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Abstract. In this paper, the state of real-time motion angle corresponding to the
surface electromyography signal (sEMG) in the process of exoskeleton robot
assisted motion is analyzed, and a new control analysis method for exoskeleton
robot is proposed. The method of wavelet decomposition is used to analyze the
characteristics of sEMG signals, which can accurately extract the eigenvalues of
sEMG signals from different angles. The extracted eigenvalues are used as the
input of SVM classification and recognition, pattern recognition is carried out,
and the relationship between the eigenvalues and the corresponding motion
angle is established. At the same time, the surface EMG signals of the start and
stop time in the process of continuous movement of the lower limbs are ana-
lyzed to obtain a more accurate relationship between the start and stop state and
the eigenvalue. By comparing the analysis results with the actual movement
angle state information, the correctness of the analysis results is verified, which
provides a theoretical basis for the follow-up research of the lower extremity
exoskeleton robot.

Keywords: sEMG signal � Continuous movement of lower limbs � Lower limb
exoskeleton robot � Wavelet feature extraction � SVM support vector machine

1 Introduction

With the development of national economy, science and technology, and the
improvement of people’s living standards, promoting and improving the medical
welfare of disabled people has become a very concerned issue of the government. As a
representative human-computer interaction robot, wearable human exoskeleton robot
has been highly valued in military, civil and rehabilitation treatment. Among them, the
wearable exoskeleton robot applied to the lower limbs of human body can enhance the
movement ability of the lower limbs under the control of the wearer. Exoskeleton
mechanical system further calculates and controls the output in real time by estimating
and predicting the motion state and intention of human body, so as to realize real-time
and synchronous strength enhancement and assistance, enhance human body function,
and enable human body to complete many tasks with the help of machinery [1].
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Historically, the typical system is a series of exoskeletons built by m.vukobratovic
and others. They have developed different types of exoskeletons, powered by hydraulic
actuators, pneumatic actuators and DC servo motors, and verified the theoretical
results. However, the control system is relatively backward, which can not achieve the
precise and free control of the user exoskeleton robot [2]. At present, most mature
Rehabilitation Exoskeleton robots are developed by foreign companies or institutions.
For example, Hal exoskeleton robot developed by the University of Tsukuba in Japan
can help the elderly and the disabled walk; eLeg exoskeleton system of belike bionics
company in the United States can help paraplegic patients completely get rid of
wheelchairs to walk independently, and can also help people who can’t stand to train
lower limb muscles and nerves. The research of domestic and foreign skeleton robots is
mainly concentrated in universities and research institutes. Yang Canjun’s team of
Zhejiang University has developed a prototype of lower limb exoskeleton with
pneumatic actuator, which uses the adaptive fuzzy artificial neural network algorithm to
input the pressure sensor data of the wearer’s sole, calculate the expected action of the
exoskeleton robot, and drive the lower limb hip joint and knee joint Realize the control
of exoskeleton robot [3]. Harbin University of technology designed the lower limb
dynamic exoskeleton machine to control through the sensing data and the robot’s
motion position. Gait prediction is realized by the pressure sensor placed on the sole of
the foot. However, the collection of foot pressure information often lags behind the
actual action of the user, which leads to the action delay of the exoskeleton robot [4].
A wearable lower limb exoskeleton developed by the Chinese Academy of Sciences,
which drives the hip and knee joints, is controlled by predefined trajectory, input the
joint angle of normal people, and reproduce it on the exoskeleton. But the predefined
orbit is often difficult to meet the user’s movement diversity in actual use. Most of them
mainly study the assisted exoskeleton robot, but few research the Rehabilitation
Exoskeleton Robot. In addition, the research and development of the rehabilitation
exoskeleton is still in the primary stage, most of which are treadmill type structures.
The patients are passively trained after wearing the equipment, which is a certain
distance from the practical application and active training [5]. Although the existing
identification methods have achieved good results, there are still many problems. Most
of the studies are less concerned with feature selection and usually adopt some com-
bination of features directly. If these features are directly applied to gait recognition, the
classification effect is poor. The present algorithm has poor performance in real-time
control and long response time. In order to solve the problems existing in the above
methods, a new algorithm for the continuous motion state of lower extremity
exoskeleton robot based on surface emG signal is proposed in this paper, and con-
tinuous kick motion is taken as an example for analysis and verification. Type of
rehabilitation of exoskeleton robot research and electromyographic signal analysis of
lower limb movement condition, can get lower limb under different angles in the
process of movement of electrical information, using the MATLAB data simulation
verify its rationality at the same time, and get the reasonable motor driven data, for
subsequent the electromyographic signal data analysis as well as the mechanical
structure and drive system and design to provide the reference [6–10].
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2 Experiment

2.1 Subjects

20 healthy volunteers were recruited, including 12 male volunteers and 8 female
volunteers. There was no sports injury within 7 days before the experiment. There were
no motor nerve diseases, no sprains, sports injuries, fractures and other injuries
affecting the motor function in the lower limbs before the experiment; no strenuous
exercise in the two days before the experiment; no muscle soreness and discomfort.
The subjects were between 22 and 26 years old, with an average age of 24.7 (±1.08)
years, height of 174.1 (±3.72) cm, and weight of 68.6 (±7.26) kg. In the definite
experiment Start the experiment after the content [11].

2.2 Experiment Process

The equipment used in this experiment includes: electromyographic sensor, Tektronix
oscilloscope, AgCl electrode, WSSS motion sensing system, etc. [12]. The target
muscles detected in the experiment are the outer, rectus, inner and semitendinosus
muscles of the lower limbs of normal human body. Before the experiment, the skin of
the experimenter was wiped with a scrub and medical alcohol to reduce the influence of
skin impedance on the experimental results.

The surface electrode was pasted on the abdomen of the outer thigh [13], rectus
femoris, inner thigh and semitendinosus muscles, and the direction of the surface
electrode was parallel to the longitudinal axis of the muscle fiber as far as possible;
WSSS motion sensor was pasted on the skin surface of the midline of the outer thigh of
the subject, and the height of the motion sensor was consistent with the height of the
fingertip when the hands were released and lowered, and the y-axis direction of the
sensor was kept at 0°. In order to reduce the artificial error of the experiment, the
subjects are required to adopt the same standing posture, feet together, hands naturally
drooping and relaxing. During the experiment, the subjects swung naturally with one
leg according to the requirements, and set the position of standing with both legs
together as the initial position. According to the requirements, the subjects began to
swing forward from the initial position to the highest point of natural swing, and then
changed to swing backward. After the initial position, they continued to swing back-
ward to the highest point of natural swing, and changed to swing forward to the initial
position [14]. The whole process is continuous and each group of actions is repeated
five times. The action time of each group should not be less than 6 s, and the rest
should be at least 30 s at the end of every five groups of actions, so as to prevent
muscle fatigue from affecting the authenticity of experimental data. The specific
experimental process is shown in Fig. 1.
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3 Data Analysis and Experimental Results

3.1 Analysis of Starting and Stopping Points of Movement

The collected sEMG signal and movement angle data are input into the computer, and
the simulation experiment is carried out by using MATLAB [15–17]. According to the
corresponding relationship of the time information of sEMG signal in the movement
angle data, the starting point of each group of actions is determined, and the sEMG
signal located in the position interval between the starting point and the ending point of
each group of actions is recorded, which is used for the four movement stages of each
group of sEMG signals divide. According to the movement angle data and time, the
collected EMG signals of each group of continuous movement are divided into four
segments, which are: the initial position moves to the front highest point, the front
highest point to the initial position, the initial position to the back highest point and the
back highest point to the original position. In order to ensure the accuracy of the
follow-up analysis, the synchronization of the angle data and the surface EMG signal
data is realized to the greatest extent, and the accurate starting and stopping points of
each action part are obtained. Figure 2 shows the complete angle data of five groups of
actions in an experiment. According to the data initial value, maximum value and
minimum value, the starting point and stopping point of a group of actions can be
analyzed, and then the exact time corresponding to the starting point and stopping point
can be obtained according to the corresponding relationship between the time measured
by the Angle sensor and the Angle. Figure 3 shows the raw EMG data of a complete
experiment. By comparing the time data of EMG data, the corresponding starting and
stopping points of emg signals were found, so that the complete five consecutive EMG
signals obtained in the experiment were decomposed into the motion of a single group
of continuous emg signals. Figure 4 shows the continuous EMG signal after the
extraction of the active segment [18].

Fig. 1. The experimental schematic.
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3.2 Analysis of Starting and Stopping Points of Movement

Wavelet transform (WT) is a time-frequency analysis method which has the same
window size (area) but variable window shape, time window and frequency window.
Wavelet transform has lower time resolution and higher frequency resolution in the
application of low-frequency signals, but higher time resolution and lower frequency
resolution in the analysis of high-frequency signals, which makes wavelet transform
have good adaptability in the analysis of different sEMG signals [19].

The essence of wavelet analysis method is to decompose the signal s (t) into sub
signals in different frequency bands of the basis function, and analyze the changes of
surface EMG signal in the process of muscle dynamic contraction from the perspective
of frequency domain. Wavelet has the characteristics of multi-resolution [20], which
can gradually observe the signal from coarse to fine. Wavelet transform can be

Fig. 2. Movement angle data of one group of subjects

Fig. 3. Original sEMG signal.

Fig. 4. Continuous sEMG signal after active segment extraction.
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understood as a function of scale factor a and translation factor b. in the process of
wavelet transform, changing the value of b only affects the position of the window on
the time axis, while scale a not only affects the position of the window on the frequency
axis, but also affects the shape of the window [21].

The continuous wavelet transform of the input signal of basic wavelet or parent
wavelet is defined as the function family w(a, b) generated by scale factor a and
translation factor b:

wa;b tð Þ ¼ 1ffiffiffi
a

p w
t � b
a

� �
a; b 2; a 6¼ 0 ð1Þ

It is called analytical wavelet or continuous wavelet (CWT). The coefficients in the
formula are used to realize the normalization of energy in the expansion process. The
definition of continuous wavelet transform of s (t) is as follows:

Ws a; bð Þ ¼
Z þ1

�1
s tð Þw�

a;b tð Þdt ð2Þ

Figure 5 is a comparison between the original surface EMG signal of four muscles
in five groups of exercise and the signal after noise reduction by two methods.

Through the method of unbiased likelihood estimation based on Stein, the noise
reduction command is used to complete the signal noise reduction. There are two ways
to select the threshold: global threshold and layered threshold. The global threshold
applies the SURE principle, and the layered threshold applies and displays its
advantages through data. From Fig. 5, it can be seen that the signal denoised by the
global threshold and layered threshold method retains the high-frequency characteris-
tics of the signal well. Between the two, the layered threshold loses the performance of
the signal (compared with the original signal) Compared with the global threshold, the
layered threshold reduces the details of the signal and loses some information.

Fig. 5. Surface electromyography of a subject after noise reduction during continuous exercise
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3.3 Feature Extraction

The main purpose of the feature extraction module is to obtain the relationship between
the muscle signals and time-frequency domain features during arm movement [22].

In order to ensure the real-time performance of the system, while ensuring the
accuracy, the time-frequency domain feature with small amount of computation and
rapid acquisition is used as the information measure.

In this paper, the method of wavelet analysis is used to decompose surface emg
signals into low-frequency and high-frequency components. After several transfor-
mations, the data volume and frequency of each transformation are halved, and the
multi-resolution decomposition of the original signal is finally realized.

In the process of wavelet decomposition, let the total frequency band occupied by
the original emg signal f tð Þ be the space V0. After the first stage decomposition, V0 is
divided into the scale signal space V1 of low frequency and the wavelet signal space W1

of high frequency. Therefore, V1 and W1 are the subspaces of V0 and can be expressed
as V1 �W1 ¼ V0. In order to decompose downward, multiple spatial decomposition
can be obtained, that is, the multi-resolution analysis of wavelet.

When the low-frequency scale signal and the high-frequency wavelet signal are
used to reconstruct the emg signal, it can be seen that the low-frequency signal com-
ponent is relatively rough, while the high-frequency signal is relatively fine, so it can
effectively represent the different components of the signal, which is conducive to the
signal analysis and processing. In the orthogonal wavelet analysis, the scale function Vj

and the wavelet function Wj have the same importance. The scale equation of the scale
function u tð Þ is established through the multi-resolution analysis, and then the wavelet
function w tð Þ is obtained. Then the multi-resolution wavelet transform equation of
function g tð Þ is as follows:

g tð Þ ¼
X1

k¼�1 c kð Þuk tð Þþ
X1

j¼0

X1
k¼�1 d j; kð Þwj;k tð Þ ð3Þ

The scale coefficient and wavelet coefficient are expressed as

cj;k ¼ g tð Þ;uj;k tð Þ� � ð4Þ

dj;k ¼ g tð Þ;wj;k tð Þ� � ð5Þ

Therefore, the surface emg signal is decomposed through the wavelet coefficients of
different scales. The wavelet coefficients of each level are taken as the characteristics of
the signal, and the signal can be accurately described by a few coefficients. Due to the
non-stationarity of surface emg signals, it is important to choose a suitable wavelet base
for the effective classification and recognition of signals. Symlets wavelet function
system is an approximate symmetric wavelet function, which is an improvement on db
function. The Symlets system of functions is usually represented as symN
(N ¼ 2; 3; � � � ; 8). The support range of symN wavelet is 2N � 1, the vanishing
moment is N, and it also has good normality. Compared with dbN wavelet, this wavelet
is consistent with dbN wavelet in terms of continuity, support length, filter length, etc.,
but symN wavelet can reduce phase distortion during signal analysis and reconstruction
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to some extent. In this paper, the well-classified orthogonal Sym3 wavelet basis
function is selected to decompose the emg signal at five scales, and the singular value
and energy value of each wavelet coefficient are extracted as the eigenvectors.

After preprocessing the sEMG signals collected by the four motion modes of the
legs, the feature scatter diagram distribution after feature extraction by wavelet
decomposition method is shown in Fig. 6.

It can be seen from the feature scatter diagram that the feature values of different
actions have a very light clustering effect, which can realize the feature representation
of the four action modes and satisfy the desired pattern recognition rate.

4 Classification and Recognition

The method of support vector machines (SVM) is based on statistical learning theory.
Suppose that the selected linear separable sample set is [23]:

xi; yið Þ i ¼ 1; 2; . . .:;N; xi 2 Rn; y 2 �1; 1f gð Þ ð6Þ

According to the different y categories, it can be divided into positive sample subset
X þ and negative sample subset X�. There is a unit vector / / ¼ 1k k and constant C,
which makes (7) true.

X þ � /h iic
X� � /h i ch

�
ð7Þ

For any unit vector /, determine two values

Fig. 6. Spatial distribution scatter of four kinds of action eigenvalues.
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c1 /ð Þ ¼ min X þ � /h i
c2 /ð Þ ¼ max X� � /h i

�
ð8Þ

Find /0 to maximize the following:

r /ð Þ ¼ c1 /ð Þ � c2 /ð Þ
2

; /k k ¼ 1 ð9Þ

The vector /0 and constant are obtained from the constraint (7) and the maxi-
mization function (9)

C0 ¼ c1 /ð Þþ c2 /ð Þ
2

ð10Þ

Determine a hyperplane, distinguish two types of sample sets, and make them have
the maximum interval. Refer to formula (9), this hyperplane is called the optimal
classification hyperplane, as shown in Fig. 7. It can be seen from the figure that two
kinds of linear separable samples are separated by classification lines. The points on the
two parallel lines that are cut are the shortest points from the classification lines. The
shortest distance is recorded as d, its size is usually positively related to the separation,
so that the value d in the optimal classification plane is as large as possible and the
segmentation effect is better. The main goal of constructing the optimal hyperplane is
found, and a vector and constant B are found to satisfy the following constraints

The main goal of constructing the optimal hyperplane is found a vector W� and
constant b are found to satisfy the following constraints [24].

X þ �W�h iþ b� � 1
X� �W�h iþ b� � � 1

�
ð11Þ

And the vector W� has the minimum norm

minq Wð Þ ¼ 1
2

W�k k2 ð12Þ

f Xð Þ ¼ W� � Xþ b� ð13Þ

Fig. 7. SVM optimal classification surface.
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Under the condition of (11), the relationship between the vector obtained by
minimization (13) and the vector W� forming the optimal hyperplane is

/0 ¼ W�

W�k k ð14Þ

The interval r /0ð Þ between the optimal hyperplane and the classification vector is

r /0ð Þ ¼ sup
1
2

c1 /0ð Þ � c2 /0ð Þð Þ ¼ 1
W�k k ð15Þ

In order to find the optimal classification hyperplane, we need to solve the quadratic
programming problem. Under the condition of linear constraint (11), we need to
minimize the quadratic form, see Eq. (12). It can be solved by Lagrange multiplier
method, and the equation is as follows:

L W ; a; bð Þ ¼ 1
2

Wk k2�
XN

i¼1
ai yi Xi �W þ bh i � 1f g ð16Þ

The weight coefficient vector of the optimal classification surface of the support
vector, then its optimal classification surface function is:

W� ¼
XN

i¼0
ai�yiXi ð17Þ

The wavelet decomposition method is used to extract the eigenvalues for SVM
classification training, and the accuracy reaches 93.72%. Table 1 shows the accuracy
after classification training (see Table 1).

In order to analyze the performance of the algorithm adopted in this paper, the
classification accuracy of several feature combinations mentioned in previous litera-
tures is compared. Commonly used feature combinations include time-domain feature
combinations: average absolute value (MAV), zero crossing rate (ZC), wavelength
(WL), AR model coefficient, and the results are shown in Table 2.

Table 1. The accuracy after classification training.

Motion 1 Motion 2 Motion 3 Motion 4

Motion 1 94 3 0 3
Motion 2 1 93 1 5
Motion 3 1 4 95 0
Motion 4 2 0 4 92
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5 Verification

The classification model obtained through training was applied to the lower extremity
exoskeleton prototype shown in Fig. 8 to verify the rationality of the conclusions in
this paper. According to the indicator light, the subjects made complete continuous
movements one by one, each of which was completed 100 times and lasted for 5 s.

The classifier model is used for real-time prediction, and the subject controls the
exoskeleton to complete the corresponding actions. Figure 9 shows the effect of online
real-time exoskeleton movement controlled by a subject. Since it takes some time for
the subjects to complete the action according to the change of the indicator light during
the experiment, the experimental results will have a slight error and the accuracy will
be reduced. After all the subjects completed real-time control of the movement of the
lower extremity exoskeleton, the average accuracy of the four groups of continuous
movements was 95.14%, 92.51%, 94.30% and 91.78%, respectively. The accuracy
statistics results are shown in Fig. 10.

Table 2. The accuracy after classification training.

Feature extraction method Recognition accuracy

Average absolute value (MAV) 82
Zero crossing rate (ZC) 84
Wave length (WL) 81
AR model coefficient 72

Fig. 8. Lower limb exoskeleton robot prototype.
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6 Conclusion

In this paper, a new “time-frequency domain wavelet transform” method is proposed
based on the strong temporal sequence of sEMG signal data. The method combines
Angle and sEMG to segment the local motion data in the effective leg movement
segment as sample data.

At the same time, wavelet analysis is used to extract feature values for parallel
support vector machine training, and the Angle classification and recognition of con-
tinuous motion are realized. Experimental results show that the preprocessing method
and classification recognition algorithm presented in this paper have better classifica-
tion results. Been method application in the treatment of lower limb exoskeleton robot
prototype, lower limb swing to the human body muscle in the process of electrical
signals are analyzed in real time, the corresponding relationship between the Angle at
the same time, the simulation analysis are carried out using MATLAB, based on the
motion process of the lower limbs with multi-channel sEMG analysis, get lower limb
joint Angle in the process of sports information, and through the prototype proves the

Fig. 9. Real-time control of the exoskeleton movement process.

Fig. 10. Four groups of continuous motion accuracy comparison
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rationality of the design of lower limb exoskeleton. Through verification experiments,
this method is characterized by strong real-time performance and high control accu-
racy, which shows the application prospect of gait recognition technology based on
sEMG signal in the field of exoskeleton, and lays a solid foundation for subsequent
research.
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