
Chapter 15
Astronomical and Geophysical Factors
of the Perturbed Chandler Wobble
of the Earth Pole

Sergej S. Krylov , Vadim V. Perepelkin , and Alexandra S. Filippova

Abstract In the framework of the restricted three-body problem, a celestial–
mechanical model of the steady-state Chandler wobble of the Earth pole is proposed.
The contribution of the astronomical and geophysical disturbances to the observed
Earth pole oscillations is discussed based on the processing of IERS observations of
the Earth pole motion, NCEP/NCAR geophysical data of the atmospheric circula-
tion, and NASA/JPL angular momentum of the ocean. The directions of the axes x′,
y′ corresponding to 50° of west longitude and 40° of east longitude, respectively, are
found in the projection, onto which its coordinates have the maximum and minimum
intensities of perturbed oscillations. The Earth pole oscillatory process that is in-
phase with the lunar orbit precessional motion is studied, and the contribution of
moving media to this process is discussed.

15.1 Introduction

The study of the fundamental astrometric problemof predicting theEarth polemotion
[1] is of significant theoretical interest and fundamental for satellite navigation [2,
3]. One of its important problems is a high-precision forecast of the spacecraft orbits
[4, 5]. In order to solve this problem, it is necessary to take into account various
perturbing factors in the equations of motion [3, 6]. Accuracy improvement of the
coordinate-time andnavigation support of the satellite systems is closely related to the
prediction of the Earth pole oscillations because, for example, the Earth orientation
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parameters are included in the transformation matrix from the geocentric equato-
rial coordinate system to the Earth geographic coordinate system. One of the main
problems in predicting the Earth pole motion is to take into account the parameters
variability in the main components of the Earth pole oscillation (Chandler wobble
and annual oscillatory process) [7].

Usually, the Chandler wobble is understood as the Earth pole oscillation with the
frequency of free nutation of the Earth’s rotation axis (with the Chandler frequency)
in the Earth-bound coordinate system [8]. It can also be considered in a narrower
sense, as a steady-state oscillation mode at the Chandler frequency and, in a broader
sense, as a multi-frequency oscillatory process with a main frequency being close to
Chandler’s one. However, it is very difficult to give an unambiguous definition that
would fully correspond to the physical process under consideration. Uncertainty in
the interpretation of the Chandler component is due to the lack of a comprehensive
explanation of the excitation mechanism. In some cases, it is convenient to use the
terminology of the perturbation theory. If the steady-state regime of the Chandler
wobble (with a constant frequency and average amplitude) is formally taken as an
“unperturbed” motion, then the perturbations that lead to variations in the Chandler
wobble parameters, which may be considered as perturbations, although it should be
noted that the steady state of the Chandler wobble is also a perturbed motion.

Explaining the excitation mechanism of the Chandler wobble is one of the funda-
mental problems when studying the Earth pole motion. At least, a part of the pertur-
bations leading to variations in the Chandler wobble parameters are caused by this
mechanism. Therefore, the study of the variability of the main components parame-
ters of the Earth pole oscillation (generally speaking, not only Chandler wobble, but
also annual oscillations) is of considerable interest both for the task of predicting the
Earth polemotion and the study of the excitationmechanism of the Chandler wobble.
First of all, the problem is to identify the celestial–mechanical and geophysical
reasons for such behavior of the Chandler component of the Earth pole oscillations.

Factors affecting the Earth motion relative to the center of mass can be divided
into astronomical and geophysical. The Earth motion in space, as well as, the motion
of the Earth’s moving media occurs under the influence of the bodies in the solar
system, and primarily under the Sun and the Moon. Therefore, when studying the
Earth motion it is natural and necessary to take into account the astronomical and
geophysical factors together. Lunar–solar gravitational perturbing forces lead to the
precession and nutation of the Earth, the refined theory of which taking into account
the internal structure of the Earth is in good agreement with observational data. In
contrast to precession and nutation, the Earth deformability and the mobility of its
various media are determining factors for the motion of the instantaneous axis of
rotation in the Earth’s body. And in this case, it is important to take into account not
only the mobility of the media, but also the astronomical factors that influence them,
since during the evolution of the solar system many processes must be considered as
synchronized processes.

The purpose of this chapter is to study the oscillatory processes of the Earth pole
under the perturbing astronomical and geophysical factors, as well as, the aspects
of their synchronization. In Sect. 15.2, the definition of the unperturbed Earth pole
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motion is introduced based on the celestial–mechanical model of the deformable
Earth rotation. Tidal oscillations in the inertia tensor of a deformable Earth, which
are taken into account in the framework of a simple celestial–mechanical model of
its motion, are considered in Sect. 15.3. In Sect. 15.4, a correspondence between
the intensity of perturbed oscillations in the Earth pole coordinates, the direction
of the coordinate axes and the longitude distribution of the ocean surface is estab-
lished bassed on the processing of astrometric and geophysical observation data.
Section 15.5 is devoted to the study of the geophysical disturbances contribution to
the synchronization between the Earth pole motion and precession of the lunar orbit.
In Sect. 15.6, the main conclusions of the work are given.

15.2 Studying the Earth Rotation Within the Restricted
Three-Body Problem

The study of the Earth motion relative to its center of mass under the lunar–solar
gravitational–tidal and geophysical disturbances is based on the problem of a system
consisting of a deformable planet (the Earth) and a point satellite (theMoon) moving
around an attracting center (the Sun) [9–12]. The Earth and the Moon perform trans-
lational–rotational motion around the barycenter, which moves in orbit around the
Sun (Fig. 15.1).

We introduce the inertial coordinate system Oξ ′
1ξ

′
2ξ

′
3 with the origin in the

attracting center O, where the axis Oξ ′
3 is orthogonal to the orbital plane of the

Fig. 15.1 Coordinate system for the two-body problem and orientation of the vectors
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barycenter C12, and the Koenig coordinate system C12ξ1ξ2ξ3. In an undeformed
state, the Earth is dynamically compressed, i.e., C > A, where C and A are the axial
and average equatorial moments of inertia, respectively. Let us bind the coordinate
systemC ′

2x1x2x3 with the deformable Earth, in a way that the axes are directed along
the main central axes of the undeformed planet and the point C ′

2 is the center of mass
of the planet in the absence of deformations.

LetG be the spin of the planet,� be the orbital angularmomentumof the satellite’s
centers of mass C1 and the planet’s C2. In the absence of disturbances, the angular
momentum of the system K = G + � is stationary in inertial space and coincides
with the C12ξ3 axis (Fig. 15.1).

The deformable Earth motion relative to the center of mass can be described in the
canonical variables of Andoyer (Fig. 15.2) L , G, Gξ3 , ϕ1, ϕ2, ϕ3, (G = |G|, L is
a projection of the vector G on the axis C ′

2x3, and Gξ3 is a projection of the vector G
on the C12ξ3). We describe the mutual orbital motion of the centers of massesC1 and
C2 in the Delaunay canonical variables �, H, ϑ, h (� = |�|, H is the projection
of the vector � on the C12ξ

′
3 axis, ϑ is the mean anomaly, and h is the longitude of

the ascending node of the orbit on the C12ξ1ξ2 plane).
In the bounded coordinate system, the unit vectors R0

21 and R
0, which specify the

directions from theEarth to theMoon and from theSun to the barycenter, respectively,
are defined as follows equations:

O−1(t)R0
21 = (γ1, γ2, γ3)

T ,

O−1R0 = (κ1, κ2, κ3)
T .

Fig. 15.2 Mutual orientation associated with the deformable Earth and reference coordinate
systems in Andoyer variables
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For practical applications, the transformation between two geocentric coor-
dinate systems is important—the Konig one C2ξ1ξ2ξ3 and the Earth-bound one
C2x1x2x3. This conversion is carried out by five consecutive rotations at the angles
ϕ1, δ2, ϕ2, δ1, ϕ3 according to Eq. 15.1.

O−1(t) = 	−1
3 (ϕ1)	

−1
1 (δ2)	

−1
3 (ϕ2)	

−1
1 (δ1)	

−1
3 (ϕ3) (15.1)

The matrix O(t), which defines the transition from the Earth-bound to iner-
tial axes, is expressed in canonical Andoyer variables, and cos δ1 = Gξ3/G,
cos δ2 = L/G, (Fig. 15.2). The last two angles δ1 and ϕ3 in transformation (Eq. 15.1)
are determined by the precession and nutation of the Earth and for this study are
considered known and given. The angles ϕ1 and δ2 are the polar coordinates of
the Earth pole and the variations of the angle ϕ2, which are associated with the
irregularities of the Earth rotation, lead to variations of Universal Time UT1 [1].

The values of the pole shift and variations of Universal Time are very small:
they do not exceed 0.5′′ for the annual Earth pole motion and 0.03 s for the annual
amplitude of Universal Time variations. Changes in the angles of ϕ1, δ2, ϕ2 are
significantly affected by the Earth deformations. The determination of variations in
the inertia tensor of the deformable Earth is necessary to calculate the vector of the
angular momentum, as well as, its total derivative by time, which is used to study
both the perturbed and unperturbed Earth motion relative to its center of mass.

The most convenient generalized coordinates to qualitative describe the Earth’s
rotation around its center of mass are the canonical action-angle variables. The vari-
ables I1 = L , I2 = G, I3 = Gξ3 , ϕ1, ϕ2, ϕ3 are the action-angle variables in the
dynamically symmetrical Earth case.

For a qualitative description of the Earth motion relative to its center of mass,
when taking into account the impact of disturbances from the Moon and the Sun, the
linear theory of viscoelasticity of small deformations is used. The perturbed Routh
functional of the problem under consideration can be represented in the form of
Eq. 15.2 [9].

R = R0 + εR1({I }, {ϕ}, [u], [u̇]) + ε2 . . . (15.2)

Here, R0 is theRouth functional in the absence of deformations including the func-
tionals of the system’s kinetic energy and potential energy of gravitational forces from
the Moon and the Sun, εR1 is the perturbation functional due to gravitational tides
that includes the kinetic energy of the relative motions of the elastic body particles
and potential energy of elastic deformations, u, u̇ are vectors of displacement and
velocity of the moving medium particles; ε > 0 is a small dimensionless parameter
characterizing the relative magnitude of the perturbing factors in Eq. 15.2, which is
introduced for convenience.

The dynamics of the perturbed Chandler motion of the instantaneous axis is
related, in particular, with a change in the angle δ2, which determines the change in
the amplitude of the Chandler wobble. The angular variable δ2 is the angle between
the axis of the figure of the Earth and the vector of the Earth’s spin.
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In the absence of dynamic symmetry (A �= B), the action-angle variables will
differ from theAndoyer variables by small changing values, and the desired equations
taking into account the perturbed functional εR1 will take the formofEqs. 15.3,where
h1 is the integral of the kinetic energy for the unperturbed problem.

İ1 = −ε ∂R1
∂w1

İ2 = 0 İ3 = −ε ∂R1
∂w3

ẇ1 = n1 + ε ∂R1
∂ I1

ẇ2 = n2 + ε ∂R1
∂ I2

δ̇2 = −ε(I2κ∗ sin δ2)
−1 1+κ2sn2(η,λ)

dn(η,λ)
∂R1
∂w1

η = 2
π
K(λ)w1 κ2 = C(A−B)

A(B−C)
λ2 = κ2 2Ch1−I 22

(I 22 −2h1A)

(15.3)

The model of the Chandler pole motion with the frequency ẇ1 = n1 and identi-
fication of its parameters are based on the qualitative theory of dissipative systems.
To determine the steady pole motion as an unperturbed motion, the dissipative terms
of the pole tide are taken into account in the variations of the centrifugal moments
of inertia δ Jpr, δ Jqr. To do this, the Routh functional R01 of the perturbed problem
is introduced as Eq. 15.4.

R01 = −L
√
G2 − L2

(
δ Jpr sin l

A C
+ δ Jqr cos l

B C

)
(15.4)

Variations in the centrifugalmoments of inertia due to variable rotational deforma-
tion are associated with variations in the tesseral harmonics of the geopotential with
simple relations [10]. The amplitudes of the variable normalized tesseral harmonic
coefficients δc21, δs21 are determined fromgeophysicalmeasurements and, according
to [1], are related to the coordinates of the Earth pole by the relations:

[
δc21
δs21

]
= −1.33 · 10−9

([
xp
yp

]
+ 0.0115

[
yp

−xp

])
.

Taking these terms into account, Eq. 15.4 leads to the damping of the pole motion
at a frequency of n1.

The perturbed motion taking into account the dissipative properties of the Earth
viscoelastic mantle leads to regular precession with slowly changing parameters,
which can be studied on the basis of asymptotic methods of nonlinear mechanics
[11, 12]. And, in particular, the steady state of the Chandler wobble is determined.

When considering the perturbed case for R01 taking into account the dissipative
terms of the pole tide in the variations of the centrifugal moments of inertia, as well
as, the small perturbation at the Chandler frequency n1 in a form of

δ Jpr
A∗ = −σδ2 sinw1 + μp cos(n1t + βp),

δ Jqr
B∗ = −σδ2 cosw1 + μq cos(n1t + βq), (15.5)



15 Astronomical and Geophysical Factors of the Perturbed Chandler Wobble … 205

we obtain Eq. 15.6 for coefficient δ2.

δ̇2 ≈ −2r0K (λ)κ

πχ
σδ2 + f p

√
1 + κ2 sinw1 cos(Nt + βp) + fq cosw1 sin(Nt + βq)

(15.6)

Here, σ is the dissipation coefficient, f p,q and βp,q are the amplitudes and phases
of the perturbation, respectively.

In stationary steady state, we will have Eq. 15.7.

δ2 ≈ fq sin(βq+�ψ)+ f p
√
1+κ2 cos(βp+�ψ)

4r0K (λ)κσ (πχ)−1

fq cos(βq + �ψ) − f p sin(βp + �ψ) = 0
(15.7)

To study the dynamics of the Earth pole motion, the steady-state mode of its
oscillations can be taken as unperturbed. Factors that perturb the steady motion of
the Earth pole are astronomical (lunar–solar disturbances) and geophysical ones. The
obtained model of the Earth pole unperturbed oscillatory process is also convenient
for constructing a numerical–analytical model for predicting its motion [13].

15.3 Tidal Oscillations of the Deformable Earth Inertia
Tensor

Modern methods of gravimetry, geophysics, and space geodesy make it possible to
measure with high accuracy the temporal variations of the geopotential expansion
coefficients and the corresponding small radial vibrations of the Earth’s surface.
These fluctuations occur mainly due to the lunar–solar tidal disturbances and
geophysical phenomena. For example, the amplitudes of solid-state tides from the
Moon and the Sun measured on the Earth’s surface reach 34 and 16 cm, respec-
tively. The magnitudes of these amplitudes are in accordance with the magnitudes
of the equipotential surface oscillation amplitudes of the tidal potential and, to a first
approximation, are connected by a linear dependence. The proportionality coeffi-
cient between the surface level heights of the tidal potential and the Earth’s surface
is determined from observations. It is associated with many physical and mechan-
ical characteristics of the deformed Earth. The lunar–solar tidal potential leading to
terrestrial tides—solid, oceanic, and atmospheric—also turns out to be proportional
to the corresponding changes in geopotential. The estimate value of these propor-
tionality coefficients depending on the parameters of the planet’s deformations—
elastic moduli and viscosity coefficients of various media, as well as, the disturbance
frequency—makes it possible to solve the complex problem of studying the Earth’s
internal structure. This line of research is a branch of geophysics. But the problem
of the deformable Earth motion relative to its center of mass is a complex task and
can combine elements of various fields of science: astrometry, celestial mechanics,
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geophysics, the theory of stochastic systems, and many others. And first of all, the
methods and approaches used to construct the Earth motion model depend on the
goals of scientific research. In that case, if the goal of the problem is modeling in
a certain “average” sense that is a development of a model described the motion in
question with average observed parameters, then the celestial–mechanical approach
seems to be the most rational as the basis for constructing a complex model. Along
with this, it is justified from the point of view of practical application to construct
a few-parameter mathematical forecast model that allows us to reduce the compu-
tational complexity of the algorithmic implementation of the model of the Earth
orientation parameters oscillations.

Indeed, for qualitative conclusions about the Earth motion around its center of
mass, it will be logically justified to take into account coherent oscillations in various
deformable (visco-elastic and liquid) Earth’s media. For example, Fig. 15.3a shows
the observed oscillations of the gravitational acceleration normal component δg on
an SG gravimeter in Membach (Belgium), whose position is marked on the static

Fig. 15.3 Earth motion observation: a variations in the gravitational acceleration according to
measurements on an SG gravimeter in Membach (discrete points) in comparison with fluctuations
in the model of solid-state tides (green line) and diurnal variations in sea level according to PSMSL
station near Rorvik, b model of the geoid of the GFZ center (the arrow shows the location of the
city of Membach), c comparison of hydrosphere tidal oscillations in the data of the gravitational
acceleration of the Membach city (red line) and sea-level fluctuations in the Rorvik city (blue line),
and d geoid elevation map for a portion of the Earth’s surface according to the model of the GFZ
center (the flag marks the location of Rorvik)
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geoid of the GFZ model [14]. An example of comparing the δg variations due to
solid-state tides with the measurement data shows that the combined tidal variations
of the Earth’s deformable media determine 98% of the observed oscillations. These
coherent fluctuations in geomedia can be identified with the ones of a viscoelastic
thin layer of the adopted deformable Earth model. Then the differences between the
solution of such a model problem obtained in the first approximation and observed
processes will be in the proportionality coefficients. In turn, these coefficients can be
identifiedwith a sufficient degree of accuracy from astrometric and geodetic observa-
tions and measurements data. This approach allows some generalization in the case
of taking into account hydrosphere oscillations. Indeed, if the oceanic oscillations are
taken into account, we can assume that the remaining discrepancy in the oscillations
of the measured signal δg along with the influence of atmospheric pressure [15] will
also be caused by hydrosphere fluctuations from a relatively small (on the scale of the
entire Earth’s surface) neighborhood. Variations in atmospheric pressure are usually
non-stationary and measured directly at the point of observation. The corresponding
fluctuations in the gravitational acceleration can be considered proportional to atmo-
spheric pressure [15, 16]: they can be easily filtered out. However, atmospheric
fluctuations in the high-frequency range like any tidal variations of the atmosphere
are small. Therefore, the remaining 2% of the amplitude of the high-frequency g
oscillations will be due to hydrosphere fluctuations. As an example of the correla-
tion between the variations in the gravitational acceleration and local hydrosphere, a
comparison is made (Fig. 15.3b) between the sea-level fluctuations at the coastline
of Rorvik (Norway) marked on the map without the long-period component and the
corresponding component isolated from δg. Also, in Fig. 15.3a, the gravitational
accelerations and close to diurnal sea level variations are compared. For example, if
the residual between the measurement data and tidal model of the solid-state oscil-
lations of the gravitational acceleration is represented as the sum of the diurnal and
semidiurnal variations δgϕ + δg2ϕ , then it correlates with the variation δhϕ − δh2ϕ

of the sea level.

15.4 Geophysical Factors in the Model of the Earth Pole
Oscillatory Process

It is well-known [1, 17, 18] that the amplitude and phase of the Chandler component
of the Earth pole oscillatory process are very sensitive to various perturbing factors
including those with irregular properties (oceanic, atmospheric, and possibly others).
The magnitude of the amplitude of the steady-state motion is determined by the
frequency difference and dissipation coefficient. Therefore, the Chandler component
of the Earth pole oscillations should be considered the most sensitive to the irregular
impacts. The mechanism of these impacts is naturally related to weak inertia tensor
perturbations.
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Even the regular tidal potential [16], due to the complexity of the topography
of the global ocean floor and contours of the continents coastlines, leads to the
development of a random displacement field and occurrence of random fluctuations
in tidal processes. These perturbations correspond to weak irregular perturbations
of the Earth’s inertia tensor components. However, due to the uneven distribution of
the global ocean’s water masses over the Earth’s surface, their manifestation in the
centrifugal moments of inertia Jxz, Jyz, and, therefore, in the coordinates xp, yp, are
different.

In Fig. 15.4, the amplitude spectrum of the Earth pole coordinates in the axes x,
y (left graph) and x′, y′ (right graph) are shown. The axes x, y correspond to the
terrestrial coordinate system ITRS axes [1] (the axis x is located in the Greenwich
meridian plane, and axis y is in the plane orthogonal to it). In turn, axes x′, y′ are
obtained by rotating x, y by an angle determined from the fulfillment of the combined
condition of the noise’s highest level (the level of the spectral power density of the

Fig. 15.4 Amplitude spectrum of the Earth pole coordinates. At the bottom left, we see the ampli-
tude spectra of the oscillations of the Earth pole coordinates in the projection on the axis x, y (dark
green and light green lines, respectively). At the bottom right, we see the amplitude spectra of
oscillations of the Earth pole coordinates in the projection on the axis x′, y′ (dark blue and blue
lines). The upper figure illustrates a relative position of the axes x, y (dark green and light green
lines) corresponding to the zero meridian and the 90th meridian of west longitude (top left) and the
axes x′, y′ (dark blue and blue lines, respectively) obtained by turning the first two at an angle of 40°
toward the east (top right). The logarithmic scale for amplitudes was used along the ordinate axis of
the spectral graphs. The graphs show differences in the harmonics amplitudes of the high-frequency
regions along the corresponding axes before and after the rotation
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oscillations of the Earth pole coordinates x ′
p, y′

p) in one of the coordinates and the
lowest level in the other. The calculations were carried out in a 5° increment.

The resulted graphs show the differences in the harmonics amplitudes of the high-
frequency regions. The logarithmic scale for amplitudes was used along the ordinate
axis of the graphs. The graphs show that the lowest level of noise (in the frequency
range from 5 to 40 cycles per year) is observed at the coordinate x′, rotated by an
angle of about 40° to the east of Greenwich. The highest level of high-frequency
oscillations approximately corresponds to the y′ axis, which preserves the direction
orthogonal to the x′ axis, although the maximum is less explicit than the minimum
along the x′ axis.

The correspondence of the positions of the axes x′, y′ to the distribution of water
mass over the Earth’s surface can be shown visually using simple reasoning. First,
we determine the dependence of the total ocean surface ratio to the land surface on
longitude. To obtain accurate results, topographic data should be used, followed by
their integration over latitude. However, since a high accuracy is not required for a
qualitative analysis, we can consider a more original method, which is quite suitable
for the purposes of this work. In [19], the results of broadband photometry of the
Earthwere presented according to the data from theDeep Impact spacecraft operating
under the EPOXI mission, and the dependence of the land surface distribution on the
longitude was constructed on the basis of light curves. Denote by k(θ) the share of
the ocean surface at longitude θ is defined by Eq. 15.8.

k(θ) = Ocean Surface at longitude θ

Earth Surface at longitude θ
(15.8)

Variations in the centrifugal moments of inertia Jx ′z , Jy′z have a perturbing effect
on the Earth pole oscillatory process. Since the centrifugal moments of inertia char-
acterize the masses distribution relative to the coordinate planes x ′z, y′z, their sensi-
tivity is higher to the motion of the moving medium on the Earth’s surface that is
located closer to the corresponding plane. Then they will have the greatest sensitivity
to tangential displacements in a sector bounded by two meridians and containing a
plane with respect to which the moments of inertia are calculated. In this case, the
motion of particles on the surface bounded by such a sector occurs in tangential
directions, but their latitude is unknown, since the introduced coefficient k(θ) as an
integral value does not depend on latitude and there is no resolution on latitude.

Now we choose two sectors that are symmetrical with respect to the coordinate
planes x ′z, y′z with angles at the vertex 2θ0. When the axes are rotated, the selected
sectors will also rotate. If the moving medium is evenly distributed over the surface
of the hemisphere (e.g., for x ′ > 0) and is “frozen” on the opposite hemisphere, then
the particle motion on the surface bounded by such a sector determine approximately
100 sin θ0% of the variable part for the centrifugal moments of inertia (at θ0 = π/2
the sector becomes a hemisphere). For an unevenly distributed medium, this value
can differ and the smaller the angle θ0 ∈ (0, π/2], the larger the difference. But on
the other hand, the larger the angle θ0 (i.e., the larger the area of the surface under
consideration), the greater the uncertainty of the correspondence between the ocean
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distribution and the total coefficient k(θ) in the sector after integration over longitude
is. Therefore, the choice of the sector’s angle (basically, the choice of the integration
region of the coefficient k(θ) in longitude) is a compromise between the maximum
sensitivity of centrifugal moments of inertia to the particles motion along a surface
that is limited by the sector and theminimumarea of this surface in order to reduce the
uncertainty error. Since the share of the surface area limited by a sector is 2θ0/π, θ0
is determined from the condition that the function π sin θ0 − 2 θ0 is maximum on
the 0 < θ0 ≤ π/2 interval. Under the condition θ0 ≈ 0.9, the motion of the particles
in this sector determines approximately 80% variations of the tesseral harmonic of
the geopotential. However, let us choose a slightly larger value of the angle and, in
the following formulas, put for illustration purposes θ0 = π/3, although this will not
fundamentally affect the estimates of average values.

Let us determine the share of the ocean surface area limited by one selected sector.
Since the Earth’s surface area limited by a sector is a constant and does not depend
on the Earth rotation, the share of the ocean’s surface area in the sector with an vertex
angle as (θ − π/3, θ + π/3) is proportional to the average coefficient k(θ):

k(θ) = 〈k(θ)〉2π/3 = 3

2π

θ+π/3∫

θ−π/3

k(θ)dθ. (15.9)

The centrifugal moments of inertia Jx ′z, Jy′z are most sensitive to the motion of
the moving medium if the ocean distributions in the selected sector and in the sector
symmetrical to it are significantly different. This condition can be replaced in a non-
strict sense by the integral condition k(θ) − k(θ + π) �= 0. In the strict sense, this
condition does not appear directly from Eq. 15.9 and thus is taken as an assumption.
If the location of the axes x′, y′ meets this condition, then the assumption will be
valid.

In order to establish a correspondence, a function is defined

f (θ) = [
k(θ) − k(θ + π)

]2
(15.10)

that when k(θ) = k(θ + π) takes the minimum value, i.e., with equal share of the
ocean surface in two opposite sectors, and the maxima corresponds to the extrema
of the function k(θ)− k(θ +π), when the share of the ocean surface in two opposite
sectors are most different.

The correspondence between the location of the axes x′, y′ and the distribution
of the ocean over the Earth’s surface is shown in Fig. 15.5. It can be seen that the
directions of the axes approximately correspond to the extrema of the function f (θ).

That is, in the approximately orthogonal direction to the axis x′ one can assume
a minimum of the amplitude of high-frequency perturbations due to less asymmetry
in the ocean distribution, which, according to the results of processing the pole
motion data, leads to high-frequency oscillations along the coordinate x′ with lower
intensity. Similarly, with respect to the coordinate y′, the oscillations with a higher
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Fig. 15.5 Real and estimated distributions: a distribution of the ocean (blue color) and land (white
color) on the Earth’s surface depending on longitude (top) and share of the ocean surface at longitude
θ (bottom), b distribution of the function f (θ) plotted on the Earth’smap and the location of the axes
x′, y′ corresponding to Fig. 15.4 (top) and dependence of the function f (θ) and the correspondence
of its extrema to the location of the axes x′, y′ (bottom)

intensity are observed due to the greater asymmetry of the ocean distribution along
the axis x′. Although it does not follow directly from the maximum in the axis y′
and the minimum in the axis x′ of the short-period pole oscillations that the intensity
of the high-frequency perturbation in the projection onto the axis x′ exceeds the
intensity of the perturbation in the projection onto the axes y′, and not, for example,
vice versa. Moreover, the maximum and minimum amplitudes of high-frequency
perturbations can be achieved also while projecting on non-orthogonal axes. But
from the analysis of the calculated total geodetic perturbations and separately the
ocean perturbations in the projection on the axes x′, y′, it can be established that the
highest intensity of high-frequency perturbations is observed in the projection on the
axis of approximately 15° of the east longitude and the lowest intensity is about 75°
of the west longitude. These directions differ from the directions of the axes x′, y′
in the projection onto which the extrema of the amplitudes of the short-period Earth
pole oscillations are observed, but with the same error correspond to the extrema of
the function f (θ). Of course, for more accurate conclusions, it is important not only
to estimate the asymmetry in the distribution of various media over the surface, but
also to quantify the distributions, as well as, the latitude distribution. However, the
calculations performed allow us to draw some conclusions.

Thus, the orientation of the vector of complete geodesic perturbations including
the influence of the atmosphere and the ocean corresponds to the distribution of
the ocean over the Earth’s surface in the sense considered above. Consequently,
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Fig. 15.6 Amplitude spectra of the oscillations of the Earth pole coordinates in the projection: a on
the axis x, y (dark green and light green lines, respectively), b on the axis x′, y′ (dark blue and blue
lines, respectively)

geophysical perturbations are some consistent oscillations of moving media and can
be considered together as a combination.

The directions of the axes x′, y′ found from the condition of maximum and
minimum intensities of perturbations approximately correspond to the distribution
of the ocean over the Earth’s surface, not only for high-frequency oscillations, but
also for oscillations from any not too short frequency interval. That is, the correspon-
dence can be shown for the entire spectrum of oscillations with the only caveat that
for perturbations with frequencies below the Chandler frequency the arrangement of
the axes x′, y′, it will change by 90°. This means that the maximum amplitude of the
pole oscillations at a frequency above the Chandler’s one will be observed along the
axis y′, and the maximum amplitude at a frequency below the Chandler’s one will
be observed along the axis x′ (Fig. 15.6). This circumstance is also due to the corre-
spondence of the phases with the fluctuations spectrum onto which the perturbations
are decomposed. And this also indicates the consistency of perturbations of various
physical nature.

15.5 The Role of Astronomical Factors in the Perturbed
Earth Pole Motion

It is known [20] that coherent oscillations in variousmedia can appear in the geophys-
ical processes on a planetary scale. A number of large-scale phenomena of the atmo-
sphere and the ocean, the global seismic activity of the Earth have signs of common
oscillatory processes also inherent in the Earth rotational motion [21–23]. And the
Chandler wobble is no exception. However, the process of developing such oscilla-
tions has not been sufficiently studied to this moment. For example, the variations
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in the main components parameters of the Earth pole oscillations may have more
global causes than it is assumed, and the process of their excitation is caused not only
by fluctuations of geophysical media of a stochastic nature. More precisely, these
oscillations can be non-stationary, but be of a natural nature, and not stochastic.
From the result of processing data on the Earth pole motion, it appears [18] that the
oscillations of the Earth’s moving media in the spectral range of the Chandler and
annual harmonics turn out to be ordered in some way. For example, in the observed
Earth pole motion, it is possible to establish the presence of an in-phase oscillatory
process with a precession of the lunar orbit [9, 18].

The spatial motion of the lunar orbit consists of a series of rotations around
intersecting axes. They lead to the cyclical motion of its nodes and perigee [24]. In
addition, the derivatives of the orbit parameters are nonzero and are varying values,
being the subject to small variations. A result of the lunar orbit precession and of
the associated cyclic change in the longitude of the ascending node with a period
of 18.61 years is a change in the orbit plane inclination to the Earth’s equator. The
inclination of the lunar orbit to the Earth’s equator varies from 18.3° to 28.58°. In this
case, the point of intersection of the lunar orbit circle with the equator oscillates along
the equator near its average position, which coincides with the point of the vernal
equinox. Unlike the node (the intersection point of the lunar orbit circles and the
ecliptic in the celestial sphere), which makes a complete revolution, the intersection
point of the orbit and the equator oscillates in the range from –13.2° to 13.2°.

In [25], it was shown that one can find a transformation of the Earth pole coordi-
nates, illustrating in-phase nature of its Earth pole oscillatory process and the lunar
orbit precession. Namely, the oscillatory motion of the pole minus the Chandler (or
annual depending on the amplitudes values of the Chandler and annual harmonics)
and six-year cycles occurs in-phase with oscillations along the equator of the inter-
section point of the lunar orbit and the equator. This feature requires a more detailed
analysis and study of the causes of such fluctuations. In particular, it is of interest to
establish the contribution of geophysical (atmospheric and oceanic) disturbances to
these oscillations.

As a result of the numerical solution of the differential equations of the Earth
pole motion, the trajectories of the pole are obtained for various perturbations.
The perturbing functions were tabulated according to the IERS published data. For
example, in Fig. 15.7, it is shown a comparison between the fluctuations in the calcu-
lated motion of the Earth pole taking into account the combined perturbations from
the atmosphere and the ocean and the fluctuations of its observed motion.

To isolate the oscillatory process with a frequency of 0.05373 cycle/year from
the calculated and observed pole oscillations, the procedure proposed in [25] was
applied. Using transformations of the Earth pole coordinates, the essence of which is
the elimination of two cycles—with theChandler and six-year periods, it is possible to
obtain a pole oscillation in-phase with the precession of the lunar orbit. In Fig. 15.8a,
a comparison is shown between the variations of the polar angle ϕ isolated from the
observed Earth pole trajectory, its approximation by a two-frequency model with
constant coefficients, and the calculated Earth pole trajectory taking into account
atmospheric and oceanic perturbations. In the lower graph of Fig. 15.8, a graph of
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Fig. 15.7 Earth pole oscillations according to the IERS observations and measurements (discrete
data) in comparison with the calculated oscillations caused by perturbations of: a atmosphere and
b ocean

oscillations of the angle of deviation δ along the equator of the point of intersec-
tion of the equator with the lunar orbit is constructed. The main harmonic with the
precession frequency of the lunar orbit for the observed pole motion is shown by the
red line, and the blue dots are for the calculated motion taking into account geophys-
ical perturbations. The oscillations caused by geophysical perturbations have much
smaller amplitude and shifted phase, which indicate more complex physical nature
of these oscillations and the incompleteness of the disturbances taken into account.

15.6 Conclusions

Variations in the main components parameters of the Earth pole motion are due to
the effect of the combined nature. The considered main geophysical perturbations
are apparently part of the coherent oscillations of various media. Not more than
50% of the energy of the considered oscillatory process is due to perturbations of
the atmosphere and the ocean. Since the impact of other geophysical fluids on the
Earth pole motion is much smaller, this process should be more global in nature and
such variations in the Earth’s environment can be affected. Then, their excitation
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Fig. 15.8 Estimates of the polar angle variations: a comparison between the variations of the
polar angle ϕ isolated from the observed Earth pole trajectory (black line), its approximation (red
line), variations of the polar angle ϕ using a two-frequency model with constant coefficients (gray
line), and the calculated Earth pole trajectory taking into account the atmospheric and oceanic
perturbations (blue line) and b a graph of oscillations of the deviation angle δ along the equator of
the point of intersection of the equator with the lunar orbit

in geomedia can be caused not so much by internal perturbations as by external
disturbances for the Earth.
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