in which the
traffic volume increases such that the physical network equipment must be enhanced
to accommodate the traffic demand.

5.5.1.2 (Step 2) Calculate a New VN

Utilizing the obtained regression coefficients w1, · · · , wD , we calculate a new VN
gnew and configure it. In our algorithm, because the current traffic situation μnew

is fitted by a linear sum of attractors μ1, · · · ,μD , we represent the current traffic
demand matrix Tnew as a linear sum of the corresponding traffic demand matrices
T1, · · · ,TD , as expressed in following equation:

Tnew = w1T1 + · · · + wDTD =
D∑

i=1

wiTi . (5.7)

We can use the information of the traffic demand matrices T1, · · · ,TD because
we retain this information to calculate VN candidates in the BAM-based method.
Then, we calculate a new VN gnew by heuristic algorithms [3, 11] using the obtained
traffic demand matrix Tnew as an input. When gnew cannot accommodate the traffic
demand, we apply Yuragi control to find a suitable VN.
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5.5.2 Effect of Linear Regression

We evaluated the effectiveness of configuring a new VN gnew calculated by the
linear-regression-based method when the identification of traffic situation failed.

The parameters of the physical network topology, the control goal, and the
information retained by the BAM-based method (e.g., the predefined traffic demand
matrices T1, · · · ,T5, the corresponding traffic situations μ1, · · · ,μ5, and VN
candidates g1, · · · , g5) were the same as described in Sect. 5.4.1. We generated
1000 patterns of traffic demand matrix informationT′ with different seeds assuming
unknown traffic fluctuations. It should be noted that the generated traffic demand
matrices T′ were different from the retained ones, T1, · · · ,T5. For the evaluation,
at every unit time step, the end-to-end traffic demand matrix was generated
based on the normal distribution N(T1,�) until time 50; then, traffic fluctuation
occurred, and the traffic demand matrix was generated based on the normal
distribution N(T′,�) until time 100, where Ti = (Ti,11, · · · , Ti,NN ) and � =
0.52diag(T 2

i,11, · · · , T 2
i,NN ).

Figure 5.9 presents the details of the simulation results, indicating whether the
identification of traffic situations succeeded, and whether the configured VN was
able to accommodate traffic demand for 1000 trials using different T′. Figure 5.9
indicates that the identification of traffic situations succeeded in 30.9(= 12.5 +
18.4)% of trials and failed in 69.1% of trials. To investigate the effectiveness of the
linear-regression-based method when the identification of traffic situations failed,
we focus on the latter 69.1% of the trials below. Figure 5.9 demonstrates that the
configured VN was able to accommodate traffic demand in 65.7% of trials when
the identification of traffic situations failed, whereas it was unable to accommodate
traffic demand in 3.4% of trials. Thus, the linear-regression-based method was able

Fig. 5.9 Details of simulation results
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to configure a suitable VN in most cases when the identification of traffic situations
failed. When we applied only the BAM-based method, it was necessary to use the
attractor-selection-based method in 81.6(= 100−18.4)% of trials. By incorporating
the linear-regression-based method into our VN reconfiguration framework, we
need the attractor-selection-based method only in 15.9(= 12.5 + 3.4)% of trials.
This indicates that we can effectively reduce the VN reconfiguration necessary to
achieve a suitable VN for the current traffic situation.

5.6 Preparing/Updating Attractors in Yuragi Learning

5.6.1 Approach for Preparing Attractors

As mentioned in Sect. 5.2.3.3, one of the tasks in Yuragi control is to design and
prepare attractors in dynamic systems. In this section, we present approaches for
preparing and updating attractors in Yuragi learning. A fundamental approach is
to deploy our linear-regression-based method in Sect. 5.5.2. That is, we prepare
attractors such that we can obtain better VNs when the linear sum of the predefined
traffic situations of the attractors expresses a wider variety of traffic situations
and decreases the residuals. Therefore, D traffic situations μ1, · · · ,μD should be
selected so that the linear sum of these traffic situations improves the ability to
express various traffic situations.

One way to improve the ability to express various traffic situations is to select
a set of attractors so that they have linear independence when each traffic situation
is considered as a vector. This is because the dimension of the space spanned by
vectors of attractors reaches a maximum when the set of selected traffic situation
vectors has linear independence. Whether the set of selected traffic situation vectors
has linear independence can be easily judged by checking whether the rank of the
matrix M = [μ1, · · · ,μD] matches D.

Here, we evaluate the relationship between the ability to express various traffic
situations and the performance of the linear-regression-based VN reconfiguration
method. Although the evaluation parameters are the same as described in Sect. 5.5.2,
we use three sets of attractors as follows:

• Set 1: {μ1,μ2,μ3,μ4,μ5},
• Set 2: {μ1,μ2,μ3,μ4, (μ1 + μ2)/2},
• Set 3: {μ1,μ2,μ3, (μ1 + μ2)/2, (μ2 + μ3)/2}.
The number of attractors in each set is five. The rank of matrix M with each traffic
situation as a column is 5 for the first set, 4 for the second set, and 3 for the third
set. That is, the first set has linear independence, whereas the second and third sets
are linearly dependent. The first set is the same as that used for the evaluation in
Sect. 5.5.2.
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Fig. 5.10 Effect of linear independence of sets of attractors

Figure 5.10 presents the ratio of trials in which the identification of traffic
situations fails and the VN configured by the linear-regression-based method cannot
accommodate the traffic demand out of 1000 trials, which we call the failure rate,
when using each set of attractors. Figure 5.10 indicates that the failure rate is
reduced by using the first set of traffic situations. Moreover, it can be seen that
the failure rate is smaller in the case of using the second set with rank 4 than in the
case of using the third set with rank 3. In other words, the failure rate decreases as
the rank of matrix M with each selected traffic situation as a column increases.

The above evaluation indicates that it is effective to maximize the rank of matrix
M with each selected traffic situation as a column; that is, it is effective to select a
set of attractors so that is has linear independence.

5.6.2 Approach for Updating Attractors

Our VN reconfiguration framework can be applied to dynamically update the
set of attractors to accommodate changing traffic demand in the future. When
the identification of traffic situations fails and our linear-regression-based method
can configure a VN suitable for the current traffic situation, it is not necessary
to update the set of attractors, as our VN reconfiguration framework can handle
traffic fluctuations using the stored traffic situations. In the case in which the VN
configured by the linear-regression-based method cannot accommodate the traffic
demand, we apply the attractor-selection-based method to identify a suitable VN.
When a solution (i.e., a VN that can accommodate the traffic demand) is identified,
we add the traffic situation at that time to the set of attractors. However, because it
takes a longer time to identify traffic situations as the number of attractors increases,
as discussed in Sect. 5.4.4, it is not desirable for the number of attractors to be too
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large. Therefore, it is necessary to delete some of the attractors from the set. We
believe that it is sufficient to delete traffic situations from the set with a longer time
period rather than add new traffic situations. We can therefore use information about
the current traffic demand matrix Tnow when we delete some traffic situations from
the set. We denote the corresponding traffic situation μnow when the traffic demand
matrix is Tnow. One guideline to delete some of traffic situations from the set is to
select a traffic situation that can be represented by a linear sum of the predefined
traffic situations of the attractors.

5.7 Conclusion

In this chapter, we introduced the concept of Yuragi learning, which deploys a
model of human perceptual decision-making. Yuragi learning controls the state of
network systems by predefined attractors by the observation and accumulation of
sensory information over a period of time. As one application of Yuragi learning, we
described virtual network control, which changes the virtual connectivity of nodes in
accordance with changes in the traffic demand. Numerical examples demonstrated
that Yuragi learning reconfigures the virtual network to the most suitable candidate.
As a result, the attractor-selection-based method requires only little effort to identify
a suitable VN, although it requires several observations to identify the traffic
situation.
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Chapter 6
Fast/Slow-Pathway Bayesian Attractor
Model for IoT Networks Based on
Software-Defined Networking with
Virtual Network Slicing

Onur Alparslan and Shin’ichi Arakawa

Abstract Due to power and space considerations, the link capacity in many Internet
of Things (IoT) networks is low; however, many IoT sensors, such as high-resolution
video cameras, generate huge amounts of data, which can cause congestion unless
traffic engineering is applied. However, the majority of the existing network traffic
engineering methods require traffic matrix information, which can be difficult to
estimate in IoT networks. Instead of attempting to estimate the traffic matrix, we
identify the traffic pattern using machine learning based on the Bayesian attractor
model (BAM) for supervision and automation of traffic engineering in IoT networks
that exhibit a limited number of traffic patterns. We propose running two BAMs
in parallel: a fast-pathway BAM for fast but low-certainty identification, and a
slow-pathway BAM for slow but high-certainty identification. We demonstrate that
our framework enables fast and reliable identification of traffic patterns. After
identifying a traffic pattern, a network configuration that is optimized for the
identified pattern by traffic engineering is applied to minimize the maximum link
utilization. In traffic engineering, we apply virtual network slicing, which creates
an independent end-to-end logical network for each IoT sensor type on a shared
physical infrastructure. We demonstrate that virtual network slicing allows for fine-
grained traffic engineering in IoT networks.

6.1 Introduction

In many networks, several management tasks, such as traffic engineering, are gener-
ally performed with human intervention [17]. However, the complexity of networks
is increasing with the continuous introduction of new networking technologies, such
as new hardware and protocols. Moreover, the number of nodes and routing paths
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are rising exponentially with the increasing popularity of the Internet of Things
(IoT). This rising complexity makes it increasingly difficult to manage networks by
traditional human intervention.

Software-defined networking (SDN) is a centralized approach to network man-
agement that uses software-based controllers with application interfaces. SDN
simplifies network monitoring, configuration, and provisioning. Traditionally, net-
work devices are composed of mainly a control plane and data plane. When a
new packet arrives, the control plane determines the destination port to forward the
packet. Then, the data plane handles the processing, modification, and forwarding
of the packet. SDN decouples the data and control planes and standardizes the
control plane while centralizing the control, which enables configuration of the data
plane of many networking devices at the same time by standards-based and vendor-
neutral protocols. The centralized SDN controller determines and establishes the
packet forwarding rules on the network devices. Furthermore, SDN allows for
the administration of the SDN controller and the addition of new services using
SDN applications via northbound application programming interfaces (APIs). In
the past, network administrators were usually required to purchase proprietary
hardware or software from the vendor of the existing hardware in the network to
add new network services. However, the open API of SDN allows third parties
to develop applications that can add services and replace or extend the existing
services implemented in the firmware of network devices. Administrators can select
the software best suited to their needs from a wide range of implementations by
multiple vendors without vendor lock-in; as a result, they are not constrained to one
vendor’s proprietary limitations.

Traditional traffic engineering methods require network-wide traffic matrix
information for optimizing link utilization to prevent congestion. Although SDN
enables network operators to collect some statistics from multiple network devices,
it is difficult to estimate the traffic matrix in complex networks even with the
network monitoring functions of SDN. There have been a number of proposals in
the literature for estimating the traffic matrix in SDN networks; however, most use
flow-level statistics for the estimation, which have various trade-offs [6, 10, 11, 18].
Furthermore, although SDN provides useful tools for managing complex networks,
it requires external supervision. However, the rising complexity of networks makes
it increasingly difficult to achieve this supervision by human intervention or a pre-
calculated set of rules. Nevertheless, SDN allows for the development and addition
of new services via APIs without vendor lock-in; therefore, many novel applications
for solving these problems have been introduced by third-party developers. Among
these solutions, machine learning (ML)-based solutions have become popular, as
they have advantages over traditional approaches with respect to the supervision
and automation of networks because they can identify anomalies in the network,
project traffic trends, and make smart decisions without human intervention [9, 21].
Moreover, SDN can further improve the efficiency of ML algorithms; thus, there
is mutual benefit. ML applications can receive statistics from all devices in the
network via SDN and can therefore provide more accurate decisions compared to
running an ML application on a standalone network device with statistics from that
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device alone. Moreover, SDN allows for the application of the network configuration
determined by the ML algorithm to all network devices in real time. SDN also
provides a northbound API for applications, which makes it possible to run the ML
algorithm on specialized external hardware instead of network devices to reduce the
cost and complexity of network devices.

IoT is a network architecture that can greatly benefit from the combined use of
SDN, ML, and network slicing. Advances in electronics, which have decreased the
power consumption, size, and cost of devices, have led to an exponential explosion
of IoT devices and real-time data on the Internet generated by these devices.
However, many IoT networks have low link capacity, and some IoT devices generate
traffic without congestion control due to power requirements. Nevertheless, many
IoT sensors, such as high-resolution cameras, generate huge amounts of data that
can cause congestion in IoT networks. Traffic engineering methods can be applied
to solve the congestion; however, most methods in the literature require up-to-date
traffic matrix information, which can be difficult to estimate with traditional flow-
based methods.

Some IoT networks, such as some surveillance systems, are only composed
of sensors that produce traffic with highly discrete patterns. For example, many
audio and video sensors apply constant bitrate (CBR) or average bitrate (ABR)
encoding. The sensors can choose a bitrate from a list depending on the time or
the environment conditions. Because the traffic sources have a limited number of
mean bitrate options, the IoT networks with such sensors exhibit a limited number
of mean traffic matrices, which can be determined before running the network. In
[1], we proposed an SDN framework that uses the brain-inspired Bayesian attractor
model (BAM) [3] to identify the current traffic matrix in IoT networks that exhibit
a limited number of traffic patterns. The BAM is an ML algorithm that models the
brain’s cognitive abilities and can learn from previous data and identify patterns in
real-time noisy data samples. Previously, we applied the BAM to identify a virtual
network suitable for traffic in optical networks [15]. Later, we adapted the BAM to
SDN and IoT and applied the BAM to identify the current traffic matrix from the
statistics of link utilization [1]. An identification can be simpler with less bandwidth
and processing requirements than calculating a traffic matrix. In [1], we presented a
detailed comparison of our method and the methods in the literature. Moreover, we
demonstrated that identification can be performed using a limited set of data (e.g.,
edge link statistics instead of all links), which can greatly reduce the amount of data
required for identification.

In this work, we demonstrate that using two BAMs in parallel (i.e., slow-
pathway BAM and fast-pathway BAM, as in the brain) further increases the speed
of pattern identification when the number of pattern candidates is high. After a
new traffic pattern is identified, our framework updates the routing table in the
network according to a traffic engineering algorithm to minimize the maximum
link utilization to prevent or alleviate congestion. Although we use the congestion
level as the main QoS metric in this work, different traffic engineering methods
can be applied to optimize other QoS metrics, such as the round-trip delay time
and packet drop ratio. Because the traffic matrices that the network may exhibit
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are known, optimum routing tables can be pre-calculated by the traffic engineering
algorithm and applied by SDN as soon as a new traffic matrix is identified. We also
incorporate virtual network slicing by SDN in our framework, which can greatly
improve the QoS and security in heterogeneous IoT networks by applying slice-
specific traffic engineering and policies [4, 8]. The centralization of the control plane
by SDN enables the dynamic creation and control of virtual networks by network
slicing [7]. Simulations reveal that our framework can identify a changing traffic
pattern by the BAM and optimize the network for the new pattern by applying
a network configuration with SDN that is optimized by traffic engineering with
network slicing. In this work, we demonstrate our framework on an IoT network;
however, it can also be applied to other types of networks that exhibit patterns in
their traffic matrices.

The remainder of this chapter is organized as follows. Section 6.2 introduces the
BAM, Sect. 6.3 explains the architecture of our framework, Sect. 6.4 describes the
simulation scenario and presents the simulation results, and Sect. 6.5 concludes the
paper.

6.2 Bayesian Attractor Model

In this section, we describe the decision-making process of the brain. Then, we
describe the BAM, which models the decision model of the brain analytically.
Finally, we explain the slow-pathway/fast-pathway BAM model, which further
increases the identification speed of the BAM when there are many attractors.

6.2.1 Decision-Making Process of the Brain

It is widely accepted that the brain continuously collects noisy sensory information
from the surroundings using sensory organs and makes decisions using this
information after enough information is accumulated. Even if there is not enough
sensory information to make a reliable decision, partial information can be sufficient
to make fast and coarse decisions in urgent situations, which can be a matter of life
or death. Studies have revealed that there are two pathways in the brain that work in
parallel for making decisions: a fast pathway and a slow pathway [2, 19]. The fast
pathway produces fast but coarse decisions on important events with low perceptual
evidence. For example, when a long thin object suddenly appears in a forest, the
fast pathway can identify it as a possible snake and rapidly alert the individual to
take precautions to prevent a snake bite. In contrast, the slow pathway takes more
time to generate a decision; however, its decisions are more reliable. After seeing
a long thin object and taking precautions against a possible snake, the brain can
obtain additional perceptual evidence from sensory organs for the slow pathway by
observing the tail and head of the object and viewing it from different angles to
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determine whether it is a snake, rope, or something else. Even if the object is not a
snake and the decision by the fast pathway to take precautions is incorrect, the slow
pathway corrects this decision later. Taking unnecessary precautions for a short time
until the slow pathway decides that they are unnecessary generates less harm than
the damage of being bitten by a snake. If the decision by the fast pathway is correct,
the precautions can prevent the individual from being bitten. Therefore, the parallel
usage of fast and slow pathways in the brain can greatly increase the probability of
survival.

6.2.2 The Analytical Model of BAM

For the identification of traffic patterns from noisy link utilization statistics, we
use the BAM that models the decision-making process of the brain [3]. The BAM
combines the concept of the Bayesian inference model and the attractor model. In
the pure attractor model, a state variable is assigned to each decision, and the value
of the state variable indicates how much evidence is accumulated to support the
corresponding decision. The values of the state variables are continuously pulled by
an attractor while being reduced by the value of other state variables. The pulling
force between an attractor and a state variable increases with the distance between
them so that the state variable does not drift away from the attractor. As the value
of a state variable increases, the state variable applies a higher force reducing the
value of other attractors so that the winning decision becomes clearer based on the
gap between the values of the state variables.

Noisy sensory information enters the system as an external impulse and drives the
attractor dynamics, and the state variables accumulate evidence from the external
impulses. The state variable that reaches the threshold is selected as the decision.
The drawback of the pure attractor model is that it does not consider the properties
of noisy sensory information (e.g., variance, noise level), which may impact the
results, because there is no feedback from the decision state to the sensory system.
However, recent experiments have revealed that there is a feedback mechanism in
the brain from ongoing decisions to the sensory system, which modulates the impact
of sensory information [3]. The BAM models this feedback by applying Bayesian
inference with a generative model.

Bayesian inference-based approaches are widely used in modeling the brain’s
cognitive abilities and human behaviors when making decisions. Bayesian inference
combines noisy sensory evidence with the internal dynamics of decision-making.
The generative model in the Bayesian inference of the BAM predicts a probability
distribution over the observations based on its attractor dynamics and the current
decision state. This probability distribution of observations is used as feedback to
the sensory level to modulate the extraction of evidence from sensory information.

The BAM assumes that the brain assigns stochastic variables to possible
decisions (attractors). The BAM continuously updates the posterior probability of
these stochastic variables using evidence from the observations and the attractor
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dynamics. This part of the model is called the cognitive process. After the
confidence of a decision (attractor) becomes sufficiently high, the BAM selects this
attractor as its decision. This part of the model is called the decision-making process.

The analytical model of the BAM is as follows. The BAM has several fixed points
φi , each of which corresponds to a decision alternative (attractor) i. The value of
attractor i is vector μi . For each attractor, there is a decision state variable zi , which
is updated according to an internal generative model. The state variables are stored
in vector z. When a new observation is made at time t , the BAM calculates the
posterior distribution of the state variable zt by p(zt | X�t :t ) using the observations
denoted by X�t :t , where t is the current time and �t is the step size of the
observation time.

Unlike the pure attractor model, where there is no feedback from the decision
state to the sensory level, the decision state in the BAM affects both the internal
predictions and the gain of the sensory evidence. The generative model in the BAM
models the change in the decision state according to Hopfield dynamics. It updates
the decision state z from one step to the next step at time t by the equation

zt − zt−�t = �tf (zt−�t) + √
�twt , (6.1)

where f (z) is the function of the Hopfield dynamics, and wt is a Gaussian noise
variable with distribution wt ∼ N(O,Q), where Q = (q2/�t)I is the covariance
of the noise process, and q is a parameter representing dynamics uncertainty. wt

is the expected state noise at the attractor level showing a propensity to switch
between attractors. Higher dynamics uncertainty signifies that it is more likely for
state switches to occur between decision alternatives. This part of the algorithm is
the first step in the BAM, as illustrated in Fig. 6.1.

Given a decision state z, [3] predicts the probability distribution over observa-
tions using the attractors by the generative model

x = Mσ(z) + v, (6.2)

Fig. 6.1 Illustration of main
steps of Bayesian attractor
model
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where M = [μ1, · · · ,μN ] is the set of the attractors (mean feature vectors) and σ

is the sigmoid function, which maps all state variables zi to values between 0 and
1. The noise variable v has a normal distribution N(0,R), where R = r2I is the
expected isotropic covariance of the noise in the observations and r is the sensory
uncertainty. A higher r signifies that higher noise is expected in the observations.
This part of the algorithm is the second step in the BAM, as illustrated in Fig. 6.1.

When the state variable zi is low, the sigmoid function produces a result close
to 0. However, its result is still a positive number. If there are many attractors,
the cumulative sum of the sigmoid multipliers of low state values can reach a
significantly high value and may even exceed 1, while the maximum sigmoid
multiplier of an attractor with a high state value is limited to 1. The presence of
many attractors may cause a high deviation in the generative function in Eq. (6.2)
and cause identification failure. In this work, we use many attractors in the slow-
pathway BAM and thus apply a different equation,

x = Mσ(z)
�σ(zi)

+ v, (6.3)

as the generative function of the slow-pathway BAM, where �σ(zi) sums the sigma
functions of the state variables to normalize the generative function.

The BAM infers the distribution of the decision state, which is p(zt |
X�t :t−�t) ≈ N(ẑt , P̂t ), using the unscented Kalman filter (UKF) [20]. Although
other filters, such as the extended Kalman filter, can also be used, the UKF is
selected as it has a reasonable trade-off between the approximation deviation
and the computation time. Consequently, the UKF is used to approximate the
distribution of observations, which is p(xt | X�t :t−�t) ≈ N(x̂t , �̂t ), in the next
step. The prediction error between the predicted mean x̂t and the actual observation
xt is

εt = xt − x̂t . (6.4)

Then, the decision state prediction ẑt and its posterior covariance matrix P̄t are
updated via Kalman gain Kt :

z̄t = ẑt + Ktεt , (6.5)

P̄t = P̂t − Kt Ĉ
T

t . (6.6)

The Kalman gain is calculated by

Kt = Ĉt �̂
−1
t , (6.7)

where Ĉt is the cross-covariance between the predicted decision state ẑt and
the predicted observation x̂t , and �̂t is the covariance matrix of the predicted
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observations. This part of the algorithm is the third step in the BAM, as illustrated
in Fig. 6.1.

In [3], the value of p(zt = φi | X�t :t ), which is the posterior density over
the decision state evaluated at the stable fixed point φi , is used as a confidence
level metric of each attractor i. Although it is possible to use the posterior density
calculation as a confidence level metric, we instead use the state value zi in this
work, as zi is less oscillatory and more clearly bounded than the posterior density
p(zt = φi | X�t :t ).

For the decision criterion, we use the difference between the state values zi of
attractors. The state values are sorted from highest to lowest. Let attractor j have
the highest state value and attractor k have the second highest state value. If the
difference between the state values of these two attractors is higher than threshold
λ, then attractor j is identified as the new state. That is,

zj − zk > λ. (6.8)

The fast-pathway BAM uses λf , while the slow-pathway BAM uses λs as the
decision threshold. Selecting a high λ can increase the reliability of identification;
however, the identification may take a longer time.

6.2.3 Fast/Slow-Pathway Bayesian Attractor Model

As the number of attractors stored in the BAM increases, the convergence speed
of the state variables may decrease, and the identification may take more time. As
described in Sect. 6.2.1, for faster identification of important situations, the brain
uses two pathways: the fast pathway that makes fast but coarse decisions and the
slow pathway that makes slower but more reliable decisions. Imitating the brain, we
use a fast-pathway BAM and slow-pathway BAM concurrently in our framework for
faster identification. Figure 6.2 illustrates the fast/slow-pathway decision scheme in
our framework. When new observation data arrive, the data are sent to the fast-
pathway BAM and slow-pathway BAM at the same time. The difference between
the fast-pathway BAM and the slow-pathway BAM is that whereas the slow-
pathway BAM stores all possible attractors, the fast-pathway BAM stores a smaller
set of attractors. Because the fast-pathway BAM has a smaller solution space,
its decision states may converge faster than the slow-pathway BAM with similar
parameters. In addition, using fewer attractors may make it possible to use a more
aggressive parameter set for even faster identification.

The solution space of the fast-pathway BAM can be kept low by using only
attractors with the highest priority. Moreover, the processing and convergence speed
of the BAM can be further increased by reducing the dimension of the attractor
vectors μ. For example, when a suspicious object appears, the shape of the object
alone can be sufficient for the brain to classify it as a possible hazard. Namely,
identifying the shape of an object as long and thin by the fast pathway in the brain
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Fig. 6.2 Illustration of fast-pathway/slow-pathway Bayesian attractor model decision scheme

allows an individual to take precautions against a possible snake. Later, the slow
pathway can provide a more reliable result by examining other features, such as the
presence of teeth, legs, scales, and eyes, to identify the object as a snake or rope.
Even if the object is identified as a snake, the slow pathway can verify additional
features, such as the color, head, and pupils of the snake, to identify its species
and whether it is venomous. Similarly, in a network, the traffic patterns that are
more likely to cause congestion can be selected as fast-pathway attractors for faster
identification. Moreover, links that are less indicative of whether a traffic pattern
may cause congestion can be removed from the attractor vectors of the fast-pathway
BAM for faster processing and a higher convergence speed.

As the fast-pathway and slow-pathway BAMs work in parallel, both calculate the
confidence levels of their attractors simultaneously and independently. The control
algorithm processes the confidence level results of both BAMs and attempts to
identify the latest status of the system. The fast-pathway BAM and slow-pathway
BAM can produce contradictory results; therefore, the results must be processed
carefully. The steps of an iteration of our decision algorithm are as follows:

1. After a new observation arrives, process the observation in both BAMs and obtain
their confidence level results.

2. Because the fast-pathway BAM can converge faster, it can provide the most up-
to-date result. Therefore, first check the result of the fast-pathway BAM. If there
is a new attractor that passes the state value difference threshold λf in the fast
pathway, identify this attractor as the new status and end the iteration. Otherwise,
proceed to the next step.

3. If there is a new attractor that passes the state value difference threshold λs in
the slow pathway, identify this attractor as the new status and end the iteration.
Otherwise, proceed to the next step.
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4. If the attractor of the fast-pathway BAM was previously selected but the
slow-pathway BAM has identified a different attractor (passing the state value
difference threshold λs ) for a long time, select the attractor of the slow-pathway
BAM as the new status, as the reliability of the slow-pathway BAM is higher.
End the iteration.

6.3 Proposed Architecture

Most traffic engineering methods require traffic matrix information. However,
due to the large number of source–destination pairs and large number of flows,
estimating the traffic matrix precisely in a large Internet Protocol (IP) network is
extremely difficult and has been recognized as a challenging research problem [22].
Although SDN does not fully solve the problem, it has several important advantages
for traffic engineering. First, the SDN controller has a global view of the SDN
network topology. Second, the SDN controller can collect flow-level and port
(link)-level statistics from SDN switches by using a southbound protocol, such
as OpenFlow [12]. However, traffic matrix estimation remains challenging even
with SDN. For example, there are hybrid networks that contain non-SDN-capable
switches, and it is not possible to obtain traffic statistics from non-SDN switches by
OpenFlow.

Another problem is that OpenFlow supports collecting only flow- and link-level
statistics without direct support to obtain source–destination-based traffic statistics.
To estimate the traffic matrix by SDN, it is necessary to collect the per-flow statistics
from all switches. For large-scale networks with many flows, such as a large-scale
IoT network, transmitting the statistics of all flows in the network to the controller
periodically (e.g., every few seconds) may require high bandwidth, which can be
problematic in IoT networks where the link capacity may be low. Moreover, to
calculate the overall traffic matrix, periodically processing the statistics of a large
number of flows in real time is a central processing unit (CPU)-intensive task. There
have been a number of proposals in the literature for traffic matrix estimation by
SDN; however, they have a trade-off between the processing overhead, transmission
overhead, and accuracy of traffic matrix estimation [6, 10, 11, 18].

Instead of attempting to calculate the overall traffic matrix in IoT networks that
exhibit a limited number of traffic patterns, our BAM-based traffic engineering
framework aims to identify the traffic pattern using only the utilization level
information of a set of edge links. Our method has a number of advantages. First,
an identification can be simpler with less bandwidth and processing requirements
than calculating a traffic matrix. Moreover, the identification is a direct solution.
If the identification is correct, the identification gives the exact mean traffic matrix.

Another problem in traditional traffic engineering is that it is difficult to satisfy
application-level QoS requirements. Concurrent IoT applications may have different
QoS requirements that may be difficult to satisfy on the same network. For
example, in an IoT network of autonomous vehicles, if the vehicles’ high-definition
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video sensors and control systems are on the same network, congestion in the
network due to video transmission may disrupt control communication and result
in an accident [8]. Network slicing by SDN can solve this problem by creating
separate virtual networks over a shared physical network. By logically separating
the networks, network slicing can allow IoT services with diverse requirements to
exist on the same physical infrastructure, while satisfying their QoS requirements.
Moreover, network slicing allows for the isolation of IoT device communications
for security [4]. Our framework supports network slicing through SDN and can
therefore improve the QoS and security of IoT networks.

The architecture of our framework is as follows. Traffic identification is per-
formed in an SDN application using the BAM. Initially, a list of possible traffic
patterns is provided to our application as Bayesian attractors. The application runs
fast-pathway and slow-pathway BAMs simultaneously. The slow-pathway BAM
uses all attractors, while the fast-pathway BAM uses only a small set of important
attractors. Together with the traffic patterns, the network configurations (pre-
calculated network slice topologies and routing tables) optimized for each traffic
pattern are stored by our application. The SDN controller collects information,
such as the network architecture and link utilization statistics, from the network,
and our SDN application periodically receives the utilization statistics of a set of
links from the SDN controller. The fast/slow-pathway BAMs update the confidence
level of their attractors whenever there is a new observation of link utilization
levels. By comparing the confidence levels calculated by both fast/slow-pathway
BAMs, the application attempts to identify the current traffic pattern. If the identified
traffic pattern changes, the application sends the network configuration, including
the routing tables and virtual network slicing information, which has been pre-
optimized for the new identified traffic, to the SDN controller. The SDN controller
then reconfigures the switches according to the new network configuration.

6.4 Simulation Results

To evaluate the performance of our framework, we implemented a network sim-
ulator in Matlab and simulated an SDN IoT network. We demonstrated that after
an abrupt change in the traffic matrix, our framework was able to identify the new
traffic pattern and minimize the maximum link utilization by applying a network
configuration optimized for the new pattern. Recently, IoT-based crowd surveillance
systems have become popular in many applications, such as public safety (against
terrorist attacks, protests, natural disasters, etc.) and smart cities [5, 13, 14, 16].
We simulated a crowd surveillance IoT network with nine core nodes and six edge
nodes, where each edge node had two types of sensors. The IoT network topology
and the initial traffic rate of the sensors are presented in Fig. 6.3. In the network, the
core nodes were SDN-capable, while the edge nodes were not.

In the simulation scenario, a crowd gathered around a building. The sensors of
the crowd surveillance system were placed at six locations around the building,
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and the amount of data generated by a sensor changed with the presence of people
in the vicinity of the sensor. Each sensor type generated a different type of data
(i.e., infrared video and 360◦ panoramic video) and sent one-way traffic to an IoT
gateway node that forwarded the data generated in the IoT domain to a wide-area
network (WAN). For simplicity, we set the mean data generation rate of both sensor
types to be equal to each other in the simulation. Whereas the mean data generation
rate of the sensors on an edge node was the same, the traffic rate of each sensor
changed according to an independent log-normal distribution; thus, their transient
rates were different. Each of the sensors closest to the center of the crowd, such
as the sensors connected to the edge node of core node 1 in Fig. 6.3, generated
200 Mbps traffic using an ABR video codec with a high bitrate to identify fast-
paced movement of many people. The sensors that were in the vicinity but not so
close to the center of the crowd, such as the sensors connected to the edge node
of core nodes 2 and 6 in Fig. 6.3, generated 80 Mbps ABR traffic. The sensors that
were far away from the crowd did not identify much movement so they generated
40 Mbps ABR traffic.

Because the traffic changed based on the presence of a crowd near the sensors
of an edge node and there were six edge nodes, the total number of possible traffic
patterns was 26 = 64. The attractors corresponded to the mean traffic rate on the
edge links after applying the traffic patterns. For example, the BAM attractor of the
traffic pattern illustrated in Fig. 6.3 (when the crowd was only at the edge of core
node 1) was simply an array [400 160 80 80 80 160] in terms of Mbps, where the
array index is the node ID of the core node to which the edge link was connected.
Because the traffic entered the SDN network through six core routers and the IoT
traffic in the experiment was one way, the size of each BAM attractor was 1 × 6.

The slow-pathway BAM contained all possible attractors; thus, 64 attractors were
stored in the slow-pathway BAM. Among these attractors, three were selected and
stored as attractors in the fast-pathway BAM. The attractors of the fast-pathway
BAM can be selected according to different objectives. For example, in a network in
which the traffic pattern changes frequently, using the most common traffic patterns
as attractors in the fast-pathway BAM can increase the adaptation speed of the
network by identifying most patterns and changing the configuration in a short time.
However, in another network, some traffic patterns may cause high congestion in the
network unless a specially optimized network configuration is applied. Using these
traffic patterns as attractors in the fast-pathway BAM can decrease the duration of
congestion after the traffic changes to one of these patterns. In this simulation, as
the attractors of the fast-pathway BAM, we selected three traffic patterns that may
cause high congestion unless a specific network configuration is applied. The first
attractor represents the case in which the crowd is only around the edge of core node
1, while the second attractor represents the case in which the crowd is only around
the edge of core node 3. The third attractor represents the case in which the crowd
is only around the edge of core node 6.

We applied virtual network slicing for fine-grained traffic engineering in the IoT
network, as described in Sect. 6.3. For each traffic pattern, a network configuration
consisting of the topology and routing table of the virtual network slices optimized
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for the pattern was pre-computed by traffic engineering and stored in our applica-
tion. For example, a traffic pattern and the topology of network slices optimized
for that pattern are illustrated in Fig. 5.3. Each sensor type and its corresponding
traffic was assigned to a different slice; therefore, the traffic of sensor type 1 was
assigned to network slice 1, and the traffic of sensor type 2 was assigned to network
slice 2. Each slice had a dedicated routing table controlled by SDN. Slicing makes
it possible to carry the traffic of different sensors on different paths for fine-grained
traffic engineering even if the source and destination nodes are the same.

When the network configuration was optimized for a traffic pattern, the objective
was to minimize the maximum link utilization and maximize the power efficiency.
The optimization was performed in two steps. In the first step, for a selected traffic
pattern, the set of routing tables in each network slice that minimized the maximum
link utilization in the physical network was calculated. Then, among the solutions
produced in the first step, a solution that used the minimum number of physical links
when the virtual network slices were superimposed was selected. Disabling links
that were unused in all slices also reduced the power consumption. For example,
the four physical links in Fig. 6.3 were set to idle because they were not used in any
slices. While the virtual network topology in both slices was the same in Fig. 6.3, the
slices had different routing tables to minimize the overall maximum link utilization
of the physical network. For example, the traffic from the edge of core node 1 to
the IoT gateway followed the path 1 → 2 → 8 → 9 on slice 1, while the traffic
between the same nodes followed the path 1 → 9 on slice 2. Although the traffic
optimization algorithm produced the same topology for the slices in Fig. 6.3, the
topology may differ depending on the placement of sensors and the traffic matrix on
each slice.

In the simulation, we tested a scenario in which the crowd was initially only
near the edge sensors of core node 1, as in Fig. 6.3. After 20 iterations, the crowd
suddenly moved to the edge sensors of core node 5, as illustrated in Fig. 6.4, and
caused an abrupt change in the traffic matrix. The sensors generated bursty traffic
with a log-normal traffic rate distribution. The traffic rate of the sensors on virtual
network slice 1 and slice 2 is presented in Fig. 6.5, where the x-axis represents the
iteration number. At each iteration, a new set of traffic statistics was received from
the network and used as input to the BAM to identify the current traffic pattern.
Initially, the sensors connected to the edge of core node 1 produced the highest
traffic with a mean rate illustrated Fig. 6.3 until iteration 20. We refer to this part of
the simulation as the first epoch. However, after the crowd moved closer to the edge
of core node 5 at iteration 21, the sensors connected to the edge of core node 5 took
the lead and generated traffic with a mean rate illustrated in Fig. 6.4 until iteration
40. We refer to this part of the simulation as the second epoch. Finally, the crowd
moved back near the edge of core node 1 at iteration 41, and the traffic rate of the
sensors connected to core node 1 took the lead again. The sensors generated traffic
with a mean rate illustrated in Fig. 6.4 from iteration 41 to the end of the simulation.
We refer to this part of the simulation as the third epoch. The resulting edge link
utilization is plotted in the third subplot in Fig. 6.5.
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Fig. 6.5 The rate of traffic generated by sensors and the resulting edge link utilization. The x-axis
represents the iteration number

The simulation results are presented in Fig. 6.6. The edge link utilization in the
third subplot of Fig. 6.5 is replotted in the first subplot of Fig. 6.6 for a clearer
presentation of how the simulation results changed with the edge link utilization.
The utilization of the links between the core nodes is plotted in the second subplot
in Fig. 6.6. At each iteration, the fast-pathway and slow-pathway BAMs received
up-to-date edge link utilization as input and updated the state variable zi of their
respective attractors. We used the difference between the values of the state variables
as the decision criterion. The state values of the fast-pathway and slow-pathway
attractors are plotted in the third and fourth subplots, respectively. Finally, the ID
number of the traffic patterns identified by processing the state variables of the fast-
pathway and slow-pathway BAMs is plotted in the fifth subplot. The mean traffic
matrix between iterations 1 to 20, which is the first epoch, and iterations 41 to 60,
which is the third epoch, corresponds the attractor with ID 33. The mean traffic
matrix between iterations 21 and 40, which is the second epoch, corresponds to the
attractor with ID 3.

In the first epoch, the crowd was near the edge of core node 1; therefore, the
edge link of core node 1, which is represented by a blue line in the first subplot of
Fig. 6.6, had the highest utilization among all edge links. Because the initial network
configuration was set to the configuration optimized for the attractor corresponding
to this traffic pattern, which had ID 33, the maximum core link utilization was
low in the first epoch, as displayed in the second subplot. Thus, when the network
configuration optimized for this traffic pattern is applied, the average utilization of
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Fig. 6.6 Simulation results. The first subplot displays the utilization of edge links, while the
second subplot displays the utilization of core links. The third and fourth subplots display the
decision state values of the attractors in the fast-pathway and slow-pathway Bayesian attractor
models, respectively. The fifth subplot displays the identified traffic pattern by the decision
algorithm

the maximum utilized link is expected to be 32%. The third subplot indicates that
the state values of the fast-pathway BAM were close to each other. The attractor
corresponding to this traffic pattern was not stored in the fast-pathway BAM, and the
fast-pathway BAM was thus unable to identify this traffic. Therefore, the difference
between the highest and second highest state variables was less than λf , which was
set to 4 in the simulation. In contrast, the slow-pathway BAM identified this pattern
because the attractor corresponding to this traffic pattern was available in its attractor
list. The difference between the green line in the fourth subplot, which represents
the state variable of attractor 33, and the second highest state variable exceeded λs ,
which was set to 2 in the simulation; therefore, the traffic pattern was identified
properly. Because the fast pathway is more likely to provide incorrect results than
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the slow pathway, we selected a λf higher than λs to reduce the rate of incorrect
decisions. Because only the slow-pathway BAM identified the pattern and it was
the same as the initially selected traffic pattern, the fifth subplot, which represents
the identified attractor ID, remained 33 in this epoch.

In the second epoch, the crowd moved to the edge of core node 5; therefore,
the traffic changed abruptly at iteration 21, as illustrated in the first subplot. The
green line, which represents the utilization of the edge link of core node 5, gained
the highest values. However, the virtual topologies and the routing tables of the
network slices were far from optimal for this new traffic; thus, the utilization
of some of the core links greatly increased, as illustrated in the second subplot.
Although the network configuration optimized for the new traffic pattern was able to
produce a mean utilization of 32% at the maximum utilized link, the current network
configuration, which was optimized for the traffic in the first epoch, produced
a mean maximum link utilization of 72%, which is 2.25 times the utilization
of the network configuration optimized for this traffic pattern. However, because
the attractor corresponding to this traffic pattern (with ID 3) was available in
the attractor list of both the fast-pathway and slow-pathway BAMs, both BAMs
succeeded in identifying the traffic. The fast-pathway BAM identified the traffic
after five iterations when the difference between the highest and second highest state
variables passed the threshold λf . While the slow-pathway BAM was in the process
of identifying the traffic as the traffic pattern of attractor 33, the decision algorithm
selected the decision of the fast-pathway BAM as the new traffic pattern, as seen
in the fifth subplot, and applied the network configuration optimized for pattern
3. Because the identification was correct, the mean utilization of the maximum
utilized core link decreased to 32%. However, the slow-pathway BAM identified
new traffic at iteration 28 when the difference between the highest and second
highest state values exceeded λs . The slow-pathway BAM produced the same result
as the fast-pathway BAM, which confirmed that the decision of the fast-pathway
BAM at iteration 25 was correct. As a result, the joint usage of fast-pathway and
slow-pathway BAMs reduced the identification time by 37% compared to using the
slow-pathway BAM alone. The iterations when a new decision was generated are
indicated by dotted vertical lines in all subplots.

In the third epoch, the crowd moved back to the edge of core node 1; thus,
the traffic changed abruptly at iteration 41, as seen in the first subplot. Again,
the network configuration was not optimal for the new traffic pattern; therefore,
the mean utilization of the maximum utilized core link increased to 56%, which
was 1.75 times the mean utilization of the maximum utilized core link when a
network configuration optimized for this traffic was applied. The state variables
of both fast-pathway and slow-pathway BAMs started to change after the traffic
changed. However, because the new traffic pattern was not available in the attractor
list of the fast-pathway BAM, the difference between the highest and second highest
state variables could not exceed λf . This signifies that the identification was not
clear; therefore, the decision algorithm ignored the fast-pathway BAM in this
epoch. However, the slow-pathway BAM identified the new traffic pattern after 11
iterations, and the decision algorithm updated the identified pattern and applied the
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network configuration optimized for this pattern, which reduced the mean utilization
of the maximum utilized core link to 32%. Even if the fast-pathway BAM identified
an incorrect traffic pattern, the decision algorithm would first apply the result of the
fast-pathway BAM and correct it later by switching to the correct result of the slow-
pathway BAM after some iterations. This is because the final step of the decision
algorithm selects the result of the slow-pathway BAM if the results of the fast-
pathway and slow-pathway BAMs differ for a long time.

6.5 Conclusion

Computer networks are becoming increasingly heterogeneous and complex with the
deployment of new technologies. This increasing complexity makes it difficult to
manage and optimize the networks manually and results in the need for automation
and ML techniques. In this chapter, we presented an ML framework based on
SDN for optimizing the network configuration in an IoT network by identifying
traffic patterns with the joint usage of fast-pathway and slow-pathway BAMs.
The simulation results revealed that our framework can identify traffic patterns
by using edge link traffic statistics. In addition, our framework applies a network
configuration optimized for the identified traffic pattern by SDN. Our framework
also uses virtual network slicing, which improves the QoS, security, and power
efficiency of IoT networks. The simulation results also revealed that the joint usage
of fast-pathway and slow-pathway BAMs improves the identification time compared
to using a slow-pathway BAM alone.

In future work, we will implement and test the proposed framework on a real
testbed. We will also work on further increasing the traffic identification speed and
extending the framework for different types of networks, such as cellular networks.
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Chapter 7
Application to IoT Network Control:
Predictive Network Control Based on
Real-World Information

Yuichi Ohsita

Abstract In this chapter, I describe the application of the Yuragi learning mecha-
nism to the control of networks that accommodate Internet of Things (IoT) services.
Numerous types of services have been provided through networks as IoT devices
have become increasingly popular, and the traffic resulting from such services
must be accommodated to satisfy the service-specific requirements. One approach
to accommodate traffic is the use of network slicing, which provides multiple
network slices for network services. Resources for each slice should be dynamically
allocated to follow the traffic changes. Predictive network control is a method for
accommodating fluctuating traffic without degrading service quality. This method
allocates resources based on predicted future traffic. To predict future traffic, real-
world information is useful. Thus, in this chapter, we discuss the use of real-world
information related to IoT services to predict future traffic. However, it is difficult to
model the relationship between real-world information and future traffic; therefore,
we apply Yuragi learning, which is inspired by the cognitive processes of the human
brain and makes decisions based on uncertain information. In this chapter, we
discuss the application of Yuragi learning to predictive network control based on
real-world information.

7.1 Introduction

In recent years, numerous types of devices have become connected to the Internet.
Such devices are known as Internet of Things (IoT) devices. As an increasing
number of devices have become connected, various services have been provided
through the Internet, and networks must accommodate traffic to fulfill the service
requirements. The requirements differ for various services: one service may require
low-latency communication between devices, whereas another service may require
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large capacity. One approach to accommodate services with varying requirements
is to use network slicing technologies [8, 19, 20], whereby multiple virtual network
slices are constructed over a physical network. By constructing one network slice
for each service, the network can satisfy the service requirements.

Traffic conditions can change with time and affect the service quality of the
networks. For instance, an increase in the amount of traffic causes congestion,
resulting in delays. Overprovisioning is one approach to satisfy the requirements
even in the case of traffic changes. With this method, the network operators can
satisfy the requirements by allocating a sufficient amount of resources to account
for traffic changes. However, this requires a large amount of resources, thereby
incurring a substantial cost.

Therefore, the dynamic control of resources is required [1, 2, 17], in which the
requirements can be satisfied with a limited amount of resources by dynamically
allocating the resources to follow traffic changes. Using this approach, resources
are allocated to those areas and services that require more resources and are released
if they are no longer required. Resource allocation can be performed based on the
observed traffic conditions. However, resource allocation based on observed traffic
does not correspond to the actual traffic when significant traffic changes occur.
Instead, the configured resource allocation is not changed until the next control
cycle. This problem can be addressed by setting a short control interval; however,
this approach may cause network destabilization.

Resource allocation based on prediction is a method for accommodating fluc-
tuating traffic without causing network destabilization [13, 14]. In this approach,
a controller collects traffic information and predicts future traffic. Thereafter, the
controller proactively allocates resources based on the predicted traffic conditions.

Prediction accuracy is important for resource allocation based on prediction, as
inaccurate prediction of the traffic amount can result in improper resource allocation
and congestion. Numerous methods have been proposed to predict future traffic
conditions [7, 11, 12, 15, 18]. In the majority of these methods, future traffic
prediction is performed based on the time series of the monitored traffic; that is,
future traffic is predicted from previously monitored traffic. However, it is difficult
to achieve accurate traffic prediction based only on previously monitored traffic if
the signs of fluctuations are not included in the previously monitored traffic.

Real-world information is useful for the prediction of future traffic. This
information can include signs of traffic changes that are not included in previously
monitored data. For example, knowledge of the number of users related to a service
in each area can improve the prediction accuracy of the service traffic, as traffic in an
area increases if the number of users in the area increases. An increase in the number
of users in adjacent areas is also a sign of an increase in users and traffic related to
the service. For IoT services, such real-world information can be obtained from IoT
devices. However, it is challenging to model the relationship between real-world
information and future traffic. Therefore, a method is required that can predict future
traffic conditions using information whose relationship with future traffic cannot be
clearly modeled.
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In this chapter, I present the application of Yuragi learning, which is inspired by
the cognitive processes of the human brain and makes decisions using uncertain
information. Numerous studies have attempted to formalize human decision-
making. One model for human decision-making is the Bayesian decision-making
theory, which treats observed information and the confidence of cognitive objects
as stochastic variables. The variables are updated by Bayesian inference every
time a new observation is obtained. The brain then makes decisions based on
the stochastic variables. Using the above process, the brain can make a decision
even if the observed information is unclear. Yuragi learning is a method inspired
by the abovementioned cognitive processes of the human brain, and we apply it
to predict future traffic conditions based on real-world information and control
resource allocation [3, 16]. This chapter describes the application of Yuragi learning
to predictive network control based on our work [3, 16].

7.2 Predictive Network Control Based on Yuragi Learning

This section discusses the application of Yuragi learning to predictive network
control. I present the model of the cognitive processes of the human brain that
inspired Yuragi learning and then discuss our application of the model to predictive
network control based on real-world information.

7.2.1 Model of Human Cognition

Yuragi learning is inspired by the model of cognitive processes in the human brain
based on Bayesian decision-making theory [5]. Figure 7.1 presents an overview

Fig. 7.1 Model of human cognition
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of the model. The model encodes the predefined i options φ1, · · · , φi known as
an attractor and makes decisions depending on the option of the current status.
The decision state Zt is the internal state of the model, where Zt is updated by
performing Bayesian inference whenever a new observation is obtained.

7.2.1.1 Abstraction

In this model, whenever a new observation is obtained, the observation is abstracted.
The abstracted observation is represented by the vector Xt .

7.2.1.2 Generative Model

This model includes the following generative model for the decision state Zt and
observation Xt :

Zt − Zt−�t = �tf (Zt−�t ) + √
�twt

Xt = Mσ(Zt) + vt ,

where f (Z) represents the Hopfield dynamics, wt and vt are Gaussian noise
variables, M = [μi, · · · , μN ] is a matrix containing the observation values, and
μi is the observation value corresponding to the state φi , which is the ith predefined
attractor. Furthermore, σ(x) is a sigmoid function tanh(ax/2)+1

2 , where a is the slope
of the function.

7.2.1.3 Update of State

This model updates the decision state Zt every time Xt is obtained by inverting
the generative model using Bayesian inference. Because the generative model is
nonlinear, Bitzer et al. used the unscented Kalman filter [9] to update the decision
state of Zt . In addition to updating the decision state, the posterior distribution
P(Zt |Xt) over the decision state is obtained.

7.2.1.4 Decision-Making

The above state estimation outputs the posterior probability P(Zt |Xt). Thus, the
decision is made based on the probability. Bitzer et al. introduced the threshold λ.
When P(Zt = φi) > λ, the option φi is selected. When P(Zt = φi) ≤ λ for all i,
no decision is made until a new observation is obtained.
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7.2.2 Application of Yuragi Learning to Predictive Network
Control

7.2.2.1 Overview

Traffic conditions have an effect on the service quality of networks; for example,
an increase in the amount of traffic causes congestion, which worsens the delay.
Resource allocation should thus be varied to follow changes in traffic conditions.
One approach for allocating resources to follow traffic condition changes is dynamic
resource allocation based on observed information. However, resource allocation
based on observed traffic does not correspond to actual traffic when significant
traffic changes occur. Instead, the configured resource allocation is not changed until
the next control cycle. This problem can be solved by setting a short control interval;
however, this may cause network destabilization.

Therefore, we require a method to allocate resources based on traffic predic-
tion [13, 14] and refer to this approach as predictive network control. Figure 7.2
presents an overview of this approach. A controller is deployed that periodically
obtains observations and predicts future traffic conditions. It calculates a suitable
network configuration that satisfies the requirements of the predicted future traffic;
thereafter, it configures the network. By repeating these steps, predictive network
control proactively allocates resources.

Traditional methods for predicting future traffic are based on the time series of
the monitored traffic. However, it is challenging to achieve accurate traffic prediction
based only on previously monitored traffic if the fluctuation signs are not included
in the previously monitored traffic. Although real-world information is useful for
the prediction of future traffic, the relationship between real-world information and
future traffic is difficult to model. Therefore, we apply Yuragi learning to predict
future traffic conditions.

Fig. 7.2 Overview of predictive network control
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Figure 7.3 presents an overview of predictive network control based on Yuragi
learning. To apply Yuragi learning, we first define the decision-making options
using previously monitored observations. In addition to the options, we store the
network configuration corresponding to each option considering the future traffic
conditions. By storing the corresponding configurations, we can obtain a suitable
network configuration by determining the option that the current state belongs to.

Predictive network control based on Yuragi learning operates as follows. The
controller periodically obtains observations, including both traffic information and
real-world information, related to and collected via the service. Thereafter, it
abstracts the observations into Xt . Using Xt , the controller updates its state, Zt .
Finally, the controller determines a suitable network configuration based on the
probability of the current state P(Zt |Xt :0), where Xt :0 = (X0,X1, · · · ,Xt ). The
remainder of this subsection explains the details of predictive network control based
on Yuragi learning.

7.2.2.2 Options and Network Configuration Corresponding to Each
Option

In predictive network control, we first define the decision options and the network
configuration corresponding to each option. These are defined offline using the
traffic and real-world information monitored previously. We denote the set of period
of time t included in the monitored information T monitor and denote the observations
at time t by vector Ot . We also denote the traffic demands at time t by vector Dt .
Ot includes Dt .

We first define the options using Ot for t ∈ T monitor. We divide the set of Ot into
multiple clusters so that each cluster includes similar observations, as illustrated in
Fig. 7.4. Thereafter, we define one option for each cluster. That is, the controller
determines the cluster to which the current condition belongs whenever a new
observation is obtained. Any method can be used to divide the set of Ot into clusters,
such as k-means++ [4].

Subsequently, we define the network configuration corresponding to each option.
In network control, the network configuration is calculated so that the possible traffic
demands can be accommodated without violating the service requirements. Thus, it
is necessary to define the possible traffic demands for each option. In predictive
network control, the possible traffic demands are set considering the future traffic
demands to allocate resources proactively. To define the possible traffic demands,
the variation in the traffic demands must be considered; even if the current status
defined by the observable information is the same, the future traffic demands may
differ. One approach to consider the various future traffic demands is to define the
possible future traffic demands for each option as the maximum demands for all of
the data in each cluster corresponding to the option.

Figure 7.5 presents the steps to obtain a suitable network configuration for the
ith option. We first extract the data included in the cluster corresponding to the
ith option, Ci . Thereafter, we calculate the possible future traffic demands for each
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Fig. 7.4 Creating options using previously obtained information

Fig. 7.5 Creating network configuration for each option

of the extracted data points. The possible traffic demand for the data of time t is
obtained by

D′
t =

(
d ′

1,t , d
′
2,t , · · · , d ′|Dt |,t

)
,

where

d ′
j,t = max

t≤k≤t+H
dj,k.
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In the above equation, dj,k is the j th element of Dk , and H is the distance to the
predictive horizon. Using D′

m, we can obtain the possible traffic demands for option
i as follows:

D̂i =
(
d̂1,i , d̂2,i, · · · , d̂|Dt |,i

)
,

where

d̂j,i = max
t∈Ci

d ′
j,t ,

where Ci is the set of period of time in which the observations belong to the cluster
corresponding to the ith option. Finally, we set the network configuration for option
i so that the traffic demand D̂i can be accommodated without violating the service
requirements. Any method can be used to calculate the network configurations, such
as a method for solving optimization problems [13].

7.2.2.3 Abstraction in Predictive Network Control

In predictive network control based on Yuragi learning, whenever the controller
obtains new observations Ot , it first calculates vector Xt that abstracts the obser-
vation Ot . Any method can be used for abstracting the observations. One approach
is to set Xt to Ot . In addition, Xt can be set using a machine learning method. In
this chapter, we set Xt using the k-nearest neighbor algorithm. In this method, we
store the previously monitored observations and the options corresponding to the
observations. When observation Ot is obtained, the controller compares Ot with the
stored observations and retrieves k observations that are nearest to Ot . Thereafter,
Xt is obtained by

Xt = (
xt,1, xt,2, · · · , xt,S

)
,

where S is the number of options and xt,i is the ratio of retrieved observations whose
corresponding options are i. Xt obtained by the above steps indicates how close the
current observation is to the observations of each option.

7.2.2.4 Generative Model in Predictive Network Control

We use the same generative model as that used by Bitzer et al. [5]. That is, the
generative models of the decision state Zt and observation Xt are

Zt − Zt−�t = �tf (Zt−�t ) + √
�twt

Xt = Mσ(Zt) + vt ,
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where f (z) represents the Hopfield dynamics, wt and vt are Gaussian noise
variables, and σ(x) is a sigmoid function. The ith element of Xt represents the
ratio of the nearest observations whose options are i. That is, if the current option is
i, Xt is a vector whose ith element is 1 and the other elements are 0. Therefore, we
set M as an identity matrix.

7.2.2.5 Update in Predictive Network Control

The controller updates the decision state Zt every time Xt is obtained by inverting
the generative model using Bayesian inference in a similar manner to the work by
Bitzer et al. [5].

7.2.2.6 Decision-Making in Predictive Network Control

The above procedure outputs the posterior probability P(Zt |Xt :0). We perform
resource allocation based on this confidence.

If the current observed information clearly indicates that the current state
corresponds to a certain option, the value of P(Zt |Xt :0) is high only for that
option. However, a case may exist in which P(Zt |Xt :0) is high for multiple options.
Therefore, we set priorities for the options in advance according to the allocated
resources; that is, we set a high priority for options that allocate more resources.
Thereafter, we select the option with the highest priority among the options with a
corresponding P(Zt |Xt :0) that is larger than a given threshold to avoid the risk of
lacking resources.

7.3 Hierarchical Predictive Network Control Based on
Yuragi Learning: Resource Allocation Among Network
Slices

7.3.1 Overview

In this section, we discuss predictive network control for IoT services. We assume
that one network slice is constructed for each IoT service. Two types of resource
allocation are available: resource allocation within each slice and among slices.
Resource allocation within a slice is changed by varying the traffic routes within
the slice and replacing virtual machines, for example. However, resource allocation
among slices is changed by allocating additional resources to the congested network
slices and releasing redundant resources from other network slices.

Predictive control based on Yuragi learning described in Sect. 7.2 is applicable to
resource allocation within each slice. The controller periodically obtains the traffic
and real-world information related to and collected via the IoT service and changes
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the resource allocation based on Yuragi learning using the collected information.
However, it is difficult for a single controller to manage the entire network, as a
large amount of real-world information is related to one IoT service. Moreover, the
operators of IoT services may not wish to share real-world information related to
their service with others.

Therefore, in this section, we consider the case in which multiple controllers
cooperate to manage resource allocation within and among network slices. An
overview is presented in Fig. 7.6. We deploy two types of controller: a network slice
controller, which manages resources within the corresponding network slice, and a
resource allocation controller, which performs resource allocation among the slices.

Each network slice controller manages resources based on Yuragi learning, as
discussed in Sect. 7.2. That is, the network slice controller periodically collects
real-world information related to the IoT service and updates its state using the

Fig. 7.6 Overview of hierarchical predictive network control
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collected information. The network slice controller identifies the current condition
according to its state. However, resource allocation within a network slice cannot
be determined only by the identified condition. The network slice controller must
also consider the resources allocated to its corresponding network slice. Thus, the
network slice controller determines the network configuration within the network
slice based on the identified current condition and allocated resources.

The resource allocation controller manages resources among the network slices
and collects the cognitive states of the network slice controllers instead of real-
world information. In this manner, the resource allocation controller identifies the
current condition of all slices without collecting real-world information. Using the
collected information, the resource allocation controller updates its state, similarly
to the network slice controller, and identifies the current condition. The resource
allocation controller stores the options related to the conditions and the resource
allocation corresponding to each condition. Thereafter, the resource allocation
controller allocates the resources based on the identified condition. The remainder
of this section describes the behavior of the network slice controller and the resource
allocation controller.

7.3.2 Network Slice Controller

Figure 7.7 presents an overview of the network slice controller. One network slice
controller is deployed for each network slice, and it periodically collects traffic and
real-world information and updates its state. Thereafter, it configures the network
slice based on its state. The behavior of the network slice controller is based on
predictive network control based on Yuragi learning, as mentioned in Sect. 7.2.
However, the network slice controller controls the network slice based not only
on its state but also on the resources allocated by the resource allocation controller.
In the remainder of this subsection, I describe the behavior of the network slice
controller.

7.3.2.1 Options and Network Configuration Corresponding to Each
Option

The options are defined by the previously monitored observations in a similar
manner to predictive network control based on Yuragi learning described in
Sect. 7.2. Thereafter, the network configuration corresponding to each option is
defined. Unlike the case explained in Sect. 7.2, the network configuration is not
defined only for the current condition; a suitable configuration of the network slice
is also dependent on the allocated resources. Therefore, the network configurations
are defined for a pair of options and allocated resources.

As explained in Sect. 7.2, we define the options by dividing the set of observa-
tions Ot into multiple clusters so that each cluster contains similar observations.



7 Application to IoT Network Control 167

Fig. 7.7 Behavior of slice controller

Subsequently, we define the possible traffic demands for option i, D̂i , in the
same manner as described in Sect. 7.2. In addition to the possible traffic demands,
we obtain the set of resource allocations to the slice. Then, we set the network
configuration for option i and allocated resources R so that the traffic demand D̂i

can be accommodated without violating the service requirements using the allocated
resources R.

7.3.2.2 Identification of Current Condition

The network slice controller identifies the current conditions based on Yuragi
learning and uses the same steps to identify the current condition as those described
in Sect. 7.2. That is, the network slice controller periodically obtains observations
and abstracts them into Xt . By using Xt , the controller updates its state, Zt . Finally,
the network slice controller obtains the probability of the current state, P(Zt |Xt :0).

7.3.2.3 Configuration of Network Slice

The network slice controller determines the network configurations based on
P(Zt |Xt :0) and the currently allocated resources Rt . Because the currently allocated
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resources are provided, the controller can determine suitable network configurations
by identifying the options related to the current condition. The options related to
the current condition are set in the same manner as described in Sect. 7.2. Namely,
the controller selects the option whose corresponding traffic demands are the largest
among the options with a corresponding P(Zt |Xt :0) that is above a certain threshold.

7.3.3 Resource Allocation Controller

The resource allocation controller allocates resources to the network slices, as
depicted in Fig. 7.8. The resource allocation controller also operates based on
Yuragi learning using the collected cognitive states of the network slice controllers.
The resource allocation controller periodically collects the cognitive states of
the network slice controllers and updates its state. It then changes the resource
allocation to the network slices based on its state. In the remainder of this subsection,
I describe the behavior of the resource allocation controller.

Fig. 7.8 Behavior of resource allocation controller
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7.3.3.1 Observations in Resource Allocation Controller

The resource allocation controller collects the cognitive states of the network
slices. Information regarding the cognitive state of the network slice n at time t

is represented by

ot,n =
(

P(Zt,n = φ1,n)

maxj P (Zt,n = φj,n)
,

P (Zt,n = φ2,n)

maxj P (Zt,n = φj,n)
, . . . ,

P (Zt,n = φSi,n)

maxj P (Zt,n=φj,n)

)
,

where Zt,n is the state of network slice n at time t , φj,n is the state corresponding
to the j th option in network slice n, and Si represents the number of options in the
network slice controller for network slice i. Furthermore, ot,n is a vector in which
the element corresponding to the options with the largest confidence is 1.

The resource allocation controller collects ot,n from all network slice controllers.
Thus, the observation of the resource allocation controller Ot is expressed as

Ot = (
ot,1, ot,2, . . . , ot,N

)
.

7.3.3.2 Options and Network Configuration Corresponding to Each
Option

To define the options and network configurations corresponding to each option, we
obtain the time series of the information regarding the observations and the traffic
demands in advance. We can obtain this information by operating the network slice
controller in an actual environment or by performing a simulation. We denote the
traffic demand of the network slice n at time t as D

(n)
t .

After obtaining the information, we define the options by dividing the observa-
tions into clusters in the same manner as described in Sect. 7.8. Thereafter, we define
the resources allocated to the slices for each option. Even if the current configuration
of the network slice requires additional resources, the network slice controller can
accommodate all demands without violating the service requirements by changing
the network slice configurations. Therefore, we define the resource allocation for
each option using the overall information of the network.

We first define the possible traffic demands for each option for all network slices
in the same manner as in Sect. 7.8. That is, the possible traffic demands of network
slice n for the ith option of the resource allocation controller are obtained as follows:

D̂
(n)
i =

(
d̂

(n)
1,i , d̂

(n)
2,i , · · · , d̂

(n)
|Di |,i

)
,

where

d̂
(n)
j,i = max

t∈Ci

max
t≥k≥t+H

d
(n)
j,k .
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In the above equation, Ci is the set of periods of time in which the observations
belong to the cluster corresponding to the ith option, d(n)

j,k is the j th element of D
(n)
k ,

and H is the distance to the predictive horizon. In this way, we obtain the required
resources for each network slice to accommodate all traffic demands D̂

(n)
i . Any

method can be used to obtain the required resources. One approach is to solve an
optimization problem to set the configurations of the network slices to accommodate
all traffic demands of all network slices. We can also use heuristic methods to obtain
the resource allocations.

7.3.3.3 Identification of Current Condition

Similarly to the network slice controller, the resource allocation controller identifies
the current conditions based on Yuragi learning. Thus, the resource allocation
controller periodically collects the cognitive state of all network slice controllers
and abstracts the observations into Xt . Using Xt , the controller updates its state,
Zt . Finally, the network slice controller obtains the probability of the current state
P(Zt |Xt :0).

7.3.3.4 Resource Allocation

The resource allocation controller allocates resources to network slices based on
the current state P(Zt |Xt :0). We allocate resources defined for the option with the
largest confidence P(Zt = φi).

7.4 Simple Example

In this section, I provide a simple example of predictive network control based on
Yuragi learning.

7.4.1 Scenario

7.4.1.1 Network

In this example, we ran the resource allocation controller and network slice con-
troller in a simple network, as illustrated in Fig. 7.9. This network was constructed
using core nodes and a gateway. The core nodes were connected to base stations,
and in this network, each device was connected to a base station. The traffic from
each device was sent to the Internet via the base station, the core node connected
to the base station, and the network constructed from the core nodes. Traffic to a
device was sent via the opposite route.



7 Application to IoT Network Control 171

Fig. 7.9 Simple network

In this example, we divided the capacity of the links into the network slices.
That is, the network slices were constructed over the physical network of the core
nodes. The total capacity of the link between node 3 and the gateway was set to a
sufficiently large value, and the total capacity of the links between nodes 2 and 3
and nodes 3 and 4 was set to 25 Gbps. The capacity of the other links was set to 10
Gbps.

7.4.1.2 Network Slices

In this example, we accommodated the following two network slices:

Slice A: This was the network slice for the connected vehicles. This service
required low latency. For the sake of simplicity, we set the service
requirements of this slice to accommodate traffic along the shortest path.

Slice B: This was the network slice for a video streaming service for mobile users.
The latency did not have a significant effect on this service; thus, this
service required high capacity.

7.4.1.3 Traffic and Real-World Information

In this example, we generated traffic and real-world information using the pseudo-
generated Global Positioning System (GPS) trajectory dataset known as Open
PFLOW [10]. This dataset includes the position of each person every 5 min in the
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Tokyo metropolitan area. In addition to the position, this dataset includes the mode
of transportation of each person, such as walking, bicycle, car, or train. Based on this
mode, we set the number and position of devices connected to each slice. However,
the number of people included in this dataset is 617,040, which does not include
data corresponding to all people in the metropolitan area. Therefore, assuming that
multiple users move similarly, we generated the number of devices in each area
by assigning a scale factor to each user in Open PFLOW and summing the scaled
number of users in the area. We generated multiple datasets by randomly changing
the scale factors. We used one dataset as training data for prediction and the other
dataset for evaluation.

In this example, we focused on an area in Shinjuku-ku, Tokyo, whose size was 4
× 4 km. We divided the area into four subareas, and the traffic from each subarea
was sent via the same core node. We generated traffic for each slice as follows.
The traffic of Slice A was generated based on the number of vehicles within each
subarea, and the traffic of Slice B was generated based on the number of people
within each subarea. For both slices, we generated the amount of traffic from a
device based on the estimated Internet traffic in Japan according to the Ministry
of Internal Affairs and Communications [6]. The estimated Internet traffic included
information regarding the amount of mobile traffic to/from each user at each time in
1 day. We generated the amount of traffic from each device at each time using this
information. Figure 7.10 presents the amount of traffic generated for this example.
The figure indicates that the traffic changes in Slice A differed from those in Slice
B; the traffic peak in Slice A was at approximately noon, whereas the traffic peak
in Slice B was in the evening. Therefore, this simple example demonstrates that our
method successfully allocated resources following traffic changes.

7.4.1.4 Controller Settings

Network Slice Controller
In this example, each network controller used the traffic amount to/from each area
and the number of devices in each area that were related to each slice as the
observations. We defined the options using the observations. In this example, the
network slice controller for Slice A had seven options, whereas that for Slice B had
three options.

We then defined the possible traffic demands for each option by setting H to 1 h
and used the quantized traffic demands with a step size of 5000 Mbps. Tables 7.1
and 7.2 display the quantized possible traffic demands for each option of Slices A
and B.

In this example, the network slice controller determined traffic routes between
the core nodes and the gateway. Thus, we set the routes for each pair of options
and allocated resources. In this example, we set the routes based on the constrained
shortest path first (CSPF) algorithm. With this algorithm, we first sorted the traffic
in descending order in terms of volume. Then, we calculated the traffic routes of
high-volume traffic. For each traffic instance, we calculated the shortest paths after
removing links that lacked sufficient capacity to accommodate the traffic route to be
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Fig. 7.10 Generated traffic amount. (a) Slice A. (b) Slice B

calculated. In this manner, we were able to identify routes that could accommodate
all traffic.

The network slice controller identified the current state according to Yuragi
learning. The generative model in Yuragi learning used in this case included two
parameters: the standard deviations of v and w. In this example, we set these
parameters to the values indicated in Table 7.3.

Resource Allocation Controller
The resource allocation controller allocated resources to network Slices A and B.
The observations of the resource allocation controller were the cognitive states of
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Table 7.1 Traffic amount predicted for each option (Slice A) [Mbps]

Option
From To From To From To From To

Node 1 Node 1 Node 2 Node 2 Node 3 Node 3 Node 4 Node 4

0 5000 5000 5000 5000 5000 5000 5000 5000

1 5000 5000 5000 5000 5000 10, 000 5000 10, 000

2 5000 5000 5000 5000 5000 10, 000 5000 5000

3 5000 5000 5000 5000 5000 5000 5000 10, 000

4 5000 10,000 10, 000 5000 5000 10, 000 5000 10, 000

5 5000 10,000 10, 000 5000 5000 5000 5000 10, 000

6 5000 10,000 5000 5000 5000 5000 5000 10, 000

Table 7.2 Traffic amount predicted for each option (Slice B) [Mbps]

Option
From To From To From To From To

Node 1 Node 1 Node 2 Node 2 Node 3 Node 3 Node 4 Node 4

0 5000 5000 5000 5000 5000 5000 5000 5000

1 5000 10, 000 5000 5000 5000 10, 000 5000 5000

2 5000 5000 5000 5000 5000 10, 000 5000 5000

Table 7.3 Parameters of generative model used in example

Network slice controller Resource allocation controller

Standard deviation of v 0.30 0.10

Standard deviation of w 0.20 0.10

the network slice controllers. We defined the options using the observations. In this
example, the resource allocation controller contained five options.

We defined the resources allocated to the network slices in advance for each
option. In this case, we defined the resources allocated to the network slices using
the possible traffic demands for both network slices. Thus, we calculated the traffic
routes for both Slices A and B by the CSPF algorithm. We assigned priority to Slice
A because this slice required the traffic to be accommodated using the shortest path.
Therefore, we calculated the traffic route in Slice A first and then calculated the
traffic route in Slice B. Thereafter, we obtained the resources required for allocation
to each slice by calculating the required resources to accommodate the traffic in each
slice through setting the routes calculated by the above steps. Table 7.4 displays the
resource allocation for each option.

The resource allocation controller identified the current state based on Yuragi
learning. The generative model in Yuragi learning used in this chapter included
two parameters: the standard deviations of v and w. In this example, we set these
parameters to the values indicated in Table 7.3.
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Table 7.4 Resource allocation in each option [Mbps]

Option Slice 1–2 1–4 2–1 2–3 3–2 3–4 4–1 4–3

0 A 5000 0 5000 10, 000 10, 000 5000 0 5000

B 5000 0 5000 10, 000 10, 000 5000 0 5000

1 A 5000 0 5000 10, 000 10, 000 5000 0 5000

B 5000 0 5000 10, 000 10, 000 5000 0 5000

2 A 5000 0 5000 10, 000 5000 5000 0 5000

B 5000 5000 5000 10, 000 10, 000 5000 0 15, 000

3 A 5000 0 5000 10, 000 10, 000 5000 0 5000

B 5000 5000 5000 10, 000 10, 000 5000 0 15, 000

4 A 5000 0 5000 5000 5000 5000 0 5000

B 5000 0 5000 10, 000 10, 000 5000 0 15, 000

5 A 5000 0 5000 5000 5000 5000 0 5000

B 5000 0 5000 15, 000 15, 000 15, 000 5000 15, 000

7.4.2 Results

Figure 7.11 presents the time series of confidence P(Zt = φi). In this figure, the
horizontal axis indicates the time, while the vertical axis indicates the confidence
of each option. The figure represents the changes in the confidence of each option
following the changes in the condition. In the network slice controller for Slice A,
the confidence of the option corresponding to the case in which the traffic amount
was small was high during the early time slots. Thereafter, the confidence of the
options corresponding to the case in which the traffic amount was large increased
following the increase in traffic. Finally, the confidence of the options corresponding
to the case in which the traffic amount was small increased again following the
decrease in traffic. In the network slice controller for Slice B, the confidence of the
option also changed following the traffic changes.

Figure 7.12 presents the time series of the confidence P(Zt = φi) in the resource
allocation controller. In this figure, the horizontal axis indicates the time, while
the vertical axis indicates the confidence of each option. The figure indicates that
the confidence of each option also changed in the resource allocation controller
following the changes in the condition. The resource allocation controller identified
that both network slices required a small number of resources during the early
time slots. Thereafter, the confidence of the options corresponding to the case in
which Slice B required additional resources increased. In the evening, the number of
vehicles increased. Following the increase in traffic from vehicles, the confidence of
the options corresponding to the case in which Slice A required additional resources
increased.

Figure 7.13 presents the resources allocated at each time and indicates the
capacities of each link allocated to Slices A and B. The resource allocation in the
links between nodes 1 and 2 did not change because the link capacities were limited.
However, the resource allocation in the other links changed. The resources allocated
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Fig. 7.11 Time series of confidence in network slice controller. (a) Slice A. (b) Slice B

to Slice A increased at approximately noon to accommodate the peak traffic in Slice
A. The resources of the links from nodes 4 to 1, nodes 2 to 3, nodes 3 to 2, and nodes
3 to 4 allocated to Slice A increased. However, the resources of the link from nodes
3 to 2 allocated to Slice B increased in the evening following the increase in traffic
in Slice B. Moreover, we verified that all traffic demands could be accommodated
by the routes set by the network slice controllers. That is, the controllers were able
to allocate sufficient resources before the traffic changes.
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Fig. 7.12 Time series of confidence in resource allocation controller

7.5 Conclusion

In this chapter, we discussed the application of the Yuragi learning mechanism to
the control of networks accommodating IoT services. As IoT devices have become
increasingly popular, numerous services have been provided through networks. The
traffic resulting from these services must be accommodated to satisfy the service
requirements. One approach to accommodate the traffic is the use of network slicing,
which provides multiple network slices for the network services. Resources for each
slice should be dynamically allocated following traffic changes. Predictive network
control is a method for accommodating fluctuating traffic without degrading the
service quality. Predictive network control requires predicted future traffic, for
which real-world information is useful. In this chapter, we considered the use of
real-world information related to IoT services to predict future traffic. However,
it is difficult to model the relationship between real-world information and future
traffic. Therefore, we applied Yuragi learning inspired by the cognitive processes of
the human brain that make decisions based on uncertain information. Thus, in this
chapter, I presented the application of Yuragi learning to predictive network control
based on real-world information.

Acknowledgments The research introduced in this chapter was supported in part by contract
research for the National Institute of Information and Communications Technology (NICT),
“Research and development on new network infrastructure technology creating the future.”



178 Y. Ohsita

 0

 2000

 4000

 6000

 8000

 10000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(a)

 0

 2000

 4000

 6000

 8000

 10000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(b)

 0

 2000

 4000

 6000

 8000

 10000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(c)

 0

 2000

 4000

 6000

 8000

 10000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(d)

 0

 5000

 10000

 15000

 20000

 25000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(e)

 0

 5000

 10000

 15000

 20000

 25000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(f)

 0

 5000

 10000

 15000

 20000

 25000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(g)

 0

 5000

 10000

 15000

 20000

 25000

6:00 12:00 18:00 24:00

C
ap

ac
ity

 [M
bp

s]

Slice A Slice B

(h)

Fig. 7.13 Time series of resource allocation of each link. (a) Link 1–2. (b) Link 2–1. (c) Link 1–4.
(d) Link 4–1. (e) Link 2–3. (f) Link 3–2. (g) Link 3–4. (h) Link 4–3



7 Application to IoT Network Control 179

References

1. Agarwal, S., Kodialam, M., Lakshman, T.: Traffic engineering in software defined networks.
In: INFOCOM 2013, pp. 2211–2219. IEEE, Piscataway (2013)

2. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in
SDN-OpenFlow networks. Comput. Net. 71, 1–30 (2014)

3. An, S., Ohsita, Y., Murata, M.: Resource allocation control considering quality of service
to multiple network slices using human brain cognition model. In: Forum on Information
Technology (in Japanese). IPSJ/IEICE, Tokyo (2019)

4. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Technical report,
Stanford (2006)

5. Bitzer, S., Bruineberg, J., Kiebel, S.J.: A Bayesian Attractor Model for Perceptual Decision
Making. PLoS Comput. Biol. 11(8), e1004442 (2015)

6. Computer Communications Division, Telecommunications Business Department, Telecom-
munications Bureau, Ministry of Internal Affairs and Communications: Aggregation and
provisional calculation of internet traffic in Japan (2018)

7. Feng, H., Shu, Y.: Study on network traffic prediction techniques. In: International Conference
on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1041–1044.
IEEE, Piscataway (2005)

8. Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5G: Survey and
challenges. IEEE Commun. Mag. 55(5), 94–100 (2017)

9. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: Signal
Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182–194. International
Society for Optics and Photonics, Bellingham (1997)

10. Kashiyama, T., Pang, Y., Sekimoto, Y.: Open PFLOW: Creation and evaluation of an open
dataset for typical people mass movement in urban areas. Transport. Res. C Emerg. Technol.
85, 249–267 (2017)

11. Lu, W.: Parameters of network traffic prediction model jointly optimized by Genetic Algorithm.
JNW 9(3), 695–702 (2014)

12. Otoshi, T., Ohsita, Y., Murata, M., Takahashi, Y., Ishibashi, K., Shiomoto, K.: Traffic prediction
for dynamic traffic engineering. Comput. Netw. 85, 36–50 (2015)

13. Otoshi, T., Ohsita, Y., Murata, M., Takahashi, Y., Kamiyama, N., Ishibashi, K., Shiomoto, K.,
Hashimoto, T.: Traffic engineering based on model predictive control. IEICE Trans. Commun.
98(6), 996–1007 (2015)

14. Otoshi, T., Ohsita, Y., Murata, M., Takahashi, Y., Ishibashi, K., Shiomoto, K., Hashimoto, T.:
Hierarchical model predictive traffic engineering. IEEE/ACM Trans. Netw. 26(4), 1754–1767
(2018)

15. Rutka, G.: Neural network models for Internet traffic prediction. Elektronika ir Elektrotechnika
68(4), 55–58 (2015)

16. Satake, K., Ohsita, Y., Murata, M.: Predictive traffic engineering incorporating real-world
information inspired by the cognitive process of the human brain. In: International Conference
on Information and Communication Technology Convergence (ICTC), pp. 543–548. IEEE,
Piscataway (2019)

17. Tayyaba, S.K., Akhunzada, A., Amin, N.U., Shah, M.A., Khan, F., Ali, I.: NPRA: novel policy
framework for resource allocation in 5G software defined networks. EAI Endorsed Trans. Mob.
Commun. Appl. 4(13) (2018)

18. Yu, Y., Song, M., Fu, Y., Song, J.: Traffic prediction in 3G mobile networks based on
multifractal exploration. Tsinghua Sci. Technol. 18(4), 398–405 (2013)

19. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.H., Leung, V.C.: Network slicing based 5G
and future mobile networks: mobility, resource management, and challenges. IEEE Commun.
Mag. 55(8), 138–145 (2017)

20. Zhou, X., Li, R., Chen, T., Zhang, H.: Network slicing as a service: enabling enterprises’ own
software-defined cellular networks. IEEE Commun. Mag. 54(7), 146–153 (2016)



Chapter 8
Another Prediction Method and
Application to Low-Power Wide-Area
Networks

Daichi Kominami

Abstract The Internet of Things has become increasingly widespread, and low-
power wide-area (LPWA) technology has attracted attention as one of its elemental
technologies. LPWA technology achieves wide-area communication without con-
suming a large amount of energy, which facilitates various types of applications for
sensing and collecting data. LoRa (Long Range) is a type of LPWA communication
technology that uses unlicensed bands. Because it is possible to build a self-managed
network with LoRa, many services using LoRa are scattered in the same area
without an administrator. As a result, the communication performance of LoRa may
be degraded due to unintended radio interference. However, because many LPWA
techniques, including LoRa, have a low data rate, it is difficult to gather sufficient
control information to avoid the degradation of communication performance. In
this chapter, we propose a method for predicting the network congestion state
based on Yuragi learning that enables prediction from fluctuating and noisy data
by successive Bayesian estimation. Through computer simulation, we demonstrate
that the network state can be predicted by our proposed method with a small amount
of control information.

8.1 Introduction

Low-power wide-area (LPWA) networks, which realize low-power and wide-area
communication, have attracted increasing attentions [10], as LPWA techniques
facilitate the development of the Internet of things (IoT). Using LPWA techniques,
it is possible to easily collect data from users and devices. SigFoX, a representative
LPWA standard, has been available in more than 65 countries since 2019. Another
representative standard, LoRa (Long Range), is available in more than 100 coun-
tries, and the LoRa Alliance was launched in 2015 and has more than 500 member
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companies. One company in each country is allowed to deploy the SigFox network
service as the network operator, and users must use the public network operated by
the operator. With LoRa, in contrast, users can freely build their own networks using
products standardized by the LoRa Alliance.

LPWA technology achieves low-power consumption and allows IoT devices
to operate for many years on a single battery charge. In addition, signals can be
delivered to the gateway from a distance of approximately 10 km in the absence of
obstacles. By combining a communication module that supports LPWA technology
with various sensing devices, it is possible to easily collect information from
devices. Although LPWA technology is a combination of the existing technologies,
it has high applicability and can facilitate the development of IoT [8].

In a wide-area network (WAN) using LPWA devices, a star network consisting
of a gateway and nodes is generally constructed. In other words, a many-to-one
communication system between nodes and a gateway is adopted. In particular,
uplink communication from a node to the gateway is widely used in IoT and
constitutes most of the traffic. Because nodes are not required to relay data,
they only need to start the wireless module at the time at which they wish
to transmit data, and can switch off the wireless module at other times. Such
intermittent communication significantly reduces the power consumption of the
wireless module. LPWA technology is also designed to have a high link budget,
which is one of the factors enabling long-distance communication. The elemental
technologies of an LPWA network include the use of a relatively low frequency
band, a modulation method that is effective against interference and noise, and an
antenna with high reception sensitivity. Particularly, the data rate is designed to be
relatively low, that is, several hundred bps to several kbps, which is lower than that
of a conventional mobile network.

In LPWA communication, the data transmission time is long because the data
rate is low. In LoRa and SigFox, the ALOHA protocol is used for the medium access
control layer, and there is concern that data frame collisions increase as the number
of nodes increases. By verifying the received signal strength before transmitting a
signal, it may be possible to avoid collisions by detecting a carrier radio wave, as
used in IEEE 802.11. However, if a clear channel assessment (CCA) threshold of
approximately −80 dB as in IEEE 802.11 is used, collisions are expected to occur as
in the case of the ALOHA protocol, as radio signals with a signal strength lower than
the threshold can reach the gateway due to the high antenna reception sensitivity of
LPWA nodes. However, the lower the threshold is, the greater the probability is that
nodes will judge that the wireless channel is busy, which will reduce the number of
transmission opportunities.

Using LoRa, users can build their own private networks with nodes and
gateways [5]. Therefore, in the future, there will be environments in which many
private LoRa wide-area networks (LoRaWAN) are constructed close to each other.
However, the influence of interference increases due to an increased number of
nodes [12]. In addition to interference, the communication quality between nodes
and the gateway fluctuates over different time scales due to various causes, such
as the existence of a system using the same frequency band and the occurrence
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of obstacles. In LoRa, multiple data rates and wireless channels are available,
and the gateway can handle fluctuations in communication quality by assigning
an appropriate data rate and wireless channel to nodes. However, to determine an
appropriate data rate or wireless channel according to the change in communication
quality, it is necessary for the gateway to detect the change in communication quality
and make a decision accordingly.

In this chapter, we propose a method for LoRaWAN in which the gateway
autonomously detects changes in communication quality and assigns a wireless
channel to be used for each node. Here, the wireless communication quality
fluctuates temporally and spatially; however, nodes do not always have a Global
Positioning System (GPS) module and are not always able to observe the commu-
nication quality of available wireless channels. Furthermore, the wireless resources
available for information collection are limited, and a long time would be necessary
to gather sufficient information to perform optimal channel assignment. There have
been various attempts to overcome channel fluctuations in LPWA networks [1];
however, most of the approaches involve the physical layer.

Therefore, we focus on the information recognition mechanism of the human
brain, which performs appropriate inferences even when only limited information
is available. In the human brain, top-down information processing occurs that
makes decisions by comparing input information from various sensory organs with
memories in the brain. It has recently been reported that this series of information
processing can be explained by a decision-making model based on Bayesian
inference [4]. In the Bayesian attractor model (BAM) proposed in [9], a hidden
variable (decision variable) representing the decision state of the brain is defined
on the state space and follows the dynamics with multiple attractors. In addition,
a nonlinear function for converting the state space of the decision variable into the
feature space is defined. Feature variables are defined in the feature space, and each
feature variable corresponding to each attractor corresponds to a memory in the
brain, as described above. The BAM models information processing in the brain by
(1) observing sensory information, (2) updating the decision variables by Bayesian
inference based on the observed information and the dynamics of the decision
variables, and (3) making a decision based on the posterior probability distributions
of the decision variables.

In this chapter, we assume that multiple LoRaWANs exist in the same area, and
the decision variables in the BAM are associated with the degree of communication
congestion in the wireless channel. An overview of our proposal is illustrated in
Fig. 8.1. Each attractor represents a different degree of congestion and is mapped
to feature values at each degree of congestion by conversion using the nonlinear
function described above. Our proposal based on the BAM is operated on a
gateway (or network server ahead of it); thus, the feature values must be observed
by the gateway. The gateway periodically calculates the feature values based on
communication with nodes and inputs the calculated feature values to the BAM.
Then, the decision variables are updated according to the input. By performing
this for each wireless channel, it is possible to estimate the degree of congestion
of each wireless channel. Here, because the decision variables are updated using
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Fig. 8.1 Proposal overview: autonomous control loop with the Bayesian attractor model (BAM)

Bayesian estimation, they are obtained as posterior probability distributions. A value
indicating how close a decision variable is to each attractor (i.e., the confidence)
is defined based on the posterior probability distribution. When the confidence
levels of all the wireless channels exceed the threshold values, wireless channel
assignment control is performed. We define the congestion degree as a state in which
N LPWA nodes exist. Thus, the number of LPWA nodes can be determined as
the degree of congestion of each wireless channel. In wireless channel assignment
control, the number of nodes is equalized for each wireless channel.

Our contributions in this chapter are summarized as follows. We first demonstrate
that the prediction method based on the BAM, called Yuragi learning, can effectively
predict the wireless channel congestion. To predict the communication congestion
in LoRaWAN, the data reception rate and data decoding success rate, which are
realistically available to the gateway, are used as features. Second, the Bayesian
filter used in the BAM is changed from an unscented Kalman filter (UKF) to a
particle filter to facilitate the design of state estimation by the BAM. In the original
BAM, the prediction accuracy may be reduced when the number of memories is
greater than the dimension of features; however, it can be improved using a particle
filter.

The remainder of this chapter is organized as follows. In Sect. 8.2, we present
the details of the BAM and our extension of its filter. In Sect. 8.3, we present the
definition of feature values and describe how we determine the memories embedded
in attractors of the BAM. In addition, we describe the wireless channel assignment
method. In Sect. 8.4, we evaluate the performance of our proposal through the
computer simulation. In Sect. 8.5, we provide the conclusions.

8.2 Bayesian Attractor Model

The BAM is a model of information perception, discrimination, and decision-
making in the brain using a Bayesian estimation framework. Our research group
has demonstrated that the BAM can be used to reconfigure a virtual network over an
optical network to create a virtual network suitable for a given traffic situation [6].
In addition, we have demonstrated that by using the BAM for rate control in MPEG
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Dynamic Adaptive Streaming over HTTP (MPEG-DASH), it is possible to achieve
rate selection according to available bandwidth and user preference [3].

The BAM consists of three main components: (i) information perception, (ii)
information discrimination, and (iii) decision-making. In (i) information perception,
the BAM expresses observed information with a feature vector. In (ii) information
discrimination, the BAM compares the perceived information with past experience
and memory and determines whether it matches any of them. Past experience and
memory are provided as a vector with the same dimension as the input feature
vector. Here, the BAM defines the internal state of the brain as following nonlinear
dynamics with K attractors, and past experiences and memories are associated with
each attractor. Based on this dynamics and perception of information, the internal
state of the brain is updated based on Bayesian inference. Because the internal state
of the brain follows dynamics that have attractors, the internal state approaches
one of the attractors. In (iii) decision-making, the confidence is derived based on
the probability density distribution of the internal state of the brain obtained in
information discrimination. If the confidence value exceeds a predefined threshold,
it is deemed that the perceived information matches past experience or memory
corresponding to the internal state.

In the BAM, variables that represent the internal decision state of the brain are
defined as hidden variables that are updated according to known dynamics. The
decision variables z approach one of the attractors existing in the state space due
to the aforementioned dynamics. The BAM estimates z based on the perceived
information; however, because z is a hidden variable, Bayes’ theorem is used to
estimate z.

8.2.1 Generative Model

In the BAM, the decision variables z of the brain are represented by a random
variable, and z is updated by nonlinear dynamics with K attractors. Given an initial
state, z approaches one of the attractors according to Eq. (8.1).

zt = zt−� + �g(zt−�) + √
�wt . (8.1)

Here, z is a vector of dimension K , � is an update interval, and wt is a
random number following a normal distribution N(0, q2/�), where q represents
the magnitude of the process error included in the generative model called the
dynamics uncertainty. g represents winner-take-all network dynamics and is defined
as follows:

g(z) = k
(
Lσ(z) + blin(φ − z)

)
. (8.2)
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Here, k is a constant that determines the scale of the update, and φ is a matrix of
K × 1 whose elements all have the same value φg. blin indicates the strength of a
goal state attractor. In addition, L = blat(I − 1), where I is a unit matrix, 1 is a
matrix whose elements are all 1 (in each case, the size is K × K), and blat indicates
the strength of the lateral inhibition in this winner-take-all network dynamics. σ is a
sigmoid function, σ(zi) = 1/(1 + e−d(zi−o)), and each element zi of z is converted
into the range [0 1]. d represents the attenuation characteristic, and o represents the
position of the inflection point of the sigmoid function. By repeating the dynamics g,
only one element of z converges to φg . By setting o = φg/2 and blat/blin = 2φg, the
other elements of z converge to −φg. In other words, K attractors in the dynamics
of z are of dimension K , where only the ith element is φg, while the other elements
are −φg (i = 0, . . . ,K − 1).

In the BAM, each attractor of the generative model is associated with a feature
vector representing past memory and experience. A feature vector xt corresponding
to a certain decision variable is generated as follows.

xt = Mσ (zt ) + vt . (8.3)

Here, M = [μ0 μ1 . . . μK−1] is a feature matrix containing the feature vectors
where μ is an m-dimensional vector. M is an m × K matrix, and vt is a random
number following the normal distribution N(0, r2), where r represents the sensory
uncertainty.

8.2.2 State Estimation by Bayesian Filters

The BAM estimates the decision variables z based on the predefined generative
model and perceived information. Because z is a hidden variable and is updated
temporally according to the generative model, a sequential Bayesian filter is used
for estimation. Reference [9] uses a UKF [13], which is a type of Bayesian filter. A
general Kalman filter has poor estimation performance when handling nonlinear
dynamics. In contrast, the UKF is a method that alleviates the shortcomings of
the Kalman filter and approximates the probability distribution using a generative
model and a small number of samples called sigma points calculated based on
the estimated standard deviation. By using the UKF, the posterior probability
distribution P(zt |xt ) of z at time t is obtained, and the probability density of each
attractor P(zt = φn|xt ) can be calculated. The authors of [9] refer to this probability
density value as the confidence. Confidence is used instead of marginal likelihood as
a decision-making index in the BAM because the amount of computation required
for marginalization increases exponentially when the number of attractors increases.
When the confidence is greater than the predefined threshold λ, φn is determined as
the estimation result. Here, φn is a matrix of K × 1, and in this chapter, the nth
element and other elements are φg and −φg, respectively (n = 0, . . . ,K − 1). Note
that φn must be carefully defined so that each element of φn corresponds to each
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attractor. Because the UKF is used in the BAM, the confidence is defined with the
density function of the multivariate normal distribution. Therefore, the confidence
of the BAM exponentially decreases as the number of dimensions of z increases.
Therefore, an appropriate value of λ must be carefully considered in advance.

From an engineering perspective, the BAM can be regarded as an estimation
or prediction tool for determining the coincidence between features observed from
noise sources and features memorized in advance. However, there are several
challenges to be resolved when applying the BAM in this context. In general, when
the dimension of z is larger than the dimension of x, the estimation of z by x is
an underdetermined problem, that is, the solution is not uniquely determined. In
the BAM, z is updated by nonlinear dynamics with attractors, and therefore, z is
expected to eventually converge to one of the attractors. However, the Kalman filter
minimizes the variance of the model error; thus, once z is estimated at a position
other than an attractor and the estimated variance at that time has a small value,
z will stop at an equilibrium point other than an attractor. At equilibrium points
other than attractors, the confidence value is low, and it is uncertain whether the
confidence exceeds the threshold.

Bitzer et al. [9] evaluated the characteristics of the BAM as an information
processing model of the brain. In this study, they did not consider situations in which
the dimension of z was equal to or larger than that of x, or where the estimation of
z became an underdetermination problem. In this study, we use a particle filter [7],
which is a type of Bayesian filter, instead of the UKF to enable estimation even
in the sub-determined case. The particle filter is a state estimation method based
on Bayesian estimation. The probability distribution required for state estimation is
represented as a set of many particles rather than a mathematical expression, and
the posterior probability distribution is approximated by weighted particles in the
state space. The particle filter performs a sequential Monte Carlo simulation and
provides weights to particles based on the likelihood of observations. By defining a
likelihood function that has a lower value at non-attractor positions, we can expect
z to have a higher probability of approaching attractors than remaining at a non-
attractor equilibrium point described above, and the estimated result will be more
likely to be in the vicinity of one of the attractors.

The algorithm of the particle filter applied to the BAM is as follows. Here, it is
assumed that all particles pi (i = 0 . . . NP − 1) are initialized in advance.

1. Update pi according to Eq. (8.1): pi ← pi + �g(pi).
2. Calculate the weight of a particle i: Wi = P(y|pi), where y denotes the

observed data. If the distribution of the observed value y is known, it is used
for the likelihood function P(y|pi). If it is unknown, an approximation with an
appropriate distribution is used.

3. Calculate ẑ that is given as a weighted average of pi : ẑ = ∑NP −1
i=0 W−1Wipi +

wt , where W = ∑NP −1
i=0 Wi .

4. Resample pi using a sequential importance resampling (SIR) method [11]. In
the SIR method, the current particle set is replaced by a new particle set that
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Fig. 8.2 Estimation of probability density with a particle filter

consists of NP particles selected from the current particle set with probabilities
proportional to their weight Wi .

The estimation accuracy generally improves by increasing the number of parti-
cles NP ; however, the calculation time increases proportionally to NP (Fig. 8.2).

8.2.3 Comparison of Bayesian Filters in the Bayesian Attractor
Model

We compared the properties of the BAM using a particle filter (BAM-PF) and the
BAM using the UKF (BAM-UKF). To this end, we generated Ns random numbers,
S = s0, s1, s2, . . . , sNs−1, that followed a normal distribution N(μ, d2) and input
the numbers to the BAM. To investigate the changes in confidence of both types of
BAM, we changed the mean value of the normal distribution.

We set Ns = 600, and M = (1, 2, 3). Here, s0–s199 followed a normal
distribution with μ = 1 and d = 1, s200–s399 followed a normal distribution with
μ = 2 and d = 1, and s400–s599 followed a normal distribution with μ = 3 and
d = 1. Then, we set the number of attractors to 3 and stored M in the attractors. An
input st was given at each time step t .

BAM-UKF
Table 8.1 presents a list of parameters for the BAM-UKF and their values. In [9],
k was set to 4; however, when we set k to 4, the decision variables approached one
of the attractors very slowly. Therefore, we set k to 40 so that the decision variables
rapidly approached to the attractors. It should be noted that when we set k to a
value much larger than 40, the decision variables did not leave an attractor once
approached it.

Here, the decision variable z had three elements: z = [z1 z2 z3]T. For both the
BAM-UKF and BAM-PF, the number of attractors was 3 (φ1, φ2, φ3), and they
were defined as [10,−10,−10]T, [−10, 10,−10]T, [−10,−10, 10]T, respectively.

BAM-PF
We calculated the confidence of the BAM-PF as for the BAM-UKF. First, we
set a larger value of k for the BAM-PF than for the BAM-UKF. This is because
the particle filter was based on randomly generated particles, which increased the
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Table 8.1 Parameters of the Bayesian attractor model using the unscented Kalman filter (BAM-
UKF)

Parameter Value Description Same value used in [9]

q 0.1 Dynamics uncertainty �
r d = 1 Sensory uncertainty

blat 1.7 Strength of lateral inhibition �
blin blat /20 Strength of goal state attractor �
� 0.004 Input interval �
k 40 Scale of dynamics

g 10 Distance factor between attractors �
r 0.7 Slope of sigmoid function �
o g/2 Center of sigmoid function �

variability of z itself compared to that of the BAM-UKF. Therefore, we set k to
1,000. In the BAM-PF, it was also necessary to determine the number of particles
and the likelihood function. In this evaluation, the number of particles was set to
1,000, and the likelihood function L of particle pi was defined by Eq. (8.4), where
y denotes the observation.

L(y|pi) = N(y − Mσ (pi), d). (8.4)

Results
Figures 8.3 and 8.4 illustrate the transition of the decision variables and confidence
levels of the BAM-UKF, respectively, while Figs. 8.5 and 8.6 illustrate those of the
BAM-PF.

In the BAM-UKF, the decision variables remained at non-attractor points. In
contrast, in the BAM-PF, decision variables remained closer to the attractors than
in the BAM-UKF. Because the confidence increased as the decision variables
approached an attractor, the confidence of the attractor that memorized the value
closest to the observed value was higher in the BAM-PF. In the BAM-UKF, the
decision variables did not always approach the attractors, which made it difficult
to set an appropriate certainty threshold for decision-making. However, in the
BAM-PF, this situation did not occur because the decision variables approached
an attractor.

8.3 Methods for Channel Congestion Prediction and
Channel Assignment

In this section, we present methods for predicting changes in the degree of
congestion of wireless channels and for assigning wireless channels to nodes based
on the predictions.



190 D. Kominami

-15

-10

-5

 0

 5

 10

 15

 20

 0  100  200  300  400  500  600

D
ec

is
io

n 
va

ria
bl

e

Time step

z1
z2
z3

Fig. 8.3 Decision variable z of Bayesian attractor model using the unscented Kalman filter (BAM-
UKF)
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Fig. 8.4 Confidence P (z = φn|y) of Bayesian attractor model using the unscented Kalman filter
(BAM-UKF)

We consider a communication system using LoRa, and aim to achieve efficient
communication even when the quality of wireless communication changes unex-
pectedly. There are various situations in which the communication quality changes,
such as an increased number of private networks using LoRa, an increased number
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Fig. 8.5 Decision variable z of Bayesian attractor model using the particle filter (BAM-PF)
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Fig. 8.6 Confidence P (z = φn|y) of Bayesian attractor model using the particle filter (BAM-PF)

of devices that use the same wireless frequency band, and the existence of structures
that disrupt communication. To identify the type of situation, information with
sufficient granularity and quantity is required. However, as mentioned in Sect. 8.1,
LPWA communication systems have limited wireless resources available to collect
information for control.
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If a feature value is unique when an event S occurs, we can estimate whether the
event is S by storing this feature value in the BAM. Although it is not necessarily the
case that the event is S for a feature, in this section, we assume that the relationship
between features and events is one-to-one. In addition, as a matter of course, it
is difficult to acquire feature values for an event before the event occurs. It is
also possible that unforeseen events may occur during network operation. In this
situation, it is necessary to store new features in the BAM during network operation.
The problem, however, is that the network system can observe the features but not
the event itself. Therefore, the network administrator should either observe or set the
event manually. We assume that unique features are obtained for individual events
and that the correspondence between events and features is known. However, the
update of the number of attractors and features is beyond the scope of this chapter.

Because users can build private LoRaWANs, multiple networks can coexist in
the same area, and the degree of congestion of the wireless channel can change
dynamically. In this case, we predict the change in the degree of congestion for
each wireless channel using the BAM. The BAM stores features μi representing
the degree of congestion when there are Ni nodes (where i is the number of states
to remember, which matches the number of attractors). In this section, we use the
data reception rate and data decoding success rate, which are realistically available
to the gateway, as feature variables. At regular intervals, these values within the last
interval are calculated and input to the BAM. The data reception rate is the value
obtained by dividing the number of data that are actually received by the gateway
and successfully decoded during the interval, by the expected number of received
data. Here, it is assumed that the gateway has a known data transmission schedule
for each node. The data decoding success rate is the percentage of data received
during the interval that are successfully decoded.

Wireless channels are assigned to nodes so that the degree of congestion of
each wireless channel is identical. This is because the probability that randomly
generated data transmission does not collide with each other exponentially decreases
with an increase in the degree of congestion. Here, because the gateway knows the
number of nodes belonging to the same network, it estimates Ni , the number of
nodes belonging to the same network and other networks, using the BAM. When
the number of nodes on the wireless channel c obtained from the result of the BAM
is Ni(c), the number of nodes using the wireless channel c on the same network of
the gateway is Nsame(c), the number of available wireless channels is Nc, and the
number of nodes to be assigned to each wireless channel, N ′

same(c), is determined
as follows:

N ′
same(c) = 1

Nc

∑

c

Ni(c) − {Ni(c) − Nsame(c)}. (8.5)

The wireless channel assignment of a node is performed after the confidence
levels of all wireless channels observed by the BAM exceed the threshold value.
After the confidence levels of all channels exceed the threshold value, the gateway
assigns the channel of each node using a piggyback mechanism. When the gateway
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transmits an acknowledgment (ACK) message for data from a node, it contains
a control instruction for the node to change its assigned channel specified by the
gateway.

The wireless channels are reassigned to all nodes. In the proposed method, we
select nodes that have not been reassigned in a random order and assign c to them
until the number of allocated wireless channels for channel c is N ′

same(c). Because
the nodes are not assigned a new channel until they transmit data after the confidence
levels exceed the threshold, the next assignment is not performed for a certain period
of time after the assignment.

In addition, no features can be obtained for a wireless channel that does not have
any nodes. Although unused wireless channels can be examined by methods other
than the BAM, in this section, we define the minimum value Nmin for N ′

same(c).
If N ′

own(c) is less than Nmin, N ′
own is set to Nmin. In this way, we assign wireless

channels so that the degree of congestion of channels other than c is identical.

8.4 Evaluation

8.4.1 Simulation Settings

In this section, we present a simulation for evaluating our proposal in a LoRaWAN
scenario. 200 LoRa nodes and one gateway were installed in an area of 5 × 5 km2.
The x and y coordinates of the nodes were determined according to uniform random
numbers in the range of 0–5 km, and the gateway was set at (0, 0). Each node
periodically generated data once in every 300 s interval. The data generation timing
was asynchronous among nodes, and a uniform random number from −2.5 to 2.5 s
was added to the interval to avoid continuous data collision. The number of wireless
channels that were available for nodes was set to 4, and at the start of the simulation,
the number of nodes that used each wireless channel was set to 50.

The data and ACK frame sizes were 50 bytes and 10 bytes, respectively, and
the data rate was 1.5 kbps. The nodes and gateway performed carrier sense for
5 ms before transmitting the data and an ACK frame. The CCA threshold was set
to −83 dB, and frame transmission was cancelled when a signal using the same
channel was detected. In data transmission, a node retransmitted data only once in
total when the wireless channel was detected to be busy by carrier sense or an ACK
was not returned from the gateway.

For signal propagation, we considered only direct waves and modeled them by
the Friis transmission equation [2]. Here, the used frequency was 920 MHz, the
attenuation coefficient was 2.5, the antenna reception sensitivity of the nodes and
the gateway was −131 dB, the transmission power was 13 dB, and the gain of the
transmitting and receiving antenna was 5 dB. For data and ACK, decoding errors
were stochastically generated according to the signal-to-noise ratio (SNR) at the
time of reception. In this simulation, we used a simple decoding error model because
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the bit error rate differed depending on the environment. Specifically, the bit error
rate was 100% when the SNR was 0 dB or less, 50% when the SNR was 0–5 dB,
10% when the SNR was 5–10 dB, 1% when the SNR was 10–20 dB, and 0% when
SNR was 20 dB or more.

The total simulation time was 36,000 s. Every 12,000 s, 50 additional LoRa nodes
were added at random positions only on a specific wireless channel. These added
nodes did not belong to the network that the above-mentioned nodes and gateway
belonged to. The added nodes generated data at the same interval (300 s); however,
the gateway did not return an ACK to the additional nodes.

The parameters for the BAM-PF were the same as in Sect. 8.2.3. As the degree
of congestion, we derived features in advance by simulation where the number of
nodes using a certain wireless channel was 50, 100, and 150. The features were
stored in the attractors. The feature matrix M used in the simulation is as follows:

M =
⎛

⎝
0.98 0.97
0.95 0.94
0.91 0.90

⎞

⎠ ,

where the first column is the data reception rate and the second column is the data
decoding success rate. The first, second, and third rows are the values when the
number of nodes was 50, 100, and 150, respectively.

For the likelihood function L of particle pi , a multivariate normal distribution
was used as an approximate distribution of the observed values. Then, L(y|pi) =
N(y−Mσ (pi),�) and � is a variance–covariance matrix of observations. For this,
we used a variance–covariance matrix of features when the number of nodes using
a certain wireless channel was 100, which was obtained by simulation in advance.
The variance–covariance matrix � used in the simulation is as follows:

� =
(

0.0043 0.0033
0.0033 0.0037

)
.

The gateway calculated features (i.e., the data reception rate and data decoding
success rate) every minute and input them to the BAM-PF immediately after the
calculation. The minimum number of nodes Nmin assigned to each wireless channel
was set to 20.

8.4.2 Simulation Results

We first present the results when the gateway did not perform channel assignment.
Figures 8.7, 8.8, and 8.9 present the sequence of the observation input, decision
variable, and confidence of the wireless channel to which nodes were added. The
results indicate that the BAM-PF was able to predict changes in the degree of
congestion. Here, the threshold of the confidence was set to 10−3 based on Fig. 8.9.
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Then, the average time step from the time of node addition to the time at which
the confidence levels of the correct attractor exceeded the threshold and had the
maximum value among the confidences of three attractors was 31.0 over 100
simulation trials. When the threshold of the confidence was set to 5 · 10−4, the
average time step became 18.3.

Compared with the results presented in Sect. 8.2.3, the changes in the decision
variables and confidence are more unstable. This is because although we used
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a likelihood function that was based on a multivariate normal distribution, both
distributions of the data reception rate and decoding success rate did not follow
a normal distribution, as indicated in Fig. 8.7.

Finally, we present the number of nodes in each wireless channel when the
gateway performed the channel assignment. The simulation results are presented
in Fig. 8.10. We set the threshold to 10−3.
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All wireless channels had a degree of congestion with 50 nodes until 13,200 s
(220 min). When the simulation time reached 13,200 s (220 min), 50 nodes were
added to the wireless channel c, where N ′

same(c) defined in Eq.(8.5) became 12.5.
Because Nmin was 20, the number of nodes in channel c became 20. Then, 60
nodes were assigned to each wireless channel that had no additional nodes. When
the simulation time reached 24,000 s (400 min), another 50 nodes were added to
the wireless channel. Thereafter, because calculating N ′

same(c) resulted in −25, the
number of nodes in channel c remained 20. The results in Fig. 8.10 demonstrate
that our intended control was realized. However, we also identified cases in which
the expected results were not achieved when the confidence did not exceed the
threshold. In the future, the operating parameters of the BAM will be examined
in greater detail.

8.5 Conclusion

In this chapter, we present a method for estimating the degree of wireless channel
congestion in LoRaWAN using the BAM, which is a human cognition model. For
the Bayesian filter used in the BAM, we use a particle filter instead of the UKF
to more easily apply the BAM to LoRaWAN scenarios. By using the BAM, our
proposal can predict changes in the degree of wireless channel congestion with
a comparatively small amount of information without being greatly affected by
temporary fluctuations in the observed values. In our proposal, the LoRaWAN
gateway assigns wireless channels to nodes based on the results of the BAM, which
enables adaptive and stable control of the LoRaWAN system. In the future, we will
extend the evaluation to clarify parameters that can make the BAM more effective.
In addition, we will compare the BAM with other methods to reveal the advantages
of the proposed method, especially in terms of communication performance.
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Chapter 9
Artificial Intelligence Platform for Yuragi
Learning

Toshiyuki Kanoh

Abstract Neural network-based artificial intelligence, such as deep learning, has
made remarkable progress by utilizing high-performance computing resources.
However, research in neuroscience has revealed that the human brain can realize
multimodal, flexible, and efficient cognitive operations by consuming only approx-
imately 21 W of power. This chapter summarizes our challenges in developing an
artificial cognitive system based on the Bayesian attractor model and provides a brief
introduction to our software prototype called the Yuragi Learning General-Purpose
Data Analysis Platform (YGAP).

9.1 Introduction

The human brain weighs only approximately 1.5 kg and consumes approximately
21 W of power. However, it has multimodal, flexible, and efficient cognitive
abilities that surpass current supercomputers in everyday tasks. With technological
improvements in the temporal and structural resolution of devices that record
the activity of the human brain, neuroscientists have made significant progress
in understanding how the brain functions. However, it is currently impossible to
measure the entire brain at the single neuron level due to the poor spatiotemporal
resolution of existing recording devices. In addition, it is impossible to replicate the
behavior of the entire brain on a computational device.

Artificial neural networks, such as deep learning networks, use mathematical
models to represent the operation of computational neurons and have recently
experienced significant progress through the use of high-performance computing
resources. In the field of image processing, in particular, deep neural networks
achieve similar results to humans and even surpass humans in accuracy [4].
Although artificial neural networks can mimic certain aspects of the brain’s
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behavior, they are often limited to specific tasks, such as image recognition. Our
research goal differs from deep learning by aiming to realize a new artificial
intelligence (AI) system that closely follows findings from neuroscience [5]. Recent
research has revealed that the human brain can effectively use its limited resources
to achieve flexible and high-performance computing tasks. For example, for visual
processing, this is achieved by using two distinct cognitive pathways, such as
for facial recognition [3] and motion recognition [2]. In addition, in [8], the
authors indicated that in the process of acquiring a representation of motion, the
representation may be reconstructed using discretized data rather than the original
continuous input. To acquire new functions by enhancing the body’s capabilities,
it has also been reported that the brain can reallocate already utilized resources to
extension processing [7]. These findings indicate that the brain follows a strategy
that makes the best use of its limited resources. We use knowledge of human
cognitive functions to establish computationally executable models with which we
replicate human cognitive abilities to develop a brain-inspired cognitive computing
system.

The remainder of this chapter is structured as follows. In Sect. 9.2, we summarize
the general challenges of realizing a new model of a brain-inspired AI system based
on the previous work in [6]. Then, in Sect. 9.3, we describe its implementation,
called the Yuragi Learning General-Purpose Data Analysis Platform (YGAP), which
utilizes noise for learning and provides an example of its operation in Sect. 9.4.

9.2 Overview of a Brain-Inspired Cognitive Computing
System

We first define a brain-inspired cognitive computing system as a system that meets
the following requirements:

• optimization of resource usage,
• multimodality for dealing with multiple objectives,
• autonomy to behave in a goal-oriented manner, and
• compliant with explainable AI.

An important piece of information to help optimize utilization of limited
resources is the fact that the human brain uses two cognitive pathways. One is
a fast and coarse pathway, whereas the other is a slow and fine-grained pathway.
For example, the former is used when avoiding danger or defending against attacks
while conserving resources under low cognitive load. In contrast, the latter is used
for recognizing facial expressions in greater detail when sufficient resources are
available. We believe that the efficient use of resources is a major reason why the
human brain can effectively operate with much lower power than that of current
computers. This mechanism may be helpful in establishing a system that is able to
respond to critical situations in real time.
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The brain handles different types of sensory input in a similar manner, as the
neuron firing process does not depend on sensory perception. The common handling
of multimodal sensory input makes it possible to extend incomplete information
from one modality by using information from other modalities. Multiple objectives
on the basis of multimodal information may also be beneficial for building a robust
system in the presence of ambiguous input.

Humans analyze environmental stimuli while decomposing the input into prim-
itive elements. Then, representations of the stimuli are constructed through the
combination of the primitive elements depending on the respective goals to under-
stand the environment. It has been reported that even a new representation can be
constructed with this combination. Adaptability to a new environment can be used
to realize an autonomous adaptive system.

Although current AI technologies, such as deep learning, are gaining popularity,
the process is a black box. The features for internal representation are automatically
optimized using large amounts of training data, and the visibility of the internal pro-
cess eventually degrades because human-friendly features are not always extracted.
However, for practical use, an externally controllable and transparent system is
preferable.

9.2.1 Conceptual Design of a Brain-Inspired Cognitive
Computing System

A conceptual diagram of a brain-inspired computing system is presented in Fig. 9.1.
It consists of three parts: an encoding module that inputs environmental stimuli as
internal information, an integration module that integrates features extracted with

Fig. 9.1 Conceptual design of a brain-inspired cognitive computing system
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respect to each modality, and a decision module that handles the manipulation of
categories. Each module is composed of submodules.

• The encoding module translates system inputs into feature vectors following a
common format. First, the module decomposes its inputs into primitive elements.
Then, it extracts features from the elements. The format of the vector is
independent of the modality.

• The integrationmodule integrates the selected element representations. The mod-
ule infers the element representations from feature vectors while extending noisy
or missing information. It selects appropriate representations across multiple
modalities according to the system purpose.

• The decision module outputs a category that is suitable for the system inputs.
This module creates novel categories when necessary, such as when the input is
noisy and cannot be categorized.

9.2.2 Architecture Design

We propose a system architecture on the basis of the conceptual diagram in
Fig. 9.1, placing emphasis on easily implementing our research results into the
system. Research on brain function is progressing rapidly, and it is important for
researchers to be able to test their models whenever necessary on a feasible platform.
Our proposed platform is presented in Fig. 9.2, and the features of our proposed
architecture are as follows:

• event-driven module execution optimized across the entire system,
• data handling structure sharing data via a brain information database (BIDB),

and
• graphical user interface (GUI) with internal information monitors and query-

based commands for brain information data.

Human brains feature modularity, whereby separate regions work cooperatively
with each other, and multiple sensory inputs can be processed in parallel modules.
Despite the independent and parallel behavior of the modules without central
control, the modules appear to be appropriately optimized as a whole. Applying
this optimization method can allow the system to perform more than the summation
of the functional modules even though each module is independently designed.

A functional module is driven by specific events and shares data with other
modules via the BIDB. A functional module is a process that implements the afore-
mentioned modules illustrated in Fig. 9.1. Event messages, such as the completion
of a specific module, are communicated between modules over a messaging bus,
and a chain of events forms the processing flow. An event message can be received
by multiple modules, and the modules do not share data directly. The data stream is
optimized as the entire system communicates between functional modules via the
BIDB. Any data can be stored in the BIDB with a history and can be loaded from
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Fig. 9.2 Platform architecture of a brain-inspired cognitive computing system

any module. Indirect communication between modules facilitates the independence
of the modules and enables the addition and recombination of modules.

Data communicated between modules can be visualized by a GUI. Any data,
such as extracted features, inferred element representations, and category classifica-
tion history, are stored in the BIDB according to the specifications. Data pertaining
to any moment can be accessed; therefore, queries can be issued to observe the
internal state and analyze the processes leading to cognition.

The platform makes it easy to implement models of various states and connect
each model. We believe that the ease of implementation can enhance brain
function research and model implementation. In Sect. 9.3, we present a specific
implementation of our proposed concept that utilizes Yuragi learning as the data
analysis function.
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9.3 Overview of Yuragi Learning General-Purpose Data
Analysis Platform (YGAP)

As discussed in Chap. 5 of this book, the brain-inspired cognitive computing
model, called Yuragi learning, can categorize various types of multimedia data into
predefined categories solely based on their features and without an explicit learning
process. Due to the characteristics of the underlying Bayesian attractor model [1],
Yuragi learning demonstrates robustness to noise and dispersion of the observed
input data. In addition, it has developmental functions, such as automatic knowledge
(category) acquisition, and reconstruction functions. Thus, Yuragi learning can
autonomously increase and maintain its knowledge. As one application using Yuragi
learning, this section introduces the Yuragi Learning General-Purpose Data Analysis
Platform (YGAP).

Figure 9.3 presents a functional block diagram of the YGAP. Its architecture
is based on a relational database system, and Yuragi learning is implemented as a
special data analysis function for classification and categorization in the relational
database management system (RDBMS) of the YGAP.
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(YGAP)
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The YGAP consists of three components displayed in the left, center, and right
parts of Fig. 9.3. The left part represents the application-dependent component con-
sisting of the feature extraction function and data format transformation function.
The center part represents the standard RDBMS; in this case, PostgreSQL is used
as the base system. The right part represents the special SQL function library using
Yuragi learning loaded in the RDBMS.

Figure 9.4 illustrates the interaction between the parts of the system. The left
part of the figure represents the client system consisting of the feature extraction
function and a web browser, such as the Internet Explorer, while the right part
of the figure represents the host system consisting of the YGAP interface module
and PostgreSQL with the Yuragi learning function. The users can access the client
system through a web browser. The YGAP interface module on the host system
provides a GUI that generates SQL queries as PostgreSQL commands and then
visualizes the cognition and categorization process as well as the results. The
GUI also makes it possible to set the parameters for defining the Yuragi learning
characteristics, namely, the dynamics uncertainty, sensory uncertainty, and noise
level.

Figure 9.5 presents an overview of the YGAP graphical interface. The GUI
provides easily accessible menus for entering parameter values and viewing the
graphical output of the results. The YGAP and its installation and quick-start manual
can be downloaded from the following URL: https://github.com/nbic-ist-osaka-u-
ac-jp/YLPF-Core.
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Fig. 9.5 Overview of the Yuragi Learning General-Purpose Data Analysis Platform (YGAP)
graphical interface

9.4 Example of YGAP Usage

In this section, we evaluate the capabilities of the YGAP by demonstrating the
individual steps of a multi-class classification task with the YGAP.

9.4.1 Preparation of Analysis Data and Configuration of Data
Files

All data and definition files must be provided as comma-separated values (CSV)
files with the file extension *.csv. Specifically, the following four CSV files must
be provided. In its current version, the YGAP can only accept data files in text
format as input (Fig. 9.6) and cannot handle raw binary data, such as images.

1. The file category.csv contains categorical data with the predefined classifi-
cation labels. This example involves a classification task with three categorical
types of cat, dog, and bird with values 1, 2, and 3, respectively.
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(b) Feature data(.CSV)

(d) Test data(.CSV)(c) Training data(.CSV)

(a) Categorical data(.CSV)

This shows 1280 

dimensions feature data 

One Feature vecrtor data
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Fig. 9.6 Examples of input files in comma-separated values (CSV) format for Yuragi Learning
General-Purpose Data Analysis Platform (YGAP). (a) Categorical data (category.csv). (b)
Feature data (feat.csv). (c) Training data (train.csv). (d) Test data (test.csv)

2. The file feat.csv contains feature value definitions. This file specifies the
names of the features and the dimensions of the analysis data. In this specific
example, we have 1,281 rows with 1280 features and one dummy feature.

3. The file train.csv contains the training data definition. This file has the same
number of rows as feat.csv, and each column contains one sample used to
train the model.

4. The file test.csv contains the analysis data definition, providing the data that
are used as classification test data. This file has the same format as the training
data file train.csv, where each column contains one entire feature vector of
the test dataset.

9.4.2 Setup of YGAP Console

After specifying the input data CSV files, we open the YGAP console window.
As the first step, we create a new working set by selecting the item WORKING
SET from the main menu, where we can specify the name of the working set. This
automatically creates the files README, bam.py, and cfg.json in the working
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Fig. 9.7 Yuragi Learning General-Purpose Data Analysis Platform (YGAP) console window after
input files are loaded into the working set

set directory. Next, we select OPEN from the same menu and the name of the newly
created working set to load it into our console. To set the CSV input files created
in the previous step, we need to select UPLOAD from the main menu and navigate
to the folder containing these CSV files with SELECT FOLDER, after which they
appear as entries in the working set window (see Fig. 9.7).

9.4.3 Training the Model Using Training Data

After the input files are loaded into the working set, we proceed with training the
model. First, we specify the features that we wish to include in our study. This can
be achieved by selecting the entry TRAINING from the main menu, which opens the
training window in the left area of the console. After clicking FEATURE GROUP,
a list of all features defined in the file feat.csv is presented. The features that we
wish to include in our study can be selected from this list. In this example, we wish
to include all features; thus, we click on SELECT ALL (see Fig. 9.8).

Individual parameters of the Yuragi learning process with the YGAP, such as the
sensory uncertainty r or the dynamics uncertainty q , can be modified by clicking
SETTING. The training process is started by pressing the GO button. This takes
several seconds to several minutes depending on the complexity of the model. After
the training is completed, graphical plots of the training results appear in the right
pane of the console (see Fig. 9.9).
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Fig. 9.8 Selecting the features for training and testing in Yuragi Learning General-Purpose Data
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Fig. 9.9 Results after training the model with Yuragi Learning General-Purpose Data Analysis
Platform (YGAP)
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Fig. 9.10 Results of testing data with Yuragi Learning General-Purpose Data Analysis Platform
(YGAP)

In this example, 50 samples are trained, and each sample has 1,280 features
extracted from images of cats, dogs, and birds. The feature extraction is performed
using the shallow part of SimpleNet.

9.4.4 Classification of Test Data

After the training is completed, we can test the performance of our model by
classifying data from the test dataset that are not included during training. This
can be achieved by clicking TEST from the test submenu. The same settings for the
feature values are selected for testing as for training and cannot be changed at this
stage. After testing is completed, another graphical window displays the results of
testing (see Fig. 9.10).

9.5 Conclusion

In this chapter, we consider the cooperation between neuroscience and information
science and discuss the development of a new computing system based on research
on human cognition. Existing computing systems have evolved with the develop-
ment of semiconductor technology, steadily increasing the number of computational
resources. However, the development of computing systems inspired by the human
brain would change the focus of improvement from quantity to quality. In the future,
the interaction between the two areas of science will accelerate the development of
both. In this chapter, we present the implementation of our YGAP system, which
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uses Yuragi learning for classification problems. Our proposed platform has the
potential to contribute to research beyond the fields of information science and brain
science and solve more complex problems that will arise in the near future.
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Chapter 10
Bias-Free Yuragi Learning

Tatsuya Otoshi

Abstract One of the differences between traditional artificial intelligence (AI) and
human cognition is the amount of training data required to learn a new category.
Conventional AI, such as deep learning, must learn a large amount of data to make
decisions; however, humans can make decisions using only several representative
examples of data. This ability is essential, especially in situations in which the
environment frequently changes, such as the Internet of Things (IoT). With frequent
changes in the environment, AI must make decisions based on new situations in
real time. Traditionally, several learning methods have been proposed, such as
self-training and transfer learning, which assume a small amount of training data.
However, when the environment constantly changes and real-time decisions are
required, it is necessary to learn and make decisions with a small amount of available
data. For this purpose, Yuragi learning, which is a model of decision-making that
assumes that obtained information contains uncertainty, is promising due to its noise
tolerance. In this chapter, we introduce a system that uses Yuragi learning as a
classifier to automatically acquire a new category in new situations. This system
detects new categories based on the confidence of existing categories computed
by Yuragi learning. Then, the detected categories are added, and new training data
are collected in parallel with ordinal classification. The collected data are used as
training data for the new category, and additional training is performed to improve
the classification accuracy. In this chapter, we apply this classification system to an
image classification task for handwritten characters as an example of its application.

10.1 Introduction

Artificial intelligence (AI) technology has experienced remarkable progress in
recent years and has a wide range of potential applications [10]. One application
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is the Internet of Things (IoT), in which the environment changes frequently due
to the movement, addition, or removal of devices. In IoT, it is difficult to collect
sufficient training data from the new environment, and the data cannot be handled
by traditional AI, which is typically based on large amounts of data. AI also has a
large impact on our lives, including our decisions, as it is directly related to our daily
activities. However, conventional AI strongly relies on obtained data. With limited
training data, bias in the data can cause bias in the judgments of AI.

As a result, it is difficult to adopt traditional AI approaches in situations in which
the environment changes frequently and insufficient data about the new environment
are available. Two problems, in particular, pose a major challenge: the amount of
training data and noise in the data. With respect to the first problem, in a new
situation, it takes a certain amount of time to collect data to represent the given
situation. However, real-life applications, such as IoT, require AI to make decisions
in response to changing circumstances. Therefore, although it is necessary to make
decisions based on a small amount of data, data collected over a short period are
highly biased, and AI making decisions based on the data will thus be biased as
well. With respect to the second problem of noisy data, if the data contain significant
noise, it is difficult to classify the category [14]. To respond to new situations in real
time, AI must collect the data itself. That is, AI must learn from unlabeled data
without manually labeling the data. Because noise makes it difficult to distinguish
a new situation from an existing one, it is difficult to label data automatically. The
two abovementioned problems are closely related. The lack of data makes it difficult
to avoid the influence of noise in the training data, while noise makes it difficult to
collect an appropriate amount of training data.

These problems have been addressed in the field of machine learning from
various perspectives. One approach is self-training, which is a semi-supervised
learning method in which a classifier is trained from a small amount of manually
labeled training data and a large amount of unlabeled data [14, 15]. In this method,
the classifier is initially trained using a small amount of manually labeled training
data. Then, the AI automatically assigns labels to a large amount of unlabeled
data using a trained classifier. The classification accuracy can then be improved
by relearning the classifier using the data labeled by the classifier itself. Another
approach to learning based on a small amount of data is transfer learning [11, 13],
in which the classification process performed by a classifier is divided into two
stages: feature extraction and classification. In feature extraction, numerical values
are output that represent features that characterize the categories of data from
non-numerical data, such as images. Because the mapping from non-numerical
data to features is generally static, only the process of classification at a later
stage is relearned to accommodate the new situation. By avoiding relearning the
entire process of classification in this way, the degree of freedom of the classifier
decreases, and it is possible to learn even with a small amount of training data.
However, even with the abovementioned methods, it is still difficult to learn new
categories in noisy environments. Self-training has the potential to lead to biased
classification by training with such data, as automatically affixed labels are less
reliable in noisy environments. In transfer learning, noise in the training data also
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affects the accuracy of the classifier. In addition, even if only the classifier is learned,
it often includes a considerable number of parameters, and it is difficult to learn only
the classifier from a small amount of data obtained in real time.

The noise tolerance of Yuragi learning [4, 12] is a promising feature to solve these
challenges. Yuragi learning adopts a model of decision-making [2] that assumes
uncertainty in sensing information. In Yuragi learning, the learning parameters
are provided as representative values of the observations associated with the
alternatives, and a decision is made based on the computed confidence of the
alternatives. This signifies that the model is in principle capable of learning even
with one-shot data obtained for a new situation. In other words, Yuragi learning
has both noise tolerance and the ability to learn from a small amount of data and
can learn new categories in real time and make decisions in response to changing
situations.

In this chapter, we introduce a system that automatically learns new categories
using Yuragi learning, which is a decision-making model that operates as a classifier
and is extended to add categories according to the given situation. When using
Yuragi learning as a classifier, low confidence is computed for all existing categories
when a new category emerges. When low confidence is detected, the system
starts to add new categories to the current classifier using the observed data as a
representative value. Because the classifier at this time has inadequate and highly
biased initial data, we collect training data in parallel with ordinal classification.
Then, using the collected data, additional training is performed to improve the
accuracy of the classification of new categories.

The remainder of this chapter is organized as follows. Section 10.2 introduces the
system components for using Yuragi learning, which is a decision-making model
originally, as a classifier. Section 10.3 describes the overall process of the system
in detecting and adding new categories, automatically collecting training data,
and improving classification accuracy through additional learning. Section 10.4
describes the process of adding new categories with numerical examples, and
Sect. 10.5 presents the results of applying the system to an image recognition task
for handwritten characters. Section 10.6 provides a summary of the chapter.

10.2 Classification System with Yuragi Learning

This section describes the configuration of a classifier system that classifies cate-
gories using Yuragi learning. The classification system consists of two components:
a feature extractor and a classifier. The feature extractor extracts a feature, which
is input to the classifier, from raw input data, such as image data. Based on the
extracted features, the classifier determines the category to which the input data
belong. The following subsections describe each component in detail.
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10.2.1 Feature Extractor for Preprocessing of Classification

The feature extractor maps non-numerical data, such as images, text, and sound [1,
3, 16], to a numerical vector. The distance of the numerical vector represents the
similarity of the original data. This feature representation helps the classifier to
classify based on the difference in the intrinsic category of the data rather than the
difference in the format of the raw data. For example, for an image, by extracting
features of the image that do not depend on the parallel movement in the image, an
object whose position is shifted can be easily classified as the same object. For text,
by numerically expressing the similarity relation of words, it is possible to classify a
sentence by focusing on its meaning regardless of the difference in words used. Such
feature extraction is also commonly used in conventional classification in machine
learning. Figure 10.1 presents an example of feature extraction of handwritten
characters. Each image of a character is mapped into a feature space in which the
same characters are mapped into a certain area.

Deep learning is often used as a feature extractor. In a multilayer neural network
model, such as deep learning, the feature extraction process is included internally
and can be partially extracted to construct a feature extractor. The configuration
of deep learning is roughly divided into an input layer, an intermediate hidden
layer, and an output layer. The data provided to the input layer are processed in
the intermediate hidden layer, and the category is identified in the output layer.
Each layer maps the output vector of the previous layer to another vector space,
and the output of the intermediate hidden layer can be regarded as the extracted
features of the data for the final classification. Therefore, the feature extractor can be
constructed by extracting the neural network from the input layer to the intermediate
hidden layer. Feature extractors created in this manner are commonly applied to

Feature space

Feature
extractor

image

Fig. 10.1 Feature extraction: handwritten characters on the left side are mapped to the feature
space on the right side
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various types of input, such as words (word2vec), images (image2vec), and sounds
(sound2vec) [16]. A neural network is also used as the feature extractor here.

Following [3], we use triplet loss as the loss function to learn the neural network
for the feature extractor. The triplet loss is defined by the following equation:

L =
∑

i

[
‖f (ai) − f (pi)‖2 − ‖f (ai) − f (ni)‖2 + α

]+
,

where (ai, pi , ni) represents the triplet of training data, f (x) represents the
feature mapping by the neural network, [x]+ = max(0, x), and α is a parameter
representing how far apart the different categories would be placed in the feature
space. The triplet (ai, pi , ni) is selected from the training data so that ai and pi are
the same categories, while ai and ni are different categories. Thus, the triplet loss is
minimized when the distance between a pair from different categories is sufficiently
larger than the distance between a pair from the same category. That is, the feature
extractor learning with triplet loss maps the data into the feature space so that similar
inputs are close to one another, while different inputs are far apart.

In a neural network, simultaneous optimization of a feature extractor and a
classifier can be performed by combining them into one neural network model.
However, the neural network constructed by this combination has many parameters,
and a large amount of training data and learning time is required to learn these
parameters. Because the characteristics of input data, such as images, are considered
to be independent of a particular classification problem, the same feature extractor is
often reused for other classification problems. In particular, in a situation in which a
new category is acquired, the relationship between the input data and features does
not change. Thus, it is preferable to reuse the feature extractor without modifying it
and updating only the classifier.

10.2.2 Yuragi Learning as a Classifier

After a feature is extracted from the raw data, the classifier determines the category
that the feature represents. That is, the classifier is the mapping from the feature
vector to the known category list. It should be noted that grouping the inputs without
the category list is called clustering [17], which is outside of the scope of this
chapter.

In this chapter, we use Yuragi learning as the classifier, which is based on the
Bayesian attractor model that formulates the cognitive decision-making process
in the brain [2]. In Yuragi learning, the decision-making process is modeled as
accumulating confidence with sequential observations. Yuragi learning has several
choices called attractors, and it estimates the confidence of each choice in terms of
its suitability for the current situation. If the confidence of a choice exceeds a certain
threshold, Yuragi learning selects this choice.
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We denote the decision state at time t as zt and the state corresponding to S

alternatives as φ1, · · · , φS . That is, the ith alternative is selected when the decision
state zt = φi . Usually, φi is a one-hot vector whose ith element is 1 and whose other
elements are −1.

10.2.3 Yuragi Learning: State Update

When a new observation value xt is obtained, Yuragi learning calculates the
posterior probability distribution P(zt |xt ) by Bayesian inference. The generative
model for the Bayesian inference is as follows:

zt − zt−�t = �tf (zt−�t) + √
�twt (10.1)

xt = Mσ (zt ) + vt , (10.2)

where f represents the Hopfield dynamics that has S fixed points (or attractors)
φ1, · · · , φS presenting the S alternatives. This generative model signifies that when
the decision state approaches one of the attractors φi , the selected attractor is suitable
for the observed value xt . M = [μ(1), · · · ,μ(S)] is a matrix that aligns μ(i), which is
a representative of the observation value for the situation in which the ith alternative
should be chosen. σ is a sigmoid function whose image is [0, 1]. In this chapter, the
function is applied element-wise to the operand if the function is displayed in bold.

wt and vt are noise terms that follow a Gaussian distribution: wt ∼ N(0,
q2

�t
I), vt ∼

N(0, r2I). q denotes the dynamic uncertainty, which represents the tendency to
switch the decision between alternatives, and r denotes the sensory uncertainty,
which represents that the size of the error is included in the observation value.

10.2.4 Yuragi Learning: Decision-Making

The posterior distribution provides the confidence of an alternative, that is, how
suitable it is for the current situation. In Yuragi learning, the decision is determined
when the confidence exceeds a certain threshold.

Yuragi learning selects the ith alternative when the following condition is
satisfied:

P(zt = φi |xt ) ≥ λ, (10.3)

where λ is the threshold, and P(zt = φi |xt ) is the confidence of the ith alternative.



10 Bias-Free Yuragi Learning 219

10.3 New Category Acquisition in Yuragi Learning

In the original Yuragi learning, the time series of the observation data is input,
and each observation data point is recognized as belonging to one of the known
categories. Given an observation belonging to an unknown category as input, Yuragi
learning calculates the confidence level of each known category to which the
observation may belong. Then, it is determined whether the confidence level for
a known category similar to the input is high or the confidence level for classifying
any known category is low. Thus, there is a bias in Yuragi learning, whereby the
classification results differ depending on which category is initially provided as
a known category. However, when we observe an unknown object, we recognize
it as belonging to a new category, and when we observe the same object again
later, we can identify it as belonging to the same category. This ability plays an
important role in making appropriate decisions in a changing environment. In IoT
applications, AI should have this ability to make decisions in changing situations
in real time. Therefore, we consider the expansion of Yuragi learning to have the
ability to acquire and classify new categories.

For classification of a new category, the greatest challenge is that AI does not
have a large amount of data for the new category. For instance, when data for
the new category are observed for the first time, there is only one data point. In
an extreme case, it is necessary to acquire the new category from only this point
and be able to recognize it when data belonging to the same category are observed
again later. Humans can identify any animal from a single photograph and use their
abilities to make various judgments daily. Even if a category is initially acquired
from one observation data point, knowledge can be corrected through the experience
of acquiring additional observation data, and it becomes possible to classify the new
category more accurately. Inspired by this human ability, we propose a learning
method of Yuragi learning capable of acquiring and modifying a new category
online. In the extended Yuragi learning, the classifier is developed by sequentially
acquiring a new category while modifying it from a small amount of data that are
sequentially obtained.

This chapter proposes a method to add and modify categories online by
automatically collecting training data for new categories based on the classified
results and accumulating the data as experience in parallel with Yuragi learning
classification. This method consists of four processes as follows:

Step 1. Detect input data belonging to an unknown category based on the
confidence level of Yuragi learning.

Step 2. Calculate the provisional category representative values from a small
amount of observed data and add them to Yuragi learning as new
categories.



220 T. Otoshi

Fig. 10.2 Process of new category acquisition

Step 3. In parallel with the classification of the category, perform labeling using
the confidence of the classification into the new category, and accumulate
the label as training data.

Step 4. Recalculate the category representative value from the accumulated train-
ing data to relearn the category.

Figure 10.2 illustrates the overall process. The remainder of this section describes
each process in detail.

10.3.1 Detecting New Category

The first step in acquiring a new category is to detect data emerging from an
unknown category that do not belong to an existing category. In a subsequent
process, a new category is added to Yuragi learning so that the unknown category
can be newly classified. In particular, Yuragi learning assumes that observation data
are input along with a time series and detects unknown categories in parallel with
classification into known categories.

One way to detect new categories is to use the confidence level that Yuragi
learning calculates sequentially for incoming observation data. In the classification
process, when data belonging to an unknown category arrive, Yuragi learning
outputs low confidence for all known categories. Therefore, it is possible to
determine that the observed value belongs to the unknown category when the
confidence for all known categories falls below a certain threshold.
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More precisely, data point xt is regarded as being from an unknown category
when

∀i, P (zt = φi |xt ) ≤ λnew, (10.4)

where λnew is the threshold for judging that the confidence is low. We denote this
new data point xt satisfying Eq. (10.4) as xnew .

A single observed value can be used to determine representative values; however,
more accurate representative values can be obtained by collecting a certain number
of observed values and detecting the unknown category data from them. However,
simply because two data points are in an unknown category, it does not imply that
they are in the same category. For example, if dogs and cats are existing categories,
both mice and rabbits are in unknown categories; however, they are not in the same
category. Nevertheless, it is often possible to assume that temporally continuous
inputs are in the same category. For example, in sequential animal photos taken at
a zoo, a rabbit begins to appear in the camera and is continuously displayed until
it disappears from the frame. As described above, it is thus possible to collectively
detect τ pieces of data after the first detection as data of the same unknown category,
assuming that continuous inputs at fixed intervals belong to the same category. We
denote these τ pieces of data as xnew = xnew(1), · · · , xnew(τ ).

10.3.2 Adding New Category with Initial Data

When data belonging to an unknown category are detected by the above method,
the addition of a new category begins. In Yuragi learning, because a category
is expressed by its representative value, a provisional representative value of the
category is calculated using the observed data.

In general, representative values of a category represent characteristics that apply
to a large amount of data belonging to that category, and a sufficient amount of data
is required to calculate an accurate representative value. However, in a real-time
scenario, the representative value is calculated from only a small amount of data by
the detection of an unknown category. A classifier using this representative value is
only a provisional classifier, and in a later step, this provisional classifier is used to
collect additional data and improve the classification accuracy.

Specifically, the average value of τ data obtained in the detection of unknown
categories is set as a new attractor for Yuragi learning. Therefore, the typical value
μ(new) for a new attractor is as follows:

μ(new) = 1

τ

τ∑

i=1

xnew(i).
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Under the assumption that successive input sequences belong to the same
category, it is expected that the collected data belong to the same category and
the average feature represents a feature common to that category. However, the
amount of data is not sufficient, and there is a possibility that a common feature is
accidentally extracted depending on the timing of acquiring the data. For example,
if a rabbit is detected as a new category when an animal is being photographed with
a camera, different characteristics may be obtained depending on the direction of the
rabbit photographed at the detection time. Therefore, a provisional classifier using
these data tends to be less accurate. In the following two steps, training data are
automatically collected using a provisional classifier to accumulate experience and
improve the classification accuracy.

10.3.3 Gathering Training Data

The provisional category representative values calculated from a limited amount of
data at the time of detection of a new category are likely to be different from the
representative values actually common to the category. Therefore, the classifier is
improved by collecting data considered to belong to the new category and correcting
the representative value. In general, training data are often manually labeled by
humans for mechanically recorded data, such as sensor data; however, this is a major
challenge in real time due to the time and labor costs involved. Here, the system
itself automatically labels the data; thus, the entire process from the detection of a
new category to the collection of training data is automatically performed.

After adding a new tentative category, the classifier performs classification of the
time series of the input in the same way as the conventional classifier. During the
ordinal classification, the obtained data and classification results are accumulated.
That is, the new observation value X = {xt+1, · · · , x t+T } obtained after detecting
the new category is classified by the provisional classifier, and the classification
labels are recorded. Then, a subset X(new) of the observation data classified into
the new category is acquired. Here, T is the period of collecting data. Because new
categories are added one by one, no new categories are added during this period.
Thus, the period should be determined according to the context length in the input
time series.

As a result of the above processing, the system acquires the data labeled with the
new category from the unlabeled data.

10.3.4 Updating New Category with Gathered Data

The classifier is updated using the new training data automatically collected by
the above method. In updating the classifier, the classifier is relearned using the
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obtained dataset so that each of the known categories and the new category can be
differentiated.

A classifier using Yuragi learning is updated by its representative value for
each category. Therefore, the representative value of the new category temporarily
calculated previously is updated as follows using the new training data X(new):

μ(new) = 1

|X(new)|
∑

x∈X(new)

x,

where |X| denotes the number of elements in X. That is, the representative value is
set to the average value of the gathered data X(new).

Many machine learning programs, including neural networks, require data even
for known categories when new categories are involved in relearning. For this
reason, it is necessary to always maintain not only additional training data for the
new category but also a large amount of training data used for previous learning.
Relearning using such a large amount of data often takes an enormous amount of
time. In contrast, in Yuragi learning, relearning can be performed for each category
by updating the representative value of each category. In addition, the learning can
be performed with a lightweight calculation of the average value of the feature
quantity.

By completing this relearning step, a series of operations for adding categories
is completed, and the state is shifted to the state of detecting the next unknown
category. Then, by repeating the above steps, the system can learn new categories
one by one.

10.4 Numerical Simulation

Section 10.3 introduces a method that automatically collects data and learns new
categories when an unknown category is detected. The method is described on the
assumption that Yuragi learning is used as a classifier; however, similar processing
can also be performed using another classifier, such as a neural network. However,
Yuragi learning learns by directly updating the representative value, whereas a
classifier, such as a neural network, must relearn many parameters contributing to
classification. In particular, in the context of learning a new category that occurs
during classification, the amount of data that can be used to learn that category is
limited, and relearning is difficult with conventional classifiers. Here, a comparison
between using Yuragi learning and a neural network as a classifier when adding
a new category indicates that Yuragi learning can be learned even with a small
amount of training data. To examine the respective features, the operation of the
two approaches is compared using a simple numerical simulation. Comparisons in
specific applications using image recognition as an example are provided in the next
section.
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10.4.1 Simulation Scenario

As the simplest scenario for adding a new category, we assume that the system learns
one new category from the first two known categories. Initially, the classifier has
two categories and classifies a given input as belonging to either category or neither.
By presenting data belonging to an unknown category to the classifier, detection of
the new classification is initiated according to Step 1 of the new category addition
method. The entire process of acquiring new categories depends on which data are
detected as a new category by the classifier. However, because we are interested
in the amount of data required to acquire a new category, we begin with a state
in which one data point is detected to belong to an unknown category for any
classifier. Thereafter, the learning of one new category is completed by creating
a provisional classifier, automatically collecting training data, and modifying the
classifier according to the procedure of the new category addition technique. When
the learning of the category is completed, the classification accuracy is measured to
examine the differences in performance between the classifiers.

The details of the process are as follows:

1. The classifier is initialized to distinguish the two categories whose mean values
are μ1 and μ2.

2. New data xnew ∼ N(μ3, σ
2) are given to the system, and the system adds the

new category.
3. The system collects the training data for the new category with the N data

randomly sampled from N(μi, σ
2).

4. The system updates the classifier with the collected training data.
5. The classification accuracy is measured with test data sampled from N(μi, σ

2),

where μ1 = (1, 0, 0), μ2 = (0, 1, 0), μ3 = (0, 0, 1), and σ = 0.5.
We change the amount of unlabeled data N to investigate the relationship

between the accuracy and the data size. In this numerical simulation, we do not
use a feature extractor, as the data are a one-hot vector that already displays the
features. For the Yuragi learning parameters, we use the following values: q = 0.5
and r = σ .

10.4.2 Accuracy and Sensitivity

To evaluate whether the acquired new categories are correctly classified, test data
generated from the existing categories and added categories are used to confirm that
they are classified into the correct categories. Accuracy and sensitivity are used to
evaluate the new classification. Accuracy represents the percentage of all test data
that are correctly classified and is high when both new and existing categories are
correctly classified; however, new and existing categories generally interfere with
each other. For example, if a classifier remembers wolves as a new category, data
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that would have been previously classified as a dog can now be classified as a wolf.
When a new category is added, it should be correctly classified without disturbing
the correct answers for existing categories. Therefore, we use sensitivity for each
category, which evaluates whether each category is correctly classified.

Each metric is defined as follows [6]:

accuracy = A
B

(10.5)

sensitivityc = Ac

Bc
, (10.6)

where A is the number of collect classifications, B is the amount of all test data, Ac

is the number of true positives for the category c, and Bc is the amount of test data
from the category c.

10.4.3 Using a Neural Network as Classifier

Although this chapter is based on the assumption that Yuragi learning is used
as the classifier, our new category acquisition method can also use conventional
classifiers, such as neural networks. As a classifier, Yuragi learning can learn based
on representative values; therefore, it is a powerful option for classifying new
categories when only several data samples are available. To verify the effectiveness
of different classifiers, we compare the use of Yuragi learning and a neural network
as classifiers.

Unlike Yuragi learning, which adds only representative values of new categories,
neural networks, which learn new categories by updating the classifier parameters,
must relearn the entire category, including existing categories. Therefore, when a
neural network is used, training data for all categories are retained. In addition,
when learning is performed, all data, for not only the new category but also existing
categories, are used. In contrast, Yuragi learning does not require updating the
representative values of existing categories or retaining the training data in the
learning process. This time, the model of the neural network consists of three fully
connected layers of 3, 64, and 3 neurons.

10.4.4 Results

In our proposed category addition method, training data for a new category are
automatically acquired from unlabeled data; however, the amount of acquired
training data differs depending on the amount of data to be given at that time,
and the classification accuracy changes accordingly. Therefore, the relationship
between the classification accuracy and the amount of data to be given is examined
while changing the amount of unlabeled data. Figure 10.3 presents the classification
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Fig. 10.3 Accuracy of classification when learning a different amount of unlabeled data using
Yuragi learning or a neural network (NN) as a classifier. The x-axis (n) represents the amount of
unlabeled data

accuracy achieved when a different amount of unlabeled data is provided for both
the Yuragi learning classifier and the neural network classifier. Because the data
are generated randomly, the accuracy is slightly improved when there is a large
amount of data that are easy to classify. Thus, the graph contains small fluctuations
in accuracy. However, we focus on the general tendency of the graph.

Figure 10.3 indicates that the classification accuracy when using Yuragi learning
is higher than that when using a neural network for any amount of data. This is due
to the difference in the way the classifier learns new categories with Yuragi learning
and a neural network. In Yuragi learning, new categories are learned using newly
obtained training data as representative values. Neural networks, in contrast, learn
to classify existing and new categories by modifying the weights of a very large
number of neurons. In general, it is difficult to estimate a large number of parameters
from a small amount of data. Therefore, a neural network cannot obtain the data
necessary for learning when the amount of training data for the new category is
limited; as a result, the neural network displays low accuracy. In addition, when
the amount of unlabeled data to be given is increased, the classification accuracy
of Yuragi learning is greatly improved, particularly when the amount of unlabeled
data increases from 30 to 60. This is because with Yuragi learning, the provisional
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Fig. 10.4 Sensitivity of classification when learning a different amount of unlabeled data using
Yuragi learning and a neural network as a classifier. (a) Yuragi learning. (b) Neural network

classifier is able to correctly collect data belonging to the new category by collecting
training data.

Figure 10.4 presents the sensitivity of each category to further characterize
the classification of new categories in Yuragi learning and neural networks. The
figure indicates that Yuragi learning is highly sensitive to all categories, whereas
neural networks are less sensitive to new categories. As described above, a neural
network requires learning a large number of parameters; however, in classifying a
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new category, learning the new category fails because the amount of data available
for learning is limited. Furthermore, when a neural network classifier is used as a
provisional classifier, it is difficult to collect test data from unlabeled data; thus, even
if the amount of data to be given is increased, a new category cannot be obtained.

10.5 Handwritten Character Recognition

To verify the performance of the new category acquisition method, an experiment
was conducted using image recognition as an example, which is one of the main
applications of AI. Here, the recognition accuracy was evaluated for a scenario
in which image data of handwritten characters were sequentially supplied to the
system and the system automatically acquired unknown handwritten characters
from the image data. The image data of handwritten characters to be supplied to
the system used the Omniglot dataset [8], which included character images from
various languages.

10.5.1 Evaluation Scenario with Handwritten Character

As in the numerical simulation in Sect. 10.4, we start with a classifier that
distinguishes between two types of handwritten characters and acquires the ability
to classify new characters. The main difference is that it repeats learning new
characters one by one, assuming developmental learning. In other words, a scenario
is assumed in which a system that can classify only two characters automatically
performs the classification of new characters by providing character images. Here,
it is assumed that the detection of an unknown category is performed correctly, and
attention is paid to the steps in which the training data are automatically collected
by the provisional classifier and the learning proceeds. The detailed process is as
follows:

1. The classifier is initialized to distinguish the initial two characters from the
Omniglot dataset.

2. A new character is provided to the system, and the system adds a new category.
3. The system collects training data for the new category with unlabeled character

images that are sampled from known characters and the new character.
4. The system updates the classifier with the collected training data.
5. The accuracy of classification is measured with test data sampled from known

characters and the new character.
6. Steps 2–5 are repeated after the new character is added to the known characters.
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10.5.2 Using a Convolutional Neural Network as a Feature
Extractor

When classifying an image, it is common to extract features of the image and use
them as input to a classifier rather than directly using an image storage format,
such as a bitmap, as an input. By extracting the feature quantity, classification based
on the characteristics of the category can be performed without depending on the
translation of the image. We used a convolutional neural network (CNN) [5, 7, 9]
as a feature extractor commonly used in image recognition. The CNN had a simple
structure in which a convolutional layer and a pooling layer were repeated twice,
and two fully connected layers were applied. The filter size of the convolutional
layer and pooling layer was 3 × 3, and the number of filters of the convolutional
layer was 32 and 64. In addition, the fully connected layers at the latter stage set the
number of neurons to 64 and 32, and the output consisted of 32-dimensional feature
values. The output feature became the input of the classifier. For the classifier,
before conducting the image recognition experiment, learning was performed using
handwritten images that were not used in the experiment. At this time, the CNN was
trained to minimize the triplet loss. By this learning, a feature amount extractor was
obtained in which the same character was mapped to a close position on the feature
amount space.

10.5.3 Using Neural Network as Classifier

Similar to the numerical simulation in Sect. 10.4, a comparison was performed
using a neural network as a classifier. The classifier consisted of three layers: an
input layer, an intermediate hidden layer, and an output layer. The input layer had
the same 32 dimensions as the feature quantity, the intermediate hidden layer had
64 dimensions, and the output layer had the same dimensions as the number of
categories acquired thus far. The learning of the neural network was performed
only for the classifier using the training data of the existing category and newly
obtained category. At this time, similarly to Yuragi learning, the neural network for
feature quantity extraction was fixed and learned. That is, transfer learning [11] was
performed for the neural network corresponding to the classifier.

10.5.4 Results

As the number of categories increases, the probability of a classification being cor-
rect by chance decreases, as does the accuracy of the classifier. In particular, when
new categories are repeatedly learned based on limited data, the accumulation of
categories with low classification accuracy reduces the overall accuracy. However,
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Fig. 10.5 Accuracy of classification after learning the multiple categories using Yuragi learning
or a neural network as a classifier

in Yuragi learning, because learning can be performed using only the representative
values of the categories, the accuracy of new categories is high, and the degradation
in accuracy can be suppressed even if the number of categories increases. Therefore,
we investigated the relationship between the classification accuracy and the number
of categories. Figure 10.5 illustrates the overall change in classification accuracy as
the classifier learned new characters one by one. This figure presents a comparison
of the results when Yuragi learning was used as a classifier and when a neural
network was used.

Figure 10.5 demonstrates that the classification accuracy decreased with the
number of categories, as described above. Moreover, in any process of adding
categories, the classification accuracy was higher when Yuragi learning was used
as the classifier than when a neural network was used. This is because in Yuragi
learning, a new category can be learned by setting a representative value, whereas
in a neural network, setting a large number of parameters cannot be performed
correctly with limited data. In particular, when using Yuragi learning, the classi-
fication accuracy was approximately 1 until the number of categories increased
to 5. In contrast, when a neural network was used and the number of categories
was 5, the classification accuracy was approximately 0.6. As described above, when
Yuragi learning is used, the classification accuracy can be maintained to some extent
even if new categories are repeatedly added. However, even when using Yuragi
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learning, because the accuracy decreases as the number of classifications increases,
in practice, it is necessary to present a category with insufficient accuracy when a
decrease in accuracy is detected and manually provide accurate training data for that
category. Even if this manual process is introduced, the labor will be reduced when
Yuragi learning is used because the accuracy remains high, while the number of new
categories is small.

10.6 Summary

In this chapter, we introduced a system that automatically collects training data
from unlabeled data using Yuragi learning to avoid the bias of a small amount
of data. The system uses the confidence of Yuragi learning to detect unknown
categories. In addition, it uses detected data to create a provisional classifier. Using
this provisional classifier, the system detects data belonging to a new category in
parallel with ordinal classification and automatically collects these data as training
data. The classification accuracy can be improved by retraining the classifier
after collecting additional training data. By repeating this procedure, the system
sequentially acquires new categories.

The behavior of the above system was evaluated through numerical simulation.
It was demonstrated that a new category could be classified when Yuragi learning
was used as a classifier; however, the new category could not be classified when a
neural network was used because training data were limited. We also conducted
an experiment to learn new categories repeatedly using handwritten character
data. The results indicated that when Yuragi learning was used as a classifier,
high classification accuracy was maintained even when the number of categories
increased in the learning process. In particular, when the learning loop was repeated
three times, the classification accuracy was 0.6 when a neural network was used as
a classifier, whereas the classification accuracy was almost 1 when Yuragi learning
was used as a classifier. In future work, the flexible management of categories by
deleting, integrating, and separating categories should be considered.
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