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Abstract The condensed nearest neighbor (CNN) classifier is one of the techniques
used and known to perform recognition tasks. It has also proven to be one of the most
interesting algorithms in the field of data mining despite its simplicity. However,
CNN suffers from several drawbacks, such as high storage requirements and low
noise tolerance. One of the characteristics of CNN is that it focuses on the selection
of prototypes, which consists of reducing the set of training data. One of the goals
of CNN seeks to achieve the reduction of information in such a way that the reduced
information can represent large amounts of data to exercise decision-making on
them. This paper mentions some of the most recent contributions to CNN-based
unsupervised algorithms in a review that builds on the mathematical principles of
condensed methods.
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1 Introduction

Instance selection methods represent an important approach in different areas of
data science. In [1], some important elements are considered in topics related to
instance selection. There are two important processes, namely training set selection
and prototype selection.

The selection of a subset of data for another very large data set is summa-
rized in the concept of “data condensation” [2]. This form of data reduction differs
from the others and is integrated as one of the families of the instance selection
methods. Mainly, data condensation approaches are studied based on the classifica-
tion processes, particularly the k-nearest neighbor (KNN) methods which refer to
obtain a consistent minimum set that classifies the entire original set. Figure 1 shows
a simple representation of the KNN.

One of the first pioneering methods in the analysis in the data structure for the
selection of instances was CNN [4]. The methods of condensation of data that are
not related to the classification process are also known as methods of condensation
of generic data, such condensation is performed through the so-called vector quan-
tization (VQ), and example of this is the self-organization map and other ways of
organizing the data as shown in Fig. 2.

1.1 Vector Quantization

Vector quantization (VQ) is a classic method that consists of approximating a contin-
uous probability density function p (x) of the vector input variable x by using a finite
number of book-encoded vectors mi, i = 1, 2, …,k; once these book-encoders have
been chosen, the approximation of x implies finding the reference vector closest to
x. An optimal location type of m minimizes to E where E is the rth power of the
reconstruction error [5]:

E =
∫

‖x − mc‖r p(x)dx (1)

Fig. 1 K-nearest neighbor
representation [3]
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Fig. 2 CNN decision diagram for data reduction task

where dx represents the differential volume in the space x and the index c = c (x) of
the best match between the book-encoders (winner) is a function of the input vector:

‖x − mc‖ = min︸︷︷︸
i

{‖x − mi‖} (2)

In general, a closed solution for the optimal location of m is not possible, so
iterative approximation schemes can be used.

1.2 Condensed Methods

Generic data condensation methods are based on techniques that consider density;
they consider the density function instead of minimizing the quantification error; that
is, for a specific input set, the condensed output set [6] is established.

Othermethods such as data squash or data clustering are used for sample selection.
A crushing method seeks the compression of the data in such a way that a statistical
analysis performedon the compressed data obtains the same result aswith the original
data. Clustering-based algorithms [7, 8] divide data into samples like each other and
different from examples of data belonging to other groups [1].

Figure 3 is represented according to a distance function where the quality of the
cluster could be measured according to the dimension of its diameter which is the
maximum between two samples belonging to the same group.



316 Y. Fernández-Fernández et al.

Fig. 3 Three clusters
obtained from a set of
two-dimensional data

1.3 Machine Learning and Feature Selection

In machine learning, a process known as feature selection consists of the selection of
characteristics, attributes or selection of variable subsets for use inmodel building. In
[2], two feature selection strategies are mentioned, the first based on feature ranking
and the other based on best subset selection. In the case of the methods based on
feature ranking, some statistical metrics are used, some of the simple complexity uses
the correlation coefficient instead of other more complex used methods such as the
Gini index, and this index canbeused to quantify inequalities in variable distributions.
Other feature ranking methods mentioned in the literature [9] are the bivariate and
multivariate methods; these methods calculate the distance between the actual joint
distributions of the characteristics of two or more variables and answer the question
of what the joint distribution would be if these variables were independent, further.
The joint distribution represents the probability distribution of existing case studies.
Among the multivariate analysis, methods are the stepwise linear regression [10, 11]
which has been used in cluster tasks and sample selection [12]; other slightly more
complex algorithms include the use of machine learning and advanced statistics, for
example, partial least squares regression [13] and sensitivity analysis [14]. Also, in
performance analysis of virtual clusters [15] and architecture in wireless networks
[16].

The second strategy based on subset selection has its focus on the selection of a
subset for the selection of characteristics or attributes that have a significant effect
on the prediction of a variable. The classic methods of data reduction and sample
selection [17] mention its importance given the analysis of large amounts of data
for each sample and the time consumed which may cause an over-adjustment of the
model of training.

In all the approaches seen so far in a very simple way, the importance of selecting
a suitable sample has been evidenced to reduce computational cost and time among
other aspects. From now on, the various efforts made to obtain results using the
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CNN method [18] with the prototype approach that facilitates the machine learning
approach [19] will be more rigorously required.

The rest of this paper is structured as follows: Sect. 2 presents the theoretical back-
ground and overview referring to the main problem by the CNN method. Section 3
describes more practically by introducing the idea of the use of metrics in unsuper-
vised learning and its relationship with CNN. Finally, the conclusions are presented
in Sect. 4.

2 Theoretical Background and Overview

In practical problems, one of themost important elements to handle is the elimination
of noise, redundancies, useless instances and therefore the selection of prototypes,
constituting the first step for any practical application.

2.1 Problem Definition

It is desired to isolate the smallest set of instances that could predict the class with
the same or greater precision than the original set [20]:

Lemma 2.1.1. Let X pbe an instance where X p = (
X p1, X p2, ..., X pm, X pc

)
, with

X p ∈ cgivenby X pcanda X pi ∈ Rmbeing the value of the ith feature of the pthsample.
A training set TR, and also the N instances X pand a validation set TS with t instances
X p, is obtained. S ⊂ TR is the subset of the selected samples that resulted from
applying an instance selection algorithm.

Summarizing Lemma 2.1.1., the objective of an instance selection method is to
obtain a subset S ⊂ T such that S does not contain unnecessary instances [21]:

Acc(S) ∼= Acc(X) (3)

where Acc(X) is the qualifier of the training set X.

2.2 Prototype-Based Approach on Unsupervised Learning

Models based on prototype analysis represent several appealing concepts such as the
explicit representation of observations, data or typical representatives that exhibit
some relation to psychology and neuroscience.

In Sect. 1, the relationship between condensationmethods and vector quantization
was approached in a very simple way, and this subsection discusses how to prototype
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selection matches the instance selection approach with a competitive perspective in
unsupervised learning [18].

The vector quantization mathematical statement is formulated in terms of a func-
tion that represents costs and generally guides the computation of prototype vectors.
A prototype-based representation [22] of a given set of P is defined in Lemma 2.2.1.

Lemma 2.2.1. Assign the representation of a set of P feature vectors
{xμ ∈ R

n}, μ = 1, 2, ..., Pthat represent a particular input values.
A popular approach considers the assignment of any data point to the closest

prototype, the so-called winner in the set W = {
w1, w2, . . . , wK

}
in terms of a

predefined distance measure.

Using the Euclidean metric in feature space with:

d2(x, y) = (x − y)2 for x, y ∈ R
N (4)

Having the quantization error [3] as the corresponding cost function:

HVQ =
P∑

i=1

1

2
d2

(
w∗(xμ), xμ

)
(5)

wherew∗(xμ) ∈ R
N denote the closest prototype using a Euclidean metric xμ ∈ R

n:

d
(
w∗(xμ), xμ

) ≤ d
(
w j , xμ

)
for all j = 1, 2, . . . , K (6)

The quantization error quantifies the fidelity with which the set of prototypes
represent data.

2.3 The Condensed Nearest Neighbor Rule (CNN Rule)

An in-depth study on the pillars that support the CNN method [23] and that will be
specified below:

Let
(
X

′
1,Y

′
1

)
. . .

(
X

′
m,Y

′
m

)
be a sequence that depends somehow on the data Dn ,

and let gn be the 1-nearest neighbor rule with
(
X

′
1,Y

′
1

)
. . .

(
X

′
m,Y

′
m

)
where m is

previously set. One way to find the data is to find the subset of the size m data, for
the remained minimal n − m data is confirmed by the error with the I-NN rule (this
is known as Hart’s rule).

If:

L̂n =
(
1

n

) n∑
i=1

I{gn(Xi )	=Yi } (7)

And:
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Ln = P{gn(X) 	= Y |Dn} (8)

Then, we have the following:

Lemma 2.3.1. ∀ ε > 0,

P
{
|Ln − L̂n| ≥ ε

}
≤ 8e− nε2

32

(
ne

d + 1

)(d+1)m(m−1)

(9)

where L̂nis about the estimate error probability.

Observe that:

L̂n =
(
1

n

) n∑
i=1

I{
(X j ,Y j)/∈

m⋃
i=1

Bi×
{
Y

′
i

}} (10)

where Bi is the Voronoi cell of X
′
i corresponding to X

′
1 . . . X

′
m , where Bi ⊂ Rd is

the closer partition to X
′
i than to any other X

′
j :

Ln = P

{
(X,Y ) /∈

m⋃
i=1

Bi ×
{
Y

′
i

}
|Dn

}
(11)

Using simple upper bound:

|Ln − L̂n| ≤ Sup︸︷︷︸
A∈Am

|vn(A) − v(A)| (12)

where v denotes the measure of (X,Y ), vn is some measure and Am refer a set of all
subsets of Rd × {0, 1} of the form ⋃m

i=1 Bi × {yi } where B1, . . . , Bm are Voronoi’s
cells corresponding to x1, . . . , xm, xi ∈ Rd , yi ∈ {0, 1}.

Using the Vapnik–Chervonenkis inequality [24]:

s(Am, n) ≤ s(A, n)m (13)

Such that A is the class of sets B1 × {y1} and each set in A intercepts in at most
m − 1 hyperplanes. Then:

s(A, n) ≤ Sup︸︷︷︸
n0,n1:n0+n1=n

⎛
⎝ 1∏

j=0

(
n j e

d + 1

)⎞
⎠

(d+1)(k−1)

≤
(

n j e

d + 1

)(d+1)(k−1)

(14)

where n j denotes the points Rd × { j} and the result follows from the Vapnik–
Chervonenkis.

Other condensate rules based on CNN were also presented in [25, 26].
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Table 1 New approaches based on traditional CNN methods

Method Short description References

Extended nearest neighbor Used for pattern recognition [10]

The fast-condensed nearest neighbor
algorithm

Reuse Voronoi’s concepts [18]

Hierarchy extreme learning machine,
for instance, selection

Fuzzy c-means utilizes condensed
nearest neighbor (CNN) to make a
preliminary selection of training samples

[7]

A modified firefly algorithm for image
classification

Used in image classification task [8]

Nonparametrically regression algorithm
with instance selection

Provide flexible forms of prediction [11]

An approach to the CNN algorithm [27, 28] can be as follows:

Algorithm 1

1. T ← ∅
2. Do
3. ∀x ∈ X(inrandomorder)

4. Find x′ ∈ T such that

x − x′ = min︸︷︷︸
xw∈T

x − xw

5. If Class(x) 	= Class(xw) insert x to T
6. While T does not change

Several investigations have been carried out to interpret, extend and enhance
the traditional CNN algorithm [29, 30]. In Table 1, some novel variants of
implementation and application of the CNN method are shown.

3 Results and Discussion

A small review of the process of selecting instances has shown the high potential of
sample selection techniques. Its application is valid in all areas and sub-areas of the
modern world. The prototyping approach given by machine learning contributes too
many investigations to reduce the computational cost of processes and the tasks of
classifying huge amounts of data. Stopping in the analysis of the condensed nearest
neighbor (CNN) algorithm [31], it represents a cognitive and theoretical element that
means the basis of other evolutionary models.

TheCNNalgorithms use one nearest neighbor rule to iteratively decide if a sample
should be removed or not [4].
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3.1 Metric Considerations and Visual Scheme for the CNN

Many unsupervised algorithms perform unsupervised learning of distance metrics
using information from the data itself or from the dimension where they are repre-
sented. In the selection of instances, the measurement of the distance between
instances or the metric used is of crucial importance.

To formalize, denote the vectors x and y to those that represent the attributes of
two instances x and y (classes are excluded).

A widely used metric is the Minkowski metric, which is defined as:

d = p

√√√√ m∑
j=1

d p
j (15)

where d j is defined for continuous attributes such as d j = ∣∣x j − y j
∣∣.

For some values of p, the Minkowski distance corresponds to a special metric as
reflected in Table 2.

There are other important metrics such as the Mahalanobis distance based on the
location of multivariate outliers to indicate an unusual combination between one or
more variables.

A simple definition to this problem [10] is defined by:

d(Mahalanobis) = [
(xB−xA)

T ∗ C−1 ∗ (xB−xA)
]0.5

(19)

where:
xA and xB are a pair of objects and C is the sample covariance matrix.
The following figure shows some examples of sample selection using the

Euclidean and the Mahalanobis distance using the CNN algorithm and comparing
some values for the n-neighbors:

Figure 4 shows the importance of the selection and use of metrics at the time
of clustering, as indicated by the classic methods of selection of instances, and the

Table 2 Minkowski metrics
for different p values

Minkowski variant
metric

The p value Metric

Manhattan distance 1
d =

m∑
j=1

d p
j (16)

Euclidean distance 2
d =

√
m∑
j=1

d p
j (17)

Chebyshev distance ∞
d =

n︷︸︸︷
Max︸︷︷︸
j=1

∣∣d j
∣∣ (18)
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Fig. 4 Sample selection considering the Euclidean and Mahalanobis distance
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fact of resorting to a sample that is sufficiently representative of a large population
constitutes a difficult job. In this case, the example presented in Fig. 4 shows how
the red, green and blue points are selected reflecting their color in a determined area
according to the Euclidean and Mahalanobis metrics but using the CNN algorithm
(squares on the right in Fig. 4) or simply using the aforementioned metrics (left
squares in Fig. 4). As can be seen, using the CNN algorithm in combination with one
of the two metrics achieves a clearer and more precise level of the reduced instances.

4 Conclusion

The beginning of the history of instance selection algorithms can be placed in the
CNN algorithm (condensed nearest neighbor rule) whose contribution is due to Hart
in 1968. The algorithm in its simplest state leaves in S a subset of T such that each
element of T is closer to an element of S of the same class than to an element of S
of a different class. From this idea, various variants have been formulated with an
elegant mathematical profile that has allowed the reduction of computational costs
in various modern problems given its simplicity.

Finally, the aim of this work has been to show some theoretical elements about
the importance of the sample selection process and the condensed nearest neighbor
method collected in the effort of several authorswho have tried to theorize in complex
aspects of the real world to give solutions to problems of today’s world.
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Group. https://sdas-group.com/.
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