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Abstract. In this paper, we study the time-optimal motion planning
problem for multi-robots under their kinodynamic constraints along spec-
ified paths. Unlike previous approaches that coordinate their motions
only at a road intersection and without considering noise influence, we
for the first time use the probabilistic motion model caused by the noise
when planning robot motion. By deriving the conflict probability, we
design a scheme to sufficiently guarantee conflict probability below our
expectation. In particular, we map the potential conflict to the infeasi-
ble rectangle region in robot’s path-time coordinate plane, which enables
us to apply velocity interval propagation to find a time-optimal motion
for each robot. Then we integrate our approach into two popular multi-
robot motion planners, i.e., conflict-based search and prioritized planning
approach. Experimental results demonstrate that, conflict-based search
needs more computation time to achieve less motion time than prioritized
motion planner.

Keywords: Motion planning · Multi-robot system · Optimization ·
Probability analysis

1 Introduction

Recent years have witnessed the rapid growth of autonomous multi-robot deploy-
ment in many applications such as warehouse automation and manufacturing
applications [1]. In multi-robot system, a central problem is how to coordinate
robot motions such that they can efficiently reach their goals without colli-
sion, and in the meanwhile, their motion time should be minimized because
less motion time brings more profit. Towards this aim, a vast majority of motion
planning approaches have been presented (see e.g. [1]).

Previous approaches mainly focus on the problem of planning multi-robot
motions without specific path constraints and without considering noise influ-
ences. Unlike them, we for the first time plan the multi-robot motions along
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specified paths in a dynamic environment, where the obstacle is not static and
robot motions are impacted by stochastic noise. The fixed path constraints may
come from scenarios such as traffic intersections or warehouses where robots need
to cross multiple lanes or aisles. Along these paths, robots can only accelerate
or brake to their goals. To solve the optimal motion planning of multi-robot, we
have to first know how to plan an optimal motion for a single robot.

If there is not an acceleration bound, the motion planing of a single robot
along a specified path can be formulated as a visibility graph in the path posi-
tion/time space, as presented in [2]. Based on this formulation, a polynomial-time
algorithm is presented in [3] to find an optimal solution with velocity and accel-
eration bounds in the absence of dynamic obstacle. The influence of dynamic
obstacle has been taken into account in [4] that constructs reachable sets in the
path-velocity-time space by propagating reachable velocity sets between obstacle
tangent points. However, these approaches assume that robot can move strictly
as our wish, which is not true in reality due to the uncertainty caused by noise.

The uncertainty of robot motion has been widely studied in the past robotic
research. In the book [5], a wealth of techniques and algorithms related to the
probabilistic robotics have been introduced, where the measured motion is gen-
erally given by the true motion corrupted with noise. The probabilistic motion
model also needs to be taken into account when planning robot’s motion. In [6],
a decentralized probabilistic framework is presented for the path planning of
autonomous vehicles by deriving a relation transforming the maximum turn
angle into a maximum search angle. In [7], a particle filter framework is pro-
posed to treat the uncertainty in motion planning by updating trajectory can-
didates, perception measurement, trajectory selection and resampling motion
goal. Via assigning probabilities to the generated trajectories according to their
likelihood of obeying the driving requirements, particle filtering approach is also
used in [8] that formulates the motion planning as a nonlinear non-Gaussian esti-
mation problem. In the same line with them, this paper also builds the motion
corrupted with noise as a probabilistic motion model.

For multi-robot systems, the optimal coordination is a well-known NP-
hard problem [9], even in static environment. There are already some optimal
approaches that solve this problem in a graph-based map. Many of them, such
as [10–12], first plan optimal path individually for each robot and then coor-
dinate them when necessary. Analogously, the robot motion coordination with
specified paths also relies on the individually optimal motion. For example, the
approach in [13] first finds out the minimum and maximum traversal times for
each path segment of each robot, then formulates their coordination as a mixed
integer nonlinear programming problem that combines collision avoidance con-
straints for pairs of robots. To handle the non-convex challenge in this formula-
tion, another more advanced approach in [14] successfully transforms it into two
linear subproblems by introducing some additional constraints. As a result, the
general-purpose solver such as mixed integer linear programming can be applied
to find out an approximated optimal solution in a reasonable time. However, all



140 H. Wang et al.

these approaches assume that robot’s motion is deterministic. It is true in video
game or computer simulation, but not in practical implementation.

In this paper, we study how to optimally coordinate multi-robot motion
with uncertain noise influence and under kinodynamic constraints along speci-
fied paths. The motion uncertainty brings the difficulty in conflict detection. For
this problem, we develop a conflict detection scheme based on the probability
analysis that can ensure the conflict probability below our expectation at any
time. In order to plan motion in the path-time coordinate plane, we simplify
dynamic obstacle or robot obstacle to rectangle and then apply the velocity
interval propagation to plan the time-optimal motion of individual robot. Then,
inspired by the conflict-based scheme proposed in [15], we apply a two-level
scheme to resolve conflicts. In particular, a conflict tree is constructed to store
all coordination options at the high-level algorithm, and optimal solution is indi-
vidually found out for each coordination option. After enumerating all possible
options, the final optimal motion coordination can be established. As a com-
parison, we also integrate our probabilistic conflict analysis into a lightweight
heuristic planner, i.e., prioritized motion planning, to reduce its computation
time.

The structure of this paper is as follows: in next section we present the prob-
lem formulation. In Sect. 3, we present how to plan an optimal motion for a single
robot based on the probabilistic motion model. Section 4 presents the optimal
multi-robot coordination scheme. In Sect. 5, experimental results are demon-
strated that compare the effectiveness of our proposed probabilistic conflict-
based search with prioritized path planning. Section 6 provides the conclusion of
this paper.

2 Problem Formulation

We start by formally formulating the multi-robot path planning problem. Sup-
pose there are n robots denoted as r1, r2, .., rn that need to operate in a region
W of 2-d Euclidean space. Each robot ri is assigned a path to move from its
start point si to its goal point gi where si ∈ W, gi ∈ W, where its path can
be represented as an arc-length function qi(p) : [0, pmax

i ] �→ W. Our aim is to
determine πi = (pi, vi, ti), ∀i ≤ n in the path-velocity-time (PVT) state space.
We assume that robot ri starts its movement at time 0 and ends at time tmax

i .
Then we have πi(0) = si, πi(tmax

i ) = gi, and πi(t) ∈ W (0 ≤ t ≤ tmax
i ). The

robot dynamics must be under its velocity and acceleration bounds [1]:

∀0 ≤ i ≤ n, ṗi = vi + δi

vi ∈ [vi, vi]
v̇i ∈ [ai, ai]

(1)

where δi is a noise that follows a normal distribution N(0, σ2
i ), and vi ≥ 0 and

ai < 0 < ai. The robot trajectory with respect to space-time is denoted as πi,
i.e., πi(ti) = (pi(ti), vi(ti), ti). Note that a robot path qi(p) has been determined
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Fig. 1. An eight-robot system, where the path of each robot has been marked out with
arrow.

and the remained problem is to decide the one-to-one correspondence between
its path position pi(t) and time t. Besides, we denote that Π(πi, πj) stands for
the trajectory collision part between πi and πj . Then, a feasible solution should
satisfy that Π(πi, πj) = ∅,∀i 	= j, which means no collision between any two
robots. We further denote Tmax = max{tmax

i , i = 1..n}. Then we can formally
define our problem as

min Tmax

subject to
(1),

and πi(0) = si, πi(tmax
i ) = gi, i = 1..n,

and ∀i 	= j, Π(πi, πj) = ∅.

(2)

An example of this problem is shown in Fig. 1, where 8 robots need to move
in the arrow direction. We assume that the path for each robot has been decided,
but their positions with respect to time are unknown. Our goal is to decide the
relationship between their positions and time such that their motions are strictly
under the velocity and acceleration bounds, and they do not collide with each
other, and the makespan of completing all motions is minimized.

3 Time-Optimal Motion for a Single Robot

We start by building the time-optimal motion for a single robot in a dynamic
environment. This problem has been partly addressed in paper [4] that relies
on the deterministic motion model to find the optimal bounded-acceleration
trajectory for a single robot moving along a fixed, given path with dynamic
obstacles. In this paper, we extend this approach to handle probabilistic motion
model.
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Fig. 2. An exemplified diagram of velocity interval propagation.

3.1 Velocity Interval Propagation

Velocity interval propagation(VIP) is the backbone of the single robot’s planner.
In the path-time coordinate plane, dynamic obstacles can be formulated as a list
of rectangles Oi = [p

oj
, poj

]×[toj
, toj

], j = 1, ...,m, as shown in Fig. 2. The robot’s
initial state is (pi(0), vi(0), 0), where vi(0) ∈ [vi, vi] and the terminal condition
is (pi(tmax

i ), vi(tmax
i ), tmax

i ), where vi(tmax
i ) ∈ [vi, vi]. Besides, the acceleration

ai ∈ [ai, ai]. The planner’s task is to find a set of collision-free trajectory πi over
above conditions in the path-velocity-time state space.

Ignoring obstacle’s influence and assuming the initial velocity vi(0) is v1
i (0),

the robot’s reachable set R(t : (pi(0), vi(0), 0)) of velocities at time t is proved
to be a convex region in the path-velocity plane, where (pi(0), v1

i (0), 0) is the
initial state of the robot. The set of velocities V (tmax

i ) attainable a target point
(p(tmax

i ), t(tmax
i )) is the intersection R(tmax

i : (pi(0), vi(0), 0)) ∩ {(pi, vi)|pi =
pi(tmax

i ), vi ∈ [vi, vi]}.
On the basis of the above, VIP computes the minimum and maximum start-

ing velocity vi and vi’s terminal velocity intervals V1 and V2, respectively. Then
VIP minimizes and maximizes the terminal velocity without input terminal
velocity constraint, and generates terminal intervals V1 and V2 by construct-
ing a parabolic trajectory with acceleration ai and ai that interpolates (pi(0), 0)
and (pi(tmax

i ), tmax
i ). The final terminal velocity intervals [vi, vi] is the smallest

interval containing V1, V2, V3, V4.
Meanwhile, there are only two cases of collision free trajectory. The first

one connects directly to the goal and the next pass tangentially along either
the upper-left or lower-right vertex of one or more path-time obstacles. So the
planner is designed to find the collision-free trajectories that pass through com-
binations of upper-left and lower-right obstacle vertices. When there is only one
obstacle O, according to the obstacle’s location in path-time coordinate plane,
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Algorithm 1. Time-Optimal Motion Planning of Single Robot
1: function Forward(Vi, Si)
2: for j do = 1,...,2n
3: for i do = 0,...,j-1
4: For each disjoint interval [a,b] in Vi

5: Call Propagate([a, b], i, j)
6: end for
7: Vj ← Merge(Sj) For each disjoint interval [a, b] in Vj :
8: Call PropagateGoal([a, b], j)
9: end for

10: end function
11: function Propagate([a, b], i, j)
12: [a′, b′] ← V IP ((pi, ti), [a, b], (pj , tj))
13: If [a′, b′] is empty, return
14: Let L(t) and U(t) be the lower and upper examples.
15: BL ← Channel(L(t)), BU ← Channel(U(t))
16: If BL = BU �= nil, Insert(([a′, b′], BL), Sj)
17: Else
18: If BL �= nil, Insert(([a′], BL), Sj)
19: If BL �= nil, Insert(([b′], BU ), Sj)
20: end function
21: function Merge(S)
22: Repeat until S is unchanged
23: If ∃([a, b], B), ([a′, b′], B′) such that Suffix?(B, B′)
24: Remove ([a, b], B), ([a′, b′], B′)
25: Add ([min(a, a′), max(b, b′), B′]) to S
26: Output V =

⋃
([a,b],B)∈S,b−a≥ε[a, b]

27: end function

we just have to combine O and the interval [vi, vi] to calculate the collision-free
trajectory πi, as shown in an example of Fig. 2. By connecting multiple obstacles’
upper-left and lower-right obstacle vertices, the algorithm can be easily extended
to multiple obstacle environments.

Then the time-optimal motion planning approach for a single robot with
dynamic obstacles can be developed as Algorithm 1. In the first step, we sort
the upper left and lower right obstacle vertices in the ascending order of their
time into the list (p1, t1), ..., (p2n, t2n). Besides, we use a set Si to store veloc-
ity interval and singleton velocity for each element in this list. Note that we
only highlight its main part and ignore details, because you can read [4] for its
complete information.

3.2 Probability-Based Motion Planning

The approach of velocity interval propagation assumes that the robot strictly
moves as planned. However, due to the noise influence, there may be some devi-
ations with the planned motion, which may lead to the robot collision in reality.
We thus have to take these deviations into account in order to plan a safe motion.
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Fig. 3. An illustration of robot position influenced by noise.

Suppose that robot ri starts at t = 0 and moves as planned for Δt. Then the
robot position is:

pi(Δt) =
∫ Δt

0

vi(t) dt +
∫ Δt

0

δi dt = p′
i(Δt) + p′′

i (Δt), (3)

where p′
i(Δt) is the part that moves exactly as our plan, and p′′

i (Δt) is the
deviation part caused by the noise. Because the noise δi is an independent input
that follows normal distribution N(0, σ2

i ), we can conclude that p′′
i (Δt) follows

N(0,Δt·σ2
i ). As shown in Fig. 3, the red curve represents the planned motion. At

time Δt, the robot is planned to move to p′
i(Δt). The deviation at this moment is

represented as p′′
i (Δt), from which we find that the small overlapping white area

between dynamic obstacle and normal distribution represents the probability
that robot collide with dynamic obstacle. This probability can be calculated by

Pi(Δt) =
∫ −z

−z−ld

1√
2πΔtσi

e
− x2

2Δtσ2
i dx. (4)

If this probability is small enough, it can be inferred that the planned path
is safe. We use Pε as the probability threshold, i.e., a safe path should meet
Pi(Δt) ≤ Pε. By this means, we can get the minimum z∗(Δt) that meets this
condition:

z∗(Δt) = min
{

z|Pi(Δt) ≤ Pε

}
. (5)

Since Pi(Δt) is a monotonously decreasing function with z, z∗(Δt) can be easily
found out by solving

Pi(Δt) =
∫ −z

−z−ld

1√
2πΔtσi

e
− x2

2Δtσ2
i dx = Pε. (6)

Suppose that this dynamic obstacle obstructs the path from t1 to t2. Then
for Δt ∈ [t1, t2], its corresponding z∗(Δt) can be determined. As shown in Fig. 4,
z∗(Δt) forms two curves z∗

l (Δt) and z∗
r (Δt), which are at the left and right side

of dynamic obstacle, respectively. It is easy to prove that the extended dynamic
obstacle is centerline symmetry because
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original part

extension part
feasible

infeasible

Fig. 4. The extension of dynamic obstacle for collision avoidance.

Pi(Δt) =
∫ −z

−z−ld

1√
2πΔtσi

e
− x2

2Δtσ2
i dx (7)

=
∫ z+ld

z

1√
2πΔtσi

e
− x2

2Δtσ2
i dx = Pε, (8)

where (7) denotes the right-side curve and (8) denotes the left-side curve. With
the extended dynamic obstacle, a feasible path is the one that does not cross
over it. In this way, we can apply the approach of velocity interval propagation
to find the time-optimal path, only if it takes the extended dynamic obstacle
into account.

4 Time-Optimal Motion for Multiple Robots

It is difficult to plan time-optimal motions for multi-robots because each robot
has numerous motion options to reach their goals. The time-optimal motion
planner should take all potential options into account and find out the best
one from them. We have already proposed an approach to plan the time-optimal
motion for a single robot in dynamic environment. To coordinate the multi-robot
motions, we can either apply a conflict-based search scheme to spot all conflicts
and resolve them by constructing a conflict tree, or prioritize the motion order
of all robots and plan their motions successively according to this order.

4.1 Conflict Probability Between Robots

We have derived how to get the conflict probability between a robot and a
dynamic obstacle. Analogously, we can derive the conflict probability between
robots, by replacing deterministic moving obstacle with non-deterministic mov-
ing robot. Suppose that there are two robots r1 and r2 whose paths and motion
have been given. Their paths intersect at point v, as shown in Fig. 5(a). The
conflict is defined to happen when both robots are very near v simultaneously.

To quantitatively provide the conflict probability, we define that the intersec-
tion point v is located at pv

1 of r1’s path and pv
2 of r2’s path. The collision happens
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when r1 stays within the region [pv
1 − dε, p

v
1 + dε] and r2 within [pv

2 − dε, p
v
2 + dε]

at the same time, where dε denotes a small path segment. We have derived that
p1(Δt) = p′

1(Δt)+p′′
1(Δt) in (3) where p′

1(Δt) is given and p′′
1(Δt) follows normal

distribution N(0,Δt · σ2
1). Thus, p1(Δt) follows N

(
p′
1(Δt), Δt · σ2

1

)
. In a similar

way, we know that p2(Δt) follows N
(
p′
2(Δt), Δt · σ2

2

)
. We can further get the

probability of robot r1 and r2 staying within the region [pv
1 − dε, p

v
1 + dε] and

[pv
2 − dε, p

v
2 + dε] at time t = Δt,

Pv
1 (Δt) =

∫ pv
1+dε

pv
1−dε

1√
2πΔtσ1

e
−

(
x−p′

1(Δt)

)2

2Δtσ2
1 dx, (9)

Pv
2 (Δt) =

∫ pv
2+dε

pv
2−dε

1√
2πΔtσ2

e
−

(
x−p′

2(Δt)

)2

2Δtσ2
2 dx. (10)

So the conflict probability at Δt between r1 and r2 is Pv
1,2(Δ) = Pv

1 (Δt)·Pv
2 (Δt).

Our aim is to let
∀Δt > 0, Pv

1,2(Δt) ≤ Pε. (11)

4.2 Conflict Resolution

To coordinate the motion of r1 and r2 at v, we can let one of them move freely,
and the other one considers it as a dynamic obstacle. Suppose that r1 has the
time-optimal motion without considering r2’s motion. Its motion will be con-
sidered as a dynamic obstacle by r2, as presented in Fig. 5(b). To apply VIP to
find r2’s time-optimal motion, we should get the feasible area in its path-time
coordinate plane. Because r1’s motion is given, Pv

1 (Δt) is known, and we can
find probability requirement on r2 passing [pv

2 − dε, p
v
2 + dε] by solving

Pv
2 (Δt) =

∫ pv
2+dε

pv
2−dε

1√
2πΔtσ2

e
−

(
x−p′

2(Δt)
)2

2Δtσ2
2 dx <

Pε

Pv
1 (Δt)

, (12)

as shown in Fig. 5(c). Then we can get r2’s conflict region in its path-time coor-
dinate plane. As shown in Fig. 5(d), we use Cv

r1,r2
to denote it. On the contrary,

when r2 moves freely, Cv
r2,r1

denotes the conflict region that r1 needs to avoid.

4.3 Obstacle Simplification

It should be noted that VIP can only handle the dynamic obstacle whose shape
is rectangle in the path-time coordinate plane, while the shape of our obstacle
based on probability is not. In order to apply VIP to solve our problem, we have
to simplify the shape of our obstacle to rectangle. We discuss the simplification
scheme of dynamic obstacle and robot obstacle, respectively.
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infeasible
region

feasible

infeasible

Fig. 5. A two-robot motion coordination, (a) r1 and r2 intersects at v, and red lines
represent conflict segment, (b) r1’s optimal motion is given, (c) r1’s probability at
conflict segment and probability requirement on r2, both with respect to time, (d) the
infeasible region on r2’s path-time coordinate plane. (Colour figure online)

Dynamic Obstacle Simplification. We suppose that the exact region of its
original dynamic obstacle is known, as shown in gray part of Fig. 6(a). The
extension part can be obtained by applying (7) and (8) for Δt ∈ (t1, t2), as
shown in the dark area of Fig. 6(a), where zmax denotes its maximum path
length. Then we can use a rectangle with length ld + 2zmax and width t2 − t1 to
cover it, and this rectangle can be applied for calling VIP to obtain the optimal
motion.

Robot Obstacle Simplification. For the robot obstacle, we suppose that it
is covered by a rectangle with a top left vertex (tu, pu) and bottom right vertex
(td, pd). Our job is to decide the two vertexes. From (12), we know that if Pv

1 (Δt)
is smaller than Pε, the required probability of Pv

2 (Δt) is less than 1. In this case
there is no limitation on robot path. However, when Pv

1 (Δt) is equal to Pε,
the limitation comes. Thus, we can conclude that the robot obstacle comes into
being when Pv

1 (Δt) = Pε. Then we can get two Δt to meet this condition, where
the large one is tu and the small one is td, i.e.,

Pv
1 (tu) = Pv

1 (td) = Pε (13)

Next, we need to decide the width of this rectangle. It can be found that the
width of robot obstacle is negatively proportional to the required probability. The
smaller required probability is, the larger obstacle width should be. According
to (12), we can infer that the smallest required probability corresponds to the
largest Pv

1 (Δt), i.e.,
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Fig. 6. Obstacle simplification illustration, (a) gray part is the original dynamic obsta-
cle, dark part is the extension, and rectangle is its simplified form, (b) gray part is the
robot obstacle, and rectangle is its simplified form.

Pv
1,max = Pv

1 (Δtmax) = max
{

Pv
1 (Δt),∀Δt > 0

}
,

Pv
2,min =

Pε

Pv
1,max

,
(14)

where Δtmax denotes the moment of maximizing Pv
1 . Then, we can also get two

p′
2(Δt) to meet (14), where the small one is pu and the large one is pd, i.e.,

Pv
2,min =

∫ pv
2+dε

pv
2−dε

1√
2πΔtmaxσ2

e
−

(
x−pu

)2

2Δtmaxσ2
2 dx,

=
∫ pv

2+dε

pv
2−dε

1√
2πΔtmaxσ2

e
−

(
x−pv

)2

2Δtmaxσ2
2 dx.

(15)

Hence, to find the rectangle that can cover robot obstacle, it is not necessary
to compute all parts of robot obstacle. By simply calling (13), (14) and (15), the
simplified rectangle can be built.

4.4 Probabilistic Conflict-Based Search Scheme

The conflict-based search (CBS) is originally presented to minimize the sum of all
robots’ cost in an undirected graph whose edges have been assigned specific cost.
In this section we extend it to find the time-optimal motion for multi-robots with
specific paths. CBS works at two levels, where at the low level a time-optimal
motion is planned for each individual robot under dynamic obstacles and high-
level constraints, and at the high level conflicts are spotted and resolved at
their earliest start time. Conflict is resolved by adding two successor nodes in
the conflict tree. Each robot involved by this conflict is assigned an additional
constraint at the low level.

We have presented how to plan time-optimal motion for a single robot with
dynamic obstacle, as presented as Algorithm 1. This acts as the low-level algo-
rithm in the probabilistic conflict-based search (P-CBS) scheme. We extend the
high-level search to incorporate the conflict based on probability, as presented in
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Algorithm 2. Probabilistic Conflict-based Search Scheme
1: function HighLevelSearch
2: R.constraints = ∅
3: R.solution = find individual motion by Algo. 1
4: R.cost = the maximum cost of all individual paths in R.solution
5: Insert R to Open
6: while Open �= ∅ do
7: P ← best node from Open // lowest solution cost
8: Validate the paths in P until a conflict occurs
9: if P has no conflict then

10: Return P.solution
11: end if
12: C ← conflict between ri and rj in P
13: for robot ri in C do
14: A ← new node
15: A.constraints ← P.constraints + Cv

rj ,ri

16: A.solution ← P.solution
17: Update A.solution by by Algo. 1
18: end for
19: end while
20: end function

Algorithm 2. At the beginning, all robots are given their time-optimal motions
by solely considering dynamic obstacles. Then, the first conflict between two
robots is spotted, as shown in line 12, where the two robots are denoted as ri

and rj . For each of them, a new node is added to the conflict tree, and a new
solution is found. This procedure continues until all conflicts have been resolved.

Similar to CBS, P-CBS is also a complete and optimal algorithm with respect
to the motion time, because the search of P-CBS has enumerated all possible
situations for the time-optimal solution.

4.5 Prioritized Motion Planning

Intuitively, priority-based approach assigns each robot an unique priority, and
robots’ motion is planned in the descending order of their priorities [16,17]. The
collision can thus be avoided with this scheme because low-priority robot con-
sider high-priority robot as dynamic obstacle. In this approach, priority assign-
ment plays a significant role in its performance. We assign the priority to robots
according to their Euclid distance of start points and goal points, with a long
Euclid distance leading to a high priority, because robots with long distance
should avoid interference as much as possible to shorten the maximum of motion
time. Its basic procedures are presented in Algorithm 3.
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Algorithm 3. Basic procedures of prioritized planning
1: function PrioritizedPlanning
2: Assign the priority in the descending order of li
3: O = ∅
4: for i ← 1..n do
5: R.solution = find individual motion by Algo. 1
6: if not found then
7: Report failure and terminate
8: end if
9: O = O ∪ R.solution

10: end for
11: end function

5 Experiments and Results

5.1 Environments and Metrics

The experimental environments are set up like Fig. 1, where there are n × n
robots moving in horizontal and vertical directions with path length = 70 m.
Thus, there are 2n robots in total. Here we evaluate the performance of motion
planning approaches in three configurations, which are n = 2, 4, 6. A robot is
configured to be with width = 1 m and length = 2 m. Its velocity and acceleration
bound is set to vi = 0, vi = 3 and ai = −3, ai = 2, respectively.

In general, we investigate the influence of noise intensity and safety require-
ment on their performance. The noise intensity is represented by its standard
variance, i.e., σi, and safety requirement means the conflict probability thresh-
old, i.e., Pε. Here we vary σi from 0.1 to 0.9 and vary Pε from 10−4 to 10−1,
respectively. We set the maximum of their motion time as our optimized goals. In
addition, we compare the computation time of compared approaches to evaluate
their computation complexity.

5.2 Results

First, we investigate the influence of noise intensity on the performance of com-
pared approaches by fixing conflict probability threshold to 0.01. The maximum
of motion time of all robots and computation time in finding solution are pre-
sented in Fig. 7, where PRIOR denotes the prioritized motion planning and P-
CBS denotes the probabilistic conflict-based search. From Fig. 7(a), we find that,
with the increase of noise intensity, the maximum of motion time also increases
for both approaches, because an intensive noise brings more uncertainty and
forces robots to take more conservative actions to keep safety. It can also be
observed that P-CBS achieved a lower motion time compared to PRIOR, espe-
cially for a large number of robots. From Fig. 7(b), we observe that the noise
intensity has a minor impact on the computation time when robot count is small,
but clearly increases it when robot count is large, such as n = 6. Besides, P-CBS
needs more computation time than PRIOR in general because P-CBS needs to
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Fig. 7. Performance of compared approaches w.r.t. noise intensity, where (a) is the
maximum of motion time, (b) is the computation time, and the conflict probability
threshold Pε = 0.01
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Fig. 8. Performance of compared approaches w.r.t. conflict probability threshold, where
(a) is the maximum of motion time, (b) is the computation time, and the noise intensity
σi = 0.3

check more motion options, while there is only one option for PRIOR. Last,
Fig. 7 does not show the results of 6 robots when noise intensity is large, because
there is not a feasible solution in these cases. This tells us that a large number
of robot or an intensive noise may result in the failure of P-CBS and PRIOR.

Second, we investigate the influence of conflict probability threshold on the
performance of compared approaches by fixing noise intensity to 0.3. The results
of motion time and computation time are presented in Fig. 8. We find that the
motion time decreases with the increase of conflict probability threshold, because
a large conflict probability threshold relieves safety requirement and provides a
large freedom in motion planning. Regarding to its influence on the computation
time, the planner needs more computation time when conflict probability thresh-
old is small. Last, Fig. 8 also demonstrates that P-CBS achieves smaller motion
time and needs more computation time than the prioritized motion planning
approach.
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6 Conclusions

In this paper, we study the problem how to plan time-optimal motion for
multi-robots moving along specified paths. Unlike previous approaches that plan
robots’ motion without considering their stochastic noise, we build our approach
on the probabilistic motion robot. Towards the aim of minimizing the motion
time, we present the conflict probability analysis to ensure the robot’s safety.
Because the shape of dynamic obstacle and robot obstacle is irregular in the
path-time coordinate plane, we present a simplification scheme to transform
them to rectangle, such that the velocity interval propagation can be used to find
the time-optimal motion of each individual robot. In the end, we integrate our
probability analysis with two popular multi-robot planners, i.e., conflict-based
search and prioritized planning, and compare their performance in solution qual-
ity and computation time. Experimental results show that conflict-based search
can find better solution, while incurring more computation time than prioritized
planning.

In the future, we are going to relax the constraint of specified path. For
example, in a free space, there can be many paths for a robot walking from a
start position to the goal position. The motion planning becomes more compli-
cated because robots need to first decide their paths and then their motions.
In addition, P-CBS demands long computation to find an excellent solution. It
would be useful to develop a simplified but efficient algorithm that can find a
competent solution in a short time.
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