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1 Introduction

In this survey, we overview regularity of solutions of obstacle problems associ-
ated with second-order uniformly elliptic partial differential equations (PDE for
short). Particularly, we show two different arguments to obtain estimates on solu-
tions of obstacle problems due to maximum principles. On the other hand, there have
appeared a huge amount of results concerning on regularity of solutions of variational
inequalities, whose typical example is the obstacle problem. However, our methods
here do not rely on integration by parts.

One of techniques here is the so-called Bernstein method, which is relatively
old, while the other is quite a new one. Inspired by an idea in [20], we have found
an interesting argument in [42], which can be applied to fully nonlinear PDE with
unbounded coefficients and inhomogeneous terms.

Accordingto [52], it seems that Fichera [24, 25] first studied the Signorini problem
as a variational inequality, where a free boundary arises on the boundary of domains.
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Stampacchia in [54] announced variational inequalities in Hilbert spaces as a modifi-
cation of Lax-Milgram theorem. Later, Lions-Stampacchia in [46] introduced unilat-
eral obstacle problems in the whole domain as an example of minimization problems
associated with energy functionals over closed convex sets.

Afterwards, several regularity results on solutions of variational inequalities
appeared in [6, 7, 27, 44].

We shall first consider a minimizing problem of given energies under restrictions.
Fix a bounded domain  C R” with smooth boundary 9. For a given ¢ € C(Q),
which is called an upper obstacle, we set a closed convex set

KY:={ue Hy(Q) |u<ae. in Q},

where HO1 (£2) is the closure of C3°(2) with respect to H 1(©) norm.
For any fixed f € L?(2), by setting our energy

1 2
Elu] :=/ <—|Du| —fu)dx
a\2

for u € K, it is known that there is a unique u € K¥ such that

E[u] = min E[v].
vekK?

Formally, we observe that

—Au < finQ,
u <1 in 2,
—Au= fin{x € Q|ulx) <yPx)}.

Hence, we may write down this problem as a Bellman equation
max{—Au — f,u — ¥} =0 in Q (1.1)

under the Dirichlet condition # = 0 on 0%2.

Obstacle problems arise in various settings both from purely mathematical inter-
ests and from their rich applications. For later topics, we only refer to some text
books [3, 26, 34, 45, 53, 56] because it is too wide for this article to mention these
issues. We will concentrate on regularity of solutions of obstacle problems but not
on regularity of the free boundary, which may be more interesting subject. See [11,
14, 28] and references therein for this topics.

It is worth mentioning that for (1.1), we can only expect solutions to belong to
W?2°°(Q) in general even if 1) and f are smooth enough. The first example is a simple
one.
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Example 1.1 Let Q := (=32, 3) forn = 1, and 1)(x) = x> — 1. We easily see that

401
x| =3 G <IxI<3).
ux) ;=
) {x2—1 (xl < 1),
satisfies )
d
max{—ﬁ,u—w} =0 ae. inQ

under the Dirichlet condition u(:l:fT) = 0. We notice that this u is not twice differen-
tiable at x = :I:%.

We next show the other example when there is a Oth order term of unknown
functions.

Example 1.2 Let €2 and ¢ be the same ones as in Example 1.1. For the inhomoge-
neous term f € C2(S2), we choose

5 1 5
x| — 3 - (7 < |x1| <,
—8x* +3x% — 3L (Ix| < ).

f(x):{

It is easy to verify that the same function u in Example 1.1 satisfies
2u
max{———i—u— ,M—’(/J} =0 a.e.in Q.
X

‘We next consider a minimizing problem under the other kind of restriction. Given
two obstacles ¢, ¥ € C(L2) satisfying the compatibility condition

p<1y inQ, and ¢ <0<y onIQ, 1.2)
we introduce the closed convex set

KY :={ueHj(Q)|p<u<ipae inQ}
Again, it is known that there is a unique u € K ;’ such that

E[u] = min E[v].

vek)
We observe that u satisfies at least formally
min{max{—Au — f,u —¢¥},u —p} =0 in Q. (1.3)

This is a bilateral obstacle problem, which is an Isaacs equation while (1.1) is called
a Bellman equation for unilateral obstacle problems.
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Because of (1.2), itis easy to see formally that (1.3) is equivalent to the following
PDE:
max{min{—Au — f,u — ¢}, u — ¢} =0 in Q.

Using the standard Euclidean inner product (-, -), we consider the energy

Elu] .= / <1(ADu, Du) + lcuz — fu) dx,
o \2 2

where A := (a;;) : @ — §" is positively definite; 30 > 0 such that
(A(X)E, &) > 0|€)* forany € € R" and x € Q. (1.4)
Here and later S” denotes the set of real-valued symmetric matrices of order .

When q;; € C'(Q) for simplicity, the minimizer of E[-] over HO1 (2) formally
satisfies

Lu=f in<,
where
Lu := —Tr(AD*u) + (b, Du) + cu.
Here, we set
" day; " day,;
b:=(by,...,b) =— o, -
( ! ) N 8)6]' Z 8xj
j=1 j=1

Hence, as before, we derive the Bellman equation associated with the minimization
of E[-] over K¥:
max{Lu — f,u — ¢} =0 in Q.

Throughout this paper, we shall suppose that there is M, > 0 such that
0<c(x) <M, forxeQ. (1.5)

If we suppose that ¢ is positive in €, then particularly, L™ estimates become easier to
prove. In fact, under (1.5), we need a perturbation function such as w in Proposition
2.1. We choose Ry > 0 such that

Q C Bg,. (1.6)

Here and later, we set B, := {y € R" | |[x| < r}, and B,(x) := x + B, for x € R".
In this survey, we are concerned with regularity of solutions for obstacle problems,
where the PDE part is given by the above linear second-order uniformly elliptic
operator L or Bellman-Isaacs ones. We will always assume that the existence of
(approximate) solutions of each obstacle problem. In Sects. 2 and 3, using Bernstein
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method, we obtain (local) W>°° () estimates on solutions of approximate equations
via penalization. We consider the case when the PDE part is linear with bilateral
obstacles in Sect.2 while we deal with Bellman equations with bi- and unilateral
obstacles in Sect. 3. In Sect.4, to show the Holder continuity of the first derivative,
we apply the weak Harnack inequality to solutions of bilateral obstacle problems,
where the main PDE part can be of Isaacs type, and moreover, coefficients and
inhomogeneous terms can be unbounded. Since fully nonlinear PDE contain Oth
order terms in Sect.4, we need to modify basic tools such as the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, weak Harnack inequality and
local maximum principle to PDE with Oth order terms. In Appendix, we present
those for the reader’s convenience.

2 A Linear Operator Case

Although some results in this section will be generalized in Sect. 3, we will present
those to clarify our basic argument.

In this section, for coefficients in the linear operator L, and obstacles, we impose
that

aij, bi, f.c, 0,1 € CH(Q). (2.1)
To introduce penalty equations, we need 3 € C2(R) such that
(i) pB@)=0forr <0,
(ii) ((t) grows linearly r >> 1, 2.2)
(fii) ' >0and 8" > 0inR.
For instance, it is easy to verify that 3 € C?(R) defined by
0 forr <0,
B(t) =1 —t*+413 fort € (0,2),
16(t — 1) fort =2

satisfies all the properties in (2.2).
For € € (0, 1), we will use 3.(¢z) := [(t/¢) for t € R. Furthermore, we easily
observe that
there is C > 0 such that — C < f3.(r) — t8.(t) < 0. (2.3)
We shall consider approximate equations with penalized terms:

Lu+ fe(u—1) = fe(p—u)=f inQ (2.4)

under the Dirichlet condition
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u=0 onodR. (2.5)
Hereafter, we will use the notations: for ¢, s € R,
tVvs:=max{t,s} and t A s := min{zt, s}.
For simplicity, we will write

ou 0%u

Uy, Uy, etc. for —, —— ¢
o e 8x,~’ 3xi8xj’

tc., respectively.

We also use the summation convention for repeated indices, e.g..

n
AijUxix; = z :aijux,x‘,'-

i,j=1

Pr(ﬂ)osition 2.1 (L estimates) Assume (1.2), (1.4), (1.5) and (2'1); Let u® €
C(Q) NCXH) be solutions of (2.4) satisfying (2.5). Then, there is C > 0 such
that

—émgxf_ —maxy~ <u < m3x<p++émgxf+ inQ foree(0,1).
Q Q Q Q

Proof We shall only prove the second inequality since the first one can be shown
similarly. We shall write u for u° for simplicity.
Setting Cy := maxg ' > 0 and C; := maxg f T, we shall suppose

® = max{u — Cy — u(C, + Hw} > 0.
Q
Here it > 0,6 € (0, 1) and w(x) := e*Ro — 7™k ~ Oforx = (x1,...,x,) € R,
where v > 1, and 50 > 0 is from (1.6).
By letting X € Q satisfy ® = u(x) — Co — u(Cy + d)w(x), (2.5) yields x € Q.

Hence, at x = (X1, ..., X,) € 2, the weak maximum principle implies

0 < —ajjltyx, + bitty, + p(Cy + 6)ye? TR (—ay 1y + by)

. . 2.6
< f —cu— B+ P + p(Cy + 6y TR (—fy + |y ]). 20

Here and later, to distinguish composite functions 3. (« — 1) and .(¢ — u), we use
the following notation:

B-() :=Bo() =) and B.() == Bo(p() — u(-)).

Thus, for a fixed v := (maxg |b1| + 6)/6, (2.6) together with (1.5) implies
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Ou(Cr + 8y < f —c{Co+ (Cr + Hwh + - < f + B atx.
Since p —u < p — Cop — p(Cy + d)w < p — Cyp < 0 at &, this inequality yields
Opu(Cr + )y = f(5),

which is a contradiction for ¢ > 1/(6). Therefore, for fixed p, v > 0 in the above,
we have ® < 0, which concludes the proof. O

We notice that in the above proof, we do not need the whole of (2.1) but we do
not present “minimal” hypotheses on regularity of given functions for the sake of
presentations.

Proposition 2.2 (W?P estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let u® €
C*(Q) be solutions of (2.4) satisfying (2.5). Then, there is C > 0 such that for
ee€ (0, 1),

184" = )|z = max T+ M, max )" + ClIDY w1~

_ ~ (2.7
18-(p — u) | L=@) < mﬁax ST+ M. mﬁax ¢ + CIDpllwi(e)-
In particular, for each p € (1, 00), there is CN‘p > 0 such that
lufllw2riy < Cp fore € (0, 1). (2.8)

Proof We shall only show the bound for 3. since we can prove the other one similarly.
We shall simply write u for u° again.

Suppose that ® := max§E > (. In view of the second inequality of (1.2), we
can choose % €  such that ® = 3.(u(%) — ¥(%)). Since 3. is nondecreasing, we
see that u — 1) attains its maximum at X € . Hence, we have at x,

0 = _aij(u - @xlx/ + bi(u - 71[}))(;
= f —Ccu — ﬂ_g""&—i_aiiji)q - biwx,'
< f—cp— B+ B + ClIDYlwr~)-

Here and later, C denotes the various positive constant depending only on known

quantities.
Note that the first inequality of (1.2) yields

(p—u)(X) < @W—u)(x) <0.

Therefore, we have 0 < B < f-(X) < maxg fT 4+ M. maxg ™ + C||DY|lwr=(q
in , where M, > 0 is the constant in (1.5) (Il
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Remark 2.3 When we consider Bellman operators in Sect. 3, the L*° estimate on
the penalty terms for obstacles does not imply (2.8) because we will have one more
penalty term, which cannot be evaluated by the above argument.

Now, we show local W estimates on solutions of (2.4). Our argument is more or
less standard though we do not know if the next proposition has appeared somewhere
to our knowledge.

Proposition 2.4 (Local W2 estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let
us € CH(Q) N CY(Q) be solutions of (2.4). Then, for each compact set K € , there
is Cx > 0 independent of € € (0, 1) such that

max|D2u5| < C‘K
K
Proof Choose ¢ € Ci°(2) such that
0<¢<1 inQ, and (=1 onKk.

Putting M := maxg, (| Du®|, we may suppose M > 1.
Writing u and 3 for u® and (3., respectively, we set

V = C|D*ul* + yM{Bu — ) + B(p — u)} + yM|Dul*.

We shall write 3 := 3(u — 1) and 3 := B(p — u) again for simplicity. In the pro-
ceeding calculations, we shall moregimply WIIte U, Ujk, Qijk €1C. TOT Uy s Uiy s
(aij)x, etc., respectively.

We may suppose that maxg V = V(&) > 0 for some x € Q. By setting L& :=
—a;;&; + bi&;, since LoV (X) > 0 by the weak maximum principle, at X, we have

2¢G; I D*ul? + 2¢:¢; 1 D%ul* + 8¢ ukeurej + 2C urettpeij
+2¢ P ugeittre + YMB (u — )i (u — V) + YMB (u — V)i
M B"(p —w)i(p —u); +YMPB'(p — u)ij + 2yMuguyi;
+2yMuy;u;
+b; { 2¢GID%ul? + 2Cugeuge; +YMB (u — P); + YMB'(p — u);
+2yMuyuyi
< —20(ID*ul? +yM|D*u?) — yMOB' D — »)> + 5'|D( — w)?)
+C (Dl + | D*u|| D*ul) + yMB Lo(u — ) + MG Lo(p — u)
+2¢%uge Louge + 2yMuy Louy. B

0< —ajj

By Young’s inequality, at X, we have

Ip := 0 D*ul + 9yM{|D*ul? + B 1D — )1 + 8'|1D(p — w) )}
v ,
< YM{B Lo(u — ) + ' Lo( — w)} 4 2¢Puge Loure + 2yMug Loug
=L+L+1

for large v > 1.
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Since (2.8) for p > n implies the W'> estimates on u, we will not mention
the dependence on ||u || 1. () in the calculations below. In order to estimate I3, we
differentiate (2.4) with respect to x; to obtain

- :
Loux = fi +aijuij — bigui — cug — cxu — B (u — )i + B (0 — u).
Thus, we have

I < C’VM(l + |D2M|) + L+ 1

_, 2.9
+yM{B (—|Dul + DY) + B'(—1Dul + | DeP)). 29

To estimate I, we differentiate (2.4) with respect to x; and x; to obtain

Loure = fre + aijrettij + aijrttije + aijottijxe — bixett; — by gutie — b gutjx
— —/ /
=B —=Pe =B (u—P)(u =)+ (0 — Wi
+8"(o = w)i(p — u)s.

Hence, we have

L < 0CID*uP + C(1 + |D*u?) +2M{B D — ) > + 5| D(p — w)*}
+C{B (—|D2ul? + |D*)?) + B (—|D*u® + | D).

Thus, inserting this in (2.9) with v > 2/6, we have

OyM|D?ul> < CyM(1 + |D?ul) + C(1 + |D*ul?)
+F { ~*(D*ul® — |D*Y|*) — M(IDul* — |DY|?) }
+YM(f —u— 3+ 53— Loy)
45 { —C(D*ul? —|D*¢?) — M(IDul* — |Dg|*) }
= FYM(=f +u+ 3 — B+ Lop)
=1+ L+

Case 1 : J, < 0and J3 < 0: In this case, for a largely fixed v >> 2/6, we imme-
diately have

|D*ul*(3) < C.
which together with Propositions 2.1 and 2.2 implies

M? <V(R)<C(+ M).
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Case2: J, > Oor J; > 0: We shall only consider the case of J, > 0 since the
other one can be shown similarly. In view of (2.7), we see that

CID*ul*(R) < C(1+ M),

which yields
M? < V@) < C(1+ M).

Therefore, M is bounded independently from ¢ € (0, 1). O

Remark 2.5 We note that our choice of auxiliary functions V does not work for
Bellman operators in Sect.3. Instead, we will barrow a different one from [23],
which can be applied only to unilateral obstacle problems.

As mentioned in Sect. 1, Jensen in [32] showed W2 () estimates under addi-
tional assumptions on the coefficients. Here, in order to simplify the argument, we
shall obtain the W bound near the flat boundary under additional assumptions.
Setting x’ = (x1, ..., x,—1) € R*"!, we suppose that Q satisfies

{QmBl={x=('x/axn)||x|<lv'xﬂ>0}a (210)

0QN B ={(x,0) ] |x'| <1}.

To show W2 estimates near OS2 for bilateral obstacle problems, we follow the
argument in [31].

Theorem 2.6 Assume (1.2), (1.4), (1.5), (2.1) and (2.10). Assume also that
a;, =0 on 0N By. (2.11)
Let u® € C*(Q) be solutions of (2.4). Then, there is C > 0 such that
D>’ < C in QN By.
Remark 2.7 Under hypothesis (2.11), we note that
— apit,,, +byu;, = f on9QN By (2.12)
since u; = ufj =0forl <i,j <n-—10n9dQN By by (2.5).

Proof As before, we shall write u for u°, and use other simplified notations.



Regularity of Solutions of Obstacle Problems —Old & New— 215
We choose 7 € C3°(By) such that

0<n<1linBy,
n=1 inB,. (2.13)
Ny, =0 ondQN B;.

Setting
S L for (i, j) # (n.n),
v unn_l;nun+ff0r (lvj) =(n,n),

where l;,, = b, /a,, and f = f/au,, we define

n

2.2 2 2 I N2

|D Ul = E Vi = E uij+(unn_bnun+f) .
i,j=1 (@i, j)#n,n)

Consider W defined by
W = e’ |D*v]> + yM (B + B) + yM|Dul*,

where M := maxgn|D?u|, and A, v > 1 will be fixed. We may suppose M > 1.
LetX = (%1, %2, ..., X,) € QN B; beapoint such that maxgz W = W (%) > 0.
Because of W(X) > 0, we may also assume that £ € Q N B;.
Since the argument in the proof of Proposition 2.4 can be applied to the case when

X € QN By with some minor changes, we may suppose X € 9Q N By, and we will
obtain a contradiction. Since |D?*v|* = 2 Z;:ll u?, at £, (2.5) implies

n—1
Wn = zeAi,l,'f Z(Aulzn + 2uinuinn) + ZFYMun(Bnun - f)

i=1

By noting u;,, = (l;nun — f ); at x, this equality implies
n—1
W, > 2eng? {(A -0 uj, - C} - CM
i=1

n—1
> 2eM L2 (A= C) Y uf, — CM}
i=1
> 2% (| D*v|? — CM)
for a fixed A > 1. If the right hand side of the above is non-positive, then we have

|1 D*|* (%) < CM,
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which implies the uniform bound of M independent of € € (0, 1). Therefore, we
have W,(x) > O but this implies that X is not the maximum of W, which is a
contradiction. O

Following [31], we give a sufficient condition to derive (2.11). We use the fol-
lowing notation:

Br+ ={x=(,...,x,) € B | x, > 0}.

Although BlJr is not a smooth domain, considering an appropriate smooth
domain € D B, we may assume OB; is smooth. The next proposition
yields (2.11).

Proposition 2.8 Suppose that there is o € (0, 1) such that
3a, 51 ..
ajj € C7(B,) forl <i,j <n.

There is a C*-diffeomorphism T = (Ty, ..., T,) :§;r — T(ET) such that T €
c*e (ET) such that

. . B oT, 0T,
) = (T () = (x) =—(x)

ij=1

and .
Gn(y,00=0 (1<k<n-—1), forT7'(y,0) € B,.

Proof. We begin with considering the following PDE

—aij ()i, + bi(Duy, + c)u + e — ) — fe(p —u) = f(x) in Bf

such that u(x) = 0forx = (x1,...,x,-1,0) € §1+- Consider the change of variable
T = (fl, e, f"") :El+ — R”" defined by

X+ TF(x) — T*(x',0) forx = (x', x,) € By . 1 <k <n—1,
X forx = (x/, x,) € ET, k =n.

n=f%m={
Here, T = (T',...,T") € C*“’(ET; R"™) is the solution of

(2.14)

{—AT"—}—T" =0 inB,

(DT, vy = & on 0B,
ann

where v is the outward unit normal of 9B .
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Itis easy torewrite the equation for v(y) := u(x) with this new variable y = T (x):
—ai; (M)y,y, + bi(uy, + @+ B-(v — ) = B(p —v) = (),

where ¢(y) = ¢(x), f(y) = f(x), () = $(x), () = p(x),
aij(y) = Y aw@TL )T (x),
k=1

and

bi(y) =) bi0)T} (x) = Y an@)T., ().

k=1 k.t=1

In view of the boundary condition of (2.5), it is immediate to verify that for
1<i<n-1,

n

ain(y,0) = Y an(x', 0T} (x', 0T} (x', 0)
k=1
n
=Y ' 0T} (', 0)
k=1
= a,-n(x’, 0) +ann(x,7 O)T;n(x’, 0)=0. U

Open question 1: Is it possible to obtain W>>° () estimates with no extra assump-
tion (2.11) on g;;?

3 A Bellman Type Operator Case

In this section, we obtain W1 bounds for solutions of bilateral obstacle problems
when the PDE part is of Bellman type. However, we do not know if we can show
further estimates on the second derivative of solutions of penalized systems below
for bilateral obstacle problems. Thus, following [43], we will discuss local W20
estimates on solutions of unilateral obstacle problems for Bellman equations.

3.1 Bilateral Obstacles

We first consider the following bilateral obstacle problems

min{max{F (x, u, Du, Dzu),u—w},u—go} =0 in L, 3.1



218 S. Koike
where F : Q@ x R x R" x §" — R is defined by

F(x,r, &, X) = g%c{—Tr(Ak(x)X) + (b (), &) + For — fF). (3.2)

Here by letting N > 2 be a fixed integer for k_e N :={1,2,..., N}, functions
= () Q— ", b" = (b)) : Q- R",¢*: Q- Rand f* : @ — Raregiven.
We will use linear operators

L*u := —Tr(A*(x) D*u) 4+ (b* (x), Du) + c*(x)u.
As in Sect.2, we suppose that there is # > 0 such that
(Ak(x)g, &) > 9|§|2 forany ¢ € R" and (x,k) € Q x N, (3.3)
and there is M, > 0 such that
0<cf <M. inQ forkeN. (3.4)

Following [22], we introduce a system of PDE via penalization: for k € NV,

{ Db Bld =) 4 B =) = fulp —uy = i@,

u* =0 onds,

where uV*! := u! and 3. is given in Sect. 2. In order to distinguish three j3. in (3.5),

we will simply write

g’;(x) = g;IZ(x) = B-(u* (x) — uf+ (x)),
B (x) == B.(x) = B-(uF(x) — P(x)),
B (x) = B (x) = B(p(x) — Uk (x)).

For given functions, we suppose that
”,l,f e C*(Q) forl <i,j<n, andk e N. (3.6)

Setting

K+ . k—
= max , and (=max [,
f keN f i keN f

we have the L™ estimates on «*¢ independent of (¢, k) € (0, 1) x N.

Proposition 3.1 (L estimates) Assume (1.2), (3 3) and (3.6). Let u® = (u**°)
C%(Q2; RY) be solutions of (3.5). Then, there is C > 0 such that

—émgxf—mgxzb’§uk'5§mgxcp++émgxf inQ for (e, k) € (0,1) x N.
a - g Q Q
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Proof Setting Cp := maxg ¢~ and C; := maxg f, we suppose

min 1% (x) 4+ Co 4+ p(Cy + Hw(x) < 0.
keN ,xeQ

Here, § > 0 will be sent to 0 in the end, and w is the function in the proof of
Proposition 2.1; w(x) := €270 — Y&+ R) 5 0 in Q C Bpg,, where v > 0 will be
fixed later. Dropping ¢ > 0 from «*¢ and (3., we may assume that there is X € Q
such that

u' () + Co+ p(Cr + Hw(%) = min {u"(x) + Co + 1(C1 + Hw(x)} < 0.
keN ,xeQ

By setting v := (maxke N reg DX+ 0) /6, the weak maximum principle implies that
atx € Q,
0> —alul; + blu} + p(Cy + ) TR (yaf, — b))
> f'=clu—pBu' —u?) = B’ =) +0u(Ci + )y
> —f +cHCo+ w(Cr + Hw) — B’ —u?) — B’ — ) + p(Cy + 8)y.

\%

1

Since u! < u? and u' — 1 < 0 at x, these observation yield

F&) = 0u(Cy + 6y,

which gives a contradiction when p > 1/(6). Therefore, we conclude the proof of
the first inequality.

The second inequality can be shown more easily since we may avoid the penalty
term (3. (u* — u**1) in the opposite inequalities. O

Next, we show L estimates on 3.(u* — ) and B.(¢ — u*) independent of

(e, k) € (0,1) x N.

Proposition 3.2 (L_°o estimates on penalty terms) Assume (1.2), (3.3) and (3.6). Let
u® = Wh%) e C2(Q; RY) be solutions of (3.5). Then, there exists C, > 0 such that
fore € (0,1)andk € N,

118 ("5 — )l 1) < mgx? + Mo max )~ + C1l DY |lwi~e).
18- — u*) |l e (@) < max f + M. max ¢t + CilDllwiq)-

Proof We shall write u* for u*° as before. By the same reason in the proof of
Proposition 3.1, we shall only show the estimates on (.(¢ — ub).

Suppose maxg [_3" = ﬁ'(xo) > 0 for some xy € . Thus, we may assume
maxg (¢ — u¥) = (¢ — u")(x9) > 0. Hence, at xg € , we have

—=l1
0<—alj(o—uij+bl(e—u')i <—f'+c'u' +8' +5 ="+ ClIDgllyix(g)-
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Since u' — u? < 0,and o — u' > 0 at xy, we have

B' = —f'+c'o+ ClIDgllwi~).
which concludes the assertion as in the proof of Proposition 2.2. (]

Remark 3.3 Notice that we cannot apply the above argument to obtain L°°-
estimates on 3. (u%¢ — u¥+1-%). Therefore, unlike Proposition 2.2, we cannot obtain
W2P estimates on u*c.

For further regularity, we first obtain the estimate of first derivatives on 02 in
Proposition 3.4 below. To this end, we shall use W' estimates on approximate
solutions of the associated unilateral obstacle problems via penalization.

Proposmon 3.4 (Gradient estimates on 92) Assume (1.2), (3.3) and (3.6). Let u®
k) e C'(2: R") N C*(2; R") be solutions of (3.5). Then, there exists C2 > O
such that for e € (0, 1) and k € N,

I DU || o0y < Co.

Proof Because u*° = 0 on 02, we only need the estimate

(2)

aks
‘ <C foranyz e Q,

where n = n(z) € 62 | denotes the outward unit vector at z € 9.
Let v° = (v5) : @ — RY be the unique solution of the penalized system of the
following unilateral obstacle problem.

{ LAv* + B — vt + B.(0F — ) = fFin Q, (3.7)

v =0 onoS.

Due to Lf:mmas 2.1, 2.2 and 3.1 in [43], we find 6‘1 > (, and for each compact
K € 2, C;(K) > 0 such that

I llwine) < €1, and [ D05l pxx) < Ci(K). (3.8)
We claim that
Vo <uhF inQ for (e,k) € (0, 1) x V.
Indeed, if we suppose © := maxg , (v*° — u** — §w) > 0, where § > 0 will be

sent to 0 and w is the function in Proposition 2.1, then we may suppose © =
(v —ul® — fw)(X) for some £ € Q. Hence, at X, we have
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0< —ai]j(vl*s —ub9);; + bl (" — ule); + 5y (=0 + |bl))
< —c' @ —u'F) = B (01— v2E) — B (0" — ) + Lol — ue)
+8:(u"* — ) — Be(p — u"®) — 00y

provided v > (max,, g |bX| + 6)/6. Since v!¢ > u' and v!€ — V3¢ > u'e —y?e
at x, we immediately obtain a contradiction. Therefore, we have

vof < ubf 4 Sw in @,

which concludes the claim by sending 6 — 0. Therefore, we have

auk*g( ) < ke
on 9= on

(z) < €, foranyz € 9. (3.9)

On the other hand, for each k € A/, we next let w*¢ be solutions of

Lfu — B.(p—u) = fFinQ,
u=0 onof.

We claim that for (e, k) € (0, 1) x N,

uke < whe in Q.
Indeed, assuming maxg - (u*< — whe — dw) = (' — w! — w)(£) > 0 for
some x € 2, at x, we have

0 = —al (" — 0!y &bl —wh); 5777 (=07 + [b])
< =l = u2%) = Bl = ) + Bulp —u') = Bl — w') — 03y
<0

for large v > 1 as before. Hence, the same argument to obtain (3.9) implies

duk-= owk=

on (z) > on

(z) foranyz € 0%. (3.10)

By the same argument as in the proof of Proposition 2.2, we find C > 0 such that
0 < B-(p—w") < C inQandfor (e, k) € (0,1) x N,

which implies
max ||Dwk’5||Lm(Q) < C foranye € (0, 1).
keN
This together with (3.9) and (3.10) concludes the assertion. O

Now, we shall use Bernstein method to derive W1 (2) estimates on u*<.
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Proposition 3.5 Assume (1.2), (3.3) and (3.6). Let u® = = Wk e C'( RY)N
C3(Q2; RY) be solutions of (3.5). There exists C3 > 0 such that

max [|u*c | wie@) < C3 fore € (0, 1).
keN

Proof We shall drop ¢ from u*<. Set
VEG) o= DUt P+ ).
In view of Proposition 3.4, we may suppose that

max VE = VvI(%) > 0
N.Q

for some x € 2. We shall write u and v for u' and u?, respectively. Furthermore, we

shall write 3, 8 and ﬁ for 3!, ﬁ and 3, ! respectively.
We then have at X € Q,

0 < —2a} Writtkj + ugtgij + yuiuj + yuuij) + 2b} (upur; + uu;)
26(| D%l +7Dul®) + 2yu(f' = c'u — 3= B+ B)
fi+ alj i _f;,k“i — e — cluy
—0'(u =) — B =P+ G (0 —uk
< —0|Du|* + C + B (—|Du|* + |Dv|*> — yu® + yv?)
+8 (=1 Dul? + | DY> — yu® +49?)
+6'(=|Dul* + |Do* — yu* +v¢?)

=
=-

+2uy

for large v > 1. We use (2.3) to obtain the last inequality in the above.
Since we may suppose the last two terms are non-positive and V! > V2 at £, we
have 70| Du(%)|*> < C, which concludes the assertion. (Il

Since we do not know L estimates on 3. (u* — u*t!), it seems difficult to find
a weak (or viscosity) solution of (3.1) only with W estimates. Thus, we shall
switch to unilateral obstacle problems.

3.2 Upnilateral Obstacles

In order to show local W% estimates on solutions of obstacle problems, we shall
restrict ourselves to consider unilateral obstacle ones;

o
{max{F(x,u,Du,Du),u Y} =0inQ, 3.11)

u =0 on 0%,
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where F is of Bellman type defined in (3.2).

Lenhart in [43] showed the Wlicoo (€2) estimates on solutions of (3.11). We will
recall the argument here.

We notice that proceeding arguments for W estimates can not be applied to
the following unilateral obstacle problem with the same F because the PDE below
is of Isaacs type:

min{F(x,u,Du,DZM),u—cp} =0 in Q. (3.12)

Open question 2: Is it possible to obtain (local) W estimates on solutions of
(3.12)?

In place of (1.2), we only need to suppose
1 >0 on 0. (3.13)

The penalized system of (3.11) is as follows: for u® = ko),

(3.14)

Lkuk,s + ﬂg(uk’g _ Mk+1,€) + ﬁg(l/lk’s _ w) — fk in Q,
uk¢ =0 onoQ,

N+1,e l,e

where u =u

It is easy to establish the next lemma by following the proofs of Propositions 3.1,
3.2 and 3.5. We note that the Bernstein method with the standard barrier argument
can also work for the Bellman equation with unilateral obstacles. We refer to Lemma
2.1 in [43] for the details.

Lemma 3.6 There exists C > 0 such that
b= oy + 118: " — )~ < € for (e, k) € (0,1) x N.

Following the argument in [43] with a bit simpler auxilialy function V below than
that there, we establish WZ‘OO(Q) estimates.

loc

Theorem 3.7 (Local W>* estimates) Assume (3.3), (3.6) and (3.13). Let u® =
Wk®) e CH2: RYYNCH(Q : RY) be solutions of (3.14). Then, for each compact
K € Q, there is Cx > 0 such that

D>y <C 0, 1).
xJ}é‘i’éN' u “(x)| < Cg foree(0,1)

Proof We shall simply write u* for u** again.

Let ¢ € C3°(2) be the same function as in the proof of Proposition 2.4. Putting
M* = maxg ¢|D*u¥|, we may suppose M = maxy M* = ((3)|D*u'(3)| = 1 for
some Z € . By change of variables using the orthogonal matrix B such that
BA'(2)'B = (a0¢), we may suppose that
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L'u' ) = —oqug ) + by Qup(2) + ' @u' (2)
for some «;, > 6. For eachi € NV, setting
Vii= D )P + yMPogul, +yM|Du' |,

we may suppose that max, g V' = V(%) > 0 for some £ € Q and iy € V.
We note that
M? = GID*u'P(2) < VO R) — yM Py (2)

VO®E) +yME(f! = bjuj —c'u')(@).

IAIA

Thus, for a fixed v > 1, once we obtain
|D*u"*(%) < CM, (3.15)

then we have .
M? < VO@R)+CM < CM( + M),

which concludes the assertion.
We shall write a;;, b;, ¢, V, u and v for a;;?, b, o, Vi, u and u™*!, respectively,

for simplicity. The weak maximum principle yields, at x,

0<—a;Vij +b;Vi
2CC;1D*ul? + 2G| D*ul* + 8CCiureune; + 2C uretiei
= —a;j { +2Cureiuge; + 2yMCG ot + 2yM G o
+Ay MG + YM P onupgij + 2y Mugugi; + 2y Muy;ug;
2CG | D*ul* + 2P ugeurei + 2yMCGonury + Mot
+b; :
+2yMuguyi

Hence, setting Lov := —a;;v;; + b;v;, at X, we have

20(C*| D*ul* +~yM|D?ul?)

< C(|D*ul* 4+ {|D*u||D*u| + yM|D*u| + yM{|D3u))
+yM oy Lourk + 2Cuke Louge + 2y Muy Loug

=L+ L+5L+ 1.

By the definition of I; and I3, we have
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Sik + aij iy + 20 g ijie — by gee; — 2b; xuik
L+ I3 = yMCay  —crtt — 2cuy — Cllg — B (u - )}
—B'(u— vk — B (u— ) — B (u— )

Sie + aijrei; + 2a; xuije — bigent; — 2b; guje

+2C%u 3 —Crelt — Crlig = Celtie — Cltgy — B"(u — U_)/k(” — V)¢
=B =) =B (u—V)(w—1P)— U —1YP)e
2{C(l+|D2M|+|D3M|)—95”|D(u—v)|2 }
< ’yMC , —/ 2 —/
—ag (U — v — 08 |DW —P)° — arff (u — )i

CID?ul(1 + |D?ul + |D*ul) + 26"|D(u — v)|*| Dul
+¢ +§:(—|D2u|2 + D) +23 | D(u — ) *| D?ul
+B (=1D*ul* +|D*v]?)

Moreover, I is estimated by

Iy < 2yMud{ fi + aijguij — bigu; — cxu — cuy —g:(u — o) — B — )}
< AM{C(1 + |D*ul) + ' (—=|Dul* + |Dv|*) 4+ B (—=|Dul* + | DY|*)}.

Hence, these inequalities together with Young’s inequality give

0G| D3 ul® +yM|Du?)

< Iy + CYM(yM + | D*ul) + M2 — 49)C*3"|D(u — v)|*
+MQ2 =0 CF D@ — ) + F(=Vio + Vioth)
+B (=V + D) + yMCopthu +yMIDY ).

Note V¥ > Viotl at . Furthermore, we may suppose 0 > —V + (2| D?y)|> 4+
YMC*apbg + yM|Dap|? at X. Thus, taking v > 2/6, we have

0(C?|D3ul* + yM|D*u|?) < I + CyM(yM + | D?ul)
< C(1 + |D*ul® +v*M?) + 6% | Dul?.

Remembering M, v > 1, we have
(OyM — O)|D*ul*(®) < C(1 +~*M?),

which implies
OyM|D*u|*(X) < C*M?

provided §yM > 2C. This yields (3.15). O

Open question 3: Is it possible to obtain W (Q) or W7 (R2) estimates for Bellman
equations with unilateral obstacles under additional conditions if necessary?

Open question 4: s it possible to obtain local W,icoo (£2) estimates for Bellman equa-
tions with bilateral obstacles?
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4 A Fully Nonlinear Operator Case

In Sects.2 and 3, thanks to Bernstein method, we establish estimates on solutions
of approximate PDE (or systems of PDE), which present the existence of (strong)
solutions belonging to the associated function spaces (i.e. W2%(Q) or W,i’coo (2)).
See [43, 47] for the details. We also refer to [2] for a modern version of Bernstein
method.

We note that there is a fully nonlinear uniformly elliptic equation which does
not have classical solutions. See [48]. Furthermore, in [49], it is shown that there
exists a viscosity solution of a fully nonlinear uniformly elliptic PDE whose second
derivative is not bounded. On the other hand, we also know there is a classical solution
of a special Isaacs equation consisting of three linear operators in [9].

In this section, we study more general PDE such as Isaacs equations with bilateral
obstacles, and with unbounded, possibly discontinuous coefficients and inhomoge-
neous terms. In fact, to our knowledge, we do not know any regularity results for
obstacle problems of Isaacs equations via penalization. In order to see a difficulty
in the study of Isaacs equations via penalization, let us consider approximate Isaacs
equations with no obstacles via penalization:

Lk,luk,l + Bg(uk,f _ uk-ﬁ-l,l) _ ﬂs(uk,l-'H _ uk,@) — fk,l in Q, (41)

where u™ 1t = u'* for £ € N'andu*N+' = y*! fork € M.Here, by setting M :=
{1,...,MYand NV :={1,..., N}, uPt : Q@ — R for (k, £) € M x N are unknown
functions, and linear operators are defined by

LA = —Tr(AR (x) D*¢) + (b4 (x), DC) + FH(x)¢,

where given functions ARt Q — §" bt QO — R"and ¢kt Q — [0, 00) satisfy
enough regularity.

If we obtain L estimates on (3. (u** — u**1:¢) and B. (k1 — ukt), then it is
easy to verify that u’g@ converge to a single limit # as ¢ — 0 (along a subsequence if

necessary), which is a solution of

i L:y — fF29Y =0 in Q. 42
i‘é}\r}?el%{ u— 4} in 4.2)

However, it is difficult to show L*° estimates on the first and second penalty terms. In
fact, in a pioneering work [47], we first derive W2 estimates on solutions of penal-
ized problems for Bellman equations (i.e. N = 1), and then this gives L bounds
for the penalty term. Moreover, Bernstein method does not work to obtain W2
estimates on solutions of (4.1). Furthermore, even if we establish W estimates on
approximate solutions, since we have two penalty terms with opposite signs in (4.1),
we still do not know if solutions of the system (4.1) converge to a single solution of
4.2).
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Open question 5: Is it possible to obtain a weak/viscosity solution of (4.2) satisfying
(2.5) via penalization?

If we restrict ourselves to try to establish C!*7 estimates on solutions of bilateral
obstacle problems for v € (0, 1), then we can accomplish such estimates even when
F is of Isaacs type;

N _ kL k.0 k.t
Gx,r & X) _?e%?éi"i{ Tr(A®"(x)X) + (b™"(x), &) + ¢ (x)r}.

Moreover, since we do not need systems of PDE via penalization, we may deal
with compact sets M, N in R™ for some m € N. Furthermore, since we will not
differentiate PDE (because it is impossible!), it is possible to treat discontinuous
coefficients and inhomogeneous terms. In this procedure, we need to show the exis-
tence of weak/viscosity solutions of Isaacs equations with obstacles by a different
method. We only refer to [16] and [42] for the existence issue.

This section is based on a recent work by the author and Tateyama in [42].

4.1 Equi-Continuity

Modifying arguments by Duque in [20], we present an idea to apply the weak Har-
nack inequality to obtain estimates on solutions of obstacle problems when the PDE
part may be fully nonlinear. Here, the terminology fully nonlinear means that the
mapping (£, X) € R" x §" — G(x,r, &, X) € R is neither convex nor concave for
each (x,r) € 2 x R.

In what follows, we suppose that

@) Gx,0,0,0)=0forx e,
i) PX-Y)<Gx,rn&,X)—Gx,r,&,Y) <P (X-Y)
forx e Q,reR,eR", X, Y € §",
(iii) there is u € L9(S2) such thatg > n, and
G, r, €. X) — G, 1o X)| < p()|€ — 1)
forx e Q,reR,&nelR, X eS”,
(iv) thereis ¢y € C() such that ¢y > 0in 2, and
Gx,rn & X)—G(x,s,& X) = co(x)(r —s)
forx e Q,r,s eR, e R", X € §7,
(v) felLP(Q)forg > p > po.

(4.3)

Here, py € [%, n) is the so-called Escauriaza’s constant in [21], and for a fixed 6 €
(0, 1], Pucci operators PE 8" — R are defined as follows:

PH(X) := max{—Tr(AX) | A € S;} and P~ (X) := min{-Tr(AX) | A € S}},
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where Sj :={X e S§" |0l <X < 6~'1}. Under hypotheses (i)—(iv) in (4.3), we
easily verify that

P7(X) — p(@)El + co()r = Gx, 1, £, X) = PT(X) + p(x)|€] + co(x)r

forx e Q,r e R, £ e R"and X € §".
In a celebrated paper [10] by Caffarelli, it has turned out that to establish the
regularity of viscosity solutions of fully nonlinear uniformly elliptic PDE

G(x,u, Du, D*u) = f(x) in€,
instead of this equation, it is essential to study extremal inequalities:
G~ (x,u, Du, D*u) < fT(x) and G*(x,u, Du, D*u) > —f~(x),
where G*(x, r, &, X) 1= PH(X) &+ pu(x)|€] & co(x)rt.
Furthermore, according to [10] again, the key for the regularity theory is the weak

Harnack inequality for supersolutions.
We recall the definition of L”-viscosity solutions of

H(x,u,Du, D’u) =0 inQ, (4.4)

where H : Q@ x R x R" x §" — R is given (not necessarily continuous).

Definition 4.1 We say that u € C(2) is an L” viscosity subsolution (resp.,
supersolution) of (4.4) if it follows that

lin})ess. gn(f) H(y,u(y), DC(y), D*¢(y)) <0

(resp-, lim ess. sup H(y, u(y), D{(y), D*((y)) = 0)

whenever for any ( € leof (2), u — ( attains its local maximum (resp., minimum)
at x € Q. Finally, we say that u € C(2) is an L? viscosity solution of (4.4) if it is
both of an L? viscosity subsolution and an L? viscosity supersolution of (4.4).

Throughout this section, we at least suppose that
P, P € C(Q) (4.5)
satisfy (1.2). Under hypotheses (4.3), (4.5) and (1.2), we consider

min{max{G (x, u, Du, D*u) — f(x), u — (x)}, u — px)}=0 inQ (4.6
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under the Dirichlet condition (2.5). It is immediate to see that if u € C(£2) is an
L? viscosity subsolution (resp., supersolution) of (4.6) with this G, then itis an L?
viscosity subsolution (resp., supersolution) of

min{max{G~ (x, u, Du, Dzu) — ), u— X))}, u— px)}=0
(resp., min{max{G* (x, u, Du, Dzu) + ), u—v@)lhu—pk)}= 0)

in Q. We will only use these information in the argument below.
We recall a reasonable result without proof.

Proposition 4.2 (Proposition 2.9 in [42]) Under the same hypotheses as in Theorem
4.3, if u € C(R2) is an L? viscosity subsolution (resp., supersolution) of (4.6), then
it follows that

u <1 (resp.,u> ) inQ.

In what follows, we call w a modulus of continuity of functions if
w € C([0, 00)) is nondecreasing, and w(0) = 0.

We also use the notation A’ for the set of interior points of A C R”.

Theorem 4.3 (Theorem 2.10 in [42]) Assume (4.3), (4.5) and (1.2). Then, there
exists a modulus of continuity w such that for any L? viscosity solution of (4.6)
satisfying (2.5), it follows that

lu(x) —u(y)| <w(lx —y|) foranyx,y € Q.

Moreover, if we suppose @, 1) € C*(Q) for some o € (0, 1), then there are C>0
and & € (0, ] such that for any LP viscosity solution of (4.6) satisfying (2.5), it
follows that

lu(x) —u(y)| < é|x — y|& foranyx,y € Q.

For r > 0 and x € R", we define closed cubes as follows:

0 =[-2%]" ew=x+0

r o= 2 ’ 2 ’ r X) =X re

Proof We shall only give a proof for local estimates since we can modify the argu-
ment below by using the weak Harnack inequality near 0S2. See [29] for its usage.

Fix any K € 2. We shall divide K by
K ={xeK|ux) =9y}, K ={xek|ux) =px)}

and Kg:= K\ (KtUK"™).
It is standard to show the assertion when x, y € K. See [42] for the details.
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Let wy be the modulus of continuity of obstacles;

[(x) =PIV 1p(x) = (] < wollx — y|) forx,y € Q.

Fix any X € K. We may suppose X = 0 by translation. For r € (0, dy/(2+/n)),
where d := dist(9€2, K), we set

i=uV (p0) 4+ wy(2y/nr)) and u :=u A (Y(0) — wy(2/nr)).
Notice that ¢(0) + wo(24/nr) > ¢ and ¥ > P(0) — wo(2+/nr) in Q4 C Q. It is
standard to see that u and u are, respectively, an L? viscosity subsolution and super-
solution of
G~ (x,u,Du, D*u) — fT(x) =0 and G*(x,u, Du, D*u) + f~(x) =0 inQy,.
For s € (0, dy), set

M; :=supu and m, :=infu.
[oR Qs

We then define
U:=M; —u and U :=u—my forr e (0,dy/(2/n)).
It is immediate to see that U and U are nonnegative L” viscosity supersolutions of
PH(D*u) + p|Dul + cou+ f£ =0 in Q4.

Since ||l e 0.y < 11l Lac0y) (Zﬁr)l_;l , we can apply Proposition 5.7 in Appendix
with the standard scaling to have

1
</ U“dx) ’ <Cra <i3fﬁ+r“°||f+||LW<Q4,))a

1
( / mdx) C<crh (iIQIfQ+ra°||f_||LW(Q4r)>=

where ag :=2 — - € (0, 1]. By noting My, —my = U + (4 — u) + (u — u) +

pAR

U < U + 4wo(24/nr) + U, the above inequalities imply
My —my < C <11Qlfﬁ + igf U+ r® + wo(zﬁr)) ,

which gives a decay estimate of oscillations:

Mr —my = 00(M4r - m4r) + re + WO(z\/Er)
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Since u(x) —u(y) <u(x) —u(y), it is standard (e.g. in [29]) to obtain equi-
continuity of u.

If ¢ and 1) are Holder continuous, then the above estimate implies the Holder
continuity with some exponent. (]

4.2 CY7 Estimates

Now, assuming that there is 4 € (0, 1) such that
p.1h e CM(Q), 4.7)

we will suppose (4.3) but ¢ > p > n in (v). Under this assumption, we will use the
Holder exponent

~o 1= min {1 — ﬁ,&} € (0, ).
p
For simplicity, we will also suppose
p <1 in Q. (4.8)

For G in (4.3), we use the notation:

G (x.0,0, X) — G(5,0,0, X)|
O(x,y) := su forx,y € Q.
sk I+ [X] Y

Theorem 4.4 Assume (4.3) replaced by g > p > n in (v), (4.7) and (4.8). For any
K € Q, there exist Cx > 0,y € (0, 01, ro € (0, dist(K, OR2)), and &y > 0 such that
ifu € C(R) is an L? viscosity solution of (4.6), and if

! N0y, s oy < b0 forr € (0,r9) and y € Nk, 4.9)

where by setting Cxlu] :=={x € K | u(x) = ¢(x) or u(x) = 1p(x)}, we define the
non-coincidence set by Nk [u] := {x € K | dist(x, Cg[u]) > 0}, then it follows that

|Du(x) — Du(y)| < Cglx — y|" forx,y € K.

Proof Following the argument in the proof of Proposition 5.1 in [42], we can find
71 € (0, 1) such that

|Du(x) — Du(y)| < C|lx — y|" B,(x) C Ng[u] for some r > 0. (4.10)
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In fact, we need some modification of the standard argument in [10] since our PDE
contains unbounded ingredients. See Sect.5.1 in [42] for the details. We only need
(4.9) to prove this fact.

We shall show the assertion near the coincidence set. Thus, we shall fix z € K
such that u(z) = ¢(z). Again, we may suppose z = 0 by translation. We will show
that

Ju(x) = u(0) = (Dp(0). x)| < Cr'*™ x € Q:,

which implies that u is differentiable at 0, Du(0) = D(0), and moreover,
[Du(x) — Du(0)| < Clx|™ forx € Q:.
We refer to [1] for its readable proof.

Setting v := u — ©(0) — (Dp(0), x) + Ar't? for large A > 0, we claim that v is
a nonnegative L? viscosity supersolution of

PH(D*u) + p|Dul +cov+g~ =0 in Qu,

where g~ (x) := f7(x) + | Dp(0)|(x) + co{p(0) + (Dp(0), x)}. Considering v :=
v (ianr u+ 50_1 llg~ ”L]mn(QM))_l , we note that we may apply Proposition 5.7 to find
go > 0 such that

r 0 vll o, < C <i3fv +r77 ||g||L"(Q4,))
< CO) +r7)

< Cr'tmn,

@.11)

For large v > 1, it is easy to verify that w := v vV (vAr'*7) is an L? viscosity
subsolution of
P~ (D*u) — p|Dul —g* =0 in Qy,
where g7 = f* + |Do0)|p — co{p(0) + (Dp(0), x) — Ar'*7}. In view of

Proposition 5.8, we have

1
~ _n <0 _n
supvsc{r “0 (/ wEde> + 7 P+ pllros) f
Qﬁ r

where C = C‘(eo) > 0. Hence, by (4.11), we have
v < Cr'*t in 0:.

The opposite inequality is trivial because Proposition 4.2 yields
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u(x) — p(0) — (Dp(0), x) > @(x) — p(0) — (Dp(0), x) = —Cr'*T > —Cr'*0
for |x| <r.
Now, we shall combine two cases to establish the estimate. For x, y € Ng, we
may assume 0 < dist(y, Cg[u]) < dist(x, Cg[u]). Choose %, § € Ck[u] such that

|x — %] = dist(x, Cg[ul) > [y — | = dist(y, Cx[ul).

Casel:|x —y| < %lx — x|. In this case, by (4.10), we have

|Du(x) — Du(y)l = Clx — y|".

Case?2:|x —y| > %|x — x| > %Iy — y|. We may suppose that (u — p)(x) =
(u —@)() (or (u —Y)(X) = (u —¥)(3)) because Y(x) — p(y) = 79 > 0 for y €
B,.(x) N K with small » > 0.

Thus, due to the above observation, we have

|Du(x) — Du(y)|
< |Du(x) — Du(®)| + [Du(£) — Du($)| + |Du(3) — Du(y)|
< Clx =X + [Dp(X) — Dp(M] + Cly = JI™
=Clx =y +Clx =3I
=Clx -y

because |£ — 517 < % —x[7 + x — y[ + |y — $[7 and o < 4. O

Open question 6: What is a sufficient condition to obtain Wli’fo (£2) or W,%;C” (2)
estimates on solutions of Isaacs equations with obstacles?

5 Appendix

In[38, 39], we established the ABP maximum principle and weak Harnack inequality
for L? viscosity solutions only when the PDE does not contain Oth order terms for
the sake of simplicity. Since in Sect.4 we obtain the results assuming (4.3), which
allows the PDE to admit Oth order terms, we shall give the ABP maximum principle
and weak Harnack inequality for those.

The ABP maximum principle can be proved immediately due to known results.

Proposition 5.1 Assume p € L1(2), f € LP(Q2 for g >n and q > p > po.
Assume also that ¢y € C(Q) is nonnegative in Q. Then, there exists a universal
constant Co > 0 (depending on || 1|l 14()) such that if u € C(Q)isan L? Viscosity
subsolution (resp., supersolution) of

P_(Dzu) — 1(x)|Du| — co@)u” — fT(x) =0 inQ (5.1
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(’P+(D2u) + 1(x)|Du| + co@)ut + f~(x) =0 in Q) ,

then it follows that

o1
maxu < max ut + Codg, "I fF Lot (5.2)
C

. _ 2=
<resp., ms%nu > —n(%gxu —Codg, "IIf ||LW(Q|M|)) ,

where QF[u] := {x € Q| £ u(x) > maxgo u™} and dg = sup{lx — y| | x,y € Q}.

Proof We shall only show the first assertion. It is immediate to verify that u is an
L? viscosity subsolution of

P~(D*u) — pu(x)|Du| — fH(x) =0 in Q [ul.

Hence, we can apply Proposition 2.8 and Theorem 2.9 in [38] to conclude our
proof. O

We next show the weak Harnack inequality. We first present a decay of distribution
functions of L? viscosity supersolutions.

Lemma 5.2 (cf. Theorem 2.3 in [41]) Assume the same hypotheses in Proposition
5.1. There are 1o, dp > 0 and A > 1 such that for any nonnegative L viscosity
supersolution of

PH(D*u) + p(x)|Dul + co(x)u — f(x) =0 in Qu,

ifinfo u < 1and ||pllprroy vV I f 7 IlLenoy) < 0o, then we have

Hx € Q1 ulx) >t} < t% fort > 1.

Remark 5.3 It is trivial that the conclusion holds true for any ¢ > 0 since A > 1.

Remark 5.4 The assertion is known in [39] when ¢y = 0. In fact, in our case, we
do not know if the strong maximum principle holds when the coefficient to the first
derivative (i.e. u) is unbounded. Therefore, we will use an auxiliary function ¢y,
which is a strong solution of PDE with no first derivative terms. We notice that if we
add p| Dol in the left hand side of (5.3), then we cannot show (5.4) below. We will
then have p in the inhomogeneous term which is small in L" norm.

Proof In view of Proposition 2.4 in [40] with some modifications as in the proof of
Lemma 4.2 in [39], there exists ¢ € W>P (Q4\ Q1) N C(Q4 \ Q}) forany p’ > n
such that
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P (D*u) + co(x)u =0 in Q4 \ O,
u=0 ondQy, (5.3)
u=-—1ond0Q;.

Since ¢ is also an L” viscosity solution of the PDE in the above, if we suppose
Supp,\ o, Po > 0 orinfg, g, ¢o < —1, then this contradicts to the definition of L?
viscosity solution. Thus, we have —1 < g < 0in Q4 \ Q).

Furthermore, we claim that there is 6y > 0 such that

wo < —bp in O3\ Q. 5.4

Although the proof of (5.4) is known in [33] for instance, we will give a proof of
this claim for the reader’s convenience in the end.

Extending ¢ appropriately in Q, for large A > 1, we may suppose that ¢ :=
Xpo € W2P'(Qy) is an L? strong solution of

P~ (D*u) +cou =& in Qy4

such that ¢ < —2in Q3, where £ € L9(Q) satisfies ¢ =01in Q4 \ Q).
We observe that w := u + ¢ is an L? viscosity supersolution of

PH(D*w) + p|Dw| + cow™ = —p|Dp| — f~ +& in Q.
Hence, setting 2 := {x € Qi | w(x) < 0}, by Proposition 5.1, we have

—1 > infw > inf w = inf w
0 Q4 Q

—CllplDol + [~ =&l
—C (50 Flxe 0 |wk) < 0}|W).

IV v

Therefore, for a fixed o > 0, we can find 8; € (0, 1) such that
01 < l{x € Q1 |u(x) < M},

where M := maxg,(—¢) > 1. It is now standard by an induction argument to see
that
lx € Qi lu) > MY <1 -0)" keN,

which implies the decay of distribution function of u. Therefore, we conclude the
assertion by the standard argument. See [39] for the details.

Proof of claim (5.4) (cf. Theorem 1 in [33]) It is enough to show that ¢, (x) < 0O for

x € 04\ Q1. Setting Ko := {x € Q) \ Q1 | po(x) = 0}, we may suppose Ko # 0.
We can choose R > 0,z € Kp and Z € Q¢ := (Q} \ 01) N K§ such that
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Br(2)\{z} € Qo, and 9Br(%) N Ko = {z}.

Setting an open annulus Ag := {x € R" | R/2 < |x — z| < R}, weintroduce {(x) :=
e(e PR/2 _ =BIx=i/2) < (0 where 3 > 1 and € € (0, 1) will be chosen later. Fur-
thermore, we have

M, :=max(po — {)(x) = (po — () (2) = 0.

XEA()

We also note that (pg —¢)(x) <0 if x € 9Br(2) \ {z}. Now, setting 6y :=
Min,eyBy, ) (—Po(x)) > 0 and e := 6y/2, we observe that

BR2 fo

max (po—Q(x) < —Oy+ee” 3 <—— <0.

xE@BR/z (Z) 2

Next, assume that ¢y — ¢ attains its maximum at X € Ag. Since @ is a viscosity
subsolution of
P~ (D*u) +cou =0 in Q4 \ Q1.

we have

BiE—312

0>e 2 {BP (U -BE=-2®E -]+ co@)po).

Following an argument in p. 20 of [12], since P~(I — (x —2) ® (x — 7)) >

—% + (# — 1) 0 > 1 provided 8 > [, for some Gy > 1, we have

BlE=312

0>e 7 (B—co®)),

which yields a contradiction when 3 > () + max, g co. Therefore, because (¢ —
O)(z — he) < (o — ()(z) = Oforsmall i > 0, where e := (z — 2)/|z — Z|, we have

_ Blz—he=32 _ Blz=2?
2

wo(z — he) — po(2) e 2 e
€
—h - h

Sending & — 0+, we have (Dyy(z),e) =0 > 667%,813 > 0, which is a contra-
diction. Hence, we have Ky = . O

Remark 5.5 It is possible to give precise functions ¢ by considering larger ball
By sz O Q4. See [30] for such a function.

Remark 5.6 Concerning the strong maximum principle for PDE of divergence type
with Oth order terms, we refer to [51] and references therein.

Now, we present our weak Harnack inequality.
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Proposition 5.7 (cf. Theorem 3.1 in [39]) AAssume the same hypotheses in
Proposition 5.1. There are g9 > 0, 69 > 0 and C > 0 such that for any nonnega-
tive L? viscosity supersolution of

PH(D*u) + p|Dul + cou — f =0 in Qu,

if | pll Lo,y < o, then we have

s
<f u&)dx> 0 < é <1IQlfI/£ + ”f”LW\”(QAl)) :
1 1

Proof In place of u, considering

u

Vi=- — — ,
13fu + 85 N lLrmngon) + €

where £ > 0 will be sent to O in the end, and dy > 0 will be fixed later, we may
suppose || f || oo, < do and infp, u < 1.

In view of Lemma 5.2, we easily verify that for any ¢y € (0, rp), there is C =
c (g9) > 0 such that

which implies the conclusion by sending € — 0. (]

In order to establish the Harnack inequality, we combine the weak Harnack
inequality with the next local maximum principle.

Proposition 5.8 (Theorem 3.1 in [41]) Assume the same hypotheses in Proposition
5.1. For any € > O, there is C. > 0 such that for any L? viscosity subsolution of

P~ (D*u) — p|Du| — cou™ — f =0 in Qy, (5.5)

we have

1
supu < C. {( (M+)de> + ||f+||Ll’(Q4)} .
[

Q1
I

Since we have unbounded coefficient u, we cannot use the standard argument as in
[29]. We follow the idea of the proof of Lemma 4.4 in [12] with some modifications.
We first prepare the following lemma:

Lemma 5.9 (c¢f Theorem 2.3 in [41]) Forqg > p > poand q > n, let f € L?(Qy4)
and p € L1(Qy4) be nonnegative. Assume that u € C(Qy) is an L? viscosity subso-
lution of (5.5) satisfying
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A
ltx € Qufu@) =1} = == forVe > 1, (5.6)

where the constants A > 1 and ry > 0 are from Lemma 5.2. Then, there are an
integer J, v > land £; > 0 (j > J) such that Z;’ij ¢; < 00, and if u(xg) > vi=1
for j > J and xy € Q1 then SUPQ, (o)t = vl

Proof We will fixv > 1,J e Nand £; € (0, 1) for j > J. Suppose

sup u < v/,
Q¢; (x0)

then we will obtain a contradiction.
Setting x = xo + %y for y € Q4, we define

1
v(y) = a (1 — —u(xo + 4—'zjy)> :
2

where a := v(v — 1)~ (orv = a(a — 1)~"). Thus, we immediately verify that v >
0in Q4, and infp, v < v(0) < a(l —v1) =1.
We next set

a=202A)0 > 1 (i.e. v =20QA) 0 2QA)0 — 1) > 1),

22n+2r0+1A %
vJro

and

Choose Jy € N such that
a < (22n+2r0+lA)% < VJO.

Notice that £; < 1 for j > Jy. We next choose J; > Jy such that

a (€\
— (2 <1 forj=>J.
v\ 4

We then see that v is a nonnegative L” viscosity supersolution of
PT(D*u) + fil Du| + éou+ f =0 in Q.

where

. ¢ G\ .48 2 olf ¢
w(y) = aH <xo + Zy) » G0 = 1pvco and f(y) = 16ij Xo + 27
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Because of our choice of o > 1, £; and J; € N, we verify that for j > Ji,

] 1— pAn

R ej pAn ej q
lallran oy = Z ”,UIHLI’A”(Q(/(xO)) = Z 112l 2a(Q4)s

and

N o l “nap
j + +
1 g = 75 (Z) 1Lf Lo o = N ILrmcor, o

Finally, we choose J, > J; such that |||l Lo (g,) < 0o, Where dp > 0 is the constant

in Lemma 5.2.
In view of Lemma 5.2, we have

2\
Hx € Q1 lv(x) >a/2} <A (a) ,

which yields
coio luem <2 W a(2) (G) <L (LY
; < — — — = .
reRgto il =y =a) (o) =2\1
However, (5.6) implies
vl v 2\"
x€ Q) ulx) = - | =yxe @ |ux) = 5 | <Al =) -
Ey 2 2 v/
Hence, we have
] 2\
22n+1 =4 <;> ’
which implies a contradiction to the definition of £;. O

Proof of Proposition 5.8. We first consider the case of ¢ = ry, where ry > 0 is the
constant from Lemma 5.2.
Choose 7z € Q% such that u(z) = maxp, u. Setting v(y) := u(z + sy) fors > 0,
I

we observe that v is an L? viscosity subsolution of
P~ (D*u) = il Du| = cou™ = f =0 in Q.
where fi(y) = spu(z +5y) and f(y) := 5> f* (2 + 5).

Since we may suppose (vH)dy > 0, by setting
01
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1 —1
_1 0 _ A
w(y) == v(y) {A "0 < (U+)r°d)’> ) 1||f||L1W1(Q4)} ,
0
it is immediate to see that
> < ! < A
Hy € Qi |w(y)—’}|—t70 Qlw =
Furthermore, we verify that w is an L? viscosity subsolution of
P~ (D*u) = plDul — g =0 in Qs

where g(y) := 8o.f DIl 3w g,-
Letv > 1,J e Nand £; € (0, 1) be from Lemma 5.9. There is J > J such that

o0
U=

j=J

0| =

We claim that sup,, w < v/~!. Indeed, if w(xo) > v/~! for some x, € Q. then
q

thanks to Lemma 5.9, we can choose x; € Qy, (xo) (for j > J ) such that
w(x;) > vl

Since x; € Q% for j > J, this contradicts to the continuity of w € C(Q4). Hence,

we have l

) A
supu < supv < C {( (v+)r°dx) + ||f||LW(Q4)}
01

0, 01
r r .
T o
<C @M)dx ) + N fllLrmgy ¢ -
0

In case when € > ry, instead of the above w, consider

% —1
w(y) == v(y) {A_c1 </ (v+)5dy>‘ + 601||f||mn<Q4>]
01

Thus, we have
A

<
e

A
— fort > 1.
tro

{y e Q1 1w(y) >1}| <

Therefore, Lemma 5.9 implies the conclusion.
On the other hand, if 0 < € < r, then considering
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1 -1
w(y) :=v(y) (A ( (v+)5dy> + 05 M lomcon t
0

we have
~ A 7 +\e e A
{ye Q1lwy) =t} <— | )"y (wHdy < — fort > 1.
1 0 0 tro
Hence, Lemma 5.9 concludes the proof in this case. O
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