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Abstract. In this paper, an off-policy Q-learning method is proposed to solve
the linear quadratic tracking problem of discrete-time system based on the
output feedback of the system when the system model parameters are unknown.
First, a linear discrete-time system with unknown parameters in the system
matrix is given. Then, based on the Q-learning method and dynamic program-
ming, an off-policy Q-learning algorithm without knowing system model
parameters is proposed, such that the optimal controller is designed to obtain the
control strategy which uses the system output data to learn the output feedback
data driven optimal tracking control for linear discrete time systems with output
feedback. Finally, the simulation results verify the effectiveness of the method.
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1 Introduction

Linear quadratic tracking (LQT) of discrete time systems (DT) is a very important
problem in the field of control. The basic idea is that the performance index is a
quadratic function defined by the accumulation of deviation between the reference
signal and the system output and the accumulation of control input. By designing an
optimal controller, the performance index is minimized so that the output of the system
can follow the track of the reference signal by an optimal approach. The traditional
method to solve LQT problem is to solve a Riccati algebraic equation [1–3]. The
traditional controller design methods all require the system model information to be
known.

Reinforcement learning (RL) is a one kind of machine learning methods, which was
born in 1950s and 1960s [4–6]. During the dynamic interaction with unknown dynamic
environment, performance is evaluated and action is updated, such that the optimal
performance together with the optimal action can be learned [7–11]. Reinforcement
learning has many advantages and strong adaptability. At present, it has become an
important learning method for solving optimization problems. It is widely used in
robot, artificial intelligence, intelligent systems and other fields, and it is one of the
research hot spots in recent years [12–15].
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In the existing researches on the optimal tracking control results which do not
depend on the system model by reinforcement learning method, most of them use the
system state data to learn the state feedback control strategy and track the reference input
of the system in the optimal or nearly optimal way, such as the optimal tracking control
[16–22], etc. In [19], a Q-learning method based on off policy iteration was proposed to
solve the optimal tracking control problem of networked control system. In [20], when
the system parameter model is unknown, an optimal control method of linear network
control was proposed. According to the state feedback information of the system, a
novel off-policy Q-learning algorithm was proposed in [21], which solved the problem
of linear quadratic tracking in discrete time under the condition of unknown system
parameters. In [22], an optimal tracking control scheme was proposed.

In this paper, a Q-learning algorithm is developed to design the output feedback
optimal tracking control strategy, such that the optimal quadratic tracking problem can
be solved without the knowledge of system dynamics.

The innovation of this paper lies in (a): different from the traditional research which
needs the traditional model information [1–3], the research of this paper is to learn the
optimal tracking control strategy when the system model parameters are unknown. (b):
compared with other model-free research on the state feedback of the system [20–22],
this paper adopts a fully data-driven off policy Q-learning method to solve the linear
quadratic tracking control problem of the discrete-time system based on the output
feedback of the system and independent of the system model parameters. Finally,
simulation experiments and practical application examples are given to verify the
effectiveness of the algorithm.

2 On the Optimal Control Problem

This section will introduce the optimal control of linear quadratic tracking problem for
discrete-time systems. The state equations of the following linear discrete systems are
considered below:

xkþ 1 ¼ Axk þ Buk
yk ¼ Cxk

�
ð1Þ

where xk is the state of the controlled object, uk is the input of the controlled object, and
yk is the output of the controlled object. A, B, and C are matrices of appropriate
dimensions, respectively. The reference signal of our interest is as follows:

rkþ 1 ¼ Frk ð2Þ

where rk is the input of the reference object, F is also a matrix with appropriate
dimensions. For the linear quadratic tracking problem of discrete-time system, we need
to control the output signal yk in the system (1), and gradually track and catch up with
our reference input signal rk as time goes on. According to the actual problems, we
design and select the output feedback controller as follows:
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uk ¼ �K1yk � K2rk ð3Þ

The purpose of our controller is to optimize performance index J. Our performance
indicator is:

J ¼ min
uk

X1
k¼0

½bkðyk � rkÞTQðyk � rkÞ þ uTk Ruk� ð4Þ

where Q � 0 and R [ 0 are symmetric matrices, and b is a discount factor with
0\ b\ 1. The constraints are as follows:

xkþ 1 ¼ Axk þ Buk
yk ¼ Cxk
rkþ 1 ¼ Frk

8<
: ð5Þ

According to the performance index, we can define the optimal value function V� as:

V�ðxk; rkÞ ¼ min
uk

X1
i¼k

½bkðyk � rkÞTQðyk � rkÞ þ uTk Ruk�

¼ min
uk

X1
k¼0

½bkðCxk � rkÞTQðCxk � rkÞ þ uTk Ruk�
ð6Þ

Then, the Q function can be expressed as:

Qðxk; rk; ukÞ ¼ ðyk � rkÞTQðyk � rkÞ þ uTk Ruk þ
X1

i¼kþ 1

½ðyi � riÞTQðyi � riÞ þ uTi Rui�

ð7Þ
The optimal function Q� can be expressed as:

Q�ðxk; rk; ukÞ ¼ ðyk � rkÞTQðyk � rkÞ þ uTk Ruk þ V�ðxkþ 1; rkþ 1Þ ð8Þ

For the convenience of calculation and understanding, (8) can be rewritten as:

Q�ðxk; rk; ukÞ ¼
yk
rk
uk

2
4

3
5
T

Q
yk
rk
uk

2
4

3
5 þ V�ðxkþ 1; rkþ 1Þ ð9Þ

where Q can be written as:

Q ¼
Q �Q 0
�Q Q 0
0 0 R

2
4

3
5 ð10Þ

From the above formula, we can know that the relationship between the optimal
value function V� and the optimal function Q is:
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V�ðxk; rkÞ ¼ Q�ðxk; rk; u�kÞ ð11Þ

Since the input uk of the control object is controllable, the optimal value function
V� can be expressed as [15]:

V�ðxk; rkÞ ¼ xk
rk

� �T
P

xk
rk

� �
ð12Þ

The optimal Q function can be expressed as:

Q�ðxk; rk; ukÞ ¼
xk
rk
uk

2
4

3
5
T

H
xk
rk
uk

2
4

3
5 ð13Þ

The matrix H can be expressed as follows:

H¼
Hxx Hxr Hxu

Hrx Hrr Hru

Hux Hur Huu

2
4

3
5 ¼

ATPA þ CTQC ATPF � CTQ ATPB
FTPA � QC FTPF þ Q FTPB

BTPA BTPF BTPB þ R

2
4

3
5 ð14Þ

According to the necessary conditions to achieve optimal performance, imple-

menting @Q�ðxk ; rk ; ukÞ
@uk

¼ 0 yields the following forms.

K1C ¼ H�1
uu H

T
xu

K2 ¼ H�1
uu H

T
ru

�
ð15Þ

From (15), we find that we cannot get K1 if the matrix C is unknown. The output
equation can be treated as follows.

ðCTCÞ�1CTyk ¼ xk ð16Þ

By substituting (16) into (9) above, we can obtain a new optimal Q function
equation:

Q�ðxk; rk; ukÞ ¼ ðyk � rkÞTQðyk � rkÞ þ uTk Ruk þ xkþ 1

rkþ 1

� �T
P

xkþ 1

rkþ 1

� �

¼
yk
rk
uk

2
64

3
75
T Q �Q 0

�Q Q 0

0 0 R

2
64

3
75

yk
rk
uk

2
64

3
75 þ

yk
rk
uk

2
64

3
75
T ðCTCÞ�1CT 0 0

0 I 0

0 0 I

2
64

3
75
T

A 0 B

0 F 0

� �T
P

� A 0 B

0 F 0

� � ðCTCÞ�1CT 0 0

0 I 0

0 0 I

2
64

3
75

yk
rk
uk

2
64

3
75¼

yk
rk
uk

2
64

3
75
T

Hyy Hyr Hyu

Hry Hrr Hru

Huy Hur Huu

2
64

3
75

yk
rk
uk

2
64

3
75

¼ ZT
k HZk

ð17Þ
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where

H ¼
Hyy Hyr Hyu

Hry Hrr Hru

Huy Hur Huu

2
64

3
75

¼
½CTðCCTÞ�1�TðATPAÞ½CTðCCTÞ�1� þ Q

ðFTPAÞ½CTðCCTÞ�1� � Q

BTPA½CTðCCTÞ�1�

2
64 ðCTCÞ�1CTATPF � Q

FTPF þ Q

BTPF

ðCTCÞ�1CTATPB

FTPB

BTPB þ R

3
75

ð18Þ

Implementing @Q�ðxk ;rk ;ukÞ
@uk

¼ 0 yields the following forms

K1 ¼ H
�1
uu H

T
yu

K2 ¼ H
�1
uu H

T
ru

(
ð19Þ

According to the above relation, the Riccati equation for the optimal Q function is
as follows:

ZT
k HZk ¼ ZT

k QZk þ ZT
kþ 1HZkþ 1 ð20Þ

3 Data Driven Q-Learning Algorithm

This section will give off-policy Q-learning algorithm for designing the output feed-
back optimal tracking control strategy, under which the system output can track the
reference signal in an approximate optimal way.

First, the on-policy Q-learning algorithm is given, and then based on it the off-
policy Q-learning algorithm is derived.

Algorithm 1: On-policy Q-learning algorithm.

1. Give a stablizing controller gain K j
1 and K j

2, let the initial j value be 0, j represents
the number of iterations. The control object input is defined as.

u j
k ¼ �K j

1yk � K j
2rk ð21Þ

2. Evaluate the control policy by solving the optimal Q function and matrix H.

ZT
k H

jþ 1
Zk¼ðyk � rkÞTQðyk � rkÞþ u j

kRu
j
k þ ZT

kþ 1H
jþ 1

Zkþ 1 ð22Þ
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3. Update the control policy.

ujþ 1
k ¼ �Kjþ 1

1 yk � Kjþ 1
2 rk

Kjþ 1
1 ¼ ð�Hjþ 1

uu Þ�1ð�Hjþ 1
yu ÞT

Kjþ 1
2 ¼ ð�Hjþ 1

uu Þ�1ðHjþ 1
ru ÞT

(
ð23Þ

4. If �Hjþ 1
�� � �H jk� e(e is a small positive number) stops the iteration of the strategy.

Otherwise,j ¼ jþ 1, and return to Step 2.

In view of the advantages of off policy Q-learning algorithm, we will propose an
off-policy algorithm based on Q-function, and adopt data-driven algorithm without
model to solve the linear quadratic tracking problem of discrete-time system. We
introduce the target control strategy into the system dynamics and get the following
equation, where uk is the behavior control strategy and u j

k is the target control strategy.

ykþ 1 ¼ Cxkþ 1 ¼ CAxk þ CBuk ¼ CACTðCCTÞ�1yk þ CBuk ð24Þ

ykþ 1

rkþ 1

� �
¼ CACTðCCTÞ�1 0

0 F

� �
� yk

rk

� �
þ CB

0

� �
� u j

k þ
CB
0

� �
� ðuk � u j

kÞ ð25Þ

From Eq. (22), one has

yk
rk

� �T
Pjþ 1 yk

rk

� �
� ykþ 1

rkþ 1

� �T
Pjþ 1 ykþ 1

rkþ 1

� �
þ 2

ykþ 1

rkþ 1

� �T
Pjþ 1 CB

0

� �

� yk
rk

� �T
�

I 0

0 I

�K j
1 �K j

2

2
64

3
75
T

H
jþ 1

I 0

0 I

�K j
1 �K j

2

2
64

3
75 � yk

rk

� �

� ð ykþ 1

rkþ 1

� �
� CB

0

� �
� ðuk � u j

kÞÞT �
I 0

0 I

�K j
1 �K j

2

2
64

3
75
T

H
jþ 1

�
I 0

0 I

�K j
1 �K j

2

2
64

3
75ð ykþ 1

rkþ 1

� �
� CB

0

� �
� ðuk � u j

kÞÞ

¼ ðyk � rkÞTQðyk � rkÞ þ ðu j
kÞTRu j

k

ð26Þ

where

Pjþ 1 ¼
I 0
0 I

�K j
1 �K j

2

2
4

3
5
T

H
jþ 1

I 0
0 I

�K j
1 �K j

2

2
4

3
5 ð27Þ
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(26) can be rewritten as:

yk
rk

� �T
Pjþ 1 yk

rk

� �
� ykþ 1

rkþ 1

� �T
Pjþ 1 ykþ 1

rkþ 1

� �
þ 2

ykþ 1

rkþ 1

� �T
Pjþ 1 CB

0

� �
� ðuk � u j

kÞ

� ðuk � u j
kÞTðCBÞTPjþ 1ðCBÞðuk � u j

kÞ ¼ ðyk � rkÞTQðyk � rkÞ þ ðu j
kÞTRu j

k

ð28Þ

where

2
ykþ 1

rkþ 1

� �T
Pjþ 1 CB

0

� �
� ðuk � u j

kÞ¼ 2
CACTðCCTÞ�1yk þ CBuk

Frk

" #T

Pjþ 1

� CB

0

� �
ðuk � u j

kÞ ¼ 2yTk ½CTðCCTÞ�1�TðCAÞTPjþ 1CBðuk � u j
kÞ

þ 2uTk ðCBÞTPjþ 1CBðuk � u j
kÞ þ 2rTk F

TPjþ 1CBðuk � u j
kÞ

ð29Þ

Further, one has

yk
rk

� �T
Pjþ 1 yk

rk

� �
� ykþ 1

rkþ 1

� �T
Pjþ 1 ykþ 1

rkþ 1

� �

þ 2yTk ½CTðCCTÞ�1�TðCAÞTPjþ 1CBðuk � u j
kÞ þ 2uTk ðCBÞTPjþ 1CBðuk � u j

kÞ
þ 2rTk F

TPjþ 1CBðuk � u j
kÞ � ðuk � u j

kÞTðCBÞTPjþ 1ðCBÞðuk � u j
kÞ

¼ ðyk � rkÞTQðyk � rkÞ þ ðu j
kÞTRu j

k

ð30Þ

Rewriting (30) yields below

h j
kL

jþ 1 ¼ q j
k ð31Þ

where

q j
k ¼ðyk � rkÞTQðyk � rkÞ þ ðukÞTRuk

Ljþ 1 ¼ ðvecðLjþ 1
1 ÞÞT ðvecðLjþ 1

2 ÞÞT ðvecðLjþ 1
3 ÞÞT

h
ðvecðLjþ 1

4 ÞÞT ðvecðLjþ 1
5 ÞÞT ðvecðLjþ 1

6 ÞÞT
�T

Ljþ 1
1 ¼H

jþ 1
yy ; Ljþ 1

2 ¼H
jþ 1
yr ; Ljþ 1

3 ¼H
jþ 1
yu ; Ljþ 1

4 ¼H
jþ 1
rr ; Ljþ 1

5 ¼H
jþ 1
ru ;

Ljþ 1
6 ¼H

jþ 1
uu ;

h j
k ¼ h j

1 h j
2 h j

3 h j
4 h j

5 h j
6

� �
hj1 ¼ yTk 	 yTk � yTkþ 1 	 yTkþ 1
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hj2 ¼ 2yTk 	 yTk � 2yTkþ 1 	 rTkþ 1

hj3 ¼ 2yTk 	 uTk � 2yTkþ 1 	 ðu j
kþ 1ÞT

h j
4 ¼ rTk 	 rTk � rTkþ 1 	 rTkþ 1

hj5 ¼ 2rTk 	 uTk � 2rTkþ 1 	 ðu j
kþ 1ÞT

hj6 ¼ uTk 	 uTk � ðu j
kþ 1ÞT 	 ðu j

kþ 1ÞT

4 Simulation Experiment

In this section, we use the proposed algorithm to simulate the experiment, and use the
experimental results to verify whether the algorithm is effective.

Example 1: Consider the following system:

xkþ 1 ¼ �1 2
2:2 1:7

� �
xk þ 2

1:6

� �
uk ð32Þ

yk ¼ 1 �2
�1 4

� �
xk ð33Þ

The reference signal generator is:

rkþ 1 ¼ �1 0
0 �1

� �
rk ð34Þ

Choose Q ¼ 1000 0
0 10

� �
and R ¼ 1. The optimal matrix H and H can be

obtained from (13) and (17), respectively, and the control gain K1 and K2 of the optimal
tracking control can be obtained from (19).

H ¼

55014:1382 �47201:9872
�47201:9872 124780:7167
�10241:4410 9344:6976
193:0046 �162:08466

�48231:9264 124282:7373

2
66664

�10241:4410 193:0046 �48231:9264
9344:6976 �162:08466 124282:7373
2067:8905 51:2434 9527:2908
51:2434 49:1044 �166:5050

9527:2908 �166:5050 123826:6900

3
77775

ð35Þ
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H ¼

157847:7575 70420:4747
70420:4747 39017:3301
�16810:5331 �5569:0922
304:5860 101:5813

�34322:4842 13909:4422

2
66664

�16810:5331 304:5860 �34322:4842
�5569:0922 101:5813 13909:4422
3067:8905 51:2434 9527:2908
51:2434 59:1044 �166:5050

9527:2908 �166:5050 123826:6900

3
77775

ð36Þ
K1 ¼ 0:2772 �0:1123½ �
K2 ¼ 0:0769 0:0013½ �

�
ð37Þ

After 8 iterations, we find that the algorithm converges and the matrix H
8
and the

control gain K8
1 and K8

2 of the optimal tracking control are the following data.

H
8 ¼

157847:7575 70420:4747
70420:4747 39017:3301
�16810:5331 �5569:0922
304:5860 101:5813

�34322:4842 13909:4422

2
66664

�16810:5331 304:5860 �34322:4842
�5569:0922 101:5813 13909:4422
3067:8905 51:2434 9527:2908
51:2434 59:1044 �166:5050

9527:2908 �166:5050 123826:6900

3
77775

ð38Þ
K8
1 ¼ 0:2772 �0:1123½ �
K8
2 ¼ 0:0769 0:0013½ �

�
ð39Þ

In the learning process, the optimal tracking controller gain is convergent, and the
following figure shows its convergence process in the learning process (Fig. 1).

In order to obtain the exact solution of Riccati Eq. (20) of the optimal Q-function under
sufficient excitation conditions, it is necessary to add detection noise (Figs. 2 and 3).

Fig. 1. Optimal control gain convergence process of tracking controller
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Example 2:
We select the water tank system made by ingenieurburo gurski Schramm company in
Germany, which is a three tank water tank of TTS20 type, as our simulation object, and
the water tank is shown in Fig. 4. This water tank system consists of a nonlinear multi
input multi output system with two actuators and a digital controller, which meets our
requirements for the system. The main structure and overall industrial process of
TTS20 three tank water tank are shown in Fig. 5.

Fig. 2. System output and reference signal

Fig. 3. Tracking errors using the learned controller
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TTS20 three tank device is composed of three plexiglass cylinders T1, T2 and T3
with Section A, which are connected in series with each other through cylindrical pipes
with section Sn. There is a one-way valve in T2 glass pipe, and the outflow liquid will
be collected in a reservoir to provide water for pump 1 and pump 2. Hmax is the highest
liquid level. If the level of T1 or T2 exceeds this value, the corresponding pumps 1 and
2 will automatically shut down. Q1 and Q2 represent the flow of pump 1 and pump 2.
In addition, to simulate leakage, each tank has a circular opening with a manually
adjustable ball valve on the cross section. The drain valve and leakage flow can
describe the failure information of the water tank. The liquid extracted from the pool is

Fig. 4. Three tank of TTS20

Fig. 5. Structure and industrial process of TTS20
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injected into T1 and T2 by pump 1 (P1) and pump 2 (P2), respectively. Then their
bottom valve and T3 drain valve discharge water into the reservoir for P1 and P2
recycling, forming a circuit. Among them, T1, T2 and T3 are measured by three
pressure level sensors as the measuring elements of the system, and the flow of Q1 and
Q2 is regulated by the digital controller.

For TTS20, we can design its model as follows:

h1



h3



" #
¼ 1

s
�Q13

�Q13 � Qout

� �
Qin

y ¼ h1

8><
>: ð40Þ

In the model, h1 and h3 are the control variables, representing the water level height
of water tanks T1 and T3, Qn is selected as the control variable of the system as the
flow of Q1, and the flow from T1 to T3 is Q13 ¼ az1Snsgnðh1 � h3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g h1 � h3jjp

,
the water flow from the bottom of T3 is Qout ¼ az2S1

ffiffiffiffiffiffiffiffiffiffi
2gh2

p
, S1 ¼ Sn ¼ 5 �

10�5 m2; S ¼ 0:154m2;Hmax ¼ 0:6m; Flow coefficient az1 ¼ 0:48; az2 ¼ 0:58;
sgnð
Þ is a symbolic function. We set the initial value of h1 and h3 is 0, and the

relationship between state variable and input variable is
x1ðkÞ
x2ðkÞ

� �
¼ h1ðkÞ

h3ðkÞ
� �

,

uðkÞ ¼ QinðkÞ. The state space model of TTS20 is as follows:

xkþ 1 ¼ 0:9850 0:0107
0:0078 0:9784

� �
xk þ 64:4453

0:2559

� �
uk ð41Þ

yk ¼ 1 0½ �xk ð42Þ

The reference signal generator is:

rkþ 1 ¼ rk ð43Þ

Select the value of reference signal water level as 0.5 m. Choose Q ¼ 10 and
R ¼ 5, The optimal Q- function matrix H and H are obtained, The control gain K1 and
K2 of the optimal tracking control are as follows:

H ¼
17:7618 �17:6205 507:6889
�17:6205 �131:2013 �514:5708
507:6889 �514:5708 33224:5750

2
4

3
5 ð44Þ
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H ¼
17:7627 �17:8809 507:8883
�17:8809 18:0010 �515:6235
507:8883 �515:6235 33234:4549

2
4

3
5 ð45Þ

K1 ¼ �0:0153½ �
K2 ¼ 0:0155½ �

�
ð46Þ

After 10 iterations, we find that the algorithm converges and the optimal Q-function

matrix H
10

and the gain K10
1 and K10

2 of the optimal tracking control are the following
data.

H
10 ¼

17:7627 �17:8809 507:8883
�17:8809 18:0010 �515:6235
507:8883 �515:6235 33234:4549

2
4

3
5 ð47Þ

K10
1 ¼ �0:0153½ �
K10
2 ¼ 0:0155½ �

�
ð48Þ

We find that in the learning process, the optimal tracking controller gain is con-
vergent, and the following figure will show its convergence process in the learning
process (Figs. 6, 7 8 and 9).

Fig. 6. Optimal H matrix convergence process
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Fig. 7. Optimal control gain convergence process of tracking controller

Fig. 8. Output trajectories of system
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5 Conclusion

In this paper, a data-driven off policy Q-learning method is proposed to solve the linear
quadratic tracking problem of discrete-time system based on the output feedback of the
system. This paper introduces and compares the on policy Q-learning method and the
off policy Q-learning method for the linear quadratic tracking problem of the discrete-
time system, combines the dynamic programming with the Q-learning method, and
uses the off policy Q-learning method to learn the optimal controller gain when the
system environment is unknown. Finally, the simulation results show that the method is
effective.
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