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Abstract Twokinds ofmachinery to showregularity of solutions of bilateral/unilateral
obstacle problems are presented. Some generalizations of known results in the lit-
erature are included. Several important open problems in the topics are given.
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1 Introduction

In this survey, we overview regularity of solutions of obstacle problems associ-
ated with second-order uniformly elliptic partial differential equations (PDE for
short). Particularly, we show two different arguments to obtain estimates on solu-
tions of obstacle problems due to maximum principles. On the other hand, there have
appeared a huge amount of results concerning on regularity of solutions of variational
inequalities, whose typical example is the obstacle problem. However, our methods
here do not rely on integration by parts.

One of techniques here is the so-called Bernstein method, which is relatively
old, while the other is quite a new one. Inspired by an idea in [20], we have found
an interesting argument in [42], which can be applied to fully nonlinear PDE with
unbounded coefficients and inhomogeneous terms.

According to [52], it seems that Fichera [24, 25] first studied the Signorini problem
as a variational inequality, where a free boundary arises on the boundary of domains.
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Stampacchia in [54] announced variational inequalities in Hilbert spaces as a modifi-
cation of Lax-Milgram theorem. Later, Lions-Stampacchia in [46] introduced unilat-
eral obstacle problems in the whole domain as an example of minimization problems
associated with energy functionals over closed convex sets.

Afterwards, several regularity results on solutions of variational inequalities
appeared in [6, 7, 27, 44].

We shall first consider a minimizing problem of given energies under restrictions.
Fix a bounded domain � ⊂ R

n with smooth boundary ∂�. For a given ψ ∈ C(�),
which is called an upper obstacle, we set a closed convex set

K ψ := {u ∈ H 1
0 (�) | u ≤ ψ a.e. in �},

where H 1
0 (�) is the closure of C∞

0 (�) with respect to H 1(�) norm.
For any fixed f ∈ L2(�), by setting our energy

E[u] :=
∫

�

(
1

2
|Du|2 − f u

)
dx

for u ∈ K ψ, it is known that there is a unique u ∈ K ψ such that

E[u] = min
v∈Kψ

E[v].

Formally, we observe that

⎧⎨
⎩

−�u ≤ f in �,

u ≤ ψ in �,

−�u = f in {x ∈ � | u(x) < ψ(x)}.

Hence, we may write down this problem as a Bellman equation

max{−�u − f, u − ψ} = 0 in � (1.1)

under the Dirichlet condition u = 0 on ∂�.
Obstacle problems arise in various settings both from purely mathematical inter-

ests and from their rich applications. For later topics, we only refer to some text
books [3, 26, 34, 45, 53, 56] because it is too wide for this article to mention these
issues. We will concentrate on regularity of solutions of obstacle problems but not
on regularity of the free boundary, which may be more interesting subject. See [11,
14, 28] and references therein for this topics.

It is worth mentioning that for (1.1), we can only expect solutions to belong to
W 2,∞(�) in general even ifψ and f are smooth enough. The first example is a simple
one.
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Example 1.1 Let � := (− 5
4 ,

5
4 ) for n = 1, and ψ(x) = x2 − 1. We easily see that

u(x) :=
{ |x | − 5

4 ( 12 < |x | ≤ 5
4 ),

x2 − 1 (|x | ≤ 1
2 ),

satisfies

max

{
−d2u

dx2
, u − ψ

}
= 0 a.e. in �

under the Dirichlet condition u(± 5
4 ) = 0. We notice that this u is not twice differen-

tiable at x = ± 1
2 .

We next show the other example when there is a 0th order term of unknown
functions.

Example 1.2 Let � and ψ be the same ones as in Example 1.1. For the inhomoge-
neous term f ∈ C2(�), we choose

f (x) =
{ |x | − 5

4 ( 14 < |x | ≤ 5
4 ),−8x4 + 3x2 − 37

32 (|x | ≤ 1
4 ).

It is easy to verify that the same function u in Example 1.1 satisfies

max

{
−d2u

dx2
+ u − f, u − ψ

}
= 0 a.e. in �.

We next consider a minimizing problem under the other kind of restriction. Given
two obstacles ϕ,ψ ∈ C(�) satisfying the compatibility condition

ϕ ≤ ψ in �, and ϕ ≤ 0 ≤ ψ on ∂�, (1.2)

we introduce the closed convex set

K ψ
ϕ := {u ∈ H 1

0 (�) | ϕ ≤ u ≤ ψ a.e. in �}.

Again, it is known that there is a unique u ∈ K ψ
ϕ such that

E[u] = min
v∈Kψ

ϕ

E[v].

We observe that u satisfies at least formally

min{max{−�u − f, u − ψ}, u − ϕ} = 0 in �. (1.3)

This is a bilateral obstacle problem, which is an Isaacs equation while (1.1) is called
a Bellman equation for unilateral obstacle problems.
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Because of (1.2), it is easy to see formally that (1.3) is equivalent to the following
PDE:

max{min{−�u − f, u − ϕ}, u − ψ} = 0 in �.

Using the standard Euclidean inner product 〈·, ·〉, we consider the energy

E[u] :=
∫

�

(
1

2
〈ADu, Du〉 + 1

2
cu2 − f u

)
dx,

where A := (ai j ) : � → Sn is positively definite; ∃θ > 0 such that

〈A(x)ξ, ξ〉 ≥ θ|ξ|2 for any ξ ∈ R
n and x ∈ �. (1.4)

Here and later Sn denotes the set of real-valued symmetric matrices of order n.
When ai j ∈ C1(�) for simplicity, the minimizer of E[·] over H 1

0 (�) formally
satisfies

Lu = f in �,

where
Lu := −Tr(AD2u) + 〈b, Du〉 + cu.

Here, we set

b := (b1, . . . , bn) = −
⎛
⎝ n∑

j=1

∂a1 j
∂x j

, . . . ,

n∑
j=1

∂anj
∂x j

⎞
⎠ .

Hence, as before, we derive the Bellman equation associated with the minimization
of E[·] over K ψ:

max{Lu − f, u − ψ} = 0 in �.

Throughout this paper, we shall suppose that there is Mc > 0 such that

0 ≤ c(x) ≤ Mc for x ∈ �. (1.5)

If we suppose that c is positive in�, then particularly, L∞ estimates become easier to
prove. In fact, under (1.5), we need a perturbation function such as w in Proposition
2.1. We choose R0 > 0 such that

� ⊂ BR0 . (1.6)

Here and later, we set Br := {y ∈ R
n | |x | < r}, and Br (x) := x + Br for x ∈ R

n .
In this survey, we are concernedwith regularity of solutions for obstacle problems,

where the PDE part is given by the above linear second-order uniformly elliptic
operator L or Bellman-Isaacs ones. We will always assume that the existence of
(approximate) solutions of each obstacle problem. In Sects. 2 and 3, using Bernstein
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method, we obtain (local)W 2,∞(�) estimates on solutions of approximate equations
via penalization. We consider the case when the PDE part is linear with bilateral
obstacles in Sect. 2 while we deal with Bellman equations with bi- and unilateral
obstacles in Sect. 3. In Sect. 4, to show the Hölder continuity of the first derivative,
we apply the weak Harnack inequality to solutions of bilateral obstacle problems,
where the main PDE part can be of Isaacs type, and moreover, coefficients and
inhomogeneous terms can be unbounded. Since fully nonlinear PDE contain 0th
order terms in Sect. 4, we need to modify basic tools such as the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, weak Harnack inequality and
local maximum principle to PDE with 0th order terms. In Appendix, we present
those for the reader’s convenience.

2 A Linear Operator Case

Although some results in this section will be generalized in Sect. 3, we will present
those to clarify our basic argument.

In this section, for coefficients in the linear operator L , and obstacles, we impose
that

ai j , bi , f, c,ϕ,ψ ∈ C2(�). (2.1)

To introduce penalty equations, we need β ∈ C2(R) such that

⎧⎨
⎩

(i) β(t) = 0 for t ≤ 0,
(i i) β(t) grows linearly t >> 1,
(i i i) β′ ≥ 0 and β′′ ≥ 0 in R.

(2.2)

For instance, it is easy to verify that β ∈ C2(R) defined by

β(t) :=
⎧⎨
⎩
0 for t ≤ 0,
−t4 + 4t3 for t ∈ (0, 2),
16(t − 1) for t ≥ 2

satisfies all the properties in (2.2).
For ε ∈ (0, 1), we will use βε(t) := β(t/ε) for t ∈ R. Furthermore, we easily

observe that

there is Ĉ > 0 such that − Ĉ ≤ βε(t) − tβ′
ε(t) ≤ 0. (2.3)

We shall consider approximate equations with penalized terms:

Lu + βε(u − ψ) − βε(ϕ − u) = f in � (2.4)

under the Dirichlet condition
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u = 0 on ∂�. (2.5)

Hereafter, we will use the notations: for t, s ∈ R,

t ∨ s := max{t, s} and t ∧ s := min{t, s}.

For simplicity, we will write

uxi , uxi x j , etc. for
∂u

∂xi
,

∂2u

∂xi∂x j
, etc., respectively.

We also use the summation convention for repeated indices, e.g..

ai j uxi x j =
n∑

i, j=1

ai j uxi x j .

Proposition 2.1 (L∞ estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let uε ∈
C(�) ∩ C2(�) be solutions of (2.4) satisfying (2.5). Then, there is Ĉ > 0 such
that

−Ĉ max
�

f − − max
�

ψ− ≤ uε ≤ max
�

ϕ+ + Ĉ max
�

f + in � for ε ∈ (0, 1).

Proof We shall only prove the second inequality since the first one can be shown
similarly. We shall write u for uε for simplicity.

Setting C0 := max� ϕ+ ≥ 0 and C1 := max� f +, we shall suppose

� := max
�

{u − C0 − μ(C1 + δ)w} > 0.

Hereμ > 0, δ ∈ (0, 1) andw(x) := e2γR0 − eγ(x1+R0) > 0 for x = (x1, . . . , xn) ∈ �,
where γ ≥ 1, and R0 > 0 is from (1.6).

By letting x̂ ∈ � satisfy � = u(x̂) − C0 − μ(C1 + δ)w(x̂), (2.5) yields x̂ ∈ �.
Hence, at x̂ = (x̂1, . . . , x̂n) ∈ �, the weak maximum principle implies

0 ≤ −ai j uxi x j + biuxi + μ(C1 + δ)γeγ(x̂1+R0)(−a11γ + b1)
≤ f − cu − βε + βε + μ(C1 + δ)γeγ(x̂1+R0)(−θγ + |b1|). (2.6)

Here and later, to distinguish composite functions βε(u − ψ) and βε(ϕ − u), we use
the following notation:

βε(·) := βε(u(·) − ψ(·)) and βε(·) := βε(ϕ(·) − u(·)).

Thus, for a fixed γ := (max� |b1| + θ)/θ, (2.6) together with (1.5) implies
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θμ(C1 + δ)γ ≤ f − c{C0 + μ(C1 + δ)w} + βε ≤ f + βε at x̂ .

Since ϕ − u ≤ ϕ − C0 − μ(C1 + δ)w ≤ ϕ − C0 ≤ 0 at x̂ , this inequality yields

θμ(C1 + δ)γ ≤ f (x̂),

which is a contradiction for μ > 1/(θγ). Therefore, for fixed μ, γ > 0 in the above,
we have � ≤ 0, which concludes the proof. �

We notice that in the above proof, we do not need the whole of (2.1) but we do
not present “minimal” hypotheses on regularity of given functions for the sake of
presentations.

Proposition 2.2 (W 2,p estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let uε ∈
C2(�) be solutions of (2.4) satisfying (2.5). Then, there is C̃ > 0 such that for
ε ∈ (0, 1),

⎧⎨
⎩

‖βε(u
ε − ψ)‖L∞(�) ≤ max

�

f + + Mc max
�

ψ− + C̃‖Dψ‖W 1,∞(�),

‖βε(ϕ − uε)‖L∞(�) ≤ max
�

f − + Mc max
�

ϕ+ + C̃‖Dϕ‖W 1,∞(�).
(2.7)

In particular, for each p ∈ (1,∞), there is C̃ p > 0 such that

‖uε‖W 2,p(�) ≤ C̃ p for ε ∈ (0, 1). (2.8)

Proof Weshall only show the bound forβε sincewe can prove the other one similarly.
We shall simply write u for uε again.

Suppose that � := max� βε > 0. In view of the second inequality of (1.2), we
can choose x̂ ∈ � such that � = βε(u(x̂) − ψ(x̂)). Since βε is nondecreasing, we
see that u − ψ attains its maximum at x̂ ∈ �. Hence, we have at x̂ ,

0 ≤ −ai j (u − ψ)xi x j + bi (u − ψ)xi
= f − cu − βε + βε + ai jψxi x j − biψxi

≤ f − cψ − βε + βε + C‖Dψ‖W 1,∞(�).

Here and later, C denotes the various positive constant depending only on known
quantities.

Note that the first inequality of (1.2) yields

(ϕ − u)(x̂) ≤ (ψ − u)(x̂) < 0.

Therefore, we have 0 ≤ βε ≤ βε(x̂) ≤ max� f + + Mc max� ψ− + C‖Dψ‖W 1,∞(�)

in �, where Mc > 0 is the constant in (1.5) �
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Remark 2.3 When we consider Bellman operators in Sect. 3, the L∞ estimate on
the penalty terms for obstacles does not imply (2.8) because we will have one more
penalty term, which cannot be evaluated by the above argument.

Now,we show localW 2,∞ estimates on solutions of (2.4). Our argument ismore or
less standard though we do not know if the next proposition has appeared somewhere
to our knowledge.

Proposition 2.4 (Local W 2,∞ estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let
uε ∈ C4(�) ∩ C1(�) be solutions of (2.4). Then, for each compact set K � �, there
is C̃K > 0 independent of ε ∈ (0, 1) such that

max
K

|D2uε| ≤ C̃K .

Proof Choose ζ ∈ C∞
0 (�) such that

0 ≤ ζ ≤ 1 in �, and ζ = 1 on K .

Putting M := max� ζ|D2uε|, we may suppose M ≥ 1.
Writing u and β for uε and βε, respectively, we set

V := ζ2|D2u|2 + γM{β(u − ψ) + β(ϕ − u)} + γM |Du|2.

We shall write β := β(u − ψ) and β := β(ϕ − u) again for simplicity. In the pro-
ceeding calculations, we shall more simply write ui j , ui jk , ai j,k etc. for uxi x j , uxi x j xk ,
(ai j )xk etc., respectively.

We may suppose that max� V = V (x̂) > 0 for some x̂ ∈ �. By setting L0ξ :=
−ai jξi j + biξi , since L0V (x̂) ≥ 0 by the weak maximum principle, at x̂ , we have

0 ≤ −ai j

⎧⎪⎪⎨
⎪⎪⎩

2ζζi j |D2u|2 + 2ζiζ j |D2u|2 + 8ζζi uk�uk�j + 2ζ2uk�uk�i j
+2ζ2uk�i uk�j + γMβ

′′
(u − ψ)i (u − ψ) j + γMβ

′
(u − ψ)i j

+γMβ′′(ϕ − u)i (ϕ − u) j + γMβ′(ϕ − u)i j + 2γMukuki j
+2γMukiuk j

⎫⎪⎪⎬
⎪⎪⎭

+bi

{
2ζζi |D2u|2 + 2ζ2uk�uk�i + γMβ

′
(u − ψ)i + γMβ′(ϕ − u)i

+2γMukuki

}

≤ −2θ(ζ2|D3u|2 + γM |D2u|2) − γMθ(β
′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2)

+C(|D2u|2 + ζ|D2u||D3u|) + γMβ
′
L0(u − ψ) + γMβ′L0(ϕ − u)

+2ζ2uk�L0uk� + 2γMukL0uk .

By Young’s inequality, at x̂ , we have

I0 := θζ2|D3u|2 + θγM{|D2u|2 + β
′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2)}

≤ γM{β′
L0(u − ψ) + β′L0(ϕ − u)} + 2ζ2uk�L0uk� + 2γMukL0uk

=: I1 + I2 + I3

for large γ > 1.
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Since (2.8) for p > n implies the W 1,∞ estimates on u, we will not mention
the dependence on ‖u‖W 1,∞(�) in the calculations below. In order to estimate I3, we
differentiate (2.4) with respect to xk to obtain

L0uk = fk + ai j,kui j − bi,kui − cuk − cku − β
′
(u − ψ)k + β′(ϕ − u)k .

Thus, we have

I0 ≤ CγM(1 + |D2u|) + I1 + I2
+γM{β′

(−|Du|2 + |Dψ|2) + β′(−|Du|2 + |Dϕ|2)}. (2.9)

To estimate I2, we differentiate (2.4) with respect to xk and x� to obtain

L0uk� = fk� + ai j,k�ui j + ai j,kui j� + ai j,�ui jk − bi,k�ui − bi,kui� − bi,�uik
−β

′
(u − ψ)k� − β

′′
(u − ψ)k(u − ψ)� + β′(ϕ − u)k�

+β′′(ϕ − u)k(ϕ − u)�.

Hence, we have

I2 ≤ θζ2|D3u|2 + C(1 + |D2u|2) + 2M{β′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2}
+ζ2{β′

(−|D2u|2 + |D2ψ|2) + β′(−|D2u|2 + |Dϕ|2)}.

Thus, inserting this in (2.9) with γ ≥ 2/θ, we have

θγM |D2u|2 ≤ CγM(1 + |D2u|) + C(1 + |D2u|2)
+β

′
{−ζ2(|D2u|2 − |D2ψ|2) − M(|Du|2 − |Dψ|2)

+γM( f − u − β + β − L0ψ)

}

+β′
{−ζ2(|D2u|2 − |D2ϕ|2) − M(|Du|2 − |Dϕ|2)

+γM(− f + u + β − β + L0ϕ)

}

=: J1 + J2 + J3.

Case 1 : J2 ≤ 0 and J3 ≤ 0: In this case, for a largely fixed γ >> 2/θ, we imme-
diately have

|D2u|2(x̂) ≤ C,

which together with Propositions 2.1 and 2.2 implies

M2 ≤ V (x̂) ≤ C(1 + M).
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Case 2 : J2 > 0 or J3 > 0: We shall only consider the case of J2 > 0 since the
other one can be shown similarly. In view of (2.7), we see that

ζ2|D2u|2(x̂) ≤ C(1 + M),

which yields
M2 ≤ V (x̂) ≤ C(1 + M).

Therefore, M is bounded independently from ε ∈ (0, 1). �

Remark 2.5 We note that our choice of auxiliary functions V does not work for
Bellman operators in Sect. 3. Instead, we will barrow a different one from [23],
which can be applied only to unilateral obstacle problems.

As mentioned in Sect. 1, Jensen in [32] showed W 2,∞(�) estimates under addi-
tional assumptions on the coefficients. Here, in order to simplify the argument, we
shall obtain the W 2,∞ bound near the flat boundary under additional assumptions.
Setting x ′ = (x1, . . . , xn−1) ∈ R

n−1, we suppose that � satisfies

{
� ∩ B1 = {x = (x ′, xn) | |x | < 1, xn > 0},
∂� ∩ B1 = {(x ′, 0) | |x ′| < 1}. (2.10)

To show W 2,∞ estimates near ∂� for bilateral obstacle problems, we follow the
argument in [31].

Theorem 2.6 Assume (1.2), (1.4), (1.5), (2.1) and (2.10). Assume also that

ain = 0 on ∂� ∩ B1. (2.11)

Let uε ∈ C4(�) be solutions of (2.4). Then, there is Ĉ > 0 such that

|D2uε| ≤ Ĉ in � ∩ B 1
2
.

Remark 2.7 Under hypothesis (2.11), we note that

− annu
ε
nn + bnu

ε
n = f on ∂� ∩ B1 (2.12)

since uε
i = uε

i j = 0 for 1 ≤ i, j ≤ n − 1 on ∂� ∩ B1 by (2.5).

Proof As before, we shall write u for uε, and use other simplified notations.
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We choose η ∈ C∞
0 (B1) such that

⎧⎨
⎩
0 ≤ η ≤ 1 in B1,

η = 1 in B 1
2
,

ηxn = 0 on ∂� ∩ B1.

(2.13)

Setting

vi j :=
{
ui j for (i, j) �= (n, n),

unn − b̂nun + f̂ for (i, j) = (n, n),

where b̂n = bn/ann and f̂ = f/ann , we define

|D2v|2 :=
n∑

i, j=1

v2
i j =

∑
(i, j)�=(n,n)

u2i j + (unn − b̂nun + f̂ )2.

Consider W defined by

W := eAxnη2|D2v|2 + γM(β + β) + γM |Du|2,

where M := max� η|D2u|, and A, γ > 1 will be fixed. We may suppose M ≥ 1.
Let x̂ = (x̂1, x̂2, . . . , x̂n) ∈ � ∩ B1 be a point such thatmax�∩B1

W = W (x̂) > 0.
Because of W (x̂) > 0, we may also assume that x̂ ∈ � ∩ B1.

Since the argument in the proof of Proposition 2.4 can be applied to the case when
x̂ ∈ � ∩ B1 with some minor changes, we may suppose x̂ ∈ ∂� ∩ B1, and we will
obtain a contradiction. Since |D2v|2 = 2

∑n−1
i=1 u

2
in at x̂ , (2.5) implies

Wn = 2eAx̂nη2
n−1∑
i=1

(Au2in + 2uinuinn) + 2γMun(b̂nun − f̂ ).

By noting uinn = (b̂nun − f̂ )i at x̂ , this equality implies

Wn ≥ 2eAx̂nη2

{
(A − C)

n−1∑
i=1

u2in − C

}
− CM

≥ 2eAx̂n

{
η2(A − C)

n−1∑
i=1

u2in − CM

}

≥ 2eAx̂n (η2|D2v|2 − CM)

for a fixed A > 1. If the right hand side of the above is non-positive, then we have

η2|D2v|2(x̂) ≤ CM,
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which implies the uniform bound of M independent of ε ∈ (0, 1). Therefore, we
have Wn(x̂) > 0 but this implies that x̂ is not the maximum of W , which is a
contradiction. �

Following [31], we give a sufficient condition to derive (2.11). We use the fol-
lowing notation:

B+
r := {x = (x1, . . . , xn) ∈ Br | xn > 0}.

Although B+
1 is not a smooth domain, considering an appropriate smooth

domain � ⊃ B+
1 , we may assume ∂B+

1 is smooth. The next proposition
yields (2.11).

Proposition 2.8 Suppose that there is α ∈ (0, 1) such that

ai j ∈ C3,α(B
+
1 ) for 1 ≤ i, j ≤ n.

There is a C4-diffeomorphism T = (T1, . . . , Tn) : B+
1 → T (B

+
1 ) such that Tk ∈

C4,α(B
+
1 ) such that

âkl(y) =
n∑

i, j=1

ai j (T
−1(y))

∂Tk
∂xi

(x)
∂T�

∂x j
(x)

and
âkn(y

′, 0) = 0 (1 ≤ k ≤ n − 1), for T−1(y′, 0) ∈ B
+
1 .

Proof. We begin with considering the following PDE

−ai j (x)uxi x j + bi (x)uxi + c(x)u + βε(u − ψ) − βε(ϕ − u) = f (x) in B+
1

such that u(x) = 0 for x = (x1, . . . , xn−1, 0) ∈ B
+
1 . Consider the change of variable

T̂ = (T̂ 1, . . . , T̂ n) : B1
+ → R

n defined by

yk = T̂ k(x) =
{
xk + T k(x) − T k(x ′, 0) for x = (x ′, xn) ∈ B

+
1 , 1 ≤ k ≤ n − 1,

xn for x = (x ′, xn) ∈ B
+
1 , k = n.

Here, T = (T 1, . . . , T n) ∈ C4,α(B
+
1 ;Rn) is the solution of

{−�T k + T k = 0 in B+
1 ,

〈DT k, ν〉 = akn
ann

on ∂B+
1 ,

(2.14)

where ν is the outward unit normal of ∂B+
1 .
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It is easy to rewrite the equation for v(y) := u(x)with this newvariable y = T̂ (x):

−âi j (y)vyi y j + b̂i (y)uyi + ĉ(y)v + βε(v − ψ̂) − βε(ϕ̂ − v) = f̂ (y),

where ĉ(y) = c(x), f̂ (y) = f (x), ψ̂(y) = ψ(x), ϕ̂(y) = ϕ(x),

âi j (y) =
n∑

k,�=1

ak�(x)T̂
i
xk (x)T̂

j
x�
(x),

and

b̂i (y) =
n∑

k=1

bi (x)T̂
i
xk (x) −

n∑
k,�=1

ak�(x)T̂
i
xk x�

(x).

In view of the boundary condition of (2.5), it is immediate to verify that for
1 ≤ i ≤ n − 1,

âin(y′, 0) =
n∑

k,�=1

ak�(x
′, 0)T̂ i

xk (x
′, 0)T̂ n

x�
(x ′, 0)

=
n∑

k=1

akn(x
′, 0)T̂ i

xk (x
′, 0)

= ain(x ′, 0) + ann(x ′, 0)T̂ i
xn (x

′, 0) = 0. �

Open question 1: Is it possible to obtain W 2,∞(�) estimates with no extra assump-
tion (2.11) on ai j?

3 A Bellman Type Operator Case

In this section, we obtain W 1,∞ bounds for solutions of bilateral obstacle problems
when the PDE part is of Bellman type. However, we do not know if we can show
further estimates on the second derivative of solutions of penalized systems below
for bilateral obstacle problems. Thus, following [43], we will discuss local W 2,∞
estimates on solutions of unilateral obstacle problems for Bellman equations.

3.1 Bilateral Obstacles

We first consider the following bilateral obstacle problems

min{max{F(x, u, Du, D2u), u − ψ}, u − ϕ} = 0 in �, (3.1)
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where F : � × R × R
n × Sn → R is defined by

F(x, r, ξ, X) := max
k∈N

{−Tr(Ak(x)X) + 〈bk(x), ξ〉 + ck(x)r − f k(x)}. (3.2)

Here, by letting N ≥ 2 be a fixed integer, for k ∈ N := {1, 2, . . . , N }, functions
Ak = (aki j ) : � → Sn ,bk = (bki ) : � → R

n , ck : � → R and f k : � → R are given.
We will use linear operators

Lku := −Tr(Ak(x)D2u) + 〈bk(x), Du〉 + ck(x)u.

As in Sect. 2, we suppose that there is θ > 0 such that

〈Ak(x)ξ, ξ〉 ≥ θ|ξ|2 for any ξ ∈ R
n and (x, k) ∈ � × N , (3.3)

and there is Mc > 0 such that

0 ≤ ck ≤ Mc in � for k ∈ N . (3.4)

Following [22], we introduce a system of PDE via penalization: for k ∈ N ,

{
Lkuk + βε(uk − uk+1) + βε(uk − ψ) − βε(ϕ − uk) = f k in �,

uk = 0 on ∂�,
(3.5)

where uN+1 := u1 and βε is given in Sect. 2. In order to distinguish three βε in (3.5),
we will simply write

⎧⎪⎨
⎪⎩

βk(x) := βk
ε (x) = βε(uk(x) − uk+1(x)),

β
k
(x) := β

k
ε(x) = βε(uk(x) − ψ(x)),

βk(x) := βk
ε
(x) = βε(ϕ(x) − uk(x)).

For given functions, we suppose that

aki j , b
k
i , f k, ck,ψ,ϕ ∈ C2(�) for 1 ≤ i, j ≤ n, and k ∈ N . (3.6)

Setting
f := max

k∈N
f k,+, and f := max

k∈N
f k,−,

we have the L∞ estimates on uk,ε independent of (ε, k) ∈ (0, 1) × N .

Proposition 3.1 (L∞ estimates) Assume (1.2), (3.3) and (3.6). Let uε := (uk,ε) ∈
C2(�;RN ) be solutions of (3.5). Then, there is Ĉ > 0 such that

−Ĉ max
�

f − max
�

ψ− ≤ uk,ε ≤ max
�

ϕ+ + Ĉ max
�

f in � for (ε, k) ∈ (0, 1) × N .
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Proof Setting C0 := max� ψ− and C1 := max� f , we suppose

min
k∈N ,x∈�

uk,ε(x) + C0 + μ(C1 + δ)w(x) < 0.

Here, δ > 0 will be sent to 0 in the end, and w is the function in the proof of
Proposition 2.1; w(x) := e2γR0 − eγ(x1+R0) > 0 in � ⊂ BR0 , where γ > 0 will be
fixed later. Dropping ε > 0 from uk,ε and βε, we may assume that there is x̂ ∈ �

such that

u1(x̂) + C0 + μ(C1 + δ)w(x̂) = min
k∈N ,x∈�

{uk(x) + C0 + μ(C1 + δ)w(x)} < 0.

By setting γ := (
maxk∈N ,x∈� |bk1| + θ

)
/θ, the weakmaximumprinciple implies that

at x̂ ∈ �,

0 ≥ −a1i j u
1
i j + b1i u

1
i + μ(C1 + δ)eγ(x̂1+R0)γ(γa111 − b11)

≥ f 1 − c1u − β(u1 − u2) − β(u1 − ψ) + θμ(C1 + δ)γ
≥ − f + c1{C0 + μ(C1 + δ)w} − β(u1 − u2) − β(u1 − ψ) + μ(C1 + δ)γ.

Since u1 ≤ u2 and u1 − ψ ≤ 0 at x̂ , these observation yield

f (x̂) ≥ θμ(C1 + δ)γ,

which gives a contradiction when μ > 1/(θγ). Therefore, we conclude the proof of
the first inequality.

The second inequality can be shown more easily since we may avoid the penalty
term βε(uk − uk+1) in the opposite inequalities. �

Next, we show L∞ estimates on βε(uk − ψ) and βε(ϕ − uk) independent of
(ε, k) ∈ (0, 1) × N .

Proposition 3.2 (L∞ estimates on penalty terms) Assume (1.2), (3.3) and (3.6). Let
uε := (uk,ε) ∈ C2(�;RN ) be solutions of (3.5). Then, there exists C̃1 > 0 such that
for ε ∈ (0, 1) and k ∈ N ,

⎧⎨
⎩

‖βε(u
k,ε − ψ)‖L∞(�) ≤ max

�

f + Mc max
�

ψ− + C̃1‖Dψ‖W 1,∞(�),

‖βε(ϕ − uk,ε)‖L∞(�) ≤ max
�

f + Mc max
�

ϕ+ + C̃1‖Dϕ‖W 1,∞(�).

Proof We shall write uk for uk,ε as before. By the same reason in the proof of
Proposition 3.1, we shall only show the estimates on βε(ϕ − uk).

Suppose max�,N βk = β1(x0) > 0 for some x0 ∈ �. Thus, we may assume
max�,N (ϕ − uk) = (ϕ − u1)(x0) > 0. Hence, at x0 ∈ �, we have

0 ≤ −a1i j (ϕ − u1)i j + b1i (ϕ − u1)i ≤ − f 1 + c1u1 + β1 + β
1 − β1 + C‖Dϕ‖W 1,∞(�).
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Since u1 − u2 ≤ 0, and ϕ − u1 > 0 at x0, we have

β1 ≤ − f 1 + c1ϕ + C‖Dϕ‖W 1,∞(�),

which concludes the assertion as in the proof of Proposition 2.2. �

Remark 3.3 Notice that we cannot apply the above argument to obtain L∞-
estimates on βε(uk,ε − uk+1,ε). Therefore, unlike Proposition 2.2, we cannot obtain
W 2,p estimates on uk,ε.

For further regularity, we first obtain the estimate of first derivatives on ∂� in
Proposition 3.4 below. To this end, we shall use W 1,∞ estimates on approximate
solutions of the associated unilateral obstacle problems via penalization.

Proposition 3.4 (Gradient estimates on∂�)Assume (1.2), (3.3) and (3.6). Let uε :=
(uk,ε) ∈ C1(�;Rn) ∩ C2(�;Rn) be solutions of (3.5). Then, there exists C̃2 > 0
such that for ε ∈ (0, 1) and k ∈ N ,

‖Duk,ε‖L∞(∂�) ≤ C̃2.

Proof Because uk,ε = 0 on ∂�, we only need the estimate

∣∣∣∣∂u
k,ε

∂n
(z)

∣∣∣∣ ≤ C for any z ∈ �,

where n = n(z) ∈ ∂B1 denotes the outward unit vector at z ∈ ∂�.
Let vε = (vk,ε) : � → R

N be the unique solution of the penalized system of the
following unilateral obstacle problem.

{
Lkvk + βε(v

k − vk+1) + βε(v
k − ψ) = f k in �,

vk = 0 on ∂�.
(3.7)

Due to Lemmas 2.1, 2.2 and 3.1 in [43], we find Ĉ1 > 0, and for each compact
K � �, Ĉ1(K ) > 0 such that

‖vk,ε‖W 1,∞(�) ≤ Ĉ1, and ‖D2vk,ε‖L∞(K ) ≤ Ĉ1(K ). (3.8)

We claim that

vk,ε ≤ uk,ε in � for (ε, k) ∈ (0, 1) × N .

Indeed, if we suppose � := max�,N (vk,ε − uk,ε − δw) > 0, where δ > 0 will be
sent to 0, and w is the function in Proposition 2.1, then we may suppose � =
(v1,ε − u1,ε − δw)(x̂) for some x̂ ∈ �. Hence, at x̂ , we have
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0 ≤ −a1i j (v
1,ε − u1,ε)i j + b1i (v

1,ε − u1,ε)i + δγeγ x̂1(−θγ + |b11|)
≤ −c1(v1,ε − u1,ε) − βε(v

1,ε − v2,ε) − βε(v
1,ε − ψ) + βε(u1,ε − u2,ε)

+βε(u1,ε − ψ) − βε(ϕ − u1,ε) − θδγ

provided γ ≥ (maxN ,� |bk1| + θ)/θ. Since v1,ε > u1,ε and v1,ε − v2,ε ≥ u1,ε − u2,ε

at x̂ , we immediately obtain a contradiction. Therefore, we have

vk,ε ≤ uk,ε + δw in �,

which concludes the claim by sending δ → 0. Therefore, we have

∂uk,ε

∂n
(z) ≤ ∂vk,ε

∂n
(z) ≤ Ĉ1 for any z ∈ ∂�. (3.9)

On the other hand, for each k ∈ N , we next let wk,ε be solutions of

{
Lku − βε(ϕ − u) = f k in �,

u = 0 on ∂�.

We claim that for (ε, k) ∈ (0, 1) × N ,

uk,ε ≤ wk,ε in �.

Indeed, assuming max�,N (uk,ε − wk,ε − δw) = (u1,ε − w1,ε − δw)(x̂) > 0 for
some x̂ ∈ �, at x̂ , we have

0 ≤ −a1i j (u
1,ε − w1,ε)i j + b1i (u

1,ε − w1,ε)i + δγeγ x̂1(−θγ + |b11|)
< −β1

ε (u
1,ε − u2,ε) − β1

ε (u
1,ε − ψ) + βε(ϕ − u1,ε) − βε(ϕ − w1,ε) − θδγ

< 0

for large γ > 1 as before. Hence, the same argument to obtain (3.9) implies

∂uk,ε

∂n
(z) ≥ ∂wk,ε

∂n
(z) for any z ∈ ∂�. (3.10)

By the same argument as in the proof of Proposition 2.2, we find C̃ > 0 such that

0 ≤ βε(ϕ − wk,ε) ≤ C̃ in � and for (ε, k) ∈ (0, 1) × N ,

which implies
max
k∈N

‖Dwk,ε‖L∞(�) ≤ C for any ε ∈ (0, 1).

This together with (3.9) and (3.10) concludes the assertion. �

Now, we shall use Bernstein method to derive W 1,∞(�) estimates on uk,ε.
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Proposition 3.5 Assume (1.2), (3.3) and (3.6). Let uε = (uk,ε) ∈ C1(�;RN ) ∩
C3(�;RN ) be solutions of (3.5). There exists C̃3 > 0 such that

max
k∈N

‖uk,ε‖W 1,∞(�) ≤ C̃3 for ε ∈ (0, 1).

Proof We shall drop ε from uk,ε. Set

V k(x) := |Duk |2 + γ(uk)2.

In view of Proposition 3.4, we may suppose that

max
N ,�

V k = V 1(x̂) > 0

for some x̂ ∈ �. We shall write u and v for u1 and u2, respectively. Furthermore, we

shall write β, β and β for β1, β
1
and β1, respectively.

We then have at x̂ ∈ �,

0 ≤ −2a1i j (ukiuk j + ukuki j + γuiu j + γuui j ) + 2b1i (ukuki + uui )
≤ −2θ(|D2u|2 + γ|Du|2) + 2γu( f 1 − c1u − β − β + β)

+2uk

{
f 1k + a1i j,kui j − b1i,kui − c1ku − c1uk
−β′(u − v)k − β

′
(u − ψ)k + β′(ϕ − u)k

}

≤ −γθ|Du|2 + C + β′(−|Du|2 + |Dv|2 − γu2 + γv2)

+β
′
(−|Du|2 + |Dψ|2 − γu2 + γψ2)

+β′(−|Du|2 + |Dϕ|2 − γu2 + γϕ2)

for large γ > 1. We use (2.3) to obtain the last inequality in the above.
Since we may suppose the last two terms are non-positive and V 1 ≥ V 2 at x̂ , we

have γθ|Du(x̂)|2 ≤ C , which concludes the assertion. �

Since we do not know L∞ estimates on βε(uk − uk+1), it seems difficult to find
a weak (or viscosity) solution of (3.1) only with W 1,∞ estimates. Thus, we shall
switch to unilateral obstacle problems.

3.2 Unilateral Obstacles

In order to show local W 2,∞ estimates on solutions of obstacle problems, we shall
restrict ourselves to consider unilateral obstacle ones;

{
max{F(x, u, Du, D2u), u − ψ} = 0 in �,

u = 0 on ∂�,
(3.11)
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where F is of Bellman type defined in (3.2).
Lenhart in [43] showed the W 2,∞

loc (�) estimates on solutions of (3.11). We will
recall the argument here.

We notice that proceeding arguments for W 2,∞ estimates can not be applied to
the following unilateral obstacle problem with the same F because the PDE below
is of Isaacs type:

min{F(x, u, Du, D2u), u − ϕ} = 0 in �. (3.12)

Open question 2: Is it possible to obtain (local) W 2,∞ estimates on solutions of
(3.12)?

In place of (1.2), we only need to suppose

ψ ≥ 0 on ∂�. (3.13)

The penalized system of (3.11) is as follows: for uε = (uk,ε),

{
Lkuk,ε + βε(uk,ε − uk+1,ε) + βε(uk,ε − ψ) = f k in �,

uk,ε = 0 on ∂�,
(3.14)

where uN+1,ε := u1,ε.
It is easy to establish the next lemma by following the proofs of Propositions 3.1,

3.2 and 3.5. We note that the Bernstein method with the standard barrier argument
can also work for the Bellman equation with unilateral obstacles. We refer to Lemma
2.1 in [43] for the details.

Lemma 3.6 There exists Ĉ > 0 such that

‖uk,ε‖W 1,∞(�) + ‖βε(u
k,ε − ψ)‖L∞(�) ≤ Ĉ for (ε, k) ∈ (0, 1) × N .

Following the argument in [43] with a bit simpler auxilialy function V below than
that there, we establish W 2,∞

loc (�) estimates.

Theorem 3.7 (Local W 2,∞ estimates) Assume (3.3), (3.6) and (3.13). Let uε =
(uk,ε) ∈ C4(� : RN ) ∩ C1(� : RN ) be solutions of (3.14). Then, for each compact
K � �, there is CK > 0 such that

max
x∈K ,k∈N

|D2uk,ε(x)| ≤ CK for ε ∈ (0, 1).

Proof We shall simply write uk for uk,ε again.
Let ζ ∈ C∞

0 (�) be the same function as in the proof of Proposition 2.4. Putting
Mk = max� ζ|D2uk |, we may suppose M = maxN Mk = ζ(ẑ)|D2u1(ẑ)| ≥ 1 for
some ẑ ∈ �. By change of variables using the orthogonal matrix B such that
BA1(ẑ)t B = (αkδk�), we may suppose that
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L1u1(ẑ) = −αku
1
kk(ẑ) + b1k(ẑ)u

1
k(ẑ) + c1(ẑ)u1(ẑ)

for some αk ≥ θ. For each i ∈ N , setting

V i := ζ2|D2ui |2 + γMζ2αku
i
kk + γM |Dui |2,

we may suppose that maxN ,� V i = V i0(x̂) > 0 for some x̂ ∈ � and i0 ∈ N .
We note that

M2 = ζ2|D2u1|2(ẑ) ≤ V i0(x̂) − γMζ2αku1kk(ẑ)≤ V i0(x̂) + γMζ2( f 1 − b1i u
1
i − c1u1)(ẑ).

Thus, for a fixed γ > 1, once we obtain

|D2ui0 |2(x̂) ≤ CM, (3.15)

then we have
M2 ≤ V i0(x̂) + CM ≤ CM(1 + √

M),

which concludes the assertion.
We shall write ai j , bi , c, V , u and v for ai0i j , b

i0
i , c

i0 , V i0 , ui0 and ui0+1, respectively,
for simplicity. The weak maximum principle yields, at x̂ ,

0 ≤ −ai j Vi j + bi Vi

= −ai j

⎧⎨
⎩
2ζζi j |D2u|2 + 2ζiζ j |D2u|2 + 8ζζi uk�uk�j + 2ζ2uk�uk�i j
+2ζ2uk�i uk�j + 2γMζζi jαkukk + 2γMζiζ jαkukk
+4γMζζiαkukk j + γMζ2αkukki j + 2γMukuki j + 2γMukiuk j

⎫⎬
⎭

+bi

{
2ζζi |D2u|2 + 2ζ2uk�uk�i + 2γMζζiαkukk + γMζ2αkukki
+2γMukuki

}
.

Hence, setting L0v := −ai jvi j + bivi , at x̂ , we have

2θ(ζ2|D3u|2 + γM |D2u|2)
≤ C(|D2u|2 + ζ|D2u||D3u| + γM |D2u| + γMζ|D3u|)

+γMζ2αk L0ukk + 2ζ2uk�L0uk� + 2γMukL0uk
=: I1 + I2 + I3 + I4.

By the definition of I2 and I3, we have



Regularity of Solutions of Obstacle Problems –Old & New– 225

I2 + I3 = γMζ2αk

⎧⎨
⎩

fkk + ai j,kkui j + 2ai j,kui jk − bi,kkui − 2bi,kuik
−ckku − 2ckuk − cukk − β′′(u − v)2k
−β′(u − v)kk − β

′′
(u − ψ)2k − β

′
(u − ψ)kk

⎫⎬
⎭

+2ζ2uk�

⎧⎨
⎩

fk� + ai j,k�ui j + 2ai j,kui j� − bi,k�ui − 2bi,kui�
−ck�u − cku� − c�uk − cuk� − β′′(u − v)k(u − v)�

−β′(u − v)k� − β
′′
(u − ψ)k(u − ψ)� − β

′
(u − ψ)k�

⎫⎬
⎭

≤ γMζ2
{
C(1 + |D2u| + |D3u|) − θβ′′|D(u − v)|2
−αkβ

′(u − v)kk − θβ
′′|D(u − ψ)|2 − αkβ

′
(u − ψ)kk

}

+ζ2

⎧⎨
⎩
C |D2u|(1 + |D2u| + |D3u|) + 2β′′|D(u − v)|2|D2u|
+β′(−|D2u|2 + |D2v|2) + 2β

′′|D(u − ψ)|2|D2u|
+β

′
(−|D2u|2 + |D2v|2)

⎫⎬
⎭ .

Moreover, I4 is estimated by

I4 ≤ 2γMuk{ fk + ai j,kui j − bi,kui − cku − cuk − β′(u − v)k − β
′
(u − ψ)k}

≤ γM{C(1 + |D2u|) + β′(−|Du|2 + |Dv|2) + β
′
(−|Du|2 + |Dψ|2)}.

Hence, these inequalities together with Young’s inequality give

θ(ζ2|D3u|2 + γM |D2u|2)
≤ I1 + CγM(γM + |D2u|) + M(2 − γθ)ζ2β′′|D(u − v)|2

+M(2 − γθ)ζ2β
′′|D(u − ψ)|2 + β′(−V i0 + V i0+1)

+β
′
(−V i0 + ζ2|D2ψ|2 + γMζ2αkψkk + γM |Dψ|2).

Note V i0 ≥ V i0+1 at x̂ . Furthermore, we may suppose 0 ≥ −V i0 + ζ2|D2ψ|2 +
γMζ2αkψkk + γM |Dψ|2 at x̂ . Thus, taking γ ≥ 2/θ, we have

θ(ζ2|D3u|2 + γM |D2u|2) ≤ I1 + CγM(γM + |D2u|)
≤ C(1 + |D2u|2 + γ2M2) + θζ2|D3u|2.

Remembering M, γ ≥ 1, we have

(θγM − C)|D2u|2(x̂) ≤ C(1 + γ2M2),

which implies
θγM |D2u|2(x̂) ≤ Cγ2M2

provided θγM ≥ 2C . This yields (3.15). �

Open question 3: Is it possible to obtainW 2,∞(�) orW 2,p(�) estimates forBellman
equations with unilateral obstacles under additional conditions if necessary?
Open question 4: Is it possible to obtain localW 2,∞

loc (�) estimates for Bellman equa-
tions with bilateral obstacles?
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4 A Fully Nonlinear Operator Case

In Sects. 2 and 3, thanks to Bernstein method, we establish estimates on solutions
of approximate PDE (or systems of PDE), which present the existence of (strong)
solutions belonging to the associated function spaces (i.e. W 2,∞(�) or W 2,∞

loc (�)).
See [43, 47] for the details. We also refer to [2] for a modern version of Bernstein
method.

We note that there is a fully nonlinear uniformly elliptic equation which does
not have classical solutions. See [48]. Furthermore, in [49], it is shown that there
exists a viscosity solution of a fully nonlinear uniformly elliptic PDE whose second
derivative is not bounded.On the other hand,we also know there is a classical solution
of a special Isaacs equation consisting of three linear operators in [9].

In this section, we study more general PDE such as Isaacs equations with bilateral
obstacles, and with unbounded, possibly discontinuous coefficients and inhomoge-
neous terms. In fact, to our knowledge, we do not know any regularity results for
obstacle problems of Isaacs equations via penalization. In order to see a difficulty
in the study of Isaacs equations via penalization, let us consider approximate Isaacs
equations with no obstacles via penalization:

Lk,�uk,� + βε(u
k,� − uk+1,�) − βε(u

k,�+1 − uk,�) = f k,� in �, (4.1)

where uM+1,� = u1,� for � ∈ N and uk,N+1 = uk,1 for k ∈ M. Here, by settingM :=
{1, . . . , M} andN := {1, . . . , N }, uk,� : � → R for (k, �) ∈ M × N are unknown
functions, and linear operators are defined by

Lk,�ζ := −Tr(Ak,�(x)D2ζ) + 〈bk,�(x), Dζ〉 + ck,�(x)ζ,

where given functions Ak,� : � → Sn , bk,� : � → R
n and ck,� : � → [0,∞) satisfy

enough regularity.
If we obtain L∞

loc estimates on βε(uk,� − uk+1,�) and βε(uk,�+1 − uk,�), then it is
easy to verify that uk,�ε converge to a single limit u as ε → 0 (along a subsequence if
necessary), which is a solution of

min
�∈N

max
k∈M

{Lk,�u − f k,�} = 0 in �. (4.2)

However, it is difficult to show L∞ estimates on the first and second penalty terms. In
fact, in a pioneering work [47], we first deriveW 2,∞ estimates on solutions of penal-
ized problems for Bellman equations (i.e. N = 1), and then this gives L∞ bounds
for the penalty term. Moreover, Bernstein method does not work to obtain W 2,∞
estimates on solutions of (4.1). Furthermore, even if we establishW 2,∞ estimates on
approximate solutions, since we have two penalty terms with opposite signs in (4.1),
we still do not know if solutions of the system (4.1) converge to a single solution of
(4.2).
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Open question 5: Is it possible to obtain aweak/viscosity solution of (4.2) satisfying
(2.5) via penalization?

If we restrict ourselves to try to establish C1,γ estimates on solutions of bilateral
obstacle problems for γ ∈ (0, 1), then we can accomplish such estimates even when
F is of Isaacs type;

G(x, r, ξ, X) := min
�∈N

max
k∈M

{−Tr(Ak,�(x)X) + 〈bk,�(x), ξ〉 + ck,�(x)r
}
.

Moreover, since we do not need systems of PDE via penalization, we may deal
with compact sets M,N in R

m for some m ∈ N. Furthermore, since we will not
differentiate PDE (because it is impossible!), it is possible to treat discontinuous
coefficients and inhomogeneous terms. In this procedure, we need to show the exis-
tence of weak/viscosity solutions of Isaacs equations with obstacles by a different
method. We only refer to [16] and [42] for the existence issue.

This section is based on a recent work by the author and Tateyama in [42].

4.1 Equi-Continuity

Modifying arguments by Duque in [20], we present an idea to apply the weak Har-
nack inequality to obtain estimates on solutions of obstacle problems when the PDE
part may be fully nonlinear. Here, the terminology fully nonlinear means that the
mapping (ξ, X) ∈ R

n × Sn → G(x, r, ξ, X) ∈ R is neither convex nor concave for
each (x, r) ∈ � × R.

In what follows, we suppose that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) G(x, 0, 0, O) = 0 for x ∈ �,

(i i) P−(X − Y ) ≤ G(x, r, ξ, X) − G(x, r, ξ,Y ) ≤ P+(X − Y )

for x ∈ �, r ∈ R, ξ ∈ R
n, X,Y ∈ Sn,

(i i i) there is μ ∈ Lq(�) such that q > n, and
|G(x, r, ξ, X) − G(x, r, η, X)| ≤ μ(x)|ξ − η|
for x ∈ �, r ∈ R, ξ, η ∈ R

n, X ∈ Sn,
(iv) there is c0 ∈ C(�) such that c0 ≥ 0 in �, and

G(x, r, ξ, X) − G(x, s, ξ, X) ≥ c0(x)(r − s)
for x ∈ �, r, s ∈ R, ξ ∈ R

n, X ∈ Sn,
(v) f ∈ L p(�) for q ≥ p > p0.

(4.3)

Here, p0 ∈ [ n2 , n) is the so-called Escauriaza’s constant in [21], and for a fixed θ ∈
(0, 1], Pucci operators P± : Sn → R are defined as follows:

P+(X) := max{−Tr(AX) | A ∈ Snθ } and P−(X) := min{−Tr(AX) | A ∈ Snθ },
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where Snθ := {X ∈ Sn | θ I ≤ X ≤ θ−1 I }. Under hypotheses (i)−(iv) in (4.3), we
easily verify that

P−(X) − μ(x)|ξ| + c0(x)r ≤ G(x, r, ξ, X) ≤ P+(X) + μ(x)|ξ| + c0(x)r

for x ∈ �, r ∈ R, ξ ∈ R
n and X ∈ Sn .

In a celebrated paper [10] by Caffarelli, it has turned out that to establish the
regularity of viscosity solutions of fully nonlinear uniformly elliptic PDE

G(x, u, Du, D2u) = f (x) in �,

instead of this equation, it is essential to study extremal inequalities:

G−(x, u, Du, D2u) ≤ f +(x) and G+(x, u, Du, D2u) ≥ − f −(x),

where G±(x, r, ξ, X) := P±(X) ± μ(x)|ξ| ± c0(x)r±.
Furthermore, according to [10] again, the key for the regularity theory is the weak

Harnack inequality for supersolutions.
We recall the definition of L p-viscosity solutions of

H(x, u, Du, D2u) = 0 in �, (4.4)

where H : � × R × R
n × Sn → R is given (not necessarily continuous).

Definition 4.1 We say that u ∈ C(�) is an L p viscosity subsolution (resp.,
supersolution) of (4.4) if it follows that

lim
r→0

ess. inf
Br (x)

H(y, u(y), Dζ(y), D2ζ(y)) ≤ 0

(
resp., lim

r→0
ess. sup

Br (x)
H(y, u(y), Dζ(y), D2ζ(y)) ≥ 0

)

whenever for any ζ ∈ W 2,p
loc (�), u − ζ attains its local maximum (resp., minimum)

at x ∈ �. Finally, we say that u ∈ C(�) is an L p viscosity solution of (4.4) if it is
both of an L p viscosity subsolution and an L p viscosity supersolution of (4.4).

Throughout this section, we at least suppose that

ϕ,ψ ∈ C(�) (4.5)

satisfy (1.2). Under hypotheses (4.3), (4.5) and (1.2), we consider

min{max{G(x, u, Du, D2u) − f (x), u − ψ(x)}, u − ϕ(x)} = 0 in � (4.6)
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under the Dirichlet condition (2.5). It is immediate to see that if u ∈ C(�) is an
L p viscosity subsolution (resp., supersolution) of (4.6) with this G, then it is an L p

viscosity subsolution (resp., supersolution) of

min{max{G−(x, u, Du, D2u) − f +(x), u − ψ(x)}, u − ϕ(x)} = 0

(
resp., min{max{G+(x, u, Du, D2u) + f −(x), u − ψ(x)}, u − ϕ(x)} = 0

)

in �. We will only use these information in the argument below.
We recall a reasonable result without proof.

Proposition 4.2 (Proposition 2.9 in [42])Under the same hypotheses as in Theorem
4.3, if u ∈ C(�) is an L p viscosity subsolution (resp., supersolution) of (4.6), then
it follows that

u ≤ ψ (resp., u ≥ ϕ) in �.

In what follows, we call ω a modulus of continuity of functions if

ω ∈ C([0,∞)) is nondecreasing, and ω(0) = 0.

We also use the notation Ai for the set of interior points of A ⊂ R
n .

Theorem 4.3 (Theorem 2.10 in [42]) Assume (4.3), (4.5) and (1.2). Then, there
exists a modulus of continuity ω such that for any L p viscosity solution of (4.6)
satisfying (2.5), it follows that

|u(x) − u(y)| ≤ ω(|x − y|) for any x, y ∈ �.

Moreover, if we suppose ϕ,ψ ∈ Cα(�) for some α ∈ (0, 1), then there are Ĉ > 0
and α̂ ∈ (0,α] such that for any L p viscosity solution of (4.6) satisfying (2.5), it
follows that

|u(x) − u(y)| ≤ Ĉ |x − y|α̂ for any x, y ∈ �.

For r > 0 and x ∈ R
n , we define closed cubes as follows:

Qr :=
[
− r

2
,
r

2

]n
, Qr (x) := x + Qr .

Proof We shall only give a proof for local estimates since we can modify the argu-
ment below by using the weak Harnack inequality near ∂�. See [29] for its usage.

Fix any K � �. We shall divide K by

K+ := {x ∈ K | u(x) = ψ(x)}, K− := {x ∈ K | u(x) = ϕ(x)},

and K0 := K \ (K+ ∪ K−).
It is standard to show the assertion when x, y ∈ K i

0. See [42] for the details.
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Let ω0 be the modulus of continuity of obstacles;

|ψ(x) − ψ(y)| ∨ |ϕ(x) − ϕ(y)| ≤ ω0(|x − y|) for x, y ∈ �.

Fix any x̂ ∈ K . We may suppose x̂ = 0 by translation. For r ∈ (0, d0/(2
√
n)),

where d0 := dist(∂�, K ), we set

u := u ∨ (ϕ(0) + ω0(2
√
nr)) and u := u ∧ (ψ(0) − ω0(2

√
nr)).

Notice that ϕ(0) + ω0(2
√
nr) ≥ ϕ and ψ ≥ ψ(0) − ω0(2

√
nr) in Q4r ⊂ �. It is

standard to see that u and u are, respectively, an L p viscosity subsolution and super-
solution of

G−(x, u, Du, D2u) − f +(x) = 0 and G+(x, u, Du, D2u) + f −(x) = 0 inQ4r .

For s ∈ (0, d0), set
Ms := sup

Qs

u and ms := inf
Qs

u.

We then define

U := M4r − u and U := u − m4r for r ∈ (0, d0/(2
√
n)).

It is immediate to see that U and U are nonnegative L p viscosity supersolutions of

P+(D2u) + μ|Du| + c0u + f ± = 0 in Q4r .

Since ‖μ‖Ln(Q4r ) ≤ ‖μ‖Lq (Q4r )(2
√
nr)1−

n
q , we can apply Proposition 5.7 inAppendix

with the standard scaling to have

(∫
Qr

U
ε0dx

) 1
ε0 ≤ Cr

n
ε0

(
inf
Qr

U + rα0‖ f +‖L p∧n(Q4r )

)
,

(∫
Qr

U ε0dx

) 1
ε0 ≤ Cr

n
ε0

(
inf
Qr

U + rα0‖ f −‖L p∧n(Q4r )

)
,

where α0 := 2 − n
p∧n ∈ (0, 1]. By noting M4r − m4r = U + (u − u) + (u − u) +

U ≤ U + 4ω0(2
√
nr) +U , the above inequalities imply

M4r − m4r ≤ C

(
inf
Qr

U + inf
Qr

U + rα0 + ω0(2
√
nr)

)
,

which gives a decay estimate of oscillations:

Mr − mr ≤ θ0(M4r − m4r ) + rα0 + ω0(2
√
nr).
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Since u(x) − u(y) ≤ u(x) − u(y), it is standard (e.g. in [29]) to obtain equi-
continuity of u.

If ϕ and ψ are Hölder continuous, then the above estimate implies the Hölder
continuity with some exponent. �

4.2 C1,γ Estimates

Now, assuming that there is γ̂ ∈ (0, 1) such that

ϕ,ψ ∈ C1,γ̂(�), (4.7)

we will suppose (4.3) but q ≥ p > n in (v). Under this assumption, we will use the
Hölder exponent

γ0 := min

{
1 − n

p
, γ̂

}
∈ (0, 1).

For simplicity, we will also suppose

ϕ < ψ in �. (4.8)

For G in (4.3), we use the notation:

θ(x, y) := sup
X∈Sn

|G(x, 0, 0, X) − G(y, 0, 0, X)|
1 + ‖X‖ for x, y ∈ �.

Theorem 4.4 Assume (4.3) replaced by q ≥ p > n in (v), (4.7) and (4.8). For any
K � �, there exist ĈK > 0, γ ∈ (0, γ0], r0 ∈ (0, dist(K , ∂�)), and δ0 > 0 such that
if u ∈ C(�) is an L p viscosity solution of (4.6), and if

r−1‖θ(y, ·)‖Ln(Br (y)) ≤ δ0 for r ∈ (0, r0) and y ∈ NK , (4.9)

where by setting CK [u] := {x ∈ K | u(x) = ϕ(x) or u(x) = ψ(x)}, we define the
non-coincidence set by NK [u] := {x ∈ K | dist(x,CK [u]) > 0}, then it follows that

|Du(x) − Du(y)| ≤ ĈK |x − y|γ for x, y ∈ K .

Proof Following the argument in the proof of Proposition 5.1 in [42], we can find
γ1 ∈ (0, 1) such that

|Du(x) − Du(y)| ≤ C |x − y|γ1 Br (x) ⊂ NK [u] for some r > 0. (4.10)
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In fact, we need some modification of the standard argument in [10] since our PDE
contains unbounded ingredients. See Sect. 5.1 in [42] for the details. We only need
(4.9) to prove this fact.

We shall show the assertion near the coincidence set. Thus, we shall fix z ∈ K
such that u(z) = ϕ(z). Again, we may suppose z = 0 by translation. We will show
that

|u(x) − u(0) − 〈Dϕ(0), x〉| ≤ Cr1+γ0 x ∈ Q r
4
,

which implies that u is differentiable at 0, Du(0) = Dϕ(0), and moreover,

|Du(x) − Du(0)| ≤ C |x |γ0 for x ∈ Q r
4
.

We refer to [1] for its readable proof.
Setting v := u − ϕ(0) − 〈Dϕ(0), x〉 + Ar1+γ̂ for large A > 0, we claim that v is

a nonnegative L p viscosity supersolution of

P+(D2u) + μ|Du| + c0v + g− = 0 in Q4r ,

whereg−(x) := f −(x) + |Dϕ(0)|μ(x) + c0{ϕ(0) + 〈Dϕ(0), x〉}. Considering v̂ :=
v
(
infQr u + δ−1

0 ‖g−‖L p∧n(Q4r )

)−1
, we note that we may apply Proposition 5.7 to find

ε0 > 0 such that

r− n
ε0 ‖v‖Lε0 (Qr ) ≤ C

(
inf
Qr

v + r2−
n
p ‖g−‖Ln(Q4r )

)

≤ C(v(0) + r2−
n
p )

≤ Cr1+γ0 .

(4.11)

For large ν > 1, it is easy to verify that w := v ∨ (νAr1+γ̂) is an L p viscosity
subsolution of

P−(D2u) − μ|Du| − g+ = 0 in Q4r ,

where g+ = f + + |Dϕ(0)|μ − c0{ϕ(0) + 〈Dϕ(0), x〉 − Ar1+γ̂}. In view of
Proposition 5.8, we have

sup
Q r

4

v ≤ C̃

{
r− n

ε0

(∫
Qr

wε0dx

) 1
ε0 + r2−

n
p ‖ f + + μ‖Ln(Q4r )

}
,

where C̃ = C̃(ε0) > 0. Hence, by (4.11), we have

v ≤ Cr1+γ0 in Q r
4
.

The opposite inequality is trivial because Proposition 4.2 yields
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u(x) − ϕ(0) − 〈Dϕ(0), x〉 ≥ ϕ(x) − ϕ(0) − 〈Dϕ(0), x〉 ≥ −Cr1+γ̂ ≥ −Cr1+γ0

for |x | ≤ r .
Now, we shall combine two cases to establish the estimate. For x, y ∈ NK , we

may assume 0 < dist(y,CK [u]) ≤ dist(x,CK [u]). Choose x̂, ŷ ∈ CK [u] such that

|x − x̂ | = dist(x,CK [u]) ≥ |y − ŷ| = dist(y,CK [u]).

Case 1 : |x − y| < 1
2 |x − x̂ |. In this case, by (4.10), we have

|Du(x) − Du(y)| ≤ C |x − y|γ1 .

Case 2 : |x − y| ≥ 1
2 |x − x̂ | ≥ 1

2 |y − ŷ|. We may suppose that (u − ϕ)(x̂) =
(u − ϕ)(ŷ) (or (u − ψ)(x̂) = (u − ψ)(ŷ)) because ψ(x) − ϕ(y) ≥ τ0 > 0 for y ∈
Br (x) ∩ K with small r > 0.

Thus, due to the above observation, we have

|Du(x) − Du(y)|
≤ |Du(x) − Du(x̂)| + |Du(x̂) − Du(ŷ)| + |Du(ŷ) − Du(y)|
≤ C |x − x̂ |γ0 + |Dϕ(x̂) − Dϕ(ŷ)| + C |y − ŷ|γ0
≤ C |x − y|γ0 + C |x̂ − ŷ|γ̂
≤ C |x − y|γ0

because |x̂ − ŷ|γ̂ ≤ |x̂ − x |γ̂ + |x − y|γ̂ + |y − ŷ|γ̂ and γ0 ≤ γ̂. �

Open question 6: What is a sufficient condition to obtain W 2,∞
loc (�) or W 2,p

loc (�)

estimates on solutions of Isaacs equations with obstacles?

5 Appendix

In [38, 39], we established theABPmaximumprinciple andweakHarnack inequality
for L p viscosity solutions only when the PDE does not contain 0th order terms for
the sake of simplicity. Since in Sect. 4 we obtain the results assuming (4.3), which
allows the PDE to admit 0th order terms, we shall give the ABP maximum principle
and weak Harnack inequality for those.

The ABP maximum principle can be proved immediately due to known results.

Proposition 5.1 Assume μ ∈ Lq(�), f ∈ L p(�) for q > n and q ≥ p > p0.
Assume also that c0 ∈ C(�) is nonnegative in �. Then, there exists a universal
constant C0 > 0 (depending on ‖μ‖Lq (�)) such that if u ∈ C(�) is an L p viscosity
subsolution (resp., supersolution) of

P−(D2u) − μ(x)|Du| − c0(x)u
− − f +(x) = 0 in � (5.1)
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(P+(D2u) + μ(x)|Du| + c0(x)u
+ + f −(x) = 0 in �

)
,

then it follows that

max
�

u ≤ max
∂�

u+ + C0d
2− n

p

� ‖ f +‖L p∧n(�+[u]) (5.2)

(
resp., min

�
u ≥ −max

∂�
u− − C0d

2− n
p

� ‖ f −‖L p∧n(�−[u])
)

,

where�±[u] := {x ∈ � | ± u(x) > max∂� u±} and d� := sup{|x − y| | x, y ∈ �}.
Proof We shall only show the first assertion. It is immediate to verify that u is an
L p viscosity subsolution of

P−(D2u) − μ(x)|Du| − f +(x) = 0 in �+[u].

Hence, we can apply Proposition 2.8 and Theorem 2.9 in [38] to conclude our
proof. �

Wenext show theweakHarnack inequality.Wefirst present a decay of distribution
functions of L p viscosity supersolutions.

Lemma 5.2 (cf. Theorem 2.3 in [41]) Assume the same hypotheses in Proposition
5.1. There are r0, δ0 > 0 and A ≥ 1 such that for any nonnegative L p viscosity
supersolution of

P+(D2u) + μ(x)|Du| + c0(x)u − f (x) = 0 in Q4,

if infQ1 u ≤ 1 and ‖μ‖L p∧n(Q4) ∨ ‖ f −‖L p∧n(Q4) ≤ δ0, then we have

|{x ∈ Q1 | u(x) > t}| ≤ A

tr0
for t > 1.

Remark 5.3 It is trivial that the conclusion holds true for any t > 0 since A ≥ 1.

Remark 5.4 The assertion is known in [39] when c0 ≡ 0. In fact, in our case, we
do not know if the strong maximum principle holds when the coefficient to the first
derivative (i.e. μ) is unbounded. Therefore, we will use an auxiliary function ϕ0,
which is a strong solution of PDE with no first derivative terms. We notice that if we
add μ|Dϕ0| in the left hand side of (5.3), then we cannot show (5.4) below. We will
then have μ in the inhomogeneous term which is small in Ln norm.

Proof In view of Proposition 2.4 in [40] with some modifications as in the proof of
Lemma 4.2 in [39], there exists ϕ0 ∈ W 2,p′

(Q4 \ Q1) ∩ C(Q4 \ Qi
1) for any p′ > n

such that
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⎧⎨
⎩
P−(D2u) + c0(x)u = 0 in Qi

4 \ Q1,

u = 0 on ∂Q4,

u = −1 on ∂Q1.

(5.3)

Since ϕ is also an L p′
viscosity solution of the PDE in the above, if we suppose

supQ4\Q1
ϕ0 > 0 or infQ4\Q1 ϕ0 < −1, then this contradicts to the definition of L p′

viscosity solution. Thus, we have −1 ≤ ϕ0 ≤ 0 in Q4 \ Q1.
Furthermore, we claim that there is θ0 > 0 such that

ϕ0 ≤ −θ0 in Q3 \ Q1. (5.4)

Although the proof of (5.4) is known in [33] for instance, we will give a proof of
this claim for the reader’s convenience in the end.

Extending ϕ0 appropriately in Q1, for large λ > 1, we may suppose that ϕ :=
λϕ0 ∈ W 2,p′

(Q4) is an L p′
strong solution of

P−(D2u) + c0u = ξ in Q4

such that ϕ ≤ −2 in Q3, where ξ ∈ Lq(Q1) satisfies ξ = 0 in Q4 \ Q1.
We observe that w := u + ϕ is an L p viscosity supersolution of

P+(D2w) + μ|Dw| + c0w
+ = −μ|Dϕ| − f − + ξ in Q4.

Hence, setting � := {x ∈ Qi
4 | w(x) < 0}, by Proposition 5.1, we have

−1 ≥ inf
Q1

w ≥ inf
Q4

w = inf
�

w

≥ −C‖μ|Dϕ| + f − − ξ‖L p∧n(�)

≥ −C
(
δ0 + |{x ∈ Q1 | w(x) < 0}| 1

p∧n
)

.

Therefore, for a fixed δ0 > 0, we can find θ1 ∈ (0, 1) such that

θ1 ≤ |{x ∈ Q1 | u(x) ≤ M}|,

where M := maxQ4(−ϕ) > 1. It is now standard by an induction argument to see
that

|{x ∈ Q1 | u(x) > Mk}| ≤ (1 − θ1)
k k ∈ N,

which implies the decay of distribution function of u. Therefore, we conclude the
assertion by the standard argument. See [39] for the details.

Proof of claim (5.4) (cf. Theorem 1 in [33]) It is enough to show that ϕ0(x) < 0 for
x ∈ Qi

4 \ Q1. Setting K0 := {x ∈ Qi
4 \ Q1 | ϕ0(x) = 0}, we may suppose K0 �= ∅.

We can choose R > 0, z ∈ K0 and ẑ ∈ �0 := (Qi
4 \ Q1) ∩ Kc

0 such that
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BR(ẑ) \ {z} ⊂ �0, and ∂BR(ẑ) ∩ K0 = {z}.

Setting an open annulus A0 := {x ∈ R
n | R/2 < |x − ẑ| < R}, we introduce ζ(x) :=

ε(e−βR2/2 − e−β|x−ẑ|2/2) ≤ 0, where β > 1 and ε ∈ (0, 1) will be chosen later. Fur-
thermore, we have

M1 := max
x∈A0

(ϕ0 − ζ)(x) ≥ (ϕ0 − ζ)(z) = 0.

We also note that (ϕ0 − ζ)(x) < 0 if x ∈ ∂BR(ẑ) \ {z}. Now, setting θ0 :=
minx∈∂BR/2(ẑ)(−ϕ0(x)) > 0 and ε := θ0/2, we observe that

max
x∈∂BR/2(ẑ)

(ϕ0 − ζ)(x) ≤ −θ0 + εe− βR2

8 ≤ −θ0

2
< 0.

Next, assume that ϕ0 − ζ attains its maximum at x̂ ∈ A0. Since ϕ0 is a viscosity
subsolution of

P−(D2u) + c0u = 0 in Qi
4 \ Q1,

we have

0 ≥ e− β|x̂−ẑ|2
2

{
βP−(I − β(x̂ − ẑ) ⊗ (x̂ − ẑ))

} + c0(x̂)ϕ0(x̂).

Following an argument in p. 20 of [12], since P−(I − β(x̂ − ẑ) ⊗ (x̂ − ẑ)) ≥
− n−1

θ
+
(

βR2

4 − 1
)

θ ≥ 1 provided β ≥ β0 for some β0 > 1, we have

0 ≥ e− β|x̂−ẑ|2
2 (β − c0(x̂)),

which yields a contradiction when β > β0 + maxx∈� c0. Therefore, because (ϕ0 −
ζ)(z − he) ≤ (ϕ0 − ζ)(z) = 0 for small h > 0, where e := (z − ẑ)/|z − ẑ|, we have

ϕ0(z − he) − ϕ0(z)

−h
≥ ε

e− β|z−he−ẑ|2
2 − e− β|z−ẑ|2

2

h
.

Sending h → 0+, we have 〈Dϕ0(z), e〉 = 0 ≥ εe− βR2

2 βR > 0, which is a contra-
diction. Hence, we have K0 = ∅. �

Remark 5.5 It is possible to give precise functions ϕ0 by considering larger ball
B2

√
n ⊃ Q4. See [30] for such a function.

Remark 5.6 Concerning the strong maximum principle for PDE of divergence type
with 0th order terms, we refer to [51] and references therein.

Now, we present our weak Harnack inequality.
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Proposition 5.7 (cf. Theorem 3.1 in [39]) Assume the same hypotheses in
Proposition 5.1. There are ε0 > 0, δ0 > 0 and Ĉ > 0 such that for any nonnega-
tive L p viscosity supersolution of

P+(D2u) + μ|Du| + c0u − f = 0 in Q4,

if ‖μ‖L p∧n(Q4) ≤ δ0, then we have

(∫
Q1

uε0dx

) 1
ε0 ≤ Ĉ

(
inf
Q1

u + ‖ f −‖L p∧n(Q4)

)
.

Proof In place of u, considering

V := u

inf
Q1

u + δ−1
0 ‖ f −‖L p∧n(Q4) + ε

,

where ε > 0 will be sent to 0 in the end, and δ0 > 0 will be fixed later, we may
suppose ‖ f −‖L p∧n(Q4) ≤ δ0 and infQ1 u ≤ 1.

In view of Lemma 5.2, we easily verify that for any ε0 ∈ (0, r0), there is Ĉ =
Ĉ(ε0) > 0 such that (∫

Q1

V ε0dx

) 1
ε0 ≤ Ĉ,

which implies the conclusion by sending ε → 0. �

In order to establish the Harnack inequality, we combine the weak Harnack
inequality with the next local maximum principle.

Proposition 5.8 (Theorem 3.1 in [41]) Assume the same hypotheses in Proposition
5.1. For any ε > 0, there is Ĉε > 0 such that for any L p viscosity subsolution of

P−(D2u) − μ|Du| − c0u
− − f = 0 in Q4, (5.5)

we have

sup
Q 1

4

u ≤ Ĉε

{(∫
Q1

(u+)εdx

) 1
ε

+ ‖ f +‖L p(Q4)

}
.

Sincewe have unbounded coefficientμ, we cannot use the standard argument as in
[29]. We follow the idea of the proof of Lemma 4.4 in [12] with some modifications.
We first prepare the following lemma:

Lemma 5.9 (cf. Theorem 2.3 in [41]) For q ≥ p > p0 and q > n, let f ∈ L p(Q4)

and μ ∈ Lq(Q4) be nonnegative. Assume that u ∈ C(Q4) is an L p viscosity subso-
lution of (5.5) satisfying
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|{x ∈ Q1 | u(x) ≥ t}| ≤ A

tr0
for ∀t > 1, (5.6)

where the constants A ≥ 1 and r0 > 0 are from Lemma 5.2. Then, there are an
integer J , ν > 1 and � j > 0 ( j ≥ J ) such that

∑∞
j=J � j < ∞, and if u(x0) ≥ ν j−1

for j ≥ J and x0 ∈ Q 1
2
, then supQ� j (x0)

u ≥ ν j .

Proof We will fix ν > 1, J ∈ N and � j ∈ (0, 1) for j ≥ J . Suppose

sup
Q� j (x0)

u ≤ ν j ,

then we will obtain a contradiction.
Setting x = x0 + � j

4 y for y ∈ Q4, we define

v(y) := α

(
1 − 1

ν j
u(x0 + 4−1� j y)

)
,

where α := ν(ν − 1)−1 (or ν = α(α − 1)−1). Thus, we immediately verify that v ≥
0 in Q4, and infQ3 v ≤ v(0) ≤ α(1 − ν−1) = 1.

We next set

α := 2(2A)
1
r0 > 1

(
i.e. ν = 2(2A)

1
r0 {2(2A)

1
r0 − 1}−1 > 1

)
,

and

� j :=
(
22n+2r0+1A

ν jr0

) 1
n

.

Choose J0 ∈ N such that

α < (22n+2r0+1A)
1
r0 < ν J0 .

Notice that � j < 1 for j ≥ J0. We next choose J1 ≥ J0 such that

α

ν j

(
� j

4

)2− n
p∧n

< 1 for j ≥ J1.

We then see that v is a nonnegative L p viscosity supersolution of

P+(D2u) + μ̂|Du| + ĉ0u + f̂ = 0 in Q4,

where

μ̂(y) = � j

4
μ

(
x0 + � j

4
y

)
, ĉ0 = �2j

16
ν j c0 and f̂ (y) = α�2j

16ν j
f +

(
x0 + � j

4
y

)
.
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Because of our choice of α > 1, � j and J1 ∈ N, we verify that for j ≥ J1,

‖μ̂‖L p∧n(Q4) =
(

� j

4

)1− n
p∧n

‖μ‖L p∧n(Q� j (x0))
≤
(

� j

4

)1− p∧n
q

‖μ‖Lq (Q4),

and

‖ f̂ ‖L p∧n(Q4) = α

ν j

(
� j

4

)2− n
n∧p

‖ f +‖L p∧n(Q� j (x0))
≤ ‖ f +‖L p∧n(Q� j (x0))

.

Finally, we choose J2 ≥ J1 such that ‖μ̂‖L p∧n(Q4) ≤ δ0, where δ0 > 0 is the constant
in Lemma 5.2.

In view of Lemma 5.2, we have

|{x ∈ Q1 | v(x) > α/2}| ≤ A

(
2

α

)r0

,

which yields

∣∣∣∣
{
x ∈ Q � j

4
(x0)

∣∣∣∣ u(x) <
ν j

2

}∣∣∣∣ ≤ A

(
2

α

)r0 (� j

4

)n

≤ 1

2

(
� j

4

)n

.

However, (5.6) implies

∣∣∣∣
{
x ∈ Q � j

4
(x0)

∣∣∣∣ u(x) ≥ ν j

2

}∣∣∣∣ ≤
∣∣∣∣
{
x ∈ Q1

∣∣∣∣ u(x) ≥ ν j

2

}∣∣∣∣ ≤ A

(
2

ν j

)r0

.

Hence, we have
�nj

22n+1
≤ A

(
2

ν j

)r0

,

which implies a contradiction to the definition of � j . �

Proof of Proposition 5.8. We first consider the case of ε = r0, where r0 > 0 is the
constant from Lemma 5.2.

Choose z ∈ Q 1
4
such that u(z) = maxQ 1

4
u. Setting v(y) := u(z + sy) for s > 0,

we observe that v is an L p viscosity subsolution of

P−(D2u) − μ̂|Du| − c0u
− − f̂ = 0 in Q4,

where μ̂(y) := sμ(z + sy) and f̂ (y) := s2 f +(z + sy).

Since we may suppose
∫
Q1

(v+)r0dy > 0, by setting
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w(y) := v(y)

{
A− 1

r0

(∫
Q1

(v+)r0dy

) 1
r0 + δ−1

0 ‖ f̂ ‖L p∧n(Q4)

}−1

,

it is immediate to see that

|{y ∈ Q1 | w(y) ≥ t }| ≤ 1

tr0

∫
Q1

wr0 ≤ A

tr0
.

Furthermore, we verify that w is an L p viscosity subsolution of

P−(D2u) − μ|Du| − g = 0 in Q4,

where g(y) := δ0 f̂ (y)‖ f̂ ‖−1
L p∧n(Q4)

.

Let ν > 1, J ∈ N and � j ∈ (0, 1) be from Lemma 5.9. There is Ĵ ≥ J such that

∞∑
j= Ĵ

� j ≤ 1

8
.

We claim that supQ 1
4

w ≤ ν Ĵ−1. Indeed, if w(x0) ≥ ν Ĵ−1 for some x0 ∈ Q 1
4
, then

thanks to Lemma 5.9, we can choose x j ∈ Q� j (x0) (for j ≥ Ĵ ) such that

w(x j ) ≥ ν j .

Since x j ∈ Q 1
2
for j ≥ Ĵ , this contradicts to the continuity of w ∈ C(Q4). Hence,

we have

sup
Q 1

4

u ≤ sup
Q 1

4

v ≤ C

{(∫
Q1

(v+)r0dx

) 1
r0 + ‖ f̂ ‖L p∧n(Q4)

}

≤ C

{(∫
Q1

(u+)r0dx

) 1
r0 + ‖ f ‖L p∧n(Q4)

}
.

In case when ε > r0, instead of the above w, consider

ŵ(y) := v(y)

{
A− 1

ε

(∫
Q1

(v+)εdy

) 1
ε

+ δ−1
0 ‖ f̂ ‖L p∧n(Q4)

}−1

.

Thus, we have

|{y ∈ Q1 | ŵ(y) ≥ t}| ≤ A

tε
≤ A

tr0
for t > 1.

Therefore, Lemma 5.9 implies the conclusion.
On the other hand, if 0 < ε < r0, then considering
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w̃(y) := v(y)

{
A− 1

r0

(∫
Q1

(v+)εdy

) 1
ε

+ δ−1
0 ‖ f̂ ‖L p∧n(Q4)

}−1

,

we have

|{y ∈ Q1 | w̃(y) ≥ t}| ≤ A

tr0

∫
Q1

(v+)r0dy

(∫
Q1

(v+)εdy

)− r0
ε

≤ A

tr0
for t > 1.

Hence, Lemma 5.9 concludes the proof in this case. �
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