
PassEye: Sniffing Your Password from HTTP
Sessions by Deep Neural Network

Zhiqing Rui1 , Jingzheng Wu1(B), Yanjie Shao1, Tianyue Luo1, Mutian Yang1,2,
Yanjun Wu1, and Bin Wu1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{zhiqing,jingzheng08,yanjie,tianyue,mutian,yanjun,

wubin}@iscas.ac.cn
2 Beijing ZhongKeWeiLan Technology, Beijing, China

Abstract. Passwords are the most widely used method for user authentication in
HTTP websites. Password sniffing attacks are considered a common way to steal
password. However, most existing methods have many deficiencies in versatility
and automation, such as manual analysis, keyword matching, regular expression
and SniffPass. In this paper, to better describe the problem, we propose a HTTP
Sessions Password Sniffing (HSPS) attack model which is more suitable in HTTP
environment. Furthermore,weproposePassEye, a novel deepneural networkbased
implementation of HSPS attack. PassEye is a binary neural network classifier that
learns features from the HTTP sessions and identifies Password Authentication
Session (PAS). We collected 979,681 HTTP sessions from the HTTP and HTTPS
websites for training the binary classifier. The results show that PassEye is effective
in sniffing the passwordswith an accuracy of 99.38%. In addition, severalmeasures
are provided to prevent HSPS attacks in the end.

Keywords: Password sniffing attack · Deep neural network · Website security ·
Network traffic analysis

1 Introduction

Password is a traditional identity authentication method [1]. However, this authentica-
tion method has many security problems, which has been criticized for a long time.
Some more secure methods have been proposed for the same purpose, such as finger-
print, asymmetric key, 2-step verification, one-time password, but password is still the
most widely used one due to its convenience, simplicity, and user habits. This gives
attackers the opportunity to perform brute force attacks, password sniffing attacks and
password reuse attacks. The widespread use of plain text password transmission and
weakly encrypted password transmission in HTTP websites makes password sniffing
attacks more easily.

This work was supported by National Key Research and Development Program of China
(2017YFB0801900), National Natural Science Foundation of China (61772507) and the Key
Research Program of Frontier Sciences, CAS (ZDBS-LY-JSC038).

© The Author(s) 2020
W. Lu et al. (Eds.): CNCERT 2020, CCIS 1299, pp. 3–15, 2020.
https://doi.org/10.1007/978-981-33-4922-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4922-3_1&domain=pdf
http://orcid.org/0000-0002-9444-0845
https://doi.org/10.1007/978-981-33-4922-3_1


4 Z. Rui et al.

Traditional methods of password sniffing attacks include manual analysis, keyword
matching, regular expression and automatic tool [2, 3], which can attack some HTTP
websites. Session is the basic unit of communication between the client and the server
in the HTTP protocol [4] including request and response messages. HTTP websites
usually perform password authentication through sessions. Because of the diversity of
websites, manual analysis is probably the most common and effective measure. For
examples, attackers listen to the network traffic packets and search for PAS, Keyword
matching is also fast and effective, but experiments show that it has a high false-positive
rate, and regular expression is an upgraded version of the former two. Attackers can
write several regular expressions to match the PAS of some websites. However, writing
regular expressions for all websites is an impossible task. Therefore, some automatic
password sniffing tools have been proposed, e.g., SniffPass [5] and Password Sniffer Spy
[6]. These tools support some protocols, such as POP3, IMAP4, SMTP, FTP, and HTTP
Basic authentication, and do not support password authentication in HTTP webpage
form, resulting in low availability in HTTP website password sniffing attacks. Overall,
the current methods have many deficiencies in terms of versatility and automation.

Currently, more and more websites use HTTPS protocol to protect the security of
data transmission and prevent man-in-the-middle attacks, thereby greatly enhancing the
security of websites. However, since the user may try to install the root certificate in
the web browser due to the temptation of the attacker or the request of the network
administrator, the attacker can track the user’s web browsing request by setting a trans-
parent proxy server. In this paper, we propose an HSPS attack model if an attacker can
obtain unencrypted traffic logs of users browsing the web. We define PAS as a session
containing a password authentication request message. And the attacker intents to sort
out PAS for users, so that any website can be accessed from numerous of traffic logs.

To overcome the shortcomings of previous methods, we have developed a password
sniffing attack tool based on deep neural networks, called PassEye. Firstly, PassEye
takes the HTTP session as input and uses designed rules to extract the features from the
HTTP session. Preprocessing feature data is required: getting the invalid items removed,
and the feature data normalized and one-hot encoded. The correlation rate between each
feature and the plaintext password feature can be calculated by XGBoost algorithm [7],
and the features with high rates can then be selected. Secondly, the basic architecture
of PassEye is a neural network. The loss function, the number of layers and neurons,
and the activation function are elaborately designed to build the network. The selected
feature data is used to train the neural network model. Finally, PassEye can perform
password sniffing attacks on network traffic.

In the experiments, an approach was first designed to collect labeled training data.
979,681 HTTP sessions were collected as our raw dataset and 7,697 were labeled as
PAS. Secondly, the designed feature extraction and selection methods of PassEye were
used to collect features from the raw data. 58 features were extracted and the top 20 were
selected for the subsequent training. Thirdly, python and TensorFlow are used to build
a deep learning neural network for binary classification, and it was trained by using
the selected data and features. Experimental results show that the accuracy, f1-score,
precision and recall of PassEye reach 0.9931, 0.9931, 0.9932 and 0.9931 respectively,
which successfully proves the superiority of PassEye.



PassEye: Sniffing Your Password from HTTP Sessions 5

In summary, our contributions are as follows:

• A new HSPS attack model is proposed for website traffic password sniffing in HTTP
and HTTPS protocols.

• We design and implement PassEye, a practical HSPS attack tool based on deep neural
networks.

• We also show that PassEye is effective deep neural networks in HSPS attack.

Outline.The rest of this paper is organized as follows. In Sect. 2, we provide background
on password attacks, password sniffing attacks, and the application of neural network to
network traffic classification. In Sect. 3, we define the HSPS attack model. In Sect. 4,
we show the design of PassEye. In Sect. 5, we present an evaluation of PassEye. Finally,
we provide conclusions and future work in Sect. 6.

2 Background

2.1 Password Attack

Due to the vulnerability of password authorization, password attacks have been the focus
of many scholars. Current research on password authentication is mainly focus on the
evaluation of password security [8] and the optimization of password guessing methods
[8–12]. Traditional password guessing methods are based on dictionary, Markov model
or probabilistic context-free grammar (PCFG) [11]. Melicher et al. [8] use a neural
network for password guessing attacks for the first time, and the evaluation results
show outstanding performance. Following Melicher’s work, neural network methods
for password guessing have developed rapidly in recent years.

2.2 Password Sniffing Attack

Compared with password guessing attacks, there is little research on password sniffing
attacks, since it does not have good versatility currently. In fact, it can directly capture
plain text passwords from network traffic without guessing, which is more time-saving
and of greater practical value. This is an motivation for our research.

There are four traditional methods of password sniffing attacks, such as manual
analysis, keyword matching, regular expression, and automatic tools. These methods
are also applicable to HTTP website attacks. Manual analysis is based on traffic dump
tools (e.g. Wireshark, TcpDump) or man-in-the-middle (MITM) proxy tools (e.g. fiddle,
Burp Suite, mitmproxy). Attackers manually search and filter the raw network traffic
logs and find which packet contain plain passwords. This can be the most common and
effective method due to the complexity of websites. Keyword matching is fast, which
uses password’s keywords (e.g. ‘password’, ‘pwd’, ‘passwd’) to match the content of the
network traffic. However, experiments show that it has a high false positive rate. Com-
pared with thesemethods, regular expression can bringmore accurate results. According
to the patterns of the site’s PAS, attackers can write regular expressions to match the
usernames and passwords. However, since regular expressions are usually specifically



6 Z. Rui et al.

designed and do not support a wider range of websites, attackers need to learn the pattern
of PAS for each website. Therefore, it is indeed a time-consuming method for attackers.
Since SniffPass [5] and Password Sniffer Spy [6] are two automatic tools that support
only a few patterns, such as POP3, IMAP4, SMTP, FTP, and HTTP basic authentication,
and do not support password authentication in HTTP webpage form, their availability
in HTTP website password sniffing attacks is quite low. In summary, current methods
have many deficiencies in terms of versatility and automation.

2.3 Neural Network in Network Traffic Classification

The deep neural network has shown superior performance in software developing and
analysis [13, 14] and has been widely used for classification and detection of network
traffic logs in recent years [15, 16], such as attack detection, traffic content classification.
Liu et al. [16] use a two-step neural network, Payload Locating Network and Payload
Classification Network, for web attack detection, and the precision of the evaluation
results reaches 100%.

Traffic content type identification is also an important application of deep neural
networks [17]. Lotfollahi et al. [18] take the extracted first 20 bytes of the IP header,
first 20 bytes of the TCP/UDP header and first 1460 bytes of payload as the input to the
CNN/SAE deep neural network classification model, and the classification precision for
Tor, webpage, audio and video reaches 95%.

3 Attack Model

The ultimate goal of a passive attacker in a traditional password sniffing attack is to
intercept the user’s password. The attack model is shown in Fig. 1.

Users Server

Raw Traffic

Decryption

Attacker

Listen

Fig. 1. Traditional password sniffing attack model.

HTTPS is a common and effective method to prevent MITM attacks on websites.
Mi et al. [19] analyze the insecurity of IP proxy and Krombholz et al. [20] reveal the



PassEye: Sniffing Your Password from HTTP Sessions 7

problems encountered by HTTPS in practice. Their research shows that HTTPS is not
absolutely secure. In addition to the above work, there are many attack methods for
MITM attacks in HTTPS. Users may be tempted to install a root certificate in a web
browser, and the attackers can set a transparent proxy server to track users’ web browsing
requests. DNS hijacking is also effective in HTTPS MITM attack.

In this paper, we propose an HSPS attack model, focusing on the classification of
the HTTP sessions, and assuming that HTTPS traffic has been perfectly decrypted into
HTTP sessions. Figure 2 shows the HSPSmodel. Users use browsers to surf the internet,
and the browsers sendHTTP/HTTPS requests to the webserver and receive the response.

Users

…

Browsers

…

Chrome

Firefox

Safari

website1

website2

website3

Websites

Proxy

HTTPS

HTTP

Decryption

Attacker

Fig. 2. HTTP session password sniffing (HSPS) attack model.

In the process of messages transposition, there is a transparent proxy that can per-
fectly decrypt HTTPS traffic and parse the traffic into request and response. For some
reason, attackers can monitor the decrypted HTTP sessions. The goal of the attackers
is to filter out PAS, and then parse the user’s password information as much and as
accurately as possible from a large amount of HTTP sessions.

4 PassEye Design

Due to the lack of versatility of previous methods, this paper proposes PassEye, a pass-
word sniffing attack tool based on deep neural networks, which can steal password in
numerous HTTP traffic logs.

4.1 Overview

Figure 3 shows an overview of the PassEye design. The input of the PassEye was the
HTTP sessions containing request and response messages. Then we designed a feature
extraction method that could extract feature data from the HTTP sessions, which was



8 Z. Rui et al.

helpful for PAS. The invalid items in the feature data were removed, and the feature
data was normalized and one-hot encoded. The correlation rate between each feature
and the plaintext password feature was calculated using the XGBoost [7] features with
high correlation were selected features with high correlation. After these steps, the
HTTP sessions was transformed into feature vectors, which could be used to train the
deep neural network model, PassEye, designed in this paper. The results show that this
method can perform password sniffing attacks in the HTTP sessions.

HTTP Sessions

Extraction

Features

Feature 
Selection

Normalization

Vectors

…

Classifier

As Input

Fig. 3. An overview of the PassEye.

4.2 Feature Extraction and Selection

Feature extraction is very important for neural network models. The more important the
features can represent the PAS, the more accurate and generalized the machine learning
model can be.

In this paper, a total of 21 plain passwords related features extracted from the HTTP
sessions are listed in Table 1.

Table 1. Features extracted from the http session.

Name Meaning Type Name Meaning Type

Session number The session number
in each record

Int Response set
cookie

Whether the
response header
has the ‘Set
Cookie‘Field

Bool

Count pk The occurrences of
password keywords
in the request
message

Int Response
cookie len

The length of ‘Set
Cookie’ field in
the response
header

Int

Count uk The occurrences of
username keywords
in the request
message

Int Response
code

Response status
code

Enum

(continued)



PassEye: Sniffing Your Password from HTTP Sessions 9

Table 1. (continued)

Name Meaning Type Name Meaning Type

Request content
len

The length of the
request content

Int Time request Time taken for the
browser sending
the request to the
server

Float

Response content
len

The length of the
response content

Int Time response Time taken for the
server sending the
response to the
browser

Float

Request header
len

The length of the
request header

Int Time all Time taken from
the beginning of
the request to the
end of the
response

Float

Response header
len

The length of the
response header

Int Content type
request

The list of content
types in the
request header
‘Content-Type’
field

List

Request header
count

The number of the
request header
fields

Int Content type
Response

The list of content
types in the
response header
‘Content-Type’
field

List

Response header
count

The number of the
response header
fields

Int Content type
accept

The list of content
types in the
request header
‘Accept’ field

List

Request cookie
len

The length of the
request header
cookie field

Int Is https Whether this
session uses
HTTPS protocol

Bool

Request cookie
count

The number of
key-value pairs in
the request header
cookie field

Int

It is worth mentioning that the “count pk” feature counts the number of times that
the password keywords appear in the request messages. Password keywords are words
with high frequency around passwords in statistics. In other words, we take the keyword
matching method as a feature in PassEye method.

After the step of feature extraction, aHTTP session is abstracted into a list of features.
To better show the correlation between discrete features and plain passwords, PassEye



10 Z. Rui et al.

uses one-hot encoding to convert discrete feature variables into multiple Boolean fea-
tures. Z-score standardization is used to keep the features within a similar numerical
range, which can be described as follows:

z = x − μ

σ

where x denotes the eigenvalue to be normalized, μ denotes the arithmetic mean, σ
denotes the standard deviation of the feature, and z denotes the target value.

To quantify the impact of each feature on the plain password, PassEye calculates its
correlation using the XGBoost algorithm. The top k of the above features are selected.

Through the above steps, we can obtain a 1 ∗ k feature vector, which can be used
as the input of the neural network. The feature vector can well keep the information of
the session itself and its correlation with the PAS, so that the performance of the neural
network can be improved.

4.3 Neural Network Model

Our model consists of 5 layers, including an input layer, 3 hidden layers, and an output
layer. The input layer has k nodes, which correspond to the feature vectors on a one-to-
one basis. The three hidden layers contain 5 nodes, 5 nodes, and 1 node, respectively.
The activation function in hidden layers 1 and 2 is ReLU, while that in hidden layer 3 is
Sigmoid. The output layer has 2 nodes, corresponds to the two classification results: PAS
and non-PAS. The optimizer is Adam, the learning rate is 0.001, and the loss function
is Binary Cross Entropy.

During the training process, the random value of the initialization of the model
weights ranges from −1 to 1. The batch size is 32, the number of steps per epoch is 100,
and the maximum epoch is 10,000. An early stop condition is set to prevent over-fitting.
The training will stop if the model does not show any improvement in 20 consecutive
epochs.

5 Evaluation

We demonstrate the effectiveness of PassEye by answering the following questions:

Q1. Does PassEye perform better than keyword matching and regular expression
methods?
Q2. What are the characteristics of PassEye compared to traditional methods in HSPS
attacks?

5.1 Environment Setup

The hardware environment and main softwares are as followed.

Hardware: (1) CPU: Intel E7 4809v4 * 2; (2) Memory: 128G; (3) Disk: 8T SSD.
Software: (1) OS: Ubuntu Linux 18.04 LTS; (2) Python 3.6.9; (3) TensorFlow 1.0;
(4) XGBoost 0.9.0; (5) Docker 19.03.2; (6) mitmproxy 4.0.4; (7) Selenium 141.0; (8)
Chrome 78.0.3904.108.



PassEye: Sniffing Your Password from HTTP Sessions 11

5.2 Dataset

We designed a new approach to collect labeled training data: using selenium and chrome
to simulate browsing and logging into a website, and then using mitmproxy as a middle-
man proxy to collect HTTP traffic logs. The experiment target site was Alexa China’s
top 500 website [21]. 224 of the sites use HTTPS while 276 do not. We wrote a script
for each of these websites, and several browsing and login records could be captured
by executing each script. Each record generated a set of usernames and passwords ran-
domly as well as several HTTP sessions. As a result, a total of 43,619 records (with
corresponding usernames and passwords) and 979,681 HTTP sessions were collected as
our raw dataset. Text search was used to see if the plaintext password corresponding to
the HTTP sessions exists in the request message of the sessions, and a PAS was labeled
when the answer was yes. In the end, 7,697 PAS were obtained. sample set: Due to the
disparity in proportion between PAS and non-PAS samples, we used weighted random
sampling to select a subset from the raw dataset as the sample set for training, which
contains 5,875 PAS and 11,058 non-PAS.

We then divided the sample set into a training set, a validation set, and a test set at a
ratio of 0.64:0.16:0.20.

5.3 Effectiveness of PassEye

We then extracted features from the training set described in PassEye Design. After one-
hot encoding, 58 features were collected. XGBoost was used to calculate the correlation
of the features, and the top 20 were selected to train the deep neural network, as shown
in Fig. 4.

21

21

29

34

41

43

57

66

67

91

99

115

142

144

178

196

206

212

234

261

0 50 100 150 200 250 300

content_type_accept_bin

https

request_cookie_count

content_type_accept_media

time_res

content_type_response_webpage

content_type_request_application

time_all

response_header_count

response_cookie_len

count_uk

request_header_count

time_req

request_cookie_len

request_header_len

count_pk

flow_number

response_content_len

response_header_len

request_content_len

Correlation Factor

Fe
at

ur
es

Fig. 4. Correlation of the top 20 features.



12 Z. Rui et al.

The training and validation sets were used to train the machine learning model
described in PassEye Design. The test set was used to test the performance of the trained
model.

For comparison, we also implemented keyword matching and regular expression
methods as our baselines, and the test set was the same one.

Performance of PassEye
Table 2 shows the accuracy, precision, recall, and f1-score results for the three methods.
As can be seen from the table, all the performance metrics of PassEye are over 99.2%.
Furthermore, all the metrics of PassEye are the highest, followed by the regular expres-
sion, and the performance of the keyword matching is the worst. It can be concluded that
PassEye significantly surpasses these traditional methods in terms of the performance.

Table 2. The performance of the three methods.

Method Accuracy Precision Recall F1-score

Keyword matching 81.87% 85.67% 82.92% 81.65%

Regular expression 97.40% 96.50% 97.89% 97.13%

PassEye 99.38% 99.46% 99.20% 99.33%

Characteristics of PassEye
Table 3 shows the characteristics of different password sniffing attack methods. Manual
analysis, keyword matching, regular expression, and SniffPass, which can be seen as the
representative of automatic tool, are presented in it for comparison, along with PassEye.
The evaluation metrics include automaticity, versatility, scalability, independence, fast-
ness, and robustness. Automaticity refers to whether it can run completely automatically
without human intervention. Versatility refers to whether it can be used on any website.
Scalability refers to whether the method supports extensions for use on new websites.
Independence refers to whether this method can perform password sniffing attacks inde-
pendently. Fastness refers to whether the method can run fast enough. Robustness refers
to whether the method is effective enough in the face of unknown situations.

As can be seen from Table 3, PassEye has the characteristics of automaticity, versa-
tility, scalability, fastness and robustness, except for independence. All other methods
are not robust. Despite that SniffPass owns the independence, PassEye is still the best
choice after the comprehensive consideration of all characteristics.

Therefore, it can be summarized that PassEye has the best characteristics among all
these methods.



PassEye: Sniffing Your Password from HTTP Sessions 13

Table 3. The characteristics of different password sniffing attack methods.

Manual analysis Keyword
matching

Regular
expression

SniffPass PassEye

Automaticity ✕ ✓ ✓ ✓ ✓

Versatility ✓ ✕ ✕ ✕ ✓

Scalability ✕ ✓ ✓ ✕ ✓

Independence ✕ ✕ ✕ ✓ ✕

Fastness ✕ ✓ ✓ ✓ ✓

Robustness ✕ ✕ ✕ ✕ ✓

5.4 Discussion

It can be seen from the experiment results that PassEye has brilliant performance and
best characteristics compared with some other traditional methods.

In the experiments, we also calculated the correlation between each feature and
whether it is PAS. The correlation is shown in Fig. 4. The figure shows that the
five features that have the most influence on the classifier are request_content_len,
response_header_len, response_content_len, session_number and count_pk. This has
given us some implications for preventing against HSPS attacks.

To prevent HSPS attacks, websites can make the following changes to the above
features:

• Randomly change the length of the request content, the length of the response header,
and the length of the response content by padding arbitrary characters.

• Have several unrelated random sessions between the browser and the server before
the former sending the password authentication request messages to the latter. The
goal is to change the session number. – Obfuscate and encrypt the fields of PAS.

In addition, there are some conventional ways to prevent password sniffing attacks.
Websites can asymmetrically encrypt or hash passwords before sending login requests.
Using self-built algorithms to obfuscate the content of requests is also an effective way.
Changing the way of password authentication can be a solution as well, such as using
one-time password, 2-step verification, etc.

6 Conclusion and Future Work

This paper proposed anHSPS attackmodel, which is a perfect expression for the problem
of website password sniffing. PassEye, a tool based on deep neural networks, was pro-
posed to implement the attack. We also designed a feature extraction method for HSPS
attacks. In Evaluation, the experiment results verified the effectiveness of PassEye and
deep neural networks in HSPS attacks. Some prevention strategies for websites were
provided as well.



14 Z. Rui et al.

In the future, we will explore methods to make PassEye more robust, such as CNN,
RNN or other machine learning models. The classification of obfuscated and hashed
passwords can be considered and added to make PassEye more practical.

References

1. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: understanding
passwords of Chinese web users. In: 28th USENIX Security Symposium (USENIX Security
19), pp. 1537–1555. USENIX Association, Santa Clara (2019)

2. Jammalamadaka, R.C., Van Der Horst, T.W., Mehrotra, S., Seamons, K.E., Venkasubrama-
nian, N.: Delegate: a proxy based architecture for secure website access from an untrusted
machine. In: 2006 22nd Annual Computer Security Applications Conference (ACSAC 2006),
pp. 57–66. IEEE, Miami Beach (2006)

3. Password Sniffing Attack. In: SSH.COM (2020). https://www.ssh.com/attack/password-sni
ffing. Accessed 3 Dec 2019

4. Mozilla: a typical HTTP session. In: MDN Web Docs (2019). https://developer.mozilla.org/
en-US/docs/Web/HTTP/Session. Accessed 20 Oct 2019

5. SniffPass Password Sniffer - Capture POP3/IMAP/SMTP/FTP/HTTP passwords. In: NirSoft.
https://www.nirsoft.net/utils/password_sniffer.html. Accessed 22 Oct 2019

6. SecurityXploded: Password Sniffer Spy : Free Tool to Sniff and Capture
HTTP/FTP/POP3/SMTP/IMAP Passwords (2020). https://www.SecurityXploded.com.
Accessed 1 Jan 2020

7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD
2016, pp. 785–794. ACM Press, San Francisco (2016)

8. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using neu-
ral networks. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 175–191.
USENIX Association, Austin (2016)

9. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: A Deep Learning Approach for
Password Guessing. arXiv:170900440 [cs, stat] (2017)

10. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing: password sim-
ilarity models using neural networks. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 417–434. IEEE, San Francisco (2019)

11. Liu,Y., et al.:GENPass: a general deep learningmodel for password guessingwith PCFG rules
and adversarial generation. In: 2018 IEEE International Conference on Communications, ICC
2018, May 20, 2018–May 24, 2018. Institute of Electrical and Electronics Engineers Inc., p
Cisco; et al.; Huawei; National Instruments; Qualcomm; Sprint (2018)

12. Muliono, Y., Ham, H., Darmawan, D.: Keystroke dynamic classification using machine learn-
ing for password authorization. Proc. Comput. Sci. 135, 564–569 (2018). https://doi.org/10.
1016/j.procs.2018.08.209

13. Duan, X., et al.: VulSniper: focus your attention to shoot fine-grained vulnerabilities.
In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence. International Joint Conferences on Artificial Intelligence Organization, Macao, China,
pp. 4665–4671 (2019)

14. Yang, M., Wu, J., Ji, S., Luo, T., Wu, Y.: Pre-Patch: find hidden threats in open software based
on machine learning method. In: Yang, A., et al. (eds.) SERVICES 2018. LNCS, vol. 10975,
pp. 48–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94472-2_4

15. Prasse, P., Machlica, L., Pevny, T., Havelka, J., Scheffer, T.: Malware detection by analysing
network traffic with neural networks. 2017 IEEE Security and Privacy Workshops (SPW),
pp. 205–210. IEEE, San Jose (2017)

https://www.ssh.com/attack/password-sniffing
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://www.nirsoft.net/utils/password_sniffer.html
https://www.SecurityXploded.com
http://arxiv.org/abs/170900440
https://doi.org/10.1016/j.procs.2018.08.209
https://doi.org/10.1007/978-3-319-94472-2_4


PassEye: Sniffing Your Password from HTTP Sessions 15

16. Liu, T.,Qi,Y., Shi, L.,Yan, J.: Locate-then-detect: real-timeweb attack detection via attention-
based deep neural networks. In: Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence
Organization, Macao, China, pp. 4725–4731 (2019)

17. Yao, Z., et al.: Research review on traffic obfuscation and its corresponding identification and
tracking technologies. Ruan Jian Xue Bao/J. Softw. 29(10), 3205–3222 (2018). (in Chinese).
http://www.jos.org.cn/1000-9825/5620.htm

18. Lotfollahi, M., Zade, R.S.H., Siavoshani, M.J., Saberian, M.: Deep packet: a novel approach
for encrypted traffic classification using deep learning. arXiv:170902656 [cs] (2018)

19. Mi, X., et al.: Resident evil: understanding residential IP proxy as a dark service. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 1185–1201. IEEE, San Francisco (2019)

20. Krombholz, K., Busse, K., Pfeffer, K., Smith,M., von Zezschwitz, E.: “If HTTPSwere secure,
i wouldn’t need 2FA” - end user and administrator mental models of HTTPS. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 246–263. IEEE, San Francisco (2019)

21. Alexa China Siterank. http://www.alexa.cn/siterank. Accessed 28 Nov 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.jos.org.cn/1000-9825/5620.htm
http://arxiv.org/abs/170902656
http://www.alexa.cn/siterank
http://creativecommons.org/licenses/by/4.0/

	PassEye: Sniffing Your Password from HTTP Sessions by Deep Neural Network
	1 Introduction
	2 Background
	2.1 Password Attack
	2.2 Password Sniffing Attack
	2.3 Neural Network in Network Traffic Classification

	3 Attack Model
	4 PassEye Design
	4.1 Overview
	4.2 Feature Extraction and Selection
	4.3 Neural Network Model

	5 Evaluation
	5.1 Environment Setup
	5.2 Dataset
	5.3 Effectiveness of PassEye
	5.4 Discussion

	6 Conclusion and Future Work
	References




