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Preface

This research book presents the selected papers reported at the 13th International
Conference on Applied Mathematics and Mechanics in the Aerospace Industry
(AMMAI 2020), which was held during 6–13 September 2020. The contributions
include the modern numerical methods and mathematical models for solving prob-
lems of the computational mechanics, dynamic system simulation and optimiza-
tion, information technologies, and artificial intelligence. Part I “Computational
Fluid Dynamics” involves Chaps. 2–5, Part II “Numerical Simulation of Plasma and
Multiphase Flows” contains Chaps. 6–11, Part III “Computational SolidMechanics”
includes Chaps. 12–14, Part IV “Numerical Study of Dynamic Systems” consists in
Chaps. 15–20, and Part V “Information Technologies” contains Chaps. 21–24.

Each chapter was reviewed by two experts in the field, and the revised chapters
were checked by the editors of the book.

We wish to express our gratitude to the authors and reviewers for their
contributions. The assistance provided by Springer-Verlag is acknowledged.
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Chapter 1
Applied Mathematics and Mechanics
in Aerospace Industry

Margarita N. Favorskaya , Lakhmi C. Jain , Ilia S. Nikitin ,
and Dmitry L. Reviznikov

Abstract The chapter contains a brief description of chapters that contribute to the
development and applications of computational methods and algorithms in different
areas of gas, fluid, and plasma dynamics, solid mechanics, dynamic systems and
optimal control, information technology. The first part presents the recent advances
in computational fluid dynamics. The second part introduces numerical simulation
of plasma and multiphase flows. The third part is devoted to computational solid
mechanics, the fourth part provides a numerical study of dynamic systems and the
fifth part focuses on information technology and artificial intelligence.
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2 M. N. Favorskaya et al.

1.1 Introduction

This book presents the selected papers reported at the 13th International Conference
on AppliedMathematics andMechanics in the Aerospace Industry (AMMAI’2020),
which was held during 6–13 September 2020. The book includes modern numerical
methods andmathematicalmodels for solving problemsof computationalmechanics,
dynamic systems simulation and optimization, information technologies, and artifi-
cial intelligence. Part I “Computational Fluid Dynamics” involves Chaps. 2–5, Part
II “Numerical Simulation of Plasma and Multiphase Flows” contains Chaps. 6–11,
Part III “Computational Solid Mechanics” includes Chaps. 12–14, Part IV “Numer-
ical Study of Dynamic Systems” consists in Chaps. 15–20, Part V “Information
Technologies” contains Chaps. 21–24.

1.2 Chapters in the Book

Part I presents the recent advances in computational fluid dynamics and includes 4
chapters.

Chapter 2 reports a numerical study of the flight of large bodies in the Earth’s
atmosphere [1]. Based on the model of a single body (no fragmentation), the authors
determine the kinematic and physical characteristics necessary for a meteoroid to
ascend in the atmosphere after its initial descend. It was found out that the key
parameter for the possibility of such ascend is the angle of entry into the atmosphere.
Authors compute the critical angles for a range of control parameters, i.e., the ballistic
coefficient and the lift-to-drag ratio. The obtained results explain certain effects of
the Tunguska event that took place in 1908.

Chapter 3 presents the results of numerical simulation of a hypersonic flow of a
viscous heat-conducting gas near the landingmodule in theMartian atmosphere. The
conservative numerical method of flux [2, 3] is used to solve the problem. Special
attention is paid to the study of the structure of non-stationary flow on the side and
bottom surfaces of the module. The results of the numerical simulation show that a
developed unsteady vortex flow is realized on the lateral and bottom surfaces of the
descent module, which affects the aerodynamic characteristics. It is important to note
that the temperature near the lateral and bottom surfaces of the module can reach
large values. These features of the flow must be taken into account when designing
new aerospace vehicles.

Chapter 4 introduces the results of a comparison of two different numerical
approaches for solving the problem of spot collapse: SMIF method and CABARET
method [4, 5]. Several test tasks are considered and the results are compared with
theoretical, experimental data and calculations of other authors.

Chapter 5 reports a numerical method for modeling the Taylor vortex flows [6].
The periodic boundary conditions on the edges of the cylinder’s part are imple-
mented. The results of the simulation for various values of the periodicity sizes and
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different initial data are presented. When studying the flow of viscous gas between
the cylinders of different temperatures, the flow modes with the flat vortex structures
and with the Taylor vortices as well as the three-dimensional flow corresponding to
the combination of these two flow types were found.

Part II introduces a numerical simulation of plasma and multiphase flows and
involves six chapters.

Chapter 6 is devoted to mathematical modeling of gas-dynamic flows with the
phase transformations (condensation and evaporation) [7, 8]. The system of the
Navier–Stokes equations is used to describe the flow parameters, and the system
of moment equations is used to describe the parameters of a two-phase medium. A
numerical algorithm for solving the general system of equations is constructed on
the basis of the Godunov scheme with the approximation AUSM + for solving the
Riemann problem. The developed numerical model was optimized and adapted for
the case of pure argon condensation in a nozzle based on Hagena’s semi-empirical
theory. In numerical experiments, certain values of the parameters of the condensa-
tion model are determined, such as accommodation coefficient and the nucleation
correction factor multiplier.

Chapter 7 conducts a physical and comprehensive numerical study of the genera-
tion of plasma bunches with high specific energy with the use of a plasma gun [9, 10].
The parameters of the plasma bunch upon exit from the plasma accelerator and during
propagation in the ionosphere (h > 200 km) to considerable distances (≈100 km)
have been calculated. A special numerical algorithm is presented to study the impact
of a rarefied high-velocity gas flow (~5 × 107 cm/s) on the surface of crystalline
and amorphous solid bodies. Based on the results, the electron concentration and the
scale of the ionized region that formed during the passage of a high-speed toroidal
plasma bunch through the rarefied air were estimated.

Chapter 8 is dedicated to the numerical study of pulsating gaseous detonation
wave propagation. The mathematical model is based on the Euler equations written
for the multicomponent gas and supplemented by the detailed chemical reactions
model to describe the combustion of the hydrogen-air mixture [11, 12]. The Petersen
and Hanson kinetics is applied as the detailed chemical model. The numerical algo-
rithm is based on the finite volume approach, essentially non-oscillatory scheme,
AUSM numerical flux, and the Runge–Kutta method. The numerical investigation
of pulsating detonation wave propagation with direct detonation initiation near the
closed end of the channel is carried out. The peculiarities of high-frequency and
high-amplitude pulsations modes are discussed.

Chapter 9 considers a multi-temperature code for a multicomponent gas-dynamic
[13, 14]. The gas-dynamic part is the Godunov-type method based on the efficient
approximate solution of the Riemann problem operating with all components of the
homogeneous gas mixture. The method assumes the table equation of state, but the
system of the hydrodynamic equations should be hyperbolic. This work contains
the test of the method on a strong shock wave in hydrogen plasma, so-called the
Shafranov’s solution. By taking into account the radiation component, the chapter
discusses the applicability of the two temperature model for the strong shock wave in
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the hydrogen with the large temperatures behind a shock wave without consideration
of the radiation at a considered short timescale.

Chapter 10 deals with the issues of contactless removal of space debris objects,
the orbit of which is changed by a high-velocity ion beam injected from the service
spacecraft moving in the immediate vicinity of the debris object [15, 16]. Authors
consider the problems of controlling the angles of rotation of electric propulsion
thrusters to implement changes in the thrust components of the electric propulsion
system in the longitudinal and transverse directions required during the debris object
transportation. Arrangement of thrusters is proposed taking into account the location
of solar arrays and the difference in permissible angles of thruster deflection in
different planes.

Chapter 11 considers the current state of work on flight models of pulsed plasma
propulsion systems [17, 18]. It is shown that the primary application area for propul-
sion systems based on an ablative pulsed plasma thruster is the station-keeping of
small spacecraft with the power of supply system of up to 100 W and with an active
lifetime in range from 1 to 10 years in low Earth orbits with altitudes in range from
400 to 700 km. It is also shown that ablative pulsed plasma thrusters can be efficiently
used to solve the problems of accurate attitude control and angular stabilization of
spacecraft.

Part III is devoted to computational solid mechanics and contains three chapters.
Chapter 12 presents a multi-mode kinetic model of cyclic loading damage devel-

opment to describe the fatigue fracture process development [19, 20]. To determine
the coefficients of the kinetic equation of damage, the well-known criterion of multi-
axial fatigue failure SWT based on the mechanism associated with the development
of microcracks of normal detachment is used. A numerical method for calculating
crack-like zones up to macrofracture is proposed. The model parameters are deter-
mined from the condition of matching the experimental and calculated fatigue curve
for a specimen of a certain geometry at a given load amplitude and cycle asymmetry
coefficient. Using the obtained values, the results of experiments on specimens of
a different geometry and asymmetry coefficients were reproduced numerically and
the model and calculation algorithm performance were confirmed.

Chapter 13 is devoted to numerical modeling of elastic impacts on artificial ice
islands arising as a result of drill impacts while drilling from the island, earthquakes,
and pressure of structures located on the island, as well as collisions of the ice island
with drifting ice layers [21, 22]. To solve this problem numerically, authors use
the grid-characteristic method with interpolation on regular rectangular and paral-
lelepipedal meshes and unstructured triangular and tetrahedral ones. The process of
propagation of elastic waves in the considered geological environment is simulated
and the distribution of stresses and the stability of the ice island to destruction are
studied.

Chapter 14 contains the study of the impact of teeth installation parameters on
the stress state of the prosthesis under typical chewing loads [23, 24]. Two main
parameters are investigated: the role of the dentition installation line and the role of
tilt angle of teeth blocks. The simple 3D models were developed and used for the
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calculations. The results of the calculation show a higher sensitivity of the lower
prosthesis basis to vary the parameters compared to the upper prosthesis basis.

Part IV provides a numerical study of dynamic systems and includes 6 chapters.
Chapter 15 discusses the framework of the restricted three-body problem [25, 26].

A celestial-mechanical model of the steady-state Chandler wobble of the Earth pole
is proposed. The contribution of the astronomical and geophysical disturbances to
the observed Earth pole oscillations is discussed based on the processing of IERS
observations of the Earth pole motion, NCEP/NCAR geophysical data of the atmo-
spheric circulation, and NASA/JPL angular momentum of the ocean. The Earth pole
oscillatory process that is in-phasewith the lunar orbit precessionalmotion is studied,
and the contribution of moving media to this process is discussed.

Chapter 16 reports two multi-agent algorithms for controlling one class of contin-
uous deterministic systems: a hybrid multi-agent method of interpolation search and
amulti-agent method based on the use of linear regulators of agent movement control
[27, 28]. Detailed descriptions of the strategies of these methods are given and step-
by-step algorithms for each multi-agent method are described. Two approaches to
the search for optimal open-loop control are considered: when control is sought in
relay form with a certain number of switches, and when control is sought in the form
of expansion in a system of basis functions.

Chapter 17 describes a modification for the continuous-time particle filter algo-
rithm [29, 30]. The developed modification that is based on the well-known strategy
such as modeling trajectories to numerically solve stochastic differential equations
provides the lack of overflow errors during the calculation of particle weights. To
implement such an idea practically particle weights should be expressed in terms
of logarithms with additional customization of exponents. The effectiveness of the
modified algorithm is demonstrated when solving the tracking problem to find
coordinates and velocities of an aircraft executing a maneuver in the horizontal
plane.

Chapter 18 proposes a solution to the problem of determining the contribution of
airport rating criteria for assessing the integral risk of modernization. The purpose
of modernization is to increase the throughput of the Moscow aviation hub [31]. The
method proposed to solve the problem makes it possible to obtain the alternatives’
weights for incomplete pairwise comparisons matrices of large dimension, as well
as, alternative estimates in interval form, which is illustrated by an example. This
method differs from most existing methods for solving the problem of incomplete
pairwise comparisons by the ability to process incomplete pairwise comparisons
matrices without restoring missing data [32]. It can be applied to solve other decision
problems, where most of the known methods based on the pairwise comparisons
method are not applicable.

Chapter 19 introduces the adaptive interpolation algorithm for systems with
interval parameters [33, 34] and approaches directed to reducing the curse of dimen-
sionality. The main assumption on which these approaches are based is that not all
interval parameters make a significant contribution to the solution. The use of tensor
train decomposition and sparse grids make it possible to take into account these
features and expand the scope of the algorithm for the case of a large number of
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interval parameters. The effectiveness of the considered approaches is confirmed on
several model problems.

Chapter 20 discusses the spectral form of mathematical description for the repre-
sentation of iterated Stratonovich stochastic integrals of an arbitrary multiplicity [35,
36]. Some invariant relations for expansion coefficients and iterated Stratonovich
stochastic integrals are obtained which can reduce the computational cost. The spec-
tral characteristics may be defined with respect to an arbitrary complete orthonormal
system for the representation and modeling. For expansion coefficients, the tensor
representation is formulated.

Part V focuses on information technology and artificial intelligence and includes
4 chapters.

Chapter 21 presents the fractal oriented approach [37, 38] for the analysis and
design of distributed algorithms. Its aims are to represent the distributed algorithm as
an “elastic object” that transforms dynamically at runtime. The use of the container-
component model provides the following advantages: the ability to select automat-
ically a distributed configuration, building a visual model of the elastic computing
organization, and evaluating its effectiveness. Container-component model is inte-
grated with the box-counting fractal analysis method and fractal control based on
dynamic sampling of theworkload. The example of fractal analysis and programming
of the distributed gradient ascent algorithm is presented.

Chapter 22 analyses the problem of training qualified professionals in the field of
information technology. It is natural to use software tools to support the educational
process. Given the high entry threshold, the authors propose simple and accessible
software tools that allow one to free up teacher time for effective student training
[39]. The proposed solution does not pretend to the completeness, but it makes it
possible to form control materials, conduct control measures of different levels, take
into account the attendance of classes, the dynamics of the educational process, and
maintain interaction with a group of students.

Chapter 23 introduces a system that collects massive amounts of texts from the
Internet, analyzes them, builds the entity-event ontology, and presents it to the end-
user as a knowledge base. It can be also viewed as an automatic text corpus processing
method that allows using of classic statistical and data analysis methods by extracting
domain-specific information from text. As extracted knowledge is highly structured
and easily operated, it can be used by such methods without any further reference to
the source texts.

Chapter 24 demonstrates the possibility of using deep learning methods to create
a system for automatic 3D scanned objects classification. The choice of the appro-
priate deep architecture is based on a comparative analysis of existing SOTAmodels
executed on different data sets. To select an object of interest from a large-scale space
scan, the authors consider preprocessingmethods: noise datafiltering, referenceplane
deletion, and removing extraneous objects. An algorithm for the descriptive repre-
sentation of three-dimensional models based on themodification of existingmethods
of ray casting is obtained. The possibility of using this descriptive representation to
solve the problem of searching among 3D models and using search results for 3D
scene auto-completion is demonstrated.
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1.3 Conclusions

The book presents the research work of major experts in the field of numerical
methods and computational mechanics, as well as, dynamic systems and informa-
tion technology. Using methods of applied mathematics and numerical simulation,
such diverse gas- and hydrodynamics processes have been studied asmeteoroid flight
in Earth’s atmosphere, flow structure near descent module inMars atmosphere, wave
motions of fluids, the evolution of cluster beams, pulsating detonation waves, and
flow in plasma thrusters. In the dynamics of solids, numerical methods have been
developed to study the processes of fatigue damage development, stress state of
teeth prosthesis, elastic waves’ propagation during exploratory drilling on artificial
ice island. Effective numerical algorithms have been proposed for solving dynamic
systems with interval parameters, optimal control, and filtration problems. To solve
most of the problems, researchers reported the use of parallel algorithms for multi-
processor high-performance computing systems. The book will be useful to scien-
tists, researchers, undergraduate and postgraduate students specializing in the field
of computational methods, parallel algorithms, gas dynamics, aerodynamics, hydro-
dynamics, plasma mechanics, multiphase flows, solid dynamics, dynamic systems,
and information technologies.
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Chapter 2
Aspects of Meteoroids Flight
in the Earth’s Atmosphere

Nina G. Syzranova and Viktor A. Andrushchenko

Abstract We study the motion of meteoroids in the Earth’s atmosphere. It is shown
that space bodies do not always fall on the Earth or explode and shatter into small
fragments in the atmosphere. Instead, for certain aerodynamic characteristics and
small angles of entry into the atmosphere, they may re-enter the outer space after
traveling several thousand kilometres through the atmosphere.

2.1 Introduction

When space bodies pass into the Earth’s atmosphere andmove in it, various scenarios
are possible. Large bodies (size greater than 100 m) usually reach the Earth’s surface
without losing much of their speed, forming impact craters, and can lead to catas-
trophic consequences. Small bodies (size less than 1 cm) burn completely at very
high altitudes. Bodies of intermediate sizes are destroyed and burned at heights of
~20–40 km, causing bright flashes or exploding, breaking into fragments, forming
shockwaves and clouds of combustion products. Of particular interest are caseswhen
meteor bodies or their fragments after the initial stage of falling in the atmosphere
then go on an upward trajectory, and, only partially destroyed, return back to outer
space. That is why, even when seismic effects appear as if from a fall, but in fact from
the impact of an air explosion of meteoroid fragments, search expeditions often do
not detect any impact craters or fallen meteorite matter.

Thus, on August 10, 1972, a flight through the atmosphere of a bright bolide
detected by satellites of the USAir Force was registered [1]. Experts noted an unusu-
ally long flight path of the bolide in the atmosphere (about 1500 km).Witnesses even
heard the thunderous sounds that indicated a low path of movement of the object.
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Everything pointed to the fact that the object was supposed to descend and fall to the
ground, but its fall was never registered. This happened because the body was flying
at a slight angle to the Earth’s surface and “bounced” from the layers of the atmo-
sphere, returned back to outer space [1, 2]. Estimates made in [3] show that such an
intrusion into the atmosphere occurs quite rarely, and even more rarely, about once
a century, such phenomena are observed. It is possible that such a meteor body was
Tunguska (1908), the dynamics of which in the atmosphere is still a big mystery.

Thus, one of the important aspects of meteoritics is the study of the trajectories of
meteor bodies under various conditions of entry into the Earth’s atmosphere, which
is the purpose of this chapter. Section 2.2 presents the basic equations for modeling
the movement of large meteor bodies in the Earth’s atmosphere. Section 2.3 presents
the results of numerical calculations of the trajectories of meteor bodies at different
angles of their entry into the atmosphere. Conclusions are presented in Sect. 2.4.

2.2 Basic Equations

To identify the main effects that accompany the movement of a large body in the
atmosphere, we will study the body trajectory along which it moves under the influ-
ence of gravity and aerodynamic forces. In this case, the body mass will be assumed
to be constant, meaning the mass loss caused by ablation will be considered insignif-
icant, which is possible for large and durable meteoroids. In this case, changes in the
speed of the meteoroid V and the angle of inclination of the velocity vector to the
horizon θ are described by Eqs. 2.1–2.4 of the physical theory of meteors [4].

M
dV

dt
= Mg sin θ − CDS

ρV 2

2
(2.1)

MV
dθ

dt
= Mgcos θ − MV2 cos θ

RE + z
− CN S

ρV 2

2
(2.2)

dz

dt
= −V sin θ (2.3)

dL

dt
= V cos θ (2.4)

Here CD, CN are the coefficients of drag and lift, respectively, S is the area of
the body midsection, M is the mass of meteoroid, RE is the Earth’s radius, z is the
altitude of the meteoric body above the Earth’s surface, L , t are the range and time
of the flight, respectively. The change in air density with height z is determined by
the formula:

ρ = ρ0 exp(−z/h),
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where ρ0 is the atmospheric densitywith z= 0, h is the characteristic scale of altitude.
In the Earth’s atmosphere, for heights z < 120 km, the average value of h = 7 km. To
solve the system of Eqs. 2.1–2.4, initial conditions are set for t = 0 : V = Ve, θ =
θe, L = 0, ze = 100 km.

We transform Eqs. 2.1–2.2 as follows:

dV

dt
= g sin θ − ρV 2

2λ
, (2.5)

dθ

dt
=

(
g

V
− V

RE + z

)
cos θ − K

ρV

2λ
. (2.6)

Equations 2.5–2.6 contain two aerodynamic coefficients: the ballistic coefficient
λ = M/CDS and the aerodynamic quality K = CN/CD. Moreover, the coefficient
K for meteor bodies cannot exactly be equal to zero due to the imperfection of their
shape, and its value for bodies of irregular geometric shape at hypersonic speeds can
be more than 0.1 [5]. When estimating the ballistic coefficient λ for large meteor
bodies with amass of about 106 t at a density of 3 g/cm3, it was found that it can reach
λ = 105 kg/m2. As a result, at high altitudes, the terms in Eqs. 2.5–2.6 representing
the aerodynamic forces will be small, meaning that the atmosphere in this case has
little effect on the movement of the body. This is the peculiarity of the movement of
large meteor bodies in the atmosphere: the ability to penetrate the atmosphere.

2.3 Results of the Calculations

Using the system of Eqs. 2.1–2.4, calculations were made for a stony meteor body
with a densityρb = 3 g/sm3 andmassM = 1×106t, entering theEarth’s atmosphere
at a speed of 30 km/s (these parameters presumably correspond to the Tunguska
meteoroid) at different initial angles of entry of the body into the atmosphere. It is
assumed that the coefficient of drag is equal to CD = 1, and the value of the ballistic
coefficient is λ ≈ 1.7 × 105 kg/m2. Figure 2.1 shows the changes in the angle
of inclination of the trajectory θ depending on the flight time for different initial
angles of entry of the body into the atmosphere θe without taking into account the
fragmentation of the considered body and assuming zero lift (K = 0).

It can be seen that the initial angle of entry into the atmosphere has a strong
influence on the trajectory and flight time of the body. When θe ≤ 9◦ the angle of
the trajectory changes sign over time, and the trajectory becomes ascending. For the
angle θe = 9◦ “ascent” begins on the 40th s of the flight, θe = 7◦ and θe = 5◦ the
trajectory becomes ascending on the 30th s and the 20th s, respectively.

Data in Fig. 2.2 show how the height of the asteroid’s flight changes depending on
the flight time for different angles of its entry into the atmosphere. From the results
shown, it can be seen that when θe > 9◦ the meteorite will fall to the Earth, and
when θe ≤ 9◦, starting from a certain height, its trajectory becomes ascending.
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Fig. 2.1 The dependence of
the trajectory angle θ on the
flight time t of the meteoroid
at different angles of entry θe
into the atmosphere

Fig. 2.2 The dependence of
the flight altitude z on the
flight time t at different
angles of entry θe into the
atmosphere

Figure 2.3 demonstrates how the body is decelerated down in the atmosphere at
different angles of entry for a considered meteoroid. It can be seen that at the entry
angles of 7° and 9°, the body does not reach the dense layers of the atmosphere, and
either weakly slows down or does not lose speed at all.

It is interesting to study the movement of asteroids with the angles of entry into
the atmosphere located in the interval 7◦ ≤ θe ≤ 10◦. At the angle θe = 10◦ due
to the shortness of the passage in the dense layers of the atmosphere, the meteoroid
does not have time to decelerate down significantly and falls to the Earth’s surface
at the 34th s with a huge velocity of 16 km/s. This leads to an explosion and an
almost instantaneous transition of kinetic energy of the meteoroid to mechanical and
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Fig. 2.3 The changing the
speed of a meteor body
depending on the flight time
t for different entry angles θe

partially to thermal energy of the rocks surrounding the contact area of the surface,
leading to their deformation and the formation of a crater of the funnel elongated
in the direction of the fall [6] since this collision with the Earth occurs at an angle
θe = 2.5◦ (see curve 10° in Fig. 2.1).

At the angle θe = 9◦, the celestial body penetrates only into the stratosphere
and moves in it not even in a continuous, but in a transient flow regime, and during
this time it loses a little less than a third of its initial velocity: V = 21 km/s when
t = 60 s. At the angle θe = 7◦, moment of time t = 60 s, the body practically does
not reach the dense layers of the atmosphere and almost does not lose velocity at all.
At the values of velocities that are observed in Fig. 2.3, a rebound of a celestial body
from the dense layers of the atmosphere can occur, like the rebound of a stone from
the surface of water, and the meteoroid can fly into outer space.

Obviously, for a range of entry angles 7◦ ≤ θe ≤ 10◦ can find a trajectory which is
“soft landing”, when the body during a long movement in the troposphere is strongly
decelerated and at the same time the final part of its trajectory will be almost parallel
to the surface. This fall leads to two possible consequences. If the body does not
have time to slow down very much, then at a small angle θe, a long crater is formed
in the direction of the fall, but shallow in depth [6]. As a result of such a meteorite
fragment falling is the longest crater inArgentina, RioCuarto, which stretches 4.5 km
in length, has a width of 1.1 km, and depth of only 7–8 m [7]. If the compacted mass
of gas under the meteoroid is large enough, then the speed of its movement can
fall significantly, and the impact speed will be close to zero, and such a meteorite
will land as if on an air cushion. An example of such a landing is the famous Hoba
meteorite (60t) in South Africa, which did not leave any noticeable traces when it
fell on the surface [8].
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The flight range of the meteoroid L for these entry angles is shown in Table
2.1 for flight paths, the range is calculated along the surface of the planet from the
projection of the body’s entry point into the atmosphere to the projection of its exit
point at altitude z= 100 km, for the rest trajectories it is calculated from the projection
of the body’s entry point into the atmosphere to the point of falling off the body.

If the velocity of entry of ameteor body into the Earth’s atmosphere is significantly
lower than in the cases of data in Figs. 2.1, 2.2 and 2.3 (Ve = 30 km/s), then even
a small entry angles it can reach the dense layers of the atmosphere, slow down to a
speed less than the 2nd space velocity and eventually fall to the Earth. The parameters
calculating such the movement of a body with mass M = 1 × 106 t and angle of
entry into the atmosphere θe = 7◦ at the initial velocity Ve = 12 km/s are shown in
Figs. 2.4 and 2.5. From data in Fig. 2.4a, one can see how the angle of inclination of
the trajectory decreases over time, and at some point its value becomes negative, but
then again there is an increase in the angle of inclination of the trajectory to positive
values and the trajectory of the meteoroid crosses the Earth’s surface. The velocity
of the body near the surface decreases to 4 km/s (Fig. 2.4b).

Table. 2.1 The flight range L of the meteoroid depending on the angle of entry θe

θe , deg 20 15 10 9 7 5

L , km 293 424 921 2207 1686 1205

a b

Fig. 2.4 The dependence of: a the trajectory angle, b velocity V of a meteor body on the flight
time t for a body with mass M = 1 × 106 t at Ve = 12 km/s and θe = 7◦
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Fig. 2.5 The dependence of
the flight altitude on the
flight time t for the body
mass M = 1 × 106 t at
Ve = 12 km/s and θe = 7◦

Data in Fig. 2.5 show how the flight height z of such a body changes depending
on the flight time t. From these data, one can see the moments of time when the
trajectory of the body becomes ascending, and when the stage of falling of the body
occurs again. The value of the flight range in this case is L ≈ 3000 km.

It should be noted that the data presented in Figs. 2.1, 2.2, 2.3, 2.4 and 2.5 are
obtained at a zero value of the coefficient of aerodynamic quality: K = 0.

Figure 2.6 shows the calculation results of the dependence of the flight altitude
z on the flight time t for the angle of entry of the body θe = 10◦ at different values
of the coefficient K. It can be seen that at this value of the angle of entry into the
atmosphere and K = 0, the trajectory crosses the Earth’s surface; at K ≥ 0.1
the body no longer crashes into the planet, but ricochets from the lower layers of
the atmosphere. Moreover, the height of the ricocheting increases as coefficient K
grows. In cases of negative values of the coefficient K, the trajectory curves in the
other direction and the body falls to the Earth’s surface in less time than in the case
of K = 0.

In the case of negative values of the parameterK, the trajectory of the body, which
K = 0 could be overflying, is curved in such a way that it falls to the surface of
the Earth. This is shown by the curves in Fig. 2.7, which represents the calculation
results for the input angle θe = 9◦ and values K = 0,−0.1,−0.2.

Thus, an imperfect geometric shape can have a significant impact on the trajectory
of the meteoroid that is, the trajectory can “bend” up or down depending on the sign
of the coefficient of aerodynamic quality.
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Fig. 2.6 The dependence of
the flight altitude z on the
flight time t at the angle of
entry θe = 10◦ at different
values of the aerodynamic
quality coefficient K of the
meteoroid

Fig. 2.7 The dependence of
the flight altitude z on the
flight time t at the angle of
entry θe = 9◦ at different
values of the aerodynamic
quality coefficient K of the
meteoroid

Let’s consider the effect of its ballistic coefficient on the trajectory of a body.
Suppose that a stone body enters the atmosphere with the velocity Ve = 30 km/s,
but with a significantly lower mass as the previous one: M ≈ 60 t, then the value of
the ballistic coefficient will be λ ≈ 104 kg/m2.

Data in Fig. 2.8 show how the angle of the trajectory of the body changes
depending on the flight time with two values of the ballistic coefficient at the angle
of entry into the atmosphere θe = 9◦. It can be seen that for a body of lower mass
(λ ≈ 104 kg/m2), the value of this angle is always positive and increases depending
on the flight time (curve 1), whereas for a larger body with a higher value of the
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Fig. 2.8 The dependence of
the trajectory angle θ on the
flight time t of the meteoroid
at different values of the
ballistic coefficient λ: curve
1—λ ≈ 104 kg/m2, curve
2—λ ≈ 1.7 × 105 kg/m2

ballistic coefficient (λ ≈ 1.7× 105 kg/m2), the value of angle changes sign, that is,
trajectory of a body becomes ascending (curve 2).

As the results of the calculation show at λ ≈ 104 kg/m2, the trajectory becomes
ascending, and the body acquires the ability to rebound from the atmosphere if the
angle of entry into the atmosphere θe ≤ 8◦, as shown by the curves in Fig. 2.9.
These curves represent the dependence of the change in the height of the meteoroid
flight on time for different angles of entry of the body into the atmosphere. It is seen
that a decrease in the coefficient λ leads to a decrease in the critical angle of entry
of the body into the atmosphere, below which flyby paths are possible.

The results obtained allow us to explain some of the effects of the Tunguska
phenomenon in 1908. If the Tunguska meteoroid invaded the atmosphere at a small

Fig. 2.9 The dependence of
the flight altitude z on the
flight time t for a body with a
mass of 60t and the ballistic
coefficient λ ≈ 104 kg/m2

for different angles of entry
θe into the atmosphere
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angle to the horizon (θe < 9◦), it could be a flyby. This did not exclude its fragmen-
tation with explosions of some of its fragments in the atmosphere, leading to the
collapse of the forest, but the main part of sufficiently large fragments could either
fall far from the epicenter of the explosion or go into outer space. This assumption
is also confirmed by the estimates given in [9]. The hypothesis we have considered
allows us to explain the results of studying the proposed fall site of the Tunguska
body by many expeditions: the absence of a crater and any material remnants of
the meteoritic substance of this body. The results also show that the implementation
of flight paths of meteoroids depends on a number of defining parameters of the
phenomenon in the aggregate: speed, angle of entry of the body into the atmosphere,
ballistic coefficient, and coefficient of aerodynamic quality. In addition, it is also
important to take into account the fragmentation and destruction of the meteoroid
under the influence of power and heat loads.

2.4 Conclusions

We simulate numerically the flight of large bodies in the Earth’s atmosphere. Based
on the model of a single body (no fragmentation), we determine the kinematic and
physical characteristics necessary for a meteoroid to ascend in the atmosphere after
its initial descend. We find that the key parameter for the possibility of such ascend is
the angle of entry into the atmosphere. We compute the critical angles for a range of
control parameters, i.e. the ballistic coefficient and the lift-to-drag ratio. Our results
explain certain effects of the Tunguska event that took place in 1908.
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Chapter 3
Numerical Simulation of Flow Structure
Near Descent Module in Mars
Atmosphere

Alexander V. Babakov

Abstract Based on the conservative numerical method of flux, a hypersonic flow
of a viscous heat-conducting gas is simulated near the landing module in Martian
atmosphere. Special attention is paid to the study of the structure of non-stationary
flow on the side and bottom surfaces of the module. Flow parameters data in the
indicated areas are given. Vortex flow patterns near the descent module reflecting
the spatial non-stationary nature of the flow are presented. Numerical modeling is
implemented on multiprocessor supercomputers of cluster architecture.

3.1 Introduction

Onemethod of studying aerodynamic characteristics of aerospace vehicles is numer-
ical modeling. At the same time, the capabilities of this research method have
significantly increased with the advent of multiprocessor supercomputers. It became
possible to carry out modeling of spatial unsteady flows near objects of complex
form based on more complete mathematical models.

The difficulty of numerical modeling of flows near objects of complex shape is
associated with certain difficulties, primarily with the complex structure of the flow.
The gas flow around poorly streamlined bodies, as a rule, is spatial, non-stationary,
and has a vortex character. Moreover, for most aerodynamic problems of aerospace
vehicles, the flow is characterized by high Reynolds numbers, which further compli-
cates the numerical research. Vortex structures, non-stationary flow, and turbulence
arising in such a flow have a significant impact on the aerodynamic characteristics
of the vehicles.

From a computational point of view, the study of such flows requires the use
of computational grids consisting of several tens of millions (or more) calculation

A. V. Babakov (B)
Institute for Computer Aided Design of the RAS, 19/18, Vtoraya Brestskaya ul., Moscow 123056,
Russian Federation
e-mail: avbabakov@mail.ru

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
L. C. Jain et al. (eds.), Applied Mathematics and Computational Mechanics for Smart
Applications, Smart Innovation, Systems and Technologies 217,
https://doi.org/10.1007/978-981-33-4826-4_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4826-4_3&domain=pdf
http://orcid.org/0000-0001-7460-7487
mailto:avbabakov@mail.ru
https://doi.org/10.1007/978-981-33-4826-4_3


26 A. V. Babakov

points. In addition, the study of such flows is complicated by the lack of an adequate
turbulence model.

To determine the aerodynamic characteristics of the landing vehicles and calculate
the descent trajectory, specialized software, on the basis of which a numerical study
of the aerodynamics of segmental and conical shaped vehicles was carried out, is
developed [1]. In [2], the aerodynamic characteristics of the descent module entering
the Martian atmosphere were also calculated for the inviscid gas model, taking into
account the physicochemical processes in the high-temperature shock layer.

In this work, a numerical simulation of the hypersonic flow around the descent
module in the conditions of theMartian atmosphere is carried out. Modeling is based
on a model of viscous, heat-conducting gas (the Navier-Stokes model). The main
attention is paid to the study of non-stationary vortex motion occurring on the side
surface and in near wake of the descent module.

The chapter is organized as follows. Section 3.2 provides a general description of
the numerical method used. Section 3.3 is devoted to a statement of the problem for
numerical simulation of the flow around the descent module. Section 3.4 presents
the results of simulation of unsteady vortex structures of the flow near the lateral
surface of the descent module. Flow patterns and data on gas-dynamic parameters
are presented. The chapter ends with conclusions in Sect. 3.5.

3.2 Numerical Technique

Numerical studies are based on the non-stationary version of the conservative flux
method [3, 4], which allows to calculate flow parameters in the entire integration area
in a unified manner without allocation of features. The numerical model is written
in the form of a finite-difference analogue of conservation laws written in integral
form for each finite volume of the computational grid for each additive characteristic
of the medium. The equations of motion in the methodology used are written in the
Cartesian coordinate system for the Cartesian components of the vector quantities,
regardless of the geometry of the problem and the type of computational grids used.

Numerical calculations were performed on the basis of the developed program
complex “FLUX” [5, 6]. The method and program package are designed to study
the spatially unsteady motion of a compressible gas at sub-, trans-, and supersonic
speeds. The method allows to carry out the numerical studies of the aerodynamics of
aerospace vehicles of complex shape in a wide range of determining parameters. The
software package is based on parallel algorithms of themethod andwas implemented
on modern supercomputer systems of cluster architecture.

The hardware, which is used for problem under consideration, includes 207
compute nodes with a peak performance of 521 TFlops consisting of 2 Xeon E5-
2690 (Sandy Bridge) processors (64 Gb memory) and 2 Xeon Phi 7110X (KNC)
processors (16 Gb memory) connected by networks based on InfiniBand FDR and
Gigabit Ethernet.
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3.3 Problem Statement

Numerical simulation of the flow around the descent module at hypersonic regime is
considered.Numericalmodeling is carried out on the basis of amodel of viscous heat-
conducting compressible gas (the Navier-Stokes model). The simulation is carried
out in a three-dimensional non-stationary formulation using the gas-dynamic model
of a perfect gas.

The descent module is a body of rotation, the frontal surface of which has the
shape of a cone with a half-angle of 70° blunted over a sphere. The conical lateral
surface has a spherical interface with the frontal surface.

The profile of the module and its general view are presented in Fig. 3.1. The shape
of the module is close to the shape of the descent module presented in [7].

In Fig. 3.1 and in the following, all linear parameters are assigned to the radius
R0 of middle cross-section (further, mid-section).

Cartesian right-handed coordinate systemOXYZ is used, which is associated with
the descent module, the center of which coincides with the front point of the frontal
surface. The axis OX is directed along the axis of symmetry of the module.

The integration area is bounded by the surface of the module and the outer
boundary of the cylindrical shape of radius R1 and length L1. In the integration
area, a non-uniform computational grid is introduced. The calculations were carried
out on computational grids having exponential consolidation to the frontal, lateral,
and bottom surfaces of themodule. A fragment of the computational grid in a rarefied
form is shown in Fig. 3.2.

Finite volumes are formed by splitting into constant steps at angular coordinate
ϕ. The angle ϕ is counted in the OYZ plane from the positive direction of the OY

Fig. 3.1 Shape of the descent module: a profile, b general view
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Fig. 3.2 Fragment of the computational grid in a rarefied form

axis toward the positive direction of the OZ axis. In the calculations, computational
grids containing up to 20 million finite volumes were used.

For each finite volume, finite-difference analogues of the conservation laws of
mass, momentum components, and total energy are written out. The system of finite-
difference equations is closed by boundary conditions. On the left boundary x = x1,
the inflowing parameters are set (density ρ = ρ∞, temperature T = T∞, components
of velocity Vx = V∞, Vy = 0, Vz = 0). On the right boundary x = x2 or r = R1, the
“free” boundary conditions are set (parameters at the boundary are taken to be equal
to those at the nearest calculated point). On the frontal, lateral, and bottom surfaces
of the module, no-slip conditions (Vx = Vy = Vz = 0) and surface temperature Tw

are specified. The pressure is determined by extrapolation from the stream.
In the calculations presented below, the parameters of the outer boundary of the

integration domain took the following values: R1 = 2.0, x1 = –0.5, x2 = 10, where
R1, x1, x2 are the dimensionless quantities.

3.4 Calculation Results

Hypersonic flow around the descent module at zero angle of attack is considered.
The results presented below were obtained for the Mach number M∞ = 20 and the
Reynolds number Re∞ = 1*106 calculated from the inflow parameters and the radius
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of the mid-section. Ratio of specific heat capacities of gas γ is taken equal to 1.335,
corresponding to the atmosphere of the Mars. The surface temperature Tw of the
apparatus was assumed to be 0.05 of the inflow adiabatic stagnation temperature.

In what follows, we will use the gas-dynamic variables in dimensionless form,
namely the density ρ and temperature T will be related to the corresponding inflow
parameters ρ∞, T∞, the velocity will be related to the inflow velocity V∞, and the
pressure p to ρ∞V 2∞ and time t to R0/V∞. The flow velocity V∞ is directed along the
positive direction of the OX axis.

Asmentioned above, particular attention during the numerical calculations is paid
to the study of flow properties near the lateral and bottom surfaces of the descent
module.When integrated over time, the numerical solution acquires a non-stationary
character. The flow near the lateral surface and in the near wake has a vortex non-
stationary nature.

Thus, Fig. 3.3 shows the time behavior of the pressure coefficient Cp = 2(p – p∞)
at three points of the lateral surface in the meridional plane ϕ = 0: 1—mid-section,
2—in themiddle of the lateral surface, and 3—at the point of interfacing of the lateral
surface with the bottom section. The behavior of Cp indicates the steady state of the
flow in the region of the mid-section (curve 1) and the unsteady nature of the flow
on the lateral surface of the descent module (curves 2, 3).

This is confirmed by the flow patterns presented in Fig. 3.4, which shows the
general view of the flow in the form of instantaneous streamlines and temperature
field in the meridional plane ϕ = 0 and the bottom region.

The non-stationary and vortex nature of the flow near the lateral and bottom
surfaces can be seen in Fig. 3.5, where instantaneous streamlines in the meridional
plane ϕ = 0 are shown for various points of time against the background of the
temperature field.

Fig. 3.3 Behavior in time of
the pressure coefficient Cp
on the lateral surface of the
landing module: 1 x = 0.34,
2 x = 0.8, 3 x = 1.22



30 A. V. Babakov

Fig. 3.4 Instantaneous streamlines and temperature field

Fig. 3.5 Instantaneous streamlines in the meridional plane against the background of the
temperature field at various points in time: a t = 600, b t = 604, c t = 606, d t = 610
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A strong vortexmovement occurs in the region of the lateral surface of the descent
module. The unsteady nature of the flow in this region and near wake leads to non-
stationary behavior of the aerodynamic characteristics. Thus, in particular, Fig. 3.6
shows the time behavior of the coefficient of momentmz (which is calculated relative
to the axis coincidingwith the z axis).When calculating the coefficient of themoment
acting on the descent module, the moment value was related to the ρ∞V 2∞/2, mid-
section area and length L1.

The non-stationary flow on the lateral surface of the descent module leads to a
loss of axial symmetry of the flow. Thus, Fig. 3.7 shows the profiles of the pressure

Fig. 3.6 Coefficient of
moment mz behavior over
time

Fig. 3.7 Pressure coefficient
Cp on the lateral surface of
the descent module: 1 x =
0.5, 2 x = 0.6, 3 x = 0.8, 4
x = 1.0
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Fig. 3.8 Pressure coefficient
Cp on the bottom surface of
the descent module: 1 r =
0.05, 2 r = 0.15, 3 r = 0.25,
4 r = 0.35

coefficient Cp on the lateral surface of the module in various sections x for the time
point t = 600.

For the bottom surface of the landing module for the time point t = 600, Fig. 3.8
shows plots of the pressure coefficient Cp versus the angular angle ϕ for various
distances r from the axis of the vehicle.

In Fig. 3.9, for time t = 600, temperature fields are presented in different cross-
sections along the axis of the descent module.

The above pictures give an idea of the temperature near the surface of the descent
module and near wake. They also indicate the essentially non-stationary nature of
the flow in this region. The area in which the unsteadiness of the flow is manifested
is subsonic.

3.5 Conclusions

The results of the numerical simulation show that a developed unsteady vortex flow
is realized on the lateral and bottom surfaces of the descent module, which affects
the aerodynamic characteristics. It is important to note that the temperature near the
lateral and bottom surfaces of module can reach large values. These features of the
flow must be taken into account when designing new aerospace vehicles.
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Fig. 3.9 Temperature fields in cross-sections along the axis of the descent module: a x = 0.5, b x =
0.7, c x = 1.0, d x = 1.2, e x = 1.27, f x = 3.2
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Chapter 4
Mathematical Modeling of Wave Motions
of Fluids

Valentin A. Gushchin , Vasilii G. Kondakov , and Irina A. Smirnova

Abstract The study of wave movements of liquids is of interest both theoreti-
cally and practically. This can include flows with a free surface and flows with
internalwaves. For correctmathematicalmodeling of suchflows, the finite-difference
schemes of methods must have such properties as follows: high order of approxi-
mation, minimal scheme dissipation and dispersion, performance in a wide range
of the Reynolds and the Froude numbers, and that is especially important the prop-
erty of monotonicity. This chapter presents two approaches: splitting method for
incompressiblefluidflow(SMIF)methodandcompact accurately boundary adjusting
high-resolution technique (CABARET) method, of course, whose finite-difference
schemes have the properties listed above. A number of test tasks are considered and
compared with theoretical, experimental data and calculations of other authors.

4.1 Introduction

In this work, two methods for problems of motion of fluids with a free surface and
problems of internal waves’ destruction in steadily stratified medium are considered.
First method is known as SMIF [1, 2] or splitting on physical factor method for
incompressiblefluidflows. SMIF-based schemeshave secondorder of approximation
by both spatial and time steps. Schemes based on SMIF use mesh with spaced
variables: when the velocity components normal to sides are set on the faces of cell,
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and in the cell centers, the integral variables of density, pressure, salinity, temperature,
etc. are defined. Second method is based on CABARET [3, 4] scheme or balance-
characteristic approach. In contrast to SMIF, CABARET scheme uses a double set of
variables both in faces and in the centers of cells. This allows CABARET scheme to
use positive properties of characteristic approach such as solution of shockwaves and
rarefaction waves in the computational domain without introducing any restrictors
and monotonizers, and the correct accounting of the flow at the boundary allows
the schemes to remain conservative throughout the entire calculation time. These
two methods are widely used in different domains of mathematical simulations:
modeling of transport equations [4], equations of compressible gas [5], equations
of incompressible flows in closed regions [6, 7], the Navier–Stokes equations of
multicomponent gas dynamics [8], etc.

For the problems with a free surface, approximations of the Navier–Stokes equa-
tions in arbitrary Lagrange-Euler variables were obtained earlier for both SMIF
scheme [9] and CABARET scheme [10]. Satisfactory results were also obtained
in solving problems with stable stratification using the example of the problem of
collapse of a spot [11–15] of a homogeneous fluid in the thick of a stratified medium.

In this chapter, we partially present the results of comparison of the application of
two different numerical approaches for solving the problem of spot collapse: SMIF
method and CABARET method in Sects. 4.2 and 4.3, respectively. Test problems
are discussed in Sect. 4.4. Section 4.5 concludes the chapter.

4.2 SMIF Method

Numerical method for solving the problem of the dynamics of a spot (collapse)
in a stably density-stratified fluid was discussed in [11]. This method can be used
to investigate the flows of an inhomogeneous incompressible viscous fluid. The
possibility of specifying the stratification of density and viscosity either by analytic
formulas or by tables obtained by processing experimental data is foreseen that
considerably widens the range of laminar flows considered. According to the model
proposed in [16], the origin and development of turbulence in a stably density-
stratified fluid are inseparable from internal waves and proceed as follows. Under
the action of external forces, the internal waves of large size arise in the stratified
fluid. As a result of their nonlinear interaction and subsequent breaking up or loss of
stability, the regions of mixed fluid (spots) arise. These spots of mixed-up turbulent
fluid evolve, gradually flattening (the collapse of turbulent spots), which in turn leads
to the formation of new spots, and so on.

In the evolution of a spot, it is natural to consider three basic stages [16]:

• Initial stage: The motive force acting on the fluid particles situated inside a spot
considerably exceeds the resistive forces. Intense internal waves are produced by
the spot.



4 Mathematical Modeling of Wave Motions of Fluids 37

• Intermediate stationary stage: The motive force is mainly counterbalanced by the
resistance of shape and the wave resistance due to the radiation of the internal
waves. The increase of the horizontal size of the spot proceeds almost as a linear
function of time, that is, the acceleration is negligibly small.

• Concluding viscous stage: Themotive force is mainly counterbalanced by viscous
drag. The horizontal size of the spot changes only slightly.

Later as a result of diffusion, the spot is mixed with the surrounding fluid and
vanishes. Since that time, the simulation of such flowswas undergone a lot of changes
[11]. New physical and mathematical models have been proposed [17, 18], and the
quality of methods designed for solving such problems has significantly improved
[2, 9]. Furthermore, the progress in computing has been amazing. In this chapter, we
want to adapt the mathematical model proposed in [17] and used for calculating the
flow around a sphere and circular cylinder [17, 18] to the problem of spot collapse,
which was earlier solved without taking into account the diffusion of the stratifying
component [11, 19].

Consider the flat nonstationary problem about the flow occurring when a homoge-
neous fluid region A surrounded by a stably and continuously density-stratified fluid
(for definiteness, the stratification is assumed to be linear) collapses in the vertical
direction (Fig. 4.1). The flow develops in the homogeneous gravity field with the
acceleration due to gravity g. The undisturbed linear density distribution [17]

ρ(x, y) = ρ0(1 − y

�
+ s(x, y)) (4.1)

is characterized by the stratification scale � =
∣
∣
∣
1
ρ0

(
∂ρ

∂y

)∣
∣
∣

−1
, the buoyancy frequency

N = √
g/�, the buoyancy period Tb = 2π/N , C = �/R0 is the ratio of scales, R0

Fig. 4.1 Initial and
boundary conditions for spot
problem
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is the spot radius, and s is the salinity perturbation (stratifying component), which
includes the salt compression ratio.

We consider the plane unsteady problem of the flow which occurs when there
is a collapse of the region A of homogeneous fluid, surrounded by a stably and
continuously density-stratified fluid (see Fig. 4.1).

The Navier–Stokes equations in the Boussinesq approximation describing the
flow of this type can be written as:

∂v
∂t

+ (v · ∇)v = −∇ p + 1

Re
�v + 1

Fr
s
g
g
, (4.2)

∇ · v = 0, (4.3)

∂s

∂t
+ (v · ∇)s = 1

Sc · Re�s + v

C
, (4.4)

where v is the velocity vector with components u, v, respectively, along the x and
y axes of a Cartesian coordinate system selected as indicated in Fig. 4.1, ρ is the
density, p is the pressure minus hydrostatic one, s is the perturbation of salinity, the
Reynolds number Re = ρ0R0

2N /μ, the Froude number Fr = R0N2/g, the Schmidt
number Sc = μ/ρ0ks, ks is the diffusion coefficient of salts, μ is dynamic viscosity
coefficient, g = (0, –g), g is acceleration of free fall, ρ0 is the density on the level y
= 0, and C = �/R0 is the scale ratio.

We assume that the initial time t = 0 the system on the plane R2 is at rest, i.e.,

u = 0, v = 0, (x, y) ∈ R2, (4.5)

density of fluid at the spot A is

ρ = 1, (x, y) ∈ A, (4.6)

and outside of spot, i.e., in the area of R2\A,

ρ = 1 − y

C
+ s, (x, y) ∈ R2\A, (4.7)

the perturbation of salinity is defined by Eq. 4.8.

s =
{ y

C if (x, y) ∈ A
0 if (x, y) ∈ R2\A (4.8)

As an initial approximation for pressure, necessary in solving the equation for
pressure distribution is selected according to Eq. 4.9.
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p =
{

− y
Fr if (x, y) ∈ A

− y−y2/2C
Fr if (x, y) ∈ R2\A (4.9)

As the pressure in the case of an incompressible fluid shall be determined with an
accuracy of up to an arbitrary constant, without limiting the generality, we can select
it to zero on level y = 0.

Effect of symmetry tasks concerning the plane x = 0 naturally seeks a solution
in only one half-plane, for example, if x ≥ 0. Solution will search in the rectangular
area {x, y: 0 ≤ x ≤ X, –Y ≤ y ≤ Y}.

In the left boundary (line 1 in Fig. 4.1) this area are conditions of symmetry
provided by Eq. 4.10.

u = 0
∂v

∂x
= ∂p

∂x
= ∂ρ

∂x
= ∂s

∂x
= 0 (4.10)

The top (line 2), bottom (line 4), and right (line 3) borders should be chosen far
enough away from the source of disturbance (from spots) so that setting any boundary
conditions at these borders, which are necessary for the solution of the problem, not
provided a significant influence on the flow.

To solve the task, we use one of the latest versions of amethod of splitting by phys-
ical factors for research incompressible fluid flows (SMIF). Finite-difference scheme
of this method possesses by properties such as a second-order approximation for the
spatial variable, minimum scheme viscosity and dispersion, functioning in a wide
range of Reynolds and Froude numbers, and more importantly when solving such
problems as the monotony [2]. The splitting scheme and finite-difference scheme
were described in detail in [14, 20].

4.3 CABARET Method

The study of waves in a fluid, as noted, is the subject of intensive theoretical and
experimental research. In modes of practical interest, the nature of wave processes is
determined by nonlinear vortex effects (e.g., wave overturning). All known analyt-
ical methods of solution are based on the assumption of potential flow. They make it
possible to study the wave processes only until the waves start to overturn. After the
waves start to overturn, this wave structure model becomes unacceptable. Physical
experiments, on the other hand, are very complicated, laborious, and expensive. In
addition, a number of rapidly occurring processes (particularly the overturning of
waves) cannot be studied in detail in a physical experiment. In this respect,mathemat-
ical modeling of the corresponding physical processes becomes increasingly impor-
tant. In these cases, numerical methods make it possible to obtain a more complete
amount of information at lower costs and are often the only source of information
about the flow field. The most general approach to the mathematical modeling of this
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class of problems is to numerically integrate the complete nonstationary hydrody-
namic equations. The known methods for calculating viscous incompressible fluid
flows with a free surface do not allow obtaining highly accurate solutions near the
free surface and in areas of large gradients of hydrodynamic flow parameters. In this
respect, it is necessary to further develop methods of the numerical integration for
the complete hydrodynamic equations with a free surface.

For solving such problems, in [10], it was proposed a new differential scheme
based onCABARETmethod [3, 4]. The application of this approach for investigation
of flows with a free surface may be seen in [21]. In [12], it was proposed a new finite-
difference scheme based on CABARET technique for solving the spot problem. The
motion of the medium is described by the Navier–Stokes equations and equation of
continuity of the medium. The closure of the system occurs by adding the condition
of zero divergence. The system of equations in dimensionless variables, where the
characteristic linear size is equal to the spot radius, and the characteristic time is
inversely proportional to the Brent-Väisälä frequency, is provided by Eq. 4.11.

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂t + u ∂u

∂x + v ∂u
∂y + 1

ρ

∂p
∂x = 1

Re

(
∂2u
∂x2 + ∂2u

∂y2

)

∂v
∂t + u ∂v

∂x + v ∂v
∂y + 1

ρ

∂p
∂y = 1

Re

(
∂2v
∂x2 + ∂2v

∂y2

)

− 1
Fr

∂ρ

∂t + u ∂ρ

∂x + v ∂ρ

∂y = 0
∂u
∂x + ∂v

∂y = 0

(4.11)

Here, the Reynolds and the Froude numbers are calculated by Eq. 4.12.

Re = ρ0R2
0N

μ
Fr = R0N 2

g
(4.12)

The initial conditions for the problem with a spot are as follows (Fig. 4.1): In a
circle with a radius of R0, a density of ρ0 is set or unitary in a dimensionless form,
and a linear distribution ρ = 1 – y · Fr is set around the circle such that the densities
are the same at the center of the circle y = 0. At time t = 0, the velocities are zero,
and the density is distributed as described above.

In a rectangular area [−Lx; Lx] [−Ly; Ly], an orthogonal grid set with nodes
defined by Eq. 4.13 is formed.

{

xi = −Lx + 2Lx
i
Nx

i = 0, Nx

y j = −Ly + 2Ly
j
Ny

j = 0, Ny
(4.13)

In the centers of the cells, we introduce conservative variables of density and
velocity, and also in the centers of the faces of the cells, we introduce flux variables
of density and velocity. Conservative cells are defined on half-integer layers in time,
and flux variables are determined on integer layers in time. At the initial moment of
time, conservative variables are initialized, and then the flux variables are calculated
by any first-order difference scheme (e.g., a corner scheme) at the next level in time.
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The system of Eq. 4.11 is reduced to a divergent form, using the continuity
equations provided by Eq. 4.14.

∂ρ

∂t
= −

(
∂ρu

∂x
+ ∂ρv

∂y

)

∂ρu

∂t
= −

(
∂ρu2

∂x
+ ∂ρuv

∂y

)

+ ∂p

∂x
+ ρ

Re

(
∂2u

∂x2
+ ∂2u

∂y2

)

∂ρv

∂t
= −

(
∂ρuv

∂x
+ ∂ρv2

∂y

)

+ ∂p

∂y
+ ρ

Re

(
∂2v

∂x2
+ ∂2v

∂y2

)

− ρ

Fr
(4.14)

The difference scheme can be written as follows:

ρn+1/2 − ρn−1/2

τ
= −∇ · (ρnvn),

ρn+1/2ũ − ρn−1/2un−1/2

τ
= −∇ · (

ρnunvn
) + ρn−1/2

Re
�un−1/2,

ρn+1/2ṽ − ρn−1/2vn−1/2

τ
= −∇ · (

ρnvnvn
) + ρn−1/2

Re
�vn−1/2

− ρn−1/2 − 1 + y · Fr
Fr

,

∇
(

1

ρn+1/2
∇δpn+1/2

)

= ∇ · ṽ
τ

,

vn+1/2 − ṽ
τ

= − 1

ρn+1/2
∇δpn+1/2, (4.15)

where the concept of overpressure is introduced by Eq. 4.16.

δp = p − p(y)

p(y) =
y0∫

y

ρ(y)gdy = p(y0) − ρ0g
(

y − a

2
y2

)

(4.16)

The values with integer indices in Eq. 4.15 refer to the flux variables, and the vari-
ables with half-integer indices belong to the conservative variables. As we see, the
fifth difference expression of Eq. 4.15 is amodified Poisson equation, where the oper-
ator considers density inhomogeneity. This equation was solved using the parallel
conjugate gradient method with a preconditioner in the form of the usual Laplace
operator with constant density. The direct solver for the inversion of the Laplace
operator was obtained by transforming the Fourier transforms of unknown pressure
variables into twofold decomposition and equating the corresponding component of
the right-hand decomposition.
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Finally, the scheme ends by calculating the flow variables on the new time layer
in the form of Eq. 4.17, where S is the index of the face of the flux variable, C is the
index of the adjacent cell, from where the flow goes in the direction of the face of S,
and Sop is the index of the face of the opposite face of S and belonging to cell C.

ψn+1
S = 2ψn+1/2

C − ψn
Sop ψ =

⎛

⎝

ρ

u
v

⎞

⎠ (4.17)

Now let us consider the application of these two approaches for investigation of
spot collapse in stratified fluid.

4.4 Test Problems

Hereinafter, the spot problem by SMIF method and CABARET method is presented
in Sects. 4.4.1 and 4.4.2, respectively. Section 4.4.3 provides a comparison of results
using these both methods.

4.4.1 Spot Problem by SMIF Method

Using SMIF method, the calculations were carried out in the field with dimensions
X = 10, Y = 5, R0 = 1 with the following coefficients and parameters: μ/ρ0 =
0.01 cm2/s−1, ks = 1.41 × 10–5 cm2/s–1, N = 1 s–1, T b = 2π s, � = 10 cm, C = 10,
Re= 100, Fr= 0.1, Sc= 709.2 that is close to the laboratory experimental conditions.
As boundary conditions on the top, bottom, and right borders of the computational
domain chosen resting state, i.e., u = v = s = 0. The computational domain was
covered with a uniform grid with steps in both directions δx = δy = 0.1. With a view
to verifying the correctness of program, the calculations in the absence of stain and
on different grids were performed.

The time dependences of horizontal and vertical sizes of a spot are shown in
Fig. 4.2.

4.4.2 Spot Problem by CABARET Method

In [12], authors used CABARET method for studying the problem of spot dynamics
in a fluid that is stably stratified by density. In contrast SMIFmethod, a newdifference
scheme CABARET is solved by direct calculation elliptic equations for pressure by
fast direct method [22].
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Fig. 4.2 Horizontal and vertical sizes of a spot in area 10 × 10. Re = 100, Fr = 0.1, Sc = 709.2
[15]: a horizontal spot size, b vertical spot size

Calculations of the problem with the collapse of the spot from [11] were carried
out in the entire region with the numbers Re = 100 and Fr = 0.1. The dependences
of the linear dimensions of the spot from time are shown in Fig. 4.3. The theoretical
results [23, 24] are demonstrated for comparison.

Fig. 4.3 Dependences of the linear dimensions of the spot from time: a growth of horizontal spot
size, b vertical spot size setting
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4.4.3 Comparison of Results Using SMIF and CABARET
Methods

The comparison of results calculated by SMIF (solid lines) and CABARET (dotted
lines) methods is demonstrated in Figs. 4.4 and 4.5, respectively. Calculations were
carried out for Re = 100, Fr = 0.1. The sizes of spatial greed were the same in both
cases. In Fig. 4.4, the dependence of horizontal size of spot from time is shown.
The dependence of vertical sizes of spot from time is seen in Fig. 4.5. Some small

Fig. 4.4 Dependence of the horizontal size of the spot from time. CABARET area [−15; 15] ×
[−5;5], mesh 300 × 100; SMIF area [0;15] × [−5; 5], mesh 150 × 100

Fig. 4.5 Dependence of the vertical size of the spot from time. CABARET area [−15; 15] × [−5;
5], mesh 300 × 100; SMIF area [0; 15] × [−5; 5], mesh 150 × 100
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distinction of results may be explained by using different physical models. In SMIF
approach, the diffusion of stratification component (perturbation of salinity) is taken
into account. In CABARET approach, the diffusion of stratification component—
density is absent.

4.5 Conclusions

Two models of spot burst problem were considered: in the case of homogeneous
density spot located in sharply stratified medium and in the case of salinity homo-
geneous spot in seawater stratified by salinity. The comparison of given results was
carried out with fixed Froude numbers and Reynolds numbers. The case of homo-
geneous spot located inside viscous density-stratified medium was solved using
CABARETmethod. The casewith salinity diffusion inside salinity stratifiedmedium
was solved using SMIF method. Simulated domain in SMIF method is solved with
plane X = 0 defined as symmetry boundary condition. Compared quantities (height
and width of the spot time dependent) were dimensions of spot in horizontal and
vertical direction time depending.

As we see from graph dependents of vertical spot dimension, top and bottom
dimensions differ dynamically due to appearance of buoyancy force. Horizontal
dimension of spot fairly correlates with theoretical estimation of spot dimension.
From this, we can conclude that both methods are in sufficient agreement with other
authors’ works that deal with this task.
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Chapter 5
Numerical Simulation of Taylor Vortex
Flows Under the Periodicity Conditions

Fedor A. Maksimov

Abstract It is known from the experimental researches regarding the Taylor vortex
flows between the rotating cylinders that a different number of pairs of the Taylor
vortices can be formed within the one geometry. It means that different variants of
the problem’s solution are allowable. The simulation method with periodic boundary
conditions on the edges of the cylinder’s part was developed for the numerical
research into the Taylor vortex flows. The results of the simulation of the flow for
the various values of the periodicity sizes and different initial data are given.

5.1 Introduction

The theoretical research into the flows between the rotating cylinders assumes that
they are endlessly long [1–3]. The experimental researches into the flows deal with
the cylinders of the maximum length to reduce the edge effects. The simulation of a
rather long cylinder requires the use of greater computational resources that inevitably
lead to longer computational periods and relatively rough grid for the description of
each vortex structure. The periodic structures with the scale of the distance order
between the external cylinder and internal cylinder are formed along the axis of
the cylinders in the Taylor vortex flow. To eliminate edge effects, it is possible to
consider only a part of the cylinder, setting periodicity conditions on borders of
the computational domain throughout the length. It requires the introduction of an
additional dimension—the length L of the considered section of the cylinder. The
dimension L that is artificially assigned in the research into the Taylor vortex flows
determines their scale.

There are some experimental examples [4–6] when a different number of the
Taylor vortices are formed in the same conditions, and, accordingly, the vortex pairs
have a different size. In fact, the problem allows different stationary solutions while
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the implemented solution depends on different factors such as the mode of reaching
the stationary solution, the geometric peculiarities that enable the formation of the
vortices with the assigned size, and so on.

A large number of studies of the Taylor vortex flow have been performed using
numerical simulations, for example, carried out recently [7–10]. The results of numer-
ical modeling are in good agreement with theoretical and experimental data. This
allows for the example of a flow with the Taylor vortices to study numerically the
problem of bifurcation and non-uniqueness of the solution.

In this work, the calculations of the flow between rotating cylinders with various
specified size of the periodicity L are performed. Section 5.2 describes a method for
calculating three-dimensional flow based on a viscous gas model. In Sect. 5.3, it is
shown that it is possible to construct a set of diverse solutions to the problem and
estimates of the interval of admissible values of L. For some values L, at least two
solutions can be constructed. In Sect. 5.4, the simulation method is used to analyze
the flow of a viscous gas between rotating cylinders of different temperatures. Plane
and axisymmetric solutions with the formation of vortex structures, as well as a fully
three-dimensional flow from a combination of plane and axisymmetric flows, are
obtained. Section 5.5 concludes the chapter.

5.2 The Simulation Method

The simulation uses the model of compressible viscid gas. The Navier–Stokes
non-stationary equations for the three-dimensional flow of compressible gas in the
dimensionless formed in the Cartesian coordinate system X= (x, y, z) are as follows:

∂U
∂t

+ ∂

∂x
(E − Ev) + ∂

∂y
(F − Fv) + ∂

∂z
(G − Gv) = 0,

where

U =

⎧
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ρ

ρu
ρv
ρw
e

⎫
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⎪⎪⎪⎪⎪⎭
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⎧
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ρuv
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ρv
ρuv

ρv2 + p
ρvw
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⎫
⎪⎪⎪⎪⎪⎬
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, G =

⎧
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⎪⎪⎪⎪⎪⎩

ρw
ρuw
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ρw2 + p
(e + p)w

⎫
⎪⎪⎪⎪⎪⎬
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.

Here, t is the time, ρ is the density, (u, v, w) are the components of the velocity
vectorV in the (x, y, z) directions, respectively,p is the pressure, and e is the full energy
of the gas volume’s unit that can be determined for perfect gas as e = ρ(ε+ u2+v2+w2

2 ),
where ε = 1

γ−1
p
ρ
is the internal gas energy, and γ is the heat capacity ratio with

constant pressure and volume (γ = 1.4 in calculations). Then
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Ev =
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σxx
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τxz
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,

dx = uσxx + vτxy + wτxz + qx ,

dy = uτxy + vσyy + wσyz + qy,

dz = uτxz + vτyz + wσzz + qz,

div V = ∂u

∂x
+ ∂v
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+ ∂w

∂z
,
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)
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The dimensionless variables are determined via the «′»-marked dimensional
variables:

t =
√

p′
o

ρ ′
o

t ′
L ′ , X = X′

L ′ , V =
√

ρ ′
o
p′
o
V′,

ρ = ρ ′
ρ ′
o
, p = p′

p′
o
, T = T ′

T ′
o
, μ = μ′

μ′
o
.

The low index “o” is the value of the parameter before the beginning of rotation.
Here, L ′ is the characteristic dimension.

It is assumed that the Prandtl number Pr = μcp
λ

is constant. Here, μ, cp, λ

are the coefficients of heat capacity, viscidity, and heat conductivity (Pr = 0.72

in calculations), respectively. Re =
√

p′
0ρ

′
0L

′

μ′
0

is the Reynolds number.
The system of differential equations is supplemented by the state equation: p =

ρRT, where T is the temperature, and R is the gas constant. The state equation in a
dimensionless form is as follows: p = ρT.

Thus, the complete system of the Navier–Stokes equations for perfect gas flows
in the absence of external mass forces is given. It is assumed that the heat may enter
the medium only as a result of thermal conductivity. The flows considered below are
subsonic, and the compressibility effects are not of greater importance, but the use of
the compressible gas model allows to apply the numerical method and the programs
[11] developed for the simulation of viscous gas flows.

The use of the Cartesian coordinate system for the adequate description of the
flowswith complex topology in solving the problems by the finite-differencemethods
seems difficult for two reasons. One reason is that the interpolation procedures to get
boundary conditions are necessary. Also there are some difficulties in the description
of the computational grid because the computational grid is not rectangular. We will
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move to the arbitrary curvilinear coordinate system. We will set the uniform grid
for the difference approximation of the initial equations in the following coordinate
system:

τ = t, ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z).

The use of the generalized transformation makes it possible to save the strictly
conservative form of equations. The equations now look as follows:

∂

∂τ

U
J

+ ∂

∂ξ

E
J

+ ∂

∂η

F
J

+ ∂

∂ς

G
J

= 0.

Here,

E = ξx(E − Ev) + ξy(F − Fv) + ξz(G − Gv),

F = ηx(E − Ev) + ηy(F − Fv) + ηz(G − Gv),

G = ςx (E − Ev) + ςy(F − Fv) + ςz(G − Gv).

The coefficients of the transformation matrix are determined by the following
formulas:
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Here, J is the Jacobian of the transformation determined by the formula:
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∂ξ
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.

The use of the generalized transformation makes it possible to construct the
uniform grid in the form of a unit cube. The coefficients of the transformation matrix
for the given distribution of nodes in the physical area are calculated with the use of
difference formulas in accordance with the equations.

When composing the equations, it is assumed that the derivatives existing in the
expressions for Ev, Fv, and Gv are transformed in accordance with the rules of the
differentiation of the complex functions. Thesemembers are responsible for the pres-
ence of viscous forces. The method developed in [11] is used for the flow simulation.
However, in contrast to the external aerodynamics case [11], it is necessary to take
into account dissipative processes in all spatial directions when simulating the Taylor
vortex flows.
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Fig. 5.1 Geometry of
computational domain and
grid in two sections

Figure 5.1 demonstrates the calculation domain between the cylinders and the
grid in two sections.

The grid is uniform in the longitudinal and circumferential directions. Near the
surfaces of the cylinders, the grid has a concentration along the normal to these
surfaces, which makes it possible to improve the description of the velocity and
temperature gradients in these areas. The calculations were made on the grid of 57
× 361 × 57 nodes (along the radius, in the circumferential direction and along the
axis of the cylinders).

The adhesion conditions in accordance with the given cylinder rotation speed are
set on the surface of the cylinders; the given temperature is fixed. The periodicity
conditions are set along the axis of the cylinders on the edges of the computational
domain. In this case, the gas-dynamic parameters for both edges at the two extreme
layers are replaced by the values of the parameters in the inner layers from the other
edge.

The calculations were made on the multiprocessor computing machinery, and
parallelization was made with the help of the geometric decomposition of the
computational domain.

5.3 Results of the Calculations

Let us examine the results of the numerical simulation using the example of calcu-
lating the flow between the endless cylinders: The radius of the inner cylinder is r =
1, and the radius of the outer cylinder isR= 1.5. The simulation calculates only a part
of the endless cylinders: This is a section along the axis for the L length. Hereinafter,
the L parameter is named the given periodicity size.

In the first variant of the calculations, the solution is found by the relaxation
method from the initially given plane flowwith a discontinuity in speed in the middle
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between the cylinders. If the calculation for a certain L value is completed, then this
solution can be used as initial data for some new value of L* that is sufficiently close
to the initial one. In this case, the values of the gas-dynamic functions in the nodes
of the computational grid are assumed to be equal at the corresponding nodes for the
previously calculated variant. This is the second calculation variant.

If the Reynolds number is rather small, then the Couette flow is the solution
to the problem: This is a plane-parallel flow with a known velocity profile in the
circumferential direction [12]. If to consider the conditions, in which the Couette
flow is unstable [1], then the flat solution is to be destroyed due to instability in
the first variant of the calculation, and then a stable regular solution with the Taylor
vortices is to be arranged. In the second variant of the calculation, the flow structure
with the Taylor vortices is actually set in the initial field, the solution is established
in connection with the change in the periodicity size, and the stability of the flow
structure to the change in parameter L is checked.

The inner cylinder rotates with the angular velocity ω, and the Reynolds number
is Re = ω·r ·(R−r)

ν
= 200, where ν is the kinematic viscosity coefficient. The linear

velocity of the surface of the inner cylinder corresponded to the velocity with the
Mach number ≈0.1, which does not lead to a significant change in the density in the
flow and to the appearance of the compressibility effects. With the given Re number,
the Taylor vortices are formed in the experiments [13]. The calculations for various
preset values of the periodicity length L were made. As well as in the experiments,
the Taylor vortices are formed in the numerical simulation with an adequate choice
of parameter L. Figure 5.2 demonstrates an example of the solution with the Taylor
vortices, where L = 0.835.

The flow is represented by the distribution of velocity along the axis of the cylin-
ders in the plane passing through the axis of the cylinders. This velocity compo-
nent is zero (w = 0), and the flow is plane in the Couette flow. When the Taylor
vortices form, a “chess” structure with a periodic change of a sign along the axis of
the cylinders and along the radius appears in the velocity distribution w. The flow
is axisymmetric. Figure 5.2a demonstrates the distribution of the velocity w in the
cross-section. It can be seen fromFig. 5.2b that the additionally superimposed isosur-
face of a constant value of this velocity is axisymmetric. Figure 5.2c demonstrates
the spatial streamlines visualizing two Taylor vortices in a pair.

Figure 5.3 shows the number of pairs N of the Taylor vortices depending on the
assigned periodicity size L. The set of the results obtained when using a flat field
with the velocity discontinuity as the initial data corresponds to data 1 marked by
large markers in the form of a circle. At L < 0.35, the Taylor vortices do not form,
and the flow remains plane. At 0.4 < L < 1.2, one pair of the vortices is formed; at L
> 1.2, two pairs of the vortices are formed in the considered range up to L = 2.

The set of the results 2 corresponds to the case of motion with an increase of the
size L, when using a solution with the Taylor vortices obtained at lower values of
L as initial data. In this case, a solution with one pair of the Taylor vortices can be
obtained for L < 1.5. This leads to significantly increase the range L, at which one
pair of the Taylor vortices is formed.
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Fig. 5.2 Example of the solution with the Taylor vortices, L = 0.835: a distribution of the velocity
in the cross-section, b superimposed isosurface, c spatial streamlines

Figure 5.4a, b shows an example of establishing a solution at L = 0.835, when
using a solution with a discontinuity (a solid line) and with a close value of parameter
L (a dashed line) as initial data. The establishment process is described by a change in
the total kinetic energy of motion E in time in three directions: in the circumferential
direction (Fig. 5.4a) and along the radius (black lines 1) and the axis of the cylinders
(red lines 2) in Fig. 5.4b.

When calculating for the flow with a discontinuity, the plane character of the flow
is preserved for some time, the kinetic energy along the axis of the cylinders and
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Fig. 5.3 Number N of the Taylor vortices depending on L

Fig. 5.4 Example of establishment of solution regarding total kinetic energy of motion in time:
a circumferential direction, L = 0.835, b radius direction (black lines 1) and axis of the cylinders
(red lines 2), L = 1.393, c circumferential direction, L = 1.393, d radius direction (black lines 1)
and axis of the cylinders (red lines 2), L = 0.835, e circumferential direction, L = 1.578, f radius
direction (black lines 1) and axis of the cylinders (red lines 2), L = 1.578
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the radius is 0 at that time. Then instability develops, which leads to the formation
of motion in all directions. The interesting fact is that the solution is reconstructed
in a catastrophic manner, i.e., the given character of the flow is preserved over a
certain time interval, then the surge of motion in the radial direction and along the
axis of the cylinders occurs, and it is relatively small compared to the motion in the
circumferential direction, but the solution changes qualitatively in the end. The flow
in this case becomes three-dimensional. Then, upon reaching the stationary solution,
the axisymmetric nature of the flow is established. When calculating with a change
in the L parameter, the same solution is obtained; the process of establishing it is not
accompanied by significant restructuring of the nature of the flow.

Figure 5.4c, d demonstrates an example of the restructuring of the flow at L
= 1.393 in an analogous form. In this case, when calculating with an increase of
parameter L, the nature of the flow with one pair of the vortices is determined by the
initial field of the flow, and this flow character is preserved. When calculating for the
flow with a discontinuity, two pairs of the Taylor vortices are formed. In fact, two
different solutions are possible at one L value.

Figure 5.4e, f demonstrates an example of the restructuring of the flow at L =
1.578 in a similar form. In this case, when calculating with an increase of parameter
L, the flow with one pair of the vortices re-forms into the flow with two pairs of the
vortices. When calculating for the flow with a discontinuity, two pairs of the Taylor
vortices are formed. The solutions are the same.

Figure 5.5 demonstrates the change in the Taylor vortex pattern depending on the
size of the periodicity L = 0.371, L = 0.557, L = 0.743, L = 0.929, and L = 1.114 in
cases when one pair of the vortices is formed regardless of the initial conditions. For
visualization, the speedw along the axis of the cylinders is used. All the patterns were
obtained in the same range of the variation w and in the same palette. A decrease in
L to the value L = 0.371 leads to a decrease in the maximum velocity w. When the
condition for the periodicity of the flow along the axis of the cylinders is preset, the

Fig. 5.5 Taylor vortices: a L = 0.371, b L = 0.557, c L = 0.743, d L = 0.929, e L = 1.114
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Taylor vortices can shift relatively to the boundaries of the computational domain,
which is observed in a number of calculations.

Figure 5.6 demonstrates the patterns of the Taylor vortices with L = 1.300, L =
1.393 when it is possible to get the flow with two pairs of the vortices (Fig. 5.6a)
and one pair of the vortices (Fig. 5.6b). When using the field with the given flow
structure as the initial condition, it is possible to delay the restructuring of the flow
pattern.

The moment of resistance of the inner cylinder in the case of the Couette flow is
determined by the expressionM = 4πμωr2R2

R2−r2 [12]. Let us introduce the dimensionless
coefficient of the moment of friction resistance Cm = M

0.5ρ(ωr)2πr2h
. Here, h is the

length of the cylinder. For theCouette solution, the coefficientCm is determinedby the
expression Cm = 1

Re · 8R2

(R+r)r . Figure 5.7 demonstrates the coefficient Cm depending
on the given periodicity L in accordance with the calculation results. The 1 and 2
sets of results corresponded to the similar sets are shown in Fig. 5.7. If a sufficiently

Fig. 5.6 Taylor vortices: a L = 1.300, b L = 1.393

Fig. 5.7 Dependence of
coefficient Cm from a
periodicity size L
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small periodicity size is set, the solution remains flat, and the Taylor vortices are
not formed. The moment of friction in this case corresponds to the Couette solution
Cm = 0.036. The requirement of periodicity at a small distance stabilizes the flow
and in fact determines its two-dimensional character preventing the development of
three-dimensional instabilities. In the conditions under consideration, the flat solution
is conserved at L < 0.35.

At a sufficiently large value of L, regardless of the initial conditions, three-
dimensional instabilities appear in the flow, and they subsequently formed into a
regular flow with the Taylor vortices. One pair of the Taylor vortices is formed in
the 0.4 ≤ L ≤ 1.2 range between the cylinders. With the formation of the Taylor
vortices, the friction moment increases significantly. There is the L ≈ 0.70–0.85
value of the periodicity size at which the maximum value of the friction moment
Cm ≈ 0.075 is observed. Both a decrease and an increase in L lead to a decrease in
the friction moment.

If to determine the flow structure by setting the initial conditions (with one pair of
the vortices), then the structure can be preserved in a larger range of the periodicity
size, and the friction moment decreases. Numerically, the solutions with the Taylor
vortices of a relatively larger size are obtained. At L ≥ 1.2, if the flow structure is
not determined in some way, not one but two pairs of the vortices are formed in the
flow area.

Figure 5.8 demonstrates the friction moment depending on the ratio of the period-
icity size to the distance between the cylinders: L/(R – r). In addition to the described
results at R = 1.5, Fig. 5.8 shows the data obtained by the calculation for the values
of the radius of the outer cylinder R = 2.0 and 1.25 (r = 1). When determining the
Reynolds number, the distance R – r between the cylinders is used as a characteristic
size. For all the calculations, the Reynolds number is Re = 200.

Fig. 5.8 Dependence of
coefficient Cm from L/(R
– r) with R = 2.0, R = 1.5,
and R = 1.25



58 F. A. Maksimov

Regardless of the geometry’s parameter, when setting a sufficiently small size
of the periodicity, the Couette flow is formed in the calculation. In this case, the
calculated value of the friction moment is consistent with the theoretical value in
accordance with the Couette solution (Cm = 0.0533, Cm = 0.036, and Cm = 0.0278
for R = 2.0, R = 1.5, and R = 1.25, respectively).

If the size of a pair of the vortices with the distance between the cylinders is
correlated, then the size of a pair of the Taylor vortices can be from 1.0 to 2.2 of
the distance between the cylinders. The estimate of the minimum size of a pair of
the vortices decreases to 0.8 if to increase R. The estimate of the maximum size of
a pair of the vortices is the same for three calculated geometry variants. Artificial
pulling of the flow structure is possible. In this case, the size of a pair of the Taylor
vortices can be up to 2.8–3.2 of the distance between the cylinders. Artificial pulling
of the flow structure with the formation of the anomalously large Taylor vortices can
be established, for example, by decreasing the distance between the cylinders in the
already formed flow with the Taylor vortices.

The Taylor vortices, in fact, allow to actualize the maximum friction within the
regular laminar flow. In accordance with this fact, the choice of the solution with
the maximum friction, which is determined by the maximum of the friction, is the
most correct one for the real flow. In accordance with the calculation results, this
maximum exists, and in this case, the optimal size of a pair of the vortices is from 1.4
to 1.8 of the distance between the cylinders. As the distance between the cylinders
decreases, the optimal size of the vortex pair increases.

In accordance with the experimental studies [13], the value of the coefficient of
the friction moment at Re = 200 is Cm ≈ 0.095 for R = 2, and the calculation results
satisfactorily conform to the experiment.

5.4 The Heat Exchange Between Rotating Cylinders

The flow of viscous gas between the rotating cylinders with different temperature is
considered. The outer cylinder is heated, and therefore, the gas near its surface has a
lower density. Under the influence of centrifugal force in the system of the rotating
cylinders, the Rayleigh–Taylor instability will develop.

The radius R of the outer cylinder is two times larger than the radius r of the inner
cylinder that rotates with the angular velocityω. The Reynolds number is determined
by the expression Re = ωr ·(R − r)/ν. The Re critical number, at which the Couette
flow reforms into the flow with the Taylor vortices, is approximately Re* ≈ 70 [13]
for a fixed and unheated external cylinder for the given geometry. For the formation
of the Rayleigh–Taylor instability, the temperature of the outer cylinder was set two
times higher than the temperature of the inner cylinder. The rotation of the outer
cylinder varied from the rest state (the outer cylinder does not rotate) to the rotation
with the same angular velocity as the inner cylinder, while the linear velocity of
the surface of the outer cylinder was two times higher than the linear velocity of
the inner cylinder. One of the intermediate rotation variants of the outer cylinder
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Fig. 5.9 Map of the flow modes, where A is the Couette-type flow, B is the axisymmetric flow
with the Taylor vortices, C is the plane flow with the vortex structures parallel to the axis of the
cylinders, D is three-dimensional flow with the Taylor vortices and the vortex structures parallel to
the axis of the cylinders

corresponded to half the angular velocity of the rotation of the inner cylinder, while
the linear surface velocities of the outer and inner cylinders were the same. The
parameters that determine the calculation conditions are the Re number and the ratio
� of the linear velocity of the surface of the outer cylinder to the linear velocity of
the surface of the inner cylinder. The Re number was considered in the range from
100 to 1000. The ratio � of the linear velocities of the surfaces of the cylinders was
from 0 to 2. The solution is obtained numerically by the relaxation method from a
state of rest with a discontinuity in density. The size of the periodicity was assumed
to be 1.85.

According to the calculation results, various types of the flow are formed
depending on the parameters. In Fig. 5.9, the map of the flowmodes in the parametric
area (�, Re) is shown with four obtained types of flows.

The Couette-type flow is formed at small values of the Re number and at suffi-
ciently high ratio �. In this case, the flow parameters change only depending on
the distance to the axis of the cylinders. Figure 5.10a demonstrates the density
distribution at Re = 200, � = 0.75. This is an example of the Couette-type flow.

For small values of the parameter � and for the sufficiently large values of the
Re number, the Taylor vortices form in the flow. Figure 5.10b shows a typical flow
pattern for the formation of the flowwith the Taylor vortices in the form of the density
distribution at Re = 200, � = 0.50. A decrease in the rotation speed of the outer
cylinder due to an increase in the difference of centrifugal forces between the layers
near the inner and outer cylinders leads to the development of the three-dimensional
instability and the formation of the Taylor vortices.

The Taylor vortices are the effect of the three-dimensional instability of the
Couette flowat the sufficiently largeReynolds numberwith aweakly rotating external
cylinder.With a sufficiently high value of the parameter�, and in fact with a decrease
in the difference of the centrifugal forces between the layers near the rotating inner
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Fig. 5.10 Density distribution: a Re = 200, � = 0.75, b Re = 200, � = 0.50

cylinder and near the outer cylinder, the plane vortex flow appears due to the differ-
ence in temperature of the cylinders,when the axes of the vortex structures are parallel
to the axis of the cylinders. Figure 5.11 demonstrates such flow in the form of the
density distribution in the cross-section perpendicular to the axis of the cylinders.
There is no movement along the axis of the cylinders in this type of the flow, which
is one of the signs of this type of the flow. The flow has a two-dimensional plane
character.

Figure 5.11 demonstrates the examples with different numbers of formed vortices
(from 8 to 1). Apparently, the maximum number of vortices is limited by the ratio of
the length of the average circumference between the cylinders to the distance between
the cylinders. At a high speed of the rotation of the outer cylinder, the number of the
vortices decreases up to one, while the vortices take a very elongated shape in the
circumferential direction. This type of the flow in the considered definition of the
problem is connected with the temperature difference between the cylinders, and it
can be classified as two-dimensional thermal waves.

The flow when both the Taylor vortices and the plane vortices are formed in the
flow is the most interesting one (Figs. 5.12 and 5.13).

In a certain sense, this type of the flow can be considered as the unification of the
flows with the Taylor vortices and the plane thermal waves. In this case, the flow is
three-dimensional. When considering the flow field in the density distribution, one
can observe both the structures elongated in the circumferential direction (corre-
sponding to the Taylor vortices) and the periodic structures in the circumferential
direction non-corresponding to the Taylor vortices and corresponding to the plane
thermal waves. Rather high values of velocity along the axis of the cylinders appear
for this type of the flow (due to the formation of the Taylor vortices, Fig. 5.13a, b).

Figure 5.14 demonstrates the heat flow Q from the outer cylinder to the inner
cylinder, depending on the Re number for � = 0, � = 1.0, and � = 2.0 (lines 1, 2,
and 3, respectively). The value of Q is related to the temperature difference and the
surface area of the inner cylinder (and the coefficient of thermal conductivity of the
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Fig. 5.11 Flow with plane thermal waves: a Re = 300, � = 1.0, b Re = 500, � = 1.25, c Re =
800, � = 1.50, d Re = 1000, � = 2.0

gas between the cylinders). At � = 2.0, Re = 100, heat exchange corresponds to the
heat exchange mode for the plane Couette flow. With an increase in the Reynolds
number, two-dimensional heat waves At � = 1.0, Re = 100, the Couette flow mode
is formed, and then the heat exchange is determined at 200 < Re < 500 by plane heat
waves. A decrease in the rotation speed of the outer cylinder leads to a decrease in
the Re number, at which these waves are formed and in addition slightly increases
the heat flow. At � = 1.0, Re > 600, as well as at � = 0, the presence of the
Taylor vortices, whose formation implements the maximum value of Q, influences
the heat flow. In this case, the value of the heat flow is almost proportional to the Re
number (with the exception of the Re ≈ 100 area, when the Taylor vortices have just
formed). At Re = 1000, the heat exchange in the formation of the Taylor vortices in
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Fig. 5.12 Example of forming the Taylor vortices and the plane vortices, Re = 400, � = 1.0:
a density distribution, b constant density surface

comparison with the Couette flow (that is actually a mode without convective heat
exchange) is approximately 5 times greater.

Figure 5.15 demonstrates the nature of the heat flow on the surface of the inner
cylinder at: Re = 300, � = 0.5 (types of flow B—the axisymmetric flow with the
Taylor vortices) (Fig. 5.15a), Re = 300, � = 1.0 (types of flow C—the plane flow
with the vortex structures parallel to the axis of the cylinders) (Fig. 5.15b), and Re =
500, � = 1.0 (types of flow D—the three-dimensional flow with the Taylor vortices
and the vortex structures parallel to the axis of the cylinders) (Fig. 5.15c). In each
case, a different palette range is used.

As the Re number increases, the character of the heat flow from a variable one in
the circumferential direction changes to a variable one along the axis of the cylinders.
The nature of the flow is the plane waves, the Taylor vortices, or their joint presence
that leads to significantly different patterns of heating.

5.5 Conclusions

According to the results of the numerical calculations, the problem of the flow
between rotating cylinders with the Taylor vortices allows many solutions, and the
same can be seen in the experiments. The choice of the implemented solution can
be determined both by additionally imposed conditions (e.g., the finite length of
the cylinders) with the corresponding boundary conditions and the history of the
establishment, the choice of the initial flow field. The size of the vortices allows a
certain range of its value. There exists an optimal value of the Taylor vortex size for
maximum friction to appear.

When studying the flow of viscous gas between the cylinders of different temper-
ature, the flow modes with the flat vortex structures and the Taylor vortices, as well
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Fig. 5.13 Example of forming the Taylor vortices and the plane vortices, Re = 800, � = 1.0,
distribution of velocity along the axis of the cylinders a axial view,b side view, c density distribution,
d constant density surface

Fig. 5.14 Heat flow
depending on the Re number:
curve 1 corresponds to � =
0.0, curve 2 corresponds to
� = 1.0, curve 3
corresponds to � = 2.0



64 F. A. Maksimov

Fig. 5.15 Nature of the heat flow on the internal cylinder: a Re = 300, � = 0.5, b Re = 300, � =
1.0, c Re = 500, � = 1.0

as three-dimensional flow corresponding to the combination of these two types of
the flows, were found.
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Chapter 6
The Investigation of the Evolution
of Cluster Beam Development
in the Nozzle-Skimmer System

Igor E. Ivanov , Vladislav S. Nazarov , and Igor A. Kryukov

Abstract The device skimmer is considered, which is intended to separate inert gas
clusters with the aim of further collision them with a surface to increase its smooth-
ness order. The condensation and the evaporation processes ofArgon in the device are
calculated. Themodifiedmethod ofmoments (MM) is used formodeling. The droplet
nucleation and growth rate coefficients were found by the semi-empirical model.
Two-dimensional viscous axisymmetric case is considered. The moment equations
are supplemented by the diffusion equation of a condensing gas. To solve the equa-
tions, the finite volume method is used. The Riemann problem is solved using the
AUSM+ method.

6.1 Introduction

Molecular clusters are widely used to produce new materials [1], deposit thin films
on the surfaces [2], and influence surfaces by collision them with a cluster beam
[3]. To obtain clusters from gas vapors, it is convenient to use a supersonic gas
outflow from a nozzle. The resulting clusters are supposed to be used to bombard the
surface of integrated circuits to achieve its greater order of smoothness. However,
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to achieve this goal, it is necessary to separate the clusters using a skimmer. This
study examined the nozzle-skimmer system, which is used to obtain Argon clusters.
Using bombardment of inert gas clusters in the future, it is planned to get integrated
circuits to a higher order of smoothness on an industrial scale.

A cluster is a system consisting of atoms or molecules combined by the forces
of van der Waals into a single whole. The number of atoms or molecules in such a
system can vary from units to hundreds of thousands [4, 5].

The properties of molecular clusters depend on their size. The properties of small
clusters are determined by the structure of themolecules, while the properties of large
clusters (droplets) approach the properties of a liquid medium. Clusters are formed
as a result of collisions of particles; the following processes are taken into account:
elastic collisions of molecules, recombination of molecules, cluster and monomer
associations, cluster associations, and monomer evaporation from a cluster [6, 7].

The process of cluster formation begins with a combination of two atoms or
molecules (monomers) and obtaining dimers, then trimers, etc. As a rule, small
clusters (dimers, trimers, etc.) are obtained as a result of three-particle collisions
in which excess energy (the excess energy of colliding particles over the energy of
the formed cluster) is carried away by one of the primary particles. A similar three-
particle process continues until the formed cluster has a size sufficient to absorb
excess energy in the internal degrees of freedom. After this, more often in the process
of cluster formation, two-particle reactions are realized [6, 7].

Kinetic models are currently used to study cluster formation. The main method in
this direction is statisticalmodeling using theMonteCarlomethod [8–10]. The quasi-
chemical model of condensation has become widespread [9, 11, 12]. Simulation of
the process of volumetric gas condensation can be carried out based on solving
the kinetic equation for the size distribution function of droplets, which describes
the evolution of the spectrum of clusters in time and space [13]. However, a direct
solution of the kinetic equation is possible only for relatively simplemodel problems.

The moment method considers two processes that affect the mass fraction of the
liquid component: cluster formation (nucleation) and growth of formed clusters due
to condensation. Equations describing an evolution of clusters (droplets) in the gas
medium flow are obtained as moments from the general equation of dynamics of the
size distribution function of cluster droplets. In thiswork, the systemof equations uses
the equation for the mass fraction of the liquid phase and the equation for the mass
fraction of the condensing phase at the beginning of the calculation (the sum of the
mass fractions of the liquid and vapor phases) [14]. Using the equation for the mass
fraction of the condensing phase is a newelement in themodel ofmoments that allows
us to significantly expand the range of problems to be solved, for example, to simulate
the outflow of a jet with the condensation of vapor of a condensing substance into a
space filled with medium without a condensing substance. Significant development
of the method of moments is its generalization to the case of droplet evaporation
[15, 16].

Inmathematical modeling of the process of homogeneous condensation including
moment methods, the results of classical nucleation theory (CNT) are used [16–19].
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CNT uses the macroscopic and equilibrium approaches to describe the nonequilib-
rium process that occurs in most cases on a nanometer scale. Important CNT results
are models of nucleation rate, droplet size growth rate, and critical nucleus size.

Recent experimental and computational works suggest that CNT does not
adequately describe a nucleation process. Potential sources of errors include: (a)
the use of the so-called “capillary approximation” that is the use of the concept of
“surface tension” and sphericity for small clusters, (b) the incorrect determination of
some macroscopic quantities (densities) in small clusters, (c) not taking into account
nonisothermal processes (droplet overheating) during condensation [19–21].

Recently, many approaches to modernizing the classical theory of nucleation
have been suggested [22–28]. For example, in [22, 23], the modified relations were
proposed for the nucleation rate and droplet size growth rate. These models contain
some coefficients that must be selected for each case under consideration. As a
reference model for the selection of these coefficients, the authors considered a
semi-analytical approximation proposed by Hagena and Obert [29, 30].

Using themethod of moments, the chapter investigates the processes of condensa-
tion–evaporation during the flow of an argon jet from a micro-nozzle into a vacuum
chamber and the argon flow in the nozzle-jet-skimmer system.

Hereinafter, in Sect. 6.2, we consider the mathematical formulation of the model
problem. Section 6.3 extends the possibilities of MM due to the Hagena’s theory.
Section 6.4 contains the results of the numerical modeling. Section 6.5 concludes
the chapter.

6.2 Mathematical Model

The propagation of viscous heat-conducting condensing argon vapor in a nozzle-
skimmer system is considered. In continuummodels, the nucleation function is used
to describe the process of cluster formation and further growth of droplets, their
growth rate determined from the ratio of partial pressure to vapor pressure. To simu-
late evaporation, the denucleation function is used in MM instead of the nucleation
function [31].

For high concentrations of condensing gas, we can assume that the droplet temper-
ature and medium temperature are the same [32]. In this case, two parameters will
have the main effect on condensation: accommodation coefficient α and droplet
growth rate β. Each of these parameters can be selected for a specific gas. Previ-
ously, the authors considered the case of condensation of water vapor [14, 33] in the
experiment [22]. It was shown that the acceptable values of the coefficients are α =
1, β = 0.1.

Section 6.2.1 describes the complete system of equations. Section 6.2.2 realizes
method of moments. Section 6.2.3 contains the thermodynamic relations for closing
of the equations.
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6.2.1 System of Equations

The system of the Navier–Stokes equations supplemented by moment equations and
written in a slightly divergent form was taken as a mathematical model of gas:

∂U

∂t
+ ∂(F − Fv)

∂x
+ ∂(G − Gv)

∂y
= S, (6.1)

where

U =

⎡
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ρQ1
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⎤
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, (6.2)

where
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τxx = 2

3
μ

[
2
∂u

∂y
− 1

y
u − ∂v

∂x

]
, (6.3)
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3
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[
−∂u
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∂v

∂x

]
, (6.4)

τxy = τyx = μ

[
∂v

∂y
+ ∂u

∂x

]
, (6.5)

qx = −λ
∂T

∂x
, (6.6)

qy = −λ
∂T

∂y
. (6.7)

Here, ρ is the density, p is the pressure, T is the static temperature, u is the velocity
along the x-direction, v is the velocity along the y-direction, E is the total energy per
unit mass,μ is the viscosity coefficient, λ is the thermal conductivity coefficient, J is
the nucleation/denucleation function, ṙ is the grow rate, Q0, Q1, Q2 are themoments
of distribution function.

The system can be considered as a combination of two systems of equations,
first of which is the classical system of the Navier–Stokes equations written for a
cylindrical coordinate system and the second is a system of moment equations. The
equations from Eq. 6.8 to Eq. 6.11 describe the dynamics of the mixture in the
two-dimensional representation.

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= −ρv

y
(6.8)

∂(ρu)
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(
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∂y
= −v(ρE + p)

y
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Equations 6.12–6.15 were obtained from the general dynamics equations
describing the nucleation process and the dynamics of the homogeneous conden-
sation.

∂(ρQ0)

∂t
+ ∂(ρuQ0)

∂x
+ ∂(ρvQ0)

∂y
= J − ρQ0v

y
(6.12)
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∂(ρQ1)

∂t
+ ∂(ρuQ1)

∂x
+ ∂(ρvQ1)

∂y
= r∗ J + ṙρQ0 − ρQ1v

y
(6.13)
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∂x
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Equation 6.16 describes the propagation of the concentration of the condensing
gas.

∂(ραmax)

∂t
+ ∂(ρuαmax)

∂x
+ ∂(ρvαmax)

∂y
= −ραmaxv

y
(6.16)

6.2.2 Moment Equations

Modeling of condensation in MM occurs through macro-parameters that can be
obtainedusing thefirst fourmoments of the distribution function. Increase or decrease
in the concentration of the liquid fraction affects a formation of shock waves and
changing in the adiabatic coefficient, which completely changes the flow structure.
These processes canbe considereddue to the determinationof the concentrationof the
liquid fraction in the moment equations, the presence of which is taken into account
by reconstructing the macro-parameters after solving the system of gas-dynamic
equations.

The equations of moments can be represented as an endless chain of moment
equations, so called Hill chain [34] described by Eq. 6.17, where ρQn =∫ ∞
x∗ rn f (x, t, r)dr is nth order moments.

∂

∂t
(ρQk) + ∂

∂xi
(ρUi Qk) = (r∗)k J + kρQk−1ṙ k = 1,∞ (6.17)

Instead of the moment Q3, the mass fraction of the liquid fraction α = 4π
/
3ρl Q3

is used,whereρl is the liquid phase density. In addition, the authors added an equation
for αmax to take into account the diffusion of the carrier gas and the vapor of the
condensing gas [33].

Nucleation. In MM, two stages of the development of condensation are distin-
guished. The first stage is nucleation, and the second stage is the growth of the formed
clusters. The rate of increase in the number of clusters is determined by the nucle-
ation function J. The dynamics of the growth rate of clusters is transmitted using the
growth rate ṙ = dr/dt . Additionally, it is necessary to determine the critical radius
r∗, the radius at which droplet growth begins.
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Let us use the following relationships [23, 35, 36]:

J = qc
(1 + η)

√
2σ

πm3

ρ2
V

ρl
exp

(
−g

4π

3

r2∗σ

RVmT

)
, (6.18)

where 1
1+η

is the corrective factor taking into account the nonstationarity of the

process [8], qc is the condensation coefficient (qc ≈ 1), η = 2 κ f −1
κ f +1

L
RV T

(
L

RV T
− 1

2

)
,

σ = kσ σ∞, σ∞ is the flat film surface tension, kσ is the correction factor taking into
account the curvature of the drop, g is the nucleation correction factor multiplier
[5],S = pV

pS
is the saturation parameter,

dr

dt
= β

ρl

pV − pS,r√
2πRV T

, (6.19)

where pS,r = pS exp 2σ
ρl RV TrHill

is the saturation pressure on the surface of a drop of
average radius size, β is the evaporation coefficient,

rHill =
{√

Q2
Q0

if α > 10−6

0 if α ≤ 10−6
, (6.20)

r∗ =
{

2σ
ρl RV T ln S if S > 1

∞ if S ≤ 1
, (6.21)

where ρV = ρ(αmax − α) is the vapor pressure, m is the algebraic notation of a
condensing substance. Parameter ρl determines the similarly [31].

Evaporation. Evaporation occurs when the vapor pressure becomes less than the
saturation pressure. A decrease in the saturation coefficient S is possible at shock
waves and as a result of flow deceleration.

The main problem for simulating evaporation is to determine the number of clus-
ters that will evaporate. Usually, for these purposes, themoment distribution function
is restored [31, 37]. In [31], only normal and uniform distributions were considered;
however, droplets cannot have a negative radius. The lognormal function is devoid
of this disadvantage. We made the assumption that the distribution of clusters is
lognormal or close for lognormal. In addition, the authors believe that the number of
clusters that evaporates occupies a region from 0 to Q1

/
Q0 − D (Fig. 6.1).

Opposite of condensation, there is no need to determine r∗ when evaporation
occurs. The cluster growth rate is also determined like for condensation, but it will
have a negative sign. The denucleation function is determined like a lognormal:
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Fig. 6.1 Example of
distribution density

J =
Q1/Q0−D∫

0

ϕ(r,m, D)dr , (6.22)

where ϕ(r,m, D) is the density of the lognormal distribution:

ϕ(r,m, D) = 1

r
√
D2π

exp

(
−1

2

(ln(r) − m)2

D

)
, (6.23)

The parameters m, D are obtained from Eq. 6.24 [37].

D = ln

(
Q0Q2

Q2
1

)
m = 1

2
ln

(
Q4

1

Q3
0Q2

)
(6.24)

6.2.3 Thermodynamic Equations

The thermodynamic properties of the mixture are determined by the composition of
the components and presence of fluid in it. It is believed that the mixture is in thermo-
dynamic and caloric equilibrium provided by Eqs. 6.25–6.28, whereCVa,CPa are the
specific heat components at constant volume and at constant pressure for carrier gas,
respectively, CVV, CPV are the same ones for vapor condensing substance, CVmixt,
CPmixt are the same ones for two-phase mixture, Cl is the specific heat components
of liquid, Ra , RV , Rmixt are the individual gas constants of the carrier gas condensing
medium and two-phase mixture, respectively, γ f is the adiabatic exponent of the
mixture.
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CVmixt = (1 − αmax)CVa + αmaxCVV + α(Cl − CVV) (6.25)

CPmixt = (1 − αmax)CPa + αmaxCPV + α(Cl − CPV) (6.26)

Rmixt = (1 − αmax)Ra + αmaxRV − αRV ) (6.27)

γ f = CPmixt

CVmixt
(6.28)

The caloric and thermal equations of state are mentioned below in the form of
Eqs. 6.29–6.32, where T is the temperature of the mixture, a f is the frozen velocity
of sound of the mixture, L is the latent heat of vaporization.

T = (E − u2/2) + αL0

(1 − αmax)CVa + αmaxCVV + α(Cl − CVV)
(6.29)

p = ρT Rmixt (6.30)

a2f = γ f
p

ρ
(6.31)

L = L1T + L0, L1 = CPV − Cl (6.32)

Viscosity calculation. In the system, a temperature has significant changes. There-
fore, it is necessary to take into account the dependence of viscosity on temperature.
A modified Sutherland formula uses as the basis for calculating of the viscosity has
a view of Eq. 6.33, where μ0 = 1.255 × 10−5 kg/mc is the dynamic viscosity for
T∗ = 150 K, a = 0.945, S = 128.35.

μ =
⎧⎨
⎩

μ(T∗)
(

T
T∗

)a
if T < T∗

μ(T∗)
(

T
T∗

)3/2
T∗+S
T+S if T ≥ T∗

(6.33)

6.3 The Correction of the Model

In practice, condensation processes have been well studied in the works of Hagena
and Obert [29, 30]. They showed that cluster formation and growth depended on
pressure p0, temperature T0, and nozzle diameter d. Hagena showed that the cluster
concentration can be calculated using Eq. 6.34, where �∗ is the dimensionless
similarity parameter of condensation (Hagena parameter).
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Table 6.1 Parameters of the Hagena theory

Coefficient of accommodation β g n rarg (m) α

0.2 2.5 0.23 × 1017 0.72 × 10−7 0.1984

0.1 2.0 2.603 × 1017 0.325 × 10−7 0.2054

0.1 1.6 5.93 × 1017 0.251 × 10−7 0.2143

0.1 1.325 9.096 × 1017 0.2198 × 10−7 0.2178

N = b

(
�∗

1000

)
(6.34)

For argon, Eqs. 6.35 and 6.36 are applicable, where ϕ is nozzle expansion angle,

d∗ = 750 mkm, p0 = 20, 000 mbar, To = 295 K, ravrg =
(

Nm
4/3πρ

)
, m = 6.63 ×

10−26 kg, b = 100, a = 1.8.

�∗ = 1650P0d
0.85
eq T 2.29

0 (6.35)

deq = 0.736d∗
/
tan ϕ (6.36)

The results of the nozzle under consideration for the Hagena’s theory are the
following: N = 7.3 × 105, ravrg = 0.21 × 10−7 m, n = 9.2 × 1017 1/m3.

Table 6.1 shows the dependence of the parameters obtained at the nozzle exit on
the accommodation coefficient and the parameter g.

The best approximation was achieved using the parameter values β = 0.1, g =
1.325.

6.4 Results

The numerical study of the processes occurring in the device of generating cluster
beams is carried out. At this stage, the operatingmodes of the device corresponding to
incomplete pumping of gas from the vacuum chamber are considered. The behavior
of clusters at the shock wave in front of the skimmer and their further development
in the inner region of the skimmer is the subject of interest. The geometry, grid, and
boundary conditions of the computational domain are discussed in Sects. 6.4.1–6.4.3,
respectively. Section 6.4.4 contains the results of the calculations.
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Fig. 6.2 Geometry representation

Table 6.2 Geometry sizes Index R j (m) L j (m)

1 0.0007 0.0014

2 0.00007 0.0028

3 0.001418046 0.014

4 0.00046 0.01596

5 0.00025 0.039025

6 0.0125 0.036015

6.4.1 Geometry

The computational domain includes the axisymmetric conical supersonic micro-
nozzle, jet flowing out into the vacuum chamber, and axisymmetric skimmer located
coaxially with the micro-nozzle at the certain distance from the micro-nozzle cut
(Fig. 6.2).

The micro-nozzle starting from the critical section has a conical shape, and the
skimmer has the shape of a hollow truncated cone connected to a hollow cylinder.
All device sizes are shown in Table 6.2.

6.4.2 Grid

The composite regular computational grid consists of quadrangular cells, is divided
into blocks, and has a condensation to the boundaries of the areas coinciding with
rigid walls (Fig. 6.3). In total, about 170 thousand design cells (790 × 210) are
present in the computational grid; 6000 cells (200 × 30) fall on the area inside the
micro-nozzle.
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Fig. 6.3 Grid representation

Table 6.3 Boundary
conditions

Name P (Pa) Total temperature (K)

In 709,275 (7 atm) 300

out_space 50 –

out_strim 10 –

6.4.3 Boundary Conditions

For the expansion of the jet to be sufficient for condensation to form, the region in
the vacuum chamber behind the nozzle must have very low pressure. The formation
of clusters of the required size and their separation occurs in the inner region of the
skimmer, where an even higher vacuum is created than in a vacuum chamber. For
all boundaries of external areas (out_space), it is assumed that the total pressure on
them is the same. The flow parameters at the input and output boundaries are given
in Table 6.3.

6.4.4 Calculation Results

The results of calculations of the argon flow taking into account phase transi-
tions (condensation and evaporation) in the micro-system—jet—skimmer system
are shown in Figs. 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10. In the flow of gas (argon), a
boundary layer is formed inside the micro-nozzle, which occupies a significant part

Fig. 6.4. Distribution of the contour of the Mach number in the region of interest
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Fig. 6.5. Distribution of contour of the mass fraction of liquid in the region of interest

Fig. 6.6. Mass fraction of fluid along the axis of symmetry

Fig. 6.7. Mach number along the axis of symmetry
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Fig. 6.8 Average radius of the droplet along the axis of symmetry

Fig. 6.9 Temperature along the axis of symmetry

Fig. 6.10 Number of drops along the axis of symmetry
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of the inner region of the nozzle (Fig. 6.4). The growth of a thick boundary layer
inside the supersonic part of the micro-nozzle sharply reduces the actual degree of
expansion of the nozzle. This leads to the decrease in the expansion of the flow in the
nozzle and increase in temperature in comparison with the adiabatic inviscid flow.
For given parameters (Table 6.3), the jet flowing from the micro-nozzle is under
expanded, continues to expand, and accelerate in the open space behind the nozzle.
Immediately after the nozzle exit, a standing shockwave arises,which removes exces-
sive over-expansion of the flow in the jet and propagates downstream of the gas. In
the region x = 0.023–0.025 m, a hanging shock wave falls on the axis of symmetry
and is reflected from it in an irregular manner. Due to the large rarefaction of the
flow and the insufficiently detailed grid, the structure of irregular reflection with a
triple configuration of shock waves is strongly smeared in space and is observed in
Figs. 6.7 and 6.9 in the form of a zone of temperature increase and a decrease in the
Mach number.

In the calculations, a monotonic increase in the mass fraction of the liquid fraction
along the nozzle axis is shown (Figs. 6.5 and 6.6). In this case, behind the zone of
irregular reflection of the standing shock wave from the axis of symmetry in the
region of the new acceleration (expansion) of the flow, the condensation intensity
increases (Figs. 6.5 and 6.6). A strong shock wave arises in front of the skimmer, the
front of which is located at x = 0.029 m, beyond which the temperature rises sharply
(Fig. 6.9). The flow becomes subsonic. In this case, drops of liquid argon behind the
front of this shockwave evaporate almost completely (Fig. 6.10) and almost complete
denucleation occurs. The mass fraction of liquid droplets, the average radius of the
droplet, and the mass concentration of clusters in the flow decrease to almost zero.
Subsequently, new nucleation and condensation growth of argon clusters take place
in the skimmer.

6.5 Conclusions

The mathematical model of gas-dynamic flows with the phase transformations
(condensation and evaporation) is developed. The system of the Navier–Stokes equa-
tions is used to describe the flow parameters, and the system of moment equations is
used to describe the parameters of a two-phase medium. A numerical algorithm for
solving the general system of equations is constructed on the basis of the Godunov
scheme with the approximation AUSM+ [38] for solving the Riemann problem.

The developed numerical model was optimized and adapted for the case of pure
argon condensation in a nozzle based on the Hagena’s semi-empirical theory [29,
30]. In numerical experiments, certain values of the parameters of the condensation
model are determined. For example, the values of the coefficient of accommodation
and the nucleation correction factor multiplier are determined.

The processes of argon condensation–evaporation in the micro-system-jet-
skimmer system for generating cluster beams are studied. The fields of the flow
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parameters of two-phase medium and distribution of these parameters along the axis
of symmetry are obtained.
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Chapter 7
Numerical Simulation of Generation,
Distribution, and Impact
of a High-Specific Energy Plasma Bunch
on a Barrier

Evgeniy L. Stupitsky , Andrey A. Motorin , and Darya S. Moiseeva

Abstract Physical and comprehensive numerical studies of the generation of plasma
buncheswith a high specific energyhavebeen carried outwith the use of a plasmagun.
The parameters of the plasma bunch upon exit from the plasma accelerator and during
propagation in the ionosphere (h > 200 km) to considerable distances (≈100 km)
have been calculated. A special numerical algorithm is presented to determine the
results of the impact of a rarefied high-velocity gas flow (∼5 × 107 cm/s) on the
surface of crystalline and amorphous solid bodies. Based on the results, the electron
concentration and the scale of the ionized region that formed during the passage of
a high-speed toroidal plasma bunch through the rarefied air were estimated. When
the bunch spreads at a height ∼120 km and a distance ∼50 km, the ionized area with
transverse dimensions of ∼20 km has an electron concentration of ∼6 × 108 cm–3.

7.1 Introduction

At present, studies on the design and use of plasma guans are in active development.
In Russia, a large cycle of experimental works were carried out in TRINITI on both
the development of generators of plasma bunches with a high specific energy and
the study of their pulsed action on a solid body target. In the USA, there was also a
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series of works to create a pulsed plasma generator with highest energy and dynamic
characteristics [1]. A sufficiently informative and, at the same time, brief survey of
works in the leading plasma laboratories of the USA in this area was made in [1]. The
main experimental results of that work were on studies of the MARAUDER facility.
Their goals were an analysis of the generation of a Compact plasma Toroid (CT) with
a high specific energy and estimation of the characteristics of the high-temperature
plasma region that forms when the incident flow interacts with the flow reflected
from the solid body target directly at the CT exit from the generator, the transverse
and longitudinal scales of which are on the order of meters.

The distinctive and practically important feature of the works of TRINITY is,
first of all, that the scales of the generator are considerably smaller, which can
make its application domain rather wide. When a plasma bunch moves in vacuum
or strongly rarefied gas, its scales increase; the density, temperature, and ionization
degree decrease. Therefore, the character of the interaction with the surrounding
rarefied gas medium and geomagnetic field changes. The study of these processes
is important for a series of fundamental and applied problems of plasma physics.
Since the scales of the bunch in this process significantly increase and it ceases to be
compact, we call it the Toroidal Plasma Bunch (TPB).

Based on a two-dimensional numerical algorithm developed earlier [2], the very
initial stage of the dynamics of TPB upon exit from the generator and motion
in vacuum was studied, as well as, the interaction of the incident flow with the
flow reflected from the barrier; the parameters of the electromagnetic disturbance
generated in this process were determined.

In connection with the creation of small-size plasma generators, the domain of
their practical use, certainly, expands significantly, primarily due to the possibility
of bunch propagation to considerable distances in a rarefied atmosphere. Thus, such
devices are often called plasma guns.

The operation of space technique in the Near-Earth Space (NES) is based to a
considerable extent on the use of OptoElectronic Equipment (OEE). Both in OEE
itself and in the protection tools, glass-type dielectric materials with a high degree
of transparence are used.

Thus, analysis of the possible use of plasma guns for studies of scientific and
applied questions of the dynamics of plasma bunches in the ionosphere includes the
successive solution of three main problems:

• Formation of TPB and its motion at the initial stage just after the exit from the
generator, when the decisive influence on its structure is caused by the internal
toroidal current and the poloidal magnetic field generated by it.

• Numerical study of the motion of partially ionized TPB in a rarefied atmosphere,
when the internal current is already small and the decisive influence on its structure
and motion is caused by processes of the collisional interaction of the bunch
plasma with the rarefied surrounding gas when they mutually penetrate each other
due to the high-velocity relative motion.

• Numerical study of the impact of the rarefied gas flow formed by TPB on the
surface of the transparent dielectric. The goal of the work is to mathematically
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model the initial and subsequent stage of TPB motion in a rarefied gas and the
impact of a high-velocity flow on the surface of a solid body.

The chapter is organized as follows. Section 7.2 describes the general principles of
plasma gun functioning and the physical picture of plasma clot formation. Section 7.3
provides a physical and mathematical statement of the initial stage of the problem to
be solved. Due to the fact that this problem is quite complex both mathematically and
especially physically, it made sense to solve the problem sequentially numerically
with gradual connection of physical processes. Section 7.4 presents the results of
the calculation in the adiabatic approximation (without taking into consideration
internal kinetic processes and Joule heating). And in Sect. 7.5, calculations of the
initial stage of CT dynamics are given in full statement. Based on studies of the initial
stage of formation and movement of CT, calculations of its further movement in the
ionosphere were made and its influence on the ionosphere was estimated. Section 7.6
is dedicated to this. Section 7.7 shows the effect of a rarefied plasma flow of certain
duration on a crystal and amorphous structure of the glass type. Section 7.8 concludes
the chapter.

7.2 Physical Picture of the Formation and TPB Dynamics

Electromagnetic shock tubes used for the creation of intense shock waves have been
known for a rather long time. Their operation is based on the effects of gas heating
by an electric discharge and its acceleration under the action of magnetic forces. The
discharge current flows in the radial direction between electrodes, one of which is
a rod positioned on the tube axis and the other is a cylinder near the tube surface.
The radial current of the discharge interacts with the concentric magnetic field of the
current itself and the current flowing along the central electrode. The ponderomotive
force is directed along the tube axis and accelerates the plasma in this direction.
The further development of works in this area was related to the creation of plasma
guns. An important distinctive feature of plasma guns is the presence of a powerful
toroidal current in the torus-shaped plasma bunch ejected from the generator. As
shown by [1], the radial magnetic field forming the toroidal current is created by a
special current coil placed in the initial part of the channel. During CT motion in this
field, the toroidal current creates its own poloidal magnetic field, which exercises a
decisive influence on the preservation of the compact structure of the plasma bunch
at the initial stage of its motion after the escape from the generator.

The geometry of the plasma bunch upon exit from the pulsed plasma accelerator
has approximately the following characteristics, as shown in Fig. 7.1.

We assume that the toroidal current in TPB is determined by the radial component
of the magnetic field Br . The component is created by a coil with a current of Ik ∼= 5
kA and a distance of δ ∼= 1−3 cm from the coil to TPB surface. The radial component
of the magnetic field in the region inside TPB can then be estimated as
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Fig. 7.1 Geometry of TPB.
The initial conditions are the
following: a0 = 3.5,
R0 = 6.5 cm. Hydrogen
plasma with a bunch mass of
M = 2.2mg

Br = 1

2a0

2a0∫

δ

μ0 Ik
2πr

dr = μ0 Ik
4πa0

ln

(
2a0
δ

)
, (7.1)

where ln
( 2a0

δ

) ≈ 1, μ0 is the magnetic constant. Since hydrogen is completely
ionized inside the torus during the motion in the channel, then for T = 10 eV, ni =
8.3×1017 cm−3, the electron–ion energy exchange time is obtained τei = 1.9×10−9 s
and the conductivity is equal to σ = 4.87 × 107 S/m (here S is Siemens).

The toroidal current can be estimated as I = SσUBr . Setting area of the
transverse cross section S = πa20 = 3.85 × 10−3 m2, U = 3 × 105 m/s, and
Br = 0.013T, we obtain I ∼= 0.7MA. Such current creates a poloidal magnetic field
Bϕ ≈ μ0 I/2πa0 ∼= 4 T on the toroidal surface.

Therefore, the initial energy distribution (kJ) in TPB upon exit from the generator
is approximately as follows:

Ek = MU 2

2
= 100,

ET = 3

2
kT 2N = 0.63TeV = 6.3 − 18.9,

Ei = T N = 2.85.

The ionization energy Ei and thermal energy ET are considerably less than the
kinetic energy Ek of the directed motion, where the ionization potential of hydrogen
T = 13.6 eV and N is total number of hydrogen ions.

According to the performed analysis, the initial TPB stage after exit from the
generator, when themagnetic field created by the toroidal current exercises a decisive
influence on its parameters, can be calculated with the following sufficientlymatched
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initial parameters: I0 = 0.7MA, a0 = 3.5 cm, R0 = 6.5 cm, Te0 = Ti0 = 10 eV,
ni0 = 8.3 × 1017 cm−3, and U0 = 3 × 107 cm/s.

For a more comprehensive understanding of TPB evolution during motion, the
posed problem in this work was gradually detailed and refined. At first, the behavior
of a homogeneous cylindrical layer in a one-dimensional cylindrical approximation
is considered. The gas is supposed to be ideal.

The calculation was carried out with Brode’s difference scheme [3] and von
Neumann artificial viscosity. As follows from the dimensionless equations and initial
conditions, the only parameter determining flow development is a0. The calculations
showed that at a zero value of the initial velocity u = u/ux , where ux = √

γ kT0/m.
The ring-shaped structure quickly turns into an expanding solid disk in the absence of
any external forces and field inside the toroid for any initial a0, on which the collapse
time depends. However, as calculated studies have shown, if u(t = 0) ≥ 2, then the
internal rarefaction wave does not reach the center and the annular expansion will
continue in time. It should be noted, that this value u = 0 is less than the maximum
value u = 2(γ − 1) = 3, which according to the front of the plane rarefaction wave,
since in this case the movement is cylindrical and not self-similar.

7.3 Physico-mathematical Formulation of the Problem
of the Initial Stage of TPB Dynamics

TPB dynamics is described by variation in the two main parameters, R(t) and a(t).
The variation R(t) is determined by the radial tension created by the pressure of the
magnetic field inside the toroidal ring and is proportional to the squared current I 2

flowing inside the torus, as well as, by the action of the internal pressure inside TPB.
The expressions for both components of the force were obtained in studies [4]. Using
them, one can approximately write the equation for R(t) in the form of Eq. 7.2.

M0
d2R

dt2
= 2π2a2P + I 2

2c2
∂L

∂R
(7.2)

Here, P = nkT + nekTe is the average plasma pressure inside TPB, and L =
2πR

[
ln

(
R
a

) + 0.25
]
is the torus inductance, c is the speed of light.

To calculate the variation a(t), we disregard the difference of pressures at the
inner and outer envelopes of the torus boundary and use the equation for the plasma
cylinder with the longitudinal current. For the velocity inside it, we have Eq. 7.3.

ρ
dU

dt
= −∂P

∂r
+ 1

c
[j × B]z (7.3)

Taking into account thatU (t, r = 0) ∼= 0 and the fact that themagnetic pressure at
the boundary decreases with time, we approximately assume that the velocity varies
linearly along the radius:
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U (r, t) = r
ȧ(t)

a(t)
. (7.4)

From Maxwell’s equations, we have:

−→
j = c

4π
rot(

−→
B ). (7.5)

Given that the magnetic force is associated only with the presence of a poloidal
field Bθ = B, jz = j , it follows from Eq. 7.2 [5]:

4πρr3
ä

a
= −4πr2

∂P

∂r
− Br

∂Br

∂r
.

Assuming homogeneous distribution of all parameters (except field B) over radius
a and integrating over 0 ≤ r ≤ a, in [4], a closed system of equations was obtained
for determining the dynamic parameters of a torus: the inner a(t) and outer R(t)
radii of the cylindrical layer, velocities of the toroidal ring UR(t), and toroidal cross
section Ua(t) and current I (t):

M(t)
dUa

dt
= 4πaP − 2I 2

c2a
, (7.6)

M0
dUR

dt
= 2π2a2P + π I 2

c2

[
ln

R

a
+ 5

4

]
, (7.7)

da

dt
= Ua, (7.8)

dR

dt
= UR, (7.9)

dI

dt
= − I

τ
, (7.10)

where

M(t) = M0/2πR, τ = L

c2Rc + L̇
, L̇ = dL/dt, (7.11)

M(t) is the mass of the unit length of the toroidal ring.
The pressure is defined by Eq. 7.12, where a is the ionization degree and n is the

density of heavy particles.

P = kn(Ti + αTe) = P (7.12)
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L is the torus inductance and can be estimated using Eq. 7.13.

L = 2πR

[
ln

R

a
+ 1

4

]
(7.13)

The resistance of the toroidal ring is determined by Eqs. 7.14 and 7.15, where m
is the mass of the electron, ne is the density of electrons.

Rc = 1

σ

2πR

πa2
(7.14)

σ = e2ne
meve

(7.15)

To determine P(t) and σ(t), it is necessary to know the time behavior of volume-
averaged TPB values Te(t), T (t), and α(t). The collision frequency ve entering into
σ(t) in the general case of the plasma charge composition is determined by following
expressions:

ve = ve0 + vei ,

ve0 = 4

3
σe0V en0, V e =

√
8kTe
πme

, (7.16)

vei = 4
√
2πe4Lk

3
√
me(kTe)

3/2

∑
z2nz . (7.17)

For the electron concentration ne, excited particles and temperatures, Eqs. 7.18–
7.21 were used. Thus, the kinetics equations for the relative densities of electrons α

and excited atoms α1 have the form of Eqs. 7.18 and 7.19.

n
dα

dt
= (

n0ne − n3e jei − n2e j
v
ei

)
(7.18)

n
dα1

dt
= (nen0 j01 − nen1 j10) − (

nen1 j1e − n3e je1 − n2e j
v
e1

) − A10n1 (7.19)

If the expansion occurs rapidly, the temperature of heavy particles T can move
away from the electron temperature Te. For this reason, the problem was consid-
ered in the two-temperature approximation provided by Eqs. 7.20 and 7.21 where
jei , j01, j10, jνei , je1, j

v
e1, j1e, A10, E01, F, J are the constants of process rates [4],

Q0e, Qie describes the rate of energy transfer from electrons to neutral particles and
ions.
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3

2
ne

dTe
dt

+ neTediv
−→
U = −

(
J + 3

2
Te

)
· ne jei · (

n0K − n2e
) − E01ne(n0 j01 − n1 j10)

+ Te

(
3

2
− F

)
n2e j

ν
ei − Sν

e + Qe0 + Qei + Qg (7.20)

3

2
n
dT

dt
+ nT div

−→
U = Q0e + Qie (7.21)

From the equation of continuity ∂n
∂t + ndivU = 0 for the term describing the

adiabatic expansion, we obtain Eq. 7.22 where V = 2πRπa2 is the torus volume.

divU = 1

V

dV

dt
(7.22)

All designations are generally accepted. Expressions for the rate constants and
energy exchange are given in [6]. For Joule heating of electrons, the approximate
expression can be obtained Qg = I 2/σπ2a4k.

To solve the most complex equations for Te(t) and T (t), the splitting method for
physical processes was used: ye = Te/Tg, yi = T/Tg , where Tg is determined
by adiabatic expansion TgV 2/3 = const. At that for ye and yi , ordinary differential
equations are obtained for [5]. To get an idea of the interaction of the geometric
characteristics with the current and the magnetic field, the problem was first solved
under the assumption: Te = Ti = T, ye = yi = 1, α = α0, i.e., practically in the
adiabatic approximation.

Since the initial determining parameters are current I0 and temperature T0, then
the quantity β(t = 0) = P0

B2
0 /8π

= 0.0204 T0
I 20

(
eV
MA

)
depends on them.

7.4 Numerical Results and Their Analysis

Calculations performed in the adiabatic approximation demonstrate that the behavior
of a(t),Ua(t), T (t), and n(t) significantly depends on the relation between the
thermal pressure inside the torus and magnetic pressure created by the current inside
the torus, i.e., on β(t = 0). The calculations were performed for different T0 and
I0 to implement different values of β(t = 0) and, at the same time, to keep them
within possible experimental values. Figure 7.2 shows some values of β(t = 0).
One should emphasize that main initial parameters determining TPB behavior after
leaving the generator—T0 and I0—are not related to each other directly because T0
is determined by the discharge power and I0 is determined primarily by the presence
of the radial component of the magnetic field created in the generator in some way.
Thus, the effect of T0 and I0 on the change in TPB characteristics after leaving the
generator was first studied.

Various calculation options were obtained with varying values β. The results
are presented in Fig. 7.2. The behavior of the main parameters at an early stage
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Fig. 7.2 Dependence
β(t = 0) = 1 in the plane
T0, I0. Variants: (1)
I0 = 0.7MA, T0 = 10 eV,
(2) I0 = 0.7MA, T0 = 2 eV,
(3) I0 = 0.7MA,
T0 = 30 eV, (4)
I0 = 0.5MA, T0 = 10 eV,
(5) I0 = 1A, T0 = 10 eV

of expansion is shown in Fig. 7.3. Two new physical effects should be noted. The
monotonic increase in R(t) is caused by the fact that both thermal and magnetic
pressure are directed along the radius from the torus center. For a(t), the magnetic
and thermal pressures are directed oppositely, which causes oscillations of a(t) and
Ua(t) because β(t = 0) �= 1, and the initial state is dynamically nonequilibrium.
Oscillations do not appear at β(t = 0) close to unity (variants 3 and 4). Since the
oscillations appear in the absence of an external periodic action and their character
is determined solely by the system itself, they can be treated as a certain class of
nonlinear self-oscillations.

The variation in T0 at given I0 (for definiteness, it was taken that I0 = 0.7MA)
demonstrates that if T0 < 1.95 eV, then the velocityUa very rapidly exceedsUR and
the torus collapses to a solid disk, as it occurs similarly in the model problem at small
initial values of its radial expansion. The fundamental difference is that the radial
expansion rate in this case is formed not only by the thermal pressure but also by
the magnetic field. At T0 > 1.95 eV and I0 = 0.7MA, the magnetic pressure makes
it possible to sustain the toroidal structure, as follows from the considered adiabatic
approximation, at least at the initial stage of TPB dynamics.
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Fig. 7.3 Behavior of the main dynamic parameters at an early stage of expansion: a radii of TPB,
b velocities of radius change, c temperature, d current

7.5 Calculations of the Initial Stage of TPB Dynamics
in Full Statement

In the full problem under consideration, one can distinguish the following main
characteristic times:

• Time of current relaxation (β → ∞).
• Relaxation time of the ionization and temperature of the nonequilibrium state.
• Time to reach the full, mutual penetration of air particles through TPB during its

directed motion.
• Time of TPB deceleration in a rarefied atmosphere.

As shown by calculations (Fig. 7.4), the relative contribution of ionization, exci-
tation, and Joule heating depends on T0, I0. It follows from Fig. 7.4 that the largest
positive contribution to Te in the region of largest time gradients is made by the Joule
heating and recombination. The role of radiation is insignificant.

In general, the behavior of the geometrical parameters R, a,UR,Ua , temperature
T, and current I is similar in the form to results obtained in the adiabatic approxima-
tion. Due to the Joule and recombination energies, the asymptotic values UR∞ and
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Fig. 7.4 Contribution of
different processes to the
internal energy at the initial
stage of its dynamics for
different initial conditions

Ua∞ are approximately larger (20%) than in the adiabatic case. The main decrease
in the current temperature occurs somewhat longer (∼ 3 × 10−5 s).

However, the full formulation made it possible to clarify two important effects.
Since the particle density rapidly drops with time, the recombination rate decreases
and the implemented regime is close to quenching of the ionization degree with suffi-
ciently large asymptotic values α∞(70–75%), see Fig. 7.5. Therefore, the conduc-
tivity of the bunch plasma remains high during further TPBmotion,which determines
its interaction with the geomagnetic field. However, as shown by Stupitskii et al. [5]
complete quenching does not occur. In these calculations, this is indicated by the
increase in kinetic temperatures ye and y by t ≥ 10−5 s which decelerates the drop of
Te andT at a later stage, at t ≥ 3×10−4s, the collisions no longer provide temperature
equalization, and Te > T , although the excesses are insignificant (Fig. 7.6).

Note that the decrease in the initial TPB energy, a decrease in T0 or I0, leads
after a certain period to the collapse of the torus to a disk, as mentioned in the
adiabatic approximation. Calculations in the full formulation demonstrate that the
torus collapses to a solid disk at T0cr ≈ 0.6 eV in the whole range of the considered

Fig. 7.5 Behavior of α at different initial conditions
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Fig. 7.6 Behavior of y and ye at different initial conditions

currents I0cr = 0.5 − 1MA. The decrease in T0cr as compared to the adiabatic case
is related to the release of the ionization energy.

7.6 Ionization Effect During the Propagation of TPB
in the Ionosphere

Basedondetailednumerical studies of the initial stageof the formation andmovement
of TPB after departure from the plasma gun, the problem of its further movement
in the ionosphere and the assessment of the ionization effect that it exerts on the
ionosphere were of practical interest.

There are presently not enough general expressions describing the energy loss
by particles, both in the low and high energy regions. However, theoretical anal-
ysis provides the main qualitative conclusions about the dependence of energy loss
dE/dx on the velocity of particles [7]. The detailed analysis of theoretical models
for estimating the rate of energy loss by a particle dE/dx in the range of motion
velocities s was given in [6]. At very low energies of incident particles (several tens
of eV), the energy losses for protons are mainly described by elastic collisions with
target atoms.

If the energy of the incident particle exceeds

E > 0.525

[(
z2/31a + z2/32a

) M1

M1 + M2

]2

≈ 0.04 keV = 40 eV,

where M1
M1+M2

= 1
1+16 = 0.058, z2/31a + z2/32a = 1 + 7.22/3 = 4.75, then the energy

losses are mainly determined by inelastic collisions [7].
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We used the results of the classical works of Firsov and Beta Bloch, as well as,
experimental data for the energy loss function F(u) = 1

na

∣∣ dE
dx

∣∣. To pass protons
through atomic oxygen [7], an approximation expression was obtained for F(u) [6].
It is in satisfactory agreement with experimental data. Based on it, the change in the
velocities (Fig. 7.7) and the concentration of electrons formed after passing through
TPB was calculated (Fig. 7.8):

ne(x) = Np

π2R(x)a(x)

F

We
,

Fig. 7.7 Change of the particle velocity v(x, n f )

Fig. 7.8 Change of the electron concentration
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where Np = 1.31×1021 is the number of protons in TPB,We = 33 eV is the average
energy required to form one electron–ion pair.

The deceleration of particles is sharp nature at all background concentrations.
The electron concentration in the region of TPB passage significantly exceeds the
background. The effect increases sharply with increasing proton velocity both in
range and in electron concentration at the corresponding height.

The work showed that further improvement of the hydrogen-based plasma gun
will achieve a plasma flow rate of 5 × 108 cm/s or more. This is important for the
application of plasma guns in the issue of the effect of a rarefied plasma flow on the
barrier.

7.7 The Effect of a Rarefied Plasma Flow on the Barrier

The present state of research on the effects on materials of pulsed beams of high
particle density is given in [8].

Many sensitive elements of spacecraft are protected from possible environmental
influences by glasses, which at the same time impose certain requirements on their
optical properties—the ability to transmit radiation in a certain spectral range. The
aim of this work is to use the molecular dynamics method for the numerical study
of the effect of a rarefied plasma flow of a certain duration on a crystalline and
amorphous structure, such as glass, to assess the nature and size of emerging defects
and their effect on the transmission of light. For the model of continuous deceleration
as a result of inelastic collisions, the Lindhard–Sharf theory gives good agreement
with experiment [7]. However, to determine the structure of dislocations arising
in a solid, a more detailed approach to the problem of energy dissipation by ions is
needed. In [9], a numerical algorithmwas developed for calculating the spatialmotion
of particles in a crystalline and amorphous body based on the presented molecular
dynamics. A hybrid model was used for the collisional interaction of particles: if
the limiting parameter ρ ≤ R1 + R2, then the model of elastic balls was used. If
ρ > R1 + R2, then the Coulomb interaction was assumed (R1, R2 is the radius
of the particles). It is important that the multiplication of particles involved in the
destruction of the crystal lattice is taken into account.

Figure 7.9 presents the effect of destruction of the Si crystal lattice at dissimilar
energies of the hydrogen atom and its trajectory of motion.

Numerous calculations were performed for various types of plasma particles, their
various energies and various amorphous and crystalline elements of a solid. The
algorithm also takes into account the possibility of several falling particles entering
the same cavity. Based on the results obtained, light scattering (λ = 0.5 µm) was
studied on a defective surface of a transparent body. It is shown that as a result of
the impact of TPB on protective glasses, they scatter from 20 to 50% of the incident
light flux, which makes their functional purpose impossible as a means of protecting
guiding devices.
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Fig. 7.9 Effect of destruction of the Si crystal lattice: a the resulting defect when a particle of
energy ε0 = 10 keV is hit, b the resulting defect when a particle of energy ε0 = 1000 keV is hit,
c trajectory of a plasma particle of energy ε0 = 1000 keV

Thus, a complex study of both scientific and practical issues of the creation and
study of plasma guns was carried out in the work.

7.8 Conclusions

This work presents a sufficiently detailed numerical study of TPB parameters at the
initial stage of TPB motion and during further flight and interaction with strongly
rarefied air. The motion distance depends on the air density and can reach ten
kilometers in the upper ionosphere.

In this work, it was also shown that plasma guns actively developed at present can
serve as an effective tool for the destruction of glass coatings. Further theoretical and
experimental work in this area will make it possible to choose the optimal parameters
for both the plasma device and the plasma itself. The performed studies, in particular,
show that, in addition to a high velocity of the plasma flow, it is necessary to achieve
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the minimal ionization degree that will provide the minimal decelerating action of
the geomagnetic field on its dynamics.

Preliminary calculations also demonstrate that the degree of ionosphere ionization
can significantly increase in the region of TPB propagation. At present, such studies
are carried out in a sufficiently detailed formulation.
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Chapter 8
Some Aspects on Pulsating Detonation
Wave Numerical Simulation Using
Detailed Chemical Kinetics Mechanism

Alexander I. Lopato

Abstract The chapter is dedicated to the numerical study of pulsating gaseous deto-
nation wave propagation. The mathematical model is based on the Euler equations
written for the multicomponent gas and supplemented by the detailed chemical reac-
tions model to describe the combustion of the hydrogen–air mixture. The Petersen
and Hanson kinetics is applied as the detailed chemical model. The numerical algo-
rithm is based on the finite volume approach, essentially non-oscillatory scheme,
AUSM numerical flux and the Runge–Kutta method. The numerical investigation
of pulsating detonation wave propagation with direct detonation initiation near the
closed end of the channel is carried out. The peculiarities of high-frequency and
high-amplitude pulsations modes are discussed.

8.1 Introduction

Detonation wave (DW) is a supersonic complex consisting of a leading shock wave
(LSW) followed by a chemical reaction zone. Detonation is a hydrodynamic wave
process of propagation of an exothermic reaction through a substance at supersonic
speed. Among the works on the study of detonation processes in gases, there are
several directions. One of the directions includes the works on studies of detonation
propagation in terms of safety engineering in tunnels and mines, where explosions
and propagation of detonation and combustion waves are possible. Another direction
involves the works on the study of detonation initiation and interaction of DWs in
channels, stars, and other objects from the scientific point of view.As a third direction,
note the works on detonation application in industry, including pulse-detonation gas
burners and engines of the next generation, such as pulse detonation engines [1]. The
development of the direction can be explained by the fact that detonation combustion
is a thermodynamically advantageous method of fuel combustion and conversion of
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chemical energy of the fuel into useful work. Thus, one can note the relevance of
studies on detonation processes in gases.

Conducting natural experiments with the study of DWs is often associated with
certain problems. The problems include the measurement of flow parameters and
the stability of installations and sensors to high pressures and temperatures in areas
with shock and detonation waves. In addition, the range of investigated properties
of DWs is limited by a set of acceptable installations and constructions that can be
used for conducting natural experiments. Numerical calculations are devoid of such
problems andmake it possible to obtain flow patterns with DWs in a sufficiently wide
set of research areas with a degree of accuracy determined by a number of factors
including the adequacy of the mathematical model and the numerical method, the
approximation order of the numerical scheme, and the stability of the numerical
method.

The chapter is organized as follows. Related work is highlighted in Sect. 8.2.
Section 8.3 provides the mathematical model of the studied problem. The compu-
tational algorithm of the second approximation order is described in Sect. 8.4.
Section 8.5 presents the results of verification and numerical experiments. Section 8.6
concludes the chapter.

8.2 Related Work

Since DW, in general, is a multi-dimensional object, mathematical modeling requires
taking into accountmultidimensional effects with a complex kineticsmodel of chem-
ical reactions. On the other hand, the mathematical model corresponding to the one-
dimensional structure of DW is simpler but provides a relatively rich spectrum of
dynamic features that deserve the detailed study and have relevance to multidimen-
sional effects of DW, for example, cellular structures. As is known from numerical
and experimental studies, the propagation of DW is associated with the formation of
a complex nonlinear oscillating process including pulsations of parameters behind
the front of DW, which are investigated in a number of numerical studies. In [2, 3],
different modes of parameters pulsations of the one-dimensional DW were obtained
depending on the activation energy of the considered model mixture. The mathemat-
ical model in [4] included the one-step irreversible reaction and Arrhenius kinetics
with parameters values that were proposed apparently for the first time. A spectral
Fourier analysis of the peak pressure pulsations on time was carried out with the
allocation of dominant frequencies. The comparison with the results of theoretical
and numerical studies on some quantitative characteristics such as limit cycle size in
the case of the weakly unstable detonation was performed.

In [5, 6], detonation in the model hydrogen–air mixture [7] was considered. High-
frequency (HF) and low-frequency modes of detonation propagation were obtained
in [5]. It is shown that with an increase in the approximation order of the numerical
method, the front of the reaction zone is less smeared and the scale of the reaction
zone is better resolved, which leads to that the instabilities are captured correctly.
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This tendency was confirmedwith the results from [2]. In [6], the mechanism accom-
panying the process of detonation propagation in the channel with an array of circular
obstacles was studied. The mechanism was based on the formation of a temperature
gradient and spontaneous waves in the unburned gas adjacent to DW front. The
influence of chemical kinetics on the modeling of detonation initiation by a tempera-
ture gradient in the hydrogen–air mixture was discussed in [8]. The chemical model
that contains 19 reactions and 9 components was considered as the detailed kinetics
model. The model described correctly some parameters like ignition delay times
and laminar flames characteristics for a wide range of initial parameters. The global
Arrhenius kinetics [7] of hydrogen–air combustion was considered as the one-step
model. Themodel reproduced some characteristics like the flame speed and thewidth
of the laminar flame. The critical size of the “hot spots” capable to initiate detonation
was shown to be larger in the case of the detailed chemistry. The differences were
explained by the fact that the one-step kinetics model is exothermic for all temper-
atures, while chain branching reactions in complex kinetics start with endothermic
induction stage representing chain initiation and branching. Besides, the induction
times obtained using one-step kinetics were several orders of magnitude smaller than
the experimental results that are in good agreement with induction times obtained
using detailed kinetics. Thus, the complex kinetics is shown to provide a sufficiently
wide range of parameters, where the kinetics works correctly, and takes into account
a number of factors better than the one-step one, especially at the stage of detonation
initiation, although it significantly increases the calculation time. On the other hand,
the use of one-step kinetics with gasdynamics values from a vicinity of parame-
ters that are used in the process of calibrating gives an opportunity to obtain some
adequate results and useful recommendations to study the dynamics of detonation
instability.

In [9], the detailed analysis of the nonlinear dynamics of detonation in the
hydrogen–air mixture was carried out using the detailed kinetics model. The mathe-
maticalmodel included the systemofEuler equationswritten for the case of themulti-
component mixture. The chemical kinetics model included nine components and 38
elementary reactions. The numerical method of the high order of accuracy included
the fifth-order convergence rate monotonicity preserving scheme, the third-order
total variation diminishing the Runge–Kutta time integration scheme, Roe flux and
Gaussian elimination scheme for solving chemical kinetics implicitly. The authors
considered direct initiation of 1D detonation in the channel covered with computa-
tional grids with cell sizes of 2.5 and 12.5 µm. The transition from the overdriven
detonation regime to the self-sustaining one with the formation of two pulsating
modes was obtained. For both grid sizes, the HF pulsations mode was followed
by the high-amplitude (HA) pulsations mode with the time increase. The specific
features of each mode including the frequency values are described. The mechanism
of processes in the induction zone behind the front of LSWwas described in terms of
acoustic and entropy waves in a manner similar to that of McVey and Toong [10] and
it seems to be a reasonable description of themechanism of pulsating detonation. The
work demonstrated a sensitivity of the results to the values of the initial conditions
parameters, grid resolution, and properties of the numerical method.
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The aim of current work is the mathematical modeling of pulsating DW prop-
agation in the hydrogen–air mixture using the numerical method of the second
approximation order and detailed chemical kinetics model.

8.3 Mathematical Model

Mathematical model is based on the one-dimensional system of Euler equa-
tions written in the laboratory frame for the case of multicomponent media and
supplemented by the detailed chemical kinetics model:

∂U
∂t + ∂F

∂x = S,

U =

⎡
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e
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i

]
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(8.1)

Here, ρ is the total mixture density, u is the velocity, p is the pressure, e is the
total energy density, R is the universal gas constant, Ys is the mass fraction of the
mixture component s, ωs is the production rate, hs is the molar enthalpy, μs is the
molecular weight, ci is the molar concentration, αl j is a third body coefficient, γ ′

js
and γ ′′

js are the stoichiometric coefficients, K f j is the forward rate constant, Kbj is
the backward rate constant, NS is the total number of components, NR is the total
number of reactions. The molar enthalpy is calculated as

hs(T ) = RT
(
a1s + a2s

2
T + a3s

3
T 2 + a4s

4
T 3 + a5s

5
T 4 + a6s

T

)
,

where the coefficients a1s, . . . , a6s are presented in [11]. The specific heat ratio of the
multicomponent mixture in such mathematical model depends on the temperature as

γ (T ) = 1 + R

∑NS
s=1 Ys
/

μs∑NS
s=1 Ys
(
Cps(T ) − R

)/
μs

,

where Cps is the molar heat capacity at constant pressure of the components

Cps(T ) = R
(
a1s + a2sT + a3sT

2 + a4sT
3 + a5sT

4
)
.
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The sound velocity is calculated for the multicomponent mixture using the
formula:

c =
√√√√RT

∑NS
s=1

YsCps (T )

μs

∑NS
s=1

Ys
μs∑NS

s=1
Ys
μs

(
Cps(T ) − R

) .

In current work, the Petersen and Hanson (PH) model [12] is used to describe
the combustion and detonation in the stoichiometric hydrogen–oxygen mixture. The
model takes into account NS = 9 components (H2, O2, H, O, OH, HO2, H2O2, H2O,
and N2) and NR = 18 elementary reactions. The stoichiometric coefficients γ ′

js and
γ ′′
js , rate constants K f j and Kbj , third body coefficients αl j can be found in [12].

The applicability and efficiency of kinetics for numerical simulations of chemical
reactions in hydrogen–air and hydrogen–oxygen mixtures is confirmed by a number
of works (see, for example, references in [13]).

8.4 Numerical Algorithm

The computational algorithm is based on the Strang splitting principle in terms of
physical processes [14]. When passing from one time layer to another one, one first
integrates the gas dynamics equations without considering the chemical reactions
(S = 0, see Eq. 8.1), and, thereby, performs the first stage of the splitting procedure.
Then, one estimates the contribution of the chemical reactions without considering
the convection (the second stage of splitting).

The spatial part of Eq. 8.1 is discretized using the finite-volume method

∂U
∂t

= −Fi+1/2 − Fi−1/2

�x
= Li (Q).

Here, i is the index of computational grid cell. Indexes i+1/2 and i−1
/
2 denote

right and left bounds of cell i, respectively, �x is a cell size, Q is the unknown grid
function, F is a numerical flux. The numerical flux Fi+1/2 is calculated using AUSM
numerical scheme [15] extended to the case of a multicomponent gas mixture:
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Here, H = e+ p is the enthalpy of a volume unit of the mixture. The upper index
“+” corresponds to the parameters on the right bound of the cell i, while the index
“−” corresponds to the left bound of the cell i + 1. The elements of Q+

i , Q−
i+1 are

determined using the ENO-reconstruction of the second approximation order of the
conservative variables [16]. The parameters M+

i , M−
i+1, p+

i , p−
i+1 are calculated in

accordance with [15]. Note that the use of the AUSM scheme in the calculations is
not an obligatory requirement. Thus, in [17, 18], numerical modeling of combustion
and detonation waves was carried out using the Courant-Isaacson-Rees flux scheme.

For the temporal discretization, the second-order Runge–Kutta scheme is applied
[19]:

{
Q(1)

i = Qn
i + �tn · Li (Qn),

Q̃n+1
i = 1

2Q
n
i + 1

2Q
(1)
i + 1

2�tn · Li
(
Q(1)
)
,

where�tn is a time step that is chosen dynamically from the stability condition. The
upper tilde indicates that the solution obtained in this way is the result of the first
stage of the splitting procedure of physical processes.

On the second stage, the chemical reactions are taken into account without consid-
ering the convection (the second stage of splitting). The stage involves the solving of
the system of ordinary differential equations which describes the chemical reactions
kinetics for the molar concentrations and temperature in each computational grid
cell:
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The system is integrated on the time step �tn . According to the splitting method,
initial conditions of the system are taken from the solution of the first gas-dynamic
stage. The system is solved with the use of the implicit Euler method with Newton
linearization.

The computational algorithm, noted above, is based on the algorithm constructed
for the case of the two component mixture (reagent and product), and constant value
of the specific heat ratio [20]. In this work, the procedure was extended for the case
of the multicomponent mixture with noted dependence γ (T ).

8.5 Verification and Results

The estimation of the practical approximation order of the algorithm in the case of
the two-component mixture and constant value of the specific heat ratio in the work
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[3] gives the value near 2. To verify the realized PH chemical reaction model, the
0D homogeneous ignition simulation for the stoichiometric hydrogen–air mixture
was carried out. Figure 8.1 demonstrates the time dependence of the mass frac-
tions of the components at the initial pressure 1 atm and temperature 1000 K. The
obtained dependencies are similar with the results from [13]. Relatively small quan-
titative differences (the calculated ignition time is equal to 210 µs, while the value
in [13] is about 225 µs) can be explained by the fact that the polynomial coefficients
a1s, a2s, . . . in [13] that used in calculations of the heat capacities and other thermo-
dynamic properties were taken from another database. We did not try to achieve a
complete agreement in the results. It was important to establish that the chemical
kinetics model is realized correctly and can be used for modeling of complex prob-
lems, including combustion and detonation in hydrogen–air and hydrogen–oxygen
mixtures.

Let us consider the numerical results of propagation of the pulsating DW with
the use of the mathematical model and computational algorithm noted above. Direct
detonation initiation in the work is simulated in the channel of length L = 3m filled
with a resting stoichiometric hydrogen–air mixture. Detonation is initiated as a result
of instantaneous energy release in a short region of the length l = 10 cm adjacent to
the left boundary of the channel and named the spark region. In this region, the high
pressure pl = 10 atm and temperature Tl = 3000K are set at the initial timemoment.
The rest of the channel is filled with the mixture under the pressure p0 = 0.1 atm
and temperature T0 = 300K. The area of the channel is covered by a computational
grid with the cell size �x = 25µm.

Figure 8.2 depicts the dynamics of the variation of the peak pressure in the calcu-
lated region and shows the process of initiation and propagation of DW. At the initial
stage of the computation, the mixture in the spark region is burned instantaneously

Fig. 8.1 Dependences of
mass fractions of the mixture
components on time for
initial pressure p = 1 atm
and temperature T = 1000 K



110 A. I. Lopato

Fig. 8.2 Predicted peak
pressure time history in the
computational domain

and increases gasdynamics parameters. The mixture with high pressure and temper-
ature generates the combustion wave that propagates to the right and interacts with
the leading wave with its amplification. The formation of the overdriven DW takes
place at the time moment of about 50 µs that can be considered as the end of the
initial stage. After the initial stage, DW obtains the classical structure with LSW,
reaction zone and Taylor expansion wave. DW remains overdriven and then the tran-
sition from the overdriven to self-sustaining regime occurs. During the transition,
the velocity of DW exceeds the value of 1900 m/s. Note that the theoretical value
of the Chapman-Jouguet (CJ) velocity specified in [7] is equal to 1993 m/s. So, the
values of the CJ velocity are in good agreement with each other. As the detonation
approaches the CJ state (the time moment of about 240 µs), pulsations of the HF
mode begin to appear, as shown in Fig. 8.2. The pulsations of parameters are associ-
ated with the interaction between the combustion waves formed in the reaction zone
and LSW. The HF mode is characterized by a relatively small distance and change
in distance from DW front to the reaction zone. Further development of the pulsa-
tions leads to the transition from the HF mode to the HA one at the time of about
520 µs. As shown in Fig. 8.2, the signal of the pulsations in the HA mode is close
to periodic. Figure 8.3 shows the time evolution of temperature and density profiles
every 10 µs during the time interval 620–660 µs. The acceleration of the chemical
rates in the reaction zone enhances the rate of heat release. The formation of the
combustion wave occurs. The accelerating flame burns the mixture in the induction
zone releasing large amount of energy up to the collision of the combustion wave
with LSW. Thus, at this stage, the formed disturbance propagates toward DW front,
and the reduction of the induction zone occurs. The stage corresponds to the region
marked with a green dashed line in Fig. 8.2 and is referred to as an acoustic wave
cycle. The next considered stage corresponds to the time interval 660–700 µs. The
stage is marked with a blue dashed line in Fig. 8.2 and is called an entropy wave
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Fig. 8.3 Temperature (above) and density (below) distributions in shock reference frame at the
successive time moments within the acoustic wave cycle. The time interval is 620–660 µs. The
arrows show the order of profiles in time. Tscale = 2000K

cycle. Figure 8.4 shows the time evolution of temperature and density profiles every
10 µs during the time interval 660–700 µs. At this stage the disturbance propagates
back into the induction zone and the attenuation of LSW occurs as shown in Fig. 8.4.
The cycle is also characterized by an increase in the size of the induction zone and
the formation of conditions for a next acoustic cycle. Note that the obtained density
and temperature profiles qualitatively well correlate with the results from [9].

One can also see that the HA mode includes the period-doubling effect, i.e., the
dual oscillations in the peak pressure history are observed. For example, the time
interval 700–800 µs contains two local maximum values of pressure. The first one
is associated with the time moment of about 750 µs and the pressure value 3.3 atm,
and corresponds to the mechanism discussed above. Consider the time interval 760–
767 µs that is associated with the second maximum. Figure 8.5 demonstrates the
distributions of pressure and mass fraction of the H2 component every 1 µs in this
time interval. After the collision of the combustion wave with LSW the reaction
of combustion of the mixture occurs directly behind LSW with the formation of a
pocket of partly burnt gas. The burning of the mixture in the pocket at some distance
behind LSW leads to a new combustion wave and an increase in temperature and
pressure of the gas. As a result, the second local maximum of pressure corresponds
to the time moment of about 766 µs in Fig. 8.2 and has the value of about 4.6 atm.
The dual oscillations of the HA mode in other time intervals in Fig. 8.2 takes place
in accordance with the mechanism noted above.
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Fig. 8.4 Temperature (above) and density (below) distributions in shock reference frame at the
successive time moments within the entropy wave cycle. The time interval is 660–700 µs. The
arrows show the order of profiles in time Tscale = 2000K

Fig. 8.5 Distributions of pressure (above) and mass fraction of the component H2 (below) at the
successive time moments in the time interval 760–767 µs. pscale = 50 atm
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8.6 Concluding Remarks

Thework demonstrates the possibility of numerical modeling of initiation and propa-
gation of gaseous detonation waves using complex reaction kinetics. The mathemat-
ical model is based on the system of Euler equations for a multicomponent media.
The computational algorithm of the second approximation order based on the phys-
ical processes splitting technique, finite volume method, ENO-reconstruction, and
AUSM flux are described. To verify the implemented computational algorithm, the
0D ignition simulation was performed.

The numerical investigation of pulsating detonation wave propagation with the
use of Petersen and Hanson detailed kinetics corresponding to the stoichiometric
hydrogen–air mixturewas carried out. The direct detonation initiation near the closed
end of the channel was considered. The cell size of the computational grid was
sufficient to obtain the pulsations of various modes. During the computation, the
high-frequency and high-amplitude pulsation modes were obtained. The character-
istics and frequencies are both very different. The border separating the modes is
clearly defined. The features of both modes, as well as, the processes accompanying
pulsations are considered. The induction zone in the high-frequency mode fluctu-
ates without significant change in contrast to the high-amplitude. The signal of the
pulsations in the high-amplitude mode is close to periodic.

Acknowledgements This work is carried out under the state task of the ICAD RAS.
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Chapter 9
A Godunov-Type Method
for a Multi-temperature Plasma
with Strong Shock Waves and a General
Equation of State

Alexey G. Aksenov

Abstract A multi-temperature code for a multi-component gas dynamic is consid-
ered. The velocities of components with nonzero mass are assumed to be identical
to each other. The gas dynamic part is the Godunov-type method based on the effi-
cient approximate solution of the Riemann problem operating with all components
of the homogeneous gas mixture. The method assumes the table equation of state
(EOS), but the system of the hydrodynamic equations should be hyperbolic. This
work contains the test of the method on a strong shock wave in hydrogen plasma,
so-called Shafranov’s solution. By taking into account the radiation component,
the chapter discusses the applicability of the two temperature models for the strong
shock wave in the hydrogen with the large temperatures behind a shock wave without
consideration of the radiation at a considered short timescale. General EOS for the
mixture of protons, electrons, and radiation differs from an ideal gas low EOS for
two components (protons and electrons) fully ionized hydrogen plasma.

9.1 Introduction

A multi-component gas of different substances α is described by a set of densities
ρα(r, t) ≡ cα(r, t)ρ(r, t), where cα are concentrations, and internal energy densities
ρεα(r, t), where εα is specific energy. All massive particles have identical veloci-
ties v(r, t) and temperatures, while the “massless” fast particles from viewpoint of
the total density ρ (electrons, photons) have their own temperatures. The equations
of state are P = ∑

α P(ρ, εα), εα = εα(ρ, Tα). The components can exchange
energy, can transfer energy by heat conduction not associated with the transfer of the
massive particles, and can participate in reactions. Such problems arise in inertial
thermonuclear fusion [1], laser ablation experiments [2, 3], and astrophysics [4].
This is an intermediate case between the description based on the Boltzmann kinetic
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equations for distribution functions fα(r,p, t) and classical single-component gas
dynamics. Taking into account possible large opacities for the fast particles, one
should consider the gas for the mixture without transfer to the separate description
of the gas dynamics of the matter and “massless” fast particles. The joined treatment
allows to integrate the gas dynamic transport with the maximal possible time steps
in the explicit scheme even at the optically thick cases.

Efficient Riemann problem solvers for such hydrodynamic equations are
constructed, see, e.g., for some special case of EOS [5–7] and general EOS [8]. Below
an original method based on the Riemann problem solver for the multi-temperature
nonequilibrium gas [9–11] is briefly described. This method operates with homoge-
nous mixture of components of the matter on the fixed Eulerian grid to carry out
the deep phase of the development of the hydrodynamic instabilities. To improve
the spatial resolution, it uses the reconstruction of the contact discontinuities on
fixed grid as an original method [12]. The method was applied within the plasma
physics for the inertial heavy-ion fusion [1, 13] and is useful in astrophysical tasks
with hydrodynamic and the radiation transfer [14, 15]. In the local model for EOS
proposed, it is assumed that the entropy variations in neighboringmesh cells are small
at the evaluation of the dimensionless coefficients EOS from the pressure jump across
the discontinuity. In the case of an arbitrarily large pressure jump, the model yields
physically reasonable results. In real cases, the pressure jumps are not small on the
surfaces of nearest cells of the computational grid without viscosity.

The simplest multi-temperature shock wave (SW) structure in plasmawas consid-
ered in [16]. This solution is a suitable test for the method. This work prevents
disadvantages of the strong SW test from the viewpoint of the physics in the last
publications [9–11]. To provide the correct simple physical description, one starts
from the heated ionized hydrogen plasma in the initial state. Thus, the temperature
after the strong SW becomes huge enough for the important role of the disregarded
radiation. Do the obtainedmathematical results for strong SWcontain physical appli-
cations? It is possible to give the answer on the base of qualitative estimates. Also by
means of introducing nonequilibrium radiation into the developed code, it is possible
to give the qualitative answer. EOS for the mixture of protons, electrons, and radia-
tion is not ideal gas low in comparison with EOS for protons and electrons in fully
ionized hydrogen plasma. The introducing of radiation also illustrates an application
of the method to the general EOS. General EOS can contain domains with a negative
square of the sound speed c2 ≡ (dP/dρ)s at phase transitions. In these domains, the
gas enthalpy should be corrected to provide the nonnegative sound speed square.

The chapter is organized as follows. Section 9.2 provides a formulation of the
problem and the numerical method. Shock wave structure in hydrogen plasma is
discussed in Sect. 9.3. Discussion about radiation effects is given in Sect. 9.4.
Section 9.5 concludes the chapter.
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9.2 Formulation of the Problem and the Numerical Method

The system in the fixed Euler coordinates is: the mass transfer equations for the
components

∂ρα

∂t
+ divραv = ρċα, (9.1)

the momentum conservation law

∂ρv
∂t

+ Div� = 0, (9.2)

and the energy density equations

∂ρEα

∂t
+ div(ρEα + Pα)v + v(cαgrad P − grad Pα) = div(κgrad Tα) + ρQα,

(9.3)

where the energy densities Eα = εα + cαv2/2, the tensor Πi j = ρvi v j + Pδi j , and
the equation of state P = ∑

α Pα(ρ, c, εα) with specific energies εα(ρ, c, Tα). The
kinetic coefficients ċα , κα , and Qα depend on ρ, c, and T. The problem is computed
by applying the splitting on the physical processes and the dimensional splitting. The
heat conduction equations are solved using central difference approximations. As a
result, the system of partial differential equations (PDEs) is reduced to the ordinary
differential equations (ODEs) system for ε̇α,i . ODEs system is solved by applying
the implicit Gear’s method [17]. To describe the kinetics of reactions, ODEs system
for ρ̇α and ε̇α is solved in each grid cell also by Gear’s method. The transport of
“massless” particles in both transparent and opaque cases can be described in the
frame of diffusion with flux limiters.

The system in Euler variables involves the term v(cαgrad P − grad Pα), which
is different from the divergence of a flux. This term requires a special treatment at
discontinuities. In the classical problem of SW in a hydrogen plasma, one has only
three conservation laws and, due to heat conduction, a piecewise-smooth temperature,
for which a differential equation can be used instead of a conservation law.

The hydrodynamic part of the code is based on a high-order explicit Godunov
scheme for single-temperature single-component gas dynamics [9, 12].A localmodel
for EOS simplifies the solution of the Riemann problem and makes it possible to
obtain fluxes and partial pressures of the components in any flow region with discon-
tinuities. Following [18], such model for a multi-component gas is constructed so as
it holds strictly in the case of weak discontinuities. The increment of the specific
entropy s across SW is a quantity of the third order of smallness with respect
to the pressure jump: O([P]3). Neglecting the entropy variation behind SW, one
computes the dimensionless coefficients γα ≡ Pατ/εα + 1 as functions of the state
ahead of SW and the total pressure behind SW. The local model for EOS is used
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to solve the Riemann problem. On the left and right of the contact discontinuity,
the concentrations remain constant, and EOS is independent of cα . Using the rela-
tion dεα(sα, τ ) = Tαdsα − Pαdτ and the assumption dsα = 0, one obtains explicit
expressions for the non-dimensional adiabatic indexes (see [9])

dγα

dPα

= τ

εα

+ Pα

εα

dτ

dPα

− Pατ

ε2α

dεα

dτ

dτ

dPα

= (γα − 1)

(

1 − γα

Γα

)
1

Pα

(9.4)

and the partial pressure increments as the explicit functions of the total pressure
increment

dPα = C2
α

C2
dP, (9.5)

where the squared Lagrangian speed of sound of a component is C2
α ≡ −dPα/dτ =

(∂Pα/∂εα)Pα−∂Pα/∂τ and total pressure is P(ε, τ ) = ∑
α Pα(εα, τ ). In the compu-

tations, it is convenient to use the fraction of the specific energy of a component
γ ε

α ≡ εα/ε (see [9])

dγ ε
α = γ ε

α

γα − γ

Γ

dP

P
, (9.6)

where  ≡ C2τ/P , α ≡ C2
ατ/Pα . The increment of the dimensionless variable

γ ≡ ∑
α γαεα

/∑
α εα can be evaluated (see [9])

dγ = (γ − 1)
(
1 − γ

Γ

)dP

P
(9.7)

as expected for a single component (Eq. 9.4).
The assumption that the entropy variation that is negligibly small is used to

compute only the variations in the dimensionless coefficients. The local model for
EOS proposed resolves the uncertainty occurring when the specific internal energy
and the pressure of amixture component behind SW (rarefactionwave) are computed
from known values of γ ε

α ≡ εα/ε behind the wave. Also the local EOS with the a
priory known dimensionless coefficients as the functions of the full pressure behind
the wave reduce to the Riemann problem solver to the case of one temperature gas
with EOS of the ideal gas [9, 11, 18].

9.3 Shock Wave Structure in Hydrogen Plasma

As a test, an SW structure arising in hydrogen plasma in a tube at rest with a
piston moving with the constant velocity into the gas is considering. If the hydrogen
is completely ionized, the system involves protons and electrons. The “massless”
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electrons transfer heat by conduction. Also electrons exchange energy with the
protons. The temperatures of protons and electrons near SWare different. The kinetic
coefficients are specified as by Shafranov [16] as:

ρQp = 3me

mp

ne
τe

(kTe − kTi ), (9.8)

where

τe = 3
√
me(kTe)3/2

4
√
2πλq4ne

, (9.9)

the Coulomb logarithm

λ = 1

2
ln

(
kTeTi
Te + Ti

)3
/

(q6ne), (9.10)

ne = ni = ρ/mp, and the heat flux in electron heat conduction is −κe∇(kTe) with
thermal conductivity

κe = 3.16nekTeτe/me. (9.11)

An ideal monoatomic gas for protons and electrons with i,e = 5/3 is used in
EOS:

Pα =
(
5

3
− 1

)

ρεαεα = kBTα

(5/3 − 1)mp
, α = p, e. (9.12)

The initial hydrogen pressure is selected approximately equal to the atmospheric
pressure. The initial temperature is chosen so as to achieve the ionization. The
hydrogen is half ionized when the initial temperature is 104 K and the density is
10−6 g cm−3 [19]. The Saha ionization equation for hydrogen

nen p

nH
= (mekT )3/2

(2π�)3
ge exp(−I/(kT )) (9.13)

with the ionization potential I = 13.6 eV provides the ionized hydrogen at rather
low temperature kT � I .

The electroneutrality condition is assumed to hold, the concentrations and veloc-
ities of the electrons and protons everywhere coincide, and the jump of charge on
SW is neglected. Shafranov [16] worked with relations on discontinuities and solved
a system of ODEs from both sides of the discontinuity. Due to the piecewise-smooth
temperature of electrons (−∂Te/∂x)1 > (−∂Te/∂x)2 (Fig. 9.1), the heat fluxes
are different on SW because of the independence of the conduction coefficient, κe
(Eq. 9.11) from the concentration. Shafranov [16] did not take into account the
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a b

Fig. 9.1 Evaluation of: a density profiles, b proton temperatures profiles (circles) and electron
temperature profiles (squares). Exact solution of Shafranov problem is given by solid curves for
strong SW for M = 16 at time moment 6.65 · 10−7 s. Numbers near SW on the plots show relative
accuracy of numerical solution

heat conduction on SW. Only PDEs can operate with the different heat fluxes. The
easiest way is to solve the system of PDEs in the Lagrangian coordinates for density,
momentum, and specific energies of protons and electrons on fine computational
grid, see details in [11]. To exclude discontinuities, one should introduce the viscosity
protons passing from the hyperbolic system of equations to a parabolic one. In the
present calculations, we are not interested in the fine structure of SW due to finite
protons viscosity and artificially reduced the physical protons viscosity. The SW
width is less than the heat conduction transfer region on the factor

√
me/mp.

In the fixed Eulerian grid, the gas in the initial state t = 0 contains two constant
states on the left and right sides from the contact discontinuity near the right boundary
in the computational region (0 < x < 20 cm): ρL = ρR = 10−6 g cm−3, TL = TR =
104 K, vL = 0, vR = −4 × 107 cm s−1. As a result of the discontinuity decay, one
has two strong shock waves moving to the left and right directions from the contact
discontinuity. It is interesting to consider the left shockwavemoving into a gas at rest.
The velocity of the contact discontinuity is v = −2× 107 cm s−1 in the coordinates’
frame of gas at rest on the left side from the contact discontinuity. Thus, the task is
equivalent to a piston moving with a velocity v = −2× 107 cm s−1 into a gas at rest.

The velocity of a moving piston is chosen so as to obtain a strong stationary SW,
on which the density jump near to ρ2/ρ1 = 4 for adiabatic index 5/3. The numerical
solution of the problem is shown in Fig. 9.1. A numerical grid contains 8000 intervals
on the region 20 cm. In the direction of motion of the gas, a stationary SW is formed,
propagating relative to the unperturbed gas. The profiles of all quantities near the SW
shift at a constant velocity and remain unchanged. The plasma is in a nonequilibrium
state near SW, but equilibrium is established at some distance behind the SW front.
Jumps in the proton density and temperature are observed on SW. Due to electron
heat conduction, the electron temperature Te is continuous and piecewise-smooth.
Figure 9.1 demonstrates good agreement of the numerical solution with the “exact”
solution obtained in the Lagrangian coordinates.
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Behind SW, the gas velocity is equaled −2 × 107 cm s−1, the pressure is equaled
5.37 × 108 din cm−2, and the temperature is equaled 8.11 × 105 K. The density
behind SW is equaled 4.00 × 10−6 g cm−3. The simplest way to define the SW
velocityD is the constant mass flux on both surfaces of SW (0−D)×10−6 g cm−3 =
(2× 107 cm s−1 − D) × 3.955× 10−6 g cm−3. Thus, D = −2.68× 107 cm s−1, and
its Mach number is M = |D|/cs = 16, where cs is the sound speed, relative to the
gas at rest.

9.4 Taking into Account Radiation Effects

In the previous Sect. 9.3, some contradictory results were obtained. The obtained
pressure is equaled 5.37 × 108 din cm−2, and the temperature is equaled 8.11 × 105

K behind SW. The blackbody radiation pressure with such temperature is defined as:

Pγ =
(
4

3
− 1

)

ρεγ =
(
4

3
− 1

)

aT 4
γ = 1.2 × 109 dyn cm−2, (9.14)

where a radiation constant is a = π2k4B
/(

60(�c)3
)
. The neglected radiation pressure

exceeds the gas pressure. Therefore, for a correct physical formulation of the problem,
one needs to introduce photons and take into account their energy transfer and energy
exchange with electrons.

In pure protons-electrons system, one has the photons interacting with electrons
in Compton scattering. For estimates, one can accept the constant Thomson cross-
section σT = 8πr2e /3 = 6.65 × 10−25 cm2 for interactions. Then the free path of
photons is estimated as:

(σTne)
−1 ∼ 106 cm. (9.15)

Such space scale exceeds the hydrodynamic region for the steady SW formation
lesser 1 cm. The timescale for the energy exchange between electrons and photons
is another parameter:

τ = 1

cσTne
∼ 10−4 s. (9.16)

This parameter is larger than the hydrodynamic time 10−6 s from the previous
section.

Therefore, the solution from the previous section can be a quasi-stationary at some
times scales and space scales. To check it, one can formulate the problem for one
temperature of protons and electrons Tp = Te and for the different temperature of
radiation Tγ :
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ρεγ = aT 4
γ , Pγ =

(
4

3
− 1

)

ρεγ . (9.17)

It is possible to disregard electron heat conduction and introduce the equation of
transport for the radiation energy density as:

∂ρεγ

∂t
+ v∇(

ρεγ

) = divFγ − ρQp,e, (9.18)

where the flux is determined by the gradient of the zeroth moment of the photons
distribution function. In the opaque case, Fthick

γ = −(grad ρεγ )/(3cσTne), and in the
transparent case Fmax

γ = cρεγ . In the arbitrary case, we can use the interpolation
(the flux limiter):

Fγ = Fthick
γ∣

∣Fthick
γ

∣
∣/Fmax

γ + 1
. (9.19)

The constraint on the flux refers to the introduction of nonlinear thermal conduc-
tivity and a certain arbitrary fit of the fluxes in the intermediate case. The nonlinear
diffusion flux transfers the parabolic equation in the opaque region into hyperbolic
transport equation in the transparent region for the spectral energy densities.

The exchange of energy between radiation and matter is described by the
relaxation to a thermal distribution:

ρQp,e = cσTne
(
ρεγ − ρεthγ

)
, (9.20)

where equilibrium blackbody radiation energy density ρεthγ should be calculated for
the total energy density of radiation and matter ρε + ρεγ .

Figure 9.2 illustrates the evaluation of profiles of the density ρ and the tempera-
tures of gas and radiation Tp,e, Tγ with time.At the first timemoment t = 1.70·10−5 s,
radiation is negligible, and its role is unimportant. The density and temperature
profiles look as in the previous section for the hydrodynamic case. In the next time
moments 1.12 × 10−5 s and 1.70 × 10−5 s, radiation is still small due to a matter
transparency, but radiation plays considerable role in the energy losses in the relax-
ation zone behind SW. The maximum density becomes larger than 4× 10−6 g cm−3

in the relaxation zone. At time moment more than 10−5 s, the SW structure obtained
in the previous section changes. The density jump is still 4, but the gas temperature
decreases value 8 × 105 K. At time moment more than 10−5 s, the SW structure
obtained in the previous section becomes inapplicable.

The steady solution with taking into account radiation forms at SW propagation
on the distance ∼108 cm during 5 s, see Fig. 9.3. This steady solution contains
nonequilibrium radiation (the space scale in Fig. 9.3 cannot resolve nonequilibrium
region near SW), slightly preheated gas before SW, and relaxation zone after SW
(the zone is not resolved in Fig. 9.3). In the relaxation zone, radiation achieves the
thermal equilibriumwithmatter Tγ = Tp,e, but the radiation energy flux from the SW
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a b

Fig. 9.2 Evaluation of profiles of: a density, b temperatures of gas and radiation. Density profiles,
proton-electrons temperature profiles (circles), radiation temperature profiles (squares) at the contact
discontinuity decay with taking into account radiation. The gas velocity near the right boundary is
equaled v = −4 · 107cm · s−1 and Mach number is equaled M = 16. Numbers indicate the time
moments: 5.36 · 10−6 s (Eq. 9.1), 1.12 · 10−5 s (Eq. 9.2), and 1.70 · 10−5 s (Eq. 9.3)

ρ

a b

Fig. 9.3 Steady solution of: a density profile, b proton-electrons temperature profile (circles) and
radiation temperature profile (squares) at SWwith taking into account radiation at large timemoment
more than 5 s. Used computational grid and the space scale cannot resolve nonequilibrium region
near SW with the size ∼ 104 cm. The jump of the radiation temperature on SW is an artifact of the
insufficient resolution of the grid

zone is considerable. The density after SW achieves the value of about 10−5 g cm−3

due to the radiation energy loss. The total adiabatic index for protons, electrons, and
radiation is less than value 5/3 for one atomic gas due to the considerable role of
radiation in the total energy.

The radiation flux plays considerable role not only in the relaxation zone. To
obtain a fine structure of the stationary SW on the distance ~1 mm at time moment
more than 10−5 s, one should take into account radiation fluxes.
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9.5 Conclusions

The proposed approximate Riemann problem solver yields the qualitatively and also
quantitatively good results despite the assumption for the entropy jump smallness
used in computation of the dimensionless coefficients of the gases. It is shown that
the steady solution with the fine structure (~1 mm) of the strong SW in hydrogen
plasmawithMach numberM = 16 is quasi-stationary on the distance ~50 cm during
the time scale ~10−5 s. To prove this result, it was necessary to introduce the radiation
component of the plasma, and thus, it was necessary to transfer from the ideal gas
low to a general equation of state.
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Chapter 10
Thruster Rotation Angle Control During
Contactless Removal of Space Debris
Objects

Vladimir A. Obukhov , Alexander I. Pokryshkin ,
and Victoria V. Svotina

Abstract The chapter deals with the issues of contactless removal of space debris
objects, the orbit of which is changed by a high-velocity ion beam injected from the
service spacecraft moving in the immediate vicinity of the debris object.We consider
the issues of controlling the angles of rotation of electric propulsion thrusters to
implement changes in the thrust components of electric propulsion system in the
longitudinal and transverse directions required during the debris object transporta-
tion. Arrangement of thrusters is proposed taking into account the location of solar
arrays and the difference in permissible angles of thruster deflection in different
planes. We analyze possible options for the thruster rotation angles to provide the
required values of the thrust projection onto the axes of the spacecraft-associated
coordinate system. We propose an algorithm for controlling the thruster rotation
angles to implement the required thrust projection values, which allows to control
the sign of the momentum relative to the spacecraft longitudinal axis depending on
the accumulated total momentum. The results of modeling the electric propulsion
system operation during the space debris objects transportation are presented.
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10.1 Introduction

Much attention has recently been paid to the removal of space debris object (SDO)
from near-Earth space. Many different methods of removal of large objects on the
disposal orbits or low orbits for their destruction in dense layers of the Earth’s atmo-
sphere are proposed. The concept of contactless removal of SDO (so-called Ion
Shepherd technology) was proposed in [1], according to which the SDO orbit is
altered by a high-velocity ion beam injected from a service spacecraft (SSC) moving
in immediate vicinity of SDO. There are quite a few publications that address some
or other issues of controlling the SSC-SDO cluster during the contactless removal.
In [2, 3], such issues were considered in a broad sense; however, they did not take
into account the peculiarities of the SSC design.

Within the framework of the Ion Shepherd concept, the SSC schemewas proposed
in [4], in which electric propulsion system (EPS) comprising two electric propulsion
thrusters (EPTs), each of which is mounted on a two-coordinate gimbal, is used to
produce thrust that should compensate the thrust of a high-velocity ion beam source.
In this case, ion beam source (IBS) and EPS are mounted along the SSC longitudinal
axis.

For such a spacecraft, the strategy and algorithms of controlling the motion of the
SSC center of mass by creating control impacts in the plane orthogonal to the SSC
longitudinal axis were considered in [5]. For numerical modeling and performance
analysis of the considered control algorithms, a simplified model of ion beam impact
on SDO was used in [5].

In this chapter, we consider the problems of controlling the angles of the EPT
rotation to implement changes in the EPS thrust vector components in the direction of
the SSC longitudinal axis and in the transverse direction.Motion control for the SSC-
SDOcluster, in addition to its lateralmotion control, also requires to control the thrust
projection onto theSSC longitudinal axis.Algorithmof thruster rotation angle control
for implementing the required values of the thrust projections that allows to control
the sign of the momentum relative to the SSC longitudinal axis depending on the
accumulated total momentum should be based on a certain arrangement of thrusters,
taking into account the solar arrays location and the difference in permissible thruster
deflection angles in different planes. It should be noted that pivoted thrusters can be
used not only to create the required values of thrust projection onto the axes of the
associated coordinate system, but also to unload the flywheels of the SSC inertial
attitude control system.

Before a description of the thruster rotation angle control, a problem statement
with service spacecraft is described in Sect. 10.2. The ideas of the thruster rota-
tion angle control are introduced in Sect. 10.3. The ion beam momentum transfer
modeling is presented in Sect. 10.4. The results of spacecraft motion dynamics simu-
lation are presented in Sect. 10.5. Finally, the conclusions of the study are reported
in Sect. 10.6.
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10.2 Problem Statement: Service Spacecraft Design

The problem of controlling the EPT rotation angles is considered for a given SSC
design [4]. Figure 10.1 shows the SSC design and axes of the SSC-associated coor-
dinate system. IBS has constant thrust and is stationary mounted on the SSC longitu-
dinal axis. TheEPTpair,which compensates the IBS thrust and ensures the SSC-SDO
cluster motion, is also located on the SSC longitudinal axis, but from the opposite
side of IBS. Nominal thrust of EPS is directed along the SSC longitudinal axis. The
EPT thrust is constant. At the same time, the thrusters can rotate relative to two
axes changing the direction of the thrust, which leads to the appearance of lateral
thrust projections, as well as to the shortening of the thrust projection onto the SSC
longitudinal axis as compared to its nominal value.

In this chapter, it is assumed that the SSC orientation is controlled by the onboard
attitude control system. The main problem in this case consists, on the one hand,
in keeping the IBS axis in the direction to SDO and, on the other hand, in ensuring
the orientation of SA toward the Sun. We consider the SA axis location in the local
horizontal plane. It is assumed that at the stage of the SDO transportation from
geostationary orbit (GEO) region, the SSC center of mass motion control system
provides a control for the SSC lateral motion and for the relative distance between
SSC and SDO.

The SSC lateral motion control strategy assumes that, due to the EPT rotation,
SSC should be shifted in such a way that the vector of relative distance between SSC
and SDO coincides with the transversal direction of the orbital coordinate system [5].

Fig. 10.1 SSC structural diagram and axes of the SSC-associated coordinate system
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Angles between the direction of the transversal and the axes of the SSC-associated
coordinate system being orthogonal to the longitudinal axis are considered as param-
eters for controlling the SSC lateral motion. When controlling the SSC-SDO relative
distance, a proportionally differentiating controller is applied that uses data on the
difference of the SSC-SDO relative distance from a certain average value, as well
as on the derivatives of the change in the relative distance. The lateral motion and
relative distance are controlled by the EPT rotation in two planes.

Turns of the EPS thrusters create momentums relative to the SSC-associated axes.
It is assumed that such momentums are compensated by the flywheels. On the other
hand, pivoted thrusters of EPS can in turn be used to unload the flywheels.

The aim of the work was to select the EPT arrangement on board SSC and develop
an algorithm for the EPT rotation control, which would allow for control actions
during the SDO transportation. The performance analysis of the EPT rotation control
algorithm was carried out by numerical modeling using a simplified model of IB
impact on SDO for different values of its parameters and algorithms of the SSC-SDO
cluster motion control.

10.3 Electric Propulsion Thruster Angle Control

Before a description of the thruster rotation angle control, the thruster layout onto
spacecraft-associated coordinate system is presented in Sect. 10.3.1. The thruster
rotation control algorithm is described in Sect. 10.3.2.

10.3.1 The Thruster Layout. Thrust Projections
onto the Axes of SSC-Associated Coordinate System

In this chapter, it is assumed that the SA axis is parallel to the axis OZS of the SSC-
associated coordinate system. It is assumed that the ranges of the EPT turn angles in
different planes may vary. In order to reduce the influence of the plasma plumes of
EPS on SA, the thrusters are located in OXY plane, orthogonally to the SA rotation
axis. With this, a larger range of angles of rotation is in OXY plane relative to the
axis Z. The first EPT rotation is carried out by an angle δZ , while the second EPT
rotation is implemented by an angle δX . The equations for projections of the relative
thrust of two EPT onto the SSC-associated axes are provided by Eq. 10.1.

pX = − cos δX1 × sin δZ1 − cos δX2 × sin δZ2

pY = cos δX1 × cos δZ1 + cos δX2 × cos δZ2

pZ = sin δX1 + sin δX2 (10.1)
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Here, the projections of the relative EPS thrust are the ratio of the sum of
projections of the EPT thrusts to the thrust of a single thruster PE in the form of
Eq. 10.2.

pi = (PiS1 + PiS2)P
−1
E (10.2)

Equation 10.1 serves as the basis for determining the EPT rotation angles
providing the required values of the thrust projections onto the axes of the asso-
ciated coordinate system. Note that the number of unrestricted variables in these
equations is by one more than equations.

Of the possible variants of the thruster rotation angles with respect to axis OZS,
we exclude the case when the plumes of the operating thrusters are directed toward
each other. Variants of the EPT rotation angles with respect to axis OXS make it
possible to control the sign of the momentum relative to axis OYS. This should be
taken into account in the EPT rotation control algorithm during the accumulation of
the total momentum relative to axis OYS for unloading the flywheels.

10.3.2 The Thruster Rotation Control Algorithm

The following algorithm for determining the EPT rotation angles is proposed.

Step 1. Using the algorithms for lateral motion control and longitudinal thrust
component control, the required values of the relative thrust projections
of two EPT on the axes of the SSC-associated coordinate system are
determined.

Step 2. Using Eq. 10.1, the maximum and minimum acceptable values of the EPS
thrust projection onto the longitudinal axis OYS are determined taking into
account the implementation of lateral control as well as the sign of the
total momentum relative to the axis OYS. If the required value of the thrust
projection onto the longitudinal axis exceeds the permissible range, the
control corresponding to such boundary values is implemented.

Step 3. If the required value of the thrust projection onto the longitudinal axis is
within the acceptable range, then the control is provided as follows.

Step 3.1. The EPT rotation angles relative to the axis OXS are taken equal
to eachother and equal to the values corresponding to the required
values of the thrust projection on the axis OZS. The EPT rotation
angles with respect to the axis OZS are calculated on the basis
of Eq. 10.1 taking into account the required values of the EPS
thrust projection onto the axes OXS and OYS.

Step 3.2. If one of the calculated thruster rotation angles with respect to
axis OZS exceeds the permissible deflection value, then for the
wider calculated rotation angle in terms of its absolute value,
the rotation angle value is assumed as the maximum permissible



132 V. A. Obukhov et al.

value. The second rotation angle relative to the axis OZS and the
rotation angles relative to the axis OXS are calculated by Eq. 10.1
based on the required values of the thrust projections, taking into
account the sign of the total momentum relative to the axis OYS.

10.4 Model of the Ion Beam Momentum Transfer to Space
Debris Object

Calculation of the IB momentum transfer to SDO is an independent complicated
problem. The forces and momentums acting on SDO depend on the SDO configura-
tion, the location and orientation of SDO relative to IB, and also on the IB parameters.
Various aspects of the calculation of forces and momentums are considered in [2,
3, 6, 7]. When analyzing divergence of IB flowing out into the outer space, it is
necessary to take into account the initial divergence angle and the action of electron
pressure and ambipolar electric field in the beam. For a conical IB, the end formulas
were obtained, which allow one to calculate the parameters of IB in the far field in the
region of interaction with SDO [8]. When calculating the force acting on SDO, the
shape of the latter is usually idealized, taking it for a sphere or a cylinder. In the exact
calculation of forces and momentums, to assess the quality of the control process, it
is necessary to conduct statistical modeling taking into account the angular motion
of SDO, in which the initial conditions for the SDO orientation take random values.
In this chapter, we have interest to evaluate algorithms of the SSC control and the
EPT rotation control for various types and different parameters of the SDO angular
motion. To this end, it is proposed to use a simplified simulation model of IB impact
on SDO, presented in [5]. The model assumes that for a specific SDO orientation,
there is a circle with the effective radiusRT , the influence of IB onwhich is equivalent
to IB impact on SDO.

Since SDO rotates generally, it is proposed in the simulation model to replace the
real object with a circle of effective radius, which changes its size from themaximum
value to the minimum value according to the harmonic law in the form of Eq. 10.3.

RT = RMAX(1 − kR) + RMAX × kR × sin

(
ϕR + 2π

TR
× t

)
(10.3)

Here, kR defines the relative amplitude of the change in the effective radius, and
ϕR , TR are the phase shift and period of the oscillatory component for the effective
radius, respectively.

In [9], the results of a study of the model of wedge-shaped ion beam injector are
presented; such injector differs by narrow initial divergence angles of less than 2°
and 4° in two mutually perpendicular directions. IB with such initial characteristics
is effective when acting on SDO from the distance of 20 m. The magnitude of the
force PTN acting on SDO in the direction of relative range and depending on the
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thrust PI generated by IB, when the entire wedge-shaped beam reaches SDO, on the
relative range L and the IB divergence angle βI is taken as Eq. 10.4.

PTN =
{
PI RT ≤ L × tg(βI )
PI×RT
L×tg(βI )

RT > L × tg(βI )
(10.4)

Due to a certain degree of approximation of the proposed dependences, it is
assumed here that IB has a uniform angular distribution of ion flow density.

During the SDO rotation due to various factors, the components of the force of the
IB impact on SDO arise in a plane orthogonal to the relative range direction. In the
simulation model, it is proposed to use a harmonic law to describe these forces also,
and the magnitude of such forces is assumed to be proportional to the force acting in
the direction of relative range. The components of the lateral forces are defined by
Eq. 10.5.

PTV i = PTN × kV i × sin

(
φV i + 2π

TVi
× t

)
(10.5)

Here, i designates the values of X and Z, kV i is the ratio of the maximum value
of the lateral force component to the magnitude of the force acting in the direction
of relative range, and φV i , TVi are the phase shift and the period of the oscillatory
lateral force of IB impact on SDO.

10.5 Simulation of Spacecraft Motion Dynamics

For spacecraft motion dynamics simulation, spacecraft motion equations and their
integration results are presented in Sect. 10.5.1. The dynamics of spacecraft-SDO
relative distance is described in Sect. 10.5.2. The angles of the thruster rotation
examples in SDO removal are demonstrated in Sect. 10.5.3.

10.5.1 Integration of Motion Equations

Numerical simulation was performed to assess the possibility of controlling SDO
transportation into the disposal orbit using the pivoted thrusters of EPS. The equations
of the SSC motion and SDO motion relative to SSC were considered in a geocentric
inertial coordinate system without taking into account disturbances from the non-
sphericity of the Earth and disturbing factors of a higher order of smallness. The
integration duration was up to 3 days.

The following data were used. The initial SDO position was set by the parameters
of the elliptical orbit: the semimajor axis 42,157 km, the eccentricity 0.0005, and
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the inclination 0°. SSC moves in an orbit coinciding with that of SDO. SSC is 40 m
behind SDO, 5 m in vertical deflection, and 5 m away from the orbit plane. The SDO
mass is 2000 kg, and SSC initial mass is 1500 kg. The ion beam injector thrust is
50 mN, and the propulsion system comprises two EPTs with 35 mN thrust each.

As an algorithm for controlling the SSC lateral motion, we consider the algo-
rithm of angular deflections of EPS thrust vector direction taking into account the
magnitudes and derivatives of the angles between the transversal and the axes of the
SSC-associated coordinate system being orthogonal to the SSC longitudinal axis [5]
with the parameters k0 = 0.3, k1 = 300 s. The value of control angle is limited by
αi ≤ αmax = 5◦.

The control options with and without taking into account the control algorithm
for the thrust vector longitudinal component are considered. As an algorithm for
controlling the thrust vector longitudinal component, we considered a proportional-
derivative controller with parameters k0D = 0.0001, k1D = 0.1 s; the average relative
range took the values: 45, 30, and20m.We took into account the restrictionof the total
momentum relative to the SSC longitudinal axis to ±10 Nm s. When calculating the
momentums produced by EPS relative to the center of the SSC mass, the deflections
of the EPT position from the origin of the SSC-associated coordinate system were
assumed to be 1 m. The amplitudes and phase shifts for the oscillatory component of
the force of IB impact on SDO for the axes OXS, OYS, and OZS were, respectively:
0.1, 90°; 0.3, 0°; 0.1, –90°. The oscillation periods were equal along all axes and
amounted to 10 min, 1 h, and 3 h. The maximum effective radius was 1.5 m.

10.5.2 Dynamics of Changes in the Relative Range
Projection onto the Transversal

The dependence of the relative range projection onto the transversal most vividly
characterizes the process of the SDO removal from the GEO region. Figure 10.2
shows the simulation results for different parameters of the control algorithms and
different parameters of the simulation model of the IB momentum transfer to SDO.

It is obvious from the graphs in Fig. 10.2 that show the changes in the relative
range projection onto the transversal that the control of only lateral deviations for
the rotation period of 1 h or less is enough to transfer SDO to the disposal orbit.
In this case, the thrust vector longitudinal component is the maximum possible and
the increment in the SDO orbit altitude during 3 days is large enough—of about
90 km. At the same time, with a rotation period of 3 h, the SDO removal becomes
impossible, the SDO acceleration has low value for a long time, and SSC overtakes
SDO.

The use of control for the thrust vector longitudinal component together with the
control for the lateral deviations with an average relative distance of 45 m makes it
possible to maintain a predetermined distance between objects. This is achieved by
reducing the EPS thrust vector longitudinal component through the EPT pivoting.
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Fig. 10.2 Projections of relative distance (m) onto the transversal depending on time (day): a–
c control for lateral displacements only. The average distance when controlling the longitudinal
component of the thrust vector: d–f 45 m, g–i 30 m, j–i 20 m. Period of the oscillation: a, d, g,
j 10 min, b, e, h, k 1 h, c, f, i, l 3 h

As a result, the increment in orbit altitude is 60 km only. With the relative range
reduction down to 30 m for the periods of 10 min, 1 h, and 3 h, it is possible to raise
the orbit for 90, 85, and 70 km, respectively. With an average relative range of 20 m,
the orbit can be raised for 95 km. At the same time, for the period of 3 h, the process
of the SDO removal becomes impossible.

It can be seen from the below graphs that the smaller distance between the objects,
the higher thrust impulse is transferred to SDO, which reduces the time of the SDO
removal from the GEO region. If the average range is 20 m, we obtain the average
relative range projection on the transversal of about 30 m. This is due to limitations
on the acceleration magnitude, which can be realized using EPS considered in the
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calculations. To maintain an average distance of 20 m, a thrust is required that is
higher than that produced by the considered EPS.

Using the simulationmodel for the IB impact on SDO, one can conduct qualitative
analysis for the process of the SDO removal from GEO for various values of the
parameters of control algorithms, simulation model, and SSC. The dependencies
shown in Fig. 10.2 were obtained using the algorithm for controlling the EPT rotation
that was considered in this chapter.

10.5.3 Parameters of Spacecraft Motion Dynamics
in the Process of SDO Removal from GEO

In Figs. 10.3, 10.4, 10.5 and 10.6 showing the changes in the parameters of the SSC
motion dynamics during the SDO removal from the GEO region, the average range
is 30 m, and the period of the oscillatory component of the effective radius of the IB

Fig. 10.3 Projections of the SSC acceleration (mm/s2)

Fig. 10.4 Projections of total momentum (Nm s)



10 Thruster Rotation Angle Control During Contactless Removal … 137

Fig. 10.5 Angles of the EPS thruster rotation relative to the axis OXS (degree)

Fig. 10.6 Angles of the EPS thruster rotation relative to the axis OZS (degree)

momentum transfer is 3 h. The origin of curves corresponds to the flight duration of
0.8 days. The time is relative, and the dimension is min.

Figures 10.3, 10.4, 10.5 and 10.6 show that the changes in the SSC motion
dynamics in the process of the SDO removal from the GEO region are periodic
in nature, due to the oscillatory component of the force of the IB impact on SDO,
with the period of 3 h.

The SSC acceleration projections onto the axes OXS and OZS are smooth. It
follows from the analysis for acceleration projection onto the axis OYS that for
maintaining average range of 30 m, the control should include sections with the
maximumandminimum thrust projections onto the SSC longitudinal axis. In sections
with maximum thrust projection, only the lateral SSC motion is controlled.

The changes in the projections of the total momentums onto the axes OXS and
OZS are smooth; the difference between its maximum and minimum values in the
time interval of 0.8–1.1 days is about 18 Nm s. For the total momentum relative to
the axis OYS, when ±10 Nm s is reached, the sign of the momentum produced by
EPT relative to the axis OXS changes. If the momentum sign is not changed, then
the total momentum will be accumulated, and a large consumption of the propellant
will be required for unloading the flywheels. It should be noted that the momentum
sign change is provided by pivoting the thrusters about the axis OXS.
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The EPT rotation angles with respect to the axis OXS are within ±15°. At the
moments of change in themomentum sign relative to the axis OYS, which are defined
by the achievement of ±10 Nm s by the total momentum projection, the signs of the
EPT rotation angles change.

Changes in the EPT rotation angles with respect to the axis OZS are within ±35°.
When the momentum relative to the axis OYS changes its sign, which is defined by
the achievement of ±10 Nm s by the integral momentum, due to the change in the
EPT rotation angles sign with respect to the axis OXS, there are small jumps for one
of the angles in the graphs for the rotation angle changes relative to the axis OZS. In
the above graphs, the second angle in this case takes the maximum allowable value.

In the graphs for the EPT rotation angle changes, there are sections, in which the
EPT rotation angles are small in magnitude and equal to each other. In these sections,
the lateral SSC motion is controlled only.

The performed numerical simulation demonstrates efficiency of the proposed
methodology for assessing reliability of the considered algorithms for controlling
the EPT rotation in the process of the SDO removal from the GEO region.

The possibility to vary parameters of the simulation model for the IB momentum
transfer to SDO allows us to analyze a wide range of different conditions for the ion
beam impact on SDO.

10.6 Conclusions

The problem of contactless space debris removal is considered, in which the orbit
is changed using a high-velocity ion beam injected from SSC of a given design,
following the space debris object in its immediate vicinity.

An arrangement for the SSC electric propulsion thrusters is proposed taking into
account various values of permissible thruster rotation angles in two planes, as well
as the arrangement of solar panels. An algorithm is proposed for controlling the
rotation of the electric propulsion system thrusters, taking into account the required
thrust vector projection values in the lateral and longitudinal directions, as well as
the value of the total momentum accumulated relative to the SSC longitudinal axis.

The simulation results demonstrate the efficiency of the proposed algorithm for
controlling the EPT rotation angles. The proposed simulation model of the ion beam
impact on SDO and the control algorithms can be used to formulate requirements to
the control system for the SDO removal to the disposal orbit.
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Chapter 11
Application of Low-Power Pulse Plasma
Thrusters in Thrust Units of Small
Spacecrafts

Aleksander V. Bogatiy , Grigory A. Dyakonov , Roman V. Elnikov ,
and Garri A. Popov

Abstract The chapter considers the current state of work on flight models of pulsed
plasma propulsion systems. It is shown that the primary application area for propul-
sion systems based on an ablative pulsed plasma thruster is the station-keeping of
small spacecraft with the power of supply system of up to 100 W and with an active
lifetime in a range from 1 to 10 years in lowEarth orbits with altitudes in a range from
400 to 700 km. It is also shown that ablative pulsed plasma thrusters can be efficiently
used to solve the problems of accurate attitude control and angular stabilization of
spacecraft.

11.1 Introduction

Currently, SpaceCraft (SC)with amass of 10–1000 kg belonging to the class of Small
SC (SSC). The development of new electronic and optical technologies allows us to
fundamentally change the appearance and capabilities of SSC. Thus, at present SSC
with a mass of up to 100 kg can often have a payload with characteristics comparable
to those of a large spacecraft [1].

SSC can quite efficiently solve such urgent tasks as remote Earth sensing, naviga-
tion, mapping, communications, especially if they are combined into orbital systems,
including two ormore spacecraft with optoelectronic, radar, and other equipment that
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provide high resolution due to the summation of apertures of individual spacecraft
equipment [2].

The operating conditions of most of such spacecraft require the maintenance
and regular correction of their orbits, which makes it necessary to use small-sized
propulsion systems that could operate efficiently in conditions of limited power
consumption. The growing demands on the accuracy of keeping the parameters of
SSC orbits, as well as, on the thruster lifetime and total pulse, necessitate the use of
Electric Propulsion Systems (EPS) on such SSC. The current level of SSC power-
weight ratio is about 1 W/kg. The limited mass of SSC and the limited power of
their onboard power plants, as well as, the restrictions imposed on the cost of their
development and operation, require the development of small, lightweight, and cheap
electric propulsion systems with high efficiency in a range of power consumption of
about 50–100 W and slightly higher.

This chapter is organized as follows. Section 11.2 reviews the types of EPS
and their applications. Section 11.3 assesses the requirements for EPS for a low-
orbit SSC. Section 11.4 discusses the possibility of solving the problem of SSC
orientation using EPS. Section 11.5 compares APPT-based EPS with other types of
EPS. Section 11.6 describes new development at the RIAME MAI of propulsion
system based on APPT for SSC, its calculated technical characteristics are given.
Section 11.7 concludes the chapter.

11.2 Types of Low-Power Electric Propulsion Systems

The main types of low-power Electric Propulsion Thrusters (EPT) classified by the
mechanism of propellant acceleration are shown in Fig. 11.1.

In Electrothermal Thrusters (ETT), the energy of the outflowing gas is deter-
mined by its temperature upstream the nozzle. Thrusters of such class include the

Fig. 11.1 Types of electric
propulsion



11 Application of Low-Power Pulse Plasma Thrusters in Thrust Units … 143

thermo-catalytic, electrothermal, and arcjet thrusters. Hall thrusters (HT) with closed
electron drift have two varieties: Stationary Plasma Thruster (SPT) and Thruster with
Anode Layer (TAL) [3, 4]. Thrusters with electromagnetic acceleration are usually
divided into two subclasses: magneto-plasma-dynamic thrusters with self-induced
and applied magnetic field. Electrostatic thrusters include ion thrusters (IT) and
colloid thrusters with various mechanisms of propellant ionization [5, 6]. Pulsed
Plasma Thrusters (PPT) are usually considered as a separate class [7] due to the
pronounced specificity of operating processes. It should be noted that in Ablative
PPT (APPT) both electrothermal and electromagnetic plasma acceleration can take
place. Often, the mixed mechanism of acceleration is implemented.

Themain condition for the application of EPT of any type as a part of SSC electric
propulsion system is the possibility for its operation in limited power consumption
conditions. In this chapter, the power consumption of 100 … 150 W is assumed as
the boundary value. This condition can be met by the following types of electric
propulsion thrusters (only EPT that reached the stage of flight tests or purpose-
oriented operation in space conditions are considered), i.e. in:

• Class of electrothermal thrusters includes the hydrazine-operated thermo-catalytic
thrusters, electrothermal thrusters, and arcjet.

• Class of HT involves SPT and TAL.
• Class of electrostatic thrusters joints the ion thrusters and colloid thrusters.
• Special class of pulsed thrusters contains APPT, usually with Teflon (fluoroplast-

4) as a propellant, in which the acceleration physics is either electrothermal (arc)
or electromagnetic with a self magnetic field, or mixed.

In [8], an attempt was made to determine the preferred areas of application of
various types of electric propulsion by analyzing the published data. Figure 11.2
shows the results of such analysis. If one knows the values of the necessary thrust
F and total pulse J� , N·s, obtained from the design calculation of the spacecraft

Fig. 11.2 Preferred EP
application [8], where 1—IT,
2—IT and HT, 3—HT and
APPT, 4—APPT and ETT,
5—ETT
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and defined by SC purpose-oriented task, one can approximately determine the
appropriate type of propulsion system using the diagram in Fig. 11.2.

The diagram in Fig. 11.2 shows that the choice of EPS type for SSC is not an easy
task and it should be made at the stage of preliminary design taking into account the
task to be performed by the spacecraft and the purpose of the propulsion system. Two
typical tasks that can be performed by a low-power electric propulsion system (power
consumption from 10 to 100 W and slightly higher) are considered hereinafter: low
Earth orbit maintenance and attitude control for a spacecraft.

11.3 Low Earth Orbit Maintenance for Small Spacecraft

One of the typical tasks for low-power electric propulsion systems is to maintain a
relatively low circular near-Earth orbit of the spacecraft. The possibility of solving
this problem using APPT was studied in a number of papers.

The aerodynamic drag forceFa acting on a spacecraft moving in orbit at a velocity
V is described as [9]:

Fa = 1/2 · Cd · ρV 2 · Sm, (11.1)

where ρ is the density of the atmosphere gases (to a first approximation, except for
its fluctuations in solar radiation, it depends only on the orbit altitude h above the
Earth and is regulated by GOST 4401–81 for the International Standard Atmosphere
(ISA)), Cd is the aerodynamic drag coefficient (for a free-molecular gas flow that
occurs at densities corresponding to the upper atmosphere (h > 200 km), Cd ≈ 2.3)
[9], Sm is the midsection area of the spacecraft.

The spacecraft velocity, in the simplest case of a circular orbit with altitude h, is
defined by Eq. 11.2 [9], where G is the gravitational constant, M is the mass of the
Earth, RE is the average radius of the Earth.

V 2 = G · M/(RE + h) (11.2)

The characteristic velocity Vx necessary to maintain a conditional circular orbit
with altitude h during time T is equal to:

Vx = Fa · T/m, (11.3)

where m is the spacecraft mass.
Figure 11.3 shows the calculated dependences of the aerodynamic drag force Fa

averaged in accordancewith ISA and characteristic velocityVx necessary tomaintain
circular orbit of a conventional small satellite with mass m = 100 kg and midsection
area of 1 m2 in the orbit with altitude h for one year (T ≈3.16 × 107 s). When
calculating, the aerodynamic drag coefficient was assumed as Cd = 2.3.
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Fig. 11.3 The calculated
dependences of the
aerodynamic drag force Fa
and of the characteristic
velocity Vx necessary to
maintain circular orbit of
conventional SSC (m =
100 kg, Sm = 1 m2) on the
orbit altitude h, for one year

The characteristic velocity is related to the parameters of the propulsion system by
the Tsiolkovsky formula represented by Eq. 11.4, where Jsp is the specific impulse
(the mass-averaged efflux velocity) of the propulsion system, m is the total mass of
SSC (taking into account the mass of propellant), mp is the propellant store.

Vx = Jsp · ln[m/
(
m − mp

)]
(11.4)

For electric propulsion systems, as a rule, mp � m. Therefore, Eq. 11.4 can be
replaced by a simpler ratio without compromising accuracy:

Vx = Jsp · mp/m, (11.5)

or

Vx = J�/m, (11.6)

where J� = Jsp · mp = m · Vx is the total pulse of the propulsion system.
Figure 11.4 shows the calculated dependences of the required total pulse J� on the

time of maintaining a low circular orbit of a conventional SSC weighing 100 kg and
having a midsection area of 1 m2 for various altitudes h of a low circular near-earth
orbit.

It is known that the International Standard Atmosphere is not recommended for
calculating orbits of artificial Earth satellites, since it does not take into account
significant fluctuations in the density of the upper atmosphere depending on the time
of day, season, and solar activity. However, such a simplified approach allows us to
obtain estimates for the minimum thrust of the electric propulsion and total pulse
of EPS required to maintain the orbit of a given altitude and is quite acceptable for
assessing the possibility of using a propulsion system of this or that type.

More complicated mission analysis taking into account atmospheric fluctuations
is presented in [9]. The minimum, maximum, and average estimates of the average
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Fig. 11.4 The calculated
dependences of the required
total pulse of EPS on the
given time of maintaining
low circular orbit of
conventional SSC (m =
100 kg, Sm = 1 m2) for
different orbit altitudes h

annual total pulse of the electric propulsion system required to maintain circular
orbits of various altitudes h were obtained. The calculation results are presented
in Table 11.1 and are in good agreement with the approximate curves presented in
Fig. 11.4.

We can see from the data presented in Fig. 11.4 and Table 11.1 that the necessary
total pulse for keeping SSC orbit with an altitude in the range from 400 to 700 km
for a period from 1 to 10 years is ranging from 1 to 30 kN s. If it is required to
remove SC from its orbit after the end of its lifetime, the required total pulse nearly
doubles. In this case, the averaged aerodynamic drag force of a spacecraft with a
frontal area of 1 m2 at the altitude of 400 km and above does not exceed 0.4 mN,
which allows us to use various electric propulsion thrusters with a thrust of at least
1 mN for maintaining such orbits. The ratio of the averaged aerodynamic drag force
to EPS thrust approximately equals the ratio of EPS operation time at each orbit pass
to the orbit period—the relative propulsion time.

Table. 11.1 EPS total pulse
for the year of flight necessary
to maintain a circular orbit
(SSC midsection area is 1.0
m2), kN s [9]

Orbit height, km Minimum
estimate

Maximum
estimate

Mean
estimate

250 97.58 224.77 173.54

300 25.59 79.59 57.34

350 7.97 32.55 22.29

400 2.76 14.61 9.62

500 0.39 3.36 2.07

600 0.06 0.90 0.54

800 0.06 0.12 0.09
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11.4 Attitude Control and Angular Stabilization

The second task that can be assigned to EPS of SSC is the attitude control and angular
stabilization of the spacecraft. The reactive, flywheel, and gyro-force systems for
the spacecraft attitude control are known, while there is a tendency to gradually
abandon the use of reactive systems that require the consumption of propellant [10].
The peculiarity of the flywheel and gyro-force attitude control systems is that they
require periodic dumping of the accumulated kinematic momentum, which requires
an additional system for unloading the attitude control system, which, in turn, can
be reactive, magnetic (using the Earth’s magnetic field) and, less often, gravitational
or aerodynamic. Currently, for low-orbit SSC, the most widely used are the flywheel
and gyro-force attitude control systems in combination with a magnetic dumping
system. Such attitude control systems do not require the consumption of propellant
to control SSC motion relative to its center of mass. The problems associated with
increased consumption of electric power and an additional mass of electromechan-
ical attitude control systems have been successfully solved. An electromechanical
attitude control system based on flywheels with magnetic unloading was applied
even on such a lightweight scientific SSC as “Chibis-M” weighing 42 kg only [11].
Nevertheless, reactive attitude control systems comprising pulsed plasma thrusters
are also characterized by low mass and extremely low propellant consumption. The
first use of APPT for the system of solar panel attitude control took place at the end
of 1964 on the spacecraft “Zond-2”, developed by the RSC “Energia” [12].

When very precise SSC attitude control is required, for example, for remote Earth
sensing satellites, the reactive attitude control systems based on the pulsed electric
propulsion with a very small single thrust pulse are still beyond the competition. In
particular, a reactive attitude control system with APPT was used on the remote-
sensing satellite “EO-1” with an active lifetime of about 10 years [13]. In that case,
the reactive attitude control system operated together with the electromechanical
attitude control system, providing precise pointing of optical surveillance devices.
The total pulse of a single EPS module required for that was just 0.46 kN s.

11.5 Available Family of Pulsed Plasma Thrusters
and Their Rational Application Areas

Currently, a number of electric propulsion systems based APPT with discharge
energy from 8 to 155 J are developed at the RIAME MAI, which is shown in
Fig. 11.5 [7]. All propulsion systems of the APPT series are intended mainly for
correcting and maintaining the orbit of low-orbit SSC. The most advanced of them
are the following: APPT-45–2, APPT-155, and APPT-95 EPS. They passed the full
range of ground experimental testing (in the case of APPT-95, with the exception
of lifetime tests). APPT-45–2-based EPS designed for the scientific small spacecraft
“MKA-FKI PN2” was launched into low Earth orbit in 2014. APPT-155-based EPS
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Fig. 11.5 Family of EPS based on APPT developed at the RIAME MAI (APPT-95 is being
developed jointly with NIIEM) [7]

was designed for the small remote-sensing satellite “Soyuz-Sat-O” and differed from
APPT-45–2 by the increased total pulse since its functions included not only main-
taining the orbit, but also satellite deorbiting at the end of its active life. The most
powerful of the presented EPS family is APPT-95-based, which is being developed
jointly with the Research Institute of Electromechanics (NIIEM) for the scientific
SSC “Ionosphere-M” [14].

Comparison of various types of electric propulsion in order to define the place
of APPT among them is to be carried out for the whole electric propulsion system,
which includes, in addition to the thruster itself, Propellant Storage and Feed System
(PSFS) with full propellant store and Power Processing Unit (PPU). PPU, as a rule,
makes up a significant (up to 50%) fraction of the total EPS mass. Currently, there is
a tendency to reduce this fraction due to the transition to more advanced electronic
components and digital control under the common protocol with SSC. Table 11.2
shows the characteristics of several types of EPS with a power consumption of about
100 W and a total mass of about 10 kg:

• Electrothermal thruster DUMIT was developed by the Production Association
“Polet” [7] (prototype of the flight model). Thrusters of such type are widely used
on satellites developed by VNIIEM and NIIEM [15].

• Radio-frequency ion thruster RIT-4 (Germany) [16, 17] (laboratory model).
• Stationary plasma thruster SPT-25 was developed by the Experimental Design

Bureau “Fakel” [8] (laboratory model).
• Ablative pulsed plasma thrusters APPT-45–2 and APPT-250.
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Table. 11.2 Comparative characteristics of the main EPS types with power consumption of about
100 W

EPS DUMIT RIT-4 SPT-25 APPT-45–2 APPT-250

Thruster type ETT RIT SPT APPT APPT

Propellant Ammonium Xenon Xenon Teflon Teflon

Power consumption, W 97 82 98 75 or 150 60 or 120

Average thrust, mN 30 2.5 4.7 1.45…2.9 1.2…2.4

Total EPS mass less propellant store,
kg

10.0 10.0* 10.5* 8.7 6.9

Propellant store, kg 4.0 2.0* 2.0* 1.8 1.3

Total pulse, kN s 10 63.8* 16.2* 20 15.6

Thrust efficiency 0.62 0.49 0.22 0.11 0.12

Specific impulse, m/s 2500 31,900 8,100 11,000 12,000

Thrust cost, W/mN 3.2 32.8 20.8 52 50

Effective specific impulse, m/s 714 5,320* 1,300* 1,900 1,900

*Computed values

The latter one is an improved version of APPT-45–2 and has the same power
consumption level. It differs in the use of new energy storage capacitors of the
domestic company “NUKON” having higher specific energy and a digital control
based on new electronic components. This allowed us to reduce the total mass of
EPS from 10.5 kg down to 8.2 kg, in particular, the mass of two-channel PPU having
dual redundancy was reduced from 1.5 kg down to 1.0 kg.

It should be noted that the thrusters RIT-4 and SPT-25 exist so far as laboratory
models only, thus the unknown values of total pulse and total EPS mass are replaced
by the values calculated based on the assumption of a propellant store of 2.0 kg and
approximate specific masses of PSFS and PPU by analogy with the published data
for SPT-50-based EPS [15]. A number of well-known propulsion systems that have
passed flight tests as part of SSC, for example, those based on SPD-50 and RIT-10,
are not included in Table 11.2, as they have other levels of power consumption, i.e.
more than 200 W and more than 500 W, respectively.

As we can see from Table 11.2, the process of selecting an electric propulsion
system for SSC is not straightforward. Different categories of thrusters have advan-
tages and disadvantages, thus the choice should depend on the mission performed
by the spacecraft. In RIAME MAI papers [18], a single criterion was proposed
for comparing various types of electric propulsion systems—the effective specific
impulse, which is numerically equal to the ratio of the total pulse of the propulsion
system to its total mass taking into account the mass of the power processing unit
and mass of the propellant storage and feed system with the full propellant store.
According to this criterion, with an assumed propellant store of 2 kg, the ion propul-
sion systems are significantly superior to EPS of other types, thus their use as a part
of SSC is advisable for tasks associated with high requirements for the total pulse.
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At the same time, pulsed plasma thrusters have their own advantages. In APPT,
the thrust and power consumption are controlled by changing the frequency of the
pulses at constant discharge energy. As a result, their specific characteristics, such as
specific impulse and thrust efficiency, are independent of power consumption. At the
same time, for stationary electric propulsion, this dependence does not take place:
with a decrease in power consumption, the specific characteristics of the thruster are
decreasing, too. When the power of the electric propulsion system is below a certain
threshold, the pulsed plasma thrusters will be superior to stationary ones in basic
characteristics. Besides, the pulsed plasma thrusters have a number of additional
advantages:

• Simplicity of design and electrical circuit and lack of expensive materials, which
leads to a low cost of the electric propulsion system as a whole.

• Lowweight and ease of control of PPUhaving one channel only for converting low
onboard voltage to high (or two identical channels in the case of dual redundancy).

• Simplicity and reliability of the solid propellant storage and feed system, which
does not have pipelines, valves, or other fittings.

• Cheap and non-deficient propellant, which is usually a fluoroplast-4 (Teflon).
• Constant operation readiness and extremely precise value of the thrust pulse,

which is explained by the accuracy of defining the small magnitude of impulse
bit.

• Monoblock design of the electric propulsion system, which does not require
separate slots for PPU and PSFS to be provided for in SSC design.

The overall dimensions of the available domesticAPPTwith a power consumption
of about 100 W make it possible to store enough propellant to provide a total pulse
of up to 15–30 kN s. Based on this fact, it is possible to determine the predominant
field of application of APPT-based electric propulsion system—the maintenance of
small spacecraft with a power of supply system of up to 100 W and with an active
lifetime in a range from 1 to 10 years in low Earth orbits with altitudes of 400 km to
700 km.

In addition, it is necessary to take into account the possibility of APPT using as
a part of the precise attitude control systems of SSC for remote-sensing and other
purposes. Table 11.3 shows the characteristics of APPT-based electric propulsion

Table. 11.3 Comparative
characteristics of electric
propulsion systems based on
low-power APPT designed
for SSC attitude control

EPS EO-1 APPT-120

Power consumption, W 60 60

Average thrust, mN 0.86 0.90

Total EPS mass with propellant store, kg 4.05 3.0

Total pulse, kN s 0.46 0.7

Impulse bit, mN s 0.86 0.45

Specific impulse, m/s 10,400 7,160

Effective specific impulse, N s/kg 93 233
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system designed for the mentioned purpose: EPS of “EO-1” satellite [13] and its
analog, APPT-120 developed at the RIAMEMAI [7]. EO-1 and APPT-120 belong to
the same class of thrust and power consumption. Some difference in individual char-
acteristics is explained by different schemes of the discharge channel. An extremely
low impulse bit (of the order of 0.5… 1.0mN s) is interesting, whichmakes thrusters
of this type the most promising for fine attitude control systems of SSC.

11.6 Immediate Opportunities for Further Development
of Electric Propulsion with Ablative Pulse Plasma
Thrusters

At present, APPT-based Corrective Electric Propulsion System (CEPS) of
autonomous remote-sensing small spacecraft, which has high thrust and power,mass-
and-size characteristics, is being developed at the RIAMEMAI. APPTCEPS contin-
uing the line of development of APPT-45–2 and APPT-250 refers to the same size
of propulsion systems in terms of power consumption, thrust, and total pulse. One
of the main characteristics of a pulsed plasma thruster, which determines its size
and technical appearance, is the discharge energy (energy content) of a capacitor
energy storage unit. It was shown in [18] that the most promising way to improve
the mass-and-size characteristics of an electric propulsion system based on APPT is
to make a capacitor energy storage unit less heavy by optimizing its energy content
and using power capacitors with increased energy storage density. Optimization of
the energy content of the capacitor bank can reduce the total mass of the electric
propulsion system by 10 … 15%.

In the aforementioned paper, the structural diagramof the propulsion systembased
on APPT is analyzed and the estimative calculations of CEPS total mass depending
on the discharge energy are performed for the following given total pulse J� values:
10 kN s, 30 kN s, 50 kN s, and for the energy storage density of the capacitors ωC

= 28 J/kg, which corresponds to the lightest of the currently used capacitors of the
MSR25 type produced by ICAR (Italy) and domestic pulse capacitors by Nukon.
The calculation results are shown in Fig. 11.6.

We can see from the diagrams presented in Fig. 11.6 that the discharge energy
of the available APPT-based CEPS models (the diagrams show the experimental
points corresponding to APPT-155 and APPT-95) are significantly higher than the
optimum one from the point of view of obtaining the minimum mass of EPS. The
RIAMEMAI experience in APPT development and testing shows that a decrease in
discharge energy is accompanied by an increase in the thrust cost (CT ). Sometimes the
CT value is of great importance for a low-power SSC. The experimentally obtained
dependence of the thrust costCT of flight models of APPT-based propulsion systems
on the discharge energy is shown in Fig. 11.7.

Taking into account the above analysis of the influence of the energy content of the
capacitor bank on the total mass of the electric propulsion system when developing
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Fig. 11.6 Calculated
dependence of APPT-based
CEPS total mass on the
discharge energy [18]

Fig. 11.7 APPT-based
CEPS thrust cost as a
function of discharge energy
[18]

a new APPT-350 thruster, the discharge energy was reduced compared with APPT-
155 and APPT-95 thrusters, down to 50 J, which allowed to reduce the total mass of
the electric propulsion system with a propellant store down to 8 kg. The calculated
characteristics of APPT-350 EPS are given in Table 11.4.

11.7 Conclusions

In this chapter, the current state of work on flight models of pulsed plasma propulsion
systems is considered. It is shown that the primary application area for propulsion
systems based on an ablative pulsed plasma thruster is the station-keeping of small
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Table. 11.4 Design
characteristics of
APPT-350-based propulsion
system

Discharge energy, J 50

Power consumption, W
1st thrust mode
2nd thrust mode

50
100

Specific impulse, m/s 10,000 at least

Average thrust, mN
1st thrust mode
2nd thrust mode

1.25
2.5

Total pulse, kN s 15

Mass of usable propellant, kg 1.3

Total EPS mass with propellant store, PPU
including, kg

8.0

spacecraft with the power of supply system of up to 100W and with active lifetime in
range from1 to 10 years in lowEarth orbitswith altitudes ranging from400 to 700 km.
For such spacecraft, the pulsed plasma thrusters are superior to stationary thrusters
of various types in terms of the primary specific characteristics of electric propulsion
systems and also have significant advantages in production and operation costs.
Another field of EPS application is narrower, but is it the pulsed plasma thrusters
are practically beyond the competition in terms of the accuracy of the thrust pulse
produced—these are the systems for precise attitude control of small spacecraft.
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Chapter 12
Multi-mode Model and Calculation
Method for Fatigue Damage
Development

Ilia S. Nikitin , Nikolay G. Burago , Alexander D. Nikitin ,
and Boris A. Stratula

Abstract Amulti-mode kinetic model of damage development under cyclic loading
is proposed to describe the process of fatigue failure. To determine the coefficients of
the kinetic equation of damage, the well-known criterion of multiaxial fatigue failure
is used. A procedure is proposed for calculating the kinetic equation coefficients for
various fatigue failure modes of the LCF-HCF and VHCF. A numerical method for
calculating crack-like zones up to macrofracture is developed. The model parame-
ters are determined from the condition of matching the experimental and calculated
fatigue curve for a specimen of a certain geometry at a given load amplitude and
cycle asymmetry coefficient. Using the obtained values, the results of experiments
on specimens of a different geometry and asymmetry coefficients were reproduced
and the model and calculation algorithm performance were confirmed.

12.1 Introduction

Entire classes of criteria have been constructed that relate the number of cycles before
the initiation of fatigue damage (microcracks) with the amplitudes and maximum
values in the cycle (or average) that characterize the uniform stress-strain state of the
working part of the specimen in a fatigue test.
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A large number of stress-based criteria are based on a direct generalization of the
S-NWöhler-type curves described by Basquin-type relations [1], and based upon the
results of fatigue tests. The main criteria for multiaxial fatigue failure, taking into
account the values of strain amplitudes (strain-based criteria), were proposed in [2–
4]. These criteria are divided into two large groups. The first group includes criteria
that use the amplitudes of the invariant characteristics of the stress state in the loading
cycle such as octahedral stresses, principal stresses, etc. [5, 6], and the second group
includes criteria that take into account the amplitudes of the tangent and/or normal
stresses on the so-called critical plane [7–14]. As a rule, this plane is determined
from the condition of the maximum amplitudes of the tangent, normal stresses, or a
certain combination of them on the planes of various orientations. Reviews on this
topic are given, say, in [15–19].

In order to study the development of fatigue damage zones, there are also two
approaches. The first is based on the classical concepts of fracture mechanics and
relates the conditions for the development of fatigue cracks depending on the ampli-
tudes of stress intensity factors at the crack tip with the increase in the number of
cycles. The basic equation was proposed by Paris and Erdogan [20], there are a large
number of modifications of it [21–23]. The second approach uses representations of
the theory of damage, dating back to [24, 25] and developed in [26–28]. As applied
to the problems of cyclic loading and fatigue failure, it was used in [29–32].

We study the processes of fatigue damage zones development using the damage
theory approach dating back to [24, 25]. In the application to the cyclic loading and
fatigue failure problems, this approach was applied in [27, 28]. We propose a multi-
modemodel for the development of fatigue failure based on the evolutionary equation
for the damage function. The model parameters are determined for various modes of
fatigue failure: Low-Cycle Fatigue (LCF) and High-Cycle Fatigue (HCF), as well as,
the regime of Very-High-Cycle Fatigue (VHCF), corresponding to high-frequency
low-amplitude loading.

To distinguish the various modes of fatigue failure, we use the multimode ampli-
tude fatigue curve diagram shown in Fig. 12.1. Up to a value of N ~ 103, the regime of
re-static loading is realizedwith an amplitude that differs little from the static strength
limit σB . Further, the left part of the bimodal fatigue curve (Wöhler curve) describes
LCF-HCF modes up to N ~ 107 and amplitude values of the order of the fatigue limit
σu . Then begins the zone of change of fracture mechanisms and a further drop in
fatigue strength, starting from N ~ 108 to a new fatigue limit value σ̃u in accordance
with the right branch of the bimodal S-N fatigue curve. This branch describes VHCF
mode [33].

It should be noted that at present, the idea of an explicit division of the classic
Wöhler branch into two parts (in fact, LCF and HCF) exists. The boundary of this
transition region is determined not by the value of N, but by the value of the loading
amplitude equal to the yield strength of the material σT [34] since this changes the
physical mechanism of fatigue failure. In addition, the boundary of the repeated-
static range N ∼ 103 is rather arbitrary. It is also specified in [34] depending on the
strength and plastic characteristics of the material. However, in this chapter, we keep



12 Multi-mode Model and Calculation Method for Fatigue Damage … 159

Fig. 12.1 Bimodal fatigue curve

the suggestion of the proposed model of damage development based on the scheme
described above.

In order to match the model with the well-known criteria for multiaxial fatigue
failure, a stress-based criterion has been selected that describes the fatigue failure
associated with the normal crack microcracks development. This is a modification
of the Smith–Watson–Topper (SWT) criterion [4] described in [35], in which the
amplitudes of maximum tensile stresses play a decisive role in the development of
fatigue damage.

This chapter is organized as follows: Sect. 12.2 presents kinetic equations for
two fatigue modes and a condition to switch between them. Algorithm for fatigue
damage development calculation is presented in Sect. 12.3. Section 12.4 is dedicated
to calculation results both in LCF-HCF and VHCF modes. Section 12.5 concludes
the chapter.

12.2 Kinetic Equation for Damage

In this work, two different modes of fatigue loading are studied: classic LCF-HCF
mode and VHCF mode in Sects. 12.2.1 and 12.2.2, respectively. Also, an algorithm
to choose between them is presented in Sect. 12.2.3.
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12.2.1 LCF-HCF Mode

The criterion ofmultiaxial fatigue failure in LCF-HCFmodewith the development of
normal crack microcracks [35] (stress-based SWT) corresponding to the left branch
of the bimodal fatigue curve (Fig. 12.1) is

√〈
σ1max

〉
�σ1/2 = σu + σL N

−βLH , (12.1)

where σ1 is the largest principal stress,�σ1 is the range of the largest principal stress
per cycle, �σ1/2 is the amplitude. From the condition of repeated-static fracture
up to values of N ∼ 103 by the method [19] it is possible to obtain the value
σL = 103βLH(σB − σu). According to the chosen criterion only tensile stresses lead
to failure, thus it includes the value

〈
σ1max

〉 = σ1maxH(σ1max). In these formulas σB is
the static tensile strength of the material, σu is the classic fatigue limit of the material
during a reverse cycle (asymmetry coefficient of the cycle R = −1), βLH is power
index of the left branch of the bimodal fatigue curve.

From the fatigue fracture criterion we obtain the number of cycles before fracture
at a uniform stressed state:

NLH = 103[(σB − σu)/〈σLH − σu〉]1/βLH , σLH =
√〈

σ1max

〉
�σ1/2. (12.2)

In order to describe the process of fatigue damage development in LCF-HCF
mode, a damage function 0 ≤ ψ(N ) ≤ 1 is introduced, which describes the process
of gradual cyclic material failure. When ψ = 1, a material particle is considered
completely destroyed. Its Lamemodules become equal to zero. The damage function
ψ as a function on the number of loading cycles for LCF-HCF mode is described by
the kinetic equation:

dψ
/
dN = BEψγ /(1 − ψα),

where α and 0 < ψ < 1 are the model parameters that determine the rate of
fatigue damage development. The choice of the denominator in this two-parameter
equation, which sets the infinitely large growth rate of the zone of complete failure
at ψ → 1, is determined by the known experimental data on the kinetic growth
curves of fatigue cracks, which have a vertical asymptote and reflects the fact of their
explosive, uncontrolled growth at the last stage of macro fracture.

An equation for damage of a similar type was previously considered in [29], its
numerous parameters and coefficients were determined indirectly from the results of
uniaxial fatigue tests. In our case, the coefficient BLH is determined by the procedure
that is clearly associated with the selected criterion for multiaxial fatigue failure of
one type or another. It has the following form. The number of cycles to complete
failure NLH at ψ = 1 is defined from the equation for damage for a uniform stress
state provided by Eq. 12.3.
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[
ψ1−γ /(1 − γ ) − ψ(1+α−γ )/(1 + α − γ )

]∣∣1
0 = BLH N |NE

0

NLH = α/(1 + α − γ )/(1 − γ )/BLH (12.3)

By equating the values NLH from the fracture criterion (Eq. 12.2) and from the
solution of the equation for damage (Eq. 12.3), we obtain the expression for the
coefficient BLH:

BLH = 10−3[〈σLH − σu〉/(σB − σu)]
1/βLHα/(1 + α − γ )/(1 − γ ),

where the value σLH is determined by the selected mechanism of fatigue failure and
the corresponding multiaxial criterion (Eq. 12.1).

12.2.2 VHCF Mode

The criterion of multiaxial fatigue failure in VHCF mode corresponding to the right
branch of the bimodal fatigue curve (generalized stress-based SWT) (Fig. 12.1) has
the form:

√〈
σ1max

〉
�σ1/2 = σ̃u + σV N

−βVH .

Here, from the similarity condition of the control points for the left and right
branches of the bimodal fatigue curve [33], we can obtain the formula:

σV = 108βVH(σu − σ̃u).

From the criterion of fatigue failure, we obtain the number of cycles to failure in
a uniform stress state:

NVH = 108
[
(σu − σ̃u)/〈σVH − σ̃u〉

]1/βV H
, σVH = σLH =

√〈
σ1max

〉
�σ1/2,

where σ̃u is the fatigue limit of the material during the reverse cycle for VHCFmode,
βVH is the power-law index of the right branch of the bimodal fatigue curve.

12.2.3 Condition for Switching the Modes of Accumulation
of Fatigue Damage

The transition point from the left branch of the fatigue curve to the right branch, at
which the mechanism of fatigue fracture changes, is slightly above the fatigue limit
σu (Fig. 12.1) and is determined by the value σ∗ = σu + �σ . To ensure continuous
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conjugation of the left and right branches of the fatigue curve, it is necessary to fulfill
a condition NLH = NVH that is equivalent to the equation for the quantity �σ :

103[(σB − σu)/〈�σ 〉]1/βLH = 108
[
(σu − σ̃u)

/ 〈σu + �σ − σ̃u〉
]1/βVH

or

�σ = 10−5βLH(σB − σu)
[
1 + �σ/(σu − σ̃u)

]βLH/βVH
.

Given the actual smallness of the correction term in square brackets, one can set
the correction value �σ by an approximate formula:

�σ = 10−5βLH(σB − σu).

The corresponding approximate value N∗ = NLH(σ∗) is determined by

N∗ = 103[(σB − σu)/�σ ]1/βLH ≈ 108.

Given the updated estimates obtained for the transition point from one branch
of the fatigue curve to another, we obtain the final formulas for the ranges and
coefficients of the kinetic equations of damage.

For LCF-HCF mode when σu + �σu < σLH < σB and �σ = 10−5βLH(σB − σu),
we obtain:

BLH = 10−3[〈σLH − σu〉/(σB − σu)]
1/βLHα/(1 + α − γ )/(1 − γ ),

σLH =
√〈

σ1max

〉
�σ1/2.

For VHCF mode when σ̃u < σV H ≤ σu + �σu , we have:

BVH = 10−8
[〈σVH − σ̃u〉

/
(σu − σ̃u)

]1/βV H
α
/

(1 + α − γ )/(1 − γ ),

σVH =
√〈

σ1max

〉
�σ1/2.

When σVH ≤ σ̃u , fatigue failure doesn’t occur; when σLH ≥ σB , it happens
instantly.

12.3 Fatigue Damage Development Calculation Algorithm

Section 12.3 presents the approach to implement fatigue damage and calculate one’s
development. Ansys software was used to calculate the stress state within a loading
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cycle of a deformable specimen supplemented by a code to calculate the damage
equation and changes of elasticity modulus.

To integrate the equation dψ
/
dN = Bψγ /(1−ψα), where B either BLH or BVH,

the damage function approximation was applied at the k-node of the computational
grid for given discrete valuesψn

k at moments Nn and soughtψn+1
k at moments Nn+1.

To calculate the damage equation, the value α = 1 − γ was chosen for which by
analytic integration an explicit expression for ψn+1

k (ψn
k ,�Nn) can be obtained:

[
ψ1−γ /(1 − γ ) − ψ2(1−γ )/2/(1 − γ )

]∣∣ψn+1
k

ψn
k

= B N |Nn+1
Nn

.

With the denotations (ψn+1
k )1−γ = x , q = 2(1 − γ )B�Nn + (ψn

k )1−γ −
2(ψn

k )2(1−γ ) and �Nn = Nn+1 − Nn the equation transforms to x2 − 2x + q = 0
and its valid root x = 1− √

1 − q < 1. The analytical expression for the increment
of damage on the increment of the number of cycles �Nn is derived from:

ψn+1
k =

(
1 −

√
1 − [

2(1 − γ )B�Nn + (ψn
k )1−γ − 2(ψn

k )2(1−γ )
])1/(1−γ )

.

Increment value �Nn is defined as follows. Based on the stress state calculation
data, the coefficient B = BLH, BVH is calculated for each node. After that, for each
node, the following values are calculated by

�Ñ n
k = [

ψ1−γ /(1 − γ ) − ψ2(1−γ )/2/(1 − γ )
]∣∣1

ψn
k
/B

corresponding to the number of cycles, at which in the node k from its current level
of damage and equivalent stress complete destruction will be achieved (damage is
equal to 1). If the damage level in the considered node is less than the threshold ψ0

(thresholdψ0 = 0.95 is selected), then the value for this node�Ñ n
k is multiplied by a

factor of 0.5.Otherwise, it ismultiplied by a factor of 1. Thus, the step of incrementing
the number of cycles for a given node is �Nn

k = 0.5(1 + H(ψn
k − 0.95))�Ñ n

k . Of
all the �Nn

k values, the smallest one is selected. The increment of the number of
loading cycles for the calculation of the entire specimen is �Nn = min

k
�Nn

k . For

each node based on its current level of damage and equivalent voltage, a new level
of damage is found taking into account the calculated increment �Nn .

All elements are sorted out, for each of them the most damaged node is searched
and according to its damage the mechanical properties of the element are adjusted:

λ(ψn
k ) = λ0(1 − κψn

k ), μ(ψn
k ) = μ0(1 − κψn

k ).

Those elements that belong to nodes with damage ψ = 1 are removed from
the calculation area and form a localized zone (crack-like) of completely destroyed
material. The calculation ends when the boundaries of a completely damaged region
exit to the specimen surface (macro destruction) or the evolution of this region stops.
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12.4 Calculation Results

Calculation of S-N curves and fatigue cracks propagation performed both in LCF-
HCF and VHCF modes are presented in Sect. 12.4.

To determine the parameters of the proposed model and verify its performance,
one of the fatigue experiments described in [29]was performednumerically. From the
condition of matching the experimental and calculated fatigue curve for a specimen
of certain geometry for a given loading amplitude and cycle asymmetry, the numer-
ical coefficients were found. Using the obtained values, the experimental results on
specimens of a different geometry and asymmetry coefficients were reproduced, and
calculation algorithm operability was confirmed.

Hereinafter, the numerical results for LCH-HCF mode and VHCF mode are
discussed in Sects. 12.4.1 and 12.4.2, respectively.

12.4.1 Results for LCH-HCF Mode

Initial tests were conducted on a plate 100 × 25 × 1.57 mm in size with 1.56 mm
diameter through a hole in the center. Ratification tests were conducted on a V-
notched specimen that has 15 mm width w/o a notch, thickness of 1.7 mm, a notch
depth of 1.32mm, aV-notch angle of 60 degrees, and a notch radius of 0.675mm.The
cyclic loading of the upper and lower boundaries of the specimen with an amplitude
of 0.096 mm with the development of damage zones up to macroscopic destruction
was simulated and matched with the results from [29]. In the center of the plate,
there is a through-hole with diameter of 1.56 mm. Plate material is titanium alloy
with strength and fatigue parameters σB = 1135 MPa, σu = 30 MPa, βLH = 0.31.
Elasticity modulus of intact alloy are λ0 = 77 GPa, μ0 = 44 GPa. Figures 12.2
and 12.4 show the lines of the effective stress level σLH for the specimen with a hole
(Fig. 12.2) and for the specimen with a notch (Fig. 12.4) in two states: before the
fatigue quasi-crack initiation and at the moment when it has passed approximately
halfway to macro-destruction.

In Figs. 12.3 and 12.5, the results of real and computational experiments on
constructing fatigue curves for specimens with a hole and a side notch are presented.
Both real and calculated points represent the moment of crack initiation. The curves
in the figures approximate the experimental points. The calculations presented in
Fig. 12.3b almost exactly fit the approximation curve for the values of the model
parameters γ = 0.1 and k = 0.5. Utilizing these parameters, the fatigue curves are
presented in Fig. 12.3a (specimen with a hole, R = −1) and in Fig. 12.5 (notched
specimen, R = −0.5 and R = 0.1). In Fig. 12.3b, the relative error equals 0 for the
calibration series. The average relative errors in Figs. 12.3a, 12.5a, b are 1%, 7%,
and 6%, respectively. The obtained satisfactory quality reproduction of real fatigue
experiments indicates the efficiency and prospects of the model and calculation algo-
rithm. The considered model represents the development of the damage model in the
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a b

Fig. 12.2 Ti-alloy specimen with a hole at R = −1: a emergence of a “quasi-crack”, b growth of
a “quasi-crack”

a b

Fig. 12.3 Fatigue curves σmax(N ) for Ti-alloy specimenwith a hole, where ◦means real test points,
• means calculating points: a R = −1, b R = 0.54

case of cyclic loads presented in [36] for the description of damages during dynamic
loading.
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a b

Fig. 12.4 V-notched Ti-alloy specimen at R = −0.5: a emergence of a “quasi-crack”, b growth of
a “quasi-crack”

a b

Fig. 12.5 Fatigue curves σmax(N ) for V-notched Ti-alloy specimen, where ◦means real test points,
• means calculating points: a R = −0.5, b R = 0.1

12.4.2 Results for VHCF Mode

In order to numerically investigate the development of crack-like regions of fatigue
failure in UHMW mode, the cyclic loading of a specimen made of AS7G06-T6
aluminum alloy with reduced displacement amplitude of 0.1 mm was calculated.
The corresponding experimental results are taken from the [37]. The mechanical
properties of the Al-alloy: density ρ = 2680 kg/m3, E = 68 GPa, tensile strength
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a b

Fig. 12.6 V-notched Al-alloy specimen at R = −1: a emergence of a “quasi-crack”, b growth of a
“quasi-crack”

σB = 288 MPa,HCF fatigue limitσu = 130MPa,VHCF fatigue limit σ̃u = 60 MPa,
βVH = 0.3.

In the series of tests, the bi-curved notched specimen shape was used. In the waist,
it has a quasi-flat shape of 6.18 mm width and 3 mm thick. The notch was 1 mm
depth with the tip curvature radius of 0.5 mm and the angle of cleavage of 60 degrees.

Figures 12.6 and 12.7 show the calculation results for VHCF mode. In Fig. 12.7
the results of real and computational experiments on constructing fatigue curves for
specimens with a side notch are presented. The curves in the figures approximate the
experimental points for R = –1 (Fig. 12.7a) and R = 0.01 (Fig. 12.7b).

In Fig. 12.7, slight differences are observed between the calculated and experi-
mental points. This can be explained as follows. The exponential exponent βVH of
the fatigue curve for aluminium weakly depends on the cycle asymmetry coefficient
R [23, 37], but in the accepted calculating scheme with SWT criterion, this exponent
is considered constant. Figure 12.6 shows the lines of the effective stress level σVH

for the specimen with a notch in two states: before the fatigue quasi-crack initiation
and at the moment when it has passed approximately halfway to macro-destruction.
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a b

Fig. 12.7 VHCF fatigue curves σmax(N ) for V-notched Al-alloy specimen, where ◦ means real
test points, • means calculating points: a R = −1, b R = 0.01

12.5 Conclusions

A multi-mode kinetic model of cyclic loading damage development is proposed to
describe the fatigue fracture process development. To determine the coefficients of
the kinetic equation of damage, the well-known criterion of multiaxial fatigue failure
SWT based on the mechanism associated with the development of microcracks of
normal detachment is used.

A procedure has been proposed for calculating the kinetic equation coefficients
for various fatigue failure modes of the LCF-HCF and VHCF. A numerical method
for calculating crack-like zones up to macrofracture is proposed. The model param-
eters are determined from the condition of matching the experimental and calculated
fatigue curve for a specimen of a certain geometry at a given load amplitude and
cycle asymmetry coefficient. Using the obtained values, the results of experiments
on specimens of a different geometry and asymmetry coefficients were reproduced
and the model and calculation algorithm performance were confirmed.
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Chapter 13
Elastic Wave Propagation Modeling
During Exploratory Drilling on Artificial
Ice Island

Igor B. Petrov , Maksim V. Muratov , and Fedor I. Sergeev

Abstract This chapter is devoted to numerical modeling of elastic impacts on arti-
ficial ice islands arising as a result of drill impacts while drilling from the island,
earthquakes, and pressure of structures located on the island, as well as collisions
of the ice island with drifting ice layers. To solve this problem numerically, we
use the grid-characteristic method with interpolation on regular rectangular and
parallelepipedal meshes and unstructured triangular and tetrahedral ones. The grid-
characteristicmethodmost accurately describes the dynamic processes in exploration
seismology problems, since it takes into account the nature of wave phenomena. The
approach used makes it possible to construct correct computational algorithms at
the boundaries and contact boundaries of the integrational domain. In the work, the
process of propagation of elastic waves in the considered geological environment
studies simulates the distribution of stresses and also studies the stability of the ice
island to destruction using the Mises criterion.

13.1 Introduction

Despite the active development of alternative energy technologies, oil and natural
gas remain the main sources of energy throughout the world. At the same time, many
traditional deposits, the technologies of exploration and development of which are
well developed, are largely depleted. In recent years, various unconventional (hard-to-
extract) deposits have been discovered, the work with which requires a development
of science and technology in such areas as geomechanics, the theory of seismicwaves,
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and so on. These facilities include deposits on the Arctic shelf. Most of hydrocarbon
deposits are concentrated in the Arctic zone.

Artificial ice islands are used formining of oil and gas in theArctic. They represent
a cheap and environmentally friendly alternative to conventional drilling platforms,
making them well suited for exploratory drilling in offshore areas. Often this is a
single way to produce the explorative drilling in shelf of northern sees, where due
to severe ice conditions there is no possibility to deliver the usual platform. Such
approach has already been successfully realized in Canada [1]. An actual problem for
the safety of structures and personnel on the surface of the ice island, as noted in [2],
is its destruction due to drilling and seismic activity. Wave processes resulting from
drilling and earthquakes also affect the response to exploration seismology. Because
of the limited possibility of conducting experimental studies in realistic conditions,
the direction of numerical simulation is promising.

In this chapter, we consider a numerical simulation of the propagation of elastic
waves in an ice island during exploration seismology and seismic activity. In modern
computational software, the finite element method is used to study the stability of
structures like ice islands [3, 4]. For seismic wave propagation modeling, researchers
usually use the finite difference method [5], method of spectral elements [6], discon-
tinuous Galerkin method [7, 8], and grid-characteristic method [9–12]. This work
was made using the grid-characteristic method with interpolation on regular rectan-
gular grids (in 2D case) and parallelepiped (in 3D case), as well as the unstructured
triangular (in 2D case) and tetrahedral (in 3D case) meshes. This method is actively
used also for seismic problems, for example, in [13]. It was chosen, since it allows
one to set the correct boundary and contact conditions.

In Sect. 13.2, the considered problem formulations are described in detail.
Section 13.3 is devoted to the mathematical model used and the numerical method.
Section 13.4 presents the results of mathematical modeling of problems in the above
formulations. Section 13.5 concludes the chapter.

13.2 Problem Formulation

The wave propagation simulation area is an ice island with length of 300 m, height of
10 m, surrounded by 8 m deep seawater, and resting on solid ground (Fig. 13.1). Ice,
water, and soil are considered homogeneous. Elastic characteristics (longitudinal
and transverse velocity of sound propagation and density of media) are given in
Table 13.1.

The thickness of the seafloor is 10 m, and the thickness of the sedimentary rock
is 600 m. A gas reservoir is located under the sedimentary rock, which is simulated
by the boundary condition of the free boundary to simplify the task.

The following types of loads on the ice island are modeled:
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Fig. 13.1 Scheme of simulation area

Table 13.1 Elastic
characteristics of described
layers

Medium P-wave speed
(m/s)

S-wave speed
(m/s)

Density
(kg/m3)

Ice 3940 2493 917

Water 1500 – 1025

Seafloor 1806 316 2000

Sedimentary
rock

2250 1000 2000

• Drill impact. When drilling from ice island, the drill passes to a depth of 20 m,
where it creates a point impact on the soil (Fig. 13.1). The work simulates the
propagation of elastic waves generated by such an action.

• The impact of earthquakes. A plane wave as an earthquake wave is simulated
from the depth. The stability of the ice island to its effects is studied.

• Exposure to static load (Fig. 13.2). On the island, there is a structure measuring
5 m × 5 m and weighing 5 tons. The loads on the ice island of this structure are
calculated, as well as the limit values of the load parameters at which the island
begins to collapse.

Fig. 13.2 Scheme of building location on ice island
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• Side impact on an ice island drifting ice floes. A strike from the side of the island
is modeled.

The results are recorded in the formof two-dimensional patterns of the distribution
of elastic wave velocities in the medium, the components of the stress tensor, as well
as the Mises stresses in the plane of the drilling well. Then the data obtained can
be used for a detailed analysis of the results and their visual display in the form of
two-dimensional visualizations.

13.3 Mathematical Model and Numerical Method

In this section,we consider amethodologyof the problemsolution. InSect. 13.3.1, the
mathematical model is represented. Section 13.3.2 is devoted to numerical method,
while Sect. 13.3.3 is about the boundary and contact boundary conditions used in
problem. The criterion of ice island destruction is described in Sect. 13.3.4, while
Sect. 13.3.5 is devoted to the drill model used in problem with drill strikes.

13.3.1 Linear Elastic Medium Model

A complete system of equations of state of a continuous linear elastic medium and
an acoustic field is solved [12].

ρ
∂Vi

∂t
= ∂Tji

∂x j
,
∂Ti j
∂t

= λ

(∑
k

∂Vk

∂xk

)
Ii j + μ

(
∂Vi

∂x j
+ ∂Vj

∂xi

)
,

where Vi is the velocity components, Tji is the components of tension tensor, ρ is the
density of medium, λ and μ are the Lame coefficients, and I ij is the component of
unit tensor. Using vector of variables �u = {

Vx , Vy, Vz, Txx , Tyy, Tzz, Txy, Txz, Tyz
}
,

the equation system we can represent as

∂ �u
∂t

+
∑

i=1,2,3

Ai
∂ �u
∂ξi

= 0.



13 Elastic Wave Propagation Modeling During Exploratory Drilling … 175

13.3.2 Grid-Characteristic Method

A numerical solution is found using the grid-characteristic method [9–14]. We carry
out a coordinatewise splitting, and by changing variables, we reduce the system to a
system of independent scalar transport equations in Riemann invariants:

∂ �w
∂t

+ �i
∂ �w
∂ξ ′

i

= 0, i = 1, 2, 3.

For each transfer equation, all nodes of the computational mesh are bypassed, and
characteristics are omitted for each node. From the time layer n, the corresponding
component of the vector �w is transferred to the time layer n + 1 by the formula:

wn+1
k

(
ξ ′
i

) = wn
k

(
ξ ′
i − ωkτ

)
,

where τ is the time step.
After all the values are transferred, there is a reverse transition to the vector of the

desired values of �u.
Interpolation on unstructured and regular grids is considered. Values at each point

are found using values at grid reference points �w(�ri jkl) and weights of these points
pi jkl(�r) as

�w(�r) =
∑
i, j,k,l

�pi jkl(�r)�w
(�ri jkl).

The grid-characteristic method allows the most correct algorithms to be applied
at the boundaries and contact boundaries of the integration region [9, 10].

13.3.3 Boundary and Contact Boundary Conditions

The boundary condition can be written in general form as

D�u(ξ1, ξ2, ξ3, t + τ) = �d,

where D is some 9 × 3 matrix, �d is a vector, and �u(ξ1, ξ2, ξ3, t + τ) are the values
of the desired velocity values and components of the stress tensor at the boundary
point at the next time step.

At the boundaries of the integration region, the following boundary conditions
were used:
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1. At the side boundaries, absorbing (non-reflecting) boundary conditions are used:

vnk−2 = vnk−1 = vnk , T
n
k−2 = T n

k−1 = T n
k ,

where index k corresponds to the boundary node of the grid, and k–1 i k–2 are
its neighbors on one axis.

2. At the boundaries of the medium with air, the free boundary condition applies:

T �n = 0.

3. The boundary condition of constant pressure is set at the contact of the building
and the ice island and is written as follows:

p = Tyy = P0, Txx = Txy = 0,

where P0 is a constant pressure of building on ice surface.

On the contact boundaries between the layers, the following contact conditions
are used.

1. The contact condition of complete adhesion is placed between the layers of solid
media. Physically, it means the possibility of unhindered propagation of elastic
waves. Mathematically, the condition of complete adhesion is written as follows:

�va = �vb, �fa = − �fb,

where �v are the velocities of contact points, �f is the force acting to the contact
boundary, and a and b are the contact points of first and second contact layers.

2. The contact condition for free sliding is placed between the ice island and the
ground. In contrast to the case of contact of two solid layers, when the condition
of complete adhesion is applied, the ice and the bottom layer can move relative
to each other. This phenomenon is known in practice, for example, glaciers are
“slipping” from the surfaces of mountains. Thus, the use of a special contact
condition is required:

�va · �n = �vb · �n, �f an = − �f bn , �f aτ = �f bτ = 0.

The same contact condition was used on contact between solid ground and water.
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13.3.4 The Destruction Criterion

The chapter considers potential destruction at all points of the integration domain.
Within the framework of the linear elastic medium model, it is possible to determine
the possibility of fracture at a specific point. The destruction process itself is not
considered. To determine the points of destruction, the Mises criterion is used [15]:

Tmises = 1√
2

√
(Txx − p)2 + (

Tyy − p
)2 + (Tzz − p)2 + 2T 2

xy + 2T 2
xz + 2T 2

yz > ys,

where p = (
Txx + Tyy + Tzz

)
/3 is the average stress, and ys is the shear stress limit,

which value for ice is equal to 1 MPa.

13.3.5 The Drill Model

Modern drills have a rather complex device, often combining percussion and rota-
tional mechanisms. In this chapter, we are primarily interested in the wave pattern
that occurs when drilling in a specific geological model. Therefore, for simplicity,
we represent the impact of the drill as a point source with a Ricker pulse of 30 Hz
and an amplitude coefficient 1012. It can be written with formula:

R(t) = A
(
1 − 2π2 f 2t2

)
exp

(−π2 f 2t2
)
,

where A is the coefficient of compression, and f is the frequency.
Ricker pulse is represented in Fig. 13.3 for the case of frequency 0.4 Hz and

amplitude coefficient 1.

Fig. 13.3 Ricker pulse
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13.4 The Results of Modeling

This section is devoted to the results of mathematical modeling. All the above state-
ments are considered: the modeling of drill strikes, modeling earthquakes impacts
on ice island, modeling of static loads on ice island, and modeling of collision of ice
island with ice layer in Sects. 13.4.1 and 13.4.4, respectively.

13.4.1 The Modeling of Drill Strikes

The drill was set by a point source at a depth of 20 m with a Ricker wave pulse. We
studied the process of propagation of waves from a drill in the medium, as well as the
distribution of stresses in the ice island and its resistance to destruction. Figure 13.4
shows two-dimensional velocity fields in the medium under study at mentioned
time instants. To study the resistance to fracture, the Mises stress distribution was
constructed. Figure 13.5 shows a distribution of Mises stresses at mentioned time
instants.

It was empirically determined that the island begins to collapse at the amplitude
of the wave impulse caused by the impact of the drill 1012 Pa. This value is too large
and cannot be in real problem.

The wave propagation from the drill can be divided into three segments. The first
segment is the initial movement of an almost spherical wave from a sourcewith active
penetration into the ice island. The second segment is themovement of the wave deep
into the solid rock and the reverse motion after reflection from the gas-bearing layer.

a 

b 

Fig. 13.4 Velocity fields from drill strike at time instants: a 0.0125 s, b 0.0325 s
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a 

b 

Fig. 13.5 Mises stresses distribution from drill strike at time instants: a 0.0125 s, b 0.0325 s

The third segment is the movement of the wave up the bottom layer with subsequent
penetration into the island and reflection from the free surface of the ice.

We can see that the ice island plays the role of a kind of resonator. The free surface
of the ice is completely reflective, while the boundary between the ice and the near-
bottom layer partially reflects the elastic waves. Since the height of the island is small
compared to its length, the vertically propagating wave experiences many reflections
in the time it takes for a horizontally propagating wave to reach the edge of the island.
This means that, possibly, with some special choice of external periodic disturbance,
the ice island is able to accumulate elastic waves. Accumulation, of course, will
occur until the beginning of the destruction of ice. Such a resonant phenomenon, if
it exists, poses a significant danger to work on such an ice platform.

If the wave propagating from the introduced point source has a large amplitude,
then it can destroy the ice. As can be seen from Fig. 13.5, such fractures will likely
be located directly above the drilling point. This is facilitated by the interference of
waves entering the island from below with waves reflected from the free surface of
the ice.

13.4.2 The Modeling of Earthquake Impact on Ice Island

The earthquake was modeled as Ricker plane wave spreading from the depth to the
surface. In Fig. 13.6, we can see the distribution of pressure (Fig. 13.6a) and Mises
stresses (Fig. 13.6b) in the instant when the earthquake wave reaches the ice island.

Analyzing the Mises stresses distribution one can determine the points where the
ice island is going to destruct.
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a 

b 

Fig. 13.6 Distribution under earthquake of: a pressure, b the Mises stresses

13.4.3 The Modeling of Static Loads on Ice Island

This task is relevant in the study of the ice island. A static load from a rig and other
structures located on the island is constantly on the ice island. It is important to
understand how much the ice island is resistant to such loads. We determine the
stress distribution on the island.

To solve the problem of the distribution of static load, we use the establishment
method [16]. We will consider the stress distribution in the ice island to be steady if
the modulus of the propagation velocity of elastic waves appears to be 20–30 times
lower at the final instant of time compared with the velocity at the initial instant.

We assume that the building located on the surface of the ice island has a mass
of 100 tons and a base of 5 × 5 m, thereby producing pressure of 4 kPa on ice
(Fig. 13.2). After completing 200 thousand steps, the velocity modulus decreased
by approximately 33 times from 2.4 × 10−4 to 7.3 × 10−6 m/s. Thus, the resulting
stress distribution can be considered steady.

Since only the pressure of the building on the horizontal surface of the ice is
specified by external conditions, it is natural that Tyy will be the majority of the total
pressure p and, accordingly, the Mises stress Tν. In Fig. 13.7, the distributions of
pressure and the Mises stresses are represented. Maximal Mises stress in problem
is 2.2 kPa. This value is less than shear stress limit of ice 1 MPa. Thus, at realistic
values of the static load, the ice will not break.
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a 

b 

Fig. 13.7 Distribution under static load impact of: a pressure, b the Mises stresses

a b

Fig. 13.8 Stress propagation by side impact: a—the initial moment of collision, b—the stated
elastic wavefront propagating through ice island

13.4.4 The Modeling of Collision of Ice Island with Ice Layer

The collision of ice island with drifting ice layer modeled as impact of external force
on side of ice island. The process of stress propagation is represented in Fig. 13.8.

The maximum stress values are reached the collision site and propagate in the
form of shear vibrations along the upper boundary of the ice island. In the case of
strong collisions in these areas, the destruction is possible.

13.5 Conclusions

The approach based on grid-characteristic method allows to model of ice island
stability problems. We simulated the drill impact, impact of earthquakes, exposure
to static load, and side impact on an ice island drifting ice floes. The approach helps
to estimate influence of different impacts on ice island and determine their critical
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value which leads to island destruction. These results can be used in research and
explorational works on ice island.
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Chapter 14
Numerical Study on the Teeth
Installation Parameters: Shift and Tilt
Angle Effects

Sergey D. Arutyunov , Dmitry I. Grachev , Grigoriy G. Bagdasaryan ,
Ilia S. Nikitin , and Alexander D. Nikitin

Abstract The chapter is dedicated to the study on the teeth installation parameters
on the stress state of the prosthesis under typical chewing loads. The two main
parameters are investigated: the role of the dentition installation line and the role of
tilt angle of teeth blocks. The simple 3D models were developed and used for these
calculations. The physically based boundary conditions are introduced. The results
of the calculation show a higher sensitivity of the lower prosthesis basis to vary the
parameters compared to the upper prosthesis basis. It is shown that external shift
of teeth installation line leads to higher stress intensity compared to oral one. The
tilt angle effect results in slightly lower stress intensity compared to the shift effect.
The oral tilt angle effect leads to higher stress intensity compared to the external tilt
angles.

14.1 Introduction

In the recent years, the progress in computer-aided design and engineering leads to
deep integration of mechanics and denture [1–5]. The problems of teeth reparation,
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implantation [6], shape, and position corrections [7] are needed for computer-aided
simulations.Many high-level dental clinics are equipped by high performance system
for measuring different parameters such as compressive force, occlusion, and so on.
The recent progress in 3D techniques allows to reconstruct the geometry of denta-
tion and profiles of the oral cavity by non-contact methods. Also, the progress in
3D techniques such as 3D scanning and 3D printing forced the dental specialists to
develop the personalized solution in implantation, prosthetics, and teeth repairing.
The personalized model has a quite complex shape close to the patient’s native struc-
ture, but the result of a such calculation are strongly depended on chosen models
of human soft tissues and corresponding boundary conditions. It is well known that
physical and mechanical properties of the bones and tissues are quite different for
different patients and cannot be correctly determined by non-destructive methods.
Moreover, these properties can change in time, age, sex, and other individual param-
eters. Therefore, a general model of denture is requested for the determination of the
main reaction of the prosthesis to the different geometry modifications. This model
should have a simple shape and clear physically based boundary conditions. Such
simple models are proposed for upper [8] and lower laminar prosthesis basis [9] with
the physically based boundary conditions.

The chapter is organized as follows. Section 14.2 provides a mathematical
modeling of laminar dentures of the upper and lower jaws. The boundary condi-
tions and chewing loads are given in Sect. 14.3. Section 14.4 presents the results and
discussions, while Sect. 14.5 concludes the chapter.

14.2 Mathematical Modeling of Laminar Dentures
of the Upper and Lower Jaws

The simple models of upper and lower laminar prosthesis basis are presented in
Fig. 14.1. Themodel consists of two parts: denture blade (in pink color) and dentition.
The dentition is separated into four logical blocks: incisors, fang, premolars, and
molars. The prosthesis blade is assumed to be made of homogeneous and isotropic
material (Acryl plastic R) providing in Table 14.1. The thickness of the prosthesis
base is contestant at all locations and equal to 1mm.The teethmodels have visible and
hidden parts. The geometries for the dentition are taken from the work of Arutyunov
[10]. The visible part is shown in Fig. 14.1 while the hidden part is integrated into
the basis. The connection is realized by chemical bond that allows us to simulate this
contact as a full grip. The material for the teeth model is also assumed homogeneous
and isotropic with the following mechanical properties, Table 14.1.

Themodel of the upper prosthesis basis (Fig. 14.1a) has a shell-formed connection
of parts covering the alveolar ridges. Both models have special technological notches
that are used for cords pathing. The lower prosthesis basis has four such notches.

The poly methyl methacrylate acryl (PMMA) is the most common material used
to fabricate the complete and partial dentures [11–13]. According to literature data
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a               b 

Fig. 14.1 CAD models of lamellar bases in the case of complete absence of teeth: a upper jaw,
b lower jaw

Table. 14.1 Mechanical
properties of the acrylic
plastics used for denture
prosthesis

Material Application Mechanical properties

Acrylic plastic R Prosthesis
basis

Young’s
modulus

1000 MPa

Density 1000 kg/m3

Poisson ratio 0.3

Acrylic plastic
W

Dents Young’s
modulus

2000 MPa

Density 1000 kg/m3

Poisson ratio 0.3

[14], the ultimate tensile strength (UTS) for PMMA materials varies from 47 to
79 MPa. The average value of UTS in the present study is taken equal to 60 MPa.

14.3 Boundary Conditions and Chewing Loads

The boundary conditions are developed based on the typical morphology of the oral
cavity. The structure of bones and soft tissues are different for the upper and lower
jaws. The outstanding feature of the upper jaw is the area of the palatine bones
connection or “torus,” Fig. 14.2b. The area of the torus is characterized by a lower
compliance compared to neighboring regions [15]. The area of the torus is located
on the prosthesis symmetry and has an oval shape, Fig. 14.2a. The reaction of tissue
is simulated as distributed pressure with the minimum compliance at the geometrical
center of the ellipse with following increasing to the edge. At the ellipse edge, the
compliance of tissue is taken equal to the parameters of the rest surface. The value
of compliance is taken from the experimental data presented by Kulagenko [15].
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a               b 

c               d 

Fig. 14.2 3D models of: a upper prosthesis basis, b lower prosthesis basis, c with boundary condi-
tions of upper prosthesis basis, dwith boundary conditions of lower prosthesis basis (due to contact
with soft tissues of oral cavity)

In the case of the lower part of the oral cavity, the structure of soft tissue is different.
The main part of the load is carried by the alveolar ridges. The compliance of these
ridges is lower compared to the rest surface, Fig. 14.2d. However, the compliance of
these areas is about 20% higher compared to torus area. The compliance distribution
is not homogeneous along the ridge line. In order to simulate that, the whole area
of alveolar ridge was separated into four zones. These zones are assumed having
the same properties for the left and right branches of the ridge. The compliance
distribution was estimated based on the hypothesis about the horizontal position
of the prosthesis under uniformly distributed normal load. At the first stage of the
calculations, all the teeth were loaded by the normal pressure of a given value. The
compliance distribution was assumed also homogeneous. The result of calculation
has shown different vertical displacement of the tail and face parts of the prosthesis.
Further, the compliances within the four sections were modified in order to rich the
horizontal position for the basis under uniformly distributed loads.
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The second feature of the lower prosthesis basis is significant role of valve zone,
Fig. 14.2d. The physics of this valve zone appearance is related to adhesive forces
acting between tissue and prosthesis basis in the presence of viscous fluid (saliva).
The normal adhesive forces are assumed to be homogeneously distributed along the
prosthesis perimeter. These forces should be taken into an account during the vertical
displacement calculations.

The last outlining zone is retention zones that are located at the left and right
branches of the alveolar ridge. These zones are related to typical geometry of lower
jaw bone. The nature of these forces is similar to friction forces. The force is acting
in opposite direction of the local displacements. These boundary conditions are
corresponding to the main physical aspects of lower prosthesis behavior and used
for the present calculations.

When simulating a chewing load, a complete cycle of biting and chewing food
is reproduced. For this purpose, four separate tooth blocks were identified as block
I (incisors), block II (canine), block III (premolars), and block IV (molars) (see
Fig. 14.3).

It is assumed that the maximum load is determined by the amount of muscle
effort, taken equal to 100 N. Further, the magnitude of muscle effort is converted
into the value of pressure acting on the corresponding tooth blocks. The load can be
as symmetrical, Fig. 14.3a, as well asymmetric Fig. 14.3b. In this case, the pressure
value, as before, is calculated keeping constant the muscle effort. The block separa-
tion was the same for the upper and lower jaw. The corresponding pressure values
are given in Table 14.2.

Fig. 14.3 Blocks of teeth: block 1 (incisors), block 2 (canine), block 3 (premolars), and block 4
(molars) to which the load is applied
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Table. 14.2 Loading parameters for symmetrical and non-symmetrical loadings

Loading type/location Block I Block II Block III Block IV

Symmetrical loading, pressure, MPa 5.2 4.2 0.9 0.5

Non-symmetrical loading, pressure, MPa 10.4 8.4 1.8 1.0

14.4 Results and Discussions

The aim of the research is to study an influence of teeth role parameters (installation
line and tilt angle) on the stress distribution and structural integrity of prosthesis
basis under typical chewing loads. According to the medicine practice, the teeth
installation line can be shifted to the oral or external sides, see Fig. 14.4a, b. The
common practice is to adjust the position of individual teeth blocks to the individual

a               b 

c              d 

Fig. 14.4 3D model with: a oral shift, b external shift of teeth installation line, c oral tilt angle,
d external tilt angle of the teeth block for the lower prosthesis
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features of oral cavity. However, there are quite limited number of studies on the
permissible range for the teeth block shift and tilt angles. According to the basics of
mechanics, the most critical case for the structural integrity of the prosthesis basis
is the loads applied to the shift teeth blocks or on the block with a tilt angle. In the
framework of this study, all the configurations are studied: oral and external teeth
block shift (from block 1 to block 4) and oral and external tilt angles for these four
blocks. The maximum teeth shift is ±1 mm from the normal installation line. The
tilt angle is varying from –20° to 20°. The results for extreme values are given.

Hereinafter, the studies on the shift effect and tilt angle effect are presented in
Sects. 14.4.1–14.4.2, respectively.

14.4.1 Study on the Shift Effect

The results of the external shift effect are presented in Fig. 14.5. Due to small contact
area of the block 1 and block 2, the critical cases are corresponding to the shifts
of these blocks. Figure 14.5 contains the results of calculation for the block 1 and
block 2. The absolute value of applied pressure at a given block is given in Table 14.1.

a                b 

c               d 

Fig. 14.5 3D model with external shift of teeth installation line for: a block 1 at lower prosthesis,
b block 1 at upper prosthesis, c block 2 at lower prosthesis, d block 2 at upper prosthesis
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The results of the calculations are presented for only the critical cases. The stress field
is normalized by the maximum stress level found for a given configuration. Based
on the obtained results, the external shift of teeth installation line is more critical for
the case of lower prosthesis basis. The area of elevated stress is localized at the face
part of the prosthesis. The area of high stress is vast, and the significant stress level
can be found up to molars. In the case of upper prosthesis, the areas of elevated stress
are fragmental. The local area can be found at the tip of the artificial notch and at the
location of first block. A general stress distribution is less intense at the face part of
the prosthesis.

In the case of loading at the block 2, the stress state is comparable for lower and
upper prosthesis basis. The stress distribution has a fragmentary shape with local
maximums. For the both cases, the high stress level is found at the teeth of block 2
and its vicinity. In the case of loads at block 2, the stress state for the lower prosthesis
basis is still higher.

The similar results were obtained for the case of oral shift of the teeth installation
line, Fig. 14.6. In the case of oral shift of the teeth installation line, the stress intensity
is lower compared to external case. The locations of maximum stress remain similar.

a                b 

c                d 

Fig. 14.6 3D model with oral shift of teeth installation line for: a block 1 at lower prosthesis,
b block 1 at upper prosthesis, c block 2 at lower prosthesis, d block 2 at upper prosthesis
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The results of shift effect show the critical role of external teeth displacement.
The found feature is more pronounceable for the case of lower prosthesis basis. In
the case of upper prosthesis basis, the stress distribution is fragmentary with local
maximums at the teeth vicinity or artificial notches.

14.4.2 Study on the Tilt Angle Effect

The same calculations were performed for the case of teeth blocks that are located
at the normal installation line but have a tilt angle. There are two configurations:
oral and external tilt angles as shown in Fig. 14.4c, d. The applied pressures are
listed in Table 14.1 for the corresponding teeth block. The results of calculations are
presented in Figs. 14.7 and 14.8.

The results of calculation for the configurations with the oral tilt angle are
presented in Fig. 14.7. The stress level bars are normalized by the maximum stress
value calculated for a given configuration. The stress field is more intense in the
case of lower prosthesis basis. The stress distribution for the upper prosthesis basis
is more discreet with local maximum at the loaded teeth locations.

a                b 

c                d 

Fig. 14.7 3D model with oral tilt angle of teeth installation line for: a block 1 at lower prosthesis,
b block 1 at upper prosthesis, c block 2 at lower prosthesis, d block 2 at upper prosthesis
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a                b 

c                d 

Fig. 14.8 3Dmodelwith external tilt angle of teeth installation line for:a block1 at lower prosthesis,
b block 1 at upper prosthesis, c block 2 at lower prosthesis, d block 2 at upper prosthesis

The stress intensity is lower for the case of oral tilt angle compared to oral shift of
teeth installation line. In the case of loading at block 2, the stress intensity is lower
compared to the block 1 configuration. The stress distribution is discreet with local
maximum at the loaded teeth locations. The lower prosthesis basis has higher stress
intensity.

The results for the external tilt angle are presented in Fig. 14.8. The found tendency
for the oral tilt angle configurations keeps the same for the external case. However,
the stress intensity is lower, compared to the previous problem. Thus, the oral tilt
angle configuration is more critical for structural integrity of the prosthesis basis
compared to the external one. However, the role of title angles is lower compared to
the shift of teeth installation line.

14.5 Conclusions

The simple models of upper and lower laminar prosthesis basis are presented for the
applied problems. The physically based boundary conditions are introduced. The role
of teeth installation line shift and tilt angle is studied. It is shown that the loads at the
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block 1 and block 2 locations can be critical for the structural integrity of prosthesis
basis. The study on the shift effect and tilt angle show the higher sensitivity of the
lower prosthesis basis to these parameters. The external shift of teeth installation
line is more critical compared to oral shift. In the case of tilt angle investigation, the
same tendency was found, i.e., the lower prosthesis basis has the higher sensitivity to
the parameters. However, the oral tilt angle leads to higher stress intensively. These
results can be used in medical practice during the individual strategy developing for
the teeth installation. The presented models can be used for the approbation of a
general hypothesis and ideas in dentistry.
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Chapter 15
Astronomical and Geophysical Factors
of the Perturbed Chandler Wobble
of the Earth Pole

Sergej S. Krylov , Vadim V. Perepelkin , and Alexandra S. Filippova

Abstract In the framework of the restricted three-body problem, a celestial–
mechanical model of the steady-state Chandler wobble of the Earth pole is proposed.
The contribution of the astronomical and geophysical disturbances to the observed
Earth pole oscillations is discussed based on the processing of IERS observations of
the Earth pole motion, NCEP/NCAR geophysical data of the atmospheric circula-
tion, and NASA/JPL angular momentum of the ocean. The directions of the axes x′,
y′ corresponding to 50° of west longitude and 40° of east longitude, respectively, are
found in the projection, onto which its coordinates have the maximum and minimum
intensities of perturbed oscillations. The Earth pole oscillatory process that is in-
phase with the lunar orbit precessional motion is studied, and the contribution of
moving media to this process is discussed.

15.1 Introduction

The study of the fundamental astrometric problemof predicting theEarth polemotion
[1] is of significant theoretical interest and fundamental for satellite navigation [2,
3]. One of its important problems is a high-precision forecast of the spacecraft orbits
[4, 5]. In order to solve this problem, it is necessary to take into account various
perturbing factors in the equations of motion [3, 6]. Accuracy improvement of the
coordinate-time andnavigation support of the satellite systems is closely related to the
prediction of the Earth pole oscillations because, for example, the Earth orientation
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parameters are included in the transformation matrix from the geocentric equato-
rial coordinate system to the Earth geographic coordinate system. One of the main
problems in predicting the Earth pole motion is to take into account the parameters
variability in the main components of the Earth pole oscillation (Chandler wobble
and annual oscillatory process) [7].

Usually, the Chandler wobble is understood as the Earth pole oscillation with the
frequency of free nutation of the Earth’s rotation axis (with the Chandler frequency)
in the Earth-bound coordinate system [8]. It can also be considered in a narrower
sense, as a steady-state oscillation mode at the Chandler frequency and, in a broader
sense, as a multi-frequency oscillatory process with a main frequency being close to
Chandler’s one. However, it is very difficult to give an unambiguous definition that
would fully correspond to the physical process under consideration. Uncertainty in
the interpretation of the Chandler component is due to the lack of a comprehensive
explanation of the excitation mechanism. In some cases, it is convenient to use the
terminology of the perturbation theory. If the steady-state regime of the Chandler
wobble (with a constant frequency and average amplitude) is formally taken as an
“unperturbed” motion, then the perturbations that lead to variations in the Chandler
wobble parameters, which may be considered as perturbations, although it should be
noted that the steady state of the Chandler wobble is also a perturbed motion.

Explaining the excitation mechanism of the Chandler wobble is one of the funda-
mental problems when studying the Earth pole motion. At least, a part of the pertur-
bations leading to variations in the Chandler wobble parameters are caused by this
mechanism. Therefore, the study of the variability of the main components parame-
ters of the Earth pole oscillation (generally speaking, not only Chandler wobble, but
also annual oscillations) is of considerable interest both for the task of predicting the
Earth polemotion and the study of the excitationmechanism of the Chandler wobble.
First of all, the problem is to identify the celestial–mechanical and geophysical
reasons for such behavior of the Chandler component of the Earth pole oscillations.

Factors affecting the Earth motion relative to the center of mass can be divided
into astronomical and geophysical. The Earth motion in space, as well as, the motion
of the Earth’s moving media occurs under the influence of the bodies in the solar
system, and primarily under the Sun and the Moon. Therefore, when studying the
Earth motion it is natural and necessary to take into account the astronomical and
geophysical factors together. Lunar–solar gravitational perturbing forces lead to the
precession and nutation of the Earth, the refined theory of which taking into account
the internal structure of the Earth is in good agreement with observational data. In
contrast to precession and nutation, the Earth deformability and the mobility of its
various media are determining factors for the motion of the instantaneous axis of
rotation in the Earth’s body. And in this case, it is important to take into account not
only the mobility of the media, but also the astronomical factors that influence them,
since during the evolution of the solar system many processes must be considered as
synchronized processes.

The purpose of this chapter is to study the oscillatory processes of the Earth pole
under the perturbing astronomical and geophysical factors, as well as, the aspects
of their synchronization. In Sect. 15.2, the definition of the unperturbed Earth pole



15 Astronomical and Geophysical Factors of the Perturbed Chandler Wobble … 201

motion is introduced based on the celestial–mechanical model of the deformable
Earth rotation. Tidal oscillations in the inertia tensor of a deformable Earth, which
are taken into account in the framework of a simple celestial–mechanical model of
its motion, are considered in Sect. 15.3. In Sect. 15.4, a correspondence between
the intensity of perturbed oscillations in the Earth pole coordinates, the direction
of the coordinate axes and the longitude distribution of the ocean surface is estab-
lished bassed on the processing of astrometric and geophysical observation data.
Section 15.5 is devoted to the study of the geophysical disturbances contribution to
the synchronization between the Earth pole motion and precession of the lunar orbit.
In Sect. 15.6, the main conclusions of the work are given.

15.2 Studying the Earth Rotation Within the Restricted
Three-Body Problem

The study of the Earth motion relative to its center of mass under the lunar–solar
gravitational–tidal and geophysical disturbances is based on the problem of a system
consisting of a deformable planet (the Earth) and a point satellite (theMoon) moving
around an attracting center (the Sun) [9–12]. The Earth and the Moon perform trans-
lational–rotational motion around the barycenter, which moves in orbit around the
Sun (Fig. 15.1).

We introduce the inertial coordinate system Oξ ′
1ξ

′
2ξ

′
3 with the origin in the

attracting center O, where the axis Oξ ′
3 is orthogonal to the orbital plane of the

Fig. 15.1 Coordinate system for the two-body problem and orientation of the vectors
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barycenter C12, and the Koenig coordinate system C12ξ1ξ2ξ3. In an undeformed
state, the Earth is dynamically compressed, i.e., C > A, where C and A are the axial
and average equatorial moments of inertia, respectively. Let us bind the coordinate
systemC ′

2x1x2x3 with the deformable Earth, in a way that the axes are directed along
the main central axes of the undeformed planet and the point C ′

2 is the center of mass
of the planet in the absence of deformations.

LetG be the spin of the planet,� be the orbital angularmomentumof the satellite’s
centers of mass C1 and the planet’s C2. In the absence of disturbances, the angular
momentum of the system K = G + � is stationary in inertial space and coincides
with the C12ξ3 axis (Fig. 15.1).

The deformable Earth motion relative to the center of mass can be described in the
canonical variables of Andoyer (Fig. 15.2) L , G, Gξ3 , ϕ1, ϕ2, ϕ3, (G = |G|, L is
a projection of the vector G on the axis C ′

2x3, and Gξ3 is a projection of the vector G
on the C12ξ3). We describe the mutual orbital motion of the centers of massesC1 and
C2 in the Delaunay canonical variables �, H, ϑ, h (� = |�|, H is the projection
of the vector � on the C12ξ

′
3 axis, ϑ is the mean anomaly, and h is the longitude of

the ascending node of the orbit on the C12ξ1ξ2 plane).
In the bounded coordinate system, the unit vectors R0

21 and R
0, which specify the

directions from theEarth to theMoon and from theSun to the barycenter, respectively,
are defined as follows equations:

O−1(t)R0
21 = (γ1, γ2, γ3)

T ,

O−1R0 = (κ1, κ2, κ3)
T .

Fig. 15.2 Mutual orientation associated with the deformable Earth and reference coordinate
systems in Andoyer variables
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For practical applications, the transformation between two geocentric coor-
dinate systems is important—the Konig one C2ξ1ξ2ξ3 and the Earth-bound one
C2x1x2x3. This conversion is carried out by five consecutive rotations at the angles
ϕ1, δ2, ϕ2, δ1, ϕ3 according to Eq. 15.1.

O−1(t) = 	−1
3 (ϕ1)	

−1
1 (δ2)	

−1
3 (ϕ2)	

−1
1 (δ1)	

−1
3 (ϕ3) (15.1)

The matrix O(t), which defines the transition from the Earth-bound to iner-
tial axes, is expressed in canonical Andoyer variables, and cos δ1 = Gξ3/G,
cos δ2 = L/G, (Fig. 15.2). The last two angles δ1 and ϕ3 in transformation (Eq. 15.1)
are determined by the precession and nutation of the Earth and for this study are
considered known and given. The angles ϕ1 and δ2 are the polar coordinates of
the Earth pole and the variations of the angle ϕ2, which are associated with the
irregularities of the Earth rotation, lead to variations of Universal Time UT1 [1].

The values of the pole shift and variations of Universal Time are very small:
they do not exceed 0.5′′ for the annual Earth pole motion and 0.03 s for the annual
amplitude of Universal Time variations. Changes in the angles of ϕ1, δ2, ϕ2 are
significantly affected by the Earth deformations. The determination of variations in
the inertia tensor of the deformable Earth is necessary to calculate the vector of the
angular momentum, as well as, its total derivative by time, which is used to study
both the perturbed and unperturbed Earth motion relative to its center of mass.

The most convenient generalized coordinates to qualitative describe the Earth’s
rotation around its center of mass are the canonical action-angle variables. The vari-
ables I1 = L , I2 = G, I3 = Gξ3 , ϕ1, ϕ2, ϕ3 are the action-angle variables in the
dynamically symmetrical Earth case.

For a qualitative description of the Earth motion relative to its center of mass,
when taking into account the impact of disturbances from the Moon and the Sun, the
linear theory of viscoelasticity of small deformations is used. The perturbed Routh
functional of the problem under consideration can be represented in the form of
Eq. 15.2 [9].

R = R0 + εR1({I }, {ϕ}, [u], [u̇]) + ε2 . . . (15.2)

Here, R0 is theRouth functional in the absence of deformations including the func-
tionals of the system’s kinetic energy and potential energy of gravitational forces from
the Moon and the Sun, εR1 is the perturbation functional due to gravitational tides
that includes the kinetic energy of the relative motions of the elastic body particles
and potential energy of elastic deformations, u, u̇ are vectors of displacement and
velocity of the moving medium particles; ε > 0 is a small dimensionless parameter
characterizing the relative magnitude of the perturbing factors in Eq. 15.2, which is
introduced for convenience.

The dynamics of the perturbed Chandler motion of the instantaneous axis is
related, in particular, with a change in the angle δ2, which determines the change in
the amplitude of the Chandler wobble. The angular variable δ2 is the angle between
the axis of the figure of the Earth and the vector of the Earth’s spin.
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In the absence of dynamic symmetry (A �= B), the action-angle variables will
differ from theAndoyer variables by small changing values, and the desired equations
taking into account the perturbed functional εR1 will take the formofEqs. 15.3,where
h1 is the integral of the kinetic energy for the unperturbed problem.

İ1 = −ε ∂R1
∂w1

İ2 = 0 İ3 = −ε ∂R1
∂w3

ẇ1 = n1 + ε ∂R1
∂ I1

ẇ2 = n2 + ε ∂R1
∂ I2

δ̇2 = −ε(I2κ∗ sin δ2)
−1 1+κ2sn2(η,λ)

dn(η,λ)
∂R1
∂w1

η = 2
π
K(λ)w1 κ2 = C(A−B)

A(B−C)
λ2 = κ2 2Ch1−I 22

(I 22 −2h1A)

(15.3)

The model of the Chandler pole motion with the frequency ẇ1 = n1 and identi-
fication of its parameters are based on the qualitative theory of dissipative systems.
To determine the steady pole motion as an unperturbed motion, the dissipative terms
of the pole tide are taken into account in the variations of the centrifugal moments
of inertia δ Jpr, δ Jqr. To do this, the Routh functional R01 of the perturbed problem
is introduced as Eq. 15.4.

R01 = −L
√
G2 − L2

(
δ Jpr sin l

A C
+ δ Jqr cos l

B C

)
(15.4)

Variations in the centrifugalmoments of inertia due to variable rotational deforma-
tion are associated with variations in the tesseral harmonics of the geopotential with
simple relations [10]. The amplitudes of the variable normalized tesseral harmonic
coefficients δc21, δs21 are determined fromgeophysicalmeasurements and, according
to [1], are related to the coordinates of the Earth pole by the relations:

[
δc21
δs21

]
= −1.33 · 10−9

([
xp
yp

]
+ 0.0115

[
yp

−xp

])
.

Taking these terms into account, Eq. 15.4 leads to the damping of the pole motion
at a frequency of n1.

The perturbed motion taking into account the dissipative properties of the Earth
viscoelastic mantle leads to regular precession with slowly changing parameters,
which can be studied on the basis of asymptotic methods of nonlinear mechanics
[11, 12]. And, in particular, the steady state of the Chandler wobble is determined.

When considering the perturbed case for R01 taking into account the dissipative
terms of the pole tide in the variations of the centrifugal moments of inertia, as well
as, the small perturbation at the Chandler frequency n1 in a form of

δ Jpr
A∗ = −σδ2 sinw1 + μp cos(n1t + βp),

δ Jqr
B∗ = −σδ2 cosw1 + μq cos(n1t + βq), (15.5)
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we obtain Eq. 15.6 for coefficient δ2.

δ̇2 ≈ −2r0K (λ)κ

πχ
σδ2 + f p

√
1 + κ2 sinw1 cos(Nt + βp) + fq cosw1 sin(Nt + βq)

(15.6)

Here, σ is the dissipation coefficient, f p,q and βp,q are the amplitudes and phases
of the perturbation, respectively.

In stationary steady state, we will have Eq. 15.7.

δ2 ≈ fq sin(βq+�ψ)+ f p
√
1+κ2 cos(βp+�ψ)

4r0K (λ)κσ (πχ)−1

fq cos(βq + �ψ) − f p sin(βp + �ψ) = 0
(15.7)

To study the dynamics of the Earth pole motion, the steady-state mode of its
oscillations can be taken as unperturbed. Factors that perturb the steady motion of
the Earth pole are astronomical (lunar–solar disturbances) and geophysical ones. The
obtained model of the Earth pole unperturbed oscillatory process is also convenient
for constructing a numerical–analytical model for predicting its motion [13].

15.3 Tidal Oscillations of the Deformable Earth Inertia
Tensor

Modern methods of gravimetry, geophysics, and space geodesy make it possible to
measure with high accuracy the temporal variations of the geopotential expansion
coefficients and the corresponding small radial vibrations of the Earth’s surface.
These fluctuations occur mainly due to the lunar–solar tidal disturbances and
geophysical phenomena. For example, the amplitudes of solid-state tides from the
Moon and the Sun measured on the Earth’s surface reach 34 and 16 cm, respec-
tively. The magnitudes of these amplitudes are in accordance with the magnitudes
of the equipotential surface oscillation amplitudes of the tidal potential and, to a first
approximation, are connected by a linear dependence. The proportionality coeffi-
cient between the surface level heights of the tidal potential and the Earth’s surface
is determined from observations. It is associated with many physical and mechan-
ical characteristics of the deformed Earth. The lunar–solar tidal potential leading to
terrestrial tides—solid, oceanic, and atmospheric—also turns out to be proportional
to the corresponding changes in geopotential. The estimate value of these propor-
tionality coefficients depending on the parameters of the planet’s deformations—
elastic moduli and viscosity coefficients of various media, as well as, the disturbance
frequency—makes it possible to solve the complex problem of studying the Earth’s
internal structure. This line of research is a branch of geophysics. But the problem
of the deformable Earth motion relative to its center of mass is a complex task and
can combine elements of various fields of science: astrometry, celestial mechanics,
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geophysics, the theory of stochastic systems, and many others. And first of all, the
methods and approaches used to construct the Earth motion model depend on the
goals of scientific research. In that case, if the goal of the problem is modeling in
a certain “average” sense that is a development of a model described the motion in
question with average observed parameters, then the celestial–mechanical approach
seems to be the most rational as the basis for constructing a complex model. Along
with this, it is justified from the point of view of practical application to construct
a few-parameter mathematical forecast model that allows us to reduce the compu-
tational complexity of the algorithmic implementation of the model of the Earth
orientation parameters oscillations.

Indeed, for qualitative conclusions about the Earth motion around its center of
mass, it will be logically justified to take into account coherent oscillations in various
deformable (visco-elastic and liquid) Earth’s media. For example, Fig. 15.3a shows
the observed oscillations of the gravitational acceleration normal component δg on
an SG gravimeter in Membach (Belgium), whose position is marked on the static

Fig. 15.3 Earth motion observation: a variations in the gravitational acceleration according to
measurements on an SG gravimeter in Membach (discrete points) in comparison with fluctuations
in the model of solid-state tides (green line) and diurnal variations in sea level according to PSMSL
station near Rorvik, b model of the geoid of the GFZ center (the arrow shows the location of the
city of Membach), c comparison of hydrosphere tidal oscillations in the data of the gravitational
acceleration of the Membach city (red line) and sea-level fluctuations in the Rorvik city (blue line),
and d geoid elevation map for a portion of the Earth’s surface according to the model of the GFZ
center (the flag marks the location of Rorvik)
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geoid of the GFZ model [14]. An example of comparing the δg variations due to
solid-state tides with the measurement data shows that the combined tidal variations
of the Earth’s deformable media determine 98% of the observed oscillations. These
coherent fluctuations in geomedia can be identified with the ones of a viscoelastic
thin layer of the adopted deformable Earth model. Then the differences between the
solution of such a model problem obtained in the first approximation and observed
processes will be in the proportionality coefficients. In turn, these coefficients can be
identifiedwith a sufficient degree of accuracy from astrometric and geodetic observa-
tions and measurements data. This approach allows some generalization in the case
of taking into account hydrosphere oscillations. Indeed, if the oceanic oscillations are
taken into account, we can assume that the remaining discrepancy in the oscillations
of the measured signal δg along with the influence of atmospheric pressure [15] will
also be caused by hydrosphere fluctuations from a relatively small (on the scale of the
entire Earth’s surface) neighborhood. Variations in atmospheric pressure are usually
non-stationary and measured directly at the point of observation. The corresponding
fluctuations in the gravitational acceleration can be considered proportional to atmo-
spheric pressure [15, 16]: they can be easily filtered out. However, atmospheric
fluctuations in the high-frequency range like any tidal variations of the atmosphere
are small. Therefore, the remaining 2% of the amplitude of the high-frequency g
oscillations will be due to hydrosphere fluctuations. As an example of the correla-
tion between the variations in the gravitational acceleration and local hydrosphere, a
comparison is made (Fig. 15.3b) between the sea-level fluctuations at the coastline
of Rorvik (Norway) marked on the map without the long-period component and the
corresponding component isolated from δg. Also, in Fig. 15.3a, the gravitational
accelerations and close to diurnal sea level variations are compared. For example, if
the residual between the measurement data and tidal model of the solid-state oscil-
lations of the gravitational acceleration is represented as the sum of the diurnal and
semidiurnal variations δgϕ + δg2ϕ , then it correlates with the variation δhϕ − δh2ϕ

of the sea level.

15.4 Geophysical Factors in the Model of the Earth Pole
Oscillatory Process

It is well-known [1, 17, 18] that the amplitude and phase of the Chandler component
of the Earth pole oscillatory process are very sensitive to various perturbing factors
including those with irregular properties (oceanic, atmospheric, and possibly others).
The magnitude of the amplitude of the steady-state motion is determined by the
frequency difference and dissipation coefficient. Therefore, the Chandler component
of the Earth pole oscillations should be considered the most sensitive to the irregular
impacts. The mechanism of these impacts is naturally related to weak inertia tensor
perturbations.
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Even the regular tidal potential [16], due to the complexity of the topography
of the global ocean floor and contours of the continents coastlines, leads to the
development of a random displacement field and occurrence of random fluctuations
in tidal processes. These perturbations correspond to weak irregular perturbations
of the Earth’s inertia tensor components. However, due to the uneven distribution of
the global ocean’s water masses over the Earth’s surface, their manifestation in the
centrifugal moments of inertia Jxz, Jyz, and, therefore, in the coordinates xp, yp, are
different.

In Fig. 15.4, the amplitude spectrum of the Earth pole coordinates in the axes x,
y (left graph) and x′, y′ (right graph) are shown. The axes x, y correspond to the
terrestrial coordinate system ITRS axes [1] (the axis x is located in the Greenwich
meridian plane, and axis y is in the plane orthogonal to it). In turn, axes x′, y′ are
obtained by rotating x, y by an angle determined from the fulfillment of the combined
condition of the noise’s highest level (the level of the spectral power density of the

Fig. 15.4 Amplitude spectrum of the Earth pole coordinates. At the bottom left, we see the ampli-
tude spectra of the oscillations of the Earth pole coordinates in the projection on the axis x, y (dark
green and light green lines, respectively). At the bottom right, we see the amplitude spectra of
oscillations of the Earth pole coordinates in the projection on the axis x′, y′ (dark blue and blue
lines). The upper figure illustrates a relative position of the axes x, y (dark green and light green
lines) corresponding to the zero meridian and the 90th meridian of west longitude (top left) and the
axes x′, y′ (dark blue and blue lines, respectively) obtained by turning the first two at an angle of 40°
toward the east (top right). The logarithmic scale for amplitudes was used along the ordinate axis of
the spectral graphs. The graphs show differences in the harmonics amplitudes of the high-frequency
regions along the corresponding axes before and after the rotation
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oscillations of the Earth pole coordinates x ′
p, y′

p) in one of the coordinates and the
lowest level in the other. The calculations were carried out in a 5° increment.

The resulted graphs show the differences in the harmonics amplitudes of the high-
frequency regions. The logarithmic scale for amplitudes was used along the ordinate
axis of the graphs. The graphs show that the lowest level of noise (in the frequency
range from 5 to 40 cycles per year) is observed at the coordinate x′, rotated by an
angle of about 40° to the east of Greenwich. The highest level of high-frequency
oscillations approximately corresponds to the y′ axis, which preserves the direction
orthogonal to the x′ axis, although the maximum is less explicit than the minimum
along the x′ axis.

The correspondence of the positions of the axes x′, y′ to the distribution of water
mass over the Earth’s surface can be shown visually using simple reasoning. First,
we determine the dependence of the total ocean surface ratio to the land surface on
longitude. To obtain accurate results, topographic data should be used, followed by
their integration over latitude. However, since a high accuracy is not required for a
qualitative analysis, we can consider a more original method, which is quite suitable
for the purposes of this work. In [19], the results of broadband photometry of the
Earthwere presented according to the data from theDeep Impact spacecraft operating
under the EPOXI mission, and the dependence of the land surface distribution on the
longitude was constructed on the basis of light curves. Denote by k(θ) the share of
the ocean surface at longitude θ is defined by Eq. 15.8.

k(θ) = Ocean Surface at longitude θ

Earth Surface at longitude θ
(15.8)

Variations in the centrifugal moments of inertia Jx ′z , Jy′z have a perturbing effect
on the Earth pole oscillatory process. Since the centrifugal moments of inertia char-
acterize the masses distribution relative to the coordinate planes x ′z, y′z, their sensi-
tivity is higher to the motion of the moving medium on the Earth’s surface that is
located closer to the corresponding plane. Then they will have the greatest sensitivity
to tangential displacements in a sector bounded by two meridians and containing a
plane with respect to which the moments of inertia are calculated. In this case, the
motion of particles on the surface bounded by such a sector occurs in tangential
directions, but their latitude is unknown, since the introduced coefficient k(θ) as an
integral value does not depend on latitude and there is no resolution on latitude.

Now we choose two sectors that are symmetrical with respect to the coordinate
planes x ′z, y′z with angles at the vertex 2θ0. When the axes are rotated, the selected
sectors will also rotate. If the moving medium is evenly distributed over the surface
of the hemisphere (e.g., for x ′ > 0) and is “frozen” on the opposite hemisphere, then
the particle motion on the surface bounded by such a sector determine approximately
100 sin θ0% of the variable part for the centrifugal moments of inertia (at θ0 = π/2
the sector becomes a hemisphere). For an unevenly distributed medium, this value
can differ and the smaller the angle θ0 ∈ (0, π/2], the larger the difference. But on
the other hand, the larger the angle θ0 (i.e., the larger the area of the surface under
consideration), the greater the uncertainty of the correspondence between the ocean
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distribution and the total coefficient k(θ) in the sector after integration over longitude
is. Therefore, the choice of the sector’s angle (basically, the choice of the integration
region of the coefficient k(θ) in longitude) is a compromise between the maximum
sensitivity of centrifugal moments of inertia to the particles motion along a surface
that is limited by the sector and theminimumarea of this surface in order to reduce the
uncertainty error. Since the share of the surface area limited by a sector is 2θ0/π, θ0
is determined from the condition that the function π sin θ0 − 2 θ0 is maximum on
the 0 < θ0 ≤ π/2 interval. Under the condition θ0 ≈ 0.9, the motion of the particles
in this sector determines approximately 80% variations of the tesseral harmonic of
the geopotential. However, let us choose a slightly larger value of the angle and, in
the following formulas, put for illustration purposes θ0 = π/3, although this will not
fundamentally affect the estimates of average values.

Let us determine the share of the ocean surface area limited by one selected sector.
Since the Earth’s surface area limited by a sector is a constant and does not depend
on the Earth rotation, the share of the ocean’s surface area in the sector with an vertex
angle as (θ − π/3, θ + π/3) is proportional to the average coefficient k(θ):

k(θ) = 〈k(θ)〉2π/3 = 3

2π

θ+π/3∫

θ−π/3

k(θ)dθ. (15.9)

The centrifugal moments of inertia Jx ′z, Jy′z are most sensitive to the motion of
the moving medium if the ocean distributions in the selected sector and in the sector
symmetrical to it are significantly different. This condition can be replaced in a non-
strict sense by the integral condition k(θ) − k(θ + π) �= 0. In the strict sense, this
condition does not appear directly from Eq. 15.9 and thus is taken as an assumption.
If the location of the axes x′, y′ meets this condition, then the assumption will be
valid.

In order to establish a correspondence, a function is defined

f (θ) = [
k(θ) − k(θ + π)

]2
(15.10)

that when k(θ) = k(θ + π) takes the minimum value, i.e., with equal share of the
ocean surface in two opposite sectors, and the maxima corresponds to the extrema
of the function k(θ)− k(θ +π), when the share of the ocean surface in two opposite
sectors are most different.

The correspondence between the location of the axes x′, y′ and the distribution
of the ocean over the Earth’s surface is shown in Fig. 15.5. It can be seen that the
directions of the axes approximately correspond to the extrema of the function f (θ).

That is, in the approximately orthogonal direction to the axis x′ one can assume
a minimum of the amplitude of high-frequency perturbations due to less asymmetry
in the ocean distribution, which, according to the results of processing the pole
motion data, leads to high-frequency oscillations along the coordinate x′ with lower
intensity. Similarly, with respect to the coordinate y′, the oscillations with a higher
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Fig. 15.5 Real and estimated distributions: a distribution of the ocean (blue color) and land (white
color) on the Earth’s surface depending on longitude (top) and share of the ocean surface at longitude
θ (bottom), b distribution of the function f (θ) plotted on the Earth’smap and the location of the axes
x′, y′ corresponding to Fig. 15.4 (top) and dependence of the function f (θ) and the correspondence
of its extrema to the location of the axes x′, y′ (bottom)

intensity are observed due to the greater asymmetry of the ocean distribution along
the axis x′. Although it does not follow directly from the maximum in the axis y′
and the minimum in the axis x′ of the short-period pole oscillations that the intensity
of the high-frequency perturbation in the projection onto the axis x′ exceeds the
intensity of the perturbation in the projection onto the axes y′, and not, for example,
vice versa. Moreover, the maximum and minimum amplitudes of high-frequency
perturbations can be achieved also while projecting on non-orthogonal axes. But
from the analysis of the calculated total geodetic perturbations and separately the
ocean perturbations in the projection on the axes x′, y′, it can be established that the
highest intensity of high-frequency perturbations is observed in the projection on the
axis of approximately 15° of the east longitude and the lowest intensity is about 75°
of the west longitude. These directions differ from the directions of the axes x′, y′
in the projection onto which the extrema of the amplitudes of the short-period Earth
pole oscillations are observed, but with the same error correspond to the extrema of
the function f (θ). Of course, for more accurate conclusions, it is important not only
to estimate the asymmetry in the distribution of various media over the surface, but
also to quantify the distributions, as well as, the latitude distribution. However, the
calculations performed allow us to draw some conclusions.

Thus, the orientation of the vector of complete geodesic perturbations including
the influence of the atmosphere and the ocean corresponds to the distribution of
the ocean over the Earth’s surface in the sense considered above. Consequently,
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Fig. 15.6 Amplitude spectra of the oscillations of the Earth pole coordinates in the projection: a on
the axis x, y (dark green and light green lines, respectively), b on the axis x′, y′ (dark blue and blue
lines, respectively)

geophysical perturbations are some consistent oscillations of moving media and can
be considered together as a combination.

The directions of the axes x′, y′ found from the condition of maximum and
minimum intensities of perturbations approximately correspond to the distribution
of the ocean over the Earth’s surface, not only for high-frequency oscillations, but
also for oscillations from any not too short frequency interval. That is, the correspon-
dence can be shown for the entire spectrum of oscillations with the only caveat that
for perturbations with frequencies below the Chandler frequency the arrangement of
the axes x′, y′, it will change by 90°. This means that the maximum amplitude of the
pole oscillations at a frequency above the Chandler’s one will be observed along the
axis y′, and the maximum amplitude at a frequency below the Chandler’s one will
be observed along the axis x′ (Fig. 15.6). This circumstance is also due to the corre-
spondence of the phases with the fluctuations spectrum onto which the perturbations
are decomposed. And this also indicates the consistency of perturbations of various
physical nature.

15.5 The Role of Astronomical Factors in the Perturbed
Earth Pole Motion

It is known [20] that coherent oscillations in variousmedia can appear in the geophys-
ical processes on a planetary scale. A number of large-scale phenomena of the atmo-
sphere and the ocean, the global seismic activity of the Earth have signs of common
oscillatory processes also inherent in the Earth rotational motion [21–23]. And the
Chandler wobble is no exception. However, the process of developing such oscilla-
tions has not been sufficiently studied to this moment. For example, the variations
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in the main components parameters of the Earth pole oscillations may have more
global causes than it is assumed, and the process of their excitation is caused not only
by fluctuations of geophysical media of a stochastic nature. More precisely, these
oscillations can be non-stationary, but be of a natural nature, and not stochastic.
From the result of processing data on the Earth pole motion, it appears [18] that the
oscillations of the Earth’s moving media in the spectral range of the Chandler and
annual harmonics turn out to be ordered in some way. For example, in the observed
Earth pole motion, it is possible to establish the presence of an in-phase oscillatory
process with a precession of the lunar orbit [9, 18].

The spatial motion of the lunar orbit consists of a series of rotations around
intersecting axes. They lead to the cyclical motion of its nodes and perigee [24]. In
addition, the derivatives of the orbit parameters are nonzero and are varying values,
being the subject to small variations. A result of the lunar orbit precession and of
the associated cyclic change in the longitude of the ascending node with a period
of 18.61 years is a change in the orbit plane inclination to the Earth’s equator. The
inclination of the lunar orbit to the Earth’s equator varies from 18.3° to 28.58°. In this
case, the point of intersection of the lunar orbit circle with the equator oscillates along
the equator near its average position, which coincides with the point of the vernal
equinox. Unlike the node (the intersection point of the lunar orbit circles and the
ecliptic in the celestial sphere), which makes a complete revolution, the intersection
point of the orbit and the equator oscillates in the range from –13.2° to 13.2°.

In [25], it was shown that one can find a transformation of the Earth pole coordi-
nates, illustrating in-phase nature of its Earth pole oscillatory process and the lunar
orbit precession. Namely, the oscillatory motion of the pole minus the Chandler (or
annual depending on the amplitudes values of the Chandler and annual harmonics)
and six-year cycles occurs in-phase with oscillations along the equator of the inter-
section point of the lunar orbit and the equator. This feature requires a more detailed
analysis and study of the causes of such fluctuations. In particular, it is of interest to
establish the contribution of geophysical (atmospheric and oceanic) disturbances to
these oscillations.

As a result of the numerical solution of the differential equations of the Earth
pole motion, the trajectories of the pole are obtained for various perturbations.
The perturbing functions were tabulated according to the IERS published data. For
example, in Fig. 15.7, it is shown a comparison between the fluctuations in the calcu-
lated motion of the Earth pole taking into account the combined perturbations from
the atmosphere and the ocean and the fluctuations of its observed motion.

To isolate the oscillatory process with a frequency of 0.05373 cycle/year from
the calculated and observed pole oscillations, the procedure proposed in [25] was
applied. Using transformations of the Earth pole coordinates, the essence of which is
the elimination of two cycles—with theChandler and six-year periods, it is possible to
obtain a pole oscillation in-phase with the precession of the lunar orbit. In Fig. 15.8a,
a comparison is shown between the variations of the polar angle ϕ isolated from the
observed Earth pole trajectory, its approximation by a two-frequency model with
constant coefficients, and the calculated Earth pole trajectory taking into account
atmospheric and oceanic perturbations. In the lower graph of Fig. 15.8, a graph of
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Fig. 15.7 Earth pole oscillations according to the IERS observations and measurements (discrete
data) in comparison with the calculated oscillations caused by perturbations of: a atmosphere and
b ocean

oscillations of the angle of deviation δ along the equator of the point of intersec-
tion of the equator with the lunar orbit is constructed. The main harmonic with the
precession frequency of the lunar orbit for the observed pole motion is shown by the
red line, and the blue dots are for the calculated motion taking into account geophys-
ical perturbations. The oscillations caused by geophysical perturbations have much
smaller amplitude and shifted phase, which indicate more complex physical nature
of these oscillations and the incompleteness of the disturbances taken into account.

15.6 Conclusions

Variations in the main components parameters of the Earth pole motion are due to
the effect of the combined nature. The considered main geophysical perturbations
are apparently part of the coherent oscillations of various media. Not more than
50% of the energy of the considered oscillatory process is due to perturbations of
the atmosphere and the ocean. Since the impact of other geophysical fluids on the
Earth pole motion is much smaller, this process should be more global in nature and
such variations in the Earth’s environment can be affected. Then, their excitation
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Fig. 15.8 Estimates of the polar angle variations: a comparison between the variations of the
polar angle ϕ isolated from the observed Earth pole trajectory (black line), its approximation (red
line), variations of the polar angle ϕ using a two-frequency model with constant coefficients (gray
line), and the calculated Earth pole trajectory taking into account the atmospheric and oceanic
perturbations (blue line) and b a graph of oscillations of the deviation angle δ along the equator of
the point of intersection of the equator with the lunar orbit

in geomedia can be caused not so much by internal perturbations as by external
disturbances for the Earth.

Acknowledgements Thisworkwas carried out within the basic part of the state task of theMinistry
of Education and Science of the Russian Federation (project no. 721).
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Chapter 16
Application of Multi-agent Optimization
Methods Based on the Use of Linear
Regulators and Interpolation Search
for a Single Class of Optimal
Deterministic Control Systems

Andrei V. Panteleev and Maria Magdalina S. Karane

Abstract Two newmulti-agent algorithms for controlling one class of deterministic
systems are proposed: the hybrid multi-agent method of interpolation search and
multi-agent method based on the use of linear regulators of agent movement control.
Detailed descriptions of the strategies of these methods are given, and step-by-step
algorithms for each multi-agent method are described. Since multi-agent algorithms
are used to find optimal control of dynamic systems, step-by-step algorithms for
finding optimal open-loop control using multi-agent methods are also given. Two
approaches to the search for optimal open-loop control are considered: when control
is sought in relay form with a certain number of switches and when control is sought
in the form of an expansion in a system of basis functions. In this chapter, cosine
curves were considered as basis functions. Based on the above algorithms, software
has been formed that allows finding the optimal open-loop control. Recommended
parameters are given for each multi-agent algorithm. To study the effectiveness of
the above algorithms, a specially selected set of test problems for finding the optimal
open-loop control is solved, where the model of the control object is described by
an ordinary differential equation linear in bounded control. During the study, it was
shown that the described algorithms successfully cope with the task and can find a
solution close to the exact one.
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16.1 Introduction

The scope ofmulti-agent algorithms [1] is quite wide, and at present, such algorithms
aremore andmore often used to solve various kinds of optimization problems. This is
due to the fact that multi-agent algorithms are in no way inferior to existing classical
methods, and even vice versa quite often surpass them. Theymake it possible to solve
problems of greater dimension much more successfully or if restrictions are imposed
on the system. The advantage of multi-agent algorithms also lies in the fact that it is
not necessary to have information about the behavior of a function or its properties.
Multi-agent methods are used in many fields, such as the theory of optimal control
[2–5] for optimizing a criterion or in machine learning for tuning and training neural
networks [6].

The principle of operation of multi-agent algorithms consists in the formation of
a group of agents on the solution search set, and depending on the specific algorithm,
a set of actions is carried out on the agents that lead group of agents to answer the
task.

The purpose of this work is to develop a multi-agent algorithms and their applica-
tion in order to find the optimal open-loop control. This requires a formation of more
general algorithm, which will include multi-agent algorithms. Another purpose is to
find the optimal open-loop control in two ways: by decomposing the control into a
system of basis functions and representing the control in relay form with a certain
set of switching points.

The novelty of this approach is the use of multi-agent algorithms to search for
optimal program control. Each multi-agent algorithm is based on new ideas for
finding the optimal solution. The novelty of the hybrid multi-agent method of inter-
polation search [7] is the use of interpolation curves, which allows to adapt the locally
changing structure of the level surfaces of the objective function. In the multi-agent
method based on the use of linear regulators of agent movement control, four types
of optimal program control with full feedback on the state vector are searched at the
stages of the algorithm. For each control, its own criterion is optimized.

In addition, before applying multi-agent algorithms, one should investigate their
effectiveness on a standard set of test functions [8, 9] of two variables in order to
identify the most suitable ranges of parameter values. Using them, it is possible to
solve applied problems with great success. In [7], for the hybrid multi-agent method
of interpolation search, a detailed analysis of the efficiency is given, and the best
algorithm parameters are established.

The chapter is organized as follows. Section 16.2 provides a description of multi-
agent methods. Application of multi-agent methods for optimal open-loop control
problems is given in Sect. 16.3. Section 16.4 concludes the chapter.
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16.2 Description of Multi-agent Methods

Hereinafter, Sect. 16.2.1 discusses an optimization problem.Hybridmulti-agent opti-
mizationmethod of interpolation search is presented in Sect. 16.2.2.Multi-agent opti-
mization algorithm using linear regulators for agents’ motion control is developed
in Sect. 16.2.3.

16.2.1 Optimization Problem

It is given the objective function f (x) = f (x1, x2, . . . , xn) defined on the set of
admissible solutions D ⊆ Rn. It is required to find the constrained global maximum
of a function f (x) on set D, i.e., such a point x∗ ∈ D, that

f (x∗) = max
x∈D f (x), (16.1)

where x = (x1, x2, . . . , xn)T , D = {x |xi ∈ [ai , bi ], i = 1, 2, . . . , n}.
The task of finding the minimum of a function f (x) is replaced by the task of

finding the maximum by replacing the sign before the function with the opposite:
f (x∗) = min

x∈D f (x) = −max
x∈D

[− f (x)]. Function f (x) can be multiextremal, so the

required solution in the general case is not unique.

16.2.2 Hybrid Multi-agent Optimization Method
of Interpolation Search

Solution search strategy. The search strategy includes interpolation search, which
uses several points of the current population and reduces the task of finding new solu-
tions to the problems of one-dimensional parametric maximization, swarm intelli-
gencemethod tomaximize the objective function value along the interpolation curve,
and self-organizing migrating algorithm [7].

The considered objective function f (x) is called the fitness function, and the
vector of parameters x = (x1, x2, . . . , xn)T of the objective function is an individual.
Each vector x = (x1, x2, . . . , xn)T ∈ D is a possible solution of an optimization
problem. The smaller the value of the objective function f (x), themore the individual
x is adapted, i.e., suitable as a solution.

In solving problem (Eq. 16.1), finite sets I = {x j = (x j
1 , x

j
2 , . . . , x

j
n )

T , j =
1, 2, . . . , N P} ⊂ D of possible solutions are used. These solutions are called popu-
lations, where x j is the individual with the number j and N P is the size of the
population.
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The hybrid multi-agent method of interpolation search imitates the evolution of
the initial population I0 = {x j , j = 1, 2, . . . , N P|x j = (x j

1 , x
j
2 , . . . , x

j
n )

T ∈ D}
and is an iterative process that explores the set D.

The procedure of finding a solution begins with the generation of the initial popu-
lation of individuals x j ( j = 1, N P) on the set D using a uniform distribution. The
first phase of the search is interpolation search. The construction of different interpo-
lation polynomials allows to adapt a locally changing structure of the level surfaces
of the objective function. A different role of leading points is also used to realize
frontal search or deep search of an admissible solution set, thereby, providing addi-
tional flexibility of the search strategy. The interpolation polynomials type choice is
optional. Thus, the choice of the interpolation polynomial type and the points, by
which it is formed, implements two types of search: exploration and exploitation.

To implement it, four members P1, P2, P3, P4 in the population are selected.
Among them P1 = x (1) is a leader, and P2, P3, P4 are random members of the
population. All four points are different. The Bezier curve is used to process them.
It passes inside the convex hull formed by the selected four points. As t = 0, curve
passes through P1, and as t = 1, curve passes through point P4. Next, we find the
solution to the parametric optimization problem

xBezier4 = arg max
t∈[0,1] f [(1 − t)3P1 + 3(1 − t)2t P2 + 3(1 − t)t2P3 + t3P4], (16.2)

and a new member xBezier4 is added to the population.
B-spline curve is used to explore new areas. The curve is formed by four random

members of the population P1, P2, P3, P4 that are different

x B = arg max
t∈[0,1] f

[
1

2

[
−t (1 − t)2P1 + (2 − 5t2 + 3t3)P2 + t (1 + 4t − 3t2)P3 − t2(1 − t)P4

]]
.

(16.3)

As a rule, the curve does not pass through any point; it is in the convex hull
generated by four vertices. As a result, one more new member x B is added to the
population.

The second phase of the search is the migration of the population. The leader is
selected in the population (the best solution) x (1). All othermembers of the population
x ( j), j = 2, ..., N P move toward the leader making nstep discrete steps, and half
of these steps being done to the leader, and then as many more steps are taken in
the same direction. The new position of a member of the population is determined
by the best decision reached during this search. The direction of the search is given
by a vector PRTVector, whose coordinates are zero or one. If the coordinate is zero,
the search for this coordinate is not conducted, and if it is one, then it is performed.
Thus, the solution to the problem is sought in all coordinates that are simultaneously
equal to one. The position of the leader in the migration process does not change.
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The third phase is the frontal search, which serves to clarify the final solution of
the problem. It uses interpolation curves. Information about the position of the first
three or four leaders among the members of a population is used to form curves.

Among the members of the population x (1), . . . , x (N P) located in ascending order
of the value of the fitness function, three leaders P1 = x (1), P3 = x (2), P2 = x (3) are
selected, according to which the Bezier curve is formed (as t = 0 it passes through
point P1, and as t = 1 it passes through point P3). Next we find the solution to the
parametric optimization problem

xBezier3 = arg max
t∈[0,1] f [(1 − t)2P1 + 2(1 − t)t P2 + t2P3], (16.4)

and a new member xBezier3 is added to the population.
Four points P1 = x (3), P2 = x (1), P3 = x (2), P4 = x (4) are selected to continue

the search. The Catmull–Rom interpolation curve passes through the two best point
(as t = 0 it passes through point P2, and as t = 1 it passes through point P3). Next
we find the solution to the parametric optimization problem

xCR = arg max
t∈[0,1] f

[
1

2

[
−t (1 − t)2P1 + (2 − 5t2 + 3t3)P2 + t (1 + 4t − 3t2)P3 − t2(1 − t)P4

]]

(16.5)

and a new member xCR is added to the population.
The Bezier curve formed by the four population leaders P1 = x (1), P4 =

x (2), P2 = x (3), P3 = x (4) is used for a similar search (as t = 0 it passes through
point P1, and as t = 1 it passes through point P4). Next we find the solution to the
parametric optimization problem

xBezier4 = arg max
t∈[0,1] f [(1 − t)3P1 + 3(1 − t)2t P2 + 3(1 − t)t2P3 + t3P4], (16.6)

and a new member xBezier4 is added to the population.
B-spline curve, which is formed by the four leaders of the population P1 =

x (1), P4 = x (2), P2 = x (3), P3 = x (4), can be used for frontal search. The curve does
not pass through any selected point, but it is in the convex hull generated by these
vertices. Next we find the solution to the parametric optimization problem

x B = arg max
t∈[0,1] f

[
1

2

[
−t (1 − t)2P1 + (2 − 5t2 + 3t3)P2 + t (1 + 4t − 3t2)P3 − t2(1 − t)P4

]]
,

(16.7)

and a new member x B is added to the population.
The procedure of maximization of the objective function value along the

interpolation curves.
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The first and third phases require one-dimensional maximization of parametric
curves. The swarm intelligence method called as Krill Herd [10, 11] is used for
maximization, but it was possible to use classical algorithms for one-dimensional
maximization, for example, the dichotomymethod or the golden-section search. Krill
Herd method is based on the results of the krill packs behavior analysis, resembling
shrimps. Their positions change under the influence of three factors: the presence
of other members of the population, need to search for food, and random walks.
Usually the movement of krill population is determined by two goals: the increase
in the density of krill and attainment of food. At the beginning of the process, a
population N P ′ is generated from individuals on interval t ∈ [0, 1] using a uniform
distribution. It is assumed that themotion of the j thmember of the population occurs
according to Eq. 16.8, where x j is the position, V j is the speed, which consists of
three terms.

dx j

dt
= V j (16.8)

The first term is determined by the influence of neighbors (members of the popu-
lation that belong to certain neighborhood of j th element of a certain radius), the
best element in the entire population, and information about its former speed. The
second term is determined by the movement toward the food source (the “center
of mass” of the population is taken for it), information about the former speed in
search of food, and the memory of its best result for all the iterations. The third term
imitates the random walks of the individual, which decrease with increasing number
of iterations. To revive the search process, the cross and mutation operations are used
in other evolutionary methods, as well as, the method of differential evolution are
applied. The procedure for finding themaximumof the interpolation curve endswhen
the specified number of iterations is reached. And as an answer from the last krill
population, the individual that corresponds to the smallest value of the parametric
curve f is selected, and a new member x j is added to the original population.

The hybrid multi-agent method of interpolation search finishes work after the
specified number of iterations is passed. As an approximate solution to the problem,
an individual from the last populationwith the greatest value of the objective function
is selected.

Solution search algorithm

Step 1 Set the method parameters: NP is the number of members in the popula-
tion, M1 is the number of points obtained using the Bezier curves, M2 is
the number of points obtained using B-spline curves, PRT is the param-
eter that determines the search activity by coordinate, nstep is the number
of possible positions of the populationmembers, b2 is the number of indi-
viduals (worst) to reduce population, and Imax is the maximum number
of iterations. Let I = 1 (iteration count).
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Fig. 16.1 Four point of the
Bezier curve

Step 2 Generate the initial population on a set D using the uniform distribu-
tion law: x1, . . . , xN P . Calculate the values of the objective function:
f (x1), . . . , f (xN P).

Step 3 Order the population consisting of NP individuals by the value of the
objective function.

Step 4 Execute the interpolation search.
Step 4.1 Perform this step M1 times. Select P1 = x (1) (the best) in the current

population I0, and as P2, P3, P4 are three different randommembers of
the population and different from x (1) (Fig. 16.1) find a solution to the
problem of parametric optimization provided by Eq. 16.9.

xBezier4, j = arg max
t∈[0,1] f [(1 − t)3P1 + 3(1 − t)2t P2 + 3(1 − t)t2P3

+ t3P4], j = 1, . . . , M1 (16.9)

Step 4.2 Perform this step M2 times. Select four different members of population
P1, P2, P3, P4 in the current population I0 (Fig. 16.2) and find a solution
to the problem of parametric optimization provided by Eq. 16.10.

x B, j = arg max
t∈[0,1] f

[
1

2

[
−t(1 − t)2P1 +

(
2 − 5t2 + 3t3

)
P2 + t

(
1 + 4t − 3t2

)
P3

−t2(1 − t)P4
]]

j = 1, . . . , M2 (16.10)

Step 4.3 Reduce the population. Place individuals of the current population,
replenished with M1 + M2 new members increasing the value of the
fitness function. Leave only NP best.

Step 5 Execute migration of population.
Step 5.1 For any x ( j), j = 2, . . . , N P:
Step 5.1.1 Generate PRT Vector ( j) with coordinates using Eq. 16.11.

Fig. 16.2 Four point of
B-spline
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PRT Vector ( j)
i =

{
1 if randi < PRT
0 else

}
randi = U [0, 1] (16.11)

Step 5.1.2 Consistently find the probable positions of population members using
Eq. 16.12, where⊗ is the component product of vectors (by Hadamard).

x ( j),m = x ( j) + x (1) − x ( j)[ nstep
2

] m ⊗ PRT Vector ( j)
i m = 0, 1, . . . , nstep

(16.12)

Step 5.1.3 Find the best position of population members during migration using
Eq. 16.13.

x ( j),new = arg max
m=0,1,...,nstep

f (x ( j),m) j = 2, . . . , N P x (1),new = x (1)

(16.13)

Step 5.2 Place new members of the population after migration in ascending order
of fitness function value.

Step 6 Execute frontal search.
Step 6.1 Select P1 = x (1), P3 = x (2), P2 = x (3) in the current population

(Fig. 16.3) and solve the problem

xBezier3 = arg max
t∈[0,1] f [(1 − t)2P1 + 2(1 − t)t P2 + t2P3]. (16.14)

Step 6.2 Select P1 = x (3), P2 = x (1), P3 = x (2), P4 = x (4) in the current
population (Fig. 16.4) and solve the problem

xCR = arg max
t∈[0,1] f

[[
1

2
[−t (1 − t)2P1 + (2 − 5t2 + 3t3)P2

+ t (1 + 4t − 3t2)P3 − t2(1 − t)P4]
]]

. (16.15)

Step 6.3 Select P1 = x (1), P4 = x (2), P2 = x (3), P3 = x (4) in the current
population I0 (Fig. 16.5) and solve the problem

Fig. 16.3 Three point of the
Bezier curve
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Fig. 16.4 Four point of the
Catmull–Rom curve

Fig. 16.5 Four point of the
Bezier curve

xBezier4 = arg max
t∈[0,1] f

[
(1 − t)3P1 + 3(1 − t)2t P2 + 3(1 − t)t2P3 + t3P4

]
.

(16.16)

Step 6.4 Select P1 = x (1), P4 = x (2), P2 = x (3), P3 = x (4) the current
population I0 (Fig. 16.6) and solve the problem

x B = arg max
t∈[0,1] f

[
1

2

[
−t(1 − t)2P1 +

(
2 − 5t2 + 3t3

)
P2 + t

(
1 + 4t − 3t2

)
P3

−t2(1 − t)P4
]]

. (16.17)

Step 6.5 Reduce the population. Place individuals of the current population,
replenished with xBezier3, xCR , xBezier4, x B members increasing the value
of the fitness function. Leave only N P best.

Step 7 Reduce the population.

Fig. 16.6 Three point of B-spline
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Place individuals of the current population increasing the value of the
fitness function It = {x (1), . . . , x (N P)}, where N P = b1+b2, f (x (1)) =
fmax. Delete the last b2 individuals (with the worst value of the fitness
function).
Increase the number of iterations i t = i t + 1.
The result of Step 7 is a reduced population.

Step 8 Execute the replenishment of population.
Step 8.1 Perform this step b2 times. Generate a population consisting of b2

individuals on a set D using a uniform distribution: x1, . . . , xb2 .
Step 8.2 Order the individuals of the population in ascending order of the fitness

function value: It = {x (1), . . . , x (N P)}, where N P = b1 +b2, f (x (1)) =
fmax.

Step 9 Check the stop conditions of global search.
If i t < Imax, then continue search, go to Step 4.
If i t ≥ Imax, then finish search, go to Step 10.

Step 10 Select the solution from the last population.
Stop the algorithm. As an approximate solution to the problem f (x∗) =
max
x∈D f (x), select individual with the greatest value of the fitness function

from the current population: x∗ ∼= x̃∗ = argmax
j=1,...,N P

f (x j ).

Recommendations on the parameters selection. Size of the population N P deter-
mines a number of calculations of the objective function at each iteration. For a task
with a large range of feasible solutions, it is recommended to take a larger parameter
value NP. Recommended value for this parameter is N P ∈ [30, 40].

The number of iterations Imax determines how long the search for new solu-
tions will continue. The more Imax, the more accurate the solution could be found.
Recommended values for the considered set of standard functions depending on the
complexity of the function are Imax ∈ [100, 300].

The number of points M1 obtained using the Bezier curves in the interpolation
search phase. When maximizing the objective function along the parametric curve,
M1 agents are formed. Recommended value for this parameter is M1 ∈ [2, 5].

The number of points M2 obtained using B-spline during the interpolation search
phase. When maximizing the objective function along the parametric curve, M2

agents are formed. This curve is used to explore new areas. Recommended value for
this parameter is M2 ∈ [4, 6].

Parameter PRT determines the activity of searching by coordinate during migra-
tion of group agents. The parameter sets the search direction. Recommended value
for this parameter is PRT ∈ [0.005, 0.06].

The number nstep defines the possible positions of the populationmembers during
the migration of the population. The parameter determines how many steps an indi-
vidual will take in the direction to the leader. Recommended value for this parameter
is nstep ∈ [3, 7].
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Number b2 helps to reduce the population individuals (worst). The worst b2 indi-
viduals are removed from the population, and new b2 individuals are added to main-
tain the same number of individuals NP. Recommended value for this parameter is
b2 ∈ [4, 8].

16.2.3 Multi-agent Optimization Algorithm Using Linear
Regulators for Agents Motion Control

Solution search strategy. It is required to generate a population of N P agents on
a set of admissible solutions D using a uniform distribution law. The search for an
extremum is realized in a given number of passes Pmax. In the next pass, all agents
move under the action of appropriate control for a certain number of iterations.

Let suppose the equation of the agent motion of the form of Eq. 16.18, where x is
n-dimensional vector of agent position, v is n-dimensional vector of agent velocity,
t is the time, t0 is the initial time in the next passage, x0 is the initial position, v0 is
the initial velocity, u is n-dimensional vector of agent control.

dx

dt
= v x(t0) = x0

dv

dt
= u v(t0) = v0 (16.18)

As t0 = 0 let v0 = o (o is zero n-dimensional vector).

Denote X =
(
x
v

)
as the extended state vector of the agent and rewrite Eq. 16.2

in the form

d

(
x
v

)

dt
=

(
On En

On On

)(
x
v

)
+

(
On

En

)
u (16.19)

or

dX

dt
= AX (t) + B u(t), X (t0) = X0 =

(
x0
v0

)
, (16.20)

where On, En are the zero and unit matrices of order n, A =
(
On En

On On

)
, B =

(
On

En

)

are the matrices of size (2n×2n),(2n×n), respectively. No restrictions are imposed
on the control vector, i.e., u ∈ Rn .

In the initial population (k = 0), as well as, at the end of each kth pass, determine
the position of the leader among the agents of the population and the corresponding
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maximum value of the objective function xbest,k, f (xbest,k). During the next pass,
it does not change the position according to Eqs. 16.21, where the control of leader
ubest = o or dXbest

dt = o with leader state vector Xbest = (xbest, vbest)T .

dxbest

dt
= o xbest(tk) = xbest,k

dvbest

dt
= o vbest(tk) = o

t ∈ [tk, tk+1) k = 0, . . . , Pmax − 1 (16.21)

The remaining (N P − 1) agents are divided into four equal groups:

• Agents using theminimization criterion of agents’ movement to the current leader
in a finite time interval.

• Agents using theminimization criterion of agents’ movement to the current leader
in an infinite time interval.

• Agents using the minimization semi-defined criterion (so-called criterion of the
generalized work)—control agents for a finite time interval.

• Agents using functional increment minimization of agents’ movement to the
current leader at the current moment (locally optimal approach).

Dividing into four groups is optional, so all agents can be placed in one group or
divided into two or three groups, and during the calculation, a set of agents can be
divided in different ways. In this version of the algorithm, the division was carried
out into four groups.

For all agents of each group, the positions and velocity vectors are different, but the
same feedback control law could be found and applied determined by the relation for
a linear optimal controller, the gain matrix of which is found from the minimization
condition of the quadratic control quality criterion characterizing the nature of the
approximation agent to agent leader at the current iteration, as well as, the intensity
of the control signal applied.

Introduce the deviation from the leader �X = X − Xbest, whose change is
described by Eq. 16.22 (subtracting Eq. 17.21 from Eq. 17.20), where xk, vk are the
agent position and velocity at the end of the previous pass, respectively.

d�X

dt
= A�X (t) + B u(t) �X (tk) =

(
xk − xbest,k

vk

)

t ∈ [tk, tk+1] k = 0, . . . , Pmax − 1 (16.22)

Movement of the first group of agents (for all agents of the group, optimal control
with a finite horizon is applied) is simulated as follows. Quality criterion for control-
ling the agents’ trajectories of the first group has a view of Eq. 16.23, where �, S(t)
is the non-negative definite symmetric matrices of size (n × n), Q(t) is the positive
definite symmetric matrix (n × n).
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I = 1

2

tk+1∫
tk

[
�XT (t)S(t)�X (t) + uT (t)Q(t)u(t)

]
dt + 1

2
�XT (tk+1)��X (tk+1)

(16.23)

For any initial states, optimal feedback control u∗(t,�X) has the form:

u∗(t,�X) = −Q−1(t)BT (t)P(t)�X = −F(t)�X, (16.24)

where matrix coefficients of the gain of the linear optimal regulator F(t) =
Q−1(t)BT (t)P(t), P(t) is the symmetric matrix of sizes (n × n) satisfying the
Riccati differential equation provided by Eq. 16.25.

Ṗ(t) = −AT (t)P(t) − P(t)A(t) + P(t)B(t)Q−1(t) BT (t)P(t) − S(t), P(tk+1) = � (16.25)

Here, t ∈ [tk, tk+1], t0 = 0, value tk+1 = tk + N MAX · h, where N MAX is the
given number of iterations, h is the integration step. To simplify the solution, one
can assume everywhere A(t) = A, B(t) = B, Q(t) = Q, S(t) = S because the
models provided by Eqs. 16.20–16.21 are linear stationary.

Movement of the second group of agents (for all agents of the group, optimal
control with an infinite horizon is applied) is simulated as follows. The quality crite-
rion for controlling the trajectories of agents of the second group has a view of
Eq. 16.26, where S is the non-negative definite symmetric numerical matrix of sizes
(n × n), Q is the positive definite symmetric numerical matrix (n × n).

I = 1

2

+∞∫
tk

[
�XT (t)S�X (t) + uT (t)Qu(t)

]
dt (16.26)

For any initial states, optimal feedback control u∗(�X) has the form

u∗(�X) = −Q−1BT P�X = −F�X, (16.27)

where matrix coefficients of the gain of the linear optimal regulator F = Q−1BT P ,
P is the positive definite symmetric matrix satisfying the Riccati algebraic equation
provided by Eq. 16.28.

−AT P − PA + PBQ−1BT P − S = 0 (16.28)

The solution to this equation satisfying the Sylvester criterion is unique.
Movement of the third group of agents (for all agents of the group, optimal control

is applied according to the criterion of generalized work) is simulated as follows. The
quality criterion for controlling the agents’ trajectories of the third group is provided
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by Eq. 16.29, where�, S(t) is the non-negative definite symmetric matrices of sizes
(n × n), Q(t) is the positive definite symmetric matrix (n × n).

Io.p. = 1

2

tk+1∫
tk

[
�XT (t)S(t)�X (t) + uT (t)Q(t)u(t) + �XT (t)P(t)B(t)Q−1(t)BT (t)P(t)�X (t)

]
dt + 1

2
�XT (tk+1)��X (tk+1)

(16.29)

For any initial states, optimal feedback control with uo.p.(t,�X) has the form:

uo.p.(t,�X) = −Q−1(t)BT (t)P(t)�X = −F(t)�X, (16.30)

where matrix coefficients of the gain of the linear regulator F(t) =
Q−1(t)BT (t)P(t), P(t) is the symmetric matrix satisfying the linear differential
equation provided by Eq. 16.31.

Ṗ(t) = −AT (t) P(t) − P(t) A(t) − S(t) P(tk+1) = � (16.31)

Movement of the fourth group of agents (for all group agents, locally optimal
control is applied) is simulated as follows. The quality criterion for controlling the
trajectories of agents of the fourth group has the form of Eq. 16.32, where�(t), S(t)
is the non-negative definite symmetric matrices of sizes (n× n), Q(t) is the positive
definite symmetric matrix (n × n).

I loc = 1

2

t∫
tk

[
�XT (τ )S(τ )�X (τ ) + uT (τ )Q(τ )u(τ )

]
dτ + 1

2
�XT (t)�(t)�X (t)

(16.32)

For any initial state, the locally optimal feedback control uloc(t,�X) has the
form of Eq. 16.33, where matrix coefficients of the gain of the linear regulator
F(t) = Q−1(t)BT (t)�(t).

uloc(t,�X) = −Q−1(t)BT (t)�(t)�X = −F(t)�X (16.33)

After performing NMAX iterations, each agent presents the best result obtained
during the movement. This completes the next passage.

Then, among all the agents of the population, the leader is again selected and a new
division into groups is made. The passage repeat process ends when the maximum
number of passes is reached.

Comment. For simplicity suppose that
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S(t) =
(
kSEn On

On On

)
, Q(t) = En,

� =
(
k�En On

On On

)
, kS > 0, k� > 0.

Solution search algorithm

Step 1 Set the method parameters: NP is the number of agents in the popula-
tion, Pmax is the maximum number of passes, NMAX is the number
of iterations per pass, h is the step of integrating differential equations,
and kS, k� are the coefficients for matrices defining quality criteria. Let
k = 0 (iteration count), v0 = o, t0 = 0.

Step 2 Generate the initial population on set D using the uniform distribu-
tion law: x1, . . . , xN P . Calculate the values of the objective function
f (x1), . . . , f (xN P).

Step 3 Order the population consisting ofNP agents by the value of the objective
function.

Step 4 Choose a leader agent and the corresponding best objective function
value:xbest,k , f best,k .

Step 5 Divide all other (N P − 1) agents arbitrarily into four groups.
For each agent, create a differential equation

d�X

dt
= A�X (t) + B u(t), �X (tk) =

(
xk − xbest,k

vk

)
(16.34)

where

A =
(
On En

On On

)
, B =

(
On

En

)

Step 6 Move the agents of the first group (optimal control with finite horizon is
applied).

Step 6.1 Find the solution of the Riccati differential equation P(t), ∀t ∈ [
tk, tk+1

]
using Eq. 16.35, where tk+1 = tk + NMAX · h.

Ṗ(t) = −AT (t)P(t) − P(t)A(t) + P(t)B(t)Q−1(t)BT (t)P(t) − S(t), P(tk+1) = �

(16.35)

Step 6.2 Find the optimal feedback control u∗(t,�X) using Eq. 16.36, where
F(t) = Q−1(t)BT (t)P(t).

u∗(t,�X) = −Q−1(t)BT (t)P(t)�X = −F(t)�X (16.36)

Step 6.3 For each agent of the first group, execute:
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Step 6.3.1 Find the solution of differential equation in the form of Eq. 16.37 on time
interval

[
tk, tk+1

]: �X (ti ), ti = tk + ih, i = 0, 1, . . . , NMAX − 1.

d�X

dt
= A�X (t) + B u∗(t,�X (t)), �X (tk) =

(
xk − xbest,k

vk

)

(16.37)

Step 6.3.2 Find the agent state vectors during apass usingEq. 16.38,where X I,New ∈
[ai , bi ], i = 1, ..., n.

X I,New(ti ) = Xbest + �X (ti ), i = 0, 1, . . . , NMAX − 1 (16.38)

Step 6.3.3 Among all the positions of the agent during the passage, choose the best
for the entire period of movement, which corresponds to the best value
of the objective function.

Step 7 Move the agents of the second group (optimal control with an infinite
horizon is applied).

Step 7.1 Find the solution of theRiccati algebraic equation provided byEq. 16.39.

−AT P − PA + PBQ−1BT P − S = 0 (16.39)

Step 7.2 Find the optimal feedback control u∗(�X) using Eq. 16.40 where F =
Q−1BT P .

u∗(�X) = − Q−1BT P �X = −F �X (16.40)

Step 7.3 For each agent of the second group, execute:
Step 7.3.1 Find the solution of differential equation provided by Eq. 16.41.

d�X

dt
= A�X (t) + Bu∗(�X (t)), �X (tk) =

(
xk − xbest,k

vk

)

(16.41)

Step 7.3.2 Find the agent state vectors during a pass by Eq. 16.42, where X II,New ∈
[ai , bi ], i = 1, . . . , n.

X II,New(ti ) = Xbest + �X (ti ) i = 0, 1, . . . , NMAX − 1 (16.42)

Step 7.3.3 Among all the positions of the agent during the passage, choose the best
for the entire period of movement, which corresponds to the best value
of the objective function.

Step 8 Move the agents of the third group (optimal control according to the
criterion of generalized work is applied).
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Step 8.1 Find the solution of linear differential equation P(t), ∀t ∈ [
tk, tk+1

]
using Eq. 16.43.

Ṗ(t) = −AT (t)P(t) − P(t)A(t) − S(t), P(tk+1) = � (16.43)

Step 8.2 Find the optimal feedback control uo.p.(t,�X) using Eq. 16.44 where
F(t) = Q−1(t)BT (t)P(t).

uo.p.(t,�X) = −Q−1(t)BT (t)P(t)�X = −F(t)�X (16.44)

Step 8.3 For each agent of the third group, execute:
Step 8.3.1 Find the solution of differential equation using Eq. 16.45.

d�X

dt
= A�X (t) + Buo.p.(t,�X (t)), �X (tk) =

(
xk − xbest,k

vk

)

(16.45)

Step 8.3.2 Find the agent state vectors during a pass using Eq. 16.46 where
X III,New ∈ [ai , bi ], i = 1, . . . , n.

X III,New(ti ) = Xbest + �X (ti ) i = 0, 1, . . . , NMAX − 1 (16.46)

Step 8.3.3 Among all the positions of the agent during the passage, choose the best
for the entire period of movement, which corresponds to the best value
of the objective function.

Step 9 Move the agents of the fourth group (locally optimal control is applied).
Step 9.1 Find the locally optimal feedback control uloc(t,�X) using Eq. 16.47,

where F(t) = Q−1(t)BT (t)�(t).

uloc(t,�X) = −Q−1(t)BT (t)�(t)�X = −F(t)�X (16.47)

Step 9.2 For each agent of the fourth group, execute:
Step 9.2.1 Find the solution of differential equation using Eq. 16.48.

d�X

dt
= A�X (t) + Buloc(t,�X (t)), �X (tk) =

(
xk − xbest,k

vk

)

(16.48)

Step 9.2.2 Find the agent state vectors during a pass using Eq. 16.49 where
X IV,New ∈ [ai , bi ], i = 1, . . . , n.

X IV,New(ti ) = Xbest + �X (ti ) i = 0, 1, . . . , NMAX − 1 (16.49)
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Step 9.2.3 Among all the positions of the agent during the passage, choose the best
for the entire period of movement, which corresponds to the best value
of the objective function.
The result of Steps 6–8 are the positions of NP agents in the population,
of which (N P − 1) agents with a new position as a result of movement
under the action of control within a fixed group and the leader agent xbest,
which has not changed its position during the last pass.

Step 10 Check the global search stop conditions.
If k < Pmax −1, then continue search, go to Step 3 (order the population
of agents, identify the current leader, shuffle groups) and let k = k + 1.
If k ≥ Pmax − 1, then finish search, go to Step 11.

Step 11 Select the solution from the last population.
Stop the algorithm. As an approximate solution to the problem f (x∗) =
max
x∈D f (x) select the agent with the best value of the objective function

from the current population x∗ ∼= x̃∗ = argmax
j=1,...,N P

f (x j ).

Recommendations on the parameters selection. The size of populationNP deter-
mines the number of calculations of the objective function at each iteration. The value
N P − 1 must be divisible by four. For a task with a large range of admissible solu-
tions, it is recommended to take a larger value of the parameter NP. Recommended
parameter value is N P ∈ [501, 1601].

The number of iterations NMAX during the passage determines how long
the search for new solutions per passage will continue. As the parameter NMAX
increases, the accuracy of the solution increases. Recommended values for the
considered set of standard functions depending on the complexity of the function
are NMAX ∈ [20, 80].

The maximum number of passes Pmax determines how long the search for new
solutions will continue. As the number of passes increases, the accuracy of the
solution increases. Recommended value for this parameter is Pmax ∈ [10, 30].

Coefficient kS for matrix S defines the criterion of quality of agent trajectories
control. Recommended value for this parameter is kS ∈ [0.1, 1].

Coefficient k� for matrix � defines the criterion of quality of agent trajectories
control. Recommended value for this parameter is k� ∈ [1, 5].

Step of integrating Riccati differential equations is denoted by h. Recommended
value for this parameter is h = 0.0001.

16.3 Application of Multi-agent Methods for Optimal
Open-Loop Control Problems

Hereinafter, Sect. 16.3.1 involves a statement of the problem. Search algorithm
of optimal open-loop control using switching points is presented in Sect. 16.3.2.
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Section 16.3.3 develops search algorithm of optimal open-loop control using expan-
sion in a system of basis functions. Solving the problem of finding optimal open-loop
control is considered in Sect. 16.3.4.

16.3.1 Statement of the Problem

Let the behavior of the control object model be described by an ordinary differ-
ential equation in the form of Eq. 16.50, where x is the system state vector,
x = (x1, . . . , xn)T ∈ Rn , u is the control vector, u = (u1, . . . , uq)T ∈ U ⊆ Rq , U
is some given set of admissible control values determined by the direct product of
segments [a1, b1]× · · ·× [aq , bq ], t ∈ T = [t0, t1] is the time interval, the start time
t0 and terminal time t1 are given, f (t, x, u) is the continuous vector function; Rn is
n-dimensional Euclidean space.

ẋ(t) = f (t, x(t), u(t)) (16.50)

The initial condition x(t0) = x0 sets the initial state of the system.
Wedefine the set of admissible processes D(t0, x0) as a set of pairsd = (x(·), u(·))

that include the trajectory x(·) and control u(·) (where ∀t ∈ T : x(t) ∈ Rn, u(t) ∈
U , functions x(·) are continuous and piecewise-differentiable, and u(·) piecewise-
continuous) satisfying Eq. 16.50 with given initial condition.

On the set D(t0, x0), we define the cost functional in the form of Eq. 16.51.

I (d) = F(x(t1)) (16.51)

It is need to find such a pair d∗ = (x∗(·), u∗(·)) ∈ D(t0, x0) that I (d∗) =
min

d∈D(t0,x0)
I (d).

16.3.2 Search Algorithm of Optimal Open-Loop Control
Using Switching Points

We consider Eq. 16.50 as a linear in control, which has the form of Eq. 16.52, where
A(x) is the nonlinear function and B(t) is the matrix (n × q) depending on time.

ẋ(t) = A(x(t)) + B(t)u(t) (16.52)

In Eq. 16.52, the structure of optimal open-loop control is relay according to the
maximum principle; therefore, it is proposed to look for an approximate solution in a
parametric form determined by the number of control switching moments and their
values.
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The search algorithm of optimal open-loop control using switching points is the
following.

Step 1 Initialization. Select a method from the group of multi-agent algorithms and
set its parameters. Set the number of switching p = 0 in the control u(t);
wherein t�0 ∈ {t0, t1}.

Step 2 Generate the initial population (controls) of N P individuals on the time
interval t ∈ [t0, t1]. The resulting sequences of values 1, . . . , N P are the
switching points t� ∈ [t0, t1] in the control u(t).

Step 3 Generate control by generating the switching point values

u j
p(t) = apχ(t0) + (ap − bp)

p∑
k=0

(−1)kχ(t − t�k ), (16.53)

where

χ(t) =
{
0 t ≤ 0
1 t > 0

, j ∈ 1, N P, p ∈ 1, q, ap ≤ u ≤ bp.

Step 4 Integrate NP systems of differential equations (Eq. 16.52) with controls
u1(t), . . . , uN P(t) using the fourth-orderRunge–Kuttamethod. For any indi-
vidual, obtain the corresponding trajectories x11 , . . . , x

N P
1 , . . . , x1n , . . . , x

N P
n

and calculate the values of the cost functional I 1, . . . , I N P .
Step 5 Fulfill the next iteration of the selected method of minimizing the functional

(Eq. 16.51). Obtain new positions of individuals 1′, . . . , N P ′ (switching
point values). Go to Step 3.

Step 6 The loop (Step 3–Step 5) ends when a certain number of iterations are
reached. The best individual is selected (set of control switching points).
The corresponding control and trajectory, as well as, the value of the cost
functional I ∗

p , are taken as an approximate solution of the problem with the
number of switching equal to p.

Step 7 If I ∗
p < I ∗

p−1 (condition is checked under p ≥ 1), then let p = p + 1 and
go to Step 2. If I ∗

p ≥ I ∗
p−1, then the search procedure for optimal open-loop

control is completed and control with p switching is selected.

16.3.3 Search Algorithm of Optimal Open-Loop Control
Using Expansion in a System of Basis Functions

A class of nonlinear continuous deterministic dynamical systems linear in bounded
control is considered in the form of Eq. 16.54.

ẋ(t) = A(x) + B(x)u (16.54)
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The quality criterion is set by the Mayer functional (Eq. 16.51). The desired
optimal open-loop control is sought in the form of a saturation function, which
should guarantee the fulfillment of the parallelepiped type constraints on control
vector. The saturation function has a relay structure, and it is proposed to search for
its arguments in the form of a linear combination of given basis functions [12, 13].

The search algorithm of optimal open-loop control using expansion in a system
of basis functions is the following.

Step 1 Initialization. Select a method from the group of multi-agent algorithms and
set its parameters. Set the initial time truncation scale L = 1, the range of
possible values of the decomposition coefficient c0 ∈ [

c01 , c02
]
.

Step 2 Generate the initial population (controls) of NP individuals, which deter-
minate by coefficients ci of expansion g(t), using Eq. 16.55 where ci ∈[
ci1 , ci2

]
, i ∈ 0, L − 1.

{
c( j)
0 , c( j)

1 , . . . , c( j)
L−1

}
, j ∈ 1, N P (16.55)

Step 3 Using the generated coefficients, form the control in the form of a saturation
function sat that guarantees the fulfillment the constraints on control vector:

u(m)
j (t) = sat

{
g j (t)

}
, j ∈ 1, q, (16.56)

where

∀t ∈ T, sat g j (t) =
{
a j g j (t) ≤ 0
b j g j (t) > 0

, g j (t) =
L−1∑
i=0

c( j)
i pi (t).

As the basis function pi (t), we can take the system of nonstationary cosine
curves orthonormalized on the time interval T = [t0, t1] with t0 = 0 in the
form of Eq. 16.57.

pi (t) =
⎧⎨
⎩

√
1
t1

i = 0√
2
t1
cos

(
i π t
t1

)
i = 1, 2, . . . , L − 1

(16.57)

Step 4 Integrate NP systems of differential equations (Eq. 16.52) with controls
u1(t), . . . , uN P(t) using the 4th order Runge–Kutta method. For any indi-
vidual, obtain the corresponding trajectories x11 , . . . , x

N P
1 , . . . , x1n , . . . , x

N P
n

and calculate the values of the cost functional I 1, . . . , I N P .

Step 5 Fulfill the next iteration of the selected method of minimizing the functional
(Eq. 16.51). Obtain new positions of individuals 1′, . . . , N P ′(coefficient
values). Go to Step 3.
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Table 16.1 Formulation of
task 1

The dimension of the state vector n = 2

Time interval t ∈ [0, 1]
Control constraint −1 ≤ u ≤ 1

Initial value x(0) = (0, 0)

System of differential equations
{
ẋ1 = x2 + sin x1 + u

ẋ2 = x1 cos x2u

Cost functional I (u) = x2(1)

Step 6 The loop (Step 3–Step 5) ends when a certain number of iterations are
reached. The best individual is selected (set of coefficients ci ). The corre-
sponding control and trajectory, as well as, the value of the functional I ∗

ci are
taken as an approximate solution to the problem with the found coefficients
c∗L
i , i ∈ 0, L − 1 with a given truncation scale L .

Step 7 If I ∗
cLi

< I ∗
cL−1
i

(condition is checked under L ≥ 1), then let L = L + 1 and

go to Step 2. If I ∗
cLi

≥ I ∗
cL−1
i

, then the search procedure for optimal open-loop

control is completed and control with c∗L−1
i coefficients is selected.

16.3.4 Solving the Problem of Finding Optimal Open-Loop
Control

Task 1. Formulation of the task (Table 16.1) [14, 15].
Solving Task 1 by the search algorithm of optimal open-loop control using

switching points. The best number of switches: p = 1.
Optimization method and its parameters: hybrid multi-agent optimization method

of interpolation search (N P = 30, Imax = 50, M1 = 2, M2 = 5, PRT = 0.01,
nstep = 5, an b2 = 8) andmulti-agent optimization algorithm using linear regulators
for agents motion control (N P = 101, NMAX = 50, Pmax = 10, kS = 0.1, k� = 5,
and h = 0.0001).

The results of solving Task 1 with the help of search algorithm of optimal open-
loop control using switching points are presented in Table 16.2.

Solving Task 1 by the search algorithm of optimal open-loop control using expan-
sion in a system of basis functions. The best number of coefficients in expansion:
L = 2.

Optimization method and its parameters: hybrid multi-agent optimization method
of interpolation search (N P = 30, Imax = 50, M1 = 2, M2 = 5, PRT = 0.01,
nstep = 5, and b2 = 8) and multi-agent optimization algorithm using linear regu-
lators for agents motion control (N P = 41, NMAX = 40, Pmax = 20, kS = 1,
k� = 5, and h = 0.0001).

The results of solving Task 1 by the search algorithm of optimal open-loop control
using expansion in a system of basis functions are presented in Table 16.3.
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Table 16.2 Results of solving task 1

Optimization method Coordinates of points
(x1(1), x2(1))

Switching coordinate The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(0.444665, −0.13598) 0.5 −0.13598

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(0.44999, −0.13450) 0.5 −0.134550

Known solution [15] (0.440804, −0.13593) 0.5 −0.13599

Table 16.3 Results of solving task 1

Optimization method Coordinates of points
(x1(1), x2(1))

Coefficients in
expansion ci

The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(0.55055, −0.13349) 5.05, 6.51 −0.13598

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(0.57325, −0.13208) 4.63, 5.66 −0.13208

Graphs of optimal trajectories and control are shown in Fig. 16.7.
Task 2. Formulation of the task (Table 16.4) [14, 15].
Solving Task 2 by the search algorithm of optimal open-loop control using

switching points. The best number of switches: p = 4.

Fig. 16.7 Trajectories x1 and x2 and control u for task 1
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Table 16.4 Formulation of task 2

The dimension of the state vector n = 2

Time interval t ∈ [0, 2]
Control constraint −1 ≤ u ≤ 2

Initial value x(0) = (−1, 0)T

System of differential equations
{
ẋ1 = x22 + u

ẋ2 = 8 sin x1 + x1 − x2 − u

Cost functional I (u) = −x2(2)

Table 16.5 Results of solving task 2

Optimization method Coordinates of points
(x1(2), x2(2))

Switching point
coordinate

The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(16.36429, 6.06547) (0.58, 1.35, 1.54,
1.77)

−16.36429

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(16.66516, 6.52485) (0.59, 1.29, 1.53,
1.97)

−16.66516

Known solution [15] (16.76268, 6.35095) (0.5, 1.25, 1.5, 1.8) −16.76268

Optimization method and its parameters: hybrid multi-agent optimization method
of interpolation search (N P = 30, Imax = 200, M1 = 2, M2 = 5, PRT =
0.01, nstep = 5, and b2 = 8) and multi-agent optimization algorithm using linear
regulators for agents motion control (N P = 801, NMAX = 50, Pmax = 10,
kS = 0.1, k� = 5, and h = 0.0001).

The results of solving Task 2 by the search algorithm of optimal open-loop control
using switching points are presented in Table 16.5.

Solving Task 2 by the search algorithm of optimal open-loop control using expan-
sion in a system of basis functions. The best number of coefficients in expansion:
L = 4.

Optimization method and its parameters: hybrid multi-agent optimization method
of interpolation search (N P = 40, Imax = 400, M1 = 2, M2 = 5, PRT =
0.01, nstep = 5, and b2 = 8) and multi-agent optimization algorithm using linear
regulators for agents motion control (N P = 401, NMAX = 40, Pmax = 10, kS = 1,
k� = 5, and h = 0.0001).

The results of solving Task 2 by the search algorithm of optimal open-loop control
using expansion in a system of basis functions are presented in Table 16.6.

Graphs of optimal trajectories and controls are shown in Fig. 16.8.
Task 3. Formulation of the task (Table 16.7) [14, 15].
Solving Task 3 by the search algorithm of optimal open-loop control using

switching points. The best number of switches: p = 1.
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Table 16.6 Results of solving task 2

Optimization method Coordinates of points
(x1(2), x2(2))

Coefficients in
expansion ci

The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(13.01829, 4.44509) −0.23, 1.73, 1.78,
1.81

−13,01,829

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(12.36497, 4.16002) −0.28, 1.61, 1.79,
1.92

−12,36,497

Fig. 16.8 Trajectories x1 and x2 and control u for task 2

Table 16.7 Formulation of task 3

The dimension of the state vector n = 2

Time interval t ∈ [0, 1.6]
Control constraint −2 ≤ u ≤ 1

Initial value x(0) = (1, 0)T

System of differential equations
⎧⎨
⎩
ẋ1 = 1

cos x1 + 2
+ 3 sin x2 + u

ẋ2 = x1 + x2 + u

Cost functional I (u) = −x1(1.6) + 1
2 x2(1.6)

Optimization method and its parameters: hybrid multi-agent optimization method
of interpolation search (N P = 30, Imax = 50, M1 = 2, M2 = 5, PRT = 0.01,
nstep = 5, and b2 = 8) and multi-agent optimization algorithm using linear regu-
lators for agents motion control (N P = 101, NMAX = 50, Pmax = 10, kS = 0.1,
k� = 5, and h = 0.0001).
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Table 16.8 Results of solving task 3

Optimization method Coordinates of points
(x1(1.6), x2(1.6))

Switching point
coordinate

The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(3.45449, 12.87062) 1.25 −2.98082

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(3.45949, 12.87562) 1.25 −2.97832

Known solution [15] (3.46114, 12.884) 1.26 −2.98086

Table 16.9 Results of solving task 3

Optimization method Coordinates of points
(x1(1.6), x2(1.6))

Coefficients in
expansion ci

The value of the
functional I

Hybrid multi-agent
optimization method of
interpolation search

(3.45449, 12.87062) 0.22, 1.15 −2.98082

Multi-agent optimization
algorithm using linear
regulators for agents
motion control

(3.48523, 13.44901) 0.36, 0.99 −2.87218

The results of solving Task 3 by the search algorithm of optimal open-loop control
using switching points are presented in Table 16.8.

Solving Task 3 by the search algorithm of optimal open-loop control using expan-
sion in a system of basis functions. The best number of coefficients in expansion:
L = 2.

Optimization method and its parameters: hybrid multi-agent optimization method
of interpolation search (N P = 30, Imax = 50, M1 = 2, M2 = 5, PRT = 0.01,
nstep = 5, and b2 = 8) and multi-agent optimization algorithm using linear regu-
lators for agents motion control (N P = 101, NMAX = 50, Pmax = 10, ks = 1,
kl = 5, and h = 0.0001).

The results of solving Task 3 by the search algorithm of optimal open-loop control
using expansion in a system of basis functions are presented in Table 16.9.

Graphs of optimal trajectories and controls are shown in Fig. 16.9.

16.4 Conclusions

Twonewmulti-agent algorithms are proposed to search for optimal open-loop control
of one class of deterministic systems: the hybrid multi-agent method of interpola-
tion search and the multi-agent method based on the use of linear regulators of
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Fig. 16.9 Trajectories x1 and x2 and control u for task 3

agent movement control. In addition, algorithms for the search for optimal open-
loop control on the basis of multi-agent methods are formed. In the first algorithm,
it was proposed to represent the control in a relay form with a certain number of
switching points. Second algorithm applies the spectral method and decomposes
the control into a system of basis functions, for which cosine curves were used.
Based on the described algorithms, software has been formed that allows finding
the optimal open-loop control of nonlinear deterministic dynamical systems linear
in bounded control. Three model examples were solved to analyze the effectiveness
of the described algorithms for finding the optimal open-loop control. The solution
found was compared with the known one. The result was close to optimal, from
which we can conclude that the described algorithms successfully coped with the
task.
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Chapter 17
Modified Continuous-Time Particle Filter
Algorithm Without Overflow Errors

Irina A. Kudryavtseva and Konstantin A. Rybakov

Abstract The modification for the continuous-time particle filter algorithm is
offered. The developed modification that is based on the well-known strategy such as
modeling trajectories to numerically solve stochastic differential equations provides
the lack of overflow errors during the calculation of particle weights. To implement
such an idea practically particle weights should be expressed in terms of logarithms
with an additional customization of exponents. The effectiveness of the modified
algorithm is demonstrated when solving the tracking problem to find coordinates
and velocities of an aircraft executing a maneuver in the horizontal plane.

17.1 Introduction

The filtering problem for continuous-time stochastic systems given by two Stochastic
Differential Equations (SDEs) describing an unobservable Markov random process
and its measurements (two diffusion processes) is considered. The desired outcome
is to estimate a system state vector from given measurements in accordance with
some quality criterion [1–4]. Quality criteria can be chosen differently. For instance,
one can take the following criteria: the Minimum Mean Squared Error (MMSE)
criterion, the Maximum A Posteriori (MAP) criterion. Filtering problems arise in
many fields among which we would like to highlight motion control and navigation
data processing [5–16].

The goal of the paper is to develop themodification of the continuous-time particle
filter algorithm [3]. This modification is rooted in the probability representation of
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the solution of the Duncan–Mortensen–Zakai (DMZ) equation [3, 17] for the unnor-
malized posterior probability density function of a random process whose trajecto-
ries are under estimation. Similar modifications can be developed for the particle
filter algorithm based on the robust DMZ equation [14] and for the estimation of
jump-diffusion processes as well [18].

Methods for solving the DMZ equation and the robust DMZ equation, among
which the continuous-time particle filter algorithm can be particularly distinguished
[4, 14], are given in [19–22].

According to the algorithm, it is supposed to simulate pairs including process
trajectories themselves driven by a known state equation and associated weight func-
tions that determine the importance of trajectories in an estimate needed to find. On
the program implementation stage the overflow errors can appear because weight
functions increase rapidly as exponential functions.

In the theory, the standard technique of the normalization of weights is a perfect
instrument to gain the goal [3], but it fails in practice and the overflow errors can
occur. To avoid appearing the mentioned errors it is offered to apply the procedure
of taking logarithms, i.e. to switch from exponential functions to their exponents and
as consequence from multiplying to summarizing, with additional customization of
the exponents. Since relative values of weights but not their absolute values count
for much in formulae for the optimal estimate, the customization does not affect the
resulting estimate of unobserved process trajectories or the filtering problem solution
in other words.

Note that the time discretization and the use of discrete-time particle filter algo-
rithms [3, 23, 24] reduce the risk of overflow errors. However, if we need to apply the
continuous-time particle filter algorithm, it should provide a lack of overflow errors.

The offeredmodification of the continuous-time particle filter algorithm is applied
to solve the trackingproblem tofind coordinates andvelocities of an aircraft executing
a maneuver in the horizontal plane [6].

The remainder of this chapter is organized as follows. The optimal filtering
problem is considered in Sect. 17.2. The known continuous-time particle filter algo-
rithms and the offered modification that provides the lack of overflow errors are
given in Sect. 17.3. Section 17.4 is devoted to the approbation of the new filtering
algorithm. The chapter is summarized in Sect. 17.5.

17.2 Problem Formulation

The optimal filtering problem for continuous-time stochastic systems is to find an
estimate of trajectories of an unobserved Markov random process X (t) from given
trajectories of an observed random process Y (t) in accordance with the given quality
criterion. The random processes X (t) and Y (t) satisfy the following system of Itô
SDEs:

dX (t) = f (t, X (t))dt + σ(t, X (t))dW (t), X (t0) = X0, (17.1)
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dY (t) = c(t, X (t))dt + ζ(t)dV (t), Y (t0) = Y0 = 0, (17.2)

where X is an n-dimensional state vector, Y is an m-dimensional measurement
vector,W (t) andV (t) are the s-dimensional and d-dimensional independent standard
Wiener processes, respectively, f (t, x), σ(t, x), c(t, x), ζ(t) are given vector-valued
and matrix-valued functions with corresponding dimensions (the matrix ζ(t)ζ T(t)
must be nondegenerate), t ∈ [t0, T ]. Distribution of the vector X0 is determined
by the probability density function ϕ0(x). Equation 17.1 is the state equation while
Eq. 17.2 is the measurement equation.

Coefficients in Eqs. 17.1 or 17.2 should satisfy the conditions on the existence
and uniqueness of the solution of SDEs. According to [3], we assume that f (t, x),
σ(t, x), c(t, x) are the Lipschitz functions with respect to x . Moreover, E|X0|2 < ∞,
where E denotes the mean.

We use MMSE criterion, this means X̂(t) = E[X (t)|Y t
0]. Such an estimate

provides the minimum value E|X (t) − X̂(t)|2 for all t ∈ [t0, T ].
Further, to form a sequence of relationships when solving the optimal filtering

problem it is convenient to express Eq. 17.2 in the Langevin form:

Z(t) = Ẏ (t) = c(t, X (t)) + ζ(t)N (t), (17.3)

where N (t) is a standard Gaussian white noise corresponding to the Wiener process
V (t). Since Z(t) and Y (t) are interchangeable in models of the considered type, the
estimate of trajectories X (t) can be found using measurements Z(t), i.e. X̂(t) =
E[X (t)|Zt

0].

17.3 Continuous-Time Particle Filter Based on the DMZ
Equation

Simulating an ensemble of continuous-time stochastic system trajectories underlies
the particle filter algorithm that will be given below. Moreover, it can be possible
to construct an algorithm, where it is required to simulate trajectories of an auxil-
iary stochastic system whose mathematical model is formed with the system model
defined by Eq. 17.1 and coefficients of Eqs. 17.2 or 17.3 [14]. Each trajectory is
assigned a weight function whose values are calculated using given measurements.
The estimation of a trajectory is carried out by applying the statistical treatment of
results to calculate the weighted mean. Other statistical characteristics, for example,
the mode, the posterior distribution function and the posterior probability density
function can also be found from the same simulation results. Such a group ofmethods
is named by particle filters. Behavior of a particle is determined by an ordered pair
(trajectory, weight function). The continuous-time particle filter is described in more
detail in [3].
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As a rule, to simulate an ensemble of trajectories and corresponding weights
the numerical methods for solving SDEs are employed. Both the simple method
such as the Euler–Maruyama method having low order of convergence as a result
that leads to low accuracy and methods of a higher order of convergence including
those that possess the additional stability properties can be used [25–27]. If the
filtering problem is needed to solve on manifolds [28–30], the specific modification
of numerical methods given in [31, 32] should be applied.

The below relationships will be used for filtering algorithms:

Xk+1 = F(tk, Xk, h),

Yk+1 = C(tk, Xk,Yk, h),

where functions F(t, X, h) and C(t, X,Y, h) are determined by Eqs. 17.1–17.2 and
the specific numerical method of solving SDEs. These functions involve s × 1 and
d × 1 vectors whose components are independent Gaussian random variables with
zero mean and unit variance to simulate increments of Wiener processes W (t) and
V (t), respectively. They define discrete-time approximations for random processes
X (t) and Y (t).

For instance, functions F(t, X, h) and C(t, X,Y, h) for the Euler–Maruyama are
as follows:

F(t, X, h) = X + h f (t, X) + √
hσ(t, X)�W,

C(t, X,Y, h) = Y + hc(t, X) + √
hζ(t)�V,

where �W and �V are the s-dimensional and d-dimensional independent random
vectors having a standard normal distribution. For Heun’s method [33] we have:

F(t, X, h) = X + h

2

(
a(t, X) + a(t + h, X∗)

) +
√
h

2

(
σ(t, X) + σ(t + h, X∗)

)
�W,

X∗ = X + h f (t, X) + √
hσ(t, X)�W, a(t, x) = f (t, x) − 1

2

s∑

l=1

∂σ∗l(t, x)
∂x

σ∗l(t, x),

where σ∗l(t, x) is the lth column of the matrix-valued function σ(t, x). For the
measurement equation, the use of the Euler–Maruyama method is sufficient because
for the real filtering problem the measurements are given (measurements should not
be simulated).

Heun’s method provides acceptable computational accuracy, especially for SDEs
with additive noise, while its implementation is not much more complicated as
compared to the Euler–Maruyama method.

Simulating the continuous-time stochastic system 17.1, 17.2 and the algorithm of
the continuous-time particle filter based on the DMZ equation are given below.

Continuous-time particle filter algorithm (Algorithm 1)
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1. Specify M , the number of auxiliary trajectories needed to simulate, h, the inte-
gration step. Draw the sample for initial state vectors X0 and Xi

0 from the given
distribution with the probability density function ϕ0(x), i = 1, 2, . . . , M . Set
k = 0, Y0 = 0, ωi

0 = 1, i = 1, 2, . . . , M .
2. Set

Mk =
M∑

i=1

ωi
k (M0 = M).

For the sample Xk = {Xi
k}Mi=1 with the set of associated weights Wk = {ωi

k}Mi=1
find the following statistics: the estimate of the state vector (the unbiased MMSE
estimate)

X̂k = 1

Mk

M∑

i=1

ωi
k X

i
k

and the estimate of the posterior covariance matrix

R̂k = 1

Mk

M∑

i=1

ωi
k(X

i
k − X̂k)(X

i
k − X̂k)

T.

Verify the condition T − tk = 0. If it is met, then stop. Obtain a realization of the
estimated state vector and the corresponding measurement vector at tk+1:

Xk+1 = F(tk, Xk, h), Yk+1 = C(tk, Xk,Yk, h), Zk = Yk+1 − Yk
h

.

3. Obtain a realization of the state vector at tk+1 and update the corresponding
weight:

Xi
k+1 = F(tk, X

i
k, h),

ωi
k+1 = ωi

ke
μ(tk ,Xi

k ,Zk )h,

where

μ(t, x, z) = cT(t, x)q(t)

(
z − 1

2
c(t, x)

)
,

q(t) = η−1(t), η(t) = ζ(t)ζ T(t).
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4. Verify conditions: if i = M then set tk+1 = tk + h, k := k + 1 and go to Step 2;
if i < M then set i := i + 1 and go to Step 3.

The algorithm given above is based on simulating the ensemble of stochastic
system trajectories and weight functions that are trajectories of random processes
X (t) and ω(t). Trajectories of the random process ω(t) are drawn by definition [3]:

ω(t) = exp

⎧
⎨

⎩

t∫

t0

μ(τ, X (τ ), Z(τ ))dτ

⎫
⎬

⎭

= exp

⎧
⎨

⎩

t∫

t0

cT(τ, X (τ ))q(τ )dY (τ ) − 1

2

t∫

t0

cT(τ, X (τ ))q(τ )c(t, X (τ ))dτ

⎫
⎬

⎭
.

In practice one can encounter underflow or overflow errors. Appearance of the
underflow errors can be caused by the degeneracy when the weight ω(t) approaches
zerowhile the overflowerrors appear due to rapid increase of theweight. The simplest
way to reduce the risk of their appearance is to normalize weights. For this reason,
the weights should be redefined on Step 2 as follows:

ωi
k := ωi

k

Mk
, i = 1, 2, . . . , M, Mk =

M∑

i=1

ωi
k .

The proposed normalization technique does not affect the final solution because
only the relativeweights but not their absolute values contribute to theweightedmean
calculated in Step 2. Modified algorithm containing the normalization of weights is
given below.

Continuous-time particle filter algorithm with normalization of
weights (Algorithm 2)

1. See Step 1 of Algorithm 1.
2. Set

Mk =
M∑

i=1

ωi
k (M0 = M)

and redefine weights:

ωi
k := ωi

k

Mk
, i = 1, 2, . . . , M.

For the sample Xk = {Xi
k}Mi=1 with the set of associated weights Wk = {ωi

k}Mi=1
find the following statistics: the estimate of the state vector
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X̂k =
M∑

i=1

ωi
k X

i
k

and the estimate of the posterior covariance matrix

R̂k =
M∑

i=1

ωi
k(X

i
k − X̂k)(X

i
k − X̂k)

T.

Verify the condition T − tk = 0. If it is met, then stop. Obtain a realization of the
estimated state vector and the corresponding measurement vector at tk+1:

Xk+1 = F(tk, Xk, h), Yk+1 = C(tk, Xk,Yk, h), Zk = Yk+1 − Yk
h

.

3. See Step 3 of Algorithm 1.
4. See Step 4 of Algorithm 1.

The given standard normalization procedure is involved in both the discrete-
time and continuous-time particle filters [3]. However, it might be insufficient when
μ(tk, Xi

k, Zk)h is greater or lower than some threshold value. In this situation, the
resampling procedure is also ineffective due to underflow or overflow errors. The
threshold value is determined by the data type used for storage of the floating-point
number. For example, when using the double-precision floating-point format (for
storage of the floating-point number it is required 64 bit) this threshold value is
about 706.893. Certainly, the value μ(tk, Xi

k, Zk)h can be lowered by the choice of
the integration step but decreasing h proportionally increases the calculation time.
And if it is required to solve the optimal filtering problem in real-time then such a
way may be unrealizable. If the single-precision floating-point format is used (for
storage of the floating-point number it is required 32 bit), then the threshold value is
just 88.722. For the extended precision floating point format (for storage of floating-
point numbers it is required 80 bit) the threshold value is 11,356.523, but this data
type is used much more rarely in practice.

When overflow errors appear it is proposed to switch from the exponential func-
tion eμ(tk ,Xi

k ,Zk )h to the expression involving the exponent μ(tk, Xi
k, Zk)h and the

quantity that provides the correctness of this procedure. In other words, it provides
the exponential function calculation without overflow errors. For that, instead of the
expression

ωi
k+1 = ωi

ke
μ(tk ,Xi

k ,Zk )h

it is used the relation

ωi
k+1 = exp{lnωi

k + μ(tk, X
i
k, Zk)h − γk},
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where γk is determined sequentially for each time moment tk by the formula:

γk = max
i=1,2,...,M

{lnωi
k + μ(tk, X

i
k, Zk)h}.

The described technique, as well as, the standard normalization does not affect
the final result because all weights are multiplied by the same factor e−γk .

Continuous-time particle filter algorithm based on taking loga-
rithms (Algorithm 3)

1. See Step 1 of Algorithm 1.
2. See Step 2 of Algorithm 1.
3. Obtain a realization of the state vector at tk+1 and update the corresponding

weight:

Xi
k+1 = F(tk, X

i
k, h),

ωi
k+1 = exp{lnωi

k + μ(tk, X
i
k, Zk)h − γk},

where

γk = max
i=1,2,...,M

{lnωi
k + μ(tk, X

i
k, Zk)h}.

4. See Step 4 of Algorithm 1.

Note that these algorithms include modeling the trajectory of a random process
X (t) as well as its measurements Y (t) and Z(t) on Step 2 (and also modeling the
initial state vector X0 on Step 1). It is needed for the simulation purpose only. In the
real filtering problem, the random process X (t) is unobservable, and measurements
Y (t) or Z(t) are given.

In Algorithm 3, at least one particle has weight 1 for all k = 0, 1, . . . , N , and this
weight is maximal in the set Wk , therefore, Mk �= 0. Thus, this algorithm provides
not only the lack of overflow errors but also the lack of underflow errors, when all
weights become zero in one step. It is important to emphasize that the proposed
modification of the continuous-time particle filter does not exclude the resampling
procedure, but complements it. In Algorithms 1–3, the resampling procedure is not
described only for briefness.

All algorithms mentioned above are implemented in Mathcad computer algebra
system and grouped in the software modules. This software permits to solve esti-
mating problems (filtering, smoothing, and prediction problems) for multidimen-
sional continuous-time stochastic systems. In addition to the described algorithms,
the various numerical methods for solving SDEs such as Euler–Maruyama method,
Runge–Kutta type methods, Milstein’s method, Kuznetsov’s method, Platen and
Rosenbrock type methods have been implemented in the developed software. More-
over, MAP estimator [14, 34] can also be used for solving the optimal filtering
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problem. The developed software has been tested on the tracking problem described
in the next section.

17.4 Simulations

Themodified continuous-time particle filter algorithm is applied to solve the tracking
problem to find coordinates and velocities of an aircraft executing a maneuver in the
horizontal plane [6].

Suppose X = [ε, ε̇, η, η̇, ζ, ζ̇ , ω]T is a state vector, where ε, η, ζ are coordinates
of the aircraft in the Cartesian coordinate system, ε̇, η̇, ζ̇ are the corresponding
velocities, ω is an angular velocity of the aircraft, X is the 7 × 1 vector.

The motion model is

d

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

ε(t)
ε̇(t)
η(t)
η̇(t)
ζ(t)
ζ̇ (t)
ω(t)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

ε̇(t)
−ω(t)η̇(t)

η̇(t)
ω(t)ε̇(t)

ζ̇ (t)
0
0

⎞

⎟⎟⎟⎟⎟
⎟
⎟⎟⎟
⎠

dt +

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0
σ1

0
0
0
0
0

0
0
0
σ1

0
0
0

0
0
0
0
0
σ1

0

0
0
0
0
0
0
σ2

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

dW (t),

where σ1 = √
0.2, σ2 = 0.007; W (t) is a 4× 1 vector; σ1 and σ2 describe influence

of unpredictable factors on the aircraft motion such as turbulence, wind gusts, etc.
The initial state vector

X0 = [2650 m, 150 m/s, 1000 m, 0 m/s, 200 m, 0 m/s, 6
◦
/s]T

is non-random.
For the chosen value of the angular velocity, the aircraft alters its heading toward

East at t = 15 s, toward South at t = 30 s, toward West at t = 45 s, and returns to
North at t = 60 s with insufficient deviations caused by random fluctuations.

The measurement vector Z = [r, θ, φ]T satisfies the equation:

⎛

⎝
r(t)
θ(t)
φ(t)

⎞

⎠ =
⎛

⎜
⎝

√
ε2(t) + η2(t) + ζ 2(t)

arctan η(t)
ε(t)

arctan ζ(t)√
ε2(t)+η2(t)

⎞

⎟
⎠ +

⎛

⎝
σr

0
0

0
σθ

0

0
0
σφ

⎞

⎠N (t),

where σr = 50 m, σθ = 0.1◦, σφ = 0.1◦. The vector Z , as well as, V (t) and N (t)
are 3 × 1 vectors, r is the distance from the origin, where radar is located, to the
aircraft, θ is the azimuth, φ is the elevation angle.
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Fig. 17.1 The graph of μ(tk , Xk , Zk)h for sample trajectories of random processes X (t) and Z(t)

MMSE criterion is chosen as a quality criterion. In the considered model, several
corrections in comparison with the model in [6] have been made.

Firstly, the matrix σ(t, x) has been restricted in the motion model. In [6], the
matrix σ(t, x) is the 7 × 7 matrix σ(t, x) = diag(0, σ1, 0, σ1, 0, σ1, σ2). As it is
distinctly seen a number of its zero elements are superfluous that leads to extra
calculations related to drawing a pseudorandom sequence when simulating aircraft
trajectories. In the modified model the matrix σ(t, x) has a reduced dimension 7× 4
and does not contain zero columns. Secondly, the initial condition has been changed
so that aircraft trajectories do not cross the plane ε = 0.

Figure 17.1 shows the graph μ(tk, Xk, Zk)h as a function of the time moments
tk for trajectories of random processes X (t) and Z(t) that are obtained by Heun’s
method [33] with the integration step h = 0.01. The threshold value 706.893 indi-
cating a level, where the overflow error appears, is also marked in Fig. 17.1. This
overflow error occurs at t = 17s. It should be emphasized that the overflow error
appears not only in the case of implementation in Mathcad but in any other appli-
cation supporting the double-precision floating-point format. The single-precision
floating-point format is unusable here (see Fig. 17.1).

The standard normalization (see Algorithm 2) is ineffective in the latter case as
the overflow error appears in one step at a time but it is not caused by the gradual
increase of the weight coefficient.

Several ways of grappling with the discussed question can be offered. The first
way is to reduce the integration step. For example, in considered simulations, the
integration step should be decreased even to 0.003. The second one is to carry out
calculations with the extended precision floating point format. Finally, the last way
is to apply Algorithm 3.
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Fig. 17.2 The aircraft sample trajectory and its optimal estimate by Algorithm 3

The aircraft sample trajectory and its optimal estimate by Algorithm 3 are
presented in Fig. 17.2. These numerical results correspond to the integration step
h = 0.01, the sample size M = 10,000, and T = 30 s.

The drawback of the first way is undoubtedly growth of the calculation time.
Actually, in spite of the disappearance of the overflow error at each time step, it
might appear because of the increase of weights. The second variant has restrictions
connected with the fact that the extended precision floating point format must be
supported by the processor providing all needed calculations and the application
development environment. Moreover, computer memory usage increases by 25%, as
well as, the calculation time. Following the third way, the calculation time increases
only because of finding the maximal element of the array (see Step 3 in Algorithm
3), but this way provides to eliminate overflow errors that are illustrated above.

17.5 Conclusions

In the chapter, the modification for the continuous-time particle filter algorithm has
been offered. Thismodification is based on thewell-known strategy such asmodeling
trajectories to numerically solve SDEs; it provides the lack of overflow errors during
the calculation of particle weights. To implement such an idea practically particle
weights have been expressed in terms of logarithms with additional customization
of exponents. The effectiveness of the modified algorithm has been demonstrated
when solving the tracking problem to find coordinates and velocities of an aircraft
executing a maneuver in the horizontal plane.
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Chapter 18
Incomplete Pairwise Comparisons
Method for Estimating the Impact
Criteria for Hub Airports Network
Optimization

Nataliya M. Kuzmina and Alexandra N. Ridley

Abstract This chapter proposes a solution to the problem of determining the contri-
bution of airport rating criteria for assessing the integral risk of modernization. The
purpose of modernization is to increase the throughput of the Moscow aviation
hub. To solve this problem, the experts formed a list of criteria. To determine their
contribution to the overall risk assessment, the method of pairwise comparisons was
applied. However, due to the fact that the criteria being evaluated relate to different
areas, and experts fromdifferent areaswere involved, an interval systemof evaluating
alternatives based on Saaty’s scale was used. The results of expert evaluations were
combined into a common matrix of interval evaluations of alternatives. To increase
the consistency of the matrix, some elements were deleted. The method proposed
to solve the problem allows us to obtain the alternatives’ weights for incomplete
pairwise comparisons matrices of large dimension, as well as, alternative estimates
in interval form, which is illustrated by an example. This method differs from most
existing methods for solving the problem of incomplete pairwise comparisons by
the ability to process incomplete pairwise comparisons matrices without restoring
missing data. It can be applied to solve other decision problems, where most of the
known methods based on the pairwise comparisons method are not applicable to
solve a problem.
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18.1 Introduction

Currently, the share of passenger traffic at Moscow Aviation Hub (MAH) airports is
about 75% of the passenger traffic of all airports in Russia [1]. Serving such a share
of passenger traffic requires the use of significant throughput capacities. Currently,
the Moscow aviation hub includes three airports: Domodedovo, Sheremetyevo, and
Vnukovo. The total passenger flow currently exceeds 115million passengers per year
(2019). MAH is the third busiest aviation hub in Europe (after London and Paris) and
is among the ten most loaded in the world. There are two possible ways to solve the
bandwidth problem. The first way is to modernize the external ground, airfield, and
terminal infrastructure of existing airports [2], the Unified Air Traffic Management
System (EU ATM), but this method is ineffective, since it will not provide service
for the passenger flow projected for 2030, equal to 180 million passengers [3]. The
second, most effective way is to create a new hub airport. Obviously, building a new
airport from scratch is inefficient, it is better to use the existing airports near Moscow
and modernize in accordance with the necessary requirements. In this regard, the
task arose of finding the most reliable airport candidate for modernization in order
to unload MAH. The attractiveness of the airport for the role of a hub is determined
by the following factors:

• Geopolitical position (capital, the center of the economic region).
• Development of its infrastructure (airfield, passenger and cargo terminal, transport

communications, Air Traffic Control (ATC) system.
• Capacity and development of the domestic and international transportation

market.
• Level of passenger and cargo services at the airport.

Along with this, there are several criteria that determine the willingness of an
airport to fulfill the functions of a hub:

• Ability to organize the required number of connections and the absence of
restrictions for their growth.

• Ability to organize connecting flights by organizing connecting waves and clearly
following the schedule.

• Possibility of developing an airport because there is no prospect without it.
• Presence of a hub-forming airline or airline alliance.
• Airport development opportunity.

The rest of the chapter is follows. Section 18.2 contains the statement of the
problem including the task restrictions and using the model and list of criteria that
may influence airport rating. Section 18.3 contains a description of the problem
of criteria ranking based on incomplete, interval-specified pairwise comparisons.
Section 18.4 concludes the chapter.
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18.2 General Statement of the Problem

To select a hub airport, it was decided to rank airports within a radius of 300 km [4] in
the terms of the integral risk [5] of airport modernization. This approach was chosen
because the cost of modernizing airports should be determined after the preliminary
selection of candidate airports for the feasibility of any investment. It is obvious, for
example, that airports outside the 300 km zone will not unload MAH due to the fact
that it is more profitable for passengers to fly by plane than to use an alternative mode
of transport such as a train, intercity bus, taxi, and others. Integral risk is determined
on the basis of a list of criteria and particular risks for each of the criteria for each
airport in question. In this regard, the task is extremely important for obtaining the
final result.

First, experts were involved to form lists of criteria that hypothetically may influ-
ence the magnitude of the defined risk. As a result, a list of criteria is formulated in
Table 18.1.

Despite a large number of criteria, due to their diversity and the requirement to
take into account the opinions of experts from different fields, the paired comparisons
method [6] was chosen to evaluate the criteria, allowing experts to set the estimates in
a form of intervals while skipping pairs of objects that seem difficult to compare. The
method of incomplete pair comparisons [7] chosen to solve the problem was applied
to solve complex, multi-criteria decision-making problems with a large number of
criteria, both for choosing infrastructure facilities, assessing their safety, and for
solving civil aviation problems [8].

Table 18.1 Airport rating criteria

No. Criteria Acronyms

1 Optimal distance from the center of Moscow ODC

2 Airport capacity ACC

3 Quality and quantity of runways QQRC

4 Aerodrome infrastructure ADIC

5 Airport infrastructure APIC

6 Land resources LRC

7 Infrastructure of other transport ITC

8 Cargo terminal quality CTC

9 International status ISC

10 Co-location CLC

11 Ownership form OSC
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18.3 Evaluation of the Contribution of Criteria Based
on the Pairwise Comparisons Method

The definitions of the incomplete pairwise comparison solutions without and with
interval alternative preference ratings are provided in Sects. 18.3.1 and 18.3.2, respec-
tively. Section 18.3.3 contains a method of processing expert data for increasing
matrix consistency. Section 18.3.4 is the main subsection. It contains the description
of the algorithm to obtain a solution to the problem and results of its execution—
solution of the criteria ranking problem. Section 18.3.5 contains a basic analysis of
the results.

18.3.1 Incomplete Pairwise Comparisons Method

Let {O1, O2, . . . , ON } be a set of alternatives, where N is the object count. S =(
si j

)
,1 ≤ i, j ≤ N is the pairwise comparisonsmatrix, where alternatives preference

relations using Saaty’s scale. Some pairs may not be rated and it will be marked
“NA” in pairwise comparisons matrix. Note that all relations are inverse symmetric
(si j = s−1

j i ) or both marked NA [7–9].
Let’s construct a directed weighted graph Gs := (V, E), where V =

{O1, O2, . . . , ON } are the vertices of this graph, E = {〈i, j〉 : si j �= N A, si j > s ji
}

are the edges and weights correspond to values from si j .
Select a connected subgraph G∗

s from graph Gs : delete edges from Gs , which
mostly disrupt transitivity sik = si j s jk . Thus, for all edges 〈i, j〉 in G∗

s will be
si j = wi/wj . This will uniquely identify the alternative weights vector W = (wi ) is
the solution of the incomplete pairwise comparisons problem.

18.3.2 Incomplete Pairwise Comparisons Method
with Interval Alternative Preference Ratings

Let
{
C1,C2, . . . ,CM

}
be the survey results obtained from M experts. They are

presented as incomplete pairwise comparisons matrices with interval estimates of N
alternatives. That is all elements are determined by Eq. 18.1 or as NA.

Cm = (
cmi j

)
, cmi j = [

bottomm
i j , top

m
i j

]
1 ≤ m ≤ M 1 ≤ i, j ≤ N (18.1)

Due to the principle of inverse symmetry of pairwise comparisons matrices, the
following equality will be true:

bottomm
i j · topmji = 1. (18.2)
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Let C = (
ci j

)
be the combined results of survey formed from set{

C1,C2, . . . ,CM
}
. Values are presented as intervals ci j = [

bi j , ti j
]
, where bi j are

the values of lower bound and ti j are the values of upper bound. Bounds are defined
according to Eq. 18.3.

bi j =
(

M∏

k=1

bottomk
i j

) 1
M

ti j =
(

M∏

k=1

topki j

) 1
M

(18.3)

The solution to incomplete pairwise comparisons problem with interval alterna-
tives’ ratings is the solution to incomplete pairwise comparisons problem, which
corresponds to Eq. 18.4.

W : bi j ≤ wi/wj ≤ ti j (18.4)

It is easy to see that in most cases there is infinite number of solutions. That is
why we determine two supporting solutions: upper (or top) solution and lower (or
bottom) solution. Top solution is the solution to the incomplete pairwise comparisons
problem for matrix T = (

ti j
)
. Bottom solution is built by moving top solution to

lower bound. Middle solution builds based on top solution and bottom solution.
Algorithm of getting this solution will be described in the following sections.

18.3.3 Processing Expert Data

Using expert estimates in pairwise comparisons matrices form (like was described
in Eq. 18.1) we got two matrices of coefficients: upper bound T and lower bound B.
Values of these matrices are presented in Tables 18.2 and 18.3, respectively.

Table 18.2 Upper bound coefficients

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 1.0000 3.9360 1.4142 1.8612 2.2134 1.8612 1.3161 7.4833 9.0000 9.0000 9.0000
ACC 0.3433 1.0000 0.4083 0.4518 0.5000 0.4083 0.3689 2.2134 2.9130 3.7606 4.3559
QQRC 1.0000 3.4641 1.0000 1.1892 1.6818 1.4142 1.1892 6.7354 7.4539 9.0000 9.0000
ADIC 0.8409 2.7108 1.0000 1.0000 1.1892 1.0000 1.0000 5.4772 7.9686 8.2067 9.0000
APIC 0.7071 2.2134 0.8409 1.0000 1.0000 1.0000 0.7071 4.7287 6.0000 7.4833 9.0000
LRC 1.0000 3.0000 1.1892 1.1892 2.2134 1.0000 1.0000 6.2357 8.4519 7.7373 9.0000
ITC 1.1892 3.4641 1.3161 1.4142 2.0000 1.1892 1.0000 7.2376 9.0000 9.0000 9.0000
CTC 0.1543 0.5000 0.1757 0.2115 0.2541 0.1931 0.1615 1.0000 1.5651 2.0000 2.2795
ISC 0.1179 0.4518 0.1543 0.1964 0.1931 0.1679 0.1361 1.1892 1.0000 1.4142 1.8612
CLC 0.1111 0.4205 0.1183 0.1436 0.1708 0.1382 0.1144 1.0000 1.0000 1.0000 1.1892
OSC 0.1111 0.3433 0.1111 0.1309 0.1183 0.1179 0.1111 0.9036 1.0000 1.1892 1.0000
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Table 18.3 Lower bound coefficients

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 1.0000 2.9130 1.0000 1.1892 1.4142 1.0000 0.8409 6.4807 8.4853 9.0000 9.0000
ACC 0.2541 1.0000 0.2887 0.3689 0.4518 0.3333 0.2887 2.0000 2.2134 2.3784 2.9130
QQRC 0.7071 2.4495 1.0000 1.0000 1.1892 0.8409 0.7598 5.6924 6.4807 8.4520 9.0000
ADIC 0.5373 2.2134 0.8409 1.0000 1.0000 0.8409 0.7071 4.7287 5.0915 6.9640 7.6372
APIC 0.4518 2.0000 0.5946 0.8409 1.0000 0.4518 0.5000 3.9360 5.1800 5.8560 8.4519
LRC 0.5373 2.4495 0.7071 1.0000 1.0000 1.0000 0.8409 5.1800 5.9579 7.2376 8.4853
ITC 0.7598 2.7108 0.8409 1.0000 1.4142 1.0000 1.0000 6.1920 7.3485 8.7389 9.0000
CTC 0.1336 0.4518 0.1485 0.1826 0.2115 0.1604 0.1382 1.0000 0.8409 1.0000 1.1067
ISC 0.1111 0.3433 0.1342 0.1255 0.1667 0.1183 0.1111 0.6389 1.0000 1.0000 1.0000
CLC 0.1111 0.2659 0.1111 0.1219 0.1336 0.1292 0.1111 0.5000 0.7071 1.0000 0.8409
OSC 0.1111 0.2296 0.1111 0.1111 0.1111 0.1111 0.1111 0.4387 0.5373 0.8409 1.0000

Pairwise comparisons matrices of dimensions more than 5-6 are initially highly
controversial. We can increase consistency of these matrices by deleting preferences
(mark them NA), which introduces inconsistency into the matrix because of scale
limits and some features. First, we delete all preferences, where the top and bottom
values are in (8, 9] both or in [1/9, 1/8). They are bad because of situations where two
different objects are substantially, absolute more important than the third. But marks
9 make them more the same than different. These values are marked by red color
in Tables 18.2, 18.3 and 18.4. Second, we delete all preferences, where the top and
bottom values are both in (1/2, 2). Neutral preferences are bad because they spoil not
neutral marks. These values are marked by the yellow color in Tables 18.2, 18.3 and
18.4. Also, we can see that pairwise comparisons matrices are inverse symmetrical.
Therefore, we can delete half of the preferences: for example, these values where the
top value is less than 1. These values are marked by green color in Tables 18.2, 18.3
and 18.4. Diagonal values are marked by gray color in Tables 18.2, 18.3 and 18.4 for

Table 18.4 Adjacency matrix of preferences graph after unlinking

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 0 1 0 0 1 0 0 1 0 0 0
ACC 0 0 0 0 0 0 0 1 1 1 1
QQRC 0 1 0 0 0 0 0 1 1 0 0
ADIC 0 1 0 0 0 0 0 1 1 1 1
APIC 0 1 0 0 0 0 0 1 1 1 0
LRC 0 1 0 0 1 0 0 1 1 1 0
ITC 0 1 0 0 1 0 0 1 1 0 0
CTC 0 0 0 0 0 0 0 0 0 1 1
ISC 0 0 0 0 0 0 0 0 0 0 0
CLC 0 0 0 0 0 0 0 0 0 0 0
OSC 0 0 0 0 0 0 0 0 0 0 0
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better orientation. Finally, we got upper and lower bounds of the expert’s preferences.
Their presence or absence can be defined with graph G, whose adjacency matrix is
represented in Table 18.4.

18.3.4 Weights Calculating

Preparatory stage.At this stage, we go to the logarithmic scale. All matrices, vectors,
and constants except matrix of preferences graph are calculating in logarithmic scale
to increase accuracy and make it easier. Next, we denote logarithmic equivalents of
linear quantities with the dash above. Logarithmic bounds are calculated by Eq. 18.5.

b̄i j = ln bi j t̄i j = ln ti j (18.5)

For calculations, we introduce two matrices: the proximity matrix to upper bound
Ē = (

ēi j
)
and the proximity matrix to lower bound R̄ = (

r̄i j
)
. Their values will vary

depending on the values of alternatives’ weight vector W̄ = (w̄i ) according to the
rules provided by Eq. 18.6.

{
ēi j = gi j · (

t̄i j − w̄i + w̄ j
)

r̄i j = gi j · (−b̄i j + w̄i − w̄ j
) (18.6)

First, when w̄i = 0, we obtain matrices Ē = T̄ and R̄ = −B̄. Solutions to the
problem will provide ēi j ≥ 0 i r̄i j ≥ 0, i.e. corresponding incomplete pairwise
comparisons matrix will be between upper and lower bounds.

Upper solution construction. Until there is a solution where max
i, j

∣
∣ēi j

∣
∣ = 0, it

is necessary to remove the edges that introduce the greatest inconsistency [9]. The
search for the required edge is carried out by changing the value w̄i until there is no
way to change weights to make max

i, j

∣∣ēi j
∣∣ lower. For example, Table 18.5 illustrates

alternatives’ weights vector w̄i and upper bound proximity matrix Ē corresponding
to weight vector and upper bound values, which are presented in Table 18.2. We
colored table cells corresponding to adjacency graph G.

In this matrix max
i, j

∣∣ēi j
∣∣ = 0.2537 (these values in Table 18.5 are marked in bold).

This maximum is impossible to decrease. In Table 18.6, there are 3 nonreducible
maximums: ē49, ē54, and ē59. Let’s try to increase w̄4 by�w to decrease values in row
4. Updated value is ē49 = 0.2537−�w. But increasing w̄4 makes values in column 4
greater andwe get a newmaximum ē54 = 0.2537+�w.We have tomake it lower and
there are two ways: to decrease w̄4 or to increase w̄5. First way will undo last action,
so we increase w̄5 and get ē54 = 0.2537, but also, we get ē59 = −0.2537− �w. It is
bad again because we have this new max

i, j

∣∣ēi j
∣∣ = 0.2537 + �w. We can decrease w̄9

by �w and get ē59 = −0.2537. But ē49 returns to its original value, from which we
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Table 18.5 Alternatives’ weight vector and corresponding upper bound proximity matrix

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
0 1 2 3 4 5 6 7 8 9 10
1.3663 0.0031 1.1086 0.9192 0.6176 1.1584 1.2354 -0.6922 -1.0372 -1.1414 -1.3971

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 0 0.0070 0 0 0.0458 0 0 –0.0458 0 0 0
ACC 0 0 0 0 0 0 0 0.0992 0.0289 0.1801 0.0713
QQRC 0 0.1370 0 0 0 0 0 0.1066 –0.1370 0 0
ADIC 0 0.0811 0 0 0 0 0 0.0892 0.1191 0.0443 –0.1191
APIC 0 0.1801 0 0 0 0 0 0.2439 0.1370 0.2537 0
LRC 0 –0.0566 0 0 0.2537 0 0 –0.0202 –0.0612 –0.2537 0
ITC 0 0.0102 0 0 0.0753 0 0 0.0517 -0.0753 0 0
CTC 0 0 0 0 0 0 0 0 0 0.2439 0.1191
ISC 0 0 0 0 0 0 0 0 0 0 0
CLC 0 0 0 0 0 0 0 0 0 0 0
OSC 0 0 0 0 0 0 0 0 0 0 0

Table 18.6 Contender edges
for removing from
preferences graph

Coordinates, (i, j) ēi j r̄i j
∣∣w̄i − w̄ j

∣∣

(4, 9) 0.2537 −0.0085 1.759

(4, 5) 0.2537 0.5408 0.5408

(5, 9) −0.2537 0.3205 2.2998

started. Thus, we observe a cycle characterizing a violation of the consistency of the
pairwise comparisons matrix. The only way to solve this cycle is to remove one of
the edges ē49, ē54 or ē59. Edges can be characterized by corresponding values such
as values from upper bound proximity matrix, lower bound proximity matrix, and
alternatives’ weights or their combinations.

The choice of a candidate for deletion can bemade in different ways. However, for
each candidate we estimate

∣
∣w̄i − w̄ j

∣
∣—this is a value characterizing the dependence

on other edges. If this value is low, it means that in such graph configuration we
decrease row i almost as many times as we increase column j to get balance—we
call it the greatest inconsistency. By this principle, we remove edges until there are
only edges characterizing the consistent solution adjoining the upper bound of the
estimates. Note that if removing a particular edge violates the connectivity of the
graph, the next suitable removes.

As a result, we obtain a solution, where max
i, j

∣∣ēi j
∣∣ < ε. Alternatives’ weights

vector is the upper solution.Weights vector and lower bound proximity matrix corre-
sponding to it are presented in Table 18.7. The remaining edges of the graph are
colored.

Lower solution making. Using the upper solution, we make a lower solution. For
that, we “move” it to lower bound. First, we fixweights values and supplementmatrix
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Table 18.7 Alternatives’ weights and lower bound proximity matrix corresponding to the upper
solution

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
1.2089 0.3282 0.9871 1.0539 1.0794 1.1127 1.1756 -0.8037 -1.0217 -0.9333 -1.1434

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 0 0 0 0 0 0 0 0.1438 0 0 0
ACC 0 0 0 0 0 0 0 0 0 0 0.4024
QQRC 0 0 0 0 0 0 0 0 0.1399 0 0
ADIC 0 0 0 0 0 0 0 0 0.4479 0 0.1642
APIC 0 0 0 0 0 0 0 0 0 0.2452 0
LRC 0 0 0 0 0 0 0 0 0.3497 0.0668 0
ITC 0 0 0 0 0 0 0 0.1560 0.2027 0 0
CTC 0 0 0 0 0 0 0 0 0 0 0
ISC 0 0 0 0 0 0 0 0 0 0 0
CLC 0 0 0 0 0 0 0 0 0 0 0
OSC 0 0 0 0 0 0 0 0 0 0 0

R̄T with values, where R̄ ≥ 0. This way we get a preferences graph GB . Edges of
this graph are colored in Table 18.8. Next, we find shift amount h. In process, we
can delete some edges from GB to get maximal h, but we should not break graph
connectivity. This idea can be expressed by Eq. 18.7.

Table 18.8 Elementary moving weight vector and elementary moving matrix

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
–2 –2 –2 –2 –3 –4 –2 –1 0 0 0

ODC ACC QQRC ADIC APIC LRC ITC CTC ISC CLC OSC
ODC 0 0 0 0 0 0 0 1 0 0 0
ACC 0 0 0 0 0 0 0 1 2 2 2
QQRC 0 0 0 0 0 0 0 1 2 0 0
ADIC 0 0 0 0 0 0 0 1 2 2 2
APIC 0 1 0 0 0 0 0 2 3 3 0
LRC 0 0 0 0 1 0 0 3 4 4 0
ITC 0 0 0 0 0 0 0 1 2 0 0
CTC 0 0 0 0 0 0 0 0 0 1 1
ISC 0 0 0 0 0 0 0 0 0 0 0
CLC 0 0 0 0 0 0 0 0 0 0 0
OSC 0 0 0 0 0 0 0 0 0 0 0
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r̄ Bi j = gBi j · (
r̄ T∗
i j − h × yi j

)

w̄B
i = w̄T

i + h × ui

min
i, j

r̄ Bi j = 0

h → max

(18.7)

Here, yi j are elements of elementary moving matrix Y , ui are elements of elemen-
tary moving weight vector U . These matrix and vector define from the structure of
graph GB . They reflect how alternatives’ weights vector and relations matrix should
be changed taking into account the transitivity of pairwise comparisons matrix. In
Table 18.8, vector U and matrix Y corresponding to graph GB is presented.

Thus, the maximum shift of the upper solution to the lower bound is obtained and
equal h = 0.14. Alternative weight corresponding to the upper solution is calculated
by Eq. 18.8.

w̄B
i = w̄T

i + h × ui (18.8)

Middle solution construction. This solution is made from upper solution and
the aforementioned shift value. First, we calculate shift for this solution as half of
maximum shift hmid = h/2. This solution is equidistant from upper and lower solu-
tions and it is more appropriate to use for obtaining numerical solution (as opposed
to interval solution) provided by Eq. 18.9.

w̄i = w̄T
i + hmid × ui (18.9)

Calculation normalized alternatives’ weights in a linear scale. For obtaining final
result, it is necessary to transition from a logarithmic scale to linear. It is easy to do
using Eq. 18.10.

W = (wi ) =
(

ew̄i

∑n
j=1 e

w̄ j

)

(18.10)

For upper, lower, andmiddle alternatives weights normalized values are presented
in Table 18.9. Note that for not normalized alternatives’ weight vector in logarithmic
scale according to Eqs. 18.7–18.9, the expression w̄B

i ≤ w̄i ≤ w̄T
i is always true,

but for normalized vector inequality of weights is usually not satisfied that results to
alternatives ranking may change like in Table 18.9.

18.3.5 Results’ Analysis

As a result, we got the weights of criteria for selection to MAH. There are two most
able to influence the risk of airport modernization:
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Table 18.9 Criteria weights for selection to MAH

No. Criteria Acronyms WT W B W

1 Optimal distance from the center of Moscow ODC 0.1593 0.1648 0.1624

2 Airport capacity ACC 0.066 0.0683 0.0673

3 Quality and quantity of runways QQRC 0.1276 0.1320 0.1301

4 Aerodrome infrastructure ADIC 0.1364 0.1412 0.1390

5 Airport infrastructure APIC 0.1399 0.1259 0.1330

6 Land resources LRC 0.1446 0.1132 0.1282

7 Infrastructure of other transport ITC 0.154 0.1594 0.1570

8 Cargo terminal quality CTC 0.0213 0.0253 0.0233

9 International status ISC 0.0171 0.0234 0.0201

10 Co-location CLC 0.0187 0.0256 0.0219

11 Ownership form OSC 0.0152 0.0207 0.0178

• Optimal distance from the center of Moscow.
• Infrastructure of other transport.

Evaluation of these parameters should be takenmore carefully in further research.
Also, the presence of the criterion of optimal distance from the center of Moscow in
this list confirms the correctness of imposing restrictions on the estimated airports
by those in a radius of 300 km.

The most unimportant criteria are identified too:

• Ownership form.
• International status.
• Co-location.
• Cargo terminal quality.

They may not be considered in further researches of the problem because of
their insignificance, cargo terminal characteristics, presence of international status,
co-location criterion, form of ownership and, to some extent, airport capacity.

18.4 Conclusions

The obtained criterion weights were used to calculate the integral risk of airport
modernization in order to select MAH candidate airports. In addition to the applica-
tion of criteria for the selection and evaluation of the contribution of the criteria, the
results obtained are useful in themselves: the criteria that can most affect the risk of
modernizing the airport, and those that cannot be considered in further research of
the problem, were clearly distinguished.
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In addition to the practical result, the applied method of incomplete pairwise
comparisons with interval-specified estimates of alternative preferences deserves
special attention. Its distinctive features are:

• Ability to operate with incomplete pairwise comparisons matrices without
restoring missing estimates.

• Ability to work with both numerical and interval estimates of alternatives’
preferences.

These advantages make it possible to apply the method of pairwise comparisons
in complex cases like the following:

• When highly specialized experts cannot rate all alternatives, they rate alternatives
of their expertise and for the rest, one give an interval or nothing at all.

• When it is required to compare a large number of alternatives and get the alter-
natives’ weights from the resulting matrix of large dimension and incomplete
matrices.
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Chapter 19
Adaptive Interpolation,
TT-Decomposition and Sparse Grids
for Modeling Dynamic Systems
with Interval Parameters

Alexander Yu. Morozov and Dmitry L. Reviznikov

Abstract Problemswith uncertainties arise inmany practical fields and traditionally
are formulated as dynamic systemswith interval parameters. Often the complexity of
existing methods is exponential in relation to the number of interval parameters. The
adaptive interpolation algorithm and approaches directed to reducing the curse of
dimensionality are considered. The main assumption on which these approaches are
based is that not all interval parameters make a significant contribution to the solution
of the problem. The use of tensor train decomposition and sparse grids allows us to
take into account these features and expand the scope of the algorithm for the case of a
large number of interval parameters. The effectiveness of the considered approaches
is confirmed on several model problems.

19.1 Introduction

Problems with inaccurate data appear in many important areas of modern science. In
particular, when solving various applied problems of the aerospace industry, prob-
lems of mechanics, and others, the situations often occur when some parameters are
not exactly known, but there is information about the ranges, in which their values
are located. Since most problems are formulated as a system of Ordinary Differential
Equations (ODEs), it becomes necessary to solve the Cauchy problem with interval
initial conditions or parameters [1].
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Often, the complexity of existing methods is exponential in relation to the number
of interval parameters. In this chapter, the adaptive interpolation algorithm [2–4]
for modeling dynamic systems with interval parameters and approaches directed to
reducing the curse of dimensionality are considered The main assumption, on which
these approaches are based, is that not all interval parameters make a significant
contribution to solve the problem. As a result, during the operation of the algorithm,
data structures that have hidden dependencies and redundancy appear. Eliminating
these structures can significantly reduce computational complexity.

The main idea of the adaptive interpolation algorithm is to build an adaptive hier-
archical grid based on the kd-tree, in which each cell contains an interpolation grid,
over the set formed by the interval initial conditions and parameters of the problem.
For each time moment, an adaptive reconstruction of the partition is performed
depending on the features of the solution. The result of the algorithm at each step
is a piecewise polynomial function that interpolates the dependence of the solution
on the parameter values with a given accuracy. Each vertex of a tree corresponds to
a multidimensional array (or, according to the terminology in [5, 6], a tensor), for
storage of which various effective representations can be used, under the assumption
that the data have redundancy.

One of the effective representations of tensors is Tensor Train (TT) decomposition
[5], which allows one to significantly reduce the amount of stored data in practice.
This decomposition can be constructed using TT-cross algorithm [6] without calcu-
lating all the elements of the tensor. An important property is that all arithmetic (and
not only) operations on tensors can be performed in this form.

The sparse grid method appeared in the 1960s [7] for solving multi-parameter
problems in economics. It is used to interpolate the functions of many variables.
Interpolation on sparse grids requires a significantly smaller number of nodes than
conventional interpolation on a full grid. In this approach, instead of one dense grid,
a linear combination of several sparse grids is used.

The chapter has the following organization. In Sect. 19.2, an interval statement of
the Cauchy problem for a system of ODEs is presented. Section 19.3 is devoted to the
adaptive interpolation algorithm for solving dynamic systems with interval parame-
ters. In Sect. 19.4, we describe the problem of large dimensions and outline a way to
a solution. In Sect. 19.5, the cross approximation of matrices is considered, which is
the basis of tensor trains decomposition described in Sect. 19.6. This approach allows
us to effectively deal with large dimensions. A modification of the adaptive interpo-
lation algorithm using tensor trains is given in Sect. 19.7. Section 19.8 of the chapter
is devoted to another approach to solving the problem of large dimensions—sparse
grids. In Sect. 19.9, the main results are formulated.

19.2 Formulation of the Problem

We consider the Cauchy problem with interval initial conditions in the form of a
system (Eq. 19.1).
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxi (t)

dt
= fi (x1(t), x2(t), . . . , xn(t)) i = 1, n

xi (t0) ∈
[
x0i , x0i

]
i = 1,m

xi (t0) = x0i i = m + 1, n

t ∈ [t0, tN ]

(19.1)

If the ODE system is not autonomous or contains parameters, then dummy equa-
tions are added to the system so that it takes the form of Eq. 19.1. Function vector
f = ( f1, f2, . . . , fn)

T satisfies all conditions ensuring the uniqueness and existence

of a solution for all x(t0) ∈
[
x0, x0

]
.

The goal is to construct a piecewise polynomial vector function Pk
(
x0
)
for every

time moment tk , where x0 ∈
[
x0, x0

]
, which interpolates the dependence of the

solution on interval parameters with controlled accuracy. If a function Pk is found,
an interval estimate of the solution (finding the left and right boundaries of the
intervals) is reduced to a solution of 2n conditional optimization problems for an
explicitly defined function.

19.3 Adaptive Interpolation Algorithm

Consider an adaptive interpolation algorithm with a regular grid at each vertex of
the kd-tree. Assume that at the moment tk there is a known solution xk(x0). A
grid Gk

0, which corresponds to the root vertex of the kd-tree and represents (m + 1)-
dimensional array, is constructed over the set formed by the interval initial conditions:

Gk
0[i1, i2, . . . , im, j] = xkj

⎛

⎝x01 + x01 − x01
p

i1, x02 + x02 − x02
p

i2, . . . , x0m

+ x0m − x0m
p

im

)

, i1, i2, . . . , im = 0, p j = 1, n,

where p is the degree of interpolation polynomial for each variable.
With function Gk

0, there is constructed G
k+1
0 , which reduces to solve non-interval

Cauchy problems for the corresponding elements provided by Eqs. 19.2.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx j (t)

dt
= f j (x1(t), x2(t), . . . , xn(t))

x j (tk) = Gk
0[i1, i2, . . . , im, j]

Gk+1
0 [i1, i2, . . . , im, j] = x j (tk+1) j = 1, n

t ∈ [
tk, tk+1

]

(19.2)
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System of Eqs. 19.2 can be considered as a function, the input of which is
Gk

0[i1, i2, . . . , im] and the output is Gk+1
0 [i1, i2, . . . , im].

With Gk+1
0 an interpolation, polynomial Pk+1

(
x0
)
is constructed, for example, in

the form of a Lagrange:

Pk+1
j

(
x0
) =

p∑

i1,i2,...,im=0

L
(
x0
)
[i1, i2, . . . , im] · Gk+1

0 [i1, i2, . . . , im, j], j = 1, n,

where L
(
x0
)
ism-dimensional array that consists of the values of the basic Lagrange

polynomials:

L
(
x0
)
[i1, i2, . . . , im] =

p∏

j=0

m∏

k=0
ik �= j

p
(
x0k − x0k

)/(
x0k − x0k

)
− j

ik − j
.

If the posterior error of interpolation

error = max
x0∈

[
x0, x0

]

∥
∥xk+1(x0) − Pk+1(x0)

∥
∥ (19.3)

is greater than some given value ε, than Gk
0 is split into two grids G

k
1 and Gk

2 so that
their estimate of the interpolation error is less than error. All the same actions are
performed for them as for the grid Gk

0, and, if necessary, they are also broken.
As a result, at the time of tk+1 a kd-tree and the corresponding piecewise polyno-

mial function that interpolates the solution with a given accuracy will be obtained.
The process of constructing a kd-tree is illustrated in Fig. 19.1. There is no need to
build a kd-tree from scratch at each step, instead, the tree obtained in the previous
step is used, and depending on the estimate of the interpolation error, it is rebuilt.
The process of crushing vertices always occurs at the previous step (dashed lines),
because, when creating new vertices, the values associated with their nodes are
interpolated, which must be performed at a time when the error is still valid. If the
interpolation error becomes acceptable for the vertex and all its descendants, then
the descendants are deleted, and the vertex itself becomes a leaf.

Assessment in the form of Eq. 19.3 in practice is not performed for all points from
the region of uncertainty, but only for some points. When creating a vertex Gk

0, a test
set of points is randomly created:

Xk
0 =

{
xk(x̂0)

∣
∣
∣x̂0 = rand

[
x0, x0

]}
.

By analogy with the construction of Gk+1
0 , Xk+1

0 is constructed using Xk
0 by

solving non-interval Cauchy problems similar to Eq. 19.2. The posterior estimate of
the interpolation error takes the following form:
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Fig. 19.1 Illustration of the working algorithm

error = max
(x̂0, xk+1)∈Xk+1

0

∥
∥xk+1 − Pk+1(x̂0)

∥
∥.

The adaptive interpolation algorithm consists of three elements: transferring deci-
sions to the next time layer, estimating the interpolation error for each vertex, and
splitting the vertices. The considering approach is invariant in relation to specific
implementations. It is not necessary, for example, to store explicitly multidimen-
sional arrays at each vertex of the kd-tree, instead, it is enough to store only their
TT-decomposition and implement all the necessary actions within TT-format. Also,
it is not necessary to use the dense regular grids.

19.4 Large Dimensions

The described adaptive interpolation algorithm with all its advantages (universality,
robustness, accuracy, and the possibility of parallelization) has one significant draw-
back: with an increase in the number of interval parameters, its complexity grows
exponentially. Each vertex of the kd-tree contains a grid with the number of nodes
(p+1)m , where p is the degree of interpolation polynomial in each dimension andm
is the number of interval initial conditions. Already with the parameters p = 4 and
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m = 20 the number of nodes in the grid will be about one hundred trillion (≈ 1014).
In particular, a large number of interval parameters appears in such applied problem
as modeling chemical transformations in the presence of uncertainties in the rate
constants of reactions. If we consider the complete kinetic mechanisms in which the
reactions are in the thousands, then we have to deal with the thousand-dimensional
regions of parameter uncertainty, and the use of the adaptive interpolation algorithm,
in this case, becomes impossible.

This situation can be improved by making an assumption that is fully consistent
with reality. In practice, there is rarely a situation where absolutely all parame-
ters individually or in combination have a significant impact on the solution. When
constructing an interpolationpolynomial, for example, for a functionof twovariables:

P(x, y) = a0,0 + a1,0x + a0,1y + a1,1xy + · · · =
p∑

i=0

p∑

j=0

ai, j x
i y j .

This means that most of the members ai, j x i y j will not make a significant contri-
bution to the result and, therefore, they can be ignored. Therefore, to construct an
interpolation polynomial, it is sufficient to use not all (p+1)2 nodes. There appear a
few questions. Which terms need to be considered? How are the grid nodes selected?
A priori, one cannot answer these questions unequivocally.

19.5 Cross Approximation

Let us consider the Lagrange interpolation polynomial on a regular grid for two
variables. The calculation of the value at a certain point reduces to the elementwise
multiplication of two matrices and the summation of all elements:

P(x, y) = L(x, y) ⊗ F =
p∑

i=0

p∑

j=0

li, j (x, y) fi, j ,

where li, j (x, y) are the basic Lagrange polynomials, fi, j = f (xi , y j ) are values of
the desired function in grid nodes xi , y j . The main goal is to reduce the number of
calculations of function f .

The assumption made in the previous section essentially means that the rank of
the matrix F may be less than (p+1). Assume that the function f has the following
structure:

f (x, y) = u1(x)v1(y) + u2(x)v2(y) + · · · + ur (x)vr (y),

then the value matrix F = {
fi, j
}
can be represented as the following decomposition:
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F =
r∑

i=1

⎛

⎜
⎜
⎝

ui (x0)
ui (x1)

. . .

ui (xp)

⎞

⎟
⎟
⎠

(
vi (y0) vi (y1) . . . vi (yp)

) = UV .

Important fact is the following. If the matrix has a rank r, then if knowing rows r
and columns r, we can completely restore the entire matrix. A number of questions
arise. Which rows and columns to take? How to determine the rank of r? Of course,
without any information about function F, it is impossible to answer these ques-
tions without calculating all the elements of the matrix; therefore, to some extent,
all algorithms are heuristic. In practice, the transition from exact decomposition to
approximation is performed with some accuracy ε:

‖F −UV ‖ < ε.

A number of works dedicated to methods for constructing such decomposition
are known [8, 9]. The following methods such as skeletal decomposition, cross
approximation, and low-rank approximation are found in the literature.

In its simplest form, the pseudo-code of the algorithm is presented in Fig. 19.2.
The input is a matrix F of size n × m, as well as, the required absolute accuracy
of the approximation eps. The output is two matrices U and V of size n × r and r
× m respectively, where r is the matrix rank, which is determined in the process of
computing. The algorithm begins by selecting an arbitrary column (for example, with
a number m/2). Next, the zeroing of a certain column or a certain row is alternately
performed until the module of the maximum element becomes smaller than eps.

Consider the ODE system:

⎧
⎨

⎩

x ′ = y, y′ = − sin(x),
x(0) = x0 ∈ [−1.0, 1.0],
y(0) = y0 ∈ [0.0, 1.0].

A regular grid is introduced over the set formed by the interval initial conditions:
xi0 = −1 + 0.02i , y j

0 = 0.01 j , 0 ≤ i ≤ 100, 0 ≤ j ≤ 100. Let the matrix F
101×101

consist of the values of the phase variable x at a time t = 30:

fi, j = xi, j (30) | x0 = −1 + 0.02i, y0 = 0.01 j.

In Fig. 19.3, lines show those rows and columns that were needed in the process
of constructing the decomposition. If the entire matrix consists of 10,201 elements,
then it was necessary to calculate a total of 2101 elements (11 rows and 11 columns:
2101 = 2 × 11 × 101–11 × 11) that is a fifth of the entire matrix to construct an
approximation with eps = 10−5.

If we assume that all elements of the matrix are known, then the question of the
existence of the decomposition and its finding is resolved: the SVD decomposition
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r = 0, jr = m / 2 
ii = {1, 2, ..., n} 
jj = {1, 2, ..., m} 
jj = jj / jr  
while r < min(n, m): 
 ir = -1 
 for i = 1, ..., n:  
  U[i][r] = F[i][jr]; 
  for k = 1, ..., r: 
   U[i][r] -= U[i][k] * V[k][jr] 
  if (i in ii) and (ir < 0 or |U[i][r]| > |U[ir][r]|): 
   ir = i  
 if ir < 0 or |U[ir][r]| < eps: 
  break 
 ii = ii / ir 
 jr = -1 
 for j = 1, ..., m: 
  V[r][j] = F[ir][j] 
  for k = 1, ..., r: 
   V[r][j] -= U[ir][k] * V[k][j]  
  V[r][j] /= U[ir][r] 
  if (j in jj) and (jr < 0 or |V[r][j]| > |V[r][jr]|): 
   jr = j 
 if jr < 0 or |V[r][jr]| < eps: 
  r += 1 
  break 
 jj = jj / jr 
 r += 1 
return U, V, r

Fig. 19.2 Pseudo-code of the algorithm

Fig. 19.3 Rows and
columns, from which the
entire matrix is restored
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is uniquely constructed, where rows and columns corresponding to non-essential
values of singular numbers are discarded.

19.6 Tensor Train

Formatrices (in the case of two variables), the question iswell studied and developed:
there are many effective methods and algorithms for constructing decompositions.
In the case of more than two measurements, it is necessary to work with multidi-
mensional arrays, i.e., tensors. The general idea of efficient representing of these
objects is based on the separation of variables. There are several approaches: canon-
ical decomposition [10], Tucker decomposition [11], and TT-decomposition [5, 6]
(tensor train). There are no reliable algorithms for the canonical decomposition, and
the Tucker decomposition is difficult to apply for a large number of dimensions.
TT-decomposition has appeared relatively recently, and its distinctive feature is the
fact that it is not a subject to the curse of dimensionality.

Let A ∈ R
p1×p2×···×pn be the given n-dimensional tensor. Its TT-decomposition

is written as follows:

Â(i1, i2, . . . , in) = G1(i1)G2(i2) . . .Gn(in),

where

Gk ∈ R
pk×rk−1×rk , ik = 1, pk, k = 1, n, r0 = rn = 1.

This is the product of n − 2 three-dimensional and two two-dimensional tensors
(Fig. 19.4). To calculate the value of a particular element, the corresponding matrices
are multiplied.

The construction of TT-decomposition reduces to the usual matrix decompo-
sitions. We perform the transition from n dimensions to 2 using index grouping.
SVD-decomposition is calculated for the matrix. Rows and columns corresponding
to non-essential singular numbers are discarded. The resultingmatrices turn back into
tensors of lower dimension. The algorithm is applied recursively for them. The idea of
TT-cross algorithm that allows one to build TT-decomposition without calculating all

Fig. 19.4 Illustration of TT-decomposition
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elements of the tensor is in replacing SVD-decomposition with decomposition with
a lower computational cost which does not require full knowledge of all elements of
the tensor.

In addition to not being subject to the curse of dimensionality, an important prop-
erty of TT-decomposition is that most arithmetic operations, and not only arithmetic,
can be performed on tensors, being in this format. This is, for example, finding
the sum of all elements, determination of maximum/minimum, element-wise addi-
tion/subtraction/multiplication/division of two tensors, and so on. There are several
implementations of TT-decomposition. We designed the main library ttpy using
Python programming language. This library has all the necessary operations and
methods for working with tensors in TT-format.

With the benefit of such tensors’ representation, it became possible to work on
ordinary computers with objects containing more elements than atoms in the Solar
system. Of course, the important point is that the source data have tremendous
redundancy, which is eliminated by this method.

19.7 Adaptive Interpolation Algorithm
and TT-Decomposition

Amultidimensional array (tensor) is stored at each vertex of the tree. The number of
elements in the tensor depends on the number of interval parameters (p + 1)m . The
main idea of practical improvement of this situation is to find TT-decomposition that
can be constructed using the TT-cross algorithm without calculating all the elements
of the tensor.

The adaptive interpolation algorithm conditionally consists of three actions: trans-
ferring all the solutions contained in the vertices of the kd-tree to the next time layer,
interpolating along the grid, and splitting the vertex into two. The first action within
each vertex can be considered as constructing a tensor consisting of the values of
some function. This action can be effectively performed using TT-cross algorithm.
The interpolation operation is reduced to elementwise multiplication of two tensors,
one of which is composed of the values of the basic Lagrange polynomials, and
the second is composed of the values of the interpolated function, followed by the
summation of all elements. If we assume that the split of vertices is always performed
by a hyperplane perpendicular to one of the coordinate axes, then one-dimensional
interpolation is used to construct new vertices. In general, all the actions that make
up the algorithm can be represented as compositions of several operations available
in TT-format.

In the original version of the algorithm, the order p and, accordingly, the size of
the interpolation gridwas determined from specific considerations regarding stability
and computational complexity. Here, in some cases, it is advisable to create a grid,
where there will be more nodes than it is required for a given order p. Splitting a
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vertex into two can be more expensive from a computational point of view than
increasing the number of nodes within a single grid.

As an example, we consider the model problem: the motion of bodies with uncer-
tainties in the initial velocities under the influence of gravitational forces. The ODE
system in dimensionless variables has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
vxi
)′ =

7∑

j=1, j �=i

m j
x j − xi
r3i, j

,
(
vyi
)′ =

7∑

j=1, j �=i

m j
y j − yi
r3i, j

,
(
vzi
)′

=
7∑

j=1, j �=i

m j
z j − zi
r3i, j

,

x ′
i = vxi , y′

i = vyi , z′
i = vzi , i = 1, 7, t ∈ [0.0, 0.02],

x1(0) = y1(0) = z1(0) = vx1 (0) = vy1 (0) = vz1(0) = 0,

x2,3(0) = ±1, y2,3(0) = z2,3(0) = 0, v2,3(0) = (
0 ±v 0

)T + �vT2,3,

y4,5(0) = ±1, x4,5(0) = z4,5(0) = 0, v4,5(0) = (
0 0 ±v

)T + �vT4,5,

z6,7(0) = ±1, x6,7(0) = y6,7(0) = 0, v6,7(0) = (± v 0 0
)T + �vT6,7,

(19.4)

where ri, j =
√(

x j − xi
)2 + (

y j − yi
)2 + (

z j − zi
)2

is the distance between two

bodies, v = 316.23 is the initial velocity of bodies, m1 = 105, m2,7 = 10−5 is the
body mass, �v2,7 = ([−2, 2], [−2, 2], [−2, 2]) is the interval uncertainties in
the velocities of bodies.

The solution to the problem is presented in Fig. 19.5. Rectangular parallelepipeds
illustrate areas of uncertainty in space for each body at different time points. This
system is indicative because the uncertainty in the speed of a particular body mainly
affects only on the position and speed of that body and weakly affects on other
bodies. The parameter p = 4, the number of elements in the tensor at each vertex is
518 · 42 ≈ 1015. The number 42 corresponds to the number of phase variables.

Due to the redundancy in the data, only a small part of the elements of the initial
tensor is required to construct TT-decomposition. In general, it is very effective
to use TT-cross algorithm to reduce computational costs and apply the adaptive
interpolation algorithm for problems with a large number of interval parameters.

19.8 Sparse Grids

One of the important approaches to reduce the curse of dimensionality is sparse
Smolyak grids [7, 12–15]. They appeared in the 1960s solving the multi-parameter
problems in economics. Interpolation uses a piecewise linear hierarchical basis
(Fig. 19.6a) based on the hat function mentioned below.
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Fig. 19.5 Uncertainties in the position of bodies at different points in time

a b c

Fig. 19.6 Sparse grids. Hierarchical basis: a one-dimensional basis, b construction of a two-
dimensional basis, c two-dimensional sparse grid

ϕ(x) =
{
1 − |x |, x ∈ [−1, 1]

0, otherwise

Consider a set of grids Gl on a unit interval [0, 1], where l is the level that defines
the width of the grid as hl = 2−l . The grid points xl, i are specified as:

xl, i = i · hl, 0 ≤ i ≤ 2l .
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Families of basis functions ϕl, i (x) are generated from the obtained sets of points
using the stretching and shift of the hat function ϕ(x):

ϕl, i (x) = ϕ
(
(x − i · hl)

/
hl
)
.

For each value l, the functions ϕl, i (x) form a nodal basis (or Lagrange basis). It
is obvious that

span
{
ϕl, i : 1 ≤ i ≤ 2l − 1

} = ⊕
k≤l

span
{
ϕk, i : 1 ≤ i ≤ 2k − 1, i odd

}
.

In the case of a sparse grid (Fig. 19.6b, c), the d-dimensional basis of the level n
is defined as

ϕl1l2...ld ,i1i2...id (x1, x2, . . . , xd) =
d∏

j=1

ϕl j , i j (x j ),

d∑

j=1

l j ≤ n + d − 1, 1 ≤ i j ≤ 2l j − 1, i j odd.

Compared to the full grid (max
(
l j
) ≤ n), the sparse grid has a significantly smaller

number of nodes, but at the same time, asymptotically, the interpolation error rises
nd−1 times.

There is an adaptive version of these grids, where a binary tree is used for struc-
turing. In the classical version, if the investigated function has a non-zero value at
the boundary of the region, then all faces of smaller dimensions are considered. The
adaptive grid is built for each face. It is easy to calculate that for an n-dimensional
region the number of faces of smaller dimension will be 3n−1. Given the duplication
of nodes in different grids, in the best case, the number of nodes will be equaled 3n ,
which indicates the exponential complexity of this approach. An important property
of sparse grids is the flexibility of adaptation: for a small increase in accuracy in
each particular case, there is no need to immediately double the number of nodes, as
would be necessary for the adaptive interpolation algorithm.

Consider examples. Figure 19.7 shows several functionsR2 → R and the resulting
adaptive grid, and Fig. 19.8 shows the grids for functions R3 → R. These figures
show that this approach defines the combinations of parameters that play a significant
role, while the construction of grid does not occur on the entire set, but only on the
subsets corresponding to these combinations.

The calculation of the approximate value of the function at a given point is reduced
to the summation of the basic functions with certain weight coefficients, which
are determined in accordance with the interpolated function. The values of these
weights can be considered as the adaptation criterion, according to which the grid is
compressed.
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Fig. 19.7 Examples of interpolation of functions of two variables

Fig. 19.8 Examples of grids for functions of three variables

One step of modeling a dynamic system with interval parameters can be written
as follows:

1. Transfer of all solutions of the non-interval ODE system corresponding to the
nodal points of the sparse grid to the next time layer.

2. Recalculation of weights.
3. Grid rebuilding.

Consider the ODE system describing Lotka–Volterra model with three interval
initial conditions and seven interval parameters:

⎧
⎪⎨

⎪⎩

x ′ = x(δ1 − y − εx),

y′ = −γ1y(δ2 − x + z) − ϕy2,

z′ = −γ2z(α − y),

∣
∣
∣
∣
∣
∣
∣

x(0), y(0), z(0), δ1, δ2, γ1, γ2 ∈ [1.0, 1.01],

ε, ϕ ∈ [−0.0005, 0.0005],

α ∈ [0.9, 0.91].

Figure 19.9 shows the dependence of interval estimates of solutions in time.
The number of nodes at the end time equals 305,481 and posterior global error

≈ 10−2. For comparison, using TT-decomposition with parameter p = 4 led to the
integration of 1,528,325 non-interval ODEs at the last step. Thus, for this problem,
sparse grid approach appears to be more effective. This is partly due to the fact that
in this case, all the parameters have a different effect on the solution, and the use of
a dense grid is not the optimal way. Also, note that the number of parameters in the
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Fig. 19.9 The dependence of the upper and lower estimates of the solution on time: a internal
estimate x(t), b internal estimate y(t), c internal estimate z(t)

considered problem (10 parameters) is a rather modest number. Increasing this value
gives an advantage to the adaptive interpolation algorithm with TT-decomposition.

19.9 Conclusions

The approaches described in the chapter are aimed at reducing exponential
complexity in solving multidimensional problems. All of them are based on the
assumption that the desired function has a certain form. Some parameters may
strongly affect the result, may have a weak effect, or may not affect at all. Auto-
matically taking into account these features, it is possible to effectively reduce the
complexity of the task.

The adaptive interpolation algorithm for modeling dynamic systems with interval
parameters has been described. The algorithm has exponential complexity on the
number of interval parameters, which limits its scope of usage. The influence of
interval uncertainties on a solution can often be degenerate. TT-decomposition and
sparse grids allow one to take this degeneracy into account and expand the scope of
the algorithm to the case of a large number of interval parameters. The effectiveness
of the considered approaches is confirmed on several model problems.
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Chapter 20
Using Spectral Form of Mathematical
Description to Represent Iterated
Stratonovich Stochastic Integrals

Konstantin A. Rybakov

Abstract In this chapter, it is suggested to apply the spectral form of mathematical
description for the representation of the iterated Stratonovich stochastic integrals of
an arbitrary multiplicity. Some invariant relations for expansion coefficients and the
iterated Stratonovich stochastic integrals are obtained. An algorithm for modeling
the iterated Stratonovich stochastic integrals is discussed.

20.1 Introduction

Iterated stochastic integrals play a fundamental role in the constructing high-order
numerical methods for stochastic differential equations. These methods are based
on the Taylor–Itô expansion and the Taylor–Stratonovich expansion for random
processes. The first numerical method using iterated stochastic integrals of multi-
plicity 2 and orthogonal expansions into the trigonometric serieswasMilsteinmethod
[1–3]. Iterated stochastic integrals of multiplicity 3 and orthogonal expansions into
the trigonometric series have also been used in [4] by Kloeden and Platen. In
Kuznetsov method, various complete orthonormal systems may be applied for the
representation of iterated stochastic integrals of an arbitrary multiplicity [5]. Orthog-
onal expansions into the trigonometric series and the Haar series forMilstein method
have been investigated in [6]. The numerical simulation of iterated stochastic integrals
is discussed in [2, 3, 7–9].

The paper [10] deals with orthogonal expansions for random processes with
respect to Milstein method by using the spectral form of mathematical description.
In this chapter, the application of the spectral form of mathematical description for
the representation of the iterated Stratonovich stochastic integrals of an arbitrary
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multiplicity is considered. The special case of Walsh series has been discussed in
[11], and here it is suggested to apply orthogonal expansions with respect to arbitrary
complete orthonormal systems.

Obtained results may be used in the constructing high-order numerical methods
based on the Taylor–Stratonovich expansion for random processes [2–4, 12–15],
and also in numerical methods based on Taylor–Itô expansion due to the known
relationship between the iterated Itô and Stratonovich stochastic integrals [13, 15].
High-order numericalmethodsmay be applied for themodeling stochastic dynamical
systems [3, 4, 12, 16], the solving optimal and suboptimal filtering problems [17–19],
and the optimizing dynamical systems of the joint estimation and control [20–23].
Iterated stochastic integrals can be used in the constructing high-order numerical
methods for non-commutative semilinear stochastic partial differential equations
[24].

The goal of this research is to obtain the representation of the iterated Stratonovich
stochastic integrals using the spectral form of mathematical description of signals
and control systems [25–28] and to construct the spectral method and corresponding
algorithm for modeling the iterated Stratonovich stochastic integrals.

The rest of this chapter is structured as follows. Section 20.2 provides definitions
of the iterated Itô and Stratonovich stochastic integrals. Elements of the spectral
form of mathematical description are described in Sect. 20.3. The main result of
the chapter, i.e., the representation of the iterated Stratonovich stochastic integrals
using the spectral form of mathematical description, is given in Sect. 20.4. Further,
some invariant relations based on results of Sect. 20.4 for expansion coefficients and
the iterated Stratonovich stochastic integrals are obtained in Sect. 20.5. Section 20.6
gives the tensor representation for the expansion coefficients. Finally, Sect. 20.7
presents the conclusions for this chapter.

20.2 Iterated Itô and Stratonovich Stochastic Integrals

Let (Ω,F ,P) be a probability space, where Ω is the sample space, F is a σ-algebra
of subsets ofΩ , and P is a probability measure, and letFt be a non-decreasing family
of σ-subalgebras of F , t � 0.

The iterated Stratonovich stochastic integrals of multiplicity k � 2 are defined as
follows:

I ∗( j1 j2... jk )
h

=
h∫

0

. . .

τ3∫

0

τ2∫

0

dwj1(τ1) ◦ dwj2(τ2) ◦ . . . ◦ dwjk (τk), j1, j2, . . . , jk = 1, 2, . . . , s,

(20.1)
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where h > 0 andw1(t),w2(t),…,ws(t) areFt -adapted independent standardWiener
processes. The integral of multiplicity k = 1 is a centered Gaussian random variable

I ∗( j1)
h =

h∫

0

dwj1(τ ) = wj1(h), j1 = 1, 2, . . . , s,

with the second-order moment h. In this context, h is an integration step in numerical
methods for stochastic differential equations [2–4, 12, 13, 15].

Note that for the case of pairwise distinct values j1, j2, . . . , jk the iterated
Stratonovich stochastic integral defined byEq. 20.1 coincideswith the corresponding
iterated Itô stochastic integral

I ( j1 j2... jk )
h =

h∫

0

. . .

τ3∫

0

τ2∫

0

dwj1(τ1)dwj2(τ2) . . . dwjk (τk),

and in the general case the relationship between the Itô and iterated Stratonovich
stochastic integrals is described in [13, 15].

In [13, 15], it is proposed a general approach to the representation and modeling
the iterated Itô and Stratonovich stochastic integrals. This approach is based on
finding the expansion coefficients of the function

K (t1, t2, . . . , tk) =
{
1 for t1 < t2 < . . . < tk
0 otherwise

(20.2)

with respect to the orthonormal basis {q(i1, t1)q(i2, t2) . . . q(ik, tk)}∞i1,i2,...,ik=0 in
L2([0, h]k), where {q(i, t)}∞i=0 is the orthonormal basis in L2([0, h]). In [13, 15, 29],
the Legendre polynomials and trigonometric functions are considered in detail for
the representation and modeling iterated stochastic integrals. Moreover, the general
case of the function K (t1, t2, . . . , tk) and corresponding iterated stochastic integrals
are discussed. Representations for iterated stochastic integrals of multiplicity 1 and
2 have also been obtained for the Walsh and Haar functions [6, 15].

The spectral form of mathematical description has been used in [10] for iterated
stochastic integrals of multiplicity 1 and 2 with respect to the Legendre polynomials
and trigonometric functions as well as theWalsh and Haar functions. The case k = 1
is trivial, and we have K (t1, t2) = 1(t2 − t1) for k = 2, where 1(t) is the unit
step function that defines the impulse response function of the integrating element.
Therefore, the iterated stochastic integral of multiplicity 2 may be represented using
the spectral characteristic of the integration operator (two-dimensional nonstationary
transfer function of the integrating element [25]). This spectral characteristic and also
the spectral characteristic of the multiplier will be applied below for the case k > 2.

The following representation of the iterated Stratonovich stochastic integrals by
the iterated series holds
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I ∗( j1 j2... jk )
h =

∞∑
ik=0

. . .

∞∑
i2=0

∞∑
i1=0

Cik ...i2i1ζ
( j1)
i1

ζ
( j2)
i2

. . . ζ
( jk )
ik

, (20.3)

where Cik ...i2i1 are expansion coefficients of the function K (t1, t2, . . . , tk), i.e.,

Cik ...i2i1 =
h∫

0

. . .

h∫

0

h∫

0

q(i1, t1)q(i2, t2) . . . q(ik, tk)K (t1, t2, . . . , tk)dt1dt2 . . . dtk

=
h∫

0

q(ik, τk) . . .

τ3∫

0

q(i2, τ2)

τ2∫

0

q(i1, τ1)dτ1dτ2 . . . dτk,

i1, i2, . . . , ik = 0, 1, 2, . . . , (20.4)

and ζ
( j)
i are independent random variables having a standard normal distribution,

j = 1, 2, . . . , s and i = 0, 1, 2, . . ..
A detailed proof of Eq. 20.3 for the case k � 4 and a discussion about the case

k � 5 is given in [15]. Note that Eq. 20.3 and further relations for iterated stochastic
integrals are understood with probability 1.

20.3 Elements of Spectral Form of Mathematical
Description

Let {q(i, t)}∞i=0 be a orthonormal basis in L2([0, h]), f (t) is an element from

L2([0, h]), i.e.,
h∫
0
f 2(t)dt < ∞. Then the function f (t) is determined by expansion

coefficients represented as the infinite column matrix F with entries

Fi =
h∫

0

q(i, t) f (t)dt, i = 0, 1, 2, . . . , (20.5)

i.e.,

f (t) =
∞∑
i=0

Fiq(i, t), t ∈ [0, h]. (20.6)

To indicate the relationship between the function f (t) and the infinite column
matrix F , we will use notations F = S[ f (t)] and f (t) = S

−1[F]. According to
[25], the infinite column matrix F is called the spectral characteristic of the function
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f (t) defined with respect to the orthonormal basis {q(i, t)}∞i=0, S is the spectral
transform and S

−1 is the spectral inversion.
Further, we will use some properties of the spectral transform [25]. Let

x(t), y(t), z(t) ∈ L2([0, h]) and X = S[x(t)], Y = S[y(t)], Z = S[z(t)], then
we have:

(1) If y(t) = ẋ(t), x(0) = 0, then Y = PX , where P is the infinite matrix with
entries

Pi1i2 =
h∫

0

q(i1, t)q̇(i2, t)dt + q(i1, 0)q(i2, 0), i1, i2 = 0, 1, 2, . . .

(2) If y(t) =
t∫
0
x(τ )dτ (t � h), then Y = P−1X , where P−1 is the infinite matrix

with entries

P−1
i1i2

=
h∫

0

q(i1, t)

t∫

0

q(i2, τ )dτdt, i1, i2 = 0, 1, 2, . . .

(3) If z(t) = x(t)y(t), then Z = (V X)Y , where V is the three-dimensional infinite
matrix with entries

Vi1i2i3 =
h∫

0

q(i1, t)q(i2, t)q(i3, t)dt, i1, i2, i3 = 0, 1, 2, . . .

The matrices P , P−1, and V are called the spectral characteristic of the differenti-
ation operator taking into account the initial condition, the spectral characteristic of
the integration operator, and the spectral characteristic of the multiplier, respectively.
It should be emphasized that PP−1 = P−1P = E , where E is the infinite identity
matrix, and V is the symmetric three-dimensional infinite matrix with respect to
any pair of indices from the triple (i1, i2, i3), i.e., any section of V is the infinite
symmetric matrix.

It is important to note that the condition x(t), y(t), z(t) ∈ L2([0, h]) is only
sufficient to determine spectral characteristics of these functions and to fulfill above
properties. In some cases, this condition can be weakened, e.g., we can indicate the
relationship between the spectral characteristic 1 of the unit step function 1(t) and
the infinite column matrix �, where entries of � are values of the orthonormal basis
{q(i, t)}∞i=0 at t = 0. The column matrix � is called the spectral characteristic of
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Dirac delta function [25]. In fact, the spectral characteristic definition is formally
extended to functions, for which the expansion coefficients can be calculated using
Eq. 20.5. It defines the linear functional on the set of spectral characteristics of
functions and P−1� = 1, P1 = � (if an additional condition for the pointwise
convergence is fulfilled).

Moreover, it is possible to apply the spectral form of mathematical description not
only for deterministic functions, but also for random processes. If f (t) is a random

process satisfying the condition E
h∫
0
f 2(t)dt < ∞, where E is the expectation, then

f (t) is determined by random expansion coefficients, which are also represented
as the infinite column matrix, and this matrix is called the spectral characteristic of
the random process f (t) defined with respect to the orthonormal basis {q(i, t)}∞i=0.
The spectral characteristic definition can be extended to a class of random processes,
for which Eq. 20.5 is applicable. Thus, the spectral characteristic V of standard
Gaussianwhite noise v(t) is an infinite columnmatrix, whose entries are independent
random variables having a standard normal distribution. It is related to the spectral
characteristicW of the standardWiener random processw(t) as P−1V = W , PW =
V [30, 31]. Note that the spectral characteristicV defines the random linear functional
on the set of spectral characteristics of functions.

In addition, we should indicate one more property of the spectral transform:

(4) The spectral transform preserves the norm and the inner product, i.e.,

h∫

0

x2(t)dt = XTX,

h∫

0

x(t)y(t)dt = XTY.

As an example of using the spectral form of mathematical description, we will
represent the spectral characteristic of the function

xk(t) =
t∫

0

gk(τk) . . .

τ3∫

0

g2(τ2)

τ2∫

0

g1(τ1)dτ1dτ2 . . . dτk (20.7)

by spectral characteristics of functions gl(t), l = 1, 2, . . . , k.
Consider a System of Ordinary Differential Equations (SODE):

ẋ1(t) = g1(t), ẋ2(t) = g2(t)x1(t), . . . , ẋk(t) = gk(t)xk−1(t),

x1(0) = x2(0) = · · · = xk(0) = 0. (20.8)

The spectral form of mathematical description was proposed for the dynamical
systems analysis. In this context, SODE (Eq. 20.8) can be considered as a mathe-
matical model of the dynamical system, for which functions gl(t) and xl(t) are input
and output signals (l = 1, 2, . . . , k), respectively.
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The solution of SODE (Eq. 20.8) is formally obtained as a result of the sequential
integration. Thus,

x1(t) =
t∫

0

g1(τ )dτ , x2(t) =
t∫

0

g2(τ )x1(τ )dτ , . . . , xk(t) =
t∫

0

gk(τ )xk−1(τ )dτ ,

(20.9)

consequently, we have Eq. 20.7.
Using properties 1–3 and introducing notations Gl = S[gl(t)] and Xl = S[xl(t)],

we can write spectral analogs for Eqs. 20.8–20.9. Thus,

PX1 = G1, PX2 = (VG2)X1, . . . , PXk = (VGk)Xk−1, (20.10)

and

X1 = P−1G1,

X2 = P−1(VG2)X1 = P−1(VG2)P
−1G1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xk = P−1(VGk)Xk−1 = P−1(VGk)P
−1(VGk−1) . . . P−1(VG2)P

−1G1.

(20.11)

Further, using the property 4 and expressing the value xk(h) by spectral
characteristics Xk−1 and Gk of functions xk−1(t) and gk(t), respectively, we have

xk(h) =
h∫

0

gk(t)xk−1(t)dt = GT
k Xk−1.

The spectral characteristic Xk−1 can be represented by Eq. 20.11 as follows:

Xk−1 = P−1(VGk−1) . . . P−1(VG2)P
−1G1,

and

xk(h) = GT
k P

−1(VGk−1) . . . P−1(VG2)P
−1G1. (20.12)
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20.4 Using Spectral Form of Mathematical Description
to Represent Iterated Stratonovich Stochastic
Integrals

Since functions {q(i, t)}∞i=0 form the orthonormal basis, their spectral characteristics
are columns of the infinite identity matrix E , i.e.,

S[q(i, t)] = Ei , i = 0, 1, 2, . . .

Consider functions q(i1, t), q(i2, t), …, q(ik, t) as input signals of the dynamical
system defined by SODE (Eq. 20.8), i.e., gl(t) = q(il , t), l = 1, 2, . . . , k. Then,
we obtain relations for expansion coefficients defined by Eq. 20.4: Cik ...i2i1 = xk(h).
Thus,

Cik ...i2i1 = ET
ik P

−1(V Eik−1) . . . P−1(V Ei2)P
−1Ei1 (20.13)

that follows from Eq. 20.12 with Gl = Eil , l = 1, 2, . . . , k.
The product V Eil is a section of the three-dimensional infinite matrix V when

any index of three indices is fixed at il (since V is the symmetric three-dimensional
infinite matrix with respect to any pair of indices), and the product P−1Eil is the
section of the infinite matrix P−1 at the second fixed index, i.e., its il th column. We
denote these sections by V∗∗il and P−1

∗il , respectively. Similarly, the product ET
ik
P−1

is the section of the infinite matrix P−1 at the first fixed index, i.e., its il th row, which
we denote P−1

il∗ . Consequently,

Cik ...i2i1 = P−1
ik∗ V∗∗ik−1 . . . P−1V∗∗i2 P

−1
∗i1 .

Thus, all expansion coefficients Cik ...i2i1 needed for modeling the iterated
Stratonovich stochastic integrals are expressed in terms of the infinite matrix P−1

and the three-dimensional infinite matrix V .
Iterated stochastic integrals can be expressed by the same matrices P−1 and V . It

is easy to see that the iterated stochastic integral I ∗( j1 j2... jk )
h determined by Eq. 20.1

can be found as a solution to the following system of the Stratonovich stochastic
differential equations

dx1(t) = dwj1(t), x1(0) = 0,

dx2(t) = x1(t) ◦ dwj2(t), x2(0) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dxk(t) = xk−1(t) ◦ dwjk (t), xk(0) = 0,

or the Langevin equations

ẋ1(t) = v j1(t), x1(0) = 0,
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ẋ2(t) = x1(t)v j2(t), x2(0) = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

ẋk(t) = xk−1(t)v jk (t), xk(0) = 0, (20.14)

where j1, j2, . . . , jk = 1, 2, . . . , s and v1(t), v2(t), …, vs(t) are independent Gaus-
sian white noises corresponding to standard Wiener processes w1(t), w2(t), …,
ws(t).

This implies that

xk(t) =
t∫

0

τk∫

0

. . .

τ2∫

0

dwj1(τ1) ◦ dwj2(τ2) ◦ . . . ◦ dwjk (τk),

xk(h) = I ∗( j1 j2... jk )
h ,

and the random variables x1(h), x2(h), …, xk−1(h) are the iterated Stratonovich
stochastic integrals of multiplicities 1, 2, . . . , k − 1, respectively.

Denote infinite column matrix with entries ζ
( j)
i by V j . According to [30, 31], V j

are spectral characteristics of independentGaussianwhite noises v j (t) corresponding
to Wiener processes wj (t), j = 1, 2, . . . , s.

Consider random processes v j1(t), v j2(t), …, v jk (t) as input signals of the dynam-
ical system defined by SODE (Eq. 20.8), i.e., gl(t) = v jl (t), l = 1, 2, . . . , k. Then
we obtain the representation of the iterated Stratonovich stochastic integrals

I ∗( j1 j2... jk )
h = VT

jk P
−1(VV jk−1) . . . P−1(VV j2)P

−1V j1 , (20.15)

which follows from Eq. 20.12 with Gl = V jl , l = 1, 2, . . . , k.
Equation 20.15 can also be obtained by summing up the products of expansion

coefficients Cik ...i2i1 defined by Eq. 20.13 and random values ζ
( j1)
i1

ζ
( j2)
i2

. . . ζ
( jk )
ik

taking
into account that

V j =
∞∑
i=0

ζ
( j)
i Ei , j = 1, 2, . . . , s.

Equations 20.13 and 20.15 give an exact representation for the expansion coeffi-
cients defined by Eq. 20.4 and for the iterated Stratonovich stochastic integral defined
byEq. 20.3. For an approximate representation andmodeling,we need to replace infi-
nite matrices in these relations to the corresponding truncated matrices by choosing
some truncation order L . Then the column matrices Ei (i = 0, 1, . . . , L − 1) and V j

( j = 1, 2, . . . , s) will be L ×1, the matrix P−1 will be L × L , the three-dimensional
matrix V will be L × L × L . According to Eq. 20.15, for the approximate modeling
we need to simulate random vectors V1, V2, …, Vs with entries having a standard
normal distribution, i.e., we need sL realizations of the standard Gaussian random
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variable. This provides simultaneous modeling the set of iterated stochastic integrals
of an arbitrary multiplicity.

20.5 Relations for Expansion Coefficients and Iterated
Stratonovich Stochastic Integrals

Let us obtain some invariant relations for expansion coefficients defined by Eq. 20.4
corresponding to different multiplicities k. In the simplest case k = 1, the expansion
coefficients Ci1 are integrals of basis functions q(i1, t) over the interval [0, h]:

Ci1 =
h∫

0

q(i1, t)dt, i1 = 0, 1, 2, . . .

In fact, these expansion coefficients form the spectral characteristic of the unit
step function 1(t), i.e., Ci1 = 1i1 .

For the multiplicity k = 2, the matrix formed by expansion coefficients Ci2i1
coincides with the spectral characteristic P−1 of the integration operator: Ci2i1 =
P−1
i2i1

. For these coefficients the following relation holds [15]:

Ci2i1 + Ci1i2 = Ci1Ci2 ,

and this implies that

I ∗( j1 j2)
h + I ∗( j2 j1)

h = I ∗( j1)
h I ∗( j2)

h .

The relation for expansion coefficients can be written in the matrix form [10]:

P−1 + [P−1]T = Λ = 1 · 1T,

where Λ is the symmetric matrix.
Consider the multiplicity k = 3:

Ci3i2i1 = ET
i3 P

−1(V Ei2)P
−1Ei1 , Ci1i2i3 = ET

i1 P
−1(V Ei2)P

−1Ei3 .

Using properties of the matrix multiplication and transpose, we have

[ET
i3 P

−1(V Ei2)P
−1Ei1]T = ET

i1[P−1]T(V Ei2)
T[P−1]TEi3

= ET
i1(Λ − P−1)(V Ei2)(Λ − P−1)Ei3

= ET
i1 P

−1(V Ei2)P
−1Ei3 − ET

i1 P
−1(V Ei2)ΛEi3

− ET
i1Λ(V Ei2)P

−1Ei3 + ET
i1Λ(V Ei2)ΛEi3 .
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It is easy to see that ΛEi3 = 1i31. Similarly, ET
i1
Λ = 1i11

T. Further,

(V Ei2)1 = (V 1)Ei2 = EEi2 = Ei2 ,

1T(V Ei2) = [(V Ei2)
T1]T = [(V Ei2)1]T = [(V 1)Ei2 ]T = [EEi2 ]T = ET

i2 .

Consequently,

ET
i1 P

−1(V Ei2)ΛEi3 = 1i3E
T
i1 P

−1Ei2 = Ci1i2Ci3 ,

ET
i1Λ(V Ei2)P

−1Ei3 = 1i1E
T
i2 P

−1Ei3 = Ci1Ci2i3 ,

ET
i1Λ(V Ei2)ΛEi3 = 1i11

T(V Ei2)1i31 = 1i11i21i3 = Ci1Ci2Ci3 ,

i.e.,

Ci3i2i1 = Ci1i2i3 − Ci1i2Ci3 − Ci1Ci2i3 + Ci1Ci2Ci3 .

Summing up by i1, i2, i3 the products of random values ζ
( j1)
i1

ζ
( j2)
i2

ζ
( j3)
i3

and both the
left-hand side and the right-hand side of the above relation for expansion coefficients,
we can write that

I ∗( j1 j2 j3)
h = I ∗( j3 j2 j1)

h − I ∗( j2 j1)
h I ∗( j3)

h − I ∗( j3 j2)
h I ∗( j1)

h + I ∗( j3)
h I ∗( j2)

h I ∗( j1)
h .

Next, consider the multiplicity k = 4:

Ci4i3i2i1 = ET
i4 P

−1(V Ei3)P
−1(V Ei2)P

−1Ei1 ,

Ci1i2i3i4 = ET
i1 P

−1(V Ei2)P
−1(V Ei3)P

−1Ei4 .

Also using properties of the matrix multiplication and transpose, we have

[ET
i4 P

−1(V Ei3)P
−1(V Ei2)P

−1Ei1]T
= ET

i1[P−1]T(V Ei2)
T[P−1]T(V Ei3)

T[P−1]TEi4

= ET
i1(Λ − P−1)(V Ei2)(Λ − P−1)(V Ei3)(Λ − P−1)Ei4

= −ET
i1 P

−1(V Ei2)P
−1(V Ei3)P

−1Ei4 + ET
i1 P

−1(V Ei2)P
−1(V Ei3)ΛEi4

+ ET
i1 P

−1(V Ei2)Λ(V Ei3)P
−1Ei4 + ET

i1Λ(V Ei2)P
−1(V Ei3)P

−1Ei4

− ET
i1 P

−1(V Ei2)Λ(V Ei3)ΛEi4 − ET
i1Λ(V Ei2)P

−1(V Ei3)ΛEi4

− ET
i1Λ(V Ei2)Λ(V Ei3)P

−1Ei4 + ET
i1Λ(V Ei2)Λ(V Ei3)ΛEi4 .

Applying same properties as well as in the case k = 3, we obtain

ET
i1 P

−1(V Ei2)P
−1(V Ei3)ΛEi4 = 1i4E

T
i1 P

−1(V Ei2)P
−1Ei3 = Ci1i2i3Ci4 ,

ET
i1 P

−1(V Ei2)Λ(V Ei3)P
−1Ei4 = ET

i1 P
−1(V Ei2)1 · 1T(V Ei3)P

−1Ei4



298 K. A. Rybakov

= ET
i1 P

−1Ei2 · ET
i3 P

−1Ei4 = Ci1i2Ci3i4 ,

ET
i1Λ(V Ei2)P

−1(V Ei3)P
−1Ei4 = 1i1E

T
i2 P

−1(V Ei3)P
−1Ei4 = Ci1Ci2i3i4 ,

ET
i1 P

−1(V Ei2)Λ(V Ei3)ΛEi4 = 1i4E
T
i1 P

−1(V Ei2)Ei3

= 1i31i4E
T
i1 P

−1Ei2 = Ci1i2Ci3Ci4 ,

ET
i1Λ(V Ei2)P

−1(V Ei3)ΛEi4 = 1i11i4E
T
i2 P

−1Ei3 = Ci1Ci2i3Ci4 ,

ET
i1Λ(V Ei2)Λ(V Ei3)P

−1Ei4 = 1i1E
T
i2Λ(V Ei3)P

−1Ei4

= 1i11i1E
T
i3 P

−1Ei4 = Ci1Ci2Ci3i4 ,

ET
i1Λ(V Ei2)Λ(V Ei3)ΛEi4 = 1i11

T(V Ei2)1 · 1T(V Ei3)1i41 = Ci1Ci2Ci3Ci4 ,

i.e.,

Ci4i3i2i1 = −Ci1i2i3i4 + Ci1i2i3Ci4 + Ci1i2Ci3i4 + Ci1Ci2i3i4

− Ci1i2Ci3Ci4 − Ci1Ci2i3Ci4 − Ci1Ci2Ci3i4 + Ci1Ci2Ci3Ci4 .

Summing up by i1, i2, i3, i4 the products of random values ζ
( j1)
i1

ζ
( j2)
i2

ζ
( j3)
i3

ζ
( j4)
i4

and
both the left-hand side and the right-hand side of the above relation for expansion
coefficients, we get the following relation:

I ∗( j1 j2 j3 j4)
h = −I ∗( j4 j3 j2 j1)

h + I ∗( j4)
h I ∗( j3 j2 j1)

h + I ∗( j4 j3)
h I ∗( j2 j1)

h + I ∗( j4 j3 j2)
h I ∗( j1)

h

− I ∗( j4)
h I ∗( j3)

h I ∗( j2 j1)
h − I ∗( j4)

h I ∗( j3 j2)
h I ∗( j1)

h − I ∗( j4 j3)
h I ∗( j2)

h I ∗( j1)
h

+ I ∗( j4)
h I ∗( j3)

h I ∗( j2)
h I ∗( j1)

h .

Further, consider the multiplicity k = 5:

Ci5i4i3i2i1 = ET
i5 P

−1(V Ei4)P
−1(V Ei3)P

−1(V Ei2)P
−1Ei1 ,

Ci1i2i3i4i5 = ET
i1 P

−1(V Ei2)P
−1(V Ei3)P

−1(V Ei4)P
−1Ei5 .

Similarly, we can write relations for expansion coefficients as

Ci5i4i3i2i1 = Ci1i2i3i4i5 − Ci1i2i3i4Ci5 − Ci1i2i3Ci4i5 − Ci1i2Ci3i4i5 − Ci1Ci2i3i4i5

+ Ci1i2i3Ci4Ci5 + Ci1Ci2i3i4Ci5 + Ci1Ci2Ci3i4i5 + Ci1i2Ci3i4Ci5

+ Ci1i2Ci3Ci4i5 + Ci1Ci2i3Ci4i5 − Ci1i2Ci3Ci4Ci5 − Ci1Ci2i3Ci4Ci5

− Ci1Ci2Ci3i4Ci5 − Ci1Ci2Ci3Ci4i5 + Ci1Ci2Ci3Ci4Ci5 .

Summing up by i1, i2, i3, i4, i5 the products of random values
ζ

( j1)
i1

ζ
( j2)
i2

ζ
( j3)
i3

ζ
( j4)
i4

ζ
( j5)
i5

and both the left-hand side and the right-hand side of
the above relation for expansion coefficients, we obtain:

I ∗( j1 j2 j3 j4 j5)
h = I ∗( j5 j4 j3 j2 j1)

h − I ∗( j5)
h I ∗( j4 j3 j2 j1)

h − I ∗( j5 j4)
h I ∗( j3 j2 j1)

h
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− I ∗( j5 j4 j3)
h I ∗( j2 j1)

h − I ∗( j5 j4 j3 j2)
h I ∗( j1)

h + I ∗( j5)
h I ∗( j4)

h I ∗( j3 j2 j1)
h

+ I ∗( j5)
h I ∗( j4 j3 j2)

h I ∗( j1)
h + I ∗( j5 j4 j3)

h I ∗( j2)
h I ∗( j1)

h + I ∗( j5)
h I ∗( j4 j3)

h I ∗( j2 j1)
h

+ I ∗( j5 j4)
h I ∗( j3)

h I ∗( j2 j1)
h + I ∗( j5 j4)

h I ∗( j3 j2)
h I ∗( j1)

h − I ∗( j5)
h I ∗( j4)

h I ∗( j3)
h I ∗( j2 j1)

h

− I ∗( j5)
h I ∗( j4)

h I ∗( j3 j2)
h I ∗( j1)

h − I ∗( j5)
h I ∗( j4 j3)

h I ∗( j2)
h I ∗( j1)

h

− I ∗( j5 j4)
h I ∗( j3)

h I ∗( j2)
h I ∗( j1)

h + I ∗( j5)
h I ∗( j4)

h I ∗( j3)
h I ∗( j2)

h I ∗( j1)
h .

Finally, it can be shown that for an arbitrary k:

Cik ...i2i1 =
k∑

l=1

(−1)k−l

Cl−1
k−1∑

m=1

Mlm,

where Cl−1
k−1 is the binomial coefficient [32], and the set of elements Mlm for a fixed

l is formed by the products of expansion coefficients defined by Eq. 20.4 that are
required to represent l iterated stochastic integrals of the total multiplicity k:

M11 = Ci1i2...ik ,

M21 = Ci1i2...ik−1Cik , M22 = Ci1i2...ik−2Cik−1ik , . . . , M2,k−1 = Ci1Ci2i3...ik ,

Mlm = Ci1...i pCip+1...iq . . .Cir+1...ik , l = 3, . . . , k − 2,

Mk−1,1 = Ci1i2Ci3 . . .Cik , Mk−1,2 = Ci1Ci2i3Ci4 . . .Cik , . . . ,

Mk−1,k−1 = Ci1 . . .Cik−2Cik−1ik ,

Mk1 = Ci1Ci2 . . .Cik ,

where the ordered set of indices i1 . . . i pi p+1 . . . iq . . . ir+1 . . . ik (1 � p < q � r <

k) coincides with i1i2 . . . ik , i.e., the summation over m is the summation over all
possible partitions of the set of indices i1i2 . . . ik into l subsets with saving their order.

Therefore, for the iterated Stratonovich stochastic integrals we have:

I ∗( j1 j2... jk )
h =

k∑
l=1

(−1)k−l

Cl−1
k−1∑

m=1

M∗
lm,

where

M∗
11 = I ∗( jk ... j2 j1)

h ,

M∗
21 = I ∗( jk )

h I ∗( jk−1... j2 j1)
h , M∗

22 = I ∗( jk jk−1)

h I ∗( jk−2... j2 j1)
h , . . . ,

M∗
2,k−1 = I ∗( jk ... j3 j2)

h I ∗( j1)
h ,

M∗
lm = I ∗( jk ... jr+1)

h . . . I
∗( jq ... jp+1)

h I
∗( jp ... j1)
h , l = 3, . . . , k − 2,

M∗
k−1,1 = I ∗( jk )

h . . . I ∗( j3)
h I ∗( j2 j1)

h , M∗
k−1,2 = I ∗( jk )

h . . . I ∗( j4)
h I ∗( j3 j2)

h I ∗( j1)
h , . . . ,
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M∗
k−1,k−1 = I ∗( jk jk−1)

h I ∗( jk−2)

h . . . I ∗( j1)
h ,

M∗
k1 = I ∗( jk )

h . . . I ∗( j2)
h I ∗( j1)

h ,

and the ordered set of indices jk . . . jr+1 . . . jq . . . jp+1 jp . . . j1 (1 � p < q � r < k)
coincides with jk . . . j2 j1, i.e., the summation over m is the summation over all
possible partitions of the set of indices jk . . . j2 j1 into l subsets with saving their
order.

For complete orthonormal systems such as the Legendre polynomials, trigono-
metric functions, the Walsh functions, and the Haar functions with the standard
numeration, the function 1(t) differs from the basic function q(0, t) by the numerical
coefficient, i.e., 1(t) = √

h q(0, t), and for h = 1 they are equal. Therefore,

1 = [√h 0 0 . . . ]T,

i.e., Ci1 = √
h for i1 = 0 and Ci1 = 0 for i1 > 0. This simplifies above relations for

expansion coefficients:

Ci2i1 = −Ci1i2 , Ci1i1 = 0, i1, i2 > 0;
Ci3i2i1 = Ci1i2i3 , i1, i3 > 0;
Ci4i3i2i1 = −Ci1i2i3i4 + Ci1i2Ci3i4 , Ci4i3i1i1 = −Ci1i1i3i4 ,

Ci4i4i2i1 = −Ci1i2i4i4 , i1, i4 > 0;
Ci5i4i3i2i1 = Ci1i2i3i4i5 − Ci1i2i3Ci4i5 − Ci1i2Ci3i4i5 ,

Ci5i5i3i1i1 = Ci1i1i3i5i5 , i1, i3, i5 > 0,

and so on.
In the general case Mlm = 0 if �k/ l� = 1 and i1, i2, . . . , ik > 0, where �·� is the

floor function.
Obtained invariant relations can reduce computational costs for the calculation of

expansion coefficients and formodeling the iteratedStratonovich stochastic integrals.
In fact, if the coefficient Ci1i2...ik has been calculated, then the coefficient Cik ...i2i1
has also been calculated. Similarly, if the iterated Stratonovich stochastic integral
I ∗( jk ... j2 j1)
h has been modeled, then we can model the iterated Stratonovich stochastic
integral I ∗( j1 j2... jk )

h by I ∗( jk ... j2 j1)
h and integrals of multiplicity less then k.

20.6 Tensor Representation

Definitions and properties of the spectral transform listed in Sect. 20.3 can be
extended to functions of several variables. We will use some notations from [26,
28] for spectral characteristics of functions of several variables. Then
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S[K (t1, t2, . . . , tk)] = C(k),

i.e., C(k) is the spectral characteristic of the function K (t1, t2, . . . , tk) defined with
respect to the basis {q(i1, t1)q(i2, t2) . . . q(ik, tk)}∞i1,i2,...,ik=0, or the k-dimensional
hypercolumn matrix with elements Ci1i2...ik . The hypercolumn matrix with entries
Ĉi1i2...ik = Cik ...i2i1 will be denoted Ĉ(k), it is related to C(k) by the “mirror” reorder
of indices.

Denote

V ( j1 j2... jk ) = V j1 ⊗ V j2 ⊗ . . . ⊗ V jk ,

where V j are spectral characteristics of independent Gaussian white noises v j (t)
defined earlier ( j = 1, 2, . . . , s), and ⊗ means the tensor multiplication of
multidimensional matrices [26, 28].

Then Eq. 20.3 can be written as

I ∗( j1 j2... jk )
h = ĈT

(k)V ( j1 j2... jk ), (20.16)

where [·]T means the transition from the hypercolumn matrix to the hyperrowmatrix
[26, 28].

Relations that connect expansion coefficients Cik ...i2i1 for different multiplicities
k (see Sect. 20.5) can be written in the matrix form using the definition of hyper-
columnmatricesC(k) and Ĉ(k) aswell as the tensormultiplication ofmultidimensional
matrices:

Ĉ(2) = −C(2) + C(1) ⊗ C(1),

Ĉ(3) = C(3) − C(2) ⊗ C(1) − C(1) ⊗ C(2) + C(1) ⊗ C(1) ⊗ C(1),

Ĉ(4) = −C(4) + C(3) ⊗ C(1) + C(2) ⊗ C(2) + C(1) ⊗ C(3)

− C(2) ⊗ C(1) ⊗ C(1) − C(1) ⊗ C(2) ⊗ C(1) − C(1) ⊗ C(1) ⊗ C(2)

+ C(1) ⊗ C(1) ⊗ C(1) ⊗ C(1),

Ĉ(5) = C(5) − C(4) ⊗ C(1) − C(3) ⊗ C(2) − C(2) ⊗ C(3) − C(1) ⊗ C(4)

+ C(3) ⊗ C(1) ⊗ C(1) + C(1) ⊗ C(3) ⊗ C(1) + C(1) ⊗ C(1) ⊗ C(3)

+ C(2) ⊗ C(2) ⊗ C(1) + C(2) ⊗ C(1) ⊗ C(2) + C(1) ⊗ C(2) ⊗ C(2)

− C(2) ⊗ C(1) ⊗ C(1) ⊗ C(1) − C(1) ⊗ C(2) ⊗ C(1) ⊗ C(1)

− C(1) ⊗ C(1) ⊗ C(2) ⊗ C(1) − C(1) ⊗ C(1) ⊗ C(1) ⊗ C(2)

+ C(1) ⊗ C(1) ⊗ C(1) ⊗ C(1) ⊗ C(1).

For an arbitrary k we have:
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Ĉ(k) =
k∑

l=1

(−1)k−l
∑

k1,k2,...,kl�1
k1+k2+...+kl=k

l⊗
α=1

C(kα).

The tensor representation is convenient to implement algorithms formodeling iter-
ated stochastic integrals using computer algebra systems ormatrix algebra subroutine
packages.

20.7 Conclusions

In this chapter, the spectral form of mathematical description for the representa-
tion of the iterated Stratonovich stochastic integrals of an arbitrary multiplicity is
applied. For this purpose, we need to calculate both the spectral characteristic of the
integration operator and the spectral characteristic of the multiplier. These spectral
characteristics may be defined with respect to an arbitrary complete orthonormal
system for the representation and modeling. Obtained invariant relations can reduce
computational costs for the calculation of expansion coefficients and for modeling
the iterated Stratonovich stochastic integrals. For expansion coefficients, the tensor
representation is also obtained.
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Chapter 21
Fractal Analysis and Programming
of Elastic Systems Using
Container-Component Model

Alexander S. Semenov

Abstract The analysis and design of distributed algorithms is one of the main
reasons to use fractal programming. Its aims are to represent the distributed algorithm
as an “elastic object” that transforms dynamically at runtime. The use of container-
component model provides the following advantages: the ability to select automat-
ically a distributed configuration, building a visual model of the elastic computing
organization, and evaluating its effectiveness. Container-component model is inte-
grated with the box-counting fractal analysis method and fractal control based on
dynamic sampling of theworkload. The example of fractal analysis and programming
of the distributed gradient ascent algorithm is given.

21.1 Introduction

The analysis and design of distributed algorithms is one of the main reasons to
use fractal programming [1, 2]. Its aims are to represent the distributed algorithm
as an “elastic object” that transforms dynamically at runtime using strategy plan-
ning model and production rules. The distributed configuration of the algorithm
unfolds at the beginning of execution and folds at the end of execution. The use
of container-component model (CCM) for the analysis and programming of elastic
algorithms provides the following advantages: the ability to automatically select a
distributed configuration of the algorithm execution, building a visual model of the
elastic computing organization, and evaluation of its effectiveness.

Fractal analysis, design, and programming of complex elastic systems are inte-
grated with the mathematical methods of the fractal analysis on the base of
CCM. Physically, a distributed system consists of a number of nodes (autonomous
computers) interconnected by a network. The nodes may be computers, physical
servers, agents, virtual machines, containers, or other entities that can connect to the
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network, have local memory, and communicate by passingmessages [3, 4]. The basic
models of a distributed system are the message passing and shared memory models
[5, 6]. The message is the unit of communication of a distributed system. Distributed
algorithms are designed to run on different computers of the network. Parts of an algo-
rithm run concurrently and independently, each with a limited amount of information
[7]. There are two problems: how to describe adequately a distributed algorithm and
how to prove its properties. Designing the appropriate distribution [8] and formation
control [9] is a general problem, especially for multi-agent systems with complex
dynamics. A distributed algorithm is adequately described if it takes into account
property of the computing environment. Graphs [10] and adjusted version of Petri
nets [11, 12] are used to model the distributed system and distributed algorithms.

The design of efficient distributed algorithms is very important for analyzing
big data. Three properties of big data such as velocity, volume, and variety must
be considered. Technically, distributed algorithms to process big data are designed
for a specific application and mainly based on the MapReduce framework [13].
The framework implements two functions Map and Reduce. Map function divides
the input data into data partitions that constitute key-value pairs. Each partition is
assigned to a unique compute node. Nodes outputs are one or more intermediate
key-value pairs. The framework collects all the intermediate key-value pairs, sorts,
and groups them by key. The Reduce function aggregates the values associated with
the key according to a predefined program and stores all the output key-value pairs in
a file. Hadoop is an open-source project written in Java that implements MapReduce
framework [14]. It is possible to write some MapReduce jobs in Python and then
run them in Hadoop Streaming that operates like the pipes in Linux. Hadoop jobs
are running on Amazon Web Services that provides on-demand cloud computing
platforms. This is fundamental support to big data [15] that are unprecedented content
for Digital Earth [16].

In cloud computing systems, an on-demand network model is used to provide
access to shared pool of configurable IT resources. One of the biggest features of
cloud computing is their scalability and elasticity [17]. The elasticity of an application
is a measure of its transformation that depends on fluctuating demands [18]. The
approach presented in the article is an integral part of the analysis, design, and
fractal programming of elastic systems.

One way to characterize the elastic object is to compute the fractal dimension. In
the chapter, fractal analysis of the elastic objects based on the box-counting fractal
dimension is introduced. CCM is integrated with the box-counting fractal analysis
method. The model has a high level of abstraction, operates with container objects,
simulates different levels of the control granularity, and makes predictions about
behavior of transformation. The integration of the model makes possible to introduce
a fractal control based on a dynamic sampling of the workload. The fractal analysis
and programming aim to optimize suitable workflow structure of the elastic object
at runtime and its ability to runtime elasticity, which must be modeled and be built
into the system at design time. The example of the fractal analysis and programming
of the distributed gradient ascent algorithm using integrated CCM is considered.
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The chapter is organized as follows. In Sect. 21.2, the box-counting analysis of
the capacity curve of the elastic system is considered. In Sect. 21.3, the definition of
CCM is given. The model is integrated with the box-counting method. The fractal
control of the elastic object is introduced. In Sect. 21.4, the container-component
fractal analysis of the distributed gradient ascent algorithm is given. Section 21.5
concludes the chapter.

21.2 The Box-Counting Fractal Analysis of the Capacity
Curve

The core of the elastic computing is the workload and capacity. The assumption
is made that workload on the system equals to capacity of the system. The fractal
analysis base on box counting of the capacity curve of the elastic computer system
is represented in this section.

Hereinafter, the capacity curve of the elastic object is discussed in Sect. 21.2.1.
The analysis of the capacity curve is given in Sect. 21.2.2.

21.2.1 The Capacity Curve of the Elastic Object

The elastic concepts characterize a service. The incremental, decremental, and itera-
tive nature of elastic object directly impacts of it construction and object hierarchies
in the design time of a complex software system. Due to this, the capacity of the
services needs to be incremented or decremented by IT resources with characterized
curve. Let workload on the system equals its capacity.

Fig. 21.1 Fluctuating demand of the users during the day is increasing and decreasing



310 A. S. Semenov

The transformation of the elastic object at runtime is shown in Fig. 21.1 by a
curve, where the unfolded object on the left side of the curve and folded one on the
right side of the curve are presented.

21.2.2 The Analysis of the Capacity Curve

There are many fractal dimensions introduced in mathematical literature, e.g., [19–
21]. Here, the capacity curve is analyzed by the box-counting dimension. The ideas
of the method are the following:

1. Determine curve via boxes covered it.
2. Cover the maximum element of a curve by boxes.
3. Scale only the boxes, do not scale the curve.

Definition 1 Let N be the number of boxes calculated by function n: (δ, ε) → N,
where ε is a grid (a box size) that contains at least one element of the curve δ. If

dδ = lim
ε→0

log(n(δ, ε))

log(1/ε)
(21.1)

exists, then the limit is called the box-counting dimension (Minkowski–Bouligand
dimension) of δ and is denoted by dδ .

The computation of the dimension dδ begins by selecting a set of box sizes. For
each value of ε, the minimal number (n) of boxes of size ε needed to cover δ is
determined. The box counting of the capacity curve in dependence on the scaling
ratio of the ε-grid boxes is shown in Fig. 21.2 and Table 21.1. For Fig. 21.2a, Eq. 21.1
is rewritten by Eq. 21.2.

dδ = lim
ε→0

log(7)

log(1/ε)
= 1 (21.2)

The analysis of Table 21.1 shows that left side of a capacity curve needs more
boxes than right side. Such as one of the axes is a time axis, a conclusion has been
done that a process of unfolded object needs more than one fold.

But the box-counting analysis does not decide a problem how to construct and
control the elastic object. These problems are decided by the integration of a box-
counting method with CCM.
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Fig. 21.2 Box counting of the capacity curve: a initial grid, b grid with ratio 1/2, c grid with ratio
1/4

Table 21.1 Box counting of the capacity curve

Figure 21.2 n(δ, ε) nleft(δ, ε) nright(δ, ε)

a n(δ, 1) = 7 nleft(δ,1) = 4 nright(δ, 1) = 3

b n(δ, 1/2) = 14 nleft(δ, 1/2) = 9 nright(δ, 1/2) = 5

c n(δ, 1/4) = 27 nleft(δ, 1/4) = 16 nright(δ, 1/4) = 11

21.3 Container-Component Fractal Analysis and Fractal
Control

The definition of CCM as a fractal construction is considered in Sect. 21.3.1. Then
in Sect. 21.3.2, this model is integrated with the box-counting method. This provides
a possibility to introduce a fractal control of elastic object which is adjusted to the
box-counting analysis.

21.3.1 Container-Component Model

Fundamental concept of a model is an elastic container object. A container object
has the following properties: contains other containers, contains IT resources (data,
functions, and methods), manages the storage space of its elements and provides
access to them, and moves from one computing environment to another. Containers
can be used very effectively to identify non-serving and non-interactive programs that
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simply accept input and return a result. Let each container runon its own server. Server
does not share global memory and communicates exclusively through messaging.
The model algorithm is constructed as follows.

Let upper indexes R (Receive) and S (Send) be the inputs and outputs for the
container e0, respectively, then a container program is defined by Eq. 21.3.

E = R{e0}S (21.3)

A distributed program E consists of a set of n asynchronous container programs
R{e0}S , R{e1}S , R{e2}S ,…, R{en}S ∈E, which interact through containers transmitted
over the network, and a number of containers n vary over time in accordance with
the requirements.

Components fulfill also a role of communication programs between container
programs. The component program is designated as R{c}S and cannot be divided.

Depending on each specific case, the operation to receive (R) and to send (S) can
be redefined, which is indicated by the appropriate upper index for the curly brace.
If there is no index, then an operation is not applied.

Definition 2 Container-component model E = f n (R{e0}S, R{c}S, �), where ƒn: E
→E is a recursive mapping of a set E in itself by� operations, n= 0, 1,…, k is a step
of mapping, R{e0}S is an initial container program, R{c}S is a component program,�
= {≡ (1/r,N),↓, n ++, n–} is an ordered set of uniquely invertible operations,≡(1/r,
N) R{e}S is an operation of prototyping container program R{e}S with parameters,
r is a scaling ratio (it means that container program is divided into r containers and
component programs), N is a number of self-similar container programs R{e}S after
division, 1/r �=N; ↓: E’→ e is an insert set E’ in the container e, n++ is an increment
operation, n = n + 1, n– is a decrement operation, n = n − 1.

Components obtained by the prototyping operation are used also to simulate
message passing between neighboring container programs and the container program
from which they are prototyped. Figure 21.3 shows an intercommunication between
the initial program R{e0}S and subprograms R{e11}

S and R{e13}
S if r = 1/3 and n =

1. Graphically, container is depicted by a rectangle. Nested containers are depicted
by the nested rectangles. Component is depicted by a gray rectangle.

21.3.2 Container-Component Model Integrated
with the Box-Counting Method

Let each container e ∈ E be a box of square size and the side of the box equal to u(t),
where u(t) is the control signal sent to the elastic system, see Fig. 21.4. Initial box-
container and u0(t) is corresponded to e0 ∈ E. Graphically, box-container is depicted
by a rectangle. Nested containers are depicted by nested rectangles. The component
is depicted by yellow rectangle. The capacity curve is analyzed by the box-container
counting dimension. The ideas of the method are different from a box counting:
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Fig. 21.3 CCM pattern in the first iteration step, n = 1: a 1/r = 3, N = 2, b 1/r = 5, N = 3, c 1/r =
4, N = 2

Fig. 21.4 Integration of CCM with a box-counting method

1. Determine curve via boxes covered it.
2. Cover the element of a curve along one of the axe by boxes.
3. Define the sizes of maximal and minimal boxes.
4. The repeatable boxes on one axe do not take part in counting: They are skipped

and marked by cross.

Definition 3 Let N be the number of boxes calculated by function n: (δ, max) → N,
where εmax is a maximal box size, and εmin is a minimal box size that contains at
least one element of the curve δ and ordered along axes. If

du = lim
εmax→εmin

log(n(δ, εmax))

log(1/εmax)
(21.4)

exists, then the limit is called the box-counting dimension of δ and is denoted by du.
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The box-container counting of the capacity curve in dependence on the scaling
ratio of the εmax, εmin grid boxes is shown in Fig. 21.5 and Table 21.2.

The sizes of maximal and minimal boxes are corresponded to the maximal and
minimal control signals. The signals u0(t), u1(t), u2(t), and u3(t) are grained scaling
of the elastic object control.

The value of function u(t) is defined for every value of time t. It is a function of a
continuous independent variable. Discrete-time signals are defined only at discrete
times that form a discrete set of values of the independent variable. This is usually
done by sampling [22] a continuous-time signal at isolated, equally spaced points in
time T. The result is a sequence of numbers defined by u[m] where m is an integer
{0, 1, 2, 3, ….}. In this chapter, continuous independent variables are enclosed in
parentheses (), and discrete-independent variables are enclosed in square brackets [].

Definition 4 Adiscrete-time system is a system that transforms a discrete-time input
signal u[m] into a discrete-time output signal y[m].

A discrete-time signal u[m] takes values from a finite set of K integers {v1, v2,…,
vK}. This value is equal to the number of containers n required to control the system.

Fig. 21.5 Box-container counting of the capacity curve: a initial grid, b grid with ratio 1/2, c grid
with ratio 1/4

Table 21.2 Container-box counting of the capacity curve

Figure 21.5 n(δ, εmax) nleft(δ, εmax) nright(δ, εmax)

a n(δ, 1) = 6 nleft(δ, 1) = 3 nright(δ, 1) = 3

b n(δ, 1/2) = 10 nleft(δ, 1/2) = 7 nright(δ, 1/2) = 3

c n(δ, 1/4) = 20 nleft(δ, 1/4) = 11 nright(δ, 1/4) = 9
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A discrete-time system is denoted symbolically by

y[m] = f {u[m]}, (21.5)

where f denotes CCM characterizing the system.
In a box-counting method, it takes that a curve is given. Let a part of a curve

named sample is formed dynamically at a given time interval T.

Definition 5 Let N be the number of boxes calculated dynamically by function n: (δ
[m · T ], εmax) → N, where δ [m · T ] is a curve sample calculated by Eq. 21.4, then
control signals u[m] is denoted by Eq. 21.6.

u[m] = u[m · T ] =

⎧
⎪⎨

⎪⎩

nleft(δ[m · T ], εmax) if m > m − 1

nright(δ[m · T ], εmax) if m < m − 1

0 if m ≤ 0

(21.6)

Figure 21.6 shows a dynamic sampling of the capacity curve at a given time interval
T = 1, and the capacity of one container equals to 1000 req/s.

The granularity characterizes a number of containers with a defined capacity that
should be prototyped in response to the control signal. One control signal of the
elastic system with maximal granularity u0[m] needs T = 21, n = 11 number of
containers for transformation (unfolded and folded). The granularity u1[m] needs T
= 8, n = 5 containers. The granularity u2[m] needs T = 3, n = 2 containers. The
granularity u3[m] needs T = 1, n = 1.

On the other hand, a number of containers C for CCM can be calculated by
Eq. 21.7.

C = Nn+1 − 1

N − 1
(21.7)

Fig. 21.6 Dynamic sampling of the capacity curve: a sample m = 1, [1], n = 2, and sample m =
2, δ[2] does not affect the control, b next sample m = 3, δ[3], n = 1, and samples δ[4], δ[5], δ[6]
do not affect the control
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Equality between Eqs. 21.6 and 21.7 is held by Eq. 21.8.

u[m] = Nn+1 − 1

N − 1
(21.8)

Then a number of steps k of the elastic model is calculated by Eq. 21.9.

k = [
logN ((N − 1) · u[m] + 1)

]
(21.9)

CCM for the pattern 1/r = 3, N = 2 (see Fig. 21.3a) is defined by Eq. 21.10.

f n (E0 = {e0}S,R {c}S,
[n + +,∀{e}S ∈ En−1 {e}S ↓ (En = ≡ (3, 2){e}S)|0 < n ≤ k] ,

[n − −,∀{e}S ∈ En−1 {e}S ↓ (En = ≡−1 (3, 2){e}S)|0 < n ≥ k] ) (21.10)

21.4 The Fractal Analysis of the Distributed Gradient
Ascent Algorithm

In this section, the analysis based on integrated CCM of gradient ascent algorithm
is presented. At the beginning, a gradient ascent algorithm [23] is considered in
Sect. 21.4.1, and after that, its distributed version based on integrated CCM is
introduced in Sect. 21.4.2.

21.4.1 Gradient Ascent for Big Data Ordered in Time

Let big data be ordered at discrete-time T with equal intervals τ. Figure 21.7 roughly
illustrates this. The idea is to identify a slope and move it up. This method does not

Fig. 21.7 Gradient ascent
for big data ordered in time
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require to compute or even know f (x), but it computes the slope, that is, v = vτ2 −
vτ1, where vτ2 − vτ1 is a slop. If a slope is positive, then max(v) will increase. If a
slope is negative, then max(v) will decrease.

The idea is to identify a slope between the neighboring points. The algorithm is
mentioned below.

Algorithm 1. Gradient Ascent for Big Data ordered in time 
1. V is a random initial vector ordered at discrete-time T = [0,..., τn] 
    max(vτ) = 0 is an initial value of random vector max/min vτ V
2. for each τ in T
3.   if max(vτ) < vτ
4.     max(vτ) = vτ
5.  end for each 
6. return max(vτ) 

The algorithm runs until found max(vτ) or min(vτ).

21.4.2 Distributed Algorithm: Gradient Ascent for Big Data
Ordered in Time

Our objective is to construct the distributedCCM that captures a relationship between
the computing time m of Algorithm 1 (A1) and capacity c. For solution of this issue,
the following assumptions are made:

• Let vector V has about 2000 M (Millions) values and changeable during some
period of time, V = 2000 M.

• Let m be the computation time, and c be the capacity of the system that handles
by u[m], see Eq. 21.6.

• Let a server be encapsulated in container e0. The capacity of the server c =
2 MWIPS (Millions of Whetstone Instruction Per Second [24, 25]) is a constant,
and each server encapsulated in container has the same capacity.

• Algorithm A1 consists from three operations in one loop (w = 3): For each τ in T
= [0, …, τn], condition operator is less then “<”, and assignment operator is “=”.

Thus, the computation time m of Algorithm 1 with u[m] containers is presented
by Eq. 21.1.

m = V/(c ∗ u[m]/w) (21.11)

Figure 21.8 shows a container-component tree, where the containers are marked
by capacity c.

For the computation time m, vector V needs u[m] = V : w/(m : c) =
2000M : 3/(2MWIPS : u[m]) containers. The calculation of algorithm can be planned
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Fig. 21.8 Component-container model of the distributed gradient ascent algorithm: 1/r = 3, N =
2, m ≈ 429 s, n = 2

by setting a capacity curve. Let m ≈ 429 s and u[m] = 7. Then a number of steps k
is calculated by Eq. 21.9.

There is no loss of generality in assuming that each container E runs A1 with next
rule for each container program in accordance with operation of prototyping ≡ (1/r,
N):

T = [0, . . . , τn] =≡ (1/r, N )[0, . . . , τn]. (21.12)

CCM for gradient ascent algorithm and pattern 1/r = 3, N = 2 (see Fig. 21.3a) is
presented by Eq. 21.13.

E = f n (E0 = {e0}S = A1,R {c}S,
[n + +,∀{e}S ∈ En−1 {e}S ↓ (En = ≡ (3, 2){e}S)|0 < n ≤ k] ,
[n − −,∀{e}S ∈ En−1 {e}S ↓ (En = ≡−1 (3, 2){e}S)|0 < n ≥ k] ) (21.13)

When elastic component-container tree is folded, the result will be in the initial
container component. One of the potential problems is that elasticity takes time.

21.5 Conclusions

The contribution of the chapter is the application of elastic CCM to design the
distributed algorithms. As a result of this current study, several conclusions can be
drawn:

• Distributed algorithm can be presented as an “elastic object” which is transformed
dynamically at runtime.

• CCM provides the following advantages: the ability to automatically select a
distributed configuration of the data processing organization, building a visual
model of elastic computing organization, and evaluation of its effectiveness.
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• Integration CCM with the box-counting fractal analysis method and with fractal
control based on dynamic sampling of the workloadmakes it possible to introduce
fractal control of elastic system.

• Scheduling the distributed algorithm computation is implemented by setting a
capacity curve.

Future work concerns the problems of analysis and design different distributed
algorithms, patterns of organizing the data processing, scheduling the distributed
algorithm computation, and investigation of elastic system with fractal control.
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Chapter 22
On the Modeling of the University
Education Processes in the Information
Technology

Vladimir N. Lukin and Lev N. Chernyshov

Abstract The problem of training qualified professionals in the field of information
technology is very acute. At the level of the ministry and universities, measures
are being taken to stimulate teachers, but the result is poorly felt. The reason is an
exaggerated assessment of scientific activity to the detriment of education. Themodel
proposed in the work shows the inefficiency of this approach: it reduces the level of
control influence in negative feedback and does not lead to the formation of a stable
learning process. In addition, feedback from the student is not taken into account,
and the teacher does not seek to raise his/her level. But for successful work in the
rapidly changing field of information technology, it is impossible to achieve quality
without this. Thus, the teacher needs to find time for self-training. It is natural to
use software tools to support the educational process. Existing tools are difficult to
use. In addition, the teacher for various reasons hardly understands them. Given the
high entry threshold, the authors propose simple and accessible software tools that
allow one to free up teacher time for effective student training. The proposed solution
does not pretend to completeness, but it makes it possible to form control materials,
conduct control measures of different levels, take into account the attendance of
classes, the dynamics of the educational process, and maintain interaction with a
group of students. It is natural to spend the free time to improve your own skills.
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22.1 Introduction

Students studying at a university should upon graduation become engineers or
researchers possessing high qualifications. The training of highly qualified specialists
is the main purpose of the university education.

We consider only information technology. There is a high need for such special-
ists due to the constant appearance of new technological solutions and large number
of development areas. Before talking about optimizing the process of learning at a
university, we determine who should be considered as a high-quality graduate. We
assume that these are the specialists necessary for industry (employers). Authorita-
tive experts do not get tired of talking about this problem, for example, [1]. Thus, it is
necessary to be guided by the needs of the employer, with the prospect of 3–5 years
ahead. For information technology specialties, this is a very serious challenge.More-
over, if we talk about specific needs, it is unrealistic: during this time, technologies
are very likely to be different. The university cannot quickly respond to modern
requirements: technology should have stable features. But it is also impossible to
ignore the trend toward information technologies [2].

We assume the requirements for the university, teacher, and student by higher
authorities are aimed at educating a high-quality specialist, and not at an effective
assessment of highly effective practice [3].Of course, this is a very strong assumption,
but quite acceptable. However, to simplify the task,we abstract from the requirements
for the university, as well as, from the requirements for the student, and restrict
ourselves to the role of the teacher, who interacts with the student to achieve the
necessary quality. Let us pay attention: we solve the problem of teacher workload,
and not optimize the educational process.

Section 22.2 provides a model for achieving the required quality of training under
specified conditions. Section 22.3 discusses software tools that should simplify
the work of a teacher, as well as, independently organize an information space
for working with students and colleagues. Section 22.4 describes simple software
solutions that allow a particular teacher to simplify the management of the educa-
tional process, including the conduct of control measures. Section 22.5 concludes
the chapter.

22.2 Models of the Educational Process at the University

We define the parameters that characterize a high-quality teacher, his/her costs to
correspond to the necessary level of these parameters, and his/her resource. By
resource we will mean time.

Note that a high-quality teacher is characterized mainly by one parameter: high-
quality (sought-after) graduates (this parameter is a key for the university). More
precisely, this parameter reflects the qualification and the ability to transfer knowl-
edge and experience. This parameter is not easy to measure, although an indirect
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Fig. 22.1 Control with
disturbance compensation

estimation is possible. However, modern evaluations are performed according to
other performance criteria. They are combined into a system of indicators that
should encourage teachers to work effectively. We call it “an effective contract with
a teacher” and outline its goal—to optimize the educational process.

Wewill build the simplest one-dimensionalmodel of educational processmanage-
ment, which is aimed at achieving the stated goal. In the initial approach, this is an
open system, in which the control device sets the control action without receiving
information about the state of the system. This is how the administrativemanagement
system was built. But for the training of the specialist that the employer needs, this
option is unacceptable: the ease of management does not compensate for its poor
quality. A somewhat more complex variant is related to the response to a disturbance
(Fig. 22.1).

Here, the role of the regulator is performed by the teacher, the object is a graduate,
the entrance (x) is the rules governing the activity of the teacher, and exit (y) is the
quality of the graduate. Disturbing impact is the information about the deviations of
the object from the established boundaries (e.g., low entrance level of the student,
program change, changing the requirements for the graduate, and new performance
criteria). In the effective contract, just this option is implemented. Here, control
is carried out according to criteria that are practically unrelated to the educational
process, and the relationship between the controlling effect and its result is not visible.
Such a model is simple and reliable, but it has a low quality of management.

A model that uses the negative feedback looks much more attractive. For some
driving effect g(t), which may be a training course taught by the teacher, the output
y(t) of the object (e.g., student’s knowledge) is evaluated and a control error is
determined: the difference between the required and the current output value a ε(t)
= g(t) – y(t). In case of a nonzero error, the value ε(t) is supplied to the input of the
regulator, which forms a control effect to obtain ideally ε(t)= 0. Thus, a closed loop
is formed (Fig. 22.2). This makes the system more resistant to accidental parameter
changes.

Fig. 22.2 Feedback control
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Within the semester, such amodel can be considered as continuous if the “temper-
ature” of the occupations is regularly monitored, and if noticeable deviations (ε(t))
from what the teacher considers the norm (y(t)), make appropriate adjustments.
Here, the output is the current training of the student. If we consider the output as the
readiness of the graduate, the model becomes discrete. The quality of the graduate is
comparedwith the desirable quality, and at ε(t) > 0 conclusions about some correction
of the course are drawn. In the case where a graduate specializes in information tech-
nology, a regulatory error is always there because the natural lag in the curriculum
from real needs. This amount can be reduced, moreover, made insignificant if the
teacher has the time and desire to constantly modernize the course. Otherwise, the
feedback breaks, and we return to the old model, releasing specialists whom the
employer will have to train in the workplace.

Thus, we conclude that the model from one-dimensional becomes at least two-
dimensional: y = (y1, y2), where the components are the qualifications of the student
(y1) and the teacher (y2). If y1 stabilizes, then y2 is an increasing value. If the regulator
detects an insufficient growth (a decrease compared to the increasing requirements
of the employer), it should stimulate the teacher’s further training.

What could be the consequences of a regulator error in this case? If the gain ε2(t)=
g2(t) – y2(t) is excessive, that is, the feedback will be positive, the teacher will spend
his/her resources to the detriment of the educational process without a significant
positive result. Otherwise, the course degrades, it will not become modern, and the
graduate will cease to be interesting for the employer.

Weconsidered the student as amanagement object that does not affect the course of
the educational process. In fact, in reality this is not the case. The student (reasonable)
strives to be interesting for the employer and makes efforts for this purpose. If from
his/her point of view, the teacher satisfies this requirement, he/her tries to get to
win him/her for a diploma, otherwise he/her ceases to be an object of management
(walking, working on the side), and the university cannot provide his/her full-fledged
quality. Now themodel (Fig. 22.2) is interpreted as “inverted”: the object is a teacher,
the regulator is a student. In fact, it is necessary to consider the superposition of these
models, reflecting the interaction complexity of the elements. A simplified version
is provided in Fig. 22.3.

Thus, it becomes obvious that in order to achive the desired quality the information
technology teacher must constantly improve his/her skills. The first thing that can

Fig. 22.3 Model of student–teacher’s interaction
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come to mind is an advanced training system that is available in every university. But
in fact, this option does not always work: the set of courses usually does not include
current topics, and if it does, then the program for the interpretive teacher is no
longer interesting, as he/her already knows everything. Fortunately, in our specialty,
there is a wonderful way of improvement: a participation in real program projects.
The authors have been lucky enough to do such a work for many years, and they
can appreciate the undeniable benefit of it in the educational process, especially if
students or recent graduates participate in the projects. But such a path is not possible
for everyone. Then a self-education remains, within the framework of which you can
carry out useful projects “for yourself”. We will come back to this point in the
sequel. And finally, there remain such tools as conferences and seminars, at which
participants usually meet with interesting thoughts and suggestions.

Thus, the necessary condition for the preparation of quality graduates is a good
idea of what is needed at the exit (g(t)), the ability to create a package of disciplines
that allows one to form the required output competence (y(t)), and the ability to do
this.

For simplicity, we will assume that the teacher’s qualifications are good enough to
create and support training courses in the current state. The question of how to obtain
the information about the real exit requirements was discussed at the beginning of
the article. It remains to determine the possibility of forming competence, and above
all—where to get time.

We consider the range of work of graduate staffs, who are interested in educating
high-quality graduates (Table 22.1).

Let us consider, first of all, to the main load, the educational one. In Moscow
Aviation Institute (MAI) (National University), the annual load is 1534 h, of which
870 h are per audience, 664 h remain. Close estimates are given in [4]. What are
these 664 h used for?

First of all, the items A.1 and A.2, as well as, A.5 and A.6, without this are
impossible. A.10 could not be done, but required. A.4 would like to use for promising
students, but you have to spend on working with twins. Works B, C, and D have to
keep within what remained from this rest completely.

Now, if we look at which of these elements are included in an effective contract
with the teacher, simply, for which they earn bonus points, we will see that the
study works, except for the work with graduate students (A.9), are not evaluated in
any way. And in assessing the work with graduate students, only their protection
is appreciated. Works B and C are evaluated mainly, which make up the input of
our model. It is easy to see that they influence the real production management of
qualitative graduates and qualitative teachers poorly, except unless, C.5 point, that
is, the model is almost opened.

Thus, it is necessary to cut out time for “effective” work, that is, to be considered
at a university not an empty place from the point of view of the managers. We do not
forget thatwe need time to correct themodel control errors in order to train in-demand
specialists. And the first thing that comes tomind, in addition to intensifying thework
(work for wear), is to automate everything that you can, fortunately, specialty gives
such an opportunity.
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Table 22.1 List of works from the point of view of the teacher

№. Works Academic load Points Possible to automate

A. Study’s work

1 Preparation for
classes

2 Development of IT
disciplines

3 Training *

4 Individual work with
students

5 Preparation of
examinations
(questions, tickets)

*

6 Preparation of
control materials:
tasks, tests

*

7 Performance of tests,
exams, coursework

* *

8 Work with diploma
students

* *

9 Work with graduate
students

* *

10 Reporting on
academic work

*

B. Methodic work

1 Preparation of
methodological
materials: lecture
notes, teaching aids,
etc

2 Preparation of
training programs

*

3 Preparation and
publication of
textbooks and
manuals

*

C. Scientific work

1 Prepare and publish
monographs

*

2 Publication of
articles

*

3 Reports at
conferences

*

4 Research work *

(continued)
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Table 22.1 (continued)

№. Works Academic load Points Possible to automate

5 Program projects *

6 Research work of
students

*

D. Scills’ development

1 Defense of a thesis *

2 As part of advanced
training
programmers

3 Self-preparation

*indicates the types of work related to the training load, considered in an effective contract and
subject to automation

It is immediately clear that only a part of the educational work can be automated.
Neither methodological, nor scientific work, nor advanced training due to this is
significantly simplified. Let us see how you can reduce manual work for some types
of study work, thereby gaining additional time for other work.

22.3 Software Support for the Learning Process

This section discusses software tools that are designed to simplify the learning
process. However, the teacher is far from always comfortable working with them.
Simple and accessible tools are offered that make it easier to work with a group
of students. Section 22.3.1 demonstrates how to generate unique variants of home,
control, and laboratorywork. Section22.3.2 showshow touse cloudplatforms to fully
manage a group of students in a distance learning environment. When conducting
an exam or sweep, paper tickets are usually used, which in the remote version do
not work. In Sect. 22.3.3, there are the proposed option with electronic documents,
as well as, coursework and thesis. Sections 22.3.4 and 22.3.5 show how to organize
work performance monitoring along with generation and distribution of options.
Section 22.3.6 concerns the organization of communication. Regular e-mail is not
always convenient, so it is proposed to use the option to work with the group.

Software tools in the educational process are used at all levels: university, faculty,
department, and teachers. The level of the university is needed for the schedule, the
level of the faculty for working with student groups, the level of the department—the
training load, the level of the teacher—methodological materials, evaluation, and
control. It is assumed that the main software will be a university level system that
covers the needs of other levels. Let ‘us see what teachers can do.

Software tools that are primarily designed to simplify the learning process include
Moodle [5], Easy LMS [6], WizIQ Virtual Classroom [7], and NextThought [8].
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Systems that allow online training, such as the same Moodle or Populi [9], provided
invaluable assistance in forced remote training during quarantine. However, the use
of such systems, as practice has shown, does not particularly save the teacher’s time,
sometimes just the opposite. More useful in this sense are the tools related to test
preparation and evaluation.

As for complex solutions at the university level, it is worth mentioning the
domestic development of University Information and Analytical System (UIAS)
of the Moscow Aviation Institute based on the 1C System [10]. Its goal is a general
information environment where data on employees, students, courses, programs of
disciplines, schedules, etc., are stored. True, there is no support for the remote educa-
tional process, unlike Moodle, which is widely used in the world. The OpenEduCat
[11] is also of interest, but it focuses on administrative functions, as in Collegix from
Aptron [12]. For a detailed overview, see [13].

It would seem that the abundance of existing solutions gives the teacher the oppor-
tunity to choose the most suitable one that will facilitate his/her work, reduce fatigue,
and increase labor productivity. However, here we are faced with an unexpected
phenomenon: almost none of the teachers voluntarily use these funds. Factors such
as entry threshold, complexity of use, insufficient efficiency are affected. The first
factor means that a complex, multifunctional product requires time to study, which
is already too short. The second factor is that the development of the product is not
usually done by teachers, and its authors do not feel the needs of the user. In addition,
both age and the level of qualification of faculty members in the field of information
technology affect [14]. The third factor is related to the fact that developers often
make a product of interest to the university administration (it is easier to introduce it)
or overload it with extra functions that are often poorly connected [15]. As a result,
work is not facilitated, but difficult. The teacher of “information” disciplines in this
sense is in a better position: he/her is more freely guided in many software products
and their features. In addition, he/her can find solutions that can do without bulky
applications.

From general resources, the teacher usually uses a schedule, student lists, perfor-
mance tools, etc. In addition, he/her usually uses office products (Word, Excel) and
e-mail. However, there is still a lot of routine work that takes a considerable time.
Teachers in computer disciplines are faced with the need to use software products
that act as a subject. There is an additional load associated with the preparation of
programming tasks and their verification: last year’s backlog is not always possible
to use. Note that tasks are most often individual, so the tendency to increase groups
of students leads to an additional increase in a workload.

All the software necessary for the teacher can be conditionally divided into two
groups: the one used periodically and the other used daily. The first group includes,
for example, funds for the preparation of Working Programs of Disciplines (WPDs)
or an individual plan. They must be common to all, they must comply with the
standards, and therefore they are subject to serious requirements. The software of
the second group is used in the educational process on a daily basis, it is often created
and accompanied by the teachers themselves. Here are some examples.
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Testing is a widely used training technology, including in IT training. Here, a
significant problem is the compilation of test tasks. It is solved in different ways:
from attracting students to using test task generators.

IT disciplines require specialized tests such as DataBases (DB) [16]. Their pecu-
liarity is not comparison with the reference report, but verification by executing some
code on the server (program or SQL query). Testing programs are included as part
of various distance learning systems, but there are also autonomous programs. Test
tasks are usually developed directly by the teachers themselves. There are, of course,
test generation systems. Sometimes simple tools based on templates are also suitable.
One of these is described in the following section.

22.3.1 Homework, Monitoring, and Laboratory Work

The main problem for the teacher is the development of work options of this type.
It is desirable that the options not be repeated not only in one group of students, but
also for different groups. If you change WPD and add new topics, you must update
the tasks and/or add new ones.

Automation of tasks, the text ofwhich can be voluminous, is significantly difficult.
If in any cases it is possible to parameterize the text, the generation can be done by
a simple program. Give an example. In the following program on the JavaScript,
the first object contains the text of a job that has parameters—constructs of type
“%par%”. They must be replaced with the values of certain arrays. The values are
selected randomly. The result is the desired number of jobs that differ in parameter
values.Another template produces a similar programwith other objects. Pseudo-code
is shown in Fig. 22.4.

22.3.2 Distribution of Options

For both the distance learning and the regular learning, it is convenient to use cloud
platforms. For each student, a folder is created, for example, on a Google disk, in
which prepared versions are placed. Here, students also place the results of work.
This is easy to automate with Google scripts. Their source code of which is posted
on github [17]. All information is displayed in the Google table, which serves as a
check. If the result is a program on JavaScript or Python, it starts in one click (for
Python, the Google Colab extension is used). The view of the table for a group is
shown in Fig. 22.5. In the cells with underlined words, there are the links, where you
can go to student folders, open task conditions, tables with assessments, visits, and
options. The job column displays the date the student downloads his/her decision. At
the same time, the date is a reference, for which you can open a job. Use the Changes
menu item to update the table.
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mtemp = [
" Write HTML-code with the functions on the JavaScript. ",
"A display form has buttons (%pos%)and a selection item (%pos%).",
"%typ1% is selected and %typ2% is written to the selection item.",
"By result button %typ3%."
] 
mpos = ["on the top upper right corner", "on the lower right corner "]
mtyp = [
["cinema", " movie list and session price", " is the movie with the 
lowest ticket price"],["theater", " list of performances and date", "
there is a performance with the earliest date"]
function getRandomInt(min, max){ // random number in the range [min,max] 
… }
function get(m){ // accidental value from m … }
function mix(m){ // mix m … }
f2 = fso.CreateTextFile(fout) // to create the output file
for (j=0; j<NV; j++){  // NV – number of options

for (ks=0; ks<mtemp.length; ks++) {
s  = mtemp[ks]  // 1 
ms = s.split("%") // text % code %  text % code %  text …
k = ms.length
if (k>1){ // есть %kod%

i0 = 0
for (var i=1; i<k; i+=2){ // by codes in line

if (ms[i]=='k') ms[i]='2'
else if (ms[i]=='pos'){

if (i0==0) m1 = mix(mpos) // mix
ms[i]= m1[i0];  
i0++

}else if (ms[i]=='typ1'){ // 
k1 = mtyp.length
k2 = getRandomInt(0, k1-1)
ms[i]   = mtyp[k2][0]
ms[i+2] = mtyp[k2][1]
ms[i+4] = mtyp[k2][2]

}else if (ms[i]=='out'){
                          // . . .  
                       }   
               }  

ss = ""; for(i=0;i<k;i++) ss+=ms[i] //assembly of a line
  } else ss =s

f2.WriteLine(ss)
 } 

f2.WriteLine("")
} 
f2.Close()

Fig. 22.4 Pseudo-code of program written on the JavaScript

Fig. 22.5 Print screen of Google-table “Table of a single group”
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Fig. 22.6 Print screen of Google-table “Table of all the groups”

This table is for the instructor. The student have access to the visit tables, estimates,
and options for viewing. According to the menu item “Put scores”, the scores from
the columns with scores are transferred to the rating table.

It is convenient for a teacher conducting classes in several groups to have a
common table (Fig. 22.6). You can access the links in the table cells to the appropriate
folders or tables. In the column “Questions”, the name of the link is the modification
date of the document with questions, which allow the teacher to quickly respond to
students’ questions.

The program attached to the table has the function to create a folder and a table
structure for the new group. This is done in several steps. A folder is created for a new
discipline, and a link to it is indicated in the first column. Then, the second column
after the discipline name indicates the group name, and the New Group Folder menu
item creates a group table with an empty student list. After the list of students with
their accounts is filled in, the subfolders for students’ work are created and other
tables are filled in.

The teacher can create a shortcut on the desktop with a link to this table and, when
it is opened, immediately see whether the documents with questions were updated:
if the date is updated, the cell with the date is highlighted. Discipline folders contain
materials, tasks, examples, etc. Due to the fact that the same documents can belong
to different folders in the file system of a Google disk, the posted materials can be
made available to different groups. To do this, one can use a special table with a
script that provides such an access.

The teacher is comfortable with the "Group Table" to work with the group, and
a particular student is primarily interested in his/her own information. To do this,
there is a “Student Table” (Fig. 22.7). And if in other disciplines teachers will keep
the same tables, the student can display his/her information for several disciplines
at once. By copying this table into his/her folder and setting up a data sample for
himself, the student will receive a kind of a diary.

Fig. 22.7 Print screen of Google-table “Table of a student”
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The described technology has the advantage that the programs attached to tables
are available to the teacher, which can themmodify if necessary.With the knowledge
of the programming language of JavaScript, which the teacher leading IT discipline,
it is easy to handle the programs. Similar tables can be used for other activities.

22.3.3 Monitoring Activities

When conducting an exam or a test in writing, tickets (conditions of tasks) are
traditionally used. Instead of paper tickets/tasks, it is convenient to use electronic
documents that are distributed to accessible folders in students’ computers or, as
in this case, in folders on a Google disk. Random distribution, of course, can be
done automatically. To do this, a special table is organized, which is generated when
creating the group folders (Fig. 22.8). In the first column, there are the links to the
student folders, in the second one, there are the first sequential numbers are written.
Using the standard function of Google table, the numbers are mixed, after which
the function “Distribute tickets” is launched through the menu. The ticket texts must
be preplaced in a folder that is referenced in cell ExamCards-WP. As a result, the
tickets are copied to the student folders according to the allocation of numbers. At the
same time, documents are created for recording ticket responses. These documents
automatically record the student’s name simultaneously with the conditions of the
tasks (wording of questions). At the end of the exam, the teacher starts the End of
Exam function, and the access status of documents with the answers changes from
Editor to Reader.

The same technology can be used for the intermediate evaluations. If the responses
require multiple files to be created, subfolders are generated in the student folders,
and links to them are also placed in the third column.

The ticket generation is also easy to automate (Fig. 22.9). We suppose the ticket
includes two questions that can be repeated on different tickets. An examination
ticket template is created, in which the parts to be replaced are marked:

Fig. 22.8 Print screen of Google-table “Table of examination”

Fig. 22.9 Exam ticket
template
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Possible texts of questions are combined into the documents “Questions_1”
and “Questions_2”. After that, the generation script creates the files “Ticket_1”,
“Ticket_2”, etc., in a separate folder, setting the number and replacing the texts
“Question_I” with one of the questions randomly or sequentially.

22.3.4 Coursework and Projects

For a course work, the same actions as for laboratory works are necessary: the forma-
tion and distribution of topics, performance control, and evaluation. The peculiarity
is that, as a rule, the conduct is regulated by documents of the level of the depart-
ment or dean, which determine the attachment to the teacher, the formation of topics,
the stages of implementation and the delivery deadlines. In this case, the teacher is
required to tighter control of the progress. For such a work, the same table is suitable
as for the group, but instead of tasks there will be stages of work. A shared folder is
created for the group, in which the activity log is maintained with the assignment of
responsibilities and milestones.

22.3.5 Diploma

In many ways, the guidance of the diploma work is similar to the guidance of the
semester work. Hereby, the difference is in more work and stricter management
control. In some universities, such stages as the distribution of topics, the monitoring
of implementation, the organization of checks for anti-plagiarism and others are
automated. The teacher interacts with the student for a longer time, so fixing the
correspondence, discussions, and comments in one place using the same Google
disk is very appropriate. A communication online is simply necessary, since a student
during the performance of diploma rarely appears at the university and, therefore,
does not meet with the supervisor of diploma work.

It is advisable to keep a table of your graduates, noting the work progress and
conducting the correspondence through Google documents. As for the group of
students, the table shows the date of change of the document “Correspondence”.
There are the links to the folders with diploma materials. In a separate table, the
teacher can capture the documents that are available to all the participants at once
using a special function.

22.3.6 Communication Means

E-mail, withwhich teachers usually communicate with students, is not always conve-
nient. Sometimes you have to search for previousmessages for a long time or send the
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same messages to different students. To keep the correspondence in one document,
we will use the option to work with the group (Fig. 22.1). By selecting a separate
columnwith check-box elements, we send amessage to those students who will have
a check mark on the check box. Messages are sent by mail and simultaneously dupli-
cated in the document “Correspondence” while the students write answers directly
into the document and do not clog the teacher’s mail. If mail communication has
occurred, one can use a special script to transfer messages to this document.

The management has a similar purpose to simplify the communication. The
manager must sometimes notify everyone about something while receiving the noti-
fications, or make a survey. For these cases, Google forms may be useful. On the
instructions of one of the managers, a module was created to simplify the commu-
nications. The module can work either autonomously or as a part of the Department
system. When a user logs in, he/she has Send Messages button and an information
about the number of new incoming messages. When the user enters the button, the
list of teachers is displayed. Selecting the ones to which the message is sent, the
user writes the text and notes the message type: “No”—without notification, “Ok”—
with notification, “Yes/No”—the corresponding answer is required, and “Text”—the
usual answer. The user can mark the message as duplicated in a regular mail.

The recipients display the date and time of the message, the sender’s last name,
and the text of the message. The content of the response cell depends on the message
type. When answering yes/no type, two clicks are sufficient, one to a message with
notification.

The sender sees the answers in a convenient form: the lists of respondents are
displayed in the affirmative or negative. Similarly, after a little refinement, the
possibility of voting or answers to the questionnaire can be realized.

22.4 Software Tools for the Individual Use

One can free up the teacher time in a simpler and more accessible way. The fact is
that a routine work, devouring time, largely concerns the teacher himself, without
affecting his/her communication with the students and colleagues. This includes
the mentioned preparation of educational materials, attendance, and student perfor-
mance, and the process control (performance of independent and laboratory works,
course and diploma projects). This also includes the work with graduate students.
It is clear that the teacher does not work in an isolation, but in the information
space. However, the time for exchanging information with the external environment
is significantly less than the time for his/her independent work. Of course, we exclude
the case of conducting training sessions. We consider some very simple approaches.

Hereinafter, a short description of such software modules as “Attendance”, “Con-
trolActions”, “Educational Process”, and “Preparation andConduct of theBD-exam”
are given in Sects. 22.4.1–22.4.4, respectively.
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Fig. 22.10 Attendance of classes

22.4.1 Attendance

In the traditional administrative environment, paper attendance logs are still widely
used. Usually they are at the head of the group. At the end of classes, the teacher
reviews the magazine and signs in it. If only the dean needs it, for the teacher it is
nothing more than a meaningless ritual. But if he does not care about the attendance
(this is a significant feedback), he/her should keep his/her records too. A spreadsheet
in Excel is suitable for this. Figure 22.10 shows the view of such a table. Everything
is clearly shown here: the list of students (formed at most once per semester), the
dates of classes (recorded from the schedule), and the presence on pairs. Attendance
by the student and the day are automatically considered, for clarity, the percentage
of attendance is painted and a graph is drawn depending on the attendance. Five
minutes of time spent during classes more than compensates for the ability to control
the process.

22.4.2 Control Actions

Consider the situation at the semester end. By this time, the necessary laboratory
work must be completed and evaluated, the accounting of which is also carried out
in similar tables (Fig. 22.11).

Note that the list is not re-entered, it is taken from the previous sheet automatically.
The “var” column is the option number. The same number means that the task is
command (the manager is highlighted). The result is the average grade; it is a part of
the final grade for the exam.This subject does not provide a task, only twoquestions in
the ticket. The color of the cellsmarked the grades that the teacher is ready for students

Fig. 22.11 Personal examination list of the group
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Fig. 22.12 Personal examination list of the course

to set automatically, taking into account their work in the semester. The resulting final
grade is adjusted depending on the student’s attendance, which is consistent with the
recommendations of The Ministry of Science and Higher Education. Of course, a
rounded grade is placed on the list. Many years of experience have shown the fairness
of this approach both on the part of the teacher and on the part of students.

A fragment of this list, for several groups, is shown in Fig. 22.12. During an in-line
lecture, it is unrealistic to conduct some surveys; students on the control day simply
note their presence on the leaflets. And, surprisingly, better students show on average
the best results in the exam.

22.4.3 Educational Process

IT training requires a laboratorywork. In addition to the quality control, it is necessary
to take care of the timely preparation and delivery of the work results. This equalizes
the semester load of both students and teachers and helps improve the result. In
addition, by developing a habit of performing the work on time, the student facilitates
his/her life in a real production environment in the future.

Figure 22.13 shows the table of records of laboratory works performed by student
teams.

For each work, two columns are allocated: a group estimate and a check-sum,
which is formed from individual assessments of participants (0 is the sum coincides
with the estimate). In columns marked as checkpoints, there are real deadlines for
delivery. Missing the term results in a score loss. The absence of delivery marks
means that the team violated the last term.

A similar, but in a sense more stringent control is carried out during a thesis work
(Fig. 22.14). Of course, no points are put here; just the participants see their place in

Fig. 22.13 Performance of laboratory works
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Fig. 22.14 Performance of thesis works

the group of graduates and adjust their activities. Such a picture really allows you to
reduce overload before protecting work and gives a chance to a better preparation.

Of course, all these materials are open, but students cannot change them. There-
fore, the original remains with the teacher, and the copies are sent to the participants:
in the case of a diploma—to students, in the rest—to the headmen of the groups.

22.4.4 Preparation and Conduct of the BD Exam

Mandatory part of the database exam is tasks’ solving. The simplest, but undoubtedly,
a useful variant of the task is a SQLquery to a given database. The stage of preparation
of the task (this is the teacher’s case) and the procedure for passing the exam (the
main participant is a student) are considered.

In preparation, the teacher identifies and describes the subject area, designs the
database structure, then formulates the request and writes its solution to the system
database (Fig. 22.15).

Note that no query condition is generated here. Automatically adding elementary
variations (e.g., attribute names and values) is not difficult, but reduces the write-off
protection.

The prepared examination material is offered to the students in the exam.
According to the exam ticket number, the student receives a problem to solve. The
difficulty of evaluation is that the right solution is not always the only one. There-
fore, the validation criterion is that the query results match. With low probability, the
correct result can be obtained when the query is incorrect. However, a deliberately
incorrect request, of course, does not pass (Fig. 22.16). The correct answer is given
in Fig. 22.17.

Fig. 22.15 Feedback control
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Fig. 22.16 Error in query

Fig. 22.17 Correct answer

Thus, despite the fact that the proposed tools are quite simple, not related to the
data exchange on the global network, they occupy their niche in the work of IT
teacher and allow him to liberate a certain amount of time not only without losing
the quality, but alsowith its improvement (monitoring the learning process, preparing
and implementing the task options).

22.5 Conclusions

As the experience of the authors shows, the use of the described software significantly
facilitates the learning process, making it more orderly and effective. When all the
teachers of the same department use the same software, this will facilitate the work
and leadership of the department. Reducing the labor on routine operations will allow
teachers to focus onmethodologicalwork. It is necessary to provide a communication
with external software systems, portals of universities. There are no such problems
on the part of the described means. However, not always the university system has
means of a convenient program access, which by itself slows down integration.
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Chapter 23
Entity-Event Ontology Construction
by Conceptualization of Mentions in Text
Corpus

Michael C. Ridley

Abstract Knowledge-based systems constitute a powerful tool for tackling and
navigating complex domains, but they have the potential to be employed more often
in practical tasks if some obstacles are cleared. Creating and keeping knowledge
bases up-to-date is a challenging problemwithout automatic extraction of knowledge
from data sources like documents. One of the solutions is ontology learning, which
enables automatic construction and population of ontologies used to store knowl-
edge. This chapter proposes an automatic method for domain ontology construction
based on extracting entities and events from texts. Also, it is stated that upper-
level template ontologies used when analyzing text corpus are suitable for creating
target instance ontologies that describe a specific domain. The task of instance
ontology construction is formulated in the terms of reconstructing real-world events
via analyzing their mentions in a text corpus and structuring them according to the
template ontology. This method allows an automatic analysis of big volumes of
textual data like posts from social networks, news, contracts, specifications, etc., by
utilizing natural language understanding tools used to extract domain knowledge.
We developed a system that collects texts from the Internet, analyzes them, builds an
ontology, and presents it as a knowledge base. One of the current applications is in
optimizing business processes in a domain of civil aviation: document management,
sorting and navigating documents, text summarization, semantic enterprise search,
and exploratory search. Furthermore, it is claimed that extracted knowledge can be
used to construct informative features in machine learning tasks.

23.1 Introduction

One of the dominant applications of information systems is the analysis of numerical,
categorical, and other structured data. As an example, CRM systems often operate on
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manually entered or imported data about relations with customers and sales scripts.
Another classic example is a system for collecting sensor readings and storing them
in a transaction processing database along with OLAP cubes for analysts to prepare
reports for managers.

Even so, practical tasks often require direct application of entities, relations, entity
attributes, and rules that govern them. It is required in geospatial services, ques-
tion answering, master data/record management systems, document management
systems, enterprise search, content management systems, and so on.

Online media monitoring is a classic case in different field of study. Since the
Internet is a kind of mirror for the real world, it contains the implicit mentions of
real-world events. Many related problems such as reconstitution and prediction of
events, explorative search, and early trend detection can successfully be formulated
in terms of ontology construction or ontology learning. Such ontology is a useful
source for computing domain-specific metrics like event importance, surges in topic
discussions, vocabulary diversity when discussing something, indirect links between
entities, semantical similarity of mentions in different languages.

In the present context, it is common to bring up the concept of a semantic Web
as a way of enriching data with meaning by means of a special markup and commu-
nicating metadata and knowledge among Web resources. If it was widely adopted,
semantic markup of Web pages would render information on the Internet machine-
readable. In a sense, it helps to establish a connection between text and its conceived
meaning.One of the things that semanticWebbrought to us isWebontology language
(OWL), which is capable of representing classes, individuals, relations, and even
reasoning on top of described ontologies [1].

Similar ideas are found in the enterprise software domain. For example, an ordi-
nary full-text search could be superseded by a semantic search capable of navigation,
filtering, grouping content with the same meaning, linking, and so on. Theoretical
foundation of such cases is extraction and representation of knowledge by means
of ontologies. These ontologies typically consist of entities or concepts, attributes,
relations, and slightly less common—axioms and rules.

Unfortunately, most ontologies are still constructed and even populated manu-
ally. This approach is expensive and time-consuming. It cannot be used at all in case
of large data inflow or when data has to be processed in a real-time fashion. Also,
manually constructed ontologies tend to be too general and thus form a habit of under-
estimating the power of applying ontologies to real-life tasks. It is also interesting that
early automatic ontology construction projects focused on generic ontologies aswell:
usually, it was about extracting hyponyms/hypernyms and meronyms. Extraction of
non-taxonomic relations was not common for some time.

Automatic ontology construction is an important problem that requires extracting
the entities, concepts, and relations between occurring in a text corpus. For example,
analysis of corporate documents and e-mails leads to maintaining a knowledge
base with a map of all operations, document templates, workflows, etc. Analysis
of mentions in the Internet enables to build the predictive and descriptive models of
real-life events and their dynamics. By analyzing posts and chats of a person, one can
build the contextual profiles: what person talks about and how, what he or she likes,
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what are links between topics according to this particular person, and so on. Using
such profiles, broad topics like “Politics” can be broken down into attitudes toward
specific politicians. Also, they can be employed to improve the personalization of
targeted ads.

Needless to say, same methods can be utilized in a broad spectrum of information
extraction tasks. For instance, it can be used to create domain-oriented search engines
and explorative search systems.

When information is extracted from documents according to somemeta-ontology,
resulting database can then be used to provide rich navigation features, explicit and
implicit link analysis, grouping mentions by things they refer to, structured semantic
queries, temporal analysis, single-document and multi-document summarization,
and other tasks. The same can be said about some natural language understanding
tasks like question answering and textual entailment.

Our contributions are in the proposal of template-level and instance-level ontolo-
gies, introduction of entity-event ontologies, development of themethod for construc-
tion entity-event ontologies from text corpora, implementing a full-featured system
based on the method and capable of analyzing mentions on the Internet, conducting
experiments for quality evaluation, and deployment of the system in civil aviation
organizations.

The chapter is organized as follows. Section 23.2 provides an overviewof ontology
learning methods. Section 23.3 introduces a novel method of entity-event ontology
construction alongwith practical and theoretic considerations. Section 23.4 describes
system implementation and aspects of collecting data from the Internet. Section 23.5
concludes the chapter.

23.2 Related Work

Ontology construction, enrichment, and population attempts are all related to
ontology learning—the act of acquisition of a domain model from data [1]. Input
data can be in any form ranging from structured XML documents to semi-structured
HTML pages and unstructured raw natural language text. In the latter case, it is
ontology learning from text [2]. The task then is extracting conceptual knowledge
from text input and building or populating an ontology from it.

It is useful to note that ontologies can be very different: some of them are general,
some of them are domain-specific. Also, often they are not full-featured: for example,
restricting the original problem to a taxonomy case is rather popular. There is a
concept of a semantic spectrum that allows describing knowledge representations in
terms of expressiveness ranging from glossaries (simple lists of terms) to controlled
vocabularies, data dictionaries and thesauri, data models, taxonomies, and finally
full-features ontologies.

Ontology learning is a broad field of study that has different classifications [3, 4].
Usually, researchers divide methods based on the following characteristics:
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• Type of input data:

– Structured: DBpedia, relational databases, some XML.
– Unstructured: arbitrary text in one of natural of artificial languages.
– Semi-structured: unstructured data with structured parts such as Wikipedia

articles based on templates, or financial statements.

• Level of automation:

– Semi-automatic: requires user intervention.
– Automatic: after the model is ready, no control is needed.

• Learning targets:

– Concepts and instances.
– Relations: taxonomic and non-taxonomic like thematic roles and syntactic

relations.
– Axioms: used to model sentences that are true and to create new knowledge

from the existing one.
– Meta-knowledge: rules of how to learn ontology, what attributes can be

extracted.

• Purpose of the method:

– Creation of ontology from scratch.
– Ontology population and updating.

• Learning techniques:

– Linguistic: syntactic analysis, morpho-syntactic analysis, lexico-syntactic
pattern-parsing, terminology networks, syntactic frames, and text under-
standing techniques.

– Pattern/Template matching1: Hearst patterns, regular expressions, exception
templates, and symbolic interpretation rules.

– Logical: inductive logic programming, clustering, and rule learning based on
first-order logic or propositional learning.

– Statistical: hidden Markov models, sequence models, neural networks, condi-
tional random fields, co-occurrence data, bag-of-words, and so on.

– Combined/Hybrid: various heuristics using statistical methods on top of
linguistic features. Applying methods depending on the context like WebKB
uses first-order logic rule learning along with Bayesian learning.

As this field of study is active, there are lots of tools like pioneer Text-to-Onto,
OntoLT, WebKB, DODDLE II, CRCTOL, C-Pankow, Sofie, and others based on a

1It is worth noting that pattern matching is a common choice in information extraction tasks as it
provides very high precision, although by the cost of lower recall and constant maintenance of rules
for every supported language.
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broad range of learning methods like formal concept analysis, clustering, associa-
tion rules, linguistic patterns, regular expressions, statistical methods, graph theory,
probabilistic graphical models, and so on [4].

Amongwidely acknowledged problems like axiom learning, there is also ongoing
research in the field of language-independent methods that are maintenance-friendly
and capable of learning structure on their own. One of the most promising methods
is based on neural networks and treating expressive ontology learning as a machine
translation task and mapping sentences to axioms [5].

23.3 Construction of Entity-Event Ontologies from Texts

Ontology learning is one of the methods for extracting conceptual knowledge from
texts. Those ontologies are used to partly represent the meaning of the text or at least
its structure. Often there are predefined classes in ontology, and the task is to extract
their instances by using pattern matching or other extraction methods. Another case
is when there is fixed base ontology and the task is to construct a domain ontology
by the means of extracting relations, classes, their instances, and so on. The term
“base ontology” is used here to denote that it can be both upper-level ontology with
a specific focus or just a sufficiently high-level domain ontology.

As mentioned earlier, most automatically constructed ontologies are focused on
universal linguistical concepts and usually employ abstract relations like IS-A, PART-
OF, INSTANCE-OF, HYPONYM, HAS-VALUE, and others. Although suitable for
artificial intelligence research, it has low practical value in applied knowledge storage
and representation tasks. Applied knowledge bases and knowledge-based systems
typically utilize domain ontologies as they benefit from their focus on specifics and
predefined relevant formalism.

However, there is a space in between the following: some problems require
capturing of new ontological knowledge in a broad, but highly structured domain.
This kind of problems can be tackled by using two levels of ontologies—template
and instance ones—as outlined below:

• Template ontology acts as a description of what can happen in a world from
some practical viewpoint and sets a general structure for knowledge in supported
domains.

• Instance ontology is formed by extracting information from a set of documents
according to template ontology and de-facto constitutes a knowledge base.

Template or base ontology can be just an upper ontology like DOLCE, SUMO,
Cyc, and others, but that is not always the case, as it can be domain ontology as well.
It is quite common for applied knowledge bases and some cases of expert systems.

For example, one could define template ontology for representing knowledge
in court orders and then build a court order knowledge base in form of ontology.
Another case is a knowledge base of the company’s legal documents that can be
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used by employees to navigate through complex procedures, sets of legal templates,
contract provisions, and so on.

Speaking of news, politics, general or corporate events, legal announcements, and
social media posts, on some level one can say that they share a lot of commonalities.
One way of capturing these commonalities is a method of entity-event ontologies.

The method of entity-event ontologies is based on the idea that as something
important happens in the real world, it leaves traces in multiple mentions in docu-
ments, news, social network posts, and so on. Real-world events are scattered across
numerous mentions of them. All those mentions combined describe a single real-
life event—for example, company acquisition, product announcement, legal actions,
protests and attacks, or natural disasters.

An example of suitable ontology for describing real-life events is rich event
ontology [6]. Unlike general ontologies, it does not underrepresent events and
treats them explicitly by introducing concepts like participants, causal and temporal
relations, special relations like HAS-PRECONDITION, HAS-RESULT, HAS-
SUBEVENT, and so on.

Similar ideas are also implemented in Thomson Reuters (Refinitiv) knowledge
graph for financial and capital markets analysis. It models many real-life event
and entity types like organizations, quotes, regulators, assets, supply chains, deals,
industries, exchanges, company officers, and so on.

In our system, we used entity-event ontology that is based on real-life events and
entities, their mentions (instances) in texts, and context information derived from the
text and other sources. Each real-life event instance has some attributes depending on
its type. For example, natural disaster events have attributes disaster type, location,
time, deaths, other casualties, related entities, and mentions.

During pilot operation of our system, we have identified features not universally
present in similar systems, but useful and important for solving practical knowledge
base-related tasks:

• Spatio-temporal analysis can be utilized for creating chronologies of how events
unfold and how they were discussed. Also, it helps to identify and track planned
events like protests. Both time and place can be specified on their own or be
relative to other temporal or spatial statements.

• Time and geographical “intervals” and hierarchy. When considering all elections
in Russia, it is important to consider mention in all of its cities and regions.
Also, time intervals can have different precision ranging from seconds to years
and centuries. Temporal and spatial hierarchies enhance quality of merging
different mentions of presumably same real-life events when they have different
descriptions.

• Language-independent ontology. Although text processingmethods in the system
are language-dependent, the resulting facts are independent, so that one real-life
event can have multiple mentions in different languages.

• Special events for indirect speech and quotations are handy for analysts as they
get an option to compare different judgments on the same topic, validate expert
opinions, and search for discrepancies in someone’s opinion. As they also have
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time and place, it is possible to analyze statements like “John said yesterday that
Sandy is going to be in Portland tomorrow”. If opinion was published July 4,
then first event is “Sandy visiting Portland on July 4”, and the second one is
quotation event published on July 4 and containing John’s opinion as of July 3
and a reference to the first event.

• Temporal analysis requires culture detection because depending on language,
hemisphere, and other contextual data, it is difficult to interpret dates, time of
year, the first day of a week, and so on [7].

• Whenworkingwith constantly changing data, it is important to preserve fragments
of text with mentions of event. For example, mainstreammedia sources often edit
news articles—and being able to see this is useful for analysts.

• Sentiment analysis is not related to ontologies, but maintaining author sentiment
for every mention is convenient for analysts. For example, it enables analysis of
general sentiment regarding authors from specific countries or specific types of
media.

• Sometimes there is no rule or event type available for linking adjacent entities
in text, but for practical reasons, this kind of links should also be preserved and
presented to users. It can be done with a special attribute “related entities” in every
event.

• Ontologies and knowledge bases are often viewed as something static, but as they
have the power to be the ultimate source of data in knowledge-based systems, it
is wise to continuously update them as new data arrive and populate them with
new facts. For instance, ontologies can easily be a data source for an interactive
dashboard or search system.

• In practice, it is often better to implement knowledge bases on top of conven-
tional technologies like document-oriented or relational databases and encap-
sulate them through API. For some reason, software development engineers are
sometimes biased toward technologies like RDF, OWL, SPARQL, logic program-
ming, Prolog, first-order logic, and try to avoid them. As these technologies
are seldom mainstream, they obstruct widespread adoption of ontologies. Thus,
researchers need to communicate that knowledge-based systems are not tied to
research community tools and can make use of conventional technologies as well.

23.4 Implementing Ontology Construction for the Internet

Internet and other sources nowadays are acting as amirror of real-world events: Every
second, countless people send and describe things that they experience, companies
upload and produce tons of documents, armies of journalists and bloggers interpret
and follow events, conduct citizen investigations, and analyze different sources. For
example, every minute, Twitter users send more than 511,000 tweets, Tumblr users
publish 92,000 posts, 188,000,000 million emails are sent, and 277,000 Instagram
stories are posted [8].



348 M. C. Ridley

In some sense, the Internet along with social networks can be considered a giant
crowdsourcing platform for a wide variety of topics. It is well-known that general-
purpose event information such as published in mainstream media can be extracted
from the Internet as well. However, it is also true for a wide range of specialized
topics like cybersecurity. For instance, 75.8% of CVE vulnerabilities related to the
Linux kernel were exposed before their official disclosure as 0-day vulnerabilities
with the average time advance of 19 days [9]. Also, 100% of NIST CVEs were also
published and described on Twitter [9]. Another example is disaster and emergency
monitoring used by agencies such as US FEMA and the UN Office for Coordination
of Humanitarian Affairs for day-to-day operations [10].

It must be noted that along with the aforementioned abundance of relevant data,
the Internet has some special traits:

• It has to be scanned regularly and in a distributed fault-tolerant manner as new
information is generated extremely fast and is very diverse.

• Storing all collected data is economically unfeasible and technically impractical,
thus requiring special tactics for getting rid of unneeded data.

• Relevant niche sources like specialized groups in social networks are important
for achieving minimal delays.

• Asmultiple sources and people discuss same events, their descriptions are diverse,
written in different languages, duplicated, and merged in other discussions. Also,
people might have inconsistent views on the event. Even more important, most
significant events evolve and change over time.

• All sources have different markup, styles, page organization, and so on. Robots
have to be adapted for all major sources and be smart enough to extract text with
decent quality for secondary sources. Also, some sources like social networks
provide API directly or via data provider services like GNIP.

• Extracted text usually contains banners, ads, and other disturbing content that has
to be removed.

• Each extracted text appears in some context: media type, source URL, publi-
cation date and time, and for social media—authors, likes, reposts, etc. This
context is very helpful for both end-users like professional analysts and for the
system itself. It allows analyzing bias and sentiment of sources and authors toward
different topics, country and language biases, topics with very little interest in
social networks but forced by mainstream media, negative sentiment from people
along with a positive sentiment from mainstream media, silence on some topics
by official media, and other notable cases.

As Fig. 23.1 illustrates, texts on different natural languages should be analyzed via
a set of NLP tools and analytical modules to extract entities and events and populate
ontology with them. Also, ontology is recurrently updated with information from
external sources like GeoNames which provides geographical hierarchy, DBpedia,
and WikiData. External ontologies capture useful information such as government
officials, companies and their structure, industries, and technologies.

The system uses various NLP tools like Tomita parser, StanfordNLP, OpenNLP,
and Rosette EX along with custom extractors based on regular expressions, pattern
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Fig. 23.1 High-level architecture of computational linguistics subsystem

matching, and conditional random fields. The latter method is superior to other
ones like maximum-entropy Markov models because it has no label bias and does
not require modeling dependencies among observables. In addition to NLP tools,
analytical modules are used: culture detection, ontological part of entity resolution,
and so on.

Eventually, all events are labeled with type, temporal information, entities
involved, and which event attribute they belong to, related entities that are not
involved, mentions and their sentiment, source, and external context.

Our system is organized in layers as it is shown in Fig. 23.2. Each layer consists of
a set of microservices communicating through a messaging system. Web harvester
subsystem is responsible for mining text data from the Internet. It takes a list of
sources and robots as input and produces unstructured texts free of unwanted content
and context: time of access, time of publication according to the source, author, URL,
etc.

Computational linguistics subsystem takes as purified texts from the harvester
subsystem as input. Its output is a set of XML-formatted text fragments with high-
lighted entities, events, temporal and spatial labels, and so forth. It should be empha-
sized that this subsystem is the only place in the system that depends on a language.
Support of a new language is implemented by adding a new module for it in this
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Fig. 23.2 Dataflow between system layers and modules

subsystem. Everything else in the system is dependent on extracted facts, but not the
text itself.

Storage subsystem takes from XML-formatted snippets as input and parses them.
As a result, mentions are formed and stored across a distributed NoSQL database
and full-text search solution. Also, integration module of the subsystem provides
an external REST API for querying “ontology slices” in JSON by using structured
queries formed as a set of events, entities, and attribute filters. This API is used by
Web UI of a system as well as external client systems.

Data analysis modules recurrently visit mentions storage for a purpose of refining
and confirming data in the ontology and supplementary data. Some of them are data
enrichment modules: they weaken unlikely events, compute domain-specific metrics
for users, merges event mentions into real-life events, etc.

23.5 Discussions and Conclusions

We developed a system that collects massive amounts of texts from the Internet,
analyzes them, builds the entity-event ontology, and presents it to the end-user as a
knowledge base [11, 12].
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As it is always hard to evaluate ontology learning and relating tasks, we used a
slightly different evaluation approach. Given that system supports structured queries
and can be used for exploratory search, we formulated 15 queries with interpretations
like “Which countries suffered from earthquakes and floods in 2015–2019?”, “What
are Vladimir Putin’s international visits in summer 2019?”, “What exploit kits are
made in 2018?”, “What world leaders didDonald Trumpmeet in years 2018–2019?”.
We used human assessors to obtain true answers for each query.

Comparing true answers with the system’s ones, we found that precision is 0.91
and recall is 0.68. It should be noted that precision is substantially high, while recall
is unremarkable. One of the reasons is that when some event is described using a set
of rules, they are usually relevant and rigorous, but they are always incomplete: it is
difficult to capture allways of saying something. This problemcanprobably be solved
by taking advantage of new methods like neural machine translation mentioned in
[5]. Although it is unlikely that they are capable of achieving such high precision
nowadays, they can possibly be combined with the existing ones to improve recall
without significant loss of precision.

The first release of a system was tailored to the needs of civil aviation and was
used in the following tasks:

• Safety occurrence reports’ analysis in Aviation Safety Network.
• Structuring and navigating through technical specifications and local regulations.
• Social media interaction and brand monitoring for airlines.
• Monitoring and analysis of international civil aviation news and new regulations.
• Early risk identification (natural disasters, political changes, etc.).
• Exploratory enterprise search among contracts, documents, supporting documen-

tation, work regulations, instructions, reports, etc.

Another result is that extracted information can be used as informative features in
machine learning tasks for the target domain. For example, we used system to predict
protests in Moscow, Russia during 2011–2020 based on social network data with
an overall accuracy of 72.4%. Also, it was successfully used to enhance document
classification and clustering algorithms by providing high-informative extra features.

Moreover, it can be viewed as an automatic text corpus processing method that
allows using of classic statistical and data analysis methods by extracting domain-
specific information from text. As extracted knowledge is highly structured and easily
operated, it can be used by such methods without any further reference to the source
texts.
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Chapter 24
3D Object Classification, Visual Search
from RGB-D Data

Vadim L. Kondarattsev , Alexander Yu. Kryuchkov ,
and Roman M. Chumak

Abstract In this chapter,we consider the problemof creating a system for processing
3Dmodels obtained usingRGB-D sensors for the purpose of semiautomatic selection
and classification of objects and their auto-completion based on visual search. We
have proposed several heuristic preprocessing algorithms for selecting an object
of interest on a scan that contains noise and extraneous objects. To implement the
visual search algorithm, we obtained a modification of the ray casting 3D-shape
feature extraction algorithm. To solve the classification problem, the possibility of
using deep learning architectures based on convolution mechanisms on graphs is
investigated. The information about the object class obtained during the classification
stage is used for faster and more accurate auto-completion. The resulting system has
been tested on real data.

24.1 Introduction

In recent years, space scanning technologies using depth cameras and lidars have
become widespread. This is due to the active development of such areas as
autonomous vehicles, augmented and virtual reality, medical scanning, computer
vision, and robotics. With an increasing number of 3D datasets and various tasks
related to processing such data, creating systems for automatic detection and
auto-completion of objects in 3D scenes becomes especially important.
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In this chapter, we consider the problem of semiautomatic detection and clas-
sification of three-dimensional objects in three-dimensional scenes. Scene data is
obtained by scanning the surrounding area using depth cameras. Detection (selec-
tion) of objects is performed using classical preprocessing methods: noise removal,
deletion of supporting surfaces, and unnecessary objects. Deep learning methods are
used to classify the object highlighted in the scene.

In Sect. 24.2, we present a comparative analysis of existing deep learning architec-
tures designed for semantic segmentation of point clouds. Based on this analysis, we
justify the choice of theLDGCNNarchitecture [1] for implementing the classification
stage of the model. In Sect. 24.3, we consider the formal formulation of classification
and search problems for 3D models (also named as meshes), and introduce all the
necessary terms and mathematical constructions. In Sect. 24.4, we look at various
aspects of data preprocessing. In particular, to highlight an object of interest on a 3D
scene, we introduce heuristic algorithms for removing the floor and foreign objects.
For the problem of classification using a neural network, we introduce an algorithm
for preprocessing 3D models made by 3D artists, which allows us to diversify the
input data and bring it closer to the real raw data obtained from scanners. Raw data,
which is usually represented in the form of a point cloud, does not allow creating
visualizations of desirable quality. Therefore, separately in Sect. 24.5, we considered
the problem of the automatic completion of a 3D scene with objects from a database
of polygonal 3D models. In order to find the closest-shaped model in the dataset,
we will need to solve the problem of searching in the space of three-dimensional
models. For this purpose, we have developed an algorithm based on the ray casting
method to obtain the descriptive representation of 3D model [2]. In Sect. 24.6, we
present conclusions from the work done and discuss further work on the application
of the considered algorithms and their improvement.

24.2 Related Work

From the point of view of classical machine learning, the task of constructing such
an algorithm is usually divided into two subtasks:

1. Selection of informative features from the entire description of the object.
2. Application of machine learning algorithm (classification, clustering, etc.) to the

selected description.

The first subtask is traditionally based on a good understanding of the subject area
and the specifics of data. Thus, for example, in [3], the authors obtained an effective
algorithm for extracting informative features from a point cloud. Firstly, for each
point from the point cloud, the optimal, in the sense of proximity by some metric,
number of points is the nearest neighbors for the selected subset of points. Then the
covariance matrix is calculated, and its own vectors are used to construct various
information signs.
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However, in recent years, with the rapid development of the field of deep learning,
approaches based on the use of deep neural networks, which allow combining the
stage of feature selection and classification into one algorithm, are becoming more
popular. One of the ways to build taxonomy of deep architectures for processing
a point cloud can be a method based on the division of architectures into classes
depending on how the input data is processed. Thus, for example, in [4], authors
divide all architectures into direct methods and indirect ones.

Indirect architectures do not process the initial point cloud, but some interme-
diate representation (it can be voxelized models or a set of point cloud images in
RGB-D format). Most often, indirect methods are inferior in quality to direct ones,
and besides, they are more expensive in terms of memory (you need memory to
store intermediate forms of data) and of time (you need time to get an intermediate
representation).

On other hand, the direct methods of deep learning for solving the problems of
processing a point cloud, similar to the study [4], can be divided into different classes
of methods, depending on the types of operators—hidden layers used in building of
the architecture or depending on the modification of the basic architecture of deep
learning, based on which specific methods have been developed.

In order to select a deep learning model for solving the point cloud classifica-
tion problem, we performed a comparative analysis of quality metrics from various
sources mentioned in [4]. The comparison results are shown in Table 24.1. The
comparison was made for datasets [5–8]. The following metrics from [4] were
considered for comparing models:

• Overall accuracy.
• Mean accuracy.
• Mean intersection over union.

As a result, the LDGCNNmodel [1] was chosen for the practical implementation
in the automatic object classification system. This method is a direct method, and it
is based on modification of the GCNN architecture [9].

24.3 Formal Statement of the Problem

Our global task is divided into three stages:

1. Preprocessing of the polygon models.
2. Classification of the selected polygon model.
3. Autocomplete based on a search among similar models of the same class that

was defined at the previous stage.

Before proceeding to the description of the main stages, it is necessary to describe
how this data is presented in a more formal form. The classification of polygonal
models will be solved as the classification of the point cloud problem.At themoment,
this solution is associated with the possibility of using a broader class of algorithms
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Table 24.1 Comparison of metrics for deep learning models for semantic segmentation of point
clouds

Architecture Dataset Overall accuracy Mean accuracy Mean intersection
over union

SEGCloud S3DIS – 57.35 48.92

RSNet S3DIS – 59.42 51.93

RSNet ScanNet – 48.37 39.35

RSNet ShapeNet-part – – 84.9

LDGCNN ModelNet40 92.9 90.3 –

LDGCNN ShapeNet-part – – 85.1

SpiderCNN ModelNet40 92.4 – –

SpiderCNN ShapeNet-part – – 85.3

PointNet++ ModelNet40 90.7 – –

PointNet++ ScanNet (with
voxelization)

84.5 – –

MVCNN ModelNet40 90.1 – –

VoxNet ModelNet40 – 83 –

SO-Net ShapeNet-part – – 84.6

SO-Net ModelNet40 90.8 – –

RGCNN ShapeNet-part – – 84.3

RGCNN ModelNet40 90.5 87.3 –

3DMAX-Net S3DIS 79.5 – 47.5

PointSIFT S3DIS 88.72 – 70.23

PointSIFT ScanNet 86.2 – 41.5

PointGrid ModelNet40 92.0 88.9 –

PointCNN ModelNet40
(pre-aligned)

92.5 88.8 –

PointCNN ModelNet40
(unaligned)

92.2 88.1 –

PointCNN ScanNet 85.1 – –

PointCNN S3DIS 88.1 – 65.39

PointCNN ShapeNet-part – – 84.6

GAPNet ModelNet40 92.4 89.7 –

GAPNet ShapeNet-part 92 84.7 –

A-CNN ModelNet40 92.6 90.3 –

A-CNN ScanNet 85.4 – –

A-CNN S3DIS 87.3 – –

A-CNN ShapeNet-part 86 – –

3P-RNN S3DIS 86.9 73.6 56.3

(continued)
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Table 24.1 (continued)

Architecture Dataset Overall accuracy Mean accuracy Mean intersection
over union

3P-RNN ScanNet 76.5 – –

DGCNN ShapeNet-part – – 85.1

DGCNN S3DIS 84.1 – 56.1

to solve the problem, although there are methods for processing polygon models
directly. The classification of point clouds was chosen because actual scans from
devices are often incomplete and subject to various distortions. As a result, the use of
methods for classifying meshes becomes more difficult because the training models
do not match the real examples.

Hereinafter, Sect. 24.3.1 discusses point cloud data and point clouds classification.
Mesh data and meshes classification are described in Sect. 24.3.2. Searching among
polygonal models is presented in Sect. 24.3.3.

24.3.1 Point Cloud Data and Point Clouds Classification

The original problem can be formulated as a classification problem for a set of points

Pn,k =
{
xi |xi = (

xi1, x
i
2 . . . , xik

)T ∈ R
k
}n

i=1
, where n is the number of points and k

is the dimension of the space.Weneed to find the function: K = C
(
Pn,k

)
,where K =

{1, 2, . . . , NC} and NC is the number of classes. To solve the classification problem,
we will use a neural network. As a result, the classification itself consists of several
stages: C

(
Pn,k

) = (NC ◦ N )
(
Pn,k

)
, where P ′s,k = N

(
Pn,k

)
is the preprocessing

function and for s ≤ n, K = NC
(
P ′s,k) is the direct classification algorithm. Next,

we will describe how each of these functions works.

24.3.2 Mesh Data and Meshes Classification

As a result of scanning, it is also possible to get a polygon
model in the form Mn,m = (Vn, Fm), where Fm ={
f l = {i, j, k}|xi , x j , xk ∈ Vn,

(
xi , x j , xk

) − form a polygon
}
is a set of faces, Vn

is a set of vertices,m is the number of faces, l ∈ {1, 2, . . . ,m}, i, j, k ∈ {1, 2, . . . , n}.
We assume that all models are triangulated.

For a polygonal model, we introduce the concept of a surface in the same way as it
was done in [2]. To do this, we first define the concept of the surface of an elementary
triangular polygon as a set of points in the polygon plane bounded by the polygon
faces:
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Fig. 24.1 Main preprocessing steps that must be performed to classify the object received from
the scanner

Tl = {v ∈ R
3|v = αxi + βx j

+ (1 − α − β)xk, α, β ≥ 0, α + β ≤ 1},

where f l = {i, j, k} ∈ Fm, xi , x j , xk ∈ Vn . Then, we will define the surface I of the
polygon model Mn,m = (Vn, Fm) as the union of polygon surfaces that this model
consists of: I

(
Mn,m

) = ⋃m
i=1 Ti .

We shall say that axis-aligned bounding box (AABB) of the polygon model is a
set of eight points in space:

B
(
Mn,m

) = {
x1min, x

1
max

} × {
x2min, x

2
max

}

× {
x3min, x

3
max

}
,

ximin = min
x∈Vn

xi , x
i
max = max

x∈Vn

xi .

Volume of the bounding box we denote as:

Volbb
(
Mn,m

) =
3∏

i=1

(
ximax − ximin

)
.

Geometric center cg of the bounding box is a point in space of the following type:

cg
(
Mn,m

) = 1

2

(
x1min, x

2
min, x

3
min

)T + 1

2

(
x1max, x

2
max, x

3
max

)T
.

The CM
(
Mn,m

)
classification problem is reduced to the C

(
Ps,3

)
classification

problem, where Ps,3 = (SM ◦ FM)
(
Mn,m

)
, M ′

k,l = FM
(
Mn,m

)
, M ′

k,l = (
V ′
k , F

′
l

)
is a

polygon model after filtering (with removed isolated polygons, removed individual
vertices, etc.), and Ps,3 = SM

(
M ′

k,l

)
is a function for converting mesh to point cloud.

All stages can be represented as a diagram (see Fig. 24.1).

24.3.3 Searching Among Polygonal Models

Let O = {
Mki ,li

}n
i=1 be a set of polygonal models, where n is a number of models. In

our case O is a kind of database with polygonal models. We assumed that a measure
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of difference is defined for any two models:

d = ρ
(
Mp,s, Mk,l

) ∈ [0; 1].

The difference measure is based only on the model geometry. Themore dissimilar
the models are in shape, the greater the d value. Our goal is to find the set of models
Rr

(
Mp,s, O

) ⊂ O, r = 1, 2, . . . , n, where elements of the set are the most similar
models for the source model Mp,s . We will construct this set in the following way:

Rr
(
Mp,s, O

) =
k⋃

i=1

Ri ,

Ri = arg min
M∈O/

⋃i−1
l=1 R

l
ρ
(
Mp,s, M

)
,

0⋃
i=1

Ri = ∅,

k = min
k∈{1,2,...,n}

{
k:

∣∣∣∣∣
k⋃

i=1

Ri

∣∣∣∣∣ ≥ r

}
.

If the number of models in union
⋃k

i=1 R
i is less than r , then we will randomly

choose r −
∣∣∣⋃k

i=1 R
i
∣∣∣ models from the set Rk .

24.4 Data Preprocessing

In this section, preprocessing of polygonal models is considered in Sect. 24.4.1,
while point cloud classification is described in Sect. 24.4.2.

24.4.1 Preprocessing of Polygonal Models

For more clarity and tests on real data, we scanned a small area of the room using
a depth camera. The result of scanning in the form of a polygon model is shown in
Fig. 24.2.

We assumed that the object of interest (table) is located near of bounding boxes
geometric center. Here, under the bounding box, we understand AABB of the entire
scan.

If we look at the source data, we can notice several things that prevent us from
selecting the desired object:
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Fig. 24.2 Input scan as polygonal model

• Noise. All sensors have an error that leads to the appearance of various artifacts.
For example, isolated polygons and vertexes that hangs in the air.

• Floor and walls. The object we are interested in is standing on some kind of
support surface. It is usually not needed for further analysis.

• Presence of foreign objects. For example, on the scan above (see Fig. 24.2), we
can see scanned foreign objects (a heater, parts of bags, etc.) that are not required
for further analysis of the object of interest.

We need to complete several stages of raw data preprocessing before we can select
the object we are interested in.

The removal of the support surface. To remove the reference surface,weproposed
a heuristic algorithm and implemented it using the Blender Python API. The main
idea that the algorithm is based on is that polygons belonging to the floor are located
at a low height, and their normals are not strongly deviated from the horizontal
direction vector. The input to the algorithm is a polygon model Mn,m = (Vn, Fm)

and parameters α, β. The algorithm consists of the following steps:

1. Let D = ∅ be the set of polygons that belong to the floor (the reference surface).
2. Let us set the parameters α, β ∈ (0; 1), where α determines the fraction of the

height ofAABB, atwhich the reference surface can be located, andβ = 1−cos γ ,
where γ is a maximum angle of deviation of the polygon normal from the vector
up = (0, 0, 1)T , which shows the “up” direction.

3. Compute AABB: B
(
Mn,m

)
of polygonal model Mn,m = (Vn, Fm).

4. Compute the height of AABB: h = x3max − x3min.

5. Compute hmax = α × h.

6. For each polygon pg = {r g, t g, sg} ∈ Fm, g = 1, 2, . . . ,m:

a. Compute point x = xr
g

∧

+xtg
∧

+xsg
∧

3 , where
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Fig. 24.3 3D scene on different stages of preprocessing: a original scan, b floor detection, α =
0.3, β = 0.2, c connected component, d objects with too small number of vertices, α = 0.05,
e objects that are too far from center of bounding box, β = 0.2, and f object of interest

b. Compute polygons normal ng =
[
xt

g
∧

− xr
g

∧

, xs
g

∧

− xt
g

∧]
, where [·, ·] denotes

a vector product.
c. Let ‘us make this normal of unit length: n̂g = ng/‖ng‖, where ‖·‖ denotes

Euclidian norm.
d. If x3 − x3min ≤ hmax and

∣∣ng3
∣∣ ≥ 1 − β, then we add pg to the set D: D =

D ∪ {pg}.
7. Remove vertices and polygons of D set out of initial modelMn,m = (Vn, Fm).We

will get a new model M ′
e,r = (

V ′
e , F

′
r

)
, where F ′

r = Fm/D, r = m − |D|, V ′
e =

∪
f ∈F ′

r

{
xl |xl ∈ V ′

n

}
l∈ f and e is a number of vertices in model after removing floor

polygons.

The result of applying the algorithm described above on a real scan is shown in
Fig. 24.3.

Removing noise and foreign objects. To remove noise polygons and foreign
objects, we proposed a heuristic algorithm and implemented it using the Blender
Python API. There are several basic ideas that this algorithm is based on: first, the
object of interest is most often detailed and contains the largest number of polygons
on the scan, and, second, under the assumption that the object of interest is close to
the geometric center of the scan (in the sense of a bounding box), we can delete other
objects that are not related to the object of interest and are located further from the
geometric center. The input to the algorithm is a polygon model Mn,m = (Vn, Fm)

and parameters α, β. The algorithm consists of the following steps:

1. Compute AABB—B
(
Mn,m

)
of polygonal model Mn,m = (Vn, Fm).

2. The model is divided into connected components. Each component is a set of
connected polygons. We can consider the polygon model Mn,m = (Vn, Fm) as a
spatial undirected graphG with a set of vertices coinciding with Vn , and the set of
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edges is defined by the vertices belonging to polygons, i.e., if two vertices belong
to the same polygon, then there is an edge in the graph between them. Then, the
set of connected polygons is formed as the set of connectivity components of an
undirected graph G [10]:

Mn,m = (Vn, Fm) = k∪
i=1

Mni ,mi = k∪
i=1

(
Vni , Fmi

)
,

Fmi ∩ Fm j = ∅, i, j = 1, . . . , k, i �= j,

where k is the number of connectivity components of graphG, Vni are the vertices
that belong to the connectivity component with number i , Fmi are the polygons
that are formed by vertices from Vni .

3. For each set of vertices Vni of model Mni ,mi = (
Vni , Mmi

)
, we compute its

geometrical median mi [11]:

mi = arg min
y∈R3

∑
x∈Vn

‖y − x‖, i = 1, . . . , k.

4. Let us set the parameter α ∈ [0; 1] is the ratio of the maximum assumed number
of vertices in noise objects to the number of scan vertices,β ∈ [0; 1] is the ratio of
the minimum distance of the geometric median from the center of the bounding
box B

(
Mn,m

)
.

5. Compute dmax =
(
x1max−x1min

2

)2 +
(
x2max−x2min

2

)2
.

6. Let ‘us create a set of objects of interest S = ∅.

7. For each model Mni ,mi = (
Vni , Fmi

)
with i = 1, . . . , k :

a. If ni > α · n and (m1−dmax
1 )

2+(m2−dmax
2 )

2

dmax ≤ β, then we add Mni ,mi to the set
S: S = S ∪ {

Mni ,mi

}
.

8. Wewill get a newmodelM ′
k,l = (

V ′
k , F

′
l

)
,where V ′

k = ⋃
(V,F)∈S

V, F ′
l = ⋃

(V,F)∈S
F .

The result of applying this algorithm to the scan with the removed floor obtained
at the previous stage is shown in Fig. 24.3.

As a result, the Fm function consists of algorithms: removing the reference surface
and removing noise along with extraneous objects. The implementation of these two
algorithms is available on our GitHub page [12].

24.4.2 Point Cloud Classification

As mentioned above, we chose the implementation of the LDGCNN architecture to
classify the selected model. The model was trained from scratch based on the Model
Net 40 dataset, which, like most other 3D datasets, consists of models drawn by 3D
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Fig. 24.4 Main steps scheme of preprocessing for neural network learning process

artists rather than scanned. In order for the trained model to better cope with the
classification of real objects, the data on which it is trained must be modified.

Data preprocessing for the neural network learning process consisted of the
following steps:

1. Converting a polygon model to a point cloud with a fixed number of points.
2. Initial scaling of the point cloud.
3. Random rotation around the axis that sets the direction “up”.
4. The addition of noise.
5. Random scaling.
6. Small random rotation.
7. Random translation.

All these steps define N function and schematically represented in Fig. 24.4. The
NC function is reduced to using the LDGCNN architecture to define the object class.

Converting polygonal models to point clouds. At this stage, we need to define
the function Sm , which converts the model Mn,m to a point cloud Pk,3. During the
model training process, we fixed the number of points in the point clouds with value
k = 1024. Source data with point clouds for training was stored in HDF5 format.
From the scan, the results were converted using Open3D for Python [13]. Example
of point cloud sampling with k = 1500 is shown on Fig. 24.5.

Initial scaling. This transformation of the point cloud is arranged so that each
point is located after the transformation in a unit sphere. To do this, we first need to
calculate AABB −B

(
Pk,3

)
. The scaling factor s is calculated as follows:

s = 2 ·
∥∥∥(
x1max, x

2
max, x

3
max

)T − (
x1min, x

2
min, x

3
min

)T∥∥∥
−1

.

As a result, we get a point cloud of the form:

Pk,3
c = {

x ′|x ′ = s × x, x ∈ Pk,3}.

Random rotation around “up” axis. This operation is necessary to get a new
point cloud rotated around the y axis. We will define this direction as “up” in our



364 V. L. Kondarattsev et al.

Fig. 24.5 Conversion mesh
to point cloud with k = 1500

work. As a result, we get a point cloud of the form:

Pk.3
r =

⎧
⎨
⎩x ′|x ′ =

⎛
⎝

cosφ 0 sin φ

0 1 0
− sin φ 0 cosφ

⎞
⎠x, x ∈ Pk,3

c

⎫
⎬
⎭,

where φ ∼ U (0, 2π) is a random variable with a uniform distribution on [0, 2π ].
Noise addition.This step is necessary because in practice the data from the sensors

are subject to various distortions. Because of this, the geometry of objects is not so
“perfect” compared to the examples in the training dataset. For the stability of the
classification, a small noise is artificially added to the training examples. As a result,
we get a point cloud of the following type:

Pk.3
j = {

x ′|x ′ = x + (ε1, ε2, ε3)
T , x ∈ Pk,3

r

}
,

where εi ∼ N
(
0, σ 2

)
is the independent random variables with normal distribution,

mathematical expectation equal to zero and variance equal to σ 2. During network
training, the following distribution parameters were set: σ = 0.01, If εi > 0.05,
then it was fixed equal εi = 0.05, if εi < −0.05, then it was fixed equal to εi =
−0.05, i = 1, 2, 3.

Random scaling. This operation is necessary to get a new point cloud of the form:

Pk.3
s =

{
x ′|x ′ = s × x, x ∈ Pk,3

j

}
,

where s ∼ U (a, b). During network training, the following parameters were set:
a = 0.8, b = 1.25.

Small random rotation. This operation is necessary to get a new point cloud that
is rotated at small angles relative to different axes:
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Pk.3
rr = {

x ′|x ′ = Rz × Ry × Rx × x, x ∈ Pk,3
s

}
,

Rx =
⎛
⎝
1 0 0
0 sin φ1 − sin φ1

0 sin φ1 cosφ1

⎞
⎠, Ry =

⎛
⎝

cosφ2 0 sin φ2

0 1 0
− sin φ2 0 cosφ2

⎞
⎠,

Rz =
⎛
⎝
cosφ3 − sin φ3 0
sin φ3 cosφ3 0
0 0 1

⎞
⎠,

where Rx , Ry, Rz are the rotationmatrices around themain axes,φi is the independent
random variables with normal distribution φi ∼ N

(
0, σ 2

)
. During network training,

the following parameters were set: σ = 0.06, if φi > 0.18, then it fixed equal to
φi = 0.18, if φi < −0.18, then it fixed equal to φi = −0.18, i = 1, 2, 3.

Random translation. This operation consists of randomly translating each
polygonal model in the training dataset in parallel:

Pk.3
j = {

x ′|x ′ = x + c, x ∈ Pk,3
rr

}
,

where c = (ε1, ε2, ε3)
T , εi ∼ U (a, b), i = 1, 2, 3 are the independent random

variableswith a uniformdistribution on [a, b].During network training, the following
parameters were set: a = −0.1, b = 0.1. A fixed vector was generated for each
example during the training process.

Model fitting. Training the model on the NVIDIARTX 2080Ti GPU took approx-
imately 7 h. 250 epochs were completed for training the main model and 100 epochs
for training the classifier. LDGCNN is a model that needs to be trained in two stages:
training the main part to extract features and training the classifier with a fixed model
for features. The implementation of LDGCNN, which is available on GitHub [14],
was used as a basis. The average class accuracy [15] value on the test set is equal
to 0.900255. An accuracy evaluating graph during training of the feature extraction
part is shown in Fig. 24.6.

24.5 Ray Casting Descriptive Representation of 3D Models

To make it easier to work with 3D model after classification, the actual scanned
object can be replaced with 3D model from the database of ready-made models (in
this sense, we will assume the procedure of 3D scene auto-completion). Of course,
there may not be an exact copy of the scanned model, but if the model from the
database is close enough in terms of surface shape and class, then working with such
a model can be much more convenient.

There are different ways to organize the search procedure for different types of
data. One of such approaches is the search based on a descriptive representation of
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Fig. 24.6 Train set accuracy evaluation

3D models. In this chapter, we propose our own heuristic algorithm for the descrip-
tive representation of 3D models based on the ray casting method and a method
for comparing such descriptive representations. There are also many other ways to
construct descriptors for 3Dmodels. For example, a whole group of methods is based
on calculating themoment characteristics of a polygonmesh. Themost relevant work
devoted to the construction of moment descriptors is [16], in which authors used
three-dimensional Zernike moments. Comprehensive information about methods of
constructing descriptive representations (descriptors) for 3D models can be found in
the doctoral dissertation [2].

In order to describe the descriptors constructing algorithm, let ‘us first introduce
all the necessary operators and concepts in Sect. 24.5.1. Description and search are
discussed in Sect. 24.5.2. Section 24.5.3 provides a description of experiments.

24.5.1 Constructions and Operator

Rays whose lengths will be used to construct a descriptive representation of the
mesh will be emitted from points of the unit icosphere Icon,m = {

V ico
n , P ico

m

}
, where

V ico
n are the icosphere mesh vertices and P ico

m are the icosphere mesh polygons [17].
Icosphere’s main feature, which we will use, is that all its vertices belong to the
surface of a two-dimensional sphere xi ∈ S2 (S2 is the surface of a two-dimensional
sphere).
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To ensure that the model processing does not depend on the method of triangula-
tion or orientation of the model, the choice of the model center that will be combined
with the center of the icosphere also should not depend on the method of triangula-
tion and orientation of the model. As the center of the model, we will use the center
of the minimum volume bounding box [18], which we denote as cvol

(
Mn,m

)
.

Polygonal model Mn,m need to be scaled to fit into a unit icosphere. To do this,
let ‘us determine the scaling factor:

ls
(
Mn,m

) = 1

max
x∈Vn

‖x‖ .

On the surface of the icosphere, we define a finite number of unit vectors oriented
to the center:

ui = −xi∥∥xi∥∥ , xi ∈ I
(
Icon,m

)
.

In case when we have a polygon model surface I
(
Mn,m

)
placed inside a unit

icosphere by scaling and translation, it is possible for each vector u and space line,
that this guide vector sets, define a vector R consisting of real numbers obtained
from the distances between origin of the u and points of intersection that line with
the surface of polygonal model. More formally, this vector can be defined:

R(u, I ) = (
r1, r2, . . . , r M

)
,

r i ∈ [0, 2], r i · u ∈ I ∪ v I ,

i ∈ {1, 2, . . . , M}, 0 ≤ r i ≤ r i+1 ≤ 2},

where v I is the vertex of the icosphere opposite the origin of vector u, and M is
the number of points where the ray intersects with the model surface. Note that
this vector always exists and consists of at least one element—the distance to the
opposite vertex of the icosphere, i.e., r M = 2. In the algorithm described below, we
will construct this set for all selected vertices of the icosphere vi ∈ Icon,m and for
the opposite vertices v′

i ∈ Icon,m (see Fig. 24.7).

24.5.2 Descriptization and Search

Usually, a descriptive representation is a vector [2], but in our case it will be a matrix
D4×N ∈ R4×N , which we will construct from N four-dimensional vectors:

D = (d1|d2| . . . |dN ), di = (
d1
i , d

2
i , d

3
i , d

4
i

)T ∈ R
4. (24.1)
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Fig. 24.7 Constructing R set for opposite icosphere vertices vi and v′
i

Let us describe the algorithm for converting a polygonal model Mn,m in its
descriptive representation D

(
Mn,m

)
.

Constructing the descriptors. The input of the algorithm is a polygonal model
Mn,m with its surface I

(
Mn,m

)
, number of vertices of icosphere is equal to 2N . As

a result, the algorithm returns descriptive representation of the model as a matrix
D4×N .

Steps of the algorithm are the following:

1. Themodel is placed inside a unit icosphere by scaling and sequentially combining
the origin of coordinates with the geometric center of the model’s minimum
volume bounding box:

2. All vertices of the icosphere form N pairs of opposite vertices vi , v
′
i , i =

1, . . . , N , which corresponds to the guide vectors ui , u′
i . Sets of ray lengths

are calculated for each such pair:

R(ui , I ) = (
r1i , r

2
i , . . .

)
,
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R
(
u′
i , I

) = (
r ′1
i , r ′2

i , . . .
)
.

Vector di is constructed in the form:

di = (
r1i , r

2
i , r

′1
i , r ′2

i

)
.

3. Descriptor matrix D formed from vectors di :

D = (
di1

∣∣di2
∣∣ . . . |diN

)
, where∀i j , i j+1, d

1
i j ≤ d1

i j+1
.

Let us make some comments about the algorithm described above:

• Because of the sorting procedure in step 3 ofAlgorithm1, it becomes impossible to
reconstruct themodel from its descriptive representation, because there are exactly
N !ways to order the element set, which means that one descriptive representation
of the form of Eq. 24.1 corresponds to several possible polygonal models.

• By entering into consideration, the distance not only to the nearest intersection
point with the model, as is done in [19], but also to the next intersection points
with the models surface, it is possible to achieve that polygonal models that have
the same external surface shape, but different internal structure will have different
descriptors.

• To find out the lengths of vectors r i , it is possible to use a computationally efficient
ray procedure with a plane from the work [20].

Next, we will construct an algorithm that allows us to calculate the similarity
measure between two descriptive representations described above. This measure
similarity is a function of the following type:

μ(D1, D2):R4×N × R
4×N → [0, 1].

In order to design a search algorithm based on the similarity of descriptive repre-
sentations in the future, it will be sufficient to use the metric ρ in the descriptor space
defined earlier in Sect. 24.3.3, let us define the distance function of the following
type:

ρ
(
Mp,s, Mk,l

) = 1 − μ
(
DN

(
Mp,s

)
, DN

(
Mk,l

))
,

where Mp,s, Mk,l are two polygonal models and DN
(
Mp,s

)
, DN

(
Mk,l

)
are their

descriptive representations in the form of Eq. 24.1 with dimensions shape 4×N . For
convenience of notation, two different descriptive representations will be written as:

D1 = (
d11

∣∣d12
∣∣ . . . |d1N

);
D2 = (

d21
∣∣d22

∣∣ . . . |d2N
)
.
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Similarity measure of descriptors. The input of the algorithm is a descriptive
representations of two models D1, D2, proximity threshold value ε ≥ 0. As a result,
the algorithm returns similarity measure μ(D1, D2) between two descriptors.

Steps of the algorithm:

1. Let 
 be a set of vectors from the second descriptive representation D2, that
have not yet participated in the comparison process. At the beginning, this set
coincides with the set of vectors that the second descriptor consists of 
 ={
d21, d22, . . . , d2N

}
.

2. Also enter into consideration n that is the number of vectors for two descriptors
that are close to each other in the sense of the metric:

ρ ′(x1, x2) =
4∑

i=1

∣∣x1i − x2i
∣∣, x1, x2 ∈ R4.

At the beginning of the algorithm n = 0.
3. Let ‘us find the number of vectors pairs from two descriptors that lie no further

apart than the threshold distance. To do this, wewill iterate through all the vectors
d1i in the first descriptor D1.

3.1 For each d1i we will iterate over vectors from the set d2 j ∈ 
.
3.2 Calculate the distance ρ ′(d1i , d2 j

)
.

3.3 If this distance does not exceed the threshold value: ρ ′ < ε, then the vector
d2 j : 
 = 
\{d2 j

}
is excluded from further comparison, then we increase

the counter n = n + 1, otherwise, the set 
 traversal continues.

4. Iterating over all vectors from D1, we can calculate the similarity measure as a
ratio:

μ = n

N
.

Despite the fact that the algorithm was obtained empirically, in practice it shows
an acceptable quality of work.

24.5.3 Experiments

In our tests, we fix the number of vertex pairs on the icosphere equal to N = 640. This
number of points for emitting rays from the icosphere surface allows to achieve an
acceptable execution speed of the algorithmwith the search quality already stabilized.
When conducting tests, it was experimentally checked that the ranked output of the
search stops changing with increasing of N . Examples of such tests for various N
values are shown in Fig. 24.8.

The implementation of the algorithm iswritten in Python 3 andRust programming
languages and is released as an add-on for Blender 3D software.
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Fig. 24.8 For a subset of models (1000 models per category for 4 categories), we compared the
ranked results for different values of 2 · N (left column)

Fig. 24.9 Example of ranked output in the task of searching for the most similar shaped objects
from the ShapeNet dataset: the leftmost object is a search sample taken from the dataset itself, and
the other objects are ordered from left to right as the similarity index μ decreases (the value signed
above the objects)

Besides descriptive representations, there are other ways to compare 3D models.
For example, the distance function can be defined directly between two polygon
models. Similar to how it is done in [21], we will consider the chamfer distance and
the normal distance functions. For each ranked output of the search algorithm, we
will additionally calculate the values of these two distances between the object being
searched for and all other objects in the ranked output.

The results of the search algorithm are shown below. Figure 24.9 shows a ranked
search output for the closest-shaped objects from the ShapeNet dataset. The sample
object is a model from the dataset itself. It is notable that the closest model in terms
of similarity measures in the ranked category coincides with the model sample.

Figure 24.10 shows the values of chamfer loss and normal loss for ranked search
results from Fig. 24.9. It can be noted that despite the fact that all objects in the
search results are oriented in the same way and have the same scale, the indicators of
the loss functions do not allow to draw any qualitative conclusions about the search
results, which shows the need for the descriptive approach usage.

Figure 24.11 shows a ranked search output for the closest-shaped objects from the
ShapeNet dataset, where the sample object is a scanned object after preprocessing
stages. Figure 24.12 shows the values of chamfer loss and normal loss for ranked
output from Fig. 24.11.
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Fig. 24.10 Losses of pianos: a values of chamfer loss, b values of normal loss for objects from the
previous image (see Fig. 24.9). On the x-axis there are the objects indexes in the ranked output

Fig. 24.11 Example of ranked output in the task of searching for the most similar-shaped objects
from the ShapeNet dataset: the leftmost object is a sample for searching, obtained as a result of 3D
scanning and selected as an object of interest, the remaining objects are ordered from left to right
as the similarity index μ decreases (the value signed above the objects)

Figure 24.13 shows a situationwhere knowing the object class to search for similar
objects allows to achieve more correct results: when auto-completing a model from
the database, it will be replaced with the model of the right class.

24.6 Conclusions

This chapter demonstrates the possibility of using deep learning methods to create
a system for automatic 3D scanned objects classification. The choice of the appro-
priate deep architecture is based on a comparative analysis of existing SOTAmodels
executed on different datasets.

To select an object of interest from a large-scale space scan, we considered
preprocessing methods: noise data filtering, reference planes deletion, and removing
extraneous objects. An algorithm for descriptive representation of three-dimensional
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Fig. 24.12 Losses for tables: a values of chamfer loss, b values of normal loss for objects from the
previous image (see Fig. 24.11). On the x-axis there are the objects indexes in the ranked output

Fig. 24.13 Search algorithm result for the headphone model: among the “headphones” class of
models (top row) and among all models from ShapeNet dataset (bottom row). The first model in
both rows is the sample one. Above the models there are values of the similarity measure μ

models based on modification of existing methods of ray casting is obtained.
The possibility of using this descriptive representation to solve the problem of
searching among 3D models and using search results for 3D scene auto-completion
is demonstrated.

The system constructed from all the parts considered allows to automatically clas-
sify data obtained fromvarious scanners, search for duplicateswithin 3Ddatasets and
to design beautiful scenes by replacing objects with the similar but more qualitative
ones from 3D models collections as well.

In the future, we plan to improve the developed algorithms for description and
3D models search and try to use the resulting system for construction and analysis
of the 3D scenes semantic graphs [22]. Representation of spatial scenes by their
semantic graphs is a new actively developing area of 3DML thatwill allowus to better
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understand the geometric structure of the surrounding space and its relationships to
semantic information about objects.
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