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Preface

The proceedings contain several original surveys by invited speakers in a series of
workshops entitled Partial Differential Equation and Future Applications, which
was organized by Tohoku Forum for Creativity (TFC for short) supported in
Tohoku University from July 2017 to October 2017, and also some research papers
in related fields. The TFC program has started since 2013 and is evolving over
various research fields on natural and human sciences. The above title Nonlinear
Partial Differential Equations for Future Applications is one of the thematic pro-
grams in TFC. In our program, we focussed on nonlinear partial differential
equations arising in fluid mechanics, reaction diffusion, optimal control, modern
physics, material sciences, and geometry. Furthermore, in order to search for new
applications, we invited experts from other areas.

Our program consists of the following workshops:

July 10–14, 2017 Evolution Equations and Mathematical Fluid Dynamics
July 17–21, 2017 Optimal Control and PDE
July 24–28, 2017 Hyperbolic and Dispersive PDE
October 2–6, 2017 Geometry and Inverse Problems⋆

⋆ in cooperation with A3 Foresight Program

The aim of this series of workshops was to introduce new and active fields of
nonlinear partial differential equations (PDE for short) to young researchers, and
moreover, to discover possibilities to connect related sciences with mathematics.

v



The purpose to publish these proceedings is, in addition, to enable the interested
researchers to know valuable surveys with more detailed explanations. Moreover,
we have decided to add several original papers which will be important contribu-
tions to future researches.

Editors
Tokyo, Japan Shigeaki Koike
Tokyo, Japan Hideo Kozono
Sendai, Japan Takayoshi Ogawa
Sendai, Japan Shigeru Sakaguchi
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An Introduction to Maximal Regularity
for Parabolic Evolution Equations

Robert Denk

Abstract In this note, we give an introduction to the concept of maximal L p-
regularity as amethod to solve nonlinear partial differential equations.We first define
maximal regularity for autonomous and non-autonomous problems and describe
the connection to Fourier multipliers and R-boundedness. The abstract results are
applied to a large class of parabolic systems in the whole space and to general
parabolic boundary value problems. For this, both the construction of solution oper-
ators for boundary value problems and a characterization of trace spaces of Sobolev
spaces are discussed. For the nonlinear equation, we obtain local in time well-
posedness in appropriately chosen Sobolev spaces. This manuscript is based on
known results and consists of an extended version of lecture notes on this topic.

Keywords Maximal regularity · Fourier multipliers · Parabolic boundary value
problems · Quasilinear evolution equations

Mathematics Subject Classification Primary 35-02 · 35K90 · Secondary 42B35 ·
35B65

1 Introduction

In this survey, we give an introduction to themethod of maximal L p-regularity which
has turned out to be useful for the analysis of nonlinear (in particular, quasilinear)
partial differential equations. The aim of this note is to present an overview on the
main ideas and tools for this approach. Therefore, we are not trying to present the
state of the art but restrict ourselves to relatively simple situations. At the same time,
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2 R. Denk

we focus on the mathematical presentation and not on the historical development of
this successful branch of analysis. Sowe do not give detailed bibliographical remarks
but refer to some nowadays standard literature, where more details on the history and
on the bibliography can be found. This survey could serve as a basis for an advanced
lecture course in partial differential equations, for instance for Ph.D. students. In fact,
the present paper is based on a series of lectures given in July 2017 at the Tohoku
University in Sendai, Japan, and on an advanced course for master students at the
University of Konstanz, Germany, in the summer term 2019.

Although the concept of maximal regularity is classical, some main achievements
for the abstract theorywere obtained in the 1990s and in the first decade of the present
century by, e.g., Amann (see [5, 6]) and Prüss (see [29]). The basic idea of maxi-
mal regularity is to solve nonlinear partial differential equations by a linearization
approach. Let us consider an abstract quasilinear equation of the form

∂t u(t) − A(u(t))u(t) = F(u(t)),

u(0) = u0.
(1.1)

The linearization of (1.1) at some fixed function u is given by

∂tv(t) − A(u(t))v(t) = F(u(t)),

v(0) = u0.
(1.2)

In the maximal regularity approach, one tries to solve the linear equation in appro-
priate function spaces and to show that the solution has the optimal regularity one
could expect. In this case, let v =: Su(F(u), u0) denote the (u-dependent) solution
operator of the linear Eq. (1.2). If Su induces an isomorphism between appropriately
chosen pairs of Banach spaces, then the solvability of the nonlinear equation (1.1)
can be reduced to a fixed-point equation of the form u = Su(F(u), u0). In many sit-
uations, the contraction mapping principle can be applied to obtain a unique solution
of the fixed point equation and, consequently, of the nonlinear equation (1.1). In this
way, typically short-time existence or existence for small data can be shown. For the
long-time asymptotics and the stability of the solution, different methods have to be
used. Here, we mention the monograph by Prüss and Simonett [30], which covers
the abstract theory of maximal regularity, stability results, and many examples in
fluid mechanics and geometry.

As mentioned above, one key ingredient in the maximal regularity approach is the
choice of appropriate function spaces for the right-hand sides and the solution of the
nonlinear equation. In the present note, we restrict ourselves to the L p-setting, where
the basic spaces are L p-Sobolev spaces. (Formaximal regularity inHölder spaces,we
mention themonograph byLunardi [26].)Maximal L p-regularity is closely related to
the question of Fourier multipliers, as we will see in Sect. 3 below. Therefore, it was a
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breakthrough for the application of this concept, when an equivalent description for
maximal regularity in terms of vector-valued Fourier multipliers and R-sectoriality
was found by Weis [34] in the year 2001.

The description of maximal L p-regularity by R-boundedness made it possible
to show that a large class of parabolic boundary value problems have this property.
As standard references for R-boundedness and applications to partial differential
operators, we mention [13] and [25]. For boundary value problems, also the question
of appropriate function spaces on the boundary appears, which leads to the char-
acterization of trace spaces. Here the trace can be taken with respect to time (for
the initial value at time 0) or with respect to the space variable (for inhomogeneous
boundary data). It turns out that the theory of trace spaces is highly nontrivial and
connected with interpolation properties of intersections of Sobolev spaces. In this
way, modern theory of vector-valued Sobolev spaces with non-integer order of dif-
ferentiability enters. Results on trace spaces can be found, e.g., in [14], for a survey
on vector-valued Sobolev spaces we refer to [7] and [23].

The plan of the present survey follows the topics just mentioned. In Sect. 2, we
state the idea and the formal definition of maximal regularity, mentioning the graph-
ical mean curvature flow as a prototype example. The connection to vector-valued
Fourier multipliers andR-boundedness is given in Sect. 3. In Sect. 4, we briefly sum-
marize the main definitions of the different types of (non-integer) Sobolev spaces
and give some key references. The application of the abstract concept to parabolic
partial differential equations in the whole space is given in Sect. 5, the application
to parabolic boundary value problems in Sect. 6. Finally, we return to nonlinear evo-
lution equations in Sect. 7, where local well-posedness and higher regularity for the
solution are discussed.

There are, of course, many topics in the context of maximal L p-regularity which
are not covered here. First, we want to mention the application of maximal regularity
to stochastic partial differential equations, which leads to the notion of stochas-
tic maximal regularity. Here, the class of radonifying operators plays an important
role. A survey on stochastic maximal regularity can be found, e.g., in [33], for ran-
dom sums and radonifying operators see also [24]. Another development that could
be mentioned is the maximal L p-regularity approach for boundary value problems
which are not parabolic in a classical sense (as defined in Sects. 5 and 6 below). Some
main applications are free boundary value problems from fluid mechanics or prob-
lems describing phase transitions like the Stefan problem. Here, the related symbols
are not quasi-homogeneous, and the theory described below cannot be applied. One
concept to showmaximal L p-regularity for such problems uses the Newton polygon,
and we refer to [16] for more details.
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2 Maximal Regularity and L p-Sobolev Spaces

2.1 Linearization and Maximal Regularity

We start with an example of a quasilinear parabolic equation.

Example 2.1 (Graphical mean curvature flow) Let T0 ∈ (0,∞], let M denote an
n-dimensional parameter space, and let X (t, ·) : M → R

n+1, t ∈ [0, T0), be a family
of regular maps. Here, regular means that the Jacobian Dx X (t, x) with respect to
x ∈ M is injective for all x ∈ M and t ∈ [0, T0). We set Mt := X (t, M). Then the
vectors ∂x1X (t, x), . . . , ∂xn X (t, x) form a basis for the tangent space TxMt at the
point X (t, x). In particular, we are interested in the graphical situation where M =
R

n (or some domain in R
n) and where X is given as the graph of some function

u : [0, T0) × R
n → R, so we have X (t, x) = (x, u(t, x)) for x ∈ R

n and t ∈ [0, T0).
Let ν : [0, T0) × M → R

n+1 be one choice of the normal vector to Mt , so ν(t, x)
is a unit vector which is orthogonal to the tangent space TxM . For each j = 1, . . . , n,
the vector ∂x j ν(t, x) is an element of TxMt , and therefore we can write

∂x j ν(t, x) =
n∑

i=1

Si j (t, x)∂xi X (t, x).

The matrix S(t, x) := (Si j (t, x))i, j=1,...,n is called the shape operator at the point
X (t, x), its eigenvalues are called the principal curvatures, and its trace H(t, x) :=
tr S(t, x) is called the mean curvature.

The family of hypersurfaces (Mt )t∈[0,T0) is said to move according to the mean
curvature flow (see, e.g., [11] for a survey) if

∂t X (t, x) · ν(t, x) = −H(t, x)ν(t, x) ((t, x) ∈ [0, T0) × Mn).

In the graphical situation, one choice of the normal vector is given by

ν(t, x) = 1√
1 + |∇u|2

(−∇u(t, x)

1

)
.

From this, we obtain for the mean curvature

H(t, x) = − div

(
∇u(t, x)√
1 + |∇u|2

)
,

and the equation for the graphical mean curvature flow is given by
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∂t u −
⎛

⎝�u −
n∑

i, j=1

∂i u∂ j u

1 + |∇u|2 ∂i∂ j u

⎞

⎠ = 0 in (0, T0),

u(0) = u0.

(2.1)

Here, u0 is the initial value at time t = 0, so M0 is given as X (0,Rn)with X (0, x) =
(x, u0(x)). As the coefficients of the second derivatives of u depend on u itself, this
is an example of a quasilinear parabolic equation.

The above example can be written in the abstract form

∂t u + F(u)u = G(u),

u(0) = u0,
(2.2)

where F(u) is a linear operator depending on u and G(u) (which equals zero in the
example) is, in general, some nonlinear function depending on u. For the linearization
of (2.2), we fix some function u and are looking for a solution of the Cauchy problem

∂tv + F(u)v = G(u),

v(0) = u0.
(2.3)

Note that (2.3) is a linear equation with respect to v, and therefore it can be treated
with methods from linear operator theory and semigroup theory. In general, (2.3) is a
non-autonomous problem, as u and therefore also F(u) still depend on time. Setting
A(t) := F(u(t)) and f (t) := G(u(t)), we obtain

∂tv(t) − A(t)v = f (t) (t > 0),

v(0) = u0.
(2.4)

The idea of maximal regularity consists in showing “optimal” regularity for the
linearized equation. Roughly speaking, one should not loose any regularity when
solving the linear equation, as the solution will be inserted into the equation in the
next step of some iteration process. Considering (2.4) in an operator theoretic sense,
we want to have good mapping properties of the solution operator who maps the
right-hand side data f and u0 to the solution v. For this, we have to fix function
spaces for the right-hand side and the solution. So we have to choose the basic space
F for the right-hand side f and a solution space E for v. The choice of the space γtE
for the initial value u0 will then be canonical, see below.

In case of maximal regularity, we expect a unique solution of (2.4) and a contin-
uous solution operator Su (depending on A(t) and therefore on u)

Su : F × γtE → E, ( f, u0) �→ v

of the linear equation (2.4). Then the nonlinear Cauchy problem is uniquely solvable
if and only if the fixed point equation
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u = Su(G(u), u0)

has a unique solution u ∈ E.
In many cases, one can show that the right-hand side of this fixed point equa-

tion defines a contraction, and therefore Banach’s fixed point theorem (contraction
mapping principle) gives a unique solution. To obtain the contraction property, one
usually has to choose a small time interval or small initial data u0. Typical applica-
tions for this method are

• the graphical mean curvature flow or more general geometric equations,
• Stefan problems describing phase transitions with a free boundary,
• Cahn-Hilliard equations,
• variants of the Navier-Stokes equation.

For a survey on the idea of maximal regularity and on the above applications, we
mention the monographs [5, 29, 30].

The notion of maximal regularity depends on the function spaces in which the
equation is considered. Typical function spaces for partial differential equations are
Hölder spaces and L p-Sobolev spaces. In the present survey, we restrict ourselves to
L p-Sobolev spaces, i.e., we are considering maximal L p-regularity. Here, the basic
function space for the right-hand side of (2.4) will be f ∈ L p((0, T ); X), where X
is some Banach space. In the L p-setting, one will typically choose X = L p(G) for
some domain G ⊂ R

n . The aim is to show that the operator A(t) := F(u(t)) has,
for every fixed u, maximal regularity in the sense specified below.

2.2 Definition of Maximal L p-Regularity

We start with the notion of maximal L p-regularity in the autonomous setting, i.e. for
an operator A independent of t . Let X be aBanach space, and let A : X ⊃ D(A) → X
be a closed and densely defined linear operator. Let J = (0, T ) with T ∈ (0,∞].
We consider the initial value problem

∂t u(t) − Au(t) = f (t) (t ∈ J ), (2.5)

u(0) = u0. (2.6)

Here, the right-hand side of (2.5) belongs to F := L p(J ; X). For optimal regular-
ity, we will expect ∂t u ∈ L p(J ; X) and (consequently) Au ∈ L p(J ; X). An even
stronger assumption would include u ∈ L p(J ; X), too, so that the “optimal” space
for the solution u is given by

E := W 1
p(J ; X) ∩ L p(J ; D(A)). (2.7)
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Here, for k ∈ N0 the vector-valued Sobolev space Wk
p(J ; X) is defined as the space

of all X -valued distributions u for which ∂αu ∈ L p(J ; X) for all |α| ≤ k, see Sect. 4
(cf. also [23], Sect. 2.5).

For the initial value u0, we define the trace space:

Definition 2.2 (a) The trace space γtE is defined by γtE := {γt u : u ∈ E}, where
γt u := u|t=0 stands for the time trace of the function u at time t = 0. We endow γtE
with its canonical norm

‖x‖γtE := inf{‖u‖E : u ∈ E, γt u = x}.

(b) We set 0E := {u ∈ E : γt u = 0} for the space of all functions in E with van-
ishing time trace at t = 0.

Remark 2.3 (a) Note in the above definition that, by Sobolev’s embedding theorem,
one has the continuous embedding

W 1
p((0, T ); X) ⊂ C([0, T ], X)

for every finite T , where the right-hand side stands for the space of continuous X -
valued functions. Therefore, the value γt u = u(0) is well defined as an element of
X for every u ∈ E.

(b) Let T ∈ (0,∞) again. By (a), we obtain for x ∈ γtE and for every u ∈ Ewith
γt u = x ,

‖x‖X = ‖γt u‖X ≤ max
t∈[0,T ] ‖u(t)‖X ≤ C‖u‖W 1

p (J ;X) ≤ C‖u‖E.

Therefore, γtE ⊂ X with continuous embedding. On the other hand, if x ∈ D(A),
then the function u(t) := e−t x belongs toEwith ‖u‖E ≤ C‖x‖X and satisfies γt u =
x . Therefore, also the continuous embedding D(A) ⊂ γtE holds.

The following result is a deep result in the theory of interpolation of Banach
spaces. Here, the real interpolation functor (·, ·)θ,p appears. We refer to [27, 32] for
an introduction and survey on interpolation spaces.

Lemma 2.4 Let A be a closed and densely defined operator, and let E be defined
by (2.7).

(a) The trace space γtE coincides with the real interpolation space with param-
eters 1 − 1

p and p, i.e., we have

γtE = (X, D(A))1−1/p,p

in the sense of equivalent norms.
(b)We have the continuous embeddingE ⊂ C([0, T ]; γtE). In particular, the time

trace γt : E → γtE, u �→ u(0) is well defined, and γtE is independent of T .



8 R. Denk

(c) The norm of the continuous embedding E ⊂ C([0, T ]; γtE) depends, in gen-
eral, on T and grows for decreasing T . On the subspace 0E, however, this norm can
be chosen independently of T > 0, i.e., there exists a constant C1 independent of T
such that

‖u‖C([0,T ];γtE) ≤ C1‖u‖E (u ∈ 0E).

Definition 2.5 Let T ∈ (0,∞], J := (0, T ), and p ∈ [1,∞].
(a) We say that A has maximal L p-regularity (A ∈ MRp(J ; X)) if for each f ∈ F

and u0 ∈ γtE there exists a unique solution u ∈ E of (2.5). Here, a function u ∈ E is
called a solution of (2.5)–(2.6) if equality in (2.5) holds in the space L p(J ; X) (i.e.,
for almost all t ∈ (0, T )), and equality (2.6) holds in X .

(b) We write A ∈ 0MRp(J ; X) if for each f ∈ F and u0 ∈ γtE there exists a
function u : [0, T ] → X satisfying ∂t u ∈ L p(J ; X) and Au ∈ L p(J ; X) such that
(2.5) holds for almost all t ∈ (0, T ) and (2.6) holds as equality in X , and if for all
f ∈ F and u0 ∈ γtE the inequality

‖∂t u‖L p(J ;X) + ‖Au‖L p(J ;X) ≤ C
(‖ f ‖L p(J ;X) + ‖u0‖γtE

)
(2.8)

holds with a constant C = C(J ) independent of f and u0.
(c) We set MRp(X) := MRp((0,∞); X) and 0MRp(X) := 0MRp((0,∞); X).

Remark 2.6 (a) By the definition of the spaces, the map

(
∂t − A

γt

)
: E → F × γtE, u �→

(
∂t u − Au

γt u

)

is continuous. If A ∈ MRp(J ; X), then, due to the definition of maximal regularity,
this map is a bijection and therefore, by the open mapping theorem, an isomorphism.
In particular, we obtain the a priori estimate

‖u‖L p(J ;X) + ‖∂t u‖L p(J ;X) + ‖Au‖L p(J ;X) ≤ C
(‖ f ‖L p(J ;X) + ‖u0‖γtE

)
, (2.9)

which is stronger than (2.8).
(b) If A ∈ MRp(J ; X), then (2.5)–(2.6) with u0 := 0 is uniquely solvable for all

f ∈ F. On the other hand, for a given u0 ∈ γtE, there exists an extension u1 ∈ E

with γt u1 = u0 by the definition of the trace space. Setting u = u1 + u2, then we see
that u2 has to satisfy

∂t u2(t) − Au2(t) = f̃ (t) (t > 0),

u2(0) = 0,
(2.10)

where f̃ := f − Au1 ∈ F. Therefore, the operator A has maximal regularity if and
only if the Cauchy problem (2.10) is uniquely solvable for all f̃ ∈ F.

(c) Let the time interval J be finite, and assume A ∈ 0MRp(J ; X). Then the
Cauchy problem (2.10) has a unique solution u for all f̃ ∈ F with ∂t u ∈ L p(J ; X).
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As u(0) = 0, we can apply Poincaré’s inequality in the vector-valued Sobolev
space W 1

p((0, T ); X) (or the fundamental theorem of calculus, see [23], Propo-
sition 2.5.9, which yields absolute continuity of u) and obtain u ∈ L p(J ; X).
This yields u ∈ E, and by part (b) of this remark, we see that A ∈ MRp(J ; X).
Therefore, 0MRp(J ; X) = MRp(J ; X) for finite time intervals. Similarly, if A ∈
0MRp((0,∞); X) and if A is invertible, we can estimate ‖u‖L p((0,∞);X) ≤ C
‖Au‖L p((0,∞);X) and obtain u ∈ E again, which implies A ∈ MRp((0,∞); X).

It turns out that the property of maximal L p-regularity is independent of p. For a
proof of the following result, we refer to [17], Theorem 4.2.

Lemma 2.7 If A ∈ MRp(X) holds for some p ∈ (1,∞), then A ∈ MRp(X) holds
for every p ∈ (1,∞).

Based on this, we write MR(X) instead of MRp(X). Note that the constant C in
(2.8) still depends on p.

By Definition 2.5 and Remark 2.6 (b), the operator A has maximal L p-regularity
in J = (0,∞) if and only if the Cauchy problem

∂t u(t) − Au(t) = f (t) (t ∈ (0,∞)),

u(0) = 0
(2.11)

has a unique solution u ∈ W 1
p(J ; X). We can extend f and u by zero to the whole

line t ∈ R and obtain functions f ∈ L p(R; X) and u ∈ W 1
p(R; X) (for this, we need

u(0) = 0). After this, we apply the Fourier transform in t , which is defined for smooth
functions by

(Ft u)(τ ) := (2π)−1/2
∫

R

u(t)e−i tτdt.

For tempered distributions, we define Ft by duality. Note that [Ft (∂t u)](τ ) =
iτ (Ft u)(τ ). Therefore, (2.11) is equivalent to

(iτ − A)(Ft u)(τ ) = (Ft f )(τ ) (τ ∈ R). (2.12)

Theorem 2.8 Let J = (0,∞) and A be a closed densely defined operator. Then
A ∈ 0MRp(J ; X) if and only if the operator

F−1
t iτ (iτ − A)−1Ft

defines a continuous operator in L p(R; X).

Proof By definition, A ∈ 0MRp(J ; X) if and only if (2.11) has a unique solution u
with ∂t u ∈ L p(R; X) (again extending the functions by zero to the whole line), and
if we have an estimate of ∂t u. This is equivalent to unique solvability of the Fourier
transformed problem (2.12), i.e., the existence of (iτ − A)−1 for almost all τ ∈ R

such that the solution u satisfies



10 R. Denk

∂t u = F−1
t iτ (iτ − A)−1Ft f ∈ L p(R; X),

and the estimate of ∂t u is equivalent to the condition F−1
t iτ (iτ − A)−1Ft ∈

L(L p(R; X)). �

2.3 Maximal Regularity for Non-autonomous Problems

With respect to the nonlinear equation (2.3) and its linearization (2.4), it makes sense
to define maximal regularity also for non-autonomous problems. So we consider

∂t u(t) − A(t)u(t) = f (t) (t ∈ (0, T )), (2.13)

u(0) = u0. (2.14)

Here we assume that all operators A(t) are closed and densely defined operators
in some Banach space X and have the same domain DA. We also assume that we
have a norm ‖ · ‖A on D(A) which is, for every t ∈ (0, T ), equivalent to the graph
norm of A(t), which is given by ‖ · ‖X + ‖A(t) · ‖X . In this way, we can identify
the unbounded operator A(t) : X ⊃ DA → X with the bounded operator A(t) ∈
L(DA, X). Moreover, we assume that A ∈ L∞((0, T ); L(DA, X)).

Analogously to the autonomous case, we consider the basic space for the right-
hand side F := L p(J ; X) with J := (0, T ) and the solution space

E := W 1
p(J ; X) ∩ L p(J ; DA). (2.15)

We identify A : (0, T ) → L(DA, X) with a function on E by setting

(Au)(t) := A(t)u(t) (t ∈ (0, T ), u ∈ E).

The trace space γtE is defined as in Definition 2.2 a).

Definition 2.9 (a) Let f ∈ F and u0 ∈ γtE. Then a function u : (0, T ) → X is called
a strong (L p)-solution of (2.13)–(2.14) if u ∈ E and if (2.13) holds for almost all
t ∈ (0, T ) and (2.14) holds in X .

(b) We say that A ∈ L∞((0, T ); L(DA, X)) has maximal L p-regularity on (0, T )

if for all f ∈ F and u0 ∈ γtE there exists a unique strong solution u ∈ E of (2.13)–
(2.14).

Remark 2.10 Similarly to the autonomous case, the operator A ∈ L∞((0, T );
L(DA, X)) has maximal regularity if and only if

(∂t − A, γt ) : E → F × γtE

is an isomorphism of Banach spaces. By trace results, this is equivalent to the con-
dition that (2.13)–(2.14) with u0 = 0 has a unique solution u ∈ E for every f ∈ F.
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The following result shows that maximal regularity for the non-autonomous oper-
ator family (A(t))t∈(0,T ) can be reduced to maximal regularity for each A(t) if the
operator depends continuously on time.

Theorem 2.11 Let T ∈ (0,∞) and A ∈ C([0, T ], L(DA, X)). Then A hasmaximal
L p-regularity in the sense of Definition 2.9 if and only if for every t ∈ [0, T ] we have
A(t) ∈ MR((0, T ); X).

This is shown, using perturbation arguments, in [6], Theorem 7.1.

3 The Concept of R-Boundedness and the Theorem
of Mikhlin

In Theorem 2.8, we have seen that maximal regularity of the operator A is equivalent
to the boundedness of the operator

F−1
t mFt : L p(R; X) → L p(R; X),

where the operator-valued symbol m : R → L(X) is given by m(τ ) := iτ (iτ −
A)−1. The classical theorem ofMikhlin gives sufficient conditions for a scalar-valued
symbol to induce a bounded operator in L p(Rn). For the operator-valued analogue,
the concept ofR-boundedness can be used. Therefore, we discuss in this section the
notion of anR-bounded family and vector-valued variants of Mikhlin’s theorem. As
references for this section, we mention [13], Sect. 3, and [25], Sect. 2.

3.1 R-Bounded Operator Families

Let X and Y be Banach spaces.

Definition 3.1 A family T ⊂ L(X,Y ) is calledR-bounded if there exists a constant
C > 0 and some p ∈ [1,∞) such that for all N ∈ N, Tj ∈ T , x j ∈ X ( j = 1, . . . , N )
and all sequences (ε j ) j∈N of independent and identically distributed {−1, 1}-valued
and symmetric random variables on a probability space (�,A ,P) we have

∥∥∥∥∥∥

N∑

j=1

ε j Tj x j

∥∥∥∥∥∥
L p(�,Y )

≤ C

∥∥∥∥∥∥

N∑

j=1

ε j x j

∥∥∥∥∥∥
L p(�,X)

. (3.1)

In this case,Rp(T ) := inf{C > 0 : (3.1) holds} is called the R-bound of T .
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Remark 3.2 (a) For the sequence of random variables as above, we have P({ε j =
1}) = P({ε j = −1}) = 1

2 . As the measure P ◦ (ε1, . . . , εN )−1 is discrete, the inde-
pendence of the sequence is equivalent to the condition

P({ε1 = z1, . . . , εN = zN }) = 2−N
(
(z1, . . . , zN ) ∈ {−1, 1}N , N ∈ N

)
.

Therefore, R-boundedness is equivalent to the condition

∃ C > 0 ∀ N ∈ N ∀ T1, . . . , TN ∈ T ∀ x1, . . . , xN ∈ X
⎛

⎝
∑

z1,...,zN=±1

∥∥∥∥∥∥

N∑

j=1

z j Tj x j

∥∥∥∥∥∥

p

Y

⎞

⎠
1/p

≤ C

⎛

⎝
∑

z1,...,zN=±1

∥∥∥∥∥∥

N∑

j=1

z j x j

∥∥∥∥∥∥

p

X

⎞

⎠
1/p

.
(3.2)

However, the stochastic description is advantageous, in particular, one can choose
the probability space (�,A ,P) = ([0, 1],B([0, 1]),λ), whereB([0, 1]) stands for
the Borel σ-algebra, λ for the Lebesgue measure, and the random variables ε j are
given by the Rademacher functions (see below). It seems to be unclear if the notation
“R” stands for “randomized” or for “Rademacher”.

Definition 3.3 The Rademacher functions rn : [0, 1] → {−1, 1} are defined by

rn(t) := sign sin(2nπt) (t ∈ [0, 1]).

By definition, we have

r1(t) =
{
1, t ∈ (0, 1

2 ),

−1, t ∈ ( 12 , 1).

The function r2 has value 1 on the intervals (0, 1
4 ) and ( 12 ,

3
4 ). An immediate calcu-

lation yields
1∫

0

rn(t)rm(t)dt = δnm (n,m ∈ N).

Moreover, for all M ∈ N, n1, . . . , nM ∈ N and (z1, . . . , zM ) ∈ {+1, −1}M we have

λ({t ∈ [0, 1] : rn1(t) = z1, . . . , rnM (t) = zM }) = 1

2M
=

M∏

j=1

λ({t ∈ [0, 1] : rn j (t) = z j }).

Therefore, the sequence (rn)n∈N is independent and identically distributed on the
probability space ([0, 1],B([0, 1]),λ) as in Definition 3.1. As all properties of (ε j ) j
which are needed in this definition only depend on the joint probability distribution,
we can always choose εn = rn .
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Definition 3.4 Let X be a Banach space and 1 ≤ p < ∞. Then Radp(X) is defined
as the Banach space of all sequences (xn)n∈N ⊂ X for which the limit limN→∞∑N

n=1 rn(t)xn =: f (t) exists for almost all t ∈ [0, 1] and defines a function f ∈
L p([0, 1]; X). For (xn)n∈N ∈ Radp(X), we define

‖(xn)n∈N‖Radp(X) :=
∥∥∥∥∥

∞∑

n=1

rnxn

∥∥∥∥∥
L p([0,1];X)

.

Remark 3.5 (a) It can be shown that for any sequence (xn)n∈N ⊂ X , the sequence(∥∥∑N
n=1 rnxn

∥∥
L p([0,1];X)

)
N∈N is increasing, and therefore Radp(X) is the space of all

sequences (xn)n∈N such that

∥∥∥∥∥

∞∑

n=1

rnxn

∥∥∥∥∥
L p([0,1];X)

< ∞.

(b) By definition, the map J : Radp(X) → L p([0, 1]; X), (xn)n �→ ∑∞
n=1 rnxn

is well-defined. Assume that J ((xn)n) = 0, i.e.,
∑

n rnxn = 0 holds in L p([0, 1]; X).
Then

∑
n rn f (xn) = 0 for all f ∈ X ′. Taking the inner product in L2 with rn0 for some

fixed n0, we get, using the orthogonality, f (xn0) = 0 for all f ∈ X ′ and therefore
xn0 = 0. As n0 was arbitrary, we obtain xn = 0 for all n ∈ N, which shows that J is
injective. Therefore, Radp(X) can be considered as a subspace of L p([0, 1]; X), and
the norm in Radp(X) is the restriction of the norm in L p([0, 1]; X).

Theorem 3.6 (Kahane-Khintchine inequality) The spaces Radp(X) are isomorphic
for all 1 ≤ p < ∞, i.e., there exist constants Cp > 0 with

1

Cp

∥∥∥∥∥

∞∑

n=1

rnxn

∥∥∥∥∥
L2([0,1];X)

≤
∥∥∥∥∥

∞∑

n=1

rnxn

∥∥∥∥∥
L p([0,1];X)

≤ Cp

∥∥∥∥∥

∞∑

n=1

rnxn

∥∥∥∥∥
L2([0,1];X)

.

In the scalar case X = C, the proof of this inequality is elementary, for arbitrary
Banach spaces, however, rather complicated. In the scalar case Theorem 3.6 is known
as Khintchine’s inequality, in the Banach space valued case as Kahane’s inequality.
We omit the proof which can be found, e.g., in [23], Theorem 3.2.23. We also remark
that the left inequality still holds for p = ∞ due to the embedding L∞([0, 1]; X) ⊂
L2([0, 1]; X), but the right inequality does not hold for p = ∞, as the constant Cp

tends to infinity for p → ∞ (see [24], Theorem 6.2.4).

Lemma 3.7 (a) If condition (3.1) in Definition 3.1 holds for some p ∈ [1,∞), then
it holds for all p ∈ [1,∞). For the corresponding R-bounds Rp(T ) the inequality

1

C2
p

R2(T ) ≤ Rp(T ) ≤ C2
pR2(T )

holds, where the constants Cp are from Theorem 3.6.
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(b) A family T ⊂ L(X,Y ) is R-bounded with R2(T ) ≤ C if and only if for all
N ∈ N and all T1, . . . , TN ∈ T , the map

T((xn)n∈N) := (yn)n∈N, yn :=
{
Tnxn, n ≤ N ,

0, n > N

defines a bounded linear operator T ∈ L(Rad2(X)) with norm ‖T‖ ≤ C.

Proof Part (a) follows directly from Kahane’s inequality, and part (b) is a reformu-
lation of the definition ofR-boundedness and an application of the p-independence
from (a). �
Remark 3.8 (a) If T ⊂ L(X,Y ) is R-bounded, then T is uniformly bounded with
supT∈T ‖T ‖ ≤ R(T ). This follows immediately if we set N = 1 in the definition of
R-boundedness.

(b) If X and Y are Hilbert spaces, then R-boundedness is equivalent to uniform
boundedness. In fact, in this situation also the spaces L2([0, 1]; X) and L2([0, 1]; Y )

are Hilbert spaces, and (rnxn)n∈N ⊂ L2([0, 1]; X) and (rnTnxn)n∈N ⊂ L2([0, 1]; Y )

are orthogonal sequences. If ‖T ‖ ≤ CT for all T ∈ T ⊂ L(X,Y ), then

∥∥∥∥∥

N∑

n=1

rnTnxn

∥∥∥∥∥

2

L2[0,1];Y )

=
N∑

n=1

‖rnTnxn‖2L2([0,1];Y ) =
N∑

n=1

‖Tnxn‖2Y ≤ C2
T

N∑

n=1

‖xn‖2X

= C2
T

∥∥∥∥∥

N∑

n=1

rnxn

∥∥∥∥∥

2

L2([0,1];X)

.

Remark 3.9 Let X,Y, Z be Banach spaces, and T ,S ⊂ L(X,Y ) and U ⊂ L(Y, Z)

beR-bounded. Then the families

T + S := {T + S : T ∈ T , S ∈ S}

and
UT := {UT : U ∈ U , T ∈ T }

areR-bounded, too, with

R(T + S) ≤ R(T ) + R(S), R(UT ) ≤ R(U)R(T ).

To see this, let Sn ∈ S, Tn ∈ T and Un ∈ U for n = 1, . . . , N . Then the statement
follows from
∥∥∥∥∥

N∑

n=1

rn(Tn + Sn)xn

∥∥∥∥∥
L1([0,1];Y )

≤
∥∥∥∥∥

N∑

n=1

rnTnxn

∥∥∥∥∥
L1([0,1];Y )

+
∥∥∥∥∥

N∑

n=1

rn Snxn

∥∥∥∥∥
L1([0,1];Y )
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and ∥∥∥∥∥

N∑

n=1

rnUnTnxn

∥∥∥∥∥
L1([0,1];Z)

≤ R(U)

∥∥∥∥∥

N∑

n=1

rnTnxn

∥∥∥∥∥
L1([0,1];Y )

.

The following result turns out to be useful for showing R-boundedness.

Lemma 3.10 (Kahane’s contraction principle) Let 1 ≤ p < ∞. Then for all N ∈ N,
for all x j ∈ X and all a j , b j ∈ C with |a j | ≤ |b j |, j = 1, . . . , N we have

∥∥∥∥∥∥

N∑

j=1

a jr j x j

∥∥∥∥∥∥
L p([0,1];X)

≤ 2

∥∥∥∥∥∥

N∑

j=1

b jr j x j

∥∥∥∥∥∥
L p([0,1];X)

. (3.3)

Proof Considering x̃ j := b j x j , we may assume without loss of generality that b j =
1 and |a j | ≤ 1 for all j = 1, . . . , N . Treating Re a j and Im a j separately, we only
have to show that for real a j with |a j | ≤ 1 the inequality

∥∥∥∥∥∥

N∑

j=1

a jr j x j

∥∥∥∥∥∥
L p([0,1];X)

≤
∥∥∥∥∥∥

N∑

j=1

r j x j

∥∥∥∥∥∥
L p([0,1];X)

(3.4)

holds. For this, let {e(k)}k=1,...,2N be a numbering of all vertices of the cube [−1, 1]N .
Because of a := (a1, . . . , aN )T ∈ [−1, 1]N , the vector a can be written as a convex
combination of all e(k), i.e., there exist λk ∈ [0, 1] with

2N∑

k=1

λk = 1 and a =
2N∑

k=1

λke
(k).

Therefore, for e(k) = (e(k)
1 , . . . , e(k)

N )T we see that

∥∥∥∥∥∥

N∑

j=1

a jr j x j

∥∥∥∥∥∥
L p([0,1];X)

≤
2N∑

k=1

λk

∥∥∥∥∥∥

N∑

j=1

r j e
(k)
j x j

∥∥∥∥∥∥
L p([0,1];X)

≤ max
1≤k≤2N

∥∥∥∥∥∥

N∑

j=1

r j e
(k)
j x j

∥∥∥∥∥∥
L p([0,1];X)

=
∥∥∥∥∥∥

N∑

j=1

r j x j

∥∥∥∥∥∥
L p([0,1];X)

.

In the last equality we used the fact that {r j : j = 1, . . . , N } and {r j e(k)
j : j =

1, . . . , N } have the same joint probability distribution. �
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Theorem 3.11 Let T ⊂ L(X,Y ) be R-bounded. Then also the convex hull

conv T :=
{ n∑

k=1

λkTk : n ∈ N, Tk ∈ T , λk ∈ [0, 1],
n∑

k=1

λk = 1
}

and the absolute convex hull

aconv T :=
{ n∑

k=1

λkTk : n ∈ N, Tk ∈ T , λk ∈ C,

n∑

k=1

|λk | = 1
}

areR-bounded. The same holds for the closures conv T s
of conv T and aconv T s

of
aconv T with respect to the strong operator topology. We haveR(conv T s

) ≤ R(T )

and R(aconv T s
) ≤ 2R(T ).

Proof (a) Let T1, . . . , TN ∈ conv(T ). Then there exist λk, j ∈ [0, 1] and Tk, j ∈ T
with

∑mk
j=1 λk, j = 1 and Tk = ∑mk

j=1 λk, j Tk, j .
Define λk, j := 0 and Tk, j := 0 for j ∈ Nwith j > mk and k = 1, . . . , N . For � ∈

N
N we define λ� := ∏N

k=1 λk,�k and Tk,� := Tk,�k for k = 1, . . . , N . Then λ� ∈ [0, 1]
as well as ∑

�∈Nn

λ� =
∑

�1∈N
· · ·

∑

�N∈N
λ1,�1 · . . . · λN ,�N = 1.

For all k = 1, . . . , N we obtain

∑

�∈NN

λ�Tk,� =
∑

�∈NN

λ�Tk,�k =
⎛

⎝
∑

�k∈N
λk,�k Tk,�k

⎞

⎠
∏

j �=�

⎛

⎝
∑

� j∈N
λ j,� j

⎞

⎠

=
∑

�k∈N
λk,�k Tk,�k = Tk .

Note that these sums are finite. We get

∥∥∥∥∥

N∑

k=1

rkTkxk

∥∥∥∥∥
L p([0,1];Y )

=
∥∥∥∥∥

N∑

k=1

∑

�∈NN

rkλ�Tk,�xk

∥∥∥∥∥
L p([0,1];Y )

≤
∑

�∈NN

λ�

∥∥∥∥∥

N∑

k=1

rkTk,�xk

∥∥∥∥∥
L p([0,1];Y )

≤ R(T )
∑

�∈Nn

λ�

∥∥∥∥∥

N∑

k=1

rkxk

∥∥∥∥∥
L p([0,1];X)

= R(T )

∥∥∥∥∥

N∑

k=1

rkxk

∥∥∥∥∥
L p([0,1];X)

.

Consequently, R(conv T ) ≤ R(T ).
(b) By Kahane’s contraction principle, R(T0) ≤ 2R(T ), where we define
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T0 := {λT : T ∈ T , λ ∈ C, |λ| ≤ 1}.

Because of conv T0 = aconv T , we get R(aconv T ) ≤ 2R(T ) due to a).
(c) The closedness with respect to the strong operator topology follows directly

from the definition of R-boundedness. �
The above results are useful to prove R-boundedness in general Banach spaces.

In the special situation that X is some Lq -space, there is a helpful description of
R-boundedness:

Lemma 3.12 (Square function estimate) Let (G,A ,μ) be a σ-finite measure space,
X = Lq(G), and let 1 ≤ q < ∞. Then T ⊂ L(X) isR-bounded if and only if there
exists an M > 0 with

∥∥∥∥∥∥

⎛

⎝
N∑

j=1

|Tn fn|2
⎞

⎠
1/2∥∥∥∥∥∥

Lq (G)

≤ M

∥∥∥∥∥∥

⎛

⎝
N∑

j=1

| fn|2
⎞

⎠
1/2∥∥∥∥∥∥

Lq (G)

for all N ∈ N, Tn ∈ T and fn ∈ Lq(G).

Proof We write f ≈ g if there are constants C1,C2 > 0 with C1| f | ≤ |g| ≤ C2| f |.
To show R-boundedness, by Kahane’s inequality, we can consider the Rq -bound.
For this, we can calculate

∥∥∥∥∥

N∑

n=1

rn fn

∥∥∥∥∥

q

Lq ([0,1];Lq (G))

=
1∫

0

∥∥∥∥∥

N∑

n=1

rn(t) fn(·)
∥∥∥∥∥

q

Lq (G)

dt

=
1∫

0

∫

G

∣∣∣∣∣

N∑

n=1

rn(t) fn(ω)

∣∣∣∣∣

q

dμ(ω) dt

=
∫

G

1∫

0

∣∣∣∣∣

N∑

n=1

rn(t) fn(ω)

∣∣∣∣∣

q

dtdμ(ω)

≈
∫

G

⎛

⎝
1∫

0

∣∣∣∣∣

N∑

n=1

rn(t) fn(ω)

∣∣∣∣∣

2

dt

⎞

⎠
q/2

dμ(ω)

=
∫

G

(
N∑

n=1

| fn(ω)|2
)q/2

dμ(ω) =
∥∥∥∥∥∥

(
N∑

n=1

| fn|2
)1/2

∥∥∥∥∥∥

q

Lq (G)

.

Here, Fubini’s theorem and the inequality of Khintchine were used. Now the state-
ment follows by considering the above calculation for both sides of the definition of
R-boundedness. �
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Example 3.13 Using the square function estimate, it is easy to construct an example
of a uniformly bounded operator family which is not R-bounded. Let p ∈ [1,∞) \
{2}. Then the family {Tn : n ∈ N0} ⊂ L(L p(R)), Tn f (·) := f (· − n) of translations
is not R-bounded, as for fn = χ[0,1] we have

∥∥∥∥∥∥

(
N−1∑

n=0

|Tn fn|2
)1/2

∥∥∥∥∥∥
L p(R)

= ‖χ[0,N ]‖L p(R) = N 1/p,

∥∥∥∥∥∥

(
N−1∑

n=0

| fn|2
)1/2

∥∥∥∥∥∥
L p(R)

= N 1/2‖χ[0,1]‖L p(R) = N 1/2.

For 1 ≤ p < 2, we use the fact that N 1/p

N 1/2 → ∞ for N → ∞. The proof for p > 2 is
similar.

Lemma 3.14 (a) Let G ⊂ R
n be open and 1 ≤ p < ∞. For ϕ ∈ L∞(G), define

mϕ ∈ L(L p(G; X)) by (mϕ f )(x) := ϕ(x) f (x). Then for r > 0 one obtains

Rp

(
{mϕ : ϕ ∈ L∞(G), ‖ϕ‖∞ ≤ r}

)
≤ 2r.

(b) Let 1 ≤ p < ∞, G ⊂ R
n be open, and T ⊂ L(L p(G; X), L p(G; Y )) be R-

bounded. Then

Rp

(
{mϕTmψ : T ∈ T , ϕ, ψ ∈ L∞(G), ‖ϕ‖∞ ≤ r, ‖ψ‖∞ ≤ s}

)
≤ 4rsRp(T ).

Proof (a) By the theorem of Fubini and Kahane’s contraction principle,

∥∥∥∥∥

N∑

k=1

rkmϕk fk

∥∥∥∥∥
L p([0,1];L p(G;X)

=
∥∥∥∥∥

N∑

k=1

rkϕk fk

∥∥∥∥∥
L p(G;L p([0,1];X)

≤ 2r

∥∥∥∥∥

N∑

k=1

rk fk

∥∥∥∥∥
L p(G;L p([0,1];X)

= 2r

∥∥∥∥∥

N∑

k=1

rk fk

∥∥∥∥∥
L p([0,1];L p(G;X)

.

(b) follows from (a) and Remark 3.9. �
In the following corollary, we consider strongly measurable function. Note that a

function N : G → L(X,Y ) is called strongly measurable if there exists a μ-zero set
A ∈ A such that N |G\A is measurable and N (G \ A) is separable.

Corollary 3.15 Let (G,A ,μ) be a σ-finite measure space and T ⊂ L(X,Y ) be
R-bounded. Let

N := {N : G → L(X,Y ) | N strongly measurable with N (G) ⊂ T }.
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For h ∈ L1(G,μ) and N ∈ N define

TN ,hx :=
∫

G

h(ω)N (ω)xdμ(ω) (x ∈ X).

Then
R
(
{TN ,h : ‖h‖L1(G,μ) ≤ 1, N ∈ N }

)
≤ 2R(T ).

Proof Let ε > 0. For x1, . . . , xN ∈ X , h ∈ L1(G,μ) and N ∈ N we consider the
measurable map

M : G → Y N , M(ω) := (
N (ω)x j

)
j=1,...,N .

ThenM ∈ L∞(G; Y N ) is stronglymeasurable, and therefore there exist ameasurable
partition G = ⋃∞

j=1 G j , Gi ∩ G j = ∅ for i �= j , and ω j ∈ G j with

‖N (ω)xk − N (ω j )xk‖Y < ε for almost all ω ∈ G jand all k = 1, . . . , N .

Define

S :=
∞∑

j=1

⎛

⎜⎝
∫

G j

h(ω)dμ(ω)

⎞

⎟⎠ N (ω j ).

Then ‖TN ,hxk − Sxk‖Y < ε for all k = 1, . . . , N . Therefore, TN ,h is a subset of the
neighbourhood of S given by x1, . . . , xN and ε with respect to the strong operator
topology. Because of S ∈ aconv T s

, we obtain TN ,h ∈ aconv T s
. Now the statement

follows from Theorem 3.11. �
Corollary 3.16 Let N : �θ′ → L(X,Y ) be holomorphic and bounded, and let
N (∂�θ \ {0}) be R-bounded for some θ < θ′. Then N (�θ) is R-bounded, and for
every θ1 < θ the family {λ ∂

∂λ
N (λ) : λ ∈ �θ1} isR-bounded.

Proof Considering M(λ) := N (λ2θ/π), we may assume θ = π
2 . Now we use Pois-

son’s formula

N (α + iβ) = 1

π

∞∫

−∞

α

α2 + (s − β)2
N (is)ds (α > 0).

Because of ‖ 1
π

α
α2+(·−β)2

‖L1(R) = 1, the first assertion follows from Corollary 3.15.
By Cauchy’s integral formula, we have

λ
∂

∂λ
N (λ) =

∫

∂�θ

hλ(μ)N (μ)dμ (λ ∈ �θ1)
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for h(λ) := 1
2πi

λ
(μ−λ)2

. Because of supλ∈�θ1
‖hλ‖L1(∂�θ) < ∞, the second assertion

follows from Corollary 3.15, too. �
Lemma 3.17 Let G ⊂ C be open, K ⊂ G be compact, and H : G → L(X,Y ) be
holomorphic. Then H(K ) isR-bounded.

Proof Let z0 ∈ K . Then there exists an r > 0 with

H(z) =
∞∑

k=0

H (k)(z0)
(z − z0)k

k! (|z − z0| ≤ r).

Here the series converges in L(X,Y ) and

ρ0 :=
∞∑

k=0

‖H (k)(z0)‖L(X,Y )

rk

k! < ∞.

As a set with one element, {H (k)(z0)} isR-bounded withR-bound ‖H (k)(z0)‖L(X,Y ).

By Kahane’s contraction principle, the family {H (k)(z0)
(z−z0)k

k! : z ∈ B(z0, r)} isR-

bounded, too, with R-bound not greater than 2 rk

k! ‖H (k)(z0)‖L(X,Y ). Therefore, we
obtain for all finite partial sums theR-bound 2ρ0. Taking the closure with respect to
the strong operator topology, the same holds for the infinite sum. By a finite covering
of K , we obtain the statement of the lemma. �
Theorem 3.18 Let G ⊂ R

n be open and 1 < p < ∞. Let � be a set and {kλ : λ ∈
�} be a family of measurable kernels kλ : G × G → L(X,Y ) with

Rp

({
kλ(z, z

′) : λ ∈ �
}) ≤ k0(z, z

′) (z, z′ ∈ G).

Assume that for the corresponding scalar integral operator

(K0 f )(z) =
∫

G

k0(z, z
′) f (z′)dz′ ( f ∈ L p(G))

one has K0 ∈ L(L p(G)). Define

(Kλ f )(z) =
∫

G

kλ(z, z
′) f (z′)dz′ ( f ∈ L p(G; X)).

Then Kλ ∈ L(L p(G; X), L p(G; Y )) with

Rp
({Kλ : λ ∈ �}) ≤ ‖K0‖L(L p(G)).

Proof We use the definition of R-boundedness and get
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∥∥∥∥∥∥

N∑

j=1

r j Kλ j f j

∥∥∥∥∥∥
L p([0,1];L p(G;Y ))

=
⎛

⎜⎝
1∫

0

∥∥∥∥∥∥

N∑

j=1

r j (t)
∫

G

kλ j (·, z′) f j (z′)dz′

∥∥∥∥∥∥

p

L p(G;Y )

dt

⎞

⎟⎠

1/p

=
⎛

⎜⎝
1∫

0

∥∥∥∥∥∥

∫

G

N∑

j=1

r j (t)kλ j (·, z′) f j (z′)dz′

∥∥∥∥∥∥

p

L p(G;Y )

dt

⎞

⎟⎠

1/p

=
⎛

⎝
1∫

0

∫

G

∥∥∥∥∥∥

∫

G

N∑

j=1

r j (t)kλ j (z, z
′) f j (z′)dz′

∥∥∥∥∥∥

p

Y

dz dt

⎞

⎠
1/p

=
⎛

⎝
∫

G

1∫

0

∥∥∥∥∥∥

∫

G

N∑

j=1

r j (t)kλ j (z, z
′) f j (z′)dz′

∥∥∥∥∥∥

p

Y

dt dz

⎞

⎠
1/p

.

Setting ϕ(t, z, z′) := ∑N
j=1 r j (t)kλ j (z, z

′) f j (z′), the integral with respect to t in the
last term equals ‖ ∫G ϕ(·, z, z′)dz′‖p

L p([0,1]). Now we apply the inequality

∥∥∥∥∥∥

∫

G

ϕ(·, z, z′)dz′

∥∥∥∥∥∥
L p([0,1])

≤
∫

G

‖ϕ(·, z, z′)‖L p([0,1])dz′

for Bochner integrals and obtain, using the assumption of R-boundedness,

∥∥∥∥∥∥

N∑

j=1

r j Kλ j f j

∥∥∥∥∥∥
L p([0,1];L p(G;Y ))

≤
⎛

⎝
∫

G

⎡

⎣
∫

G

∥∥∥∥∥∥

N∑

j=1

r j (·)kλ j (z, z
′) f j (z′)

∥∥∥∥∥∥
L p([0,1];Y )

dz′
⎤

⎦
p

dz

⎞

⎠
1/p

≤
⎛

⎝
∫

G

⎡

⎣
∫

G

k0(z, z
′)

∥∥∥∥∥∥

N∑

j=1

r j (·) f j (z′)

∥∥∥∥∥∥
L p([0,1];X)

dz′
⎤

⎦
p

dz

⎞

⎠
1/p

=
∥∥∥∥∥∥
K0

⎛

⎝

∥∥∥∥∥∥

N∑

j=1

r j f j (·)
∥∥∥∥∥∥
L p([0,1];X)

⎞

⎠

∥∥∥∥∥∥
L p(G)
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≤ ‖K0‖L(L p(G))

∥∥∥∥∥∥

⎛

⎝

∥∥∥∥∥∥

N∑

j=1

r j f j (·)
∥∥∥∥∥∥
L p([0,1];X)

⎞

⎠

∥∥∥∥∥∥
L p(G)

= ‖K0‖L(L p(G))

∥∥∥∥∥∥

N∑

j=1

r j f j

∥∥∥∥∥∥
L p([0,1];L p(G;X))

.

3.2 Fourier Multipliers and Mikhlin’s Theorem

We have already seen in Theorem 2.8 that maximal regularity is equivalent to the
L p(R; X)-boundedness of the operatorF−1

t iτ (iτ − A)−1Ft . This is a typical exam-
ple of a (vector-valued) Fourier multiplier. In the analysis of partial differential equa-
tions and boundary value problems in L p-spaces, the question of Fourier multipliers
play a central role. The answer is given by the classical theorem of Mikhlin and by
its Banach space valued variants.

In the following, we use the standard notation D := −i(∂x1 , . . . , ∂xn ) as well as
the standard multi-index notation Dα = (−i)|α|∂α1

x1 . . . ∂αn
xn . We start with a simple

example.

Example 3.19 Consider the Laplacian� in L p(Rn)withmaximal domain D(�) :=
{u ∈ L p(Rn) : �u ∈ L p(Rn)}. Obviously we have D(�) ⊃ W 2

p(R
n). To show that

we even have equality, we consider u ∈ D(�) and f := u − �u ∈ L p(Rn). Let
|α| ≤ 2. Then

Dαu = F−1ξαFu = −F−1 ξα

1 + |ξ|2F f

holds as equality inS ′(Rn), whereF stands for the n-dimensional Fourier transform
(see below). To obtain Dαu ∈ L p(Rn), we have to show F−1mαF f ∈ L p(Rn),
where mα(ξ) := ξα

1+|ξ|2 . So we have to prove that

f �→ F−1mα(ξ)F f

defines a bounded linear operator on L p(Rn). This is in fact the case, as we will see
from the classical version of Mikhlin’s theorem, Theorem 3.22 below.

In contrast to the above example, we will also need vector-valued versions of
Mikhlin’s theorem. For this, we need some preparation, starting with the vector-
valued Fourier transform. Let X be a Banach space. Then the Schwartz space
S (Rn; X) is defined as the space of all infinitely smooth functions ϕ : Rn → X
for which

pN (ϕ) := sup
x∈Rn

max|α|≤N
(1 + |x |)N‖∂αϕ(x)‖X < ∞
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for all N ∈ N. With the family of seminorms {pN : N ∈ N}, the Schwartz space
becomes a Fréchet space. The space of all X -valued tempered distributions is defined
by

S ′(Rn; X) := L(S (Rn), X).

OnS ′(Rn; X), we consider the family of seminorms

πϕ : S ′(Rn; X) → [0,∞), u �→ ‖u(ϕ)‖X (ϕ ∈ S (Rn)).

Then the family {πϕ : ϕ ∈ S (Rn)} defines a locally convex topology onS ′(Rn; X).
Note that in the scalar case X = C, this is the weak-∗-topology. One can see as in
the scalar case that the Fourier transform, defined for ϕ ∈ S (Rn; X) by

(Fϕ)(ξ) := (2π)−n/2
∫

Rn

e−i x ·ξϕ(x)dx (ξ ∈ R
n, ϕ ∈ S (Rn; X)),

can be extended by duality to an isomorphism F : S ′(Rn; X) → S ′(Rn; X).

Definition 3.20 Let X,Y beBanach spaces, 1 ≤ p < ∞, and letm : Rn → L(X,Y )

be a bounded and strongly measurable function. Because of F−1 ∈ L(L1(Rn; X),

L∞(Rn; Y )), the function m induces a map Tm : S (Rn; X) → L∞(Rn; Y ) by

Tm f := F−1mF f ( f ∈ S (Rn; X)).

The function m is called a Fourier multiplier (more precisely, an L p-Fourier multi-
plier) if

‖Tm f ‖L p(Rn;Y ) ≤ C‖ f ‖L p(Rn;X) ( f ∈ S (Rn; X)).

AsS (Rn; X) is dense in L p(Rn; X) for p ∈ [1,∞), this implies that Tm has a unique
extension to a bounded linear operator Tm ∈ L(L p(Rn; X), L p(Rn; Y )). In this case,
m is called the symbol of the operator Tm , and we write

op[m] := FmF−1 := Tm (3.5)

and symb[Tm] := m.

We start with the scalar case X = Y = C.

Remark 3.21 In the Hilbert space case p = 2, one can apply Plancherel’s theorem.
Therefore, we have op[m] ∈ L(L2(Rn)) if and only if the multiplication operator
g �→ mg is a bounded operator in L2(Rn). This is equivalent to the condition m ∈
L∞(Rn).

In fact, if m ∈ L∞(Rn), then ‖mg‖L2(Rn) ≤ ‖m‖L∞(Rn)‖g‖L2(Rn). On the other
hand, if m /∈ L∞(Rn), then there exists a sequence (Ak)k∈N of measurable subsets
of Rn such that 0 < λ(Ak) < ∞ and |m(x)| ≥ k for x ∈ Ak . For the characteristic
function gk := χAk we obtain gk ∈ L2(Rn) and
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‖mgk‖2L2(Rn) =
∫

|m(ξ)gk(ξ)|2dξ ≥ k2λ(Ak) = k2‖gk‖2L2(Rn).

Therefore, op[m] cannot be a bounded operator in L2(Rn).

The following classical theorem gives a sufficient condition for a function to
be a (scalar) Fourier multiplier and has many applications in the theory of partial
differential equations. In the following, [ n2 ] denotes the largest integer not greater
than n

2 . We state this result in two variants.

Theorem 3.22 (Mikhlin’s multiplier theorem) Let 1 < p < ∞ and m : Rn \ {0} →
C. If one of the two conditions

(i) m ∈ C [ n2 ]+1(Rn \ {0}) and

|ξ||β||∂βm(ξ)| ≤ CM (ξ ∈ R
n \ {0}, |β| ≤ [ n2 ] + 1),

(ii) m ∈ Cn(Rn \ {0}) and
∣∣ξβ∂βm(ξ)

∣∣ ≤ CM (ξ ∈ R
n \ {0}, β ∈ {0, 1}n)

holds with a constant CM > 0, then m is an L p-Fourier multiplier with

‖ op[m]‖L(L p(Rn)) ≤ c(n, p)CM ,

with a constant c(n, p) depending only on n and p.

A proof of this theorem (which is also called Mikhlin-Hörmander theorem) can
be found, e.g., in [19], Sect. 6.2.3. Condition (i) is sometimes called theMikhlin con-
dition, whereas condition (ii) is called the Lizorkin condition. For the L p-continuity
of singular integral operators, we also refer to [31], Sect. 6.5.

For the following result, note that a function m : Rn \ {0} → C is called (posi-
tively) homogeneous with respect to ξ of degree d ∈ R if

m(ρξ) = ρdm(ξ) (ξ ∈ R
n \ {0}, ρ > 0).

Lemma 3.23 Let m ∈ C [ n2 ]+1(Rn \ {0}) be homogeneous of degree 0. Then m sat-
isfies the Mikhlin condition.

Proof If a functionm ∈ Ck(Rn \ {0}) is homogeneous of degree d, then its derivative
∂βm(ξ) is homogeneous of degree d − |β| for all |β| ≤ k. This follows from the
identities ∂β[m(ρξ)] = ρ|β|(∂βm)(ρξ) and ∂β[ρdm(ξ)] = ρd(∂βm)(ξ).

Now letm ∈ C [ n2 ]+1(Rn \ {0}) be homogeneous of degree 0, and let |β| ≤ [ n2 ] + 1.
Thenmβ(ξ) := |ξ||β|∂βm(ξ) is homogeneous of degree 0 and continuous. Therefore,

|mβ(ξ)| =
∣∣∣mβ

( ξ

|ξ|
)∣∣∣ ≤ max|η|=1

|mβ(η)| < ∞ (ξ ∈ R
n \ {0}).

�
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As a first application of Mikhlin’s theorem, we can now answer the question from
Example 3.19.

Corollary 3.24 Let 1 < p < ∞. Then {u ∈ L p(Rn) : �u ∈ L p(Rn)} = W 2
p(R

n).

Proof Aswe have seen in Example 3.19, we have to show that the functionmα(ξ) :=
ξα

1+|ξ|2 satisfies the Mikhlin condition for all |α| ≤ 2. For this, we write mα(ξ) =
m̃α(ξ, 1) where the function m̃α : Rn+1 \ {0} → C is defined by

m̃α(ξ,μ) := ξαμ2−|α|

μ2 + |ξ|2 .

As the function m̃α is smooth and homogeneous of degree 0, it satisfies the Mikhlin
condition by Lemma 3.23. Setting μ = 1, we see that also mα satisfies the Mikhlin
condition. �

As mentioned above, we also need vector-valued variants of Mikhlin’s theorem.
The following results assume some geometric conditions on the Banach space X .
For a detailed discussion of these properties, see, e.g., [23], Chap. 4.

Definition 3.25 (a)ABanach space X is called aUMDspace or a space of classHT if
the symbolm(ξ) := −i sgn(ξ) idX yields a bounded operator op[m] ∈ L(L p(R; X)).
The operator op[m] is called the Hilbert transform.

(b) A Banach space X is said to have property (α) if there exists a constant
C > 0 such that for all N ∈ N, all i.i.d. symmetric {−1, 1}-valued random variables
ε1, . . . , εN on � and ε′

1, . . . , ε
′
N on �′, all αi j ∈ C with |αi j | ≤ 1, and all xi j ∈ X

we have ∥∥∥∥∥∥

N∑

i, j=1

αi jεiε
′
j xi j

∥∥∥∥∥∥
L2(�×�′;X)

≤ C

∥∥∥∥∥∥

N∑

i, j=1

εiε
′
j xi j

∥∥∥∥∥∥
L2(�×�′;X)

.

Remark 3.26 (a) Every UMD space is reflexive, i.e., the canonical embedding into
its bidual space is surjective (cf. [23], Section B.1.c), as can be seen in [23], Theo-
rem 4.3.3. In particular, L1(G) and L∞(G) are no UMD spaces. However, L1(G)

has property (α).
(b) Every Hilbert space is a UMD space with property (α). If E is a UMD space

with property (α) and if (S,σ,μ) is a σ-finite measure space, then also L p(S; E) is
a UMD space with property (α) for all p ∈ (1,∞) (see [23], Proposition 4.2.15).

(c) More generally, if G ⊂ R
n is a domain, E is a UMD space with property (α)

and p, q ∈ (1,∞), then the vector-valued Besov space Bs
pq(G; E) and the vector-

valued Triebel-Lizorkin space Fs
pq(G; E) are again UMD spaces with property (α),

see [23], Example 4.2.18. In particular, this holds in the scalar case E = C.

The following result is the vector-valued analog of Mikhlin’s theorem and was
central in the development of the theory and application of maximal L p-regularity.
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Theorem 3.27 Let X and Y be UMD Banach spaces, and let 1 < p < ∞. Assume
m ∈ Cn(Rn \ {0}; L(X,Y )) with

R
({|ξ||α|∂αm(ξ) : ξ ∈ R

n \ {0}, α ∈ {0, 1}n}
)

=: κ < ∞.

Then m is a vector-valued Fourier multiplier, and for the norm of op[m] (see (3.5))
we have

‖ op[m]‖L(L p(Rn;X),L p(Rn;Y )) ≤ Cκ,

where the constant C depends only on n, p, X , and Y .

The proof of Theorem 3.27 uses Paley-Littlewood decompositions, see [25], The-
orem 4.6, or [23], Theorem 5.3.18.

In the last result, we had one symbol m and the related operator op[m]. The
following theorem shows that for a family of symbols satisfying uniform Mikhlin
type estimates, also the related operator family is R-bounded.

Theorem 3.28 Let X and Y be UMD Banach spaces with property (α). Let T ⊂
L(X,Y ) be R-bounded. Consider the set

M :=
{
m ∈ Cn(Rn \ {0}; L(X, Y )) : ξαDαm(ξ) ∈ T (ξ ∈ R

n \ {0}, α ∈ {0, 1}n)
}
.

Then {op[m] : m ∈ M} ⊂ L(L p(Rn; X), L p(Rn; Y )) is R-bounded with Rp({op
[m] : m ∈ M}) ≤ CRp(T ), where the constant C depends only on p,m, X, and
Y .

For a proof of this result, we refer to [21], Theorem 3.2. Theorem 3.28 is also the
basis for an iteration process:R-bounded symbol families yieldR-bounded operator
families. For an application to pseudodifferential operatorswithR-bounded symbols,
we also refer to [15].

Note that Theorem 3.28 also gives a strong result in the scalar case X = C. AsC is
a Hilbert space, boundedness in C equals R-boundedness. Therefore, boundedness
of a family of scalar symbols impliesR-boundedness of the corresponding operator
family. The same holds if X is a general Hilbert space. We give a simple but useful
example.

Corollary 3.29 Let {mλ : λ ∈ �} be a family of matrix valued functions mλ ∈
Cn(Rn \ {0};CN×N ) with

|ξαDαmλ(ξ)|CN×N ≤ C0 (ξ ∈ R
n \ {0}, α ∈ {0, 1}n, λ ∈ �).

Then {op[mλ] : λ ∈ �} ⊂ L(L p(Rn;CN )) is R-bounded with R-bound C · C0,
where C only depends on p and N.

Proof As a Hilbert space, X = C
N is a UMD space with property (α). By assump-

tion, we know that
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{
ξαDα

ξ mλ(ξ) : ξ ∈ R
n \ {0}, α ∈ {0, 1}n, λ ∈ �

} ⊂ L(X)

is norm bounded and consequently, as X is a Hilbert space, alsoR-bounded. Choos-
ing T := {A ∈ C

N×N : |A| ≤ C0} in Theorem 3.28, we obtain the R-boundedness
of {op[mλ] : λ ∈ �} ⊂ L(L p(Rn;CN )). �

3.3 R-sectorial Operators

Now we come back to the question of maximal L p-regularity. As we have seen in
Theorem 2.11, maximal regularity holds if and only if the operator-valued symbol
m(λ) := λ(λ − A)−1 for λ ∈ iR induces a bounded operator in L p(R; X). So we
can apply the one-dimensional case of Theorem 3.27. We start with a notion from
operator theory.

In the following, let

�ϕ :=
{
z ∈ C \ {0} : | arg(z)| < ϕ

}

for ϕ ∈ (0,π]. We denote the spectrum and the resolvent set of an operator A by
σ(A) and ρ(A), respectively.

Definition 3.30 Let A : D(A) → X be a linear and densely defined operator. Then
A is called sectorial if there exists an angle ϕ > 0 such that ρ(A) ⊃ �ϕ and

sup
λ∈�ϕ

‖λ(λ − A)−1‖L(X) < ∞.

If this is the case, we call

ϕA := sup{ϕ : ρ(A) ⊃ �ϕ, sup
λ∈�ϕ

‖λ(λ − A)−1‖L(X) < ∞}

the spectral angle of A.

The following theorem is an important result from the theory of semigroups of
operators (see, e.g., [18] , Theorem II.4.6).

Theorem 3.31 Let A : D(A) �→ X be linear anddensely defined. Then the following
statements are equivalent:

(i) A generates a bounded holomorphic C0-semigroup on X with angle ϑ ∈ (0, π
2 ].

(ii) A is sectorial with spectral angle ϕA ≥ ϑ + π
2 .

It turns out that a similar condition characterizes operators with maximal L p-
regularity. For the following result, cf. [13], Theorem 4.4, [34], Theorem 4.2, and
[25], Theorem 1.11.
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Theorem 3.32 (TheoremofWeis)Let X be aUMDBanach space, 1 < p < ∞, and
A be a sectorial operator with spectral angle ϕA > π

2 . Then A ∈ MR((0,∞); X) if
the family {

λ(λ − A)−1 : λ ∈ �ϕ

} ⊂ L(X)

isR-bounded for some ϕ > π
2 .

With respect to the last theorem, one defines R-sectorial operators:

Definition 3.33 Let A : D(A) → X be a linear and densely defined operator. Then
A is called R-sectorial if there exists an angle ϕ > 0 with ρ(A) ⊃ �ϕ and

R
{
λ(λ − A)−1 : λ ∈ �ϕ

}
< ∞.

The R-angle of A is defined as the supremum of all angles for which the above
R-bound is finite.

By Theorem 3.32, a sectorial operator has maximal regularity if it is R-sectorial
withR-angle larger than π

2 . In fact, one has the following equivalences.

Theorem 3.34 Let A be the generator of a bounded holomorphic C0-semigroup T .
Then the following statements are equivalent:

(i) There exists a δ > 0 such that A is R-sectorial with R-angle ϕR = π
2 + δ.

(ii) There exists an n ∈ N such that {tn(i t − A)−n : t ∈ R \ {0}} isR-bounded.
(iii) There exists a δ > 0 such that the family {Tz : z ∈ �δ} isR-bounded.
(iv) The family {Tt , t ATt : t > 0} isR-bounded.

Proof We only give a sketch of proof, for the full version see [25], Theorem 1.11.
(i)=⇒(ii) is trivial.
(ii)=⇒(i). We write

(i t − A)−n+1 = (n − 1)i

∞∫

t

(is − A)−nds

and obtain

(i t)n−1(i t − A)−n+1 =
∞∫

0

ht (s)
[
(is)n(is − A)−n

]
ds

for the function ht (s) := (n − 1)tn−1s−nχ[t,∞).Wehave
∫∞
0 ht (s)ds = 1, andCorol-

lary 3.15 yields (ii) for n − 1 instead of n. Iteratively, we see that (ii) holds for n = 1.
Nowwe use Corollary 3.16 to show theR-boundedness of {λ(λ − A)−1 : λ ∈ �π/2}.
By considering power series expansion, one can show that λ(λ − A)−1 is in factR-
bounded on some larger sector.

(iii)=⇒(i). This follows from Corollary 3.15, too, with help of the representation
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(λ − A)−1 =
∞∫

0

e−λt Ttdt.

(i)=⇒(iii) follows similarly by

Tz = 1

2πi

∫

�t

eλz(λ − A)−1dλ.

(iii)⇐⇒(iv) can be shown using Corollary 3.16. �

4 L p-Sobolev Spaces

In the definition of maximal regularity, the vector-valued Sobolev space W 1
p(J ; X)

appears. In many cases, X = L p(G) for some domain G ⊂ R
n , and it would be

desirable to obtain a more explicit description of the space γtE of time traces in this
situation. Note that Lemma 2.4 tells us that this is connected with real interpolation.
A similar question arises if the operator A is a differential operator in some domain
G ⊂ R

n . In this case, the domain D(A) is described by boundary operators, and
the spaces for the boundary traces will be non-integer Sobolev spaces. For p �=
2, there are different scales of non-integer Sobolev spaces: Besov spaces, Triebel-
Lizorkin spaces, and Bessel potential spaces. A modern definition of these scales is
based on dyadic decomposition and on the Fourier transform. A classical reference
for this is the book by Triebel ([32], Sect. 2.3), where the scalar case is discussed.
For a modern presentation, including the vector-valued situation, we mention the
monograph by Amann ([7], Chap. VII). Note that in the vector-valued situation, the
related integrals are Bochner integrals, and we refer to [23], Sect. 1, and [1], Sect. 1.1,
for an introduction to vector-valued integration.

Definition 4.1 A sequence (ϕk)k∈N0 of C∞-functions (ϕk)k∈N0 is called a dyadic
decomposition if

(i) ϕk ≥ 0, suppϕ0 ⊂ B(0, 2) and suppϕk ⊂ {ξ ∈ R
n : 2k−1 < |ξ| < 2k+1} for all

k ∈ N,
(ii)

∑
k∈N0

ϕk(ξ) = 1 for all ξ ∈ R
n ,

(iii) for all α ∈ N
n
0 there exists a cα > 0 with

|ξ||α|∣∣∂αϕk(ξ)
∣∣ ≤ cα (ξ ∈ R

n, k ∈ N0).

It is easy to define a dyadic decomposition by scaling a fixed function ϕ1 (see
[32], Sect. 2.3.1). The definitions of the Sobolev spaces are based on the family
(op[ϕk])k∈N0 , see (3.5). By the theorem of Paley-Wiener, for every u ∈ S ′(Rn) the
distribution op[ϕk]u is a regular distribution and even a smooth function. Therefore,
(op[ϕk]u)(x) is well defined. In the following, let X be a Banach space.
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Definition 4.2 (a) For s ∈ R, p, q ∈ [1,∞), the Besov space Bs
pq(R

n; X) is defined
by Bs

pq(R
n; X) := {u ∈ S ′(Rn; X) : ‖u‖Bs

pq (R
n;X) < ∞}, where

‖u‖Bs
pq (R

n;X) =
⎡

⎣
∑

k∈N0

2skq

⎛

⎝
∫

Rn

‖(op[ϕk]u)(x)‖p
Xdx

⎞

⎠
q/p⎤

⎦

1/q

.

(b) For s ∈ R and p, q ∈ [1,∞) the Triebel-Lizorkin space Fs
pq(R

n; X) is defined
by Fs

pq(R
n; X) := {u ∈ S ′(Rn; X) : ‖u‖Fs

pq (R
n;X) < ∞}, where

‖u‖Fs
pq (R

n;X) =
⎡

⎣
∫

Rn

⎛

⎝
∑

k∈N0

2skq‖(op[ϕk]u)(x)‖qX
⎞

⎠
p/q

dx

⎤

⎦

1/p

.

(c) If p = ∞ or q = ∞, the above definitions holdwith the standardmodification.

By an application of Fubini’s theorem, we immediately see that for p = q the
definitions of Besov spaces and Triebel-Lizorkin spaces coincide, but in general
we have two different scales of Sobolev space type. For the third scale, the Bessel
potential spaces, we consider the function 〈 · 〉 : Rn → R, ξ �→ 〈ξ〉 := (1 + |ξ|2)1/2.
For the following definition, we refer to [23], Definition 5.6.2.

Definition 4.3 Let s ∈ R and p ∈ [1,∞]. Then theBessel potential spaceHs
p(R

n; X)

is defined as the space of all u ∈ S ′(Rn; X) for which op[〈 · 〉s]u ∈ L p(Rn; X). The
corresponding norm is defined as

‖u‖Hs
p(R

n;X) := ‖ op[〈 · 〉s]u‖L p(Rn;X).

Remark 4.4 (a) Many classical Sobolev spaces can be found as special cases of the
above definition.

• Let X be a UMD space, k ∈ N, and p ∈ (1,∞), and let Wk
p(R

n; X) denote the
classical Sobolev space,

Wk
p(R

n; X) := {
u ∈ L p(Rn; X) : ∀ |α| ≤ k : ∂αu ∈ L p(Rn; X)

}
.

Then Wk
p(R

n; X) = Hk
p(R

n; X) with equivalent norms ([23], Theorem 5.6.11).

• Let p ∈ (1,∞) and s ∈ R. Then the equality Hs
p(R

n; X) = Fs
p2(R

n; X) holds if
and only if X is isomorphic to a Hilbert space ([22], Theorem 1.2).

• Let p ∈ [1,∞) and s ∈ (0,∞) \ N. Then the Sobolev-Slobodeckii space
Ws

p(R
n; X) is given as Ws

p(R
n; X) = Bs

pp(R
n; X) ([7], Remark 3.6.4).

• Let s ∈ (0,∞) \ N. Then the classical Hölder space is given as Cs(Rn; X) =
Bs∞,∞(Rn; X) ([7], Remark 3.6.4).
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(b) Let G ⊂ R
n be a domain. Then the space Bs

pq(G; X) is defined by restriction,
i.e.

Bs
pq(G; X) := {u ∈ D ′(G; X) : ∃ ũ ∈ Bs

pq(R
n; X) : u = ũ|G}

with canonical norm

‖u‖Bs
pq (G;X) := inf

{‖ũ‖Bs
pq (R

n;X) : u = ũ|G
}
.

Note here that the restriction of a distribution is defined as ũ|G := ũ|D (G). In the
same way, the other scales are defined on domains.

The following result can be shown with the theory of interpolation spaces and is
the basis for the description of the trace spaces. We refer to [7], Theorem 2.7.4, for a
proof (withG = R

n , the case of a domain can be handled by a retraction-coretraction
argument if the domain is smooth enough).

Theorem 4.5 Let G ⊂ R
n be a sufficiently smooth domain, and let p, q ∈ (1,∞),

k ∈ N, and s ∈ (0, k). Then

Bs
pq(G; X) = (L p(G; X),Wk

p(G; X))s/k,q .

From this theorem and the description of the trace spaces as real interpolation
space, one can easily obtain γ0Wk

p(G; X) = Bk−1/p
pp (∂G; X), where γ0u := u|∂G

stands for the trace on the boundary of the domain. This typical loss of derivatives
of order 1/p leads to non-integer Sobolev spaces for inhomogeneous boundary data.
For parabolic equations, we also have to consider time and boundary traces of the
solution space:

Corollary 4.6 Let G ⊂ R
n be a sufficiently smooth domain, J = (0, T ) with T ∈

(0,∞], k ∈ N, and let X = W 1
p(J ; L p(G) ∩ L p(J ;Wk

p(G)) (the typical parabolic
solution space).

(a) For the time trace γt : u �→ u|t=0, we obtain the trace space

γtX = Bk−k/p
pp (G).

(b) For the boundary trace γ0 : u �→ u|∂G, we obtain the trace space

γ0X = B1−1/(kp)
pp (J ; L p(∂G)) ∩ L p(J ; Bk−1/p

pp (∂G)).

Proof Weonly give themain ideas for a proof and refer to [14], Sect. 3, for a complete
version.

(a) By Lemma 2.4 a), we have γtX = (L p(G),Wk
p(G))1−1/p,p which equals

Bk−k/p
pp (G) due to Theorem 4.5 with p = q.
(b) Locally, we can choose a coordinate system such that the inner normal vector

is the xn-variable. Then we have to take the trace with respect to xn instead of t
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which gives by Lemma 2.4 a real interpolation space again. Computing the real
interpolation space of the intersection then gives a Besov space both with respect to
time and with respect to the other space variables. �
Remark 4.7 In the above corollary, we have considered functions which are L p in
time and L p in space. If one considers functions which are L p in time and Lq in space
with p �= q, a result similar to Corollary 4.6 holds, but now also Triebel-Lizorkin
spaces appear. More precisely, for X := W 1

p(J ; Lq(G)) ∩ L p(J ;Wk
q (G)) we obtain

(see [14], Sect. 6, and [28], Sect. 4)

γtX = Bk−k/p
qp (G),

γ0X = F1−1/(kq)
pq (J ; L p(∂G)) ∩ Lq(J ; Bk−1/q

qq (∂G)).

5 Parabolic PDE Systems in the Whole Space

As a first application of the previous results, we now consider parabolic systems of
partial differential equations in the whole spaceRn . In the following, let 1 < p < ∞
and C+ := {z ∈ C : Re z > 0} = �π/2. We assume that we have a linear differential
operator A = A(x, D) of the form

A(x, D) =
∑

|α|≤2m

aα(x)Dα

withm ∈ N andmatrix-valued coefficients aα : Rn → C
N×N . Recall that D := −i∂.

The definition of parabolicity below is based on the concept of parameter-ellipticity
which was developed by Agmon [4] and Agranovich-Vishik [9].

For the formal differential operator A = A(x, D), we define its symbol

a(x, ξ) :=
∑

|α|≤2m

aα(x)ξα

and the principal symbol

a0(x, ξ) :=
∑

|α|=2m

aα(x)ξα.

Both symbolsmapRn × R
n intoCN×N . The L p-realization Ap of A(x, D) is defined

as the unbounded linear operator Ap : L p(Rn;CN ) ⊃ D(Ap) → L p(Rn;CN ) with

D(Ap) := W 2m
p (Rn;CN ), Apu := A(x, D)u (u ∈ W 2m

p (Rn;CN )).

Definition 5.1 The operator A(x, D) is called parameter-elliptic with angle ϕ ∈
(0,π] if
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∣∣ det(a0(x, ξ) − λ)
∣∣ ≥ CP

(|ξ|2m + |λ|)N (
x ∈ R

n, (ξ,λ) ∈ (Rn × �ϕ) \ {0}).
(5.1)

If this holds for ϕ = π
2 (i.e., �ϕ = C+), then ∂t − A is called parabolic.

Remark 5.2 (a) For every fixed x ∈ R
n , the map (ξ,λ) �→ p(x, ξ,λ) := det(a0(x,

ξ) − λ) is quasi-homogeneous in the sense that

p(x, rξ, r2mλ) = r2mN p(x, ξ,λ)
(
r > 0, (ξ,λ) ∈ (Rn × �ϕ) \ {0}).

Therefore, it is sufficient to consider the compact set {(ξ,λ) : |ξ|2m + |λ| = 1}. The
operator A(x, D) is parameter-elliptic if and only if

inf
{| det(a0(x, ξ) − λ)| : x ∈ R

n, (ξ,λ) ∈ R
n × �ϕ with |ξ|2m + |λ| = 1

}
> 0.

(b) If aα ∈ L∞(Rn) for all |α| < 2m, then the lower-order terms of the symbol
can be estimated uniformly in x . Therefore, A(x, D) is parameter-elliptic if and only
if there exist constants C, R > 0 with

| det(a(x, ξ) − λ)| ≥ C(|ξ|2m + |λ|)N (x ∈ R
n, λ ∈ �ϕ, |ξ| ≥ R).

This is one possible definition of parameter-elliticity and parabolicity for pseudo-
differential operators. We remark that the principal symbol of a pseudodifferential
operator is defined only for so-called classical symbols.

Remark 5.3 If ∂t − A(x, D) is parabolic in the sense of parameter-ellipticity in the
closed sector C+, then A(x, D) is also parameter-elliptic in some larger sector �θ

with θ > π
2 . In fact, it is easily seen that the set of all angles of rays with respect to

λ, in which condition (5.1) holds, is open.

Following a standard approach in elliptic theory, we first consider the so-called
model problemand thenuse perturbation results for variable coefficients. The remain-
der of this section is based on [13], Sects. 5 and 6, and [25], Sects. 6 and 7.

Theorem 5.4 Let A(D) = ∑
|α|=2m aαDα with constant coefficients aα ∈ C

N×N

(|α| = 2m) and without lower-order terms. If ∂t − A(D) is parabolic with parabol-
icity constant CP in (5.1), then ρ(Ap) ⊃ C+ \ {0}, and the set

{
λ(λ − Ap)

−1 : λ ∈ C+ \ {0}}

isR-bounded. Here, theR-bound only depends on p, n,m, N ,CP and

M :=
∑

|α|=2m

‖aα‖CN×N .

In particular, Ap is R-sectorial with R-angle larger than π
2 , and Ap has maximal

Lq-regularity for all q ∈ (1,∞).



34 R. Denk

Proof Note that because of (5.1), for λ ∈ C+ \ {0} and ξ ∈ R
n the symbol (λ −

a0(ξ))−1 is well defined.We show that the family {mλ : λ ∈ C+ \ {0}}withmλ(ξ) :=
λ(λ − a0(ξ))−1 satisfies the assumptions of Corollary 3.29.

For any r > 0 we have r2mλ − a0(rξ) = r2m(λ − a0(ξ)). Therefore, the map
(ξ,λ) �→ 1

λ
(λ − a0(ξ)) is quasi-homogeneous in (ξ,λ) of degree 0, and the same

holds for its inverse (ξ,λ) �→ λ(λ − a0(ξ))−1. By Lemma 3.23, mλ satisfies the
Mikhlin condition uniformly with respect to λ. Now we can apply Corollary 3.29
to obtain the R-boundedness of {op[mλ] : λ ∈ C+ \ {0}} ⊂ L(L p(Rn)). Because
of 1

λ
op[mλ](λ − Ap) = idW 2m

p (Rn) and 1
λ
(λ − Ap) op[mλ] = idL p(Rn), we see that

op[mλ] = λ(λ − Ap)
−1. By Corollary 3.29, Ap isR-sectorial with angle larger than

π
2 , and Theorem 3.32 implies that Ap has maximal Lq -regularity for all q ∈ (1,∞).
To show the statement on the R-bound, we have to quantify the Mikhlin constant.

For this, we write

(λ − a0(ξ))
−1 = 1

det(λ − a0(ξ))
b(ξ,λ)

with the adjunct matrix b(ξ,λ). The coefficients of b(ξ,λ) are determinants of (N −
1) × (N − 1)-matrices which are constructed by omitting one row and one column
of the matrix λ − a0(ξ). Therefore, we obtain

‖b(ξ,λ)‖CN×N ≤ C(m, n, M, N )(|ξ|2m + |λ|)N−1.

Due to (5.1), we get

‖λ(λ − a0(ξ))
−1‖CN×N ≤ C(m, n, M, N ,Cp)

|λ|
|ξ|2m + |λ| ≤ C(m, n, M, N ,Cp).

For the derivatives, we note that

∥∥∥∥ξk
∂

∂ξk
a0(ξ)

∥∥∥∥
CN×N

=
∥∥∥∥∥∥
ξk

∂

∂ξk

∑

|α|=2m

aαξα

∥∥∥∥∥∥
CN×N

≤
∑

|α|=2m

‖aα‖CN×N

∣∣∣∣ξk
∂

∂ξk
ξα

∣∣∣∣

≤ 2mM |ξ|2m .

Iteratively, we obtain ‖ξα∂α
ξ a0(ξ)‖CN×N ≤ C(m, n, M, N )|ξ|2m for all α ∈ {0, 1}n .

In the same way, the derivative of b(ξ,λ) can be estimated. This yields

‖ξα∂α
ξ b(ξ,λ)‖CN×N ≤ C(m, n, M, N )(|ξ|2m + |λ|)N−1.

With the product rule (Leibniz rule) we have for the inverse matrix the inequality

‖ξαDα
ξ (λ − a0(ξ))

−1‖CN×N ≤ C(m, n, M, N ,CP)(|ξ|2m + |λ|)−1,
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and therefore‖ξαDα
ξ mλ(ξ)‖CN×N ≤ C(m, n, M, N ,CP) for allα ∈ {0, 1}n,λ ∈ C+ \

{0} and all ξ ∈ R
n . ByCorollary 3.29, theR-bound of {λ(λ − Ap)

−1 : λ ∈ C+ \ {0}}
only depends on m, n, M, N ,CP , and p. �

To generalize the above result to operators with variable coefficients, we need per-
turbation results forR-boundedness. For this, we define for anR-sectorial operator
A withR-angle ϕR(A) and for θ ∈ (0,ϕR(A)):

Mθ(A) := sup
({‖λ(λ − A)−1‖ : λ ∈ �θ}

)
,

M̃θ(A) := sup
({‖A(λ − A)−1‖ : λ ∈ �θ}

)
,

Rθ(A) := R
({λ(λ − A)−1 : λ ∈ �θ}

)
,

R̃θ(A) := R
({A(λ − A)−1 : λ ∈ �θ}

)
.

Note that M̃θ(A) is finite because of A(λ − A)−1 = λ(λ − A)−1 − 1, and the same
holds for R̃θ(A).

Theorem 5.5 Let X be a Banach space and A be anR-sectorial operator in X with
angle ϕR(A) > 0. Further, let θ ∈ (0,ϕR(A)), and let B be a linear operator in X
with D(B) ⊃ D(A) and

‖Bx‖ ≤ a‖Ax‖ (x ∈ D(A)). (5.2)

If a < 1
R̃θ(A)

, then A + B is R-sectorial, too, with angle larger or equal to θ and

Rθ(A + B) ≤ Rθ(A)

1 − a R̃θ(A)
.

Proof For λ ∈ �θ \ {0} one obtains

‖B(λ − A)−1x‖ ≤ a‖A(λ − A)−1x‖ ≤ aM̃θ(A)‖x‖ (x ∈ X).

Because of a < 1
R̃θ(A)

, the operator 1 + B(λ − A)−1 is invertible, and we get

(λ − (A + B))−1 = (λ − A)−1
[
1 + B(λ − A)−1

]−1

= (λ − A)−1
∞∑

n=0

(−B(λ − A)−1)n.

In particular, ρ(A + B) ⊃ �θ. By definition of R-boundedness and due to the
assumption, we get

R({B(λ − A)−1 : λ ∈ �θ}) ≤ aR({A(λ − A)−1 : λ ∈ �θ}) = a R̃θ(A).

Inserting this into the above series yields
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Rθ(A + B) ≤ Rθ(A)

1 − a R̃θ(A)
.

This shows that also A + B isR-sectorial with R-angle ≥ θ. �
The second perturbation results deals with the case where we have an additional

term ‖x‖ on the right-hand side of (5.2). However, now the R-sectoriality of the
operator holds only with an additional shift in the operator.

Theorem 5.6 Let A beR-sectorial with angleϕR(A) > 0, and let θ ∈ (0,ϕR(A)).
Let B be a linear operator satisfying D(B) ⊃ D(A) and

‖Bx‖ ≤ a‖Ax‖ + b‖x‖ (x ∈ D(A))

with constants b ≥ 0and0 ≤ a <
[
M̃θ(A)R̃θ(A)

]−1
. Then A + B − μ isR-sectorial

for

μ >
bMθ(A)R̃θ(A)

1 − aM̃θ(A)R̃θ(A)
.

For theR-angle, we have ϕR(A + B − μ) ≥ θ.

Proof For μ > 0, the following inequalities hold

‖B(A − μ)−1x‖ ≤ a‖A(A − μ)−1x‖ + b‖(A − μ)−1x‖
≤ (

aM̃θ(A) + b
μ
Mθ(A)

)‖x‖ (x ∈ X).

Therefore, B satisfies the assumption of Theorem 5.5 with A being replaced by
A − μ. In Theorem 5.5, the condition for the constants is given by c(μ)R̃θ(A) < 1,
where c := aM̃θ(A) + b

μ
Mθ(A). Because of aM̃θ(A) < 1, this is the case if

μ >
bMθ(A)R̃θ(A)

1 − aM̃θ(A)R̃θ(A)
.

�
The above perturbation results allow us to treat small perturbations in the principal

part of the differential operator.

Lemma 5.7 Let A(x, D) = ∑
|α|=2m aαDα with aα ∈ C

N×N for |α| = 2m, and
assume∂t − A(x, D) to be parabolicwith constantCP . Then there exists some θ > π

2

such that A(x, D) is parameter-elliptic in �θ, and there exist ε > 0 and K > 0 such
that for all operators B(x, D) = ∑

|α|=2m bα(x)Dα with bα ∈ L∞(Rn;CN×N ) and

∑

|α|=2m

‖bα‖∞ < ε
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the inequality

R
({

λ(λ − (Ap + Bp))
−1 : λ ∈ �θ \ {0}}

)
≤ K

holds. Here, ε and K only depend on n, p,m, N ,CP.

Proof Let ε > 0 and f ∈ W 2m
p (Rn;CN ). Then the inequality

‖B f ‖L p(Rn;CN ) ≤
∑

|α|=2m

‖bα‖∞‖Dα f ‖L p(Rn;CN ) ≤ ε max|α|=2m
‖Dα f ‖L p(Rn;CN ),

holds if B satisfies the above condition. We write

Dα f = (F−1mαF )A(D) f

with

mα(ξ) := ξα

⎛

⎝
∑

|β|=2m

aβξβ

⎞

⎠
−1

.

Thenmα ∈ C∞(Rn \ {0};CN×N ), andmα is homogeneous of degree 0 and therefore
satisfies theMikhlin condition. Consequently, there exists someC1 > 0 such that we
have

‖ op[mα]‖L(L p(Rn;CN )) ≤ C1 (|α| = 2m).

Choose ε <
[
C1(R̃θ(A) + 1)

]−1
. Then

‖B f ‖L p(Rn;CN ) ≤ εC1‖A f ‖L p(Rn;CN ) ≤ a‖A f ‖L p(Rn;CN )

with a = 1
R̃θ(A)+1

. By Theorem 5.5, the operator Ap + Bp is R-sectorial with angle
≥ θ, and

Rθ(A + B) ≤ Rθ(A)

1 − a R̃θ(A)
=: K .

�
In the next step, we consider an operator A whose coefficients in the principal

part are bounded and uniformly continuous. We can reduce this situation to the small
perturbation from the last lemma by introducing an infinite partition of unity. This
is done in the following lemma.

Lemma 5.8 For every r > 0 there exists ϕ ∈ D(Rn) with 0 ≤ ϕ ≤ 1, suppϕ ⊂
(−r, r)n and ∑

�∈rZn

ϕ2
�(x) = 1 (x ∈ R

n).

Here, ϕ�(x) := ϕ(x − �).
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Proof (a)We first consider the case r = 1 and n = 1. Choose someϕ1 ∈ D(R)with
ϕ1 > 0 in (− 3

4 ,
3
4 ), suppϕ1 = [− 3

4 ,
3
4 ], and ϕ1(x) = ϕ1(−x) for all x ∈ R. We set

ϕ(x) :=
⎧
⎨

⎩

√
ϕ2
1(x)

ϕ2
1(x)+ϕ2

1(1−x)
if x ∈ [0, 3

4 ],
0, if x ∈ ( 34 ,∞),

and ϕ(x) := ϕ(−x) for x < 0. Then suppϕ ⊂ (−1, 1), and for x ∈ [0, 1] we obtain
∑

�∈Z
ϕ2

�(x) = ϕ2(x) + ϕ2(x − 1) = ϕ2(x) + ϕ2(1 − x)

= ϕ2
1(x)

ϕ2
1(x) + ϕ2

1(1 − x)
+ ϕ2

1(1 − x)

ϕ2
1(1 − x) + ϕ2

1(x)
= 1.

As
∑

�∈Z ϕ2
� is periodic with period 1, we have

∑
�∈Z ϕ2

� = 1 in R.
(b) In the general case, define ϕ(n)(x) := ∏n

j=1 ϕ(
x j

r ) with ϕ from part a). Then

∑

�∈rZn

(ϕ(n))2(x − �) =
∑

�∈rZn

n∏

j=1

ϕ2
( x j − � j

r

)
=
∑

�∈Zn

n∏

j=1

ϕ2(y j − � j )

=
n∏

j=1

∑

� j∈Z
ϕ2(y j − � j ) = 1

for y := x
r . �

We now come to the main result of this section. Here, BUC(Rn) stands for the
space of all bounded and uniformly continuous functions.

Theorem 5.9 Let A(x, D) = ∑
|α|≤2m aα(x)Dα with

aα ∈ BUC(Rn;CN×N ) (|α| = 2m),

aα ∈ L∞(Rn;CN×N ) (|α| < 2m).

Let 1 < p < ∞. If ∂t − A(x, D) is parabolic, then there exist θ > π
2 and μ > 0

such that Ap − μ is R-sectorial with angle θ. In particular, Ap − μ has maximal
Lq-regularity for all 1 < q < ∞.

Proof As A(x, D) is parameter-elliptic in C+ by assumption, there exists a θ > π
2

such that A(x, D) is still parameter-elliptic in �θ (Remark 5.3). The proof of the
theorem uses localization and is done in several steps. We first explain the ideas.

(1) Wefix the coefficients of A at some point � ∈ �, where the grid� ⊂ R
n is chosen

fine enough such that in each cube the localized operator A� is a small perturba-
tion of the model problem with frozen coefficient. Here, we apply Lemma 5.7
to see that A� is stillR-sectorial.
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(2) We consider the sequence A := (A�)�∈� of all localized operators and show that
this defines anR-sectorial operator in some suitably chosen sequence space X0.

(3) The L p-realization Ap and the operator A have the same properties up to lower-
order perturbations. More precisely, we have J Ap = AJ and ApP = PA mod-
ulo lower order operators, where J and P are the localization and the patching
operator, respectively.

(4) With the help of the interpolation inequality for Sobolev spaces, the lower-order
operators can be seen as a small perturbation, and therefore the R-sectoriality
of A implies the R-sectoriality of Ap.

In detail, these steps can be done in the following way.

(1)Choose ε = ε(n, p,m, N ,Cp) as inLemma5.7 for the operator
∑

|α|=2m aα(�)

Dα with � ∈ Z
n . As aα ∈ BUC(Rn;CN×N ), there exists a δ > 0 with

∑

|α|=2m

|aα(x) − aα(y)| < ε (|x − y| ≤ δ).

Nowchoose r ∈ (0, δ) andϕ ∈ D(Rn) as in Lemma5.8.Wewrite Q := (−r, r)n and
Q� := Q + � for � ∈ rZn =: �. Choose ψ ∈ D(Rn) with suppψ ⊂ Q, 0 ≤ ψ ≤ 1,
ψ = 1 on suppϕ, and set ψ�(x) := ψ(x − �) (� ∈ Z). Define the coefficients

a�
α(x) :=

{
aα(x), x ∈ Q�,

aα(�), x /∈ Q�

(� ∈ �, |α| = 2m)

and the operator A�(x, D) := ∑
|α|=2m a�

α(x)Dα. For the principal part, we obtain
A0(x, D) = A�(x, D) (x ∈ Q�) and therefore A0(x, D)u = A�(x, D)u for all u ∈
W 2m

p (Rn;CN ) with supp u ⊂ Q�.
(2) Define Xk := �p(�;Wk

p(R
n;CN )) for k ∈ N0 and the operator A : X0 ⊃

D(A) → X0 by D(A) := X2m and

A(u�)�∈� := (A�u�)�∈�.

By Lemma 5.7, the operator A� is R-sectorial with Rθ(A�) ≤ K , where K does
not depend on �. We show that the same holds for A. For this, let Tj = λ j (A − λ j )

−1

with λ j ∈ �θ and x j = ( f ( j)
� )�∈� ∈ X0 for j = 1, . . . , J . Then we obtain
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∥∥∥∥
J∑

j=1

r j Tj x j

∥∥∥∥
L p([0,1];X0)

=
⎛

⎝
1∫

0

∥∥∥∥∥∥

J∑

j=1

r j (t)Tj x j

∥∥∥∥∥∥

p

X0

dt

⎞

⎠
1/p

=
⎛

⎝
1∫

0

∑

�∈�

∥∥∥∥∥∥

J∑

j=1

r j (t)λ j (A
� − λ j )

−1 f ( j)
�

∥∥∥∥∥∥

p

L p(Rn;CN )

dt

⎞

⎠
1/p

=
⎛

⎝
∑

�∈�

1∫

0

∥∥∥∥∥∥

J∑

j=1

r j (t)λ j (A
� − λ j )

−1 f ( j)
�

∥∥∥∥∥∥

p

L p(Rn;CN )

dt

⎞

⎠
1/p

=
⎛

⎝
∑

�∈�

∥∥∥∥∥∥

J∑

j=1

r jλ j (A
� − λ j )

−1 f ( j)
�

∥∥∥∥∥∥

p

L p([0,1];L p(Rn;CN ))

⎞

⎠
1/p

≤
⎛

⎝
∑

�∈�

[
Rθ(A

�)
]p
∥∥∥∥∥∥

J∑

j=1

r j f
( j)
�

∥∥∥∥∥∥

p

L p([0,1];L p(Rn;CN ))

⎞

⎠
1/p

≤ K

∥∥∥∥∥∥

J∑

j=1

r j x j

∥∥∥∥∥∥
L p([0,1];X0)

,

i.e. Rθ(A) ≤ K .
Nowwe consider the localization operator J : L p(Rn;CN ) → X0, f �→ (ϕ� f )�.

As we have

∑

�∈�

‖ϕ� f ‖p
L p(Rn;CN )

≤
∑

�∈�

‖χQ�
f ‖p

L p(Rn;CN )
= 2N‖ f ‖p

L p(Rn;CN )
,

the operator J is continuous. In the same way, one sees that J ∈ L(W 2m
p (Rn;CN ),

X2m).
Analogously, the patching operator P is defined by

P : X0 → L p(Rn;CN ), ( f�)�∈� �→
∑

�∈�

ϕ� f�.

Note here that the sum is locally finite. We obtain P ∈ L(X0, L p(Rn;CN )) and
P J = idL p(Rn;CN ) because of P J f = ∑

�∈� ϕ2
� f = f .

(3)Now let Ap be the L p(Rn;CN )-realizationof A(x, D) and Ap,0 the L p(Rn;CN )

-realization of A0(x, D). Then for u ∈ W 2m
p (Rn;CN ) and � ∈ � the following equal-

ity holds:
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ϕ�Apu = Ap(ϕ�u) + (ϕ�Ap − Apϕ�)u

= A�(ϕ�u) + (Ap − Ap,0)ψ�ϕ�u +
∑

k:Qk∩Q� �=∅
(ϕ�Ap − Apϕ�)ϕ

2
ku.

Thus, J Ap = AJ + BJ with

B
(
(u�)�∈�

) :=
⎛

⎝(Ap − Ap,0)ψ�u� +
∑

k:Qk∩Q� �=∅
(ϕ�Ap − Apϕ�)ϕkuk

⎞

⎠

�∈�

.

Writing B((u�)�) = (
∑

k∈� Bk�u�)k∈� , we see that Bk� is a differential operator
of order not greater than ≤ 2m − 1, and the number of elements in each row
of the infinite matrix (Bk�)k,� is bounded. As aα ∈ L∞(Rn;CN ), this yields B ∈
L(X2m−1, X0).

Analogously, we obtain for (u�)�∈� ∈ X2m the equality

(ApP − PA)(u�)�∈� = Ap

(
∑

�∈�

ϕ�u�

)
−
∑

�∈�

ϕ�A
�u�

=
∑

�∈�

ϕ�(Ap − Ap,0)u� +
∑

k∈�

(Apϕk − ϕk Ap)uk

=
∑

�∈�

ϕ�(Ap − Ap,0)u� +
∑

k∈�

∑

�:Qk∩Q� �=∅
ϕ2

�(Apϕk − ϕk Ap)uk

=
∑

�∈�

ϕ�

⎡

⎣(Ap − Ap,0)u� +
∑

k:Qk∩Q� �=∅
ϕ�(Apϕk − ϕk Ap)uk

⎤

⎦

= PD(u�)�∈�

with

D(u�)�∈� :=
⎛

⎝(Ap − Ap,0)u� +
∑

k:Qk∩Q� �=∅
(Apϕk − ϕk Ap)uk

⎞

⎠

�∈�

.

In the same way as before, we see that D ∈ L(X2m−1, X0).
(4) We apply the interpolation inequality for Sobolev spaces and obtain for every

ε > 0 the inequality

‖B(u�)�∈�‖X0 + ‖D(u�)�∈�‖X0 ≤ C‖(u�)�∈�‖X2m−1

≤ ε‖(u�)�∈�‖X2m + Cε‖(u�)�∈�‖X0 (u ∈ X2m).

Due to Theorem 5.6, there exists a μ > 0 such that A + B − μ and A + D − μ are
both R-sectorial with angle ≥ θ.
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Let u ∈ W 2m
p (Rn;CN ) and f := (λ + μ − Ap)u ∈ L p(Rn;CN ). Then

J f = J (λ + μ − Ap)u = (λ + μ − (A + B))Ju,

and therefore
u = P Ju = P(λ + μ − (A + B))−1 J f.

In particular, λ + μ − Ap is injective.
On the other hand, for f ∈ L p(Rn;CN ) we get

f = P J f = P(λ + μ − (A + D))(λ + μ − (A + D))−1 J f

= (λ + μ − Ap)P(λ + μ − (A + D))−1 J f ∈ R(λ + μ − Ap),

i.e., λ + μ − Ap is surjective, too. Therefore, λ + μ ∈ ρ(Ap) and

(λ + μ − Ap)
−1 = P(λ + μ − (A + D))−1 J.

Because of P ∈ L(X0, L p(Rn;CN )), J ∈ L(L p(Rn;CN ), X2m), and Rθ(A + D −
μ) < ∞, it follows that Rθ(Ap − μ) < ∞, and Ap − μ is R-sectorial with angle
greater or equal to θ. �

6 Parabolic Boundary Value Problems

In the last section, we considered parabolic systems in the whole space. Nowwewant
to show that similar results also hold for boundary value problems in sufficiently
smooth domains. In addition to the parameter-ellipticity of the operator A, we now
have to impose a condition on the boundary operators called Shapiro-Lopatinskii
condition. For a reference for this condition, we mention, e.g., [35], Sect. 11.

6.1 The Shapiro-Lopatinksii Condition

In the following, let p ∈ (1,∞), and let G ⊂ R
n be a bounded domain. We consider

a linear partial differential operator A = A(x, D) of the form

A(x, D) =
∑

|α|≤2m

aα(x)Dα

with m ∈ N, aα : G → C and boundary operators B1, . . . , Bm of the form
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Bj (x
′, D) =

∑

|β|≤m j

b jβ(x ′)γ0Dβ

with m j < 2m, b jβ : ∂G → C. Here, γ0 stands for the boundary trace u �→ u|∂G ,
which is a bounded linear map

γ0 : Wk
p(�) → Wk−1/p

p (∂�),

k = 1, . . . , 2m if G is a C2m-domain. Note here that Wk−1/p
p (∂�) = Bk−1/p

pp (∂�) is
the Sobolev-Slobodeckii space (see Sect. 4).

The L p-realization AB,p of theboundaryvalueproblem (A, B) = (A, B1, . . . , Bm)

is defined by

D(AB,p) := {u ∈ W 2m
p (G) : B1(x, D)u = · · · = Bm(x, D)u = 0}

and AB,pu := A(x, D)u (u ∈ D(AB,p)). We will assume the following smooth-
ness:

(i) The domain � is bounded and of class C2m .
(ii) For the coefficients aα of A(x, D) we have

aα ∈ C(G) (|α| = 2m),

aα ∈ L∞(G) (|α| < 2m).

(iii) For the coefficients b jβ of Bj (x ′, D) we have

b jβ ∈ C2m−m j (∂G) (|β| ≤ m j , j = 1, . . . ,m).

By trace results on Sobolev spaces, we immediately see the following continuity:

Lemma 6.1 The operator

(A, B) : W 2m
p (G) → L p(G) ×

m∏

j=1

W
2m−m j−1/p
p (∂G)

is continuous.

As usual, we define the principal symbols a0(x, ξ) := ∑
|α|=2m aα(x)ξα and

b j0(x ′, ξ) := ∑
|β|=m j

b jβ(x ′)ξβ .

Definition 6.2 The boundary value problem (A, B) is called parameter-elliptic in
the sector �ϕ if:

(a) We have a0(x, ξ) − λ �= 0 for all x ∈ G and all (ξ,λ) ∈ (Rn × �ϕ) \ {0}.
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(b) The following Shapiro-Lopatinskii condition is satisfied: for all x ′ ∈ ∂G and all
(ξ′,λ) ∈ (Rn−1 × �ϕ) \ {0} the ordinary differential equation

(a0(x
′, ξ′, Dn) − λ)v(xn) = 0 (xn > 0),

b j0(x
′, ξ′, Dn)v(xn)

∣∣
xn=0 = 0 ( j = 1, . . . ,m),

v(xn) → 0 (xn → ∞)

(6.1)

has only the trivial solution. Here, the boundary value problem is written in coor-
dinates corresponding to x ′. These coordinates arise from the original ones by
translation and rotation in such away that the xn-direction in the new coordinates
is the direction of the inner normal at the point x ′.

If this holds for the sector �π/2 = {λ ∈ C : Reλ ≥ 0}, the instationary problem
(∂t − A, B) is called parabolic.

Note that (a) implies inequality (5.1) from Definition 5.1, as G is compact and a0
is continuous in x and homogeneous in ξ.

Definition 6.3 Assume that in the situation of Definition 6.2, (a) holds. Then
A(x, D) − λ is called proper parameter-elliptic if for all (x ′, ξ′,λ) ∈ ∂G × (Rn−1 \
{0}) × C+, the polynomial a0(x ′, ξ′, ·) − λ has exactly m roots (including multi-
plicities) τ j = τ j (x ′, ξ′,λ), j = 1, . . . ,m with positive imaginary part. In this case,
define

a+(τ ) := a+(x ′, ξ′,λ, τ ) :=
m∏

j=1

(τ − τ j (x
′, ξ′,λ)) ∈ C[τ ].

We consider the equivalence class b j0 = b j0(x ′, ξ′,λ, ·) ∈ C[τ ]/(a+) of b j0 modulo
a+, and write b j0 with respect to the canonical basis 1, τ , . . . , τm−1 ∈ C[τ ]/(a+),
i.e. ⎛

⎜⎝
b10
...

bm0

⎞

⎟⎠ = L

⎛

⎜⎝
1
...

τm−1

⎞

⎟⎠ with L = L(x ′, ξ′,λ) ∈ C
m×m .

Then L is called the Lopatinskii matrix of (A, B) at the point x .

Lemma 6.4 Let A beproperly parameter-elliptic inG. Then the Shapiro-Lopatinskii
holds if and only if

det L(x ′, ξ′,λ) �= 0 (x ′ ∈ ∂G, (ξ′,λ) ∈ (Rn−1 × C+) \ {0}).

Proof Let v j ( j = 1, . . . ,m) be the solution of

(
a+(x ′, ξ, Dn) − λ

)
v(xn) = 0 (xn > 0),

Dk−1
n v(xn)

∣∣
xn=0 = δk j (k = 1, . . . ,m).
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Then {v1, . . . , vm} is a basis of the space M+ of all stable solutions of the ordinary
differential equation

(
a+(x ′, ξ, Dn) − λ

)
v(xn) = 0. Therefore, for all v ∈ M+ we

have the representation v = ∑m
j=1 λ jv j and

⎛

⎜⎝
b10(Dn)

...

bm0(Dn)

⎞

⎟⎠ v(xn)
∣∣
xn=0 =

⎛

⎜⎝
b10(Dn)

...

bm0(Dn)

⎞

⎟⎠
(
v1(xn), . . . , vm(xn)

)∣∣
xn=0

⎛

⎜⎝
λ1
...

λm

⎞

⎟⎠

=
⎛

⎜⎝
b10(Dn)

...

bm0(Dn)

⎞

⎟⎠
(
v1(xn), . . . , vm(xn)

)∣∣
xn=0

⎛

⎜⎝
λ1
...

λm

⎞

⎟⎠

= L

⎛

⎜⎝
D0

n
...

Dm−1
n

⎞

⎟⎠
(
v1(xn), . . . , vm(xn)

)∣∣
xn=0

⎛

⎜⎝
λ1
...

λm

⎞

⎟⎠

= L

⎛

⎜⎝
λ1
...

λm

⎞

⎟⎠ .

Note that bk0(Dn)v j (xn)
∣∣
xn=0 = bk0(Dn)v j (xn)

∣∣
xn=0 holds because a+(Dn)v j (xn) =

0. Therefore, (6.1) has only the trivial solution if and only if det L �= 0. �
Remark 6.5 (a) The condition of Lemma 6.4 can be formulated in the following
way: The boundary conditions are linearly independent modulo a+, i.e., b10, . . . , bm0

are linearly independent in C[τ ]/(a+).
(b) The boundary conditions B1, . . . , Bm are called completely elliptic if for every

proper parameter-elliptic A the boundary value problem (A, B) is parameter-elliptic.
This is the case for

(i) Bj (x ′, D) = γ0(
∂

∂xn
) j−1 ( j = 1, . . . ,m) (general Dirichlet boundary condi-

tions),
(ii) Bj (x ′, D) = γ0(

∂
∂xn

)m+ j−1 ( j = 1, . . . ,m) (general Neumann boundary con-
ditions).

More general, this holds for all boundary conditions of the form

Bj (x
′, D) = γ0

( ∂

∂xn

)s+ j−1 + lower order terms ( j = 1, . . . ,m),

where s ∈ {0, . . . ,m} is fixed. To see this, we have to show that {τ s+ j−1 : j =
1, . . . ,m} is linearly independent in C[τ ]/(a+). If this is not the case, there exist
c j ∈ C and p ∈ C[τ ] with
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m∑

j=1

c jτ
s+ j−1 = p(τ )a+(τ ).

Because of a+(0) �= 0, it follows that τ s is a divisor of p(τ ). Therefore,
∑m

j=1 c jτ
j−1

= p̃(τ )a+(τ ) with some polynomial p̃, in contradiction to deg a+ = m.
(c) If the domain and the coefficients of (A, B) are infinitely smooth, then for

every fixed λ ∈ C+, the coefficients of L(x ′, ξ′,λ) are symbols of pseudodifferential
operators on the closed (n − 1)-dimensional manifold ∂G.

6.2 The Main Result on Parameter-Elliptic Boundary Value
Problems

Under the condition of parameter-ellipticity, one can construct the solution operators
for boundary value problems. We follow the exposition in [2], Sect. 2, and [13],
Sects. 6 and 7. We start with a remark on ordinary differential equations.

Theorem 6.6 Let (A, B)beparameter-elliptic in some sector�ϕ, and let (x ′, ξ′,λ) ∈
∂G × ((Rn−1 × �ϕ) \ {0}). Choose a closed curve γ = γ(x ′, ξ′,λ) in {z ∈ C :
Im z > 0}, enclosing all roots τ1, . . . , τm of a+. We define p� by

a+(x ′, ξ′,λ, τ ) =
m∑

�=0

p�(x
′, ξ′,λ)τm−�,

and set Nk(τ ) := Nk(x ′, ξ′,λ, τ ) := ∑m−k
�=0 p�(x ′, ξ′,λ)τm−k−� and

(M1(τ ), . . . , Mm(τ )) := (
N1(τ ), . . . , Nm(τ )

)
L−1.

Let wk(xn) = wk(x ′, ξ′,λ, xn) (xn > 0) be defined by

wk(xn) := 1

2πi

∫

γ

Mk(τ )

a+(τ )
eixnτdτ (k = 1, . . . ,m).

Then {w1, . . . , wm} is a basis of the stable solution space of a0(Dn)w = 0,w(xn) →
0 (xn → ∞) and satisfies the initial conditions

b j0(x
′, ξ′,λ, Dn)wk(xn)

∣∣
xn=0 = δ jk ( j, k = 1, . . . ,m).

Proof (i) We first show that

1

2πi

∫

γ

Nk(τ )τ j−1

a+(τ )
dτ = δk j ( j, k = 1, . . . ,m).
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For this, we replace γ by a large ball {τ ∈ C : |τ | = R}. For j < k we have
deg

(
Nk(τ )τ j−1

) = m − k + j − 1 ≤ m − 2. Therefore, the integrand is of order
O(R−2) for R → ∞ which shows that the integral vanishes.

For j = k, the integrand equals τm−1+O(τm−2)

(τ−τ1)·...·(τ−τm )
. By the residue’s theorem, the inte-

gral has the value 1.
For j > k we consider

Q(τ ) := −a+(τ )τ j−k−1 + Nk(τ )τ j−1

= −
m∑

�=0

p�τ
m−�+ j−k−1 +

m−k∑

�=0

p�τ
m−�+ j−k−1.

We obtain deg Q = j − 2 ≤ m − 2, and therefore

∫

B(0,R)

Nk(τ )τ j−1

a+(τ )
dτ =

∫

B(0,R)

a+(τ )τ j−k−1 + Q(τ )

a+(τ )
dτ =

∫

B(0,R)

Q(τ )

a+(τ )
dτ = 0.

(ii) We have modulo a+, i.e., as equality in R[τ ]/(a+):

⎛

⎜⎝
b10(τ )

...

bm0(τ )

⎞

⎟⎠(M1(τ ), . . . , Mm(τ ))

=
⎛

⎜⎝
b10(τ )

...

bm0(τ )

⎞

⎟⎠
(
N 1(τ ), . . . , Nm(τ )

)
L−1

= L

⎛

⎜⎝
1
...

τm−1

⎞

⎟⎠
(
N 1(τ ), . . . , Nm(τ )

)
L−1.

Therefore,

⎛

⎝ 1

2πi

∫

γ

b j0(τ )Mk(τ )

a+(τ )
dτ

⎞

⎠

j,k=1,...,m

= L ·
⎛

⎝ 1

2πi

∫

γ

τ j−1Nk(τ )

a+(τ )
dτ

⎞

⎠

j,k=1,...,m

· L−1

= L · Im · L−1 = Im .

This yields
1

2πi

∫

γ

b j0(τ )Mk(τ )

a+(τ )
dτ = δ jk ( j, k = 1, . . . ,m).
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(iii) Define wk as in the theorem. Because of γ ⊂ {z ∈ C : Im z > 0}, we see that
wk(xn) → 0 for xn → ∞. Further,

a0(Dn)w(xn) = 1

2πi

∫

γ

Mk(τ )

a+(τ )
a(τ )eixnτdτ = 0,

as the integrand is holomorphic. Finally,

b j0(Dn)w(xn)
∣∣
xn=0 = 1

2πi

∫

γ

b j0(τ )Mk(τ )

a+(τ )
eixnτ

∣∣
xn=0dτ = δ jk ( j, k = 1, . . . ,m),

which finishes the proof. �
Remark 6.7 (a) With the above notation, the following expressions are quasi-
homogeneous in (ξ′,λ, τ ), more precisely, positively homogeneous in (ξ′,λ1/2m, τ ):

• a+(x ′, ξ′,λ, τ ) of degree m,
• τ j (ξ

′,λ) of degree 1,
• p�(x ′, ξ′,λ) of degree �,
• Nk(x ′, ξ′,λ, τ ) of degree m − k,
• b j0(x ′, ξ′, τ ) of degree m j ( j = 1, . . . ,m),
• Li j (x ′, ξ′,λ) of degree mi − j + 1,
• Mk(x ′, ξ′,λ, τ ) of degree m − mk − 1,
• γ(x ′, ξ′,λ) of degree 1,
• Mk (τ )

a+(τ )
of degree −mk − 1.

(b) In the following, let
〈ξ′〉λ := |ξ′| + |λ|1/2m .

By (a), the length of γ(x ′, ξ′,λ) can be estimated by C〈ξ′〉λ. For τ ∈ γ, one gets

Im τ ≥ C〈ξ′〉λ,
|τ − τ j (x

′, ξ′,λ)| ≥ C〈ξ′〉λ,
|eiτ xn | ≤ exp(−C〈ξ′〉λ xn).

For γ′ ∈ N
n−1
0 and αn ∈ N0, we obtain

∣∣Dαn
n Dγ′

ξ′ wk(x
′, ξ′,λ, xn)

∣∣ ≤ C〈ξ′〉−mk+αn−|γ′ |
λ e−C〈ξ′〉 xn .

In the smooth situation, these estimates show that wk is the symbol of a Poisson
operator. Such operators belong to the pseudodifferential calculus of boundary value
problems which is also known as the Boutet de Monvel calculus (see, e.g., [20]).

To show maximal regularity for parabolic boundary value problems, we again
start with the model problem related to (A, B) acting in R

n+ := {x ∈ R
n : xn > 0}
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with boundary ∂Rn+ = R
n−1. For this, we fix x ′

0 ∈ ∂G and choose the coordinate
system corresponding to x ′

0. We obtain the boundary value problem

(A0(D) − λ)u = f in Rn
+,

Bj0(D)u = 0 ( j = 1, . . . ,m) on R
n−1.

(6.2)

Here we have set

A0(D) :=
∑

|α|=2m

aα(x ′
0)D

α,

Bj0(D) :=
∑

|β|=m j

b jβ(x ′
0)γ0D

β .

In the following result, we construct the solution operators for the model problem.

Theorem 6.8 Let the boundary value problem (A, B) be parameter-elliptic in the
sector �ϕ, and let x ′

0 ∈ ∂� be fixed. Then the model problem (6.2) has for every
f ∈ L p(Rn+) and λ ∈ �ϕ \ {0} a unique solution u ∈ W 2m

p (Rn+). This solution is
given by

u = R+R(λ)E0 f −
m∑

j=1

Tj (λ)�2m−m j (λ)B̃ j0(D)R+R(λ)E0 f

−
m∑

j=1

T̃ j (λ)�2m−m j−1(λ)∂n B̃ j0(D)R+R(λ)E0 f.

Here, the operators are defined in the following way:
(a) E0 : L p(Rn+) → L p(Rn), f �→ E0 f with

E0 f :=
{
f, for xn > 0,

0, for xn ≤ 0

(trivial extension by 0).
(b) R(λ) := (Ap − λ)−1 ∈ L(L p(Rn)), where Ap is the L p(Rn)- realization of

A0(D).
(c) R+ : L p(Rn) → L p(Rn+), u �→ u|Rn+ , the restriction to R

n+.
(d) B̃ j0(D) := ∑

|β|=m j
b j0(x ′

0)D
β , the boundary operators without taking the

trace γ0 on the boundary.
(e) �s(λ) := (F ′)−1(λ + |ξ′|2m)s/2mF ′ ∈ L(Ws

p(R
n+), L p(Rn+)) for s ∈ N0,

where F ′ denotes the Fourier transform in the tangential variables x ′ = (x1, . . . ,
xn−1).

(f) Tj (λ) is given by
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(Tj (λ)ϕ)(x ′, xn) :=
∞∫

0

(F ′)−1(∂nw j )(x
′
0, ξ

′,λ, xn + yn)F
′(�−2m+m j (λ)ϕ)(ξ′, yn)dyn

for ϕ ∈ L p(Rn+).
(g) T̃j (λ) is given by

(T̃ j (λ)ϕ)(x ′, xn) :=
∞∫

0

(F ′)−1w j (x
′
0, ξ

′,λ, xn + yn)F
′(�−2m+m j+1(λ)ϕ)(ξ′, yn)dyn

for ϕ ∈ L p(Rn+).
The functions w j (x ′

0, ξ
′,λ, xn) are defined in Theorem 6.6.

Proof Here we only show the solution formula for u, as the property u ∈ W 2m
p (Rn+)

will be included in the proof of theR-boundedness of the solution operators below.
Let u1 ∈ W 2m

p (Rn+) be the unique solution of

(A0(D) − λ)u1 = E0 f in Rn,

which exists due to Theorem 5.4. So we have u1 = R(λ)E0 f . For u, we choose the
ansatz u = u1 + u2. Then u is a solution of (6.2) if and only if u2 is a solution of the
boundary value problem

(A0(D) − λ)u2 = 0 in Rn
+,

Bj0(D)u2 = g j ( j = 1, . . . ,m) on Rn−1

with
g j := −Bj0(D)R+u1.

Taking partial Fourier transform F ′ with respect to x ′, we obtain

(a0(x
′
0, ξ

′, Dn) − λ)v(xn) = 0 (xn > 0),

b j0(x
′
0, ξ

′, Dn)v(xn)
∣∣
xn=0 = h j (ξ

′) ( j = 1, . . . ,m).
(6.3)

Here, v(xn) := v(ξ′, xn) := (F ′u2(·, xn))(ξ′) and h j (ξ
′) := (F ′g j )(ξ

′). By Theo-
rem 6.6, the unique solution of (6.3) is given by

v(ξ′, xn) =
m∑

j=1

w j (x
′
0, ξ

′,λ, xn)h j (ξ
′).

Note that g j is first defined only on the boundary R
n−1. By
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g̃ j :=
∑

|β|=m j

b jβ(x ′
0)D

βu1 = B̃ j0(D)u1

we define an extension g j to Rn+. Then h̃ j := F ′̃g j (·, xn) is an extension of h j .
For j = 1, . . . ,m we write (this is sometimes called the “Volevich trick”)

w j (x
′
0,ξ

′,λ, xn)h j (ξ
′)

= −
∞∫

0

∂n
[
w j (x

′
0, ξ

′,λ, xn + yn )̃h j (ξ
′, yn)

]
dyn

= −
∞∫

0

(∂nw j )(x
′
0, ξ

′,λ, xn + yn )̃h j (ξ
′, yn)dyn

−
∞∫

0

w j (x
′
0, ξ

′,λ, xn + yn)(∂nh̃ j )(ξ
′, yn)dyn .

For λ ∈ C+ \ {0} it holds that �−s(λ)�s(λ) = idL p(Rn) for all s ∈ R. Therefore, we
can write g̃ j = �−2m+m j (λ)�2m−m j (λ)̃g j and ∂n g̃ j = �−2m+m j+1(λ)�2m−m j+1(λ)

∂n g̃ j , respectively. This yields

u2(x
′, xn) = (

(F ′)−1v(·, xn)
)
(x ′)

=
m∑

j=1

(
Tj (λ)�2m−m j (λ)̃g j + T̃ j (λ)�2m−m j+1(λ)∂n g̃ j

)
.

Inserting g̃ j = B̃ j0(D)R+u1 and u = u1 + u2 into this formula, the solution formula
of the theorem follows. As both the whole space problem as well as (6.3) is uniquely
solvable and as the Fourier transform is a bijection in S ′(Rn−1), we obtain unique
solvability with the unique solution u = u1 + u2. �
Lemma 6.9 The one-sided Hilbert transform

(H f )(x) :=
∞∫

0

f (y)

x + y
dy

defines a bounded linear operator H ∈ L(L p(R+)).

Proof For ε ∈ (0, 1], let mε := sign(ξ)e−εξ (ξ ∈ R). Then |mε(ξ)| ≤ 1 and |ξ| ·
|m ′

ε(ξ)| = ε|ξ|e−ε|ξ| ≤ 1, where we used the inequality te−t < 1 (t > 0). By
Mikhlin’s theorem, ‖F−1

1 mεF1‖L(L p(R+)) ≤ C with a constant C > 0 independent
of ε. Here F1 stands for the one-dimensional Fourier transform.

For f ∈ S (R) we get
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(F−1
1 mεF f )(x) = 1√

2π

∞∫

−∞
eixξ sign(ξ)e−ε|ξ|(F1)(ξ)dξ

= 1√
2π

∞∫

0

[
eixξ−εξF1 f (ξ) − e−i xξ−εξF1 f (−ξ)

]
dξ

= 1

2π

∞∫

0

∞∫

−∞

(
eixξ−εξ−iyξ − e−i xξ−εξ+iyξ

)
f (y)dy dξ

= 1

2π

∞∫

−∞

(
ei(x−y)ξ−εξ

i(x − y) − ε

∣∣∣
∞
ξ=0

− e−i(x−y)ξ−εξ

−i(x − y) − ε

∣∣∣
∞
ξ=0

)
f (y)dy

= 1

2π

∞∫

−∞

(
− 1

i(x − y) − ε
+ 1

−i(x − y) − ε

)
f (y)dy

= i

π

∞∫

−∞

x − y

(x − y)2 + ε2
f (y) dy.

Define for ε ∈ (0, 1]

(Hε f )(x) :=
∞∫

0

x + y

(x + y)2 + ε2
f (y) dy ( f ∈ L p(R+)).

Then Hε f (x) = (− π
i )(F

−1
1 mεF1E0 f )(−x) for x ≥ 0, where E0 : L p(R+) →

L p(R) again stands for the trivial extension. We obtain

‖Hε f ‖L p(R+) ≤ π‖F−1
1 mεF E0 f ‖L p(R) ≤ C‖E0 f ‖L p(R) ≤ C‖ f ‖L p(R+).

The sequence H1/n(| f |) is monotonously increasing and converges pointwise to
H(| f |). By monotone convergence, we see that

‖H f ‖L p(R+) ≤ ‖H(| f |)‖L p(R+) = lim
n→∞ ‖H1/n(| f |)‖L p(R+)

≤ C‖ | f | ‖L p(R+) = C‖ f ‖L p(R+).

Therefore, H ∈ L(L p(R+)). �
The following result shows that the solution operators are indeed R-bounded.

Theorem 6.10 Let δ > 0 be fixed. In the situation of Theorem 6.8, the following
operator families in L(L p(Rn+)) areR-bounded:

(a) {�2m−m j (λ)B̃ j0(D)R+R(λ)E0 : j = 1, . . . ,m, λ ∈ C+, |λ| ≥ δ},
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(b) {�2m−m j−1(λ)∂n B̃ j0(D)R+R(λ)E0 : j = 1, . . . ,m, λ ∈ C+, |λ| ≥ δ},
(c) {λTj (λ) : j = 1, . . . ,m, λ ∈ C+, |λ| ≥ δ},
(d) {λT̃ j (λ) : j = 1, . . . ,m, λ ∈ C+, |λ| ≥ δ}.

Proof (a)Wehave�2m−m j (λ)B̃ j0(D)R+ = R+�2m−m j (λ)B̃ j0(D). As the operators
R+ ∈ L(L p(Rn), L p(Rn+)) and E0 ∈ L(L p(Rn+), L p(Rn)) are bounded, it suffices to
show the R-boundedness of

{�2m−m j (λ)B̃ j0(λ)R(λ) : j = 1, . . . ,m, λ ∈ C+, |λ| ≥ δ}.

The corresponding family of symbols (with respect to the Fourier transform in R
n)

is given by

m(ξ,λ) := (λ + |ξ′|2m)
2m−m j

2m b j0(x
′
0, ξ)

(
a0(x

′
0, ξ) − λ

)−1
.

Asm(ξ,λ) is quasi-homogeneous of degree 0 in (ξ,λ) and bounded on |λ| + |ξ|2m =
1, it follows that

|Dαm(ξ,λ)| ≤ C |ξ|−|α| (ξ ∈ R
n \ {0}, λ ∈ C+, |λ| ≥ δ).

By Corollary 3.29, the operator family in a) isR-bounded.
(b) can be shown analogously.
(c) For ϕ ∈ L p(Rn+), we write

λTj (λ)ϕ =
∞∫

0

kλ(xn, yn)ψ(yn)dyn

withψ ∈ L p(R+; L p(Rn−1),ψ(yn) := ϕ(·, yn), and the operator valued integral ker-
nel

kλ(xn, yn) := (F ′)−1m̃(ξ′,λ, xn + yn)F
′

:= (F ′)−1λ∂nw j (x
′
0, ξ

′,λ, xn + yn)(λ + |ξ′|2m)−
2m−m j

2m F ′.

By Remark 6.7 (b), the inequalities

|Dγ′
ξ′ m̃(ξ′, λ, xn + yn) ≤ C(|ξ′| + |λ|1/2m exp

(− C(|ξ′| + |λ|1/2m)(xn + yn)
)|ξ′|−|γ′|

≤ C

xn + yn
|ξ′|−|γ′|

hold, where in the last step we again used the elementary estimate te−t < 1 (t > 0).
Again by Corollary 3.29, it follows that kλ(xn, yn) ∈ L(L p(Rn−1)) with
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R
{
kλ(xn, yn) : λ ∈ C+, |λ| ≥ δ

} ≤ C

xn + yn
.

The scalar integral operator with kernel k0(xn, yn) := 1
xn+yn

, given by

(K0g)(xn) :=
∞∫

0

g(yn)

xn + yn
dyn (g ∈ L p(R+))

is the one-sided Hilbert transform in L p(R+) and, due to Lemma 6.9, a bounded
linear operator K0 ∈ L(L p(R+)). By Theorem 3.18 we get

R
{
λTj (λ) : λ ∈ C+, |λ| ≥ δ

} ≤ C‖K0‖L(L p(R+)) < ∞.

(d) follows in the same way as (c). �
Now maximal regularity for the model problem is an immediate consequence of

the previous results.

Theorem 6.11 Let the boundary value problem (∂t − A0, B0) be parabolic, and
let x ′

0 ∈ ∂G. Choose the coordinate system corresponding to x ′
0, and consider the

L p-realization A(0)
B of the model problem (A0(x ′

0, D), B(x ′
0, D)). Then ρ(A(0)

B ) ⊃
C+ \ {0}, and for every δ > 0 the operator family

{
λ(λ − A(0)

B )−1 : λ ∈ C+, |λ| ≥ δ
} ⊂ L(L p(Rn

+))

isR-bounded. In particular, A(0)
B − δ has for every δ > 0 maximal Lq-regularity for

all 1 < q < ∞ (and generates a bounded holomorphic C0-semigroup).

Proof Replacing in the proof ofTheorem6.10 the operatorsλTj (λ) by DαTj (λ) (and
analogously for T̃ j (λ))with |α| = 2m, we see that the solution operators in fact define
a solution u ∈ W 2m

p (Rn+). Therefore, the solution coincides with the resolvent. Now
the R-boundedness follows directly from the resolvent description in Theorem 6.8
and the statements onR-boundedness from Theorem 6.10. �

Todealwith variable coefficients,wefirst study small perturbations in the principal
part.

Theorem 6.12 Let A0(x, D) = ∑
|α|=2m a0αD

α and B0
j (x, D) = ∑

|β|=m j
b0jβγ0Dβ

with a0α ∈ C and b0jβ ∈ C. Assume the boundary value problem (∂t − A0, B0) to
be parabolic in the domain R

n+. Then there exists an ε > 0 such that the following
statement holds: Let A(x, D) = A0(x, D) + Ã(x, D) and B(x, D) = B0(x, D) +
B̃(x, D) with
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Ã(x, D) =
∑

|α|=2m

ãα(x)Dα,

B̃ j (x, D) =
∑

|β|=m j

b̃ jβ(x)Dβ ( j = 1, . . . ,m).

Here, ãα ∈ L∞(Rn+) and b̃ jβ ∈ BUC2m−m j (Rn−1). Assume further that

∑

|α|=2m

‖̃aα‖L∞(Rn+) ≤ ε,

∑

|β|=m j

‖b̃ jβ‖L∞(Rn−1) ≤ ε ( j = 1, . . . ,m).

Let AB,p be the L p-realization of the boundary value problem (A(x, D), B(x, D)).
Then there exists a μ > 0 such that the operator family

{
λ(AB,p − λ)−1 : λ ∈ C+, |λ| ≥ μ

} ⊂ L(L p(Rn
+))

isR-bounded.Here, ε and theR-bound only depend on (A0(x, D), B0(x, D)), andμ
additionally depends on the norms‖b jβ‖BUC2m−m j (R

n−1) for |β| = m j , j = 1, . . . ,m.

Proof We indicate the main steps of the proof, for a more elaborated version, see
[13], Subsection 7.3.

Without loss of generality, we may assume that the coefficients of B̃(x, D) are
defined on all of Rn+. We write the boundary value problem

(A(x, D) − λ)u = f in Rn
+,

Bj (x, D)u = 0 ( j = 1, . . . ,m) on R
n−1

in the form

(A0(x, D) − λ)u = f − Ã(x, D)u in Rn
+,

B0
j (x, D)u = −B̃ j (x, D)u ( j = 1, . . . ,m) on Rn−1.

Let (A0
B,p − λ)−1 be the resolvent of the L p-realization of (A0(x, D), B0(x, D)),

which exists due toTheorem6.11.Applying the solution operators fromTheorem6.8,
we obtain

u = (A0
B,p − λ)−1 f − (A0

B,p − λ)−1 Ã(x, D)u

−
m∑

j=1

Tj (λ)�2m−m j (λ)B̃ j (x, D)u −
m∑

j=1

T̃ j (λ)�2m−m j−1(λ)∂n B̃ j (x, D)u

=: (A0
B,p − λ)−1 f − S(λ)u.
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We estimate the norm of S(λ)u. For the term (A0
B,p − λ)−1 Ã(x, D)u, we use

‖(A0
B,p − λ)−1‖L(L p(Rn+),W 2m

p (Rn+)) ≤ C1

and obtain

‖(A0
B,p − λ)−1 Ã(x, D)u‖W 2m

p (Rn+) ≤ C1‖ Ã(x, D)u‖L p(Rn+) ≤ C1ε‖u‖W 2m
p (Rn+).

For the other terms, we use the fact that the operator families

{λ(2m−|α|)/2mDαT (λ) : |α| ≤ 2m, λ ∈ C+, |λ| ≥ λ0} ⊂ L(L p(Rn
+))

are R-bounded and therefore bounded, which can be seen as in the proof of Theo-
rem 6.10. This yields

‖Tj (λ)�2m−m j (λ)B̃ j (x, D)u‖W 2m
p (Rn+) ≤ C‖�2m−m j (λ)B̃ j (x, D)u‖L p(Rn+)

≤ C‖B̃ j (x, D)u‖
W

2m−m j
p (Rn+)

.

The terms of the form b̃ jβDβu can be estimated, using the Leibniz rule, by

‖b̃ jβD
βu‖

W
2m−m j
p (Rn+)

≤ C
∑

|γ|≤2m−m j

∑

δ+δ′=γ

‖(Dδ b̃ jβ)(Dδ′+βu)‖L p(Rn+)

≤ C2ε‖u‖W 2m
p (Rn+) + C3‖u‖W 2m−1

p (Rn+).

Here, the constantC3 depends on the norm ‖b jβ‖BUC2m−m j (Rn−1).With the interpolation
inequality, we see that for some constants C1,C2 we have

‖S(λ)u‖W 2m
p (Rn+) + |λ|‖S(λ)u‖L p(Rn+) ≤ C1ε‖u‖W 2m

p (Rn+) + C2‖u‖L p(Rn+).

Nowwe endowW 2m
p (Rn+)with the parameter-dependent norm |||u||| := ‖u‖W 2m

p (Rn+) +
|λ|‖u‖L p(Rn+). Note that for every fixedλ, this norm is equivalent to the standard norm.
For |λ| ≥ 2C2 and C1ε ≤ 1

2 , it follows that

|||S(λ)u||| ≤ 1
2 |||u|||.

Therefore, (1 + S(λ)) ∈ L(W 2m
p (Rn+)) is invertible (with respect to the new norm,

and therefore also with respect to the standard norm). Thus, we have seen that the
above boundary value problem is uniquely solvable and that the resolvent (AB,p −
λ)−1 exists for all λ ∈ C+ with |λ| ≥ 2C2.

To obtain an estimate on theR-bounds, we can argue similarly. Starting from the
identity

(AB,p − λ)−1 = (A0
B,p − λ)−1 − S(λ)(AB,p − λ)−1,
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one can show for sufficiently large μ > 0

R
{
Ã(x, D)(AB,p − λ)−1 : λ ∈ C+, |λ| ≥ μ

}

≤
∑

|α|=2m

‖̃aα‖L∞(Rn+)R
{
Dα(AB,p − λ)−1 : λ ∈ C+, |λ| ≥ μ

}

≤ CεR
{
Dα(AB,p − λ)−1 : λ ∈ C+, |λ| ≥ μ

}
.

Similarly, the other terms in S(λ)(AB,p − λ)−1 can be estimated. Consider the oper-
ator family

T := {
λ2m−|α|)/(2m)Dα(AB,p − λ)−1 : |α| ≤ 2m, λ ∈ C+, |λ| ≥ μ

}
.

The above calculations show that for every finite subset T0 of T , we get the inequality

R(T0) ≤ R1 + (C1ε + C2(μ))R(T0).

Here,

C1 := R
{
λ2m−|α|)/(2m)Dα(A0

B,p − λ)−1 : |α| ≤ 2m, λ ∈ C+, |λ| ≥ μ
}

< ∞

and C2(μ) → 0 for μ → ∞. Choosing ε small enough and μ large enough, we have
C1ε + C2(μ) < 1

2 , and therefore R(T0) < 2R1 < ∞. As this holds for every finite
subset T0 of T , with R1 being independent of T0, we get the same estimate for T ,
i.e.,R(T ) ≤ 2R1. �

The last result deals with small perturbations of the top-order coefficients. As
before, lower-order termsof the operators canbehandledby the interpolation inequal-
ity. For a proof of maximal regularity in the situation of a bounded domain and under
the above smoothness assumptions, the method of localization can be used. Wemen-
tion some main ideas in the following remark.

Remark 6.13 (Localization) Let (∂t − A, B) be a parabolic boundary value prob-
lem in the bounded domain G, and assume the smoothness assumptions from the
beginning of this section to hold. To prove R-sectoriality of the L p-realization of
(A, B), one can use the following steps:

(a) For every fixed x0 ∈ ∂G, by definition of a C2m-domain, there exists a
neighbourhood U (x0) ⊂ R

n and a C2m-diffeomorphism �x0 : U (x0) → V (x0) :=
�x0(U (x0)) ⊂ R

n with

�x0(U (x0) ∩ G) = V (x0) ∩ R
n
+.

We denote by ( Ã, B̃) the transformed boundary value problem in the domain V (x0).
The coefficients ãα of Ã are defined in V (x0) ∩ R

n+ and satisfy the same smoothness
assumptions as aα. In the same way, this holds for the transformed coefficients b̃ jβ
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of B̃ j . Moreover, it is possible to show that the transformed problem is parabolic in
V (x0) ∩ R

n+.
The coefficients ãα and b̃ jβ can be extended to the half space R

n
+ and R

n−1,
respectively, in such away that both the smoothness and the parabolicity is preserved.
For ãα, we can choose an appropriate continuous extension. For the coefficients on
the boundary b̃ jβ , we have to preserve higher smoothness. For this, one can, e.g.,
define

b̃ jβ(y) := b̃ jβ

(
y0 + χ

( y − y0
r

)
(y − y0)

)
(y ∈ R

n−1),

where χ ∈ C∞(Rn−1) satisfies χ(x) = 1 for |x | ≤ 1 and χ(x) = 0 for |x | ≥ 2. Here,
y0 := �x0(x0), and r > 0 is chosen sufficiently small.

For an eventually even smaller r = r(x0), the following inequalities hold true for
a given ε > 0:

∑

|α|=2m

‖̃aα( · ) − ãα(y0)‖L∞(Rn+) < ε,

∑

|β|=m j

‖b̃ jβ( · ) − b̃ jβ(y0)‖L∞(Rn−1) < ε ( j = 1, . . . ,m).

Therefore, the localized boundary value problems satisfy the conditions of Theo-
rem 6.12.

For fixed ε > 0, this construction yields an open cover of the form

∂G ⊂
⋃

x0∈∂G

�−1
x0 (B(y0, r(x0))).

By compactness of ∂G, there exists a finite subcover ∂G ⊂ ⋃N
k=1Uk , where we have

set Uk := �−1
xk (B(yk, r(xk))).

(b) In the same way, in the interior of the domain, we obtain for every x0 ∈ G a
small neighbourhood U (x0) ⊂ R

n and an extension ãα of aα|U (x0) such that

∑

|α|=2m

‖̃aα( · ) − ãα(x0)‖L∞(Rn) < ε

holds. In this way, we obtain an open cover

G \
N⋃

k=1

Uk ⊂
⋃

x0∈G
B(x0, r(x0)).

Note that no boundary operator and no diffeomorphism is involved. AsG \⋃N
k=1Uk

is compact, there exists a finite subcover
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G \
N⋃

k=1

Uk ⊂
M⋃

k=N+1

Uk

with Uk = B(xk, r(xk))). Altogether, this yields a finite open cover G ⊂ ⋃M
k=1Uk .

(c) With this construction, one obtains finitely many operators ( Ã(k), B̃(k)) for
k = 1, . . . , N and Ã(k) for k = N + 1, . . . , M , which satisfy the assumptions of
Theorem 6.12 and Lemma 5.7, respectively. Now we can use the resolvents of the
L p-realization of these operators to show R-sectoriality of AB,p − μ for large μ.
This can be done similarly as in the proof of Theorem 5.9, using a partition of unity
and estimating the commutators with help of the interpolation inequality.

With the above techniques, it is possible to show the following main theorem on
parabolic boundary value problems:

Theorem 6.14 Assume the boundary value problem (∂t − A, B) to be parabolic
and to satisfy the smoothness assumptions above. Let 1 < p < ∞. Then there exist
θ > π

2 and μ > 0 such that ρ(AB,p − μ) ⊃ C+ and the operator AB,p − μ is R-
sectorial with angle θ. In particular, AB,p − μ has maximal Lq-regularity for all
q ∈ (1,∞).

7 Quasilinear Parabolic Evolution Equations

We have seen in the previous sections that, under appropriate parabolicity and
smoothness assumptions, the L p-realization of linear boundary value problems have
maximal regularity. This is the basis for the analysis of nonlinear problems, which
will be described in the present section.

7.1 Well-Posedness for Quasilinear Parabolic Evolution
Equations

We consider nonlinear evolution equations which can be written in the abstract form

∂t u(t) − A(t, u(t))u(t) = F(t, u(t)) in (0, T0),

u(0) = u0.
(7.1)

Here, T0 ∈ (0,∞). We fix the following situation: Let p ∈ (1,∞), and let X1 ⊂ X0

be Banach spaces with X1 being dense in X0. With T ∈ (0, T0], the spaces for the
right-hand side and the solution are

F := FT := L p((0, T ); X0) and E := ET := H 1
p((0, T ); X0) ∩ L p((0, T ); X1),
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respectively. The time trace space, and therefore the space for the initial value
u0, is given by γtE = (X0, X1)1−1/p,p (cf. Lemma 2.4). We again set 0E := {u ∈
E : γt u = 0}. Here and in the following, we consider the operator A as a map
A : (0, T0) × γtE → L(X1, X0). For each t ∈ (0, T0) and v ∈ γtE, the operator
A(t, v) ∈ L(X1, X0) is identified with the unbounded operator A(t, v) acting in X0

with domain X1, and A(t, v) ∈ MR(X0) has to be understood in this sense.

Example 7.1 We recall the example of the graphical mean curvature flow
(Example 2.1), which has the form

∂t u −
(
�u −

n∑

i, j=1

∂i u∂ j u

1 + |∇u|2 ∂i∂ j u
)

= 0 in (0, T0),

u(0) = u0.

(7.2)

This quasilinear equation can be written in the form (7.1), where

A(t, u(t)) = � −
n∑

i, j=1

∂i u(t)∂ j u(t)

1 + |∇u(t)|2 ∂i∂ j

and F = 0. Here we have X0 = L p(Rn), X1 = W 2
p(R

n), and γtE = B2−2/p
pp (Rn) =

W 2−2/p
p (Rn).

For the nonlinearities A and F in (7.1), we assume:

(A1) We have A ∈ C([0, T0] × γtE, L(X1, X0)), and for all R > 0 there exists a
Lipschitz constant L(R) > 0 with

‖A(t, w)v − A(t, w)v‖X0 ≤ L(R)‖w − w‖γtE‖v‖X1

for all t ∈ [0, T0], v ∈ X1 and all w,w ∈ γtEwith ‖w‖γtE ≤ R and ‖w‖γtE ≤
R.

(A2) For the mapping F : [0, T0] × γtE → X0 we assume:

(i) F(·, w) is measurable for every w ∈ γtE,
(ii) F(t, ·) ∈ C(γtE, X0) for almost all t ∈ [0, T0],
(iii) f (·) := F(·, 0) ∈ L p((0, T0); X0),
(iv) for every R > 0, there exists a ϕR ∈ L p((0, T0)) with

‖F(t, w) − F(t, w)‖X0 ≤ ϕR(t)‖w − w‖γtE

for almost all t ∈ [0, T0] and all w,w ∈ γtE with ‖w‖γtE ≤ R, ‖w‖γtE ≤ R.

Apart from standard conditions on measurability and continuity, the above con-
ditions essentially mean that the functions A(t, ·)v and F(t, ·) are locally Lipschitz,
i.e., they are Lipschitz on bounded subsets of γtE. The following result is based on
[29], Sect. 3 (see also [10]).
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Theorem 7.2 Assume (A1) and (A2) as well as A0 := A(0, u0) ∈ MR(X0). Then
there exists a T ∈ (0, T0] such that (7.1) has a unique solution u ∈ ET in the interval
(0, T ).

Proof (i)Weuse themaximal regularity of A0 := A(0, u0) in the time interval (0, T )

with T ≤ T0 to obtain estimates for the solutions of the linearized equation. For this,
we first consider the equation with initial value 0,

∂tw(t) − A0w(t) = g(t) (t ∈ (0, T )),

w(0) = 0.
(7.3)

As A0 ∈ MR(X0), for every g ∈ F there exists a unique solution w ∈ E, and we
obtain the estimate

‖w‖E ≤ C0‖g‖F
with a constantC0 > 0which does not dependon T orw (Lemma4.7).ByLemma4.4
(b), there exists a constant C1 (again independent of T > 0 and w) with

‖w‖C([0,T ],γtE) ≤ C1‖w‖E.

Note here that w(0) = 0 holds.
In the following, we consider the reference solution u∗ ∈ E which is defined as

the unique solution of

∂tw(t) − A0w(t) = f (t) (t ∈ (0, T )),

w(0) = u0.
(7.4)

Here, f := F(·, 0) ∈ F due to condition (A2) (iii).
(ii) For r ∈ (0, 1] set

Br := {v ∈ E : v − u∗ ∈ 0E, ‖v − u∗‖E ≤ r}.

For each v ∈ Br , define �(v) := u as the unique solution of

∂t u(t) − A0u(t) = F(t, v(t)) − (A(0, u0) − A(t, v(t))) v(t) (t ∈ (0, T )),

u(0) = u0.
(7.5)

We will show that �(Br ) ⊂ Br holds and that � is a contraction in Br , given that
both T and r are sufficiently small.

(iii) In this step, we show that �(Br ) ⊂ Br holds for sufficiently small T and r .
For this, we write

‖�(v) − u∗‖E = ‖u − u∗‖E ≤ C0
(‖F(·, v) − f (·)‖F + ‖(A(0, u0) − A(·, v))v‖F

)
.

(7.6)
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Let mT := supt∈[0,T ] ‖A(0, u0) − A(t, u0)‖L(X1,X0). By condition (A1) with fixed
R := C1 + ‖u∗‖L∞((0,T );γtE), we obtain

‖A(0, u0)v − A(·, v)v‖F = ‖A(0, u0)v − A(·, v)v‖L p((0,T );X0)

≤ ‖A(0, u0) − A(·, v)‖L∞((0,T );L(X1,X0))‖v‖L p((0,T );X1)

≤ (‖A(0, u0) − A(·, u0)‖L∞((0,T );L(X1,X0))

+ ‖A(·, u0) − A(·, v(·))‖L∞((0,T );L(X1,X0))

) ‖v‖E
≤ (

mT + L(R)‖v − u0‖L∞((0,T );γtE)

) ‖v‖E
≤ (mT + L(R)C1‖v − u0‖E) ‖v‖E.

For r ≤ 1, we can estimate

‖v − u0‖E ≤ ‖v − u∗‖E + ‖u∗ − u0‖E ≤ r + ‖u∗ − u0‖E
and

‖v‖E ≤ ‖v − u∗‖E + ‖u∗‖E ≤ r + ‖u∗‖E.

Therefore, we obtain

‖A(0, u0)v − A(·, v)v‖F ≤ (
mT + L(R)C1(r + ‖u∗ − u0‖E)

)
(r + ‖u∗‖E).

In a similar way, using (A2), we see that

‖F(·, v) − f ‖F ≤ ‖F(·, v) − F(·, u∗)‖F + ‖F(·, u∗) − F(·, 0)‖F
≤ ‖ϕR‖L p((0,T ))

(
‖v − u∗‖L∞((0,T );γtE) + ‖u∗‖L∞((0,T );γtE)

)

≤ ‖ϕR‖L p((0,T ))

(
C1‖v − u∗‖E + ‖u∗‖L∞((0,T );γtE)

)

≤ ‖ϕR‖L p((0,T ))C1
(
r + ‖u∗‖L∞((0,T );γtE)

)
.

Inserting this into (7.6), we get

‖�(v) − u∗‖E ≤ C0

[
‖ϕR‖L p((0,T ))

(
C1r + ‖u∗‖L∞((0,T );γtE)

)

+ (
mT + L(R)C1(r + ‖u∗ − u0‖E)

)
(r + ‖u∗‖E)

]

≤ C0(C1 + ‖u∗‖L∞((0,T );γtE))‖ϕR‖L p((0,T ))

+ C0(r + ‖u∗‖E)
(
mT + L(R)C1r + L(R)C1‖u∗ − u0‖E

)
.

(7.7)
In the limit T → 0, we obtain the following convergences:

• mT → 0, as A(·, u0) is continuous,
• ‖ϕR‖L p((0,T )) → 0, as ϕR ∈ L p((0, T0)),
• ‖u∗ − u0‖ET → 0, as u∗ − u0 ∈ ET0 ,
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• ‖u∗‖ET → 0, as u∗ ∈ ET0 .

First, choose r > 0 small enough such that

C0L(R)C1r < 1
8

holds. Then, choose T > 0 small enough such that the following inequalities hold:

‖u∗‖E < r,

C0(C1 + ‖u∗‖L∞((0,T );γtE))‖ϕR‖L p((0,T )) < r
2 ,

C0(mT + L(R)C1‖u∗ − u0‖E
)

< 1
8 .

Inserting this into (7.7), we obtain

‖�(v) − u∗‖E ≤ r
2 + (r + r)( 18 + 1

8 ) = r,

which shows that �(Br ) ⊂ Br .
(iv) In the same way as in (iii), one sees that for sufficiently small r > 0 and

T > 0 the inequality
‖�(v) − �(v)‖E ≤ 1

2‖v − v‖E
holds for all v, v ∈ Br . Therefore,� : Br → Br is a contraction, andwith the Banach
fixed point theorem (contraction mapping principle), there exists a unique fixed point
u of �. By definition of �, its fixed points are exactly the solutions of the nonlinear
equation (7.1), which finishes the proof. �
Theorem 7.3 Assume (A1) and (A2) to hold, and assume A(t, v) ∈ MR(X0) for all
t ∈ [0, T0) with T0 ∈ (0,∞]. Then for every u0 ∈ γtE there exists a unique maximal
solution of (7.1)with maximal existence interval [0, T+(u0)) ⊂ [0, T0). If T+(u0) <

T0 (i.e., if there is no global solution), then T+(u0) is characterized by each of the
following conditions.

(i) limt↗T+(u0) u(t) does not exist in γtE,

(ii)
∫ T+(u0)
0

(‖u(t)‖p
X1

+ ‖∂t u(t)‖p
X0

)
dt = ∞.

Proof Assume u ∈ ET to be a local solution on the interval (0, T ). Then u ∈
C([0, T ]; γtE). Therefore, we can apply Theorem 7.2 in the interval (T, T0) with
initial condition u1 = u(T ) ∈ γtE, and obtain an extension of u to some interval
(0, T ′) with T ′ > T . Continuing in this way, we obtain a unique maximal solution
which exists in some time interval [0, T+(u0)).

If limt↗T+(u0) u(t) ∈ γtE exists, this can be taken as initial value at time T+(u0).
By the above arguments, we see that u can be extended to a small time interval
(T+(u0), T+(u0) + ε), which is a contradiction to the maximality of T+(u0). There-
fore, T+(u0) is characterized by condition (i).

For each T < T+(u0) we have, by definition of a solution,
∫ T
0 (‖u(t)‖p

X1
+

‖∂t u(t)‖p
X0

)dt < ∞. If this also holds for T = T+(u0), then u ∈ ET+(u0)(X1, X0) ⊂
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C([0, T+(u0)]; γtE). Therefore, limt↗T+(u0) u(t) exists in γtE in contradiction to
(i). �

As an application of the above theorems, we obtain a result on lower-order per-
turbation (the map B in the following lemma) for linear non-autonomous problems.

Lemma 7.4 Let A ∈ C([0, T ], L(X1, X0)) with A(t) ∈ MR(X0) (t ∈ [0, T ]), and
let B ∈ L p((0, T ); L(γtE, X0)). Then the initial value problem

∂t u(t) − A(t)u(t) = B(t)u(t) + f (t) (t ∈ [0, T ]),
u(0) = u0

has for each f ∈ FT and each u0 ∈ γtE a unique solution u ∈ ET .

Proof We set A(t, u(t)) = A(t) and F(t, u(t)) = B(t)u(t) + f (t). Obviously, the
conditions (A1) and (A2) are satisfied with ϕR(t) := ‖B(t)‖L(γtE,X0). The proof
of Theorem 7.2 shows that the length of the existence interval only depends on
u0 and the constants L(R), C0, C1 and γT . Because of A ∈ C([0, T ], L(X1, X0))

and the continuity of A �→ ‖(∂t + A)−1‖L(F,E) = C0(A), all these constants can be
chosen globally in the time interval [0, T ]. Therefore, we have global existence of
the solution. �

7.2 Higher Regularity

We consider the same situation as in the last subsection and study the autonomous
quasilinear differential equation

∂t u(t) − A(u(t))u(t) = F(u(t)) (t ∈ (0, T )),

u(0) = u0.
(7.8)

Here, T ∈ (0,∞), u0 ∈ γtE(X1, X0), A : γtE → L(X1, X0) and F : γtE → F.
It is well known that parabolic equations are smoothing, and the solution is even

– in many applications – real analytic. We start with a definition.

Definition 7.5 Let X,Y be Banach spaces,U ⊂ X open, and T : U → Y be a func-
tion. Then T is called real analytic if for all u0 ∈ U there exists an r > 0 with
B(u0, r) ⊂ U and

T (u) =
∞∑

k=0

DkT (u0)

k! (u − u0, . . . , u − u0)︸ ︷︷ ︸
k−times

(u ∈ B(u0, r)).

Here, DkT (u0) ∈ L(X × . . . × X, F) denotes the k-th Fréchet derivative of T at u0.
In this case, we write T ∈ Cω(U,Y ).
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The main step in the proof of smoothing properties for parabolic equations is the
implicit function theorem in Banach spaces.

Theorem 7.6 (Implicit function theorem) Let X,Y, Z be Banach spaces, U ⊂
X × Y be open, and T ∈ C1(U, Z). Further, let (x0, y0) ∈ U with T (x0, y0) = 0
and DyT ((x0, y0)) ∈ L Isom(Y, Z), where DyT stands for the Fréchet derivative with
respect to the second component. Then there exist neighbourhoods UX of x0 and UY

of y0 with UX ×UY ⊂ U and a unique function ψ ∈ C1(UX ,UY ) such that

T (x,ψ(x)) = 0 (x ∈ UX )

andψ(x0) = y0. Therefore, the equation T (x, y) = 0 is locally solvable with respect
to y. The function ψ has the same regularity as T , i.e., if T ∈ Ck(U, Z) for k ∈
N ∪ {∞,ω}, then also ψ ∈ Ck(UX ,UY ).

With the help of the implicit function theorem, one can prove smoothing properties
with respect to the time variable. As references, we mention [8], [29], Sect. 5, and
[30], Sect. 5.2.

Theorem 7.7 Let k ∈ N ∪ {∞,ω}, and let A ∈ Ck(γtE; L(X1, X0)) and F ∈
Ck(γtE, X0). Assume u ∈ ET (X1, X0) to be a solution of (7.8), and assume that
A(u(t)) ∈ MR(X0) for all t ∈ [0, T ]. Then

t �→ t j∂ j
t u(t) ∈ W 1

p(J ; X0) ∩ L p(J ; X1)

holds for all j ∈ N0 with j ≤ k. In particular,

u ∈ Wk+1
p ((ε, T ); X0) ∩ Wk

p((ε, T ); X1)

for every ε > 0 as well as

u ∈ Ck((0, T ); γtE) ∩ Ck+1−1/p((0, T ); X0) ∩ Ck−1/p((0, T ); X1).

Here, Ck+1−1/p and Ck−1/p stand for the Hölder spaces of order k + 1 − 1/p and
k − 1/p, respectively. If k = ∞, then u ∈ C∞((0, T ); X1), and if k = ω, then u ∈
Cω((0, T ); X1).

Proof We fix ε ∈ (0, 1) and set T (ε) := T
1+ε

. For λ ∈ (1 − ε, 1 + ε) we define the
function uλ : [0, T (ε)] → γtE by uλ(t) := u(λt) (t ∈ [0, T (ε)]). Then ∂t uλ(t) =
λ(∂t u)(λt), and therefore

∂t uλ(t) − λA(uλ(t))uλ(t) = λF(uλ(t)) (t ∈ (0, T (ε))),

uλ(0) = u0.

Now consider the function
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H : (1 − ε, 1 + ε) × ET (ε) → FT (ε) × γtE

defined by

H(λ, w)(t) :=
(

∂tw(t) − λA(w(t))w(t) − λF(w(t))
w(0) − u0

)
(t ∈ (0, T (ε)))

for λ ∈ (1 − ε, 1 + ε) and w ∈ ET (ε). As A and F are both of class Ck , the same
holds for H . Moreover, H(1, u) = 0 and

DλH(λ, w) =
(−A(w)w − F(w)

0

)
,

DwH(λ, w)h =
(

∂t h − λA(w)h − λA′(w)hw − λF ′(w)h
h(0)

)

for h ∈ ET (ε). Here A′(u) stands for the Fréchet derivative of A at u. In particular,
we obtain for λ = 1 and w = u

DwH(1, u)h =
(

∂t h + A(u)h + A′(u)hu − F ′(u)h
h(0)

)
.

For t ∈ [0, T (ε)] and v ∈ γtE, we define B(t)v := −A′(u(t))vu(t) − F ′(u(t))v. As
A ∈ C1(γtE, L(X1, X0)) and F ∈ C1(γtE, X0),weget B ∈ L p((0, T ); L(γtE, X0)).
Therefore, we can apply Lemma 7.4 (replacing A(t) in this lemma by A(u(t))).
Note that t �→ A(u(t)) ∈ C([0, T (ε)], L(X1, X0)) holds because of t �→ u(t) ∈
C([0, T (ε)]; γtE). By assumption, A(u(t)) ∈ MR(X0) for every t ∈ [0, T ], and we
can apply Lemma 7.4. This yields

DwH(1, u) ∈ L Isom(ET (ε),FT (ε) × γtE).

Now the implicit function theorem, Theorem 7.6, tells us that there exists a δ > 0 and
a Ck-function ψ : (1 − δ, 1 + δ) → ET (ε) with H(λ,ψ(λ)) = 0 (λ ∈ (1 − δ, 1 +
δ)) and ψ(1) = u.

By definition of H and the uniqueness of the solution, we obtain ψ(λ) = uλ,
i.e., λ �→ uλ ∈ Ck((1 − δ, 1 + δ),ET (ε)). Because ofET (ε) ⊂ C([0, T (ε)], γtE), we
obtain λ �→ uλ(t) = u(λt) ∈ Ck((1 − δ, 1 + δ), γtE). But this means
u ∈ Ck((0, T (ε)), γtE).

Now we use ∂
∂λ
uλ(t)|λ=1 = t∂t u(t) (t ∈ (0, T (ε)). As ψ ∈ Ck((1 − δ, 1 + δ),

ET (ε), we get t �→ t∂t u(t) ∈ ET (ε). An iteration shows that t �→ t k∂k
t u(t) ∈ ET (ε),

and therefore
u ∈ Wk+1

p ((δ, T (ε)); X0) ∩ Wk
p((δ, T (ε)); X1)

for every δ > 0 and ε > 0. Now we apply Sobolev’s embedding theorem which tells
us that Wk

p((δ, T (ε)) ⊂ Ck−1/p([δ, T (ε)]). With this we obtain, as ε > 0 and δ > 0
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can be chosen arbitrary,

u ∈ Ck+1−1/p((0, T ); X0) ∩ Ck−1/p((0, T ); X1).

In the case k = ∞, we get u ∈ C∞((0, T ); X1). If k = ω, then the function ψ is real
analytic. The above embeddings are linear and therefore real analytic, too, which
yields u ∈ Cω((0, T ), X1). �
Remark 7.8 This method of proof is known as parameter trick or method of
Angenent [8]. Note that the two main ingredients are the implicit function theo-
rem in Banach spaces and the fact that DwH(1, u) is an isomorphism. The latter is
exactly the maximal regularity of the linearization, and it can also be seen as one of
the main ideas of the maximal regularity approach to show that the implicit function
theorem can be applied to the nonlinear equation.

As an example, we consider the quasilinear autonomous second order equation
in Rn

∂t u(t, x) − tr
(
a(u(t, x),∇u(t, x))∇2u(t, x)

) = f (u(t, x),∇u(t, x))

((t, x) ∈ (0, T ) × R
n),

u(0, x) = u0(x).
(7.9)

To solve the nonlinear problem, we need the following result from the linear
theory, which can be shown by the methods of Sect. 5.

Lemma 7.9 Let b ∈ BUC(Rn;Rn×n
sym ) with b(x) ≥ cIn (x ∈ R

n) for some constant
c > 0. Define the operator B by D(B) := W 2

p(R
n) ⊂ L p(Rn),

(Bu)(x) := tr
(
b(x)∇2u(x)

) =
n∑

i, j=1

bi j (x)∂i∂ j u(x) (x ∈ R
n, u ∈ D(B)).

Then B ∈ MR(L p(Rn)).

For the nonlinear equation, we obtain the following result (see [29], Theorem 5.1).

Theorem 7.10 Let p ∈ (n + 2,∞) and k ∈ N ∪ {∞,ω}. Assume that a ∈
Ck(Rn+1,Rn×n

sym ) and f ∈ Ck(Rn+1,R) with f (0) = 0, and assume that for all
(r, p) ∈ R × R

n the matrix a(r, p) is positive definite. Then equation (7.9) has
for all u0 ∈ W 2−2/p

p (Rn) a unique maximal solution u ∈ L p((0, T+);W 2
p(R

n+)) ∩
W 1

p((0, T
+); L p(Rn)) in the existence interval J = (0, T+)with T+ = T+(u0) > 0.

Moreover,

u ∈ Ck(J ;W 2−2/p
p (Rn)) ∩ Ck+1−1/p(J ; L p(Rn)) ∩ Ck−1/p(J ;W 2

p(R
n)).
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Proof For X0 := L p(Rn) and X1 := W 2
p(R

n), the trace space is givenbyγtE(X0, X1)

= (X0, X1)1−1/p,p = W 2−2/p
p (Rn). An application of Sobolev’s embedding theorem

yields

γtE = W 2−2/p
p (Rn) ⊂ C1

0(R
n) := {

u ∈ C1(Rn) : lim|x |→∞ |∂αu(x)| = 0 (|α| ≤ 1)
}
.

Now define the mappings A : γtE → L(X0, X1) and F : γtE → X0 by

(A(v)w)(x) := tr
(
a(v(x),∇v(x))∇2w(x)

)
,

(F(v))(x) := f (v(x),∇v(x))

for x ∈ R
n , v ∈ γtE, and w ∈ W 2

p(R
n).

Let v ∈ γtE. Because of v ∈ C1
0(R

n), the set {(v(x),∇v(x)) : x ∈ R
n} ⊂ R

n+1

is bounded. As a is continuous by assumption, we see that

bv := a(v(·),∇v(·)) ∈ BUC(Rn)

and bv(x) ≥ cv In (x ∈ R
n) with cv > 0. By Lemma 7.9, we obtain A(v) ∈ MR(X0)

for all v ∈ γtE.
To show that assumptions (A1) and (A2) are satisfied, we use the fact that a is

a C1-function and therefore Lipschitz on bounded sets. Therefore, we get for all
v, v ∈ γtE and w ∈ X1 with ‖v‖γtE ≤ R, ‖v‖γtE ≤ R the inequality

‖A(v)w−A(v)w‖L p(Rn) = ∥∥ tr
(
a(v,∇v)w − a(v,∇v)w

)∥∥
L p(Rn)

≤ C
∥∥a(v,∇v) − a(v,∇v)‖L∞(Rn;Rn×n)‖∇2w‖L p(Rn;Rn×n)

≤ CL(R)‖v − v‖C1(Rn)‖w‖X1

≤ CL(R)‖v − v‖γtE‖w‖X1 .

This shows assumption (A1) and, in particular, the continuity of A : γtE → L(X0,

X1). Similiary, assumption (A2) can be shown. Here, we have to show the continuity
of F : γtE → X0. For this we use the fact that F is a variant of the so-calledNemyckii
operators, i.e.,

F : W 2−2/p
p (Rn) → L p(Rn), F(v) := f (v(·),∇v(·)) (v ∈ W 2−2/p

p (Rn)).

For this, we also use f (0) = 0. By known results on the Nemyckii operator, one
obtains A ∈ Ck(γtE, L(X1, X0)) and F ∈ Ck(γtE, X0). Therefore, all assumptions
of Theorem 7.7 are satisfied, and we obtain higher regularity for the solution u as
stated in the theorem. �
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On Stability and Bifurcation in Parallel
Flows of Compressible Navier-Stokes
Equations

Yoshiyuki Kagei

Abstract The stability analysis of parallel flows of the compressible Navier-Stokes
equations is overviewed. The asymptotic behaviour of solutions is firstly considered
for small Reynolds and Mach numbers. An instability result of the plane Poiseuille
flow is then given for a certain range of Reynolds and Mach numbers, together with
a result of the bifurcation of wave trains from the plane Poiseuille flow.

Keywords Compressible Navier-Stokes equations · Parallel flow · stability ·
Asymptotic behaviour · Bifurcation
Mathematics Subject Classification 35Q30 · 76N06

1 Introduction

This article is concerned with the mathematical analysis of the stability and bifur-
cation problem for parallel flows of viscous compressible fluids. The governing
equations of such fluids are written in the form

{
∂tρ + div (ρv) = 0,

ρ(∂t v + v · ∇v) − ¯�v − (¯ + ¯ ′)∇div v + ∇P(æ) = æg.
(1.1)

Here ρ = ρ(x, t) is the unknown density and v = �(v1(x, t), . . . , vn(x, t)) is the
unknown velocity field at time t ≥ 0 and position x ∈ R

n (n ≥ 2); P = P(ρ) is
the pressure which is assumed to be smooth in ρ satisfying
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P ′(ρ∗) > 0

for a given constant ρ∗ > 0;μ and μ′ are the viscosity coefficients which are assumed
to be constants satisfying

μ > 0,
2

n
μ + μ′ ≥ 0;

and g is a given external force.
The system (1.1) is considered in an infinite layer

�� = {x = (x ′, xn); x ′ = (x1, . . . , xn−1) ∈ R
n−1, 0 < xn < �}.

As for the external force g, we assume that g has the form

g = �(g1(xn), 0, . . . , 0, gn(xn))

with smooth g1(xn) and gn(xn).
Under Dirichlet type boundary condition on the velocity field v, one can see

that the system (1.1) has a stationary solution, called a parallel flow, in the form
us = �(ρs, vs), where

ρs = ρs(xn),
1

�

∫ �

0
ρs(xn) dxn = ρ∗,

vs = �(v1
s (xn), 0, . . . , 0).

Typical examples are the following plane Couette flow and the plane Poiseuille flow.
If g = 0 and the boundary condition is

v1|xn=� = V 1, v2|xn=� = · · · = vn|xn=� = 0, v|xn=0 = 0,

then one has the plane Couette flow us = �(ρs, vs) with

ρs = ρ∗, vs = �
(

V 1

�
xn, 0, . . . , 0

)
;

and if g = �(g1, 0, . . . , 0) with g1 satisfying g1 �= 0 and the boundary condition

v|xn=0,� = 0,

then one has the plane Poiseuille flow us = �(ρs, vs) with

ρs = ρ∗, vs = �
(

g1

2μ
xn(� − xn), 0, . . . , 0

)
.
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In this article we will survey the results in [13, 15, 16] on the stability and
bifurcation problem for parallel flows. In Sect. 2, we consider the stability of parallel
flows under spatially localized perturbations. In Sect. 3we give an outline of the proof
of the stability result. In Sect. 4 we focus on the Poiseuille flow; and we discuss the
instability of the plane Poiseuille flow and the bifurcation of wave trains from the
plane Poiseiulle flow.

2 Stability of Parallel Flows

We first introduce the following non-dimensional variables:

x = �x̃, t = �

V
t̃, v = VQv, æ = æ∗Qæ, P = æ∗V 2p

with V = ‖v1
s ‖Cm+1∗ [0,�] for an integer m ≥ [n/2] + 1. Here

‖v1
s ‖Cm+1∗ [0,�] =

m+1∑
k=0

sup
0≤xn≤�

�k |∂k
xn

v1
s (xn)|.

Under this non-dimensionalization the domain �� is transformed into � ≡ �1:

� = {x̃ = (x̃ ′, x̃n); x ′ = (x̃1, . . . , x̃n−1) ∈ R
n−1, 0 < x̃n < 1},

and the parallel flow us is transformed into ũs = �(ρ̃s, ṽs) with

ρ̃s = ρ̃s(x̃n) > 0,
∫ 1

0
ρ̃s(x̃n) dx̃n = 1,

ṽs = �(ṽ1
s (x̃n), 0, . . . , 0), ‖ṽ1

s ‖Cm+1[0,1] = 1.

Hereafter we omit tildes. The perturbation u(t) = �(φ(t), w(t)) = �(2(æ(t) −
æs), v(t) − vs) is then governed by the system of equations

⎧⎪⎪⎨
⎪⎪⎩

∂tφ + vs · ∇φ + γ2div (ρsw) = f 0(u),

∂t w − ˚
æs

�w − Q̊

æs
∇divw + ∇

(
p′(æs)

2æs
Œ

)
+ ν∂2

xn v1s
γ2ρ2s

φe1 + vs · ∇w + w · ∇vs = f (u).

(2.1)

Here e1 = �(1, 0, . . . , 0) ∈ R
n; ν, ν̃ and γ are non-dimensional parameters defined

by

ν = μ

ρ∗�V
, ν̃ = μ + μ′

ρ∗�V
, γ = √

p′(1) =
√

P ′(ρ∗)
V

;

and f 0(u) and f (u) denote the nonlinearities:
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f 0(u) = −div (φw),

f (u) = −w · ∇w + ˚Œ
(Œ+2æs)æs

(
−�w + @2

xn v1
s

2æs
Œe1

)
− ν̃φ

(φ+γ2ρs )ρs
∇divw

+ φ
γ2ρs

∇
(

p′(ρs )

γ2ρs
φ
)

− 1
2γ4ρs

∇ (
p′′(ρs)φ

2
)

+ p̃3(ρs,φ, ∂xφ),

where

p̃3 = φ3

γ4(φ+γ2ρs )ρ3s
∇ p(ρs) − 1

2γ6ρs
∇ (

φ3 p3(ρs,φ)
)

+ φ
2γ6ρ2s

∇
(

p′′(ρs)φ
2 + 1

γ2 φ
3 p3(ρ,φ)

)
− φ2

γ2(φ+γ2ρs )ρ2s
∇
(

p′(ρs )

γ2 φ + 1
2γ4 p′′(ρs)φ

2 + 1
2γ6 φ

3 p3(ρs,φ)
)

with

p3(ρs,φ) =
∫ 1

0
(1 − θ)2 p′′(θγ−2φ + ρs) dθ.

The boundary condition is transformed into

w|@� = 0. (2.2)

We prescribe the initial condition

u|t=0 = u0 = �(φ0, w0). (2.3)

We note that the Reynolds number Re and the Mach number Ma are given by

Re = 1

ν
, Ma = 1

γ
.

The following result [13] states that if the Reynolds and Mach numbers are suf-
ficiently small, the parallel flow is asymptotically stable under spatially localized
small perturbations and that the asymptotic leading part of perturbations behaves
purely diffusively.

Theorem 2.1 ([13]) Let m be an integer satisfying m ≥ [n/2] + 1. Then there exist
constants ν0 > 0, γ0 > 0, ω0 > 0 such that if

ν ≥ ν0,
γ2

ν + ν̃
≥ γ2

0 , ω ≡ ‖ρs − 1‖Cm [0,1] ≤ ω0,

then the following assertions hold:
If u0 = (φ0, w0) is in H m(�) ∩ L1(�) with ‖u0‖H m∩L1 � 1 and satisfies suit-

able compatibility conditions, then there exists a unique global solution u(t) =
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(φ(t), w(t)) ∈ C([0,∞); Hm(�)) of (2.1)–(2.3) and the solution u(t) has the fol-
lowing properties.

If n ≥ 3, then
‖∂�

x ′u(t)‖L2 = O(t− n−1
4 − �

2 ) (t → ∞)

for � = 0, 1 and

‖u(t) − (σu(0))(t)‖L2 = O(t− n−1
4 − 1

2 ηn(t)) (t → ∞).

Here u(0) = u(0)(xn); and σ = σ(x ′, t) is a solution of the following linear heat
equation

∂tσ − κ0∂
2
x1σ − κ′′�′′σ + a1∂x1σ = 0,

σ|t=0 = ∫ 1
0 φ0(x ′, xn) dxn,

where �′′ = ∂2
x2 + · · · + ∂2

xn−1
; κ0 > 0, κ′′ > 0 and a1 are constants; and ηn(t) = 1

when n ≥ 4 and ηn(t) = log(1 + t) when n = 3.
If n = 2, then

‖∂�
x ′u(t)‖L2 = O(t− 1

4 − �
2 ) (t → ∞)

for � = 0, 1 and

‖u(t) − (σu(0))(t)‖L2 = O(t− 3
4+ε), ε > 0, (t → ∞).

Here u(0) = u(0)(x2); and σ = σ(x1, t) is a solution of the following Burgers equation

∂tσ − κ0∂
2
x1σ + a1∂x1σ + a2∂x1(σ

2) = 0,
σ|t=0 = ∫ 1

0 φ0(x1, x2) dx2,

where κ0 > 0 and a j ( j = 1, 2) are constants.

Remark 2.2 (i) It is well known that solutions of the Burgers equation are approx-
imated by self-similar solutions if the initial data are sufficiently small. We thus see
that, when n = 2, in addition to the assumptions of Theorem 2.1, if

∫
�

|x1||φ0| dx �
1, then ‖u(t) − (χu(0))(t)‖L2 = O(t− 3

4 +ε) (ε > 0) as t → ∞. Here χ(x1, t) =
z(x1 − a1t, t),where z = z(x1, t) is a self-similar solutionof∂t z − κ∂2

x1 z + a2∂x1(z
2) =

0 with
∫
R

z(x1, t) dx1 = ∫
�

φ0 dx .
(ii) Iooss and Padula [10] studied the stability of parallel flows of (1.1) in a

cylindrical domain � = {x = (x1, x ′); x1 ∈ R, x ′ ∈ D} under the boundary condi-
tion v|@D = v∗ satisfying v∗ · n = 0. Here D is a smooth bounded domain of Rn−1

(n = 2, 3) and n denotes the unit outer vector normal to ∂�. In [10] the linearized
stability under perturbations periodic in x1 was considered; and the following result
on the spectral distribution of the linearized operator around the parallel flow was
obtained. Let Aper denote the linearized operator under perturbations periodic in x1.
Then there exists a constant �̃ > 0 such that
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σ(−Aper ) ∩ {λ;Re λ ≥ −�̃} = {λ j }K
j=0,

where λ j ( j = 0, 1, . . . , K ) are eigenvalues of −L0 with finite multiplicities. Fur-
thermore, it was shown in [10] that if the Reynolds number is small in some sense,
then the parallel flow is linearly stable, i.e., Re λ j < 0 for all j = 0, 1, . . . , K , and
therefore, the solution of the linearized problem decays exponentially as t → ∞.

(iii) In the case of the cylindrical domain � = R × D with bounded smooth
domain D ⊂ R

2, Aoyama and Kagei [5] proved the stability result similar to Theo-
rem 2.1 for n = 2, i.e., parallel flows are stable under spatially localized small pertur-
bations if the Reynolds and Mach numbers are sufficiently small, and the asymptotic
leading part is given by the Burgers equations.

(iv) Stability results similar to Theorem 2.1 also hold for the case of time-periodic
parallel flows. If the external force g takes the form g = �(g1(xn, t), 0, . . . , 0, gn(xn))

with g1 being time-periodic as g1(xn, t + T ) = g1(xn, t) for some T > 0, then (1.1)
has a time-periodic parallel flow us = �(ρ∗, vs), vs = �(v1

s (x ′, t), 0′) with v1
s being

time-periodic as v1
s (x ′, t + T ) = v1

s (x ′, t). In this case the statements of Theorem
2.1 with u(0) = u(0)(x ′) replaced by u(0) = u(0)(x ′, t) satisfying u(0)(x ′, t + T ) =
u(0)(x ′, t) hold true. Here x ′ = x2 when n = 2. See [6, 7] for the stability of time-
periodic parallel flows. See also [9] for the stability of spatially periodic steady states.

(v) In [12], the stability of the plane Couette flow was studied as a special case
of parallel flows and similar results to Theorem 2.1 was obtained. Li and Zhang
([21]) considered the stability of the plane Couette flow of (1.1) for n = 3 under the
Navier-slip boundary condition on the bottom

v3|x3=0 = 0, (−∂x3v
j + αv j )|x3=0 = 0 ( j = 1, 2)

and the non-homogeneous Dirichlet boundary condition on the top

v1|x3=� = V 1, v2|x3=� = v3|x3=� = 0.

Hereα > 0 is the slip length constant. It was shown in [21] that ifα is getting smaller,
then the Reynolds number can be taken larger to guarantee the stability of the plane
Couette flow than that given in Theorem 2.1.

(vi) In [1, 2], the stability of the motionless state us = �(ρ∗, 0) of (1.1) with
g = 0 was studied under the complete slip boundary condition. In this case, the
asymptotic behavior of solutions are different to the one in the non-slip case (2.2)
given in Theorem 2.1. More precisely, we consider (1.1) with g = 0, written in the
form

{
∂tρ + div(ρv) = 0,

ρ(∂tv + v · ∇v) − μdivD(v) − μ′∇divv + ∇ P(ρ) = 0.

in a cylinder � = R × D with D = {x ′ = (x2, x3) : x2
2 + x2

3 ≤ �2} under the com-
plete slip condition



On Stability and Bifurcation in Parallel Flows … 77

v · n|∂� = 0, D(v) · n − (
D(v)n · n)n∣∣

∂�
= 0.

Here
(
D(v) jk

)3
j,k=1=

(
∂x j v

k + ∂xk v
j
)3

j,k=1; and the viscosity constants μ and μ′ sat-
isfy μ > 0 and 2

3μ + μ′ > 0. Let u = �(φ,w) be the perturbation of the motionless
state �(ρ∗, 0). If the initial perturbation u0 = �(φ0, w0) is sufficiently small, then it
holds that

‖u(t) − χ+(t)a+ − Ø−(t)a− − Ørig(t)arig‖L2(��) ≤ C(1 + t)−
1
2 ,

where a± = �(1,±1, 0, 0); χ± = χ±(x1, t) = z±(x1 ± γt, t) are nonlinear diffu-
sion waves with z± = z±(x1, t) denoting self-similar solutions of the Burgers equa-
tions

∂t z± − 2ν + ν ′

2
∂2

x1 z± ∓ c∂x1(z
2
±) = 0;

and where χrig(t)arig is a diffusive rigid motion with arig = 1
�2

√
2
ß

�(0, 0,−x3, x2)

and χrig = arig(4πνt)−1/2e−x2/(4νt). Here γ = √
P ′(ρ∗), ν = μ/ρ∗ and ν ′ = μ′/ρ∗.

In contrast to the case of the non-slip boundary condition (2.2), a hyperbolic
aspect (propagation of diffusion waves) appears in the asymptotic leading part of the
perturbation under the complete slip boundary condition. (Cf., [17, 22].) As for the
analysis of the problem under the slip boundary condition, see also [20, 24, 27].

3 Outline of Proof of Theorem 2.1

Theorem 2.1 is proved by decomposing the problem into the low and high frequency
parts. For the low frequency part, we make use of the spectral properties of the
linearized semigroup, while for the high frequency part, we employ the Matsumura-
Nishida energy method [23]. We here give an outline of the proof of Theorem 2.1
following the arguments in [5, 6, 13]. For simplicity we consider the case n = 2
only.

3.1 Notation

We first introduce notation which will be used in this section. For 1 ≤ p ≤ ∞ we
denote by L p(E) the usual Lebesgue space on a domain E and its norm is denoted by
‖ · ‖L p(E). Let m be a nonnegative integer. H m(E) denotes the m th order L2 Sobolev
space on E with norm ‖ · ‖H m (E). In particular, we write L2(E) for H 0(E).

We denote by Cm
0 (E) the set of all Cm functions with compact support in E .

H m
0 (E) stands for the completion of Cm

0 (E) in H m(E).
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We simply denote by L p(E) (resp., H m(E)) the set of all vector fields w =
�(w1, w2) on E and its norm is denoted by ‖ · ‖L p(E) (resp., ‖ · ‖H m (E)). For u =
�(φ, w) with φ ∈ H k(E) and w = �(w1, w2) ∈ Hm(E), we define ‖u‖H k (E)×H m (E)

by ‖u‖H k (E)×H m (E) = ‖φ‖H k (E) + ‖w‖Hm(E).
When E = �we abbreviate L p(�) as L p, and likewise, H m(�) as H m . The norm

‖ · ‖L p(�) is written as ‖ · ‖L p , and likewise, ‖ · ‖H m (�) as ‖ · ‖H m . The inner product
of L2(�) is denoted by

( f, g) =
∫

�

f (x)g(x) dx, f, g ∈ L2(�).

For u j = �(φ j , wj) ( j = 1, 2), we also define a weighted inner product 〈u1, u2〉 by

〈u1, u2〉 = 1
γ2

∫
�

φ1φ2
P ′(ρs )

γ2ρs
dx +

∫
�

w1 · w2æs dx,

where ρs = ρs(x2) is the density of the parallel flow us .
In the case E = (0, 1) we denote the norm of L p(0, 1) by | · |p. The norm of

H m(0, 1) is denoted by | · |H m , respectively. The inner product of L2(0, 1) is also
denoted by

( f, g) =
∫ 1

0
f (x2)g(x2)dx2, f, g ∈ L2(0, 1)

if no confusion occurs. Here g denotes the complex conjugate of g. For u j =
�(φ j , wj) ( j = 1, 2), we also denote the weighted inner product by 〈u1, u2〉:

〈u1, u2〉 =
∫ 1

0
φ1φ2

p′(ρs )

γ2ρs
dx2 +

∫ 1

0
w1 · w2æs dx2.

For f ∈ L1(0, 1) we denote the mean value of f over (0, 1) by 〈 f 〉:

〈 f 〉 =
∫ 1

0
f (x2) dx2.

We finally define the Fourier transform of f in x1 by

f̂ (ξ) = F f (ξ) =
∫
R

f (x1)e
−iξx1 dx1

and its inverse transform is defined by

F−1 f (x1) = 1

2π

∫
R

f (ξ)eiξx1 dξ.
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3.2 Spectral Properties of the Linearized Semigroup

In this subsection we consider the spectral properties of the linearized semigroup.
We begin with the linearized resolvent problem associated with (2.1)–(2.3) for n = 2
which is written in the form

λu + Lu = F. (3.1)

Here λ ∈ C is a resolvent parameter; F = �( f 0, f ) with f = �(f 1, f 2) is a given
function in L2(�) × L2(�); and L is the operator on L2(�) × L2(�) with domain

D(L) = {u = �(φ, w) ∈ L2(�) × L2(�); w ∈ H1
0 (�), Lu ∈ L2(�) × L2(�)},

L =
(

v1
s ∂x1 γ2div(ρs ·)

∇( P ′(ρs )

γ2ρs
·) − ν

ρs
� − ν+ν ′

ρs
∇div + v1

s ∂x1

)
+

(
0 0

ν∂2
x2

v1s

γ2ρ2s
e1 (∂x2v

1
s )e1

�e2

)
,

where e1 = �(1, 0) and e2 = �(0, 1).
One can see that there exists a� � 1 such that {λ ∈ C; Re λ ≥ �} ⊂ ρ(−L) and

that−L generates aC0-semigroupU (t). See [10] for a generation of aC0-semigroup.
We shall decompose U (t) by a projection operator associated with the spectrum

of −L which is obtained through the Fourier transform in x1.
To investigate the spectrum of −L , let us consider the Fourier transform of (3.1)

in x1 ∈ R:
λû + L̂ξ û = f̂ , (3.2)

with a parameter ξ ∈ R. Here L̂ξ is the operator on H 1(0, 1) × L2(0, 1)with domain

D(L̂ξ) = H 1(0, 1) × (H 2(0, 1) ∩ H 1
0 (0, 1)),

and

L̂ξ =
⎛
⎜⎝

iξv1
s iγ2ρsξ γ2∂x2(ρs ·)

iξ P ′(ρs )

γ2ρs
− ν

ρs
∂2

x2 + ν+ν̃
ρs

|ξ|2 + iξv1
s −i ν̃

ρs
ξ∂x2

∂x2

(
p(ρs )

γ2ρs
·
)

−i ν̃
ρs

ξ∂x2 − ν+ν̃
ρs

∂2
x2 + ν

ρs
|ξ|2 + iξv1

s

⎞
⎟⎠

+
⎛
⎜⎝

0 0 0
ν∂2

x2
v1s

γ2ρ2s
0 ∂x2v

1
s

0 0 0

⎞
⎟⎠ .

We also introduce the adjoint operator L̂∗
ξ with domain D(L̂∗

ξ) = D(L̂ξ),
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L̂∗
ξ =

⎛
⎜⎝

−iξv1
s −iγ2ρsξ −γ2∂x2(ρs ·)

−iξ P ′(ρs )

γ2ρs
− ν

ρs
∂2

x2 + ν+ν̃
ρs

|ξ|2 − iξv1
s −i ν̃

ρs
ξ∂x2

−∂x2

(
p(ρs )

γ2ρs
·
)

−i ν̃
ρs

ξ∂x2 − ν+ν̃
ρs

∂2
x2 + ν

ρs
|ξ|2 − iξv1

s

⎞
⎟⎠

+
⎛
⎜⎝0

γ2ν∂2
x2

v1s

p′(ρs )
0

0 0 0
0 ∂x2v

1
s 0

⎞
⎟⎠ .

When ξ = 0, one can see that 0 is a simple eigenvalue of −L̂0 and −L̂∗
0 and

the remaining parts of spectra of −L̂0 and −L̂∗
0 lie in a left-half plane strictly away

from the imaginary axis. As for the eigenspaces for the eigenvalue 0, we have the
following proposition.

Proposition 3.1 0 is a simple eigenvalue of −L̂0 and −L̂∗
0 and

Ker (−L0) = span {u(0)}, Ker (−L∗
0) = span {u(0)∗},

where the functions u(0) and u(0)∗ are given by

u(0) = �(φ(0), w(0)), w(0) = �(w(0),1, 0)

and
u(0)∗ = �(φ(0)∗, 0).

Here

φ(0)(x2) = α0
γ2ρs (x2)
p′(ρs (x2))

, α0 =
(∫ 1

0

γ2ρs (x2)
p′(ρs (x2))

dx2
)−1;

and w(0),1 is the solution of the following problem

{
−∂2

x2w
(0),1 = − 1

γ2ρs
∂x22v1

s φ
(0),

w(0),1 |x2=0,1= 0;

and
φ(0)∗(x2) = γ2

α0
φ(0)(x2).

Furthermore, it holds that
〈u0, u∗

0〉 = 1.

By a perturbation argument, we have the following properties the spectrum of
−L̂ξ for |ξ| � 1.

Proposition 3.2 (i) There exist positive constants c0, ν1, γ1, ω1 and r0 such that if
ν ≥ ν1,

γ2

ν+ν̃
≥ γ2

1 and ω ≤ ω1, then it holds that
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σ(−L̂ξ) ∩ {λ : |λ| ≤ c0
2 } = {λ0(ξ)}

for each ξ with |ξ| ≤ r0, where λ0(ξ) is a simple eigenvalue of −L̂ξ that has the form

λ0(ξ) = −ia1ξ − κ0ξ
2 + O

(|ξ|3)

as |ξ| → 0. Here a1 ∈ R and κ0 > 0 are the numbers given by

a1 = −〈v1
s φ

(0) + γ2ρsw
(0),1〉 = O(1),

κ0 = γ2

ν

{
α0

∣∣(−∂2
x2)

− 1
2 ρs

∣∣2
2 + O

(
1
γ2

) + (
ν
γ2 + 1

ν2

) × O
(

ν+ν̃
γ2

)}
.

Here (−∂2
x2) is the operator on L2(0, 1) under the zero Dirichlet boundary condition

with domain D((−∂2
x2)) = H 2(0, 1) ∩ H 1

0 (0, 1).

(ii) The eigenprojections �̂(ξ) and �̂∗(ξ) for the eigenvalues λ0(ξ) and λ0(ξ) of
−L̂ξ and −L̂∗

ξ are given by

�̂(ξ)u = 〈u, u∗
ξ〉uξ, �̂∗(ξ)u = 〈u, uξ〉u∗

ξ ,

respectively, where uξ and u∗
ξ are eigenfunctions for λ0(ξ) and λ0(ξ), respectively,

that satisfy 〈uξ, u∗
ξ〉 = 1.

Furthermore, uξ and u∗
ξ are written in the form

uξ(x2) = u(0)(x2) + iξu(1)(x2) + |ξ|2u(2)(x2, ξ),

u∗
ξ(x2) = u∗(0)(x2) + iξu∗(1)(x2) + |ξ|2u∗(2)(x2, ξ),

and the following estimate holds

|uξ|H k + |u∗
ξ |H k + |u(1)|H k + |u∗(1)|H k + |u(2)|H k + |u∗(2)|H k ≤ Ck,r0

with a constant Ck,r0 > 0.

See [4, Theorem 4.5, 4.7] and [3, Lemma 4.1] for a proof.
The asymptotic behavior of the semigroup e−t L generated by −L follows from

Proposition 3.2. Let us introduce the characteristic function 1{|η|≤r0}(ξ) defined by

1{|η|≤r0}(ξ) =
{
1, (0 ≤ |ξ| ≤ r0),

0, (|ξ| > r0),
for ξ ∈ R,

where r0 is the positive constant given in Proposition 3.2.
We define the projections P0 and P∞ by

P0 = F−11{|η|≤r0}(ξ)�̂(ξ)F
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and
P∞ = I − P0.

Then P0 and P∞ satisfy

P0 + P∞ = I, P2 = P, Pj L ⊂ L Pj , Pj e
−t L = e−t L Pj , ( j = 0,∞).

Based on Proposition 3.2, the following decay estimates of e−t L follow.

Proposition 3.3 If ν ≥ ν1,
γ2

ν+ν̃
≥ γ2

1 and ω ≤ ω1, then e−t L P0 and e−t L P∞ satisfy
the following estimates.

(i) If u0 = �(φ0, w0) ∈ (L1(�) × L1(�)) ∩ (L2(�) × L2(�)), then e−t L P0u0

satisfies the following estimates

‖∂k
x2∂

l
x1e

−t L P0u0‖2 ≤ Ck,l(1 + t)−
k
4− l

2 ‖u0‖1 (3.3)

uniformly for t ≥ 0 and for k = 0, 1, . . ., and l = 0, 1, . . ..
(ii) Let H̃ 1(�) = {w ∈ L2(�); @x1 w ∈ L2(�)} with norm ‖w‖H̃1 = ‖w‖2 +

‖@x1 w‖2. If u0 ∈ H 1(�) × H̃ 1(�), then there exists a constant d0 > 0 such that
e−t L P∞u0 satisfies

‖e−t L P∞u0‖H 1 ≤ Ce−d0t
(‖u0‖H 1×H̃ 1 + t− 1

2 ‖w0‖2
)

(3.4)

uniformly for t ≥ 0.

To treat the nonlinear problem,we needmore detailed information on the structure
of the P0 part of e−t L .

We have the following factorization of e−t L P0. See [4, Sect. 5] for the detailed
argument.

Here and in what follows we assume that

ν ≥ ν1,
γ2

ν + ν̃
≥ γ2

1 , ω ≤ ω1,

where ν1, γ1 and ω1 are the constants given in Proposition 3.2.
We define the operators

T : L2(R) → L2(�), P : L2(�) → L2(R), � : L2(R) → L2(R)

by
T σ = F−1[T̂ξσ̂], T̂ξσ̂ = 1{|η|≤r0}(ξ)uξσ̂;

Pu = F−1[P̂ξ û], P̂ξ û = 1{|η|≤r0}(ξ)〈û, u∗
ξ〉;

�σ = F−1[1{|η|≤r0}(ξ)λ0(ξ)σ̂]
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for u ∈ L2(�) and σ ∈ L2(R). It then follows that

P0 = T P, 1{|η|≤r0}(ξ)�̂(ξ) = T̂ P̂, P0L ⊂ L P0 = �P0.

We have the following factorization of e−t L P0.

Proposition 3.4 It holds that

e−t L P0 = T et�P.

As for T , we have the following estimates.

Proposition 3.5 The operator T has the following properties:

(i) ‖T σ‖H k ≤ C‖σ‖L2(R) for k = 0, 1, . . ., and σ ∈ L2(R).
(ii) T is decomposed as T = T (0) + ∂x1T (1) + ∂2

x1T
(2), where T ( j)σ=F−1[T̂ ( j)σ̂]

( j = 0, 1, 2) with

T̂ (0)σ̂ = 1{|η|≤r0}(ξ)σ̂u(0),

T̂ (1)σ̂ = 1{|η|≤r0}(ξ)σ̂u(1)(·),
T̂ (2)σ̂ = −1{|η|≤r0}(ξ)σ̂u(2)(·, ξ).

Here T ( j) ( j = 0, 1, 2) satisfy estimates (i) by replacing T with T ( j).

Similar estimates also hold for P .

Proposition 3.6 The operator P has the following properties:

(i) ‖Pu‖H k (R) ≤ C‖u‖2 for k = 0, 1, . . ., and u ∈ L2(�). Furthermore, ‖Pu‖L2(R)

≤ C‖u‖1 for u ∈ L1(�).
(ii) P is decomposed asP = P (0) + ∂x1P (1) + ∂2

x1P
(2), whereP ( j)u = F−1[P̂ ( j)û]

( j = 0, 1, 2) with

P̂ (0)û = 1{|η|≤r0}(ξ)〈û, u∗(0)〉 = 1{|η|≤r0}(ξ)〈Q0û〉,
P̂ (1)û = 1{|η|≤r0}(ξ)〈û, u∗(1)〉,
P̂ (2)û = −1{|η|≤r0}(ξ)〈û, u∗(2)(ξ)〉.

Here P ( j) ( j = 0, 1, 2) satisfy estimates (i) by replacing P .

It then follows that et� satisfies the following estimates.

Proposition 3.7 The operator et� satisfies the following estimates.

(i) ‖∂l
x3e

t�Pu‖L2(R) ≤ C(1 + t)− 1
4 − l

2 ‖u‖1,

(ii) ‖∂l
x3e

t�P ( j)u‖L2(R) ≤ C(1 + t)− 1
4− l

2 ‖u‖1, j = 0, 1, 2,

(iii) ‖∂l
x3(T − T (0))et�Pu‖2 ≤ C(1 + t)− 1

4 − l+1
2 ‖u‖1,
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for u ∈ L1(�) and l = 0, 1, 2 . . ..

By the properties of P and the definition of �, one can see that the asymptotic
behavior of et� is described by H(t):

H(t)σ = F−1[e−(ia1ξ+κ0ξ
2)t σ̂] (σ ∈ L2(R)),

whereκ1 ∈ R andκ0 > 0 are given by Proposition 3.2. Indeed,we have the following
estimates.

Proposition 3.8 For u ∈ L2(�), we set σ = 〈Q0u〉. If u ∈ L1(�), then there holds
the estimate

‖∂l
x1

(
et�Pu − H(t)σ

)‖L2(R) ≤ Ct− 3
4 − l

2 ‖u‖1 (l = 0, 1, . . . ).

Since
e−t L P0 = T et�P = T (0)et�P + (T − T (0))et�P,

one could imagine that u(0)H(t)〈φ0〉 would appear in the asymptotic leading part of
the solution of the nonlinear problem (2.1)–(2.3). It is true if n ≥ 3, but, in the case
n = 2, one needs to take into account the nonlinearities which leads to the nonlinear
term of the Burgers equation. See [5, 6, 13] for details.

3.3 Nonlinear Problem

The problem (2.1)–(2.3) is written as

du

dt
+ Lu = F(u), w|@� = 0, u|t=0 = u0. (3.5)

Here u = �(φ, w); and F(u) denotes the nonlinearity:

F(u) = �( f 0(φ, w), f (Œ, w)).

We decompose the solution u into its P0 and P∞ parts. Let us decompose the
solution u(t) of (3.5) as

u(t) = (σ1u(0))(t) + u1(t) + u∞(t),

where

σ1(t) = Pu(t), u1(t) = (T − T (0))Pu(t), u∞(t) = P∞u(t).

Observe that P0u(t) = (σ1u(0))(t) + u1(t).
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From the estimates in Sect. 3.2, one could expect that σ1(t) were the asymptotic
leading part of u(t). In fact, since u1(t) is written as

u1(t) = (T − T (0))Pu(t) = (∂x1T (1) + ∂2
x1T

(2))σ1(t),

one can see from Propositions 3.5 and 3.6 that u1(t) is dominated by σ1(t).

Proposition 3.9 Let u(t) be a solution of (3.5). Then

‖∂k
x ′∂l

x3∂
m
t u1(t)‖2 ≤ C{‖∂x3σ1(t)‖2 + ‖∂tσ1(t)‖2}

for 1 ≤ k + l + 2m ≤ 3.

From Proposition 3.9, it thus suffices to consider σ1(t) and u∞(t).
We give an outline of the decay estimate of u(t) in Theorem 2.1. By using the

factorization of e−t L P0, we see that σ1 satisfies

σ1(t) = et�Pu0 +
∫ T

0
e(t−τ )�PF(τ )dτ ; (3.6)

We employ this formula to estimate σ1(t).
On the other hand, u∞(t) satisfies

∂t u∞ + Lu∞ = F∞, w∞ |@�= 0, u∞ |t=0= u∞,0, (3.7)

where F∞ = P∞F and u∞,0 = P∞u0. To estimate u∞(t) we use the estimate (3.4)
of e−t L P∞ and the Matsumura-Nishida energy method.

We introduce the quantity M1(t) defined by

M1(t) = sup
0≤τ≤t

(1 + τ )
1
4 ‖σ1(τ )‖2 + sup

0≤τ≤t
(1 + τ )

3
4 {‖∂x1σ1(τ )‖2 + ‖∂τσ1(τ )‖2};

and we define the quantity M(t) ≥ 0 by

M(t)2 = M1(t)
2 + sup

0≤τ≤t
(1 + τ )

3
2 E∞(τ ) (t ∈ [0, T ])

with
E∞(t) = ‖u∞(t)‖2H 2 + ‖∂t u∞(t)‖22.

We also introduce a quantity D∞(t) for u∞ = �(φ∞, w∞) defined by

D∞(t) = ‖∂xφ∞(t)‖2H 1 + ‖∂tφ∞(t)‖2H 1 + ‖∂x w∞(t)‖2
H2 + ‖@tw∞(t)‖2

H1 .

By using the estimates in Sect. 3.2, we can show that if M(t) ≤ 1 for t ∈ [0, T ], then

M1(t) ≤ C{‖u0‖L1 + M(t)2}. (3.8)
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Furthermore, using the estimate (3.4) of e−t L P∞ and the Matsumura-Nishida energy
method, we can obtain the estimate

E∞(t) +
∫ ∞

0
e−a(t−τ ) D∞(τ )dτ

≤ C{e−at E∞(0) + (1 + t)−
3
2 M(t)4 +

∫ t

0
e−a(t−τ )R(τ )dτ }.

(3.9)

Here a = a(ν, ν̃, γ) is a positive constant; and R(t) is a function satisfying the
estimate

R(t) ≤ C{(1 + t)−
3
2 M(t)3 + (1 + t)−

1
4 M(t)D∞(t)}. (3.10)

Combining these estimates with the local existence of solutions, one can prove that
if ‖u0‖H 2∩L1 is sufficiently small, then

M(t) ≤ C‖u0‖H 2∩L1

uniformly for t ≥ 0, which proves the decay estimate of u(t) in Theorem 2.1.

4 Instability and Bifurcation in Poiseuille Flows

We have seen that parallel flows are stable if the Reynolds and Mach numbers are
small enough. In this section we consider what happens if the Reynolds and Mach
numbers are not necessarily small. It is expected that parallel flows become unstable
when the Reynolds number increases. We shall see that, for a certain range of Mach
numbers, the plane Poiseuille flow becomes unstable for Reynolds numbers beyond
a critical value which is much smaller than that for the case of the incompressible
fluids. After the instability of the plane Poiseuille flow, a bifurcation of wave trains
(spatio-temporal traveling waves) occurs. These results were proved in [15, 16]. In
this section we review the instability and bifurcation results given in [15, 16]. See
also [14] where the proof of the bifurcation of the wave trains is outlined.

Bifurcation problems for equations in fluid mechanics have been paid much atten-
tion and, in fact, have been extensively studied. The mathematical analysis of such
problems were mainly done for the incompressible Navier-Stokes equations since
1960s; see, e.g., [11, 18, 19, 28], and so on. Since the incompressible Navier-Stokes
equations are classified in semilinear parabolic systems, classical bifurcation the-
ories for elliptic equations can be directly applied to bifurcation problems for the
incompressible Navier-Stokes equations. See e.g., Crandall and Rabinowitz [8].

On the other hand, the compressible Navier-Stokes equations are classified in
quasilinear hyperbolic-parabolic systems, and bifurcation theory applicable to the
incompressible problems does not work well for the compressible Navier-Stokes
equations.
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The first result for the multi-dimensional compressible bifurcation problems was
given by Nishida et al. [25] who proved the existence of bifurcating compressible
convection solutions for thermal convection problem. Themain difficulty in the proof
of the bifurcation for the compressible system arises from the convection term v · ∇æ
in (1.1). This term causes the derivative-loss in a standard setting, and therefore, it is
not Frechét differentiable if onewould try to handle by a classical bifurcation analysis.
In [25], the effective viscous flux is used to overcome this difficulty and close the
estimates for the proof of the bifurcation of stationary convective patterns. On the
other hand, the effective viscous flux is not used in the analysis of the bifurcation
of wave trains from the plane Poiseuille flow in [16]. Instead of it, the convection
term v · ∇æ in (1.1) is regarded as a part of the principal part as in the proof of the
local solvability of the time evolution problem and an iterative argument based on
the method of characteristics is employed. See [14].

4.1 Notation

Wefirst formulate the problem in a non-dimensional form and then introduce notation
used for the functional setting in this section.

We transform the problem into the non-dimensional form under the following
variable transformations: x = �x̃ , t = �

V t̃ , v = VQv, ρ = ρ∗ρ̃, P = ρ∗ P ′(ρ∗)p, where

V = ρ∗g�2

μ
.

In terms of these new non-dimensional variables, the system of equations (1.1) is
transformed into the one which takes the following form after omitting tildes:

∂tρ + div (ρv) = 0, (4.1)

ρ(∂t v + v · ∇v) − ˚�v − (˚ + ˚′)∇div v + 2∇p(æ) = ˚æe1, (4.2)

where ν, ν ′ and γ are the non-dimensional parameters given by

ν = μ

ρ∗�V
, ν ′ = μ′

ρ∗�V
, γ =

√
P ′(ρ∗)
V

.

The assumption P ′(ρ∗) > 0 is reduced to the form p′(1) = 1. Here we also used the
relation �g

V 2 = ν.
The system (4.1)–(4.2) is then considered on the two-dimensional infinite layer:

{x = (x1, x2) ; x1 ∈ R, 0 < x2 < 1}.

Under the above non-dimensionalization, the plane Poiseuille flow is transformed
into us = �(ρs, vs), where
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ρs = 1, vs = �(v1
s (x2), 0), v1

s (x2) = 1

2
x2(1 − x2).

Let u(t) = �(φ(t), w(t)) = �(2(æ(t) − æs), v(t) − vs) be the perturbation. Not-
ing that −�vs = e1, we have the system of equations for the perturbation u:

∂tφ + v1
s ∂x1φ + γ2divw = f 0(u), (4.3)

∂t w − ˚�w −Q̊∇divw + ∇Œ − ˚
2

Œe1 + v1
s @x1 w + (@x2 v1

s )w
2e1 = f (u). (4.4)

Here ν̃ = ν + ν ′; and f 0(u) and f (u) = �(f 1, f 2) are the nonlinear terms:

f 0(u) = −div (φw),

f (u) = −w · ∇w − Œ
2 + Œ

(
˚�w + ˚

2
Œe1 +Q̊∇divw

)
+ P(1)(Œ)Œ∇Œ

with

P (1)(φ) = 1

γ2 + φ

(
1 −

∫ 1

0
p′′(1 + θγ−2φ) dθ

)
.

The boundary conditions on {x2 = 0, 1} is the non-slip one, and a periodic boundary
condition is imposed in x1 direction:

w|x2=0,1 = 0, Œ, w : 2ß
-periodic in x1, (4.5)

where α is a given positive number. We note that the Reynolds number Re and the
Mach number Ma are given by

Re = 1

16ν
, Ma = 1

8γ
.

We next introduce notation used in this section. Since we consider the system of
equations (4.3)–(4.4) under periodic boundary condition in x1, we introduce the basic
period cell �α = Tα × (0, 1), where Tα = R/ 2π

α
Z and α > 0 is a given constant.

We denote by L2(�α) the usual L2 space on�α with norm ‖ · ‖2, and likewise, by
H k(�α) the k th order L2 Sobolev space on�α with norm ‖ · ‖H k . We also denote by
C∞
0 (�α) the space of functions in C∞(�α) which vanish near x2 = 0, 1. We define

H 1
0 (�α) by the H 1(�α)-closure of C∞

0 (�α).
The inner product of f j ∈ L2(�α) ( j = 1, 2) is denoted by

( f1, f2) =
∫

�α

f1(x) f2(x) dx .
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Here z denotes the complex conjugate of z.
We define the average 〈φ〉 of φ over �α by

〈φ〉 = 1

|�α|
∫

�α

φ(x) dx .

We also define L2∗(�α) by

L2
∗(�α) = {φ ∈ L2(�α); 〈φ〉 = 0}.

Furthermore, we set
H k

∗ (�α) = H k(�α) ∩ L2
∗(�α).

The inner product of u j = �(φ j , wj) ∈ L2(�) ( j = 1, 2) is defined by

〈u1, u2〉 = 1

γ2

∫
�α

φ1(x)φ2(x) dx +
∫

�α

w1(x) · w2(x) dx.

In the following we omit �α in L2(�α), H k(�α), . . ., and etc., and simply write
them as L2, H k , . . ., and etc.

4.2 Instability of Plane Poiseuille Flow

In this section we state the instability result on the plane Poiseuille flow obtained in
[15].

We first introduce the linearized operator L . We define the operator L on L2∗ ×
(L2)2 by

D(L) = {
u = �(φ, w) ∈ L2

∗ × (L2)2; w ∈ (H1
0 )2, Lu ∈ L2

∗ × (L2)2
}
,

L =
(

v1
s ∂x1 γ2div
∇ −ν� − ν̃∇div

)
+

(
0 0

− ν
γ2 e1 v1

s ∂x1 + (∂x2v
1
s )e1

�e2

)
.

The argument in [10] applies to see that−L generates aC0-semigroup in L2∗ × (L2)2.
The following result gives an instability criterion for the plane Poiseuille flow in

terms of the Reynolds and Mach numbers.

Theorem 4.1 ([15]) There exist positive constants r0 and η0 such that if α ≤ r0,
then

σ(−L) ∩ {
λ ∈ C; |λ| ≤ η0

} = {λαk; |k| = 1, . . . , n0}

for some n0 ∈ N, where λαk are simple eigenvalues of −L that satisfy
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λαk = − i

6
(αk) + κ0(αk)2 + O(|αk|3)

as αk → 0. Here κ0 is the number given by

κ0 = 1

12ν

[(
1

280
− γ2

)
− ν

30γ2

(
3ν + ν ′)] .

As a consequence, if γ2 < 1
280 and ν(3ν + ν ′) < 30γ2

(
1

280 − γ2
)
, then κ0 > 0 and

the plane Poiseuille flow us = �(φs, vs) is linearly unstable.

Remark 4.2 In terms of the Reynolds and Mach numbers, the instability condition
given in Theorem 4.1 is restated as

Ma >

√
35

8
∼ 2.09,

1

35
− 1

8Ma2
>

Ma2

15Re

(
3

Re
+ 1

Re′

)
, (4.6)

where Re′ = 1
16ν ′ . Therefore, Reynolds and Mach numbers are not small when (4.6)

is satisfied. For example, ifMa = 2.5, Re = 173
16 ∼ 10.81 and 1

Re′ = − 2
3Re (i.e., ν

′ =
− 2ν

3 ), then instability condition (4.6) is satisfied. In the case of the incompressible
flows, Orszag [26] numerically obtained a critical value Rec ∼ 5772 such that if
Re < Rec, then the plane Poiseuille flow is linearly stable, while if Re > Rec, then
the plane Poiseuille flow is linearly unstable. We thus see that in the case of the
compressible flows, the plane Poiseuille flow becomes linearly unstable for much
smaller values of Reynolds numbers.

The proof of Theorem 4.1 is given by an analytic perturbation method. See [15]
for details.

Remark 4.3 The eigenspace forλαk is spanned by a function of the form u(x2)eiαkx1

with an eigenfunction u(x2) for the eigenvalueλαk of−L̂αk , where L̂αk is the operator
L̂ξ given in (3.2) with ξ = αk. See [15, Sects. 4–6].

4.3 Bifurcation of Wave Trains

We have seen that the plane Poiseuille flow becomes unstable beyond a certain
value of ν if γ2 < 1/280. We shall see that after the instability occurs, a wave train
bifurcates from the plane Poiseuille flow.

We fix γ in such a way that 1
280 − γ2 > 0; and we regard ν as a bifurcation

parameter. We denote the eigenvalue λαk by λαk(ν):

λαk = λαk(ν),

and the linearized operator L by Lν :
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L = Lν .

Let ν̃0 > 0 be taken in such a way that κ0 = 0, where κ0 is the coefficient of (αk)2

ofλαk(ν) described in Theorem 4.1. A perturbation argument then applies to see that,
for each 0 < α � 1, there exists ν0 > 0 such that Re λ±α(ν0) = 0, Re λ±α(ν) < 0
iff ν > ν0 and Re λ±α(ν) > 0 iff ν < ν0; if α � 1, then λ±α(ν) cross the imaginary
axis from left to right at ν = ν0 when ν is decreased. See [16, Sect. 6].

We make the following assumption:

σ(−Lν0) ∩ {λ;Reλ = 0} = {λα(ν0),λ−α(ν0)}. (4.7)

The bifurcation of wave trains is stated as follows.

Theorem 4.4 ([16])Assume thatAssumption 4.7 holds true. Then there is a solution
branch {ν, u} = {νε, uε} (|ε| � 1) such that

νε = ν0 + O(ε),
uε = uε(x1 − cεt, x2), uε(x1 + 2π

α
, x2) = uε(x1, x2),

uε(x1, x2) = ε

⎛
⎝ 1

1
2γ2 (−x2

2 + x2)
0

⎞
⎠ √

2
2 cosαx1(1 + O(α)) + O(ε2),

cε = 1
6 + O(ε).

To prove Theorem 4.4, we employ the Lyapunov-Schmidt reduction. We decom-
pose the problem into the finite dimensional part and its complementary (infinite
dimensional) part. In a standard bifurcation theory, the nonlinearity is regarded as a
perturbation of the linearized part. This does not work well for the problem under
consideration, since the termw · ∇Œ on the right-hand side of (4.3) causes derivative
loss in a standard setting. We thus regard this term as a part of the principal part in
the equation of the infinite dimensional part, as in the proof of the local solvability
of the time quasilinear evolution problem. This is the main difference to the case of
the incompressible problem, where a standard bifurcation theory is applicable. See
[16] for details. See also [14] where an outline of the proof of Theorem 4.4 is given.
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Uniform Regularity for a Compressible
Gross-Pitaevskii-Navier-Stokes System

Jishan Fan and Tohru Ozawa

Abstract Uniform regularity estimates are proved for a compressible
Gross-Pitaevskii-Navier-Stokes system in Tn with n ≥ 3.

Keywords Gross-Pitaevskii · Navier-Stokes · Euler · Uniform regularity

Mathematics Subject Classification 35Q30 · 35Q55 · 35B40 · 76D03

1 Introduction

In this paperwe consider the following compressibleGross-Pitaevskii-Navier-Stokes
system in superfluidity of Bose-Einstein condensates [1]:

∂tρ + div (ρu) = 0, (1.1)

ρ∂t u + ρu · ∇u + ∇ p − μ�u − (λ + μ)∇div u = |ψ|2∇h, (1.2)

∂tψ + u · ∇ψ = i

2
ε�ψ + i(1 − |ψ|2)ψ, (1.3)

(ρ, u,ψ)(·, 0) = (ρ0, u0,ψ0)(·) in T
n (n ≥ 3). (1.4)

Here ψ is a complex-valued function, |ψ|2 := ψψ is the mass density, ρ denotes the
density, u is the velocity, i := √−1, p := aργ is the pressure with the constants
a > 0 and γ > 1, h := h(x) is a given real potential with sufficient smoothness, λ
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and μ are two viscosity constants satisfying

μ > 0 and λ + 2

n
μ ≥ 0,

and ε > 0 is a constant.
When u = 0, (1.3) is the well-known Gross-Pitaevskii system. Lin and Zhang [2]

(see also [3]) considered the semiclassical limit. When u is not identically zero, (1.3)
takes the form of a general quasilinear Schrödinger equation, which was studied in
[4–7].

When h = 0, (1.1) and (1.2) reduce to the compressible Navier-Stokes equations.
Zajaczkowski [8] studied the well-posedness of strong solutions.

By the “artificial viscosity method” in [4, Chap. 10] and the method in [8], it is
straightforward to show the local well-posedness of smooth solutions to the problem,
and therefore we omit the details here. The aim of this paper is to show regularity
estimates which are uniform in (ε,λ,μ). We will prove

Theorem 1.1 Let 0 < ε,μ < 1 and let 0 < λ + μ < 1. Let s > 1 + n

2
and let

ρ0, u0,ψ0 ∈ Hs(Tn) satisfy 0 <
1

C0
≤ ρ0 ≤ C0. Let (ρ, u,ψ) be the unique local

smooth solutions to the problem (1.1)–(1.4) on the time interval [0, T ]. Then the
estimate

‖(ρ, u,ψ)(·, t)‖Hs ≤ C in [0, T0] (1.5)

holds for some positive constants C and T0 (≤ T ) independent of ε,λ and μ.

Remark 1.1 Here T > 0 is the local existence time of solution. We can prove a
similar result when � := R

n .

To prove Theorem 1.1, we will rewrite (1.1) as follows:

1

γ p
∂t p + 1

γ p
u · ∇ p + div u = 0. (1.6)

We define

M(t) : = 1 + sup
0≤t ′≤t

{
‖(ρ, u,ψ, p)(·, t ′)‖Hs + ‖∂t u(·, t ′)‖L2

+
∥∥∥∥
1

ρ
(·, t ′)

∥∥∥∥
L∞

+
∥∥∥∥
1

p
(·, t ′)

∥∥∥∥
L∞

}
. (1.7)

We can prove

Theorem 1.2 There exist nondecreasing continuous functions C0(·) and C(·) and
T0 ∈ (0, 1] such that for any t ∈ [0, T0),
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M(t) ≤ C0(M(0)) exp(tC(M(t))). (1.8)

It follows from (1.8) that [9–11]:

sup
t∈[0,T0]

M(t) < +∞. (1.9)

In the following proofs, wewill use the bilinear commutator and product estimates
due to Kato-Ponce [12]:

‖�s( f g) − f �sg‖L p ≤ C(‖∇ f ‖L p1 ‖�s−1g‖Lq1 + ‖g‖L p2 ‖�s f ‖Lq2 ), (1.10)

‖�s( f g)‖L p ≤ C(‖ f ‖L p1 ‖�sg‖Lq1 + ‖�s f ‖L p2 ‖g‖Lq2 ) (1.11)

with s > 0,� := (−�)
1
2 and

1

p
= 1

p1
+ 1

q1
= 1

p2
+ 1

q2
.

We only need to show Theorem 1.2.

2 Proof of Theorem 1.2

First, testing (1.1) by ρq−1, we see that

1

q

d

dt

∫
ρqdx =

(
−1 + 1

q

)∫
ρqdiv udx ≤

(
1 − 1

q

)
‖div u‖L∞

∫
ρqdx,

and thus
d

dt
‖ρ‖qLq ≤ (q − 1)‖div u‖L∞‖ρ‖qLq ,

which gives

‖ρ‖Lq ≤ ‖ρ0‖Lq exp

((
1 − 1

q

) ∫ t

0
‖div u‖L∞dτ

)
. (2.1)

Taking q → +∞, we get

‖ρ‖L∞ ≤ ‖ρ0‖L∞ exp(tC(M(t))). (2.2)

It follows from (1.1) that

∂t

(
1

ρ

)
+ u · ∇

(
1

ρ

)
− 1

ρ
div u = 0. (2.3)
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Testing (2.3) by
(
1
ρ

)q−1
, we find that

1

q

d

dt

∫ (
1

ρ

)q

dx =
(
1 + 1

q

) ∫ (
1

ρ

)q

div udx ≤
(
1 + 1

q

) ∥∥∥∥
1

ρ

∥∥∥∥
q

Lq

‖div u‖L∞ ,

and therefore
d

dt

∥∥∥∥
1

ρ

∥∥∥∥
q

Lq

≤ (q + 1)

∥∥∥∥
1

ρ

∥∥∥∥
q

Lq

‖div u‖L∞ ,

which gives

∥∥∥∥
1

ρ

∥∥∥∥
Lq

≤
∥∥∥∥
1

ρ0

∥∥∥∥
Lq

exp

((
1 + 1

q

) ∫ t

0
‖div u‖L∞dτ

)

and we have ∥∥∥∥
1

ρ

∥∥∥∥
L∞

≤
∥∥∥∥
1

ρ0

∥∥∥∥
L∞

exp(tC(M(t))) (2.4)

by sending q → +∞.
(2.2) and (2.4) give

‖p‖L∞ +
∥∥∥∥
1

p

∥∥∥∥
L∞

≤ C0(M(0)) exp(tC(M(t))). (2.5)

It is easy to verify that

d

dt

∫
|u|2dx = 2

∫
u∂t udx ≤ 2‖u‖L2‖∂t u‖L2 ≤ C(M(t)),

which implies
‖u‖L2 ≤ C0(M(0)) exp(tC(M(t))). (2.6)

Testing (1.3) by ψ and taking the real parts, we derive

1

2

d

dt

∫
|ψ|2dx = −1

2

∫
|ψ|2div udx

≤ 1

2
‖ψ‖2L2‖div u‖L∞ ≤ C(M(t)),

which gives
‖ψ‖L2 ≤ C0(M(0)) exp(tC(M(t))). (2.7)

Applying �s to (1.3), testing by �sψ, taking the real parts, and using (1.10) and
(1.11), we compute
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1

2

d

dt

∫
|�sψ|2dx = −Re

∫
(�s(u · ∇ψ) − u · ∇�sψ)�sψdx − 1

2

∫
|�sψ|2div udx

−Rei
∫

�s(ψ2ψ)�sψdx

≤ C‖∇u‖L∞‖�sψ‖2L2 + C‖∇ψ‖L∞‖�su‖L2‖�sψ‖L2 + 1

2
‖div u‖L∞‖�sψ‖2L2

+C‖ψ‖2L∞‖�sψ‖2L2 ≤ C(M(t)),

which leads to
‖�sψ‖L2 ≤ C0(M(0)) exp(tC(M(t))). (2.8)

Applying �s to (1.6), testing by �s p, and using (1.6), (1.10) and (1.11), we
compute

1

2

d

dt

∫
1

γ p
(�s p)2dx +

∫
�s p�sdiv udx

= 1

2

∫
(�s p)2

[
div

(
u

γ p

)
− 1

γ p2
∂t p

]
dx −

∫ (
�s

(
1

γ p
∂t p

)
− 1

γ p
�s∂t p

)
�s pdx

−
∫ (

�s
(

u

γ p
· ∇ p

)
− u

γ p
· ∇�s p

)
�s pdx

≤ C‖�s p‖2L2

∥∥∥∥div
(

u

γ p

)
− 1

γ p2
∂t p

∥∥∥∥
L∞

+C‖∂t p‖L∞
∥∥∥∥�s

(
1

γ p

)∥∥∥∥
L2

‖�s p‖L2 + C

∥∥∥∥∇ 1

γ p

∥∥∥∥
L∞

‖�s−1∂t p‖L2‖�s p‖L2

+C‖∇ p‖L∞
∥∥∥∥�s

(
u

γ p

)∥∥∥∥
L2

‖�s p‖L2 + C

∥∥∥∥∇ u

γ p

∥∥∥∥
L∞

‖�s p‖2L2

≤ C(M(t)) + C(M(t))‖∂t p‖L∞ + C(M(t))‖�s−1∂t p‖L2

≤ C(M(t)) + C(M(t))‖u · ∇ p + γ pdiv u‖L∞ + C(M(t))‖�s−1(u · ∇ p + γ pdiv u)‖L2

≤ C(M(t)). (2.9)

Here we have used
∥∥∥∥�s 1

p

∥∥∥∥
L2

≤ C(M(t))‖�s p‖L2 ≤ C(M(t)), (2.10)

which follows from the estimate [13, Proposition 2.1, p. 43]: Assume g(u) is a smooth
vector-valued function and u ∈ L∞ ∩ Hs . Then for s ≥ 1,

‖�sg(u)‖L2 ≤ C

∥∥∥∥
∂g

∂u

∥∥∥∥
Hs−1

‖u‖s−1
L∞ ‖�su‖L2 . (2.11)

Applying�s−1 to (1.2), testing by�s−1∂t u, and using (1.10) and (1.11), we obtain
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μ

2

d

dt

∫
|�su|2dx + λ + μ

2

d

dt

∫
(�s−1div u)2dx +

∫
ρ|�s−1∂t u|2dx

=
∫

�s−1(ψψ∇h)�s−1∂t udx −
∫

�s−1∇ p · �s−1∂t udx

−
∫

�s−1(ρu · ∇u) · �s−1∂t udx −
∫

[�s−1(ρ∂t u) − ρ�s−1∂t u]�s−1∂t udx

≤ C‖�s−1(ψψ∇h)‖L2‖�s−1∂t u‖L2 + C‖�s p‖L2‖�s−1∂t u‖L2

+C‖ρ‖Hs−1‖u‖2Hs ‖�s−1∂t u‖L2 + C(‖∇ρ‖L∞‖�s−2∂t u‖L2 + ‖∂t u‖L∞‖�s−1ρ‖L2 )‖�s−1∂t u‖L2

≤ C(M(t))‖�s−1∂t u‖L2 + C(M(t))(‖�s−2∂t u‖L2 + ‖∂t u‖L∞ )‖�s−1∂t u‖L2

≤ C(M(t))‖�s−1∂t u‖L2

+C(M(t))(‖∂t u‖
1

s−1

L2 ‖�s−1∂t u‖
s−2
s−1

L2 + ‖∂t u‖L2 + ‖∂t u‖
s−1− n

2
s−1

L2 ‖�s−1∂t u‖
n

2(s−1)

L2 )‖�s−1∂t u‖L2

(
with s − 1 >

n

2

)

≤ C(M(t))‖�s−1∂t u‖L2 + C(M(t))(‖�s−1∂t u‖
s−2
s−1

L2 + ‖�s−1∂t u‖
n

2(s−1)

L2 )‖�s−1∂t u‖L2

≤ 1

2

∫
ρ|�s−1∂t u|2dx + C(M(t)),

which gives

∫ t

0

∫
|�s−1∂t u|2dxdτ ≤ C0(M(0)) exp(tC(M(t))). (2.12)

Applying �s to (1.2), testing by �su, and using (1.1), (1.10) and (1.11), we have

1

2

d

dt

∫
ρ|�su|2dx + μ

∫
|�s+1u|2dx + (λ + μ)

∫
(�sdiv u)2dx +

∫
�s∇ p · �sudx

=
∫

�s(ψψ∇h) · �sudx −
∫

(�s(ρ∂t u) − ρ�s∂t u)�sudx

−
∫

(�s(ρu · ∇u) − ρu · ∇�su)�sudx

≤ C‖�s(ψψ∇h‖L2‖�su‖L2 + C(‖∇ρ‖L∞‖�s−1∂t u‖L2 + ‖∂t u‖L∞‖�sρ‖L2 )‖�su‖L2

+C(‖∇u‖L∞‖�s(ρu)‖L2 + ‖∇(ρu)‖L∞‖�su‖L2 )‖�su‖L2

≤ C(M(t)) + C(M(t))(‖�s−1∂t u‖L2 + ‖∂t u‖L∞ )

≤ C(M(t)) + ‖�s−1∂t u‖2L2 . (2.13)

Summing up (2.9) and (2.13), we have
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1

2

d

dt

∫ (
1

γ p
(�s p)2 + ρ|�su|2

)
dx

+μ

∫
|�s+1u|2dx + (λ + μ)

∫
(�sdiv u)2dx

+
∫

(�s p�sdiv u + �s∇ p · �su)dx

≤ C(M(t)) + ‖�s−1∂t u‖2L2 . (2.14)

Notice that the last term of the LHS in (2.14) is zero. Then using (2.12), we have

‖�s(p, u)‖L2 ≤ C0(M(0)) exp(tC(M(t))). (2.15)

On the other hand, it follows from (1.2) that

‖∂t u‖L2 =
∥∥∥∥
1

ρ

(|ψ|2∇h + μ�u + (λ + μ)∇div u − ∇ p − ρu · ∇u
)∥∥∥∥

L2

≤ C0(M(0)) exp(tC(M(t))). (2.16)

Using the following estimate [13]:

‖�sρ‖L2 ≤ C(1 + ‖p‖L∞)σ‖ f ‖W σ,∞(I )‖�s p‖L2 (2.17)

with ρ = f (p) :=
( p

a

) 1
γ

and

I ⊂
(

1

C0(M(0))
exp(−tC(M(t))),C0(M(0)) exp(tC(M(t)))

)
,

and σ is an integer satisfying σ ≥ s, we have

‖�sρ‖L2 ≤ C0(M(0)) exp(tC(M(t))). (2.18)

Combining (2.4), (2.5), (2.6), (2.7), (2.8), (2.15), (2.16), and (2.18), we conclude
that (1.8) holds true.

This completes the proof.
�
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Singular Limit Problem to the
Keller-Segel System in Critical Spaces
and Related Medical Problems—An
Application of Maximal Regularity

Takayoshi Ogawa

Abstract Weconsider singular limit problems of theCauchy problem for the Patlak-
Keller-Segel equation and related problems appeared in the theory ofmedical andbio-
chemical dynamics. It is shown that the solution to thePatlak-Keller-Segel equation in
a scaling critical function class converges strongly to a solution of the drift-diffusion
systemof parabolic-elliptic equations as the relaxation timeparameter τ → ∞.Anal-
ogous problem related to the Chaplain-Anderson model for cancer growth model is
also presented as well as Arzhimer’s model that involves the multi-component drift-
diffusion system. For the proof, we use generalized maximal regularity for the heat
equations and systematically apply embeddings between the interpolation spaces
shown in [40, 41]. The argument requires generalized version of maximal regularity
developed in [40, 61], for the Cauchy problem of the heat equation.

Keywords Keller-Segel equation · Drift-diffusion system · Singular limit
problem · Maximal regularity · Critical space · Global well-posedness · Scaling
invariance · Bounded mean oscillation
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1 Introduction—The Singular Limit Problem

A mathematical model describing an interactive dynamics for behaviors of a
chemical-biology reaction is called as chemotaxis.One of a simplestmodel of chemo-
taxis was derived by Patlak [62] and Keller-Segel [32] is named as the Patlak-Keller-
Segel model that describes a spatial dynamics of the mucus mold and reaction with
the chemical substance that attract themselves. The model is involved the density of
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mucus molds and the density of a chemical substance. More the mucus attracted then
more the chemical substance is created by them and then, the total density increase
until they can produce their sprout.

In fact, such kind of dynamics appears in various fields of mathematical science.
For instance, the behavior of the interstellar material governed by the gravity shows
dissipative movements. Once the gravity exists then the gravity object starts to gather
each other. Such a model is a simplest case for the dynamics of gravity material in
astronomy. An analogous model does surprisingly appear in the model of semi-
conductor in the earlier work of the devise simulations (Mock [46]). Though this
model is too simple to work with the latest devises since they are involved with the
quantummechanics approach that requiresmore delicate setting, the basic dissipative
nature stems from their original form. One important remark for those models is that
the electric forth works in an opposite direction so that the mathematical system for
the semiconductor has a repulsive nature.

Those models are typically given by a balance between a dissipative nature and
attractive driving force. Our main purpose of this survey is to make a mathematical
connection between such a two similar models and we make a bridge between them
by a method of mathematical analysis, namely singular limit problem.

Several mathematical problems arose from medical science that describes the
tumor growth or Arzheimer’s disease. Those models exhibit very similar nature and
the model shows how the disease grows under the very similar condition. Applying
the dimension analysis, the critical setting is beyond our realistic spacial dimension
3 and hence the uniform boundedness for the solution is the most important question
on that problems. The uniform boundedness of the solution ensure that the disease
can be control by a medical or natural treatment. We give two different but very
similar models which is unstable in the critical spacial dimension 4 but not in 3.

1.1 Keller-Segel System in the Scaling Invariant Spaces

We consider the Cauchy problem of the Patlak-Keller-Segel system in n-dimensional
Euclidian space R

n:

⎧
⎪⎪⎨

⎪⎪⎩

∂t uτ − �uτ + ∇ · (uτ∇ψτ ) = 0, t > 0, x ∈ R
n,

1

τ
∂tψτ − �ψτ = uτ , t > 0, x ∈ R

n,

uτ (0, x) = u0(x), ψτ (0, x) = ψ0(x), t = 0, x ∈ R
n,

(1.1)

where uτ = uτ (t, x) and ψτ (t) = ψτ (t, x) denotes the unknown density of mucus
molds and the distribution of the chemical substance and (u0,ψ0) is given pair
of the initial data. The constant λ ≥ 0 is a parameter often chosen as λ = 0. The
notation ∂t describes the partial derivative with respect to the time variable and
∇ = (∂x1 , ∂x2 , . . . ∂xn ) stands for the gradient, � ≡∑n

k=1 ∂2
xk denotes the Laplacian
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for the spatial variables. The problem (1.1) originally introduced as the chemical-
biological reaction by the chemotaxis, the chemical substance produced by mucus
molds attracts other mucus molds. Such a reaction often observe other situation. The
original model is considered in a bounded domain � ⊂ R

n for n = 1, 2, 3.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t u − �u + κ∇ · (u∇ψ) = 0, t > 0, x ∈ �,

∂tψ − �ψ + λψ = u, t > 0, x ∈ �,

∂u

∂ν
= ∂ψ

∂ν
= 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), ψ(0, x) = ψ0(x), t = 0, x ∈ �,

(1.2)

where ν denotes the outer normal vector at the boundary point and κ ∈ R \ {0}
is a coupling constant. The system (1.2) is called the Patlak-Keller-Segel system
introduced by Patlak [62], Keller-Segel [32] for a model of chemotaxis dynamics.
Since the problem has a non-local property, it is interesting to consider the domain
as the whole space � = R

n and consider it as the Cauchy problem in R
n . In such a

case, the effect of the drift nonlinear term in the first equation is strengthened and
the non-local property is visible. To see the scaling invariant property, we focus on
the most unstable setting λ = 0.

When the dynamics of the chemical substance is relatively slow, the dynamics ofψ
can be subordinate to the dynamics of mucus molds. Then introducing the relaxation
time parameter τ−1 > 0, the limiting process can be considered as τ → ∞. Then
the set of the limiting functions

⎧
⎨

⎩

lim
τ→∞ uτ (t, x) = u(t, x),

lim
τ→∞ ψτ (t, x) = ψ(t, x)

(1.3)

formally solves the initial value problem of the drift-diffusion system:

⎧
⎪⎨

⎪⎩

∂t u − �u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

− �ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), t = 0, x ∈ R
n.

(1.4)

The system (1.4) is called the drift-diffusion equation and originally appeared in
the theory of semiconductor (Mock [46]) and the formation of stars in astronomy
(Chandrasekhar [11]). Such a simplified Patlak-Keller-Segel system was introduced
by Jäger-Luckhaus [29] (see also [4–7, 13–15, 27–30, 36–39, 47–52, 64–66, 69,
73] and one-dimensional case [9, 69]). For the role of the constant λ > 0 see for
instance Bedrossian [2].

The singular limit problem has been considered by Biler-Brandolese [5],
Raczyński [63] and Lemarié-Rieusset [44]. They considered the case of the van-
ishing initial condition ψ0 ≡ 0 and showed the strong convergence (1.3) of the small
global solutions in an elegant way in the scaling invariant spaces such as pseudo-
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measure or L1(R2) for small initial data. Lemarié-Rieusset [44] showed the singular
limit in the scaling invariantMorrey space. The existence and well-posedness of both
of two Cauchy problems (1.1) and (1.4) can be seen in the scaling critical function
spaces. Both of the systems (1.1) and (1.4) are invariant under the following scaling
transform: For μ > 0, {

uμ(t, x) = μ2u(μ2t,μx),

ψμ(t, x) = ψ(μ2t,μx),

and the invariant class of the sense of Fujita-Kato [24] is now identified in the
Bochner-Lebesgue class as

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ Lθ
(
R+; Lq(Rn)

)
,

2

θ
+ n

q
= 2,

n

2
≤ q, 2 ≤ θ,

ψ ∈ Lσ
(
R+; Lr (Rn)

)
,

2

σ
+ n

r
= 0, ∞ ≤ q, ∞ ≤ σ,

where Lθ
(
I ; Lq(Rn)

)
stands for the Bochner-Lebesgue space equipped with the

norm:

‖ f ‖Lθ(I ;Lq ) ≡
(∫

I
‖ f (t, ·)‖θ

qdt

)1/θ

< ∞, I = (0, T ).

It is natural to choose θ = σ = ∞ in order to find a solution in the same Lebesgue
class as the initial data for all the time, then we find that p = n

2 , r = ∞. On the
other hand, in the view of the expecting limiting problem (1.4), it is difficult to
choose as r = ∞ as the regularity theory of elliptic partial differential equation for
the critical external force u ∈ L

n
2 (Rn), unless the solution of the first component

has better regularity. Kurokiba-Ogawa [40, 41] considered the same problem in the
scaling critical function space and obtained the singular limit indeed converges to
the limiting problem in the strong sense, in both small global solution and large local
solution, in the unified way by applying the Fujita-Kato principle [24].

We should emphasize a remarkable property of the solution to both the system
(1.1) and (1.4) as t → ∞. First, the solution is non-negative if the initial data is non-
negativewhich follows fromweakmaximumprinciple. Secondly under the positivity
setting, the solution preserves the total mass m = ‖u(t)‖1 and has the free energy
bound: For simplicity, we set τ = 1 and omit the suffix τ .

H [u(t)] +
∫ t

0

∫

Rn

u(s)
∣
∣∇( log u(s) − ψ(s)

)∣
∣2dxds ≤ H [u0], t > 0,

where H [u] denotes theHelmholtz free energy consisting of the entropy of the system
and the inner energy as follows:
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H [u(t)] =

⎧
⎪⎪⎨

⎪⎪⎩

∫

Rn
u(t) log u(t)dx + 1

2
‖ψ(t)‖2H1 − 1

2

∫

Rn
u(t)(−�)−1u(t)dx for (1.1)

∫

Rn
u(t) log u(t)dx − 1

2

∫

Rn
u(t)(−�)−1u(t)dx for (1.4).

Then using those quantities, one can show that a solution of (1.1) and (1.4) blows
up in a finite time under suitable assumptions on the data (see [4, 6, 37, 47, 48, 64,
65]). In particular for n = 2, the threshold for the global existence and finite time
blow up is clarified [2, 4, 47–49, 52, 71] namely for the solution with ‖u0‖1 ≤ 8π
then the corresponding solution exists globally in time and if ‖u0‖1 > 8π, then the
finite moment solution blows up in a finite time. This fact can be derived by the virial
identity: For the non-negative solution to (1.4), it holds that

∫

R2
|x − x0|2u(t, x)dx =

∫

R2
|x − x0|2u0(x)dx + 4‖u0‖1

(

1 − ‖u0‖1
8π

)

t. (1.5)

Besides the total mass ‖u(t)‖1 preserves and hence if the initial data is non-negative
with ‖u0‖1 > 8π the positive solution can not exists globally in time since the right
hand side of (1.5) reaches negative value within a finite time. The corresponding
results were shown by Nagai-Ogawa [49], Mizoguchi [45] for (1.1) with τ = 1. The
higher dimensional cases are more unstable, namely the L1-norm of the solution is
not the scaling critical quantity and hence it does not control a solution for whole
time. It is shown that if the initial critical quantity ‖u0‖ n

2
is small enough then the

solution exists globally in time, while if the initial data is non-negative and large
enough so that

H [u0] <
n

b
‖u0‖1 log

⎛

⎝
‖u0‖1+

b
n

1

Cn
∫

Rn |x − x̄ |bu0dx

⎞

⎠ ,

for some b > 0 and Cn > 0, then the solution is unstable and blows up in a finite
time under the assumption either b ≥ 2 or the data is radially symmetric (cf. Biler
[4], Calvez et al. [10], Ogawa-Wakui [60]). The proof of such an instability relies
on how to control the entropy part of the Helmholtz free energy H [u]. Namely the
Shannon inequality;

−
∫

Rn

f (x) log f (x)dx ≤ n

2
‖ f ‖1 log

⎛

⎝
2πe

∫

Rn

∣
∣x − x0

∣
∣2 f (x)dx

‖ f ‖1+ 2
n

1

⎞

⎠ (1.6)

and its generalization works well. Indeed, the inequality (1.6) plays as a role of the
Fourier dual of the well-known logarithmic Sobolev inequality due to Stam [67] and
Gross [25]:
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∫

Rn

f (x) log
(
f (x)

)
dx ≤n

2
‖ f ‖1 log

⎛

⎝
1

2nπe‖ f ‖1− 2
n

1

∫

Rn

∣
∣∇ log

(
f (x)

)∣
∣2 f (x)dx

⎞

⎠ .

(1.7)
It is remarkable that the inequalities (1.6) and (1.7) reproduce the Heisenberg uncer-
tainty inequality intermediated by the entropy functional: For any 1 < p < n,

‖ f ‖1 ≤ 1

n

(∫

Rn

|x − x̄ |p′
f (x)dx

)1/p′ (∫

Rn

|∇ log f (x)|p f (x)dx
)1/p

,

See for the above generalization Ogawa-Seraku [56] and further inequality involving
the logarithmic weight, Kubo-Ogawa-Suguro [35].

1.2 The Chaplain-Anderson Model and the Fujie-Senba
Equation

The problem (1.1) is related to the tumor growth model considered by Chaplain-
Anderson [12] which consists of multi-component nonlinear ordinary differential
equations of various stage of the bio-chemical reactions. Then introducing the addi-
tional chemical stage Fujie-Ito-Yokota [21] proposed the following variant from the
Chaplain-Anderson model as a tumor invasion. We introduce the following simpli-
fied version of their system: Let� ⊂ R

n be a bounded domainwith smooth boundary
∂�.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t uτ − �uτ + ∇ · (uτ∇ψτ ) = 0, t > 0, x ∈ �,

∂t fτ ,α = −αφτ fτ ,α t > 0, x ∈ �,

1

τ
∂tφτ − �φτ = uτ , t > 0, x ∈ �,

1

τ
∂tψτ − �ψτ = αφτ fα,τ , t > 0, x ∈ �,

uτ (0, x) = u0(x), fα(0, x) = f0(x),

φτ (0, x) = φ0(x), ψτ (0, x) = ψ0(x), t = 0, x ∈ �

(1.8)

with suitable boundary conditions on ∂�, where the unknown functions uτ =
uτ (t, x) : R+ × � → R, fτ ,α = fτ ,α(t, x) : R+ × � → R, φτ = φτ (t, x) :
R+ × � → R andψτ = ψτ (t, x) : R+ × � → R denote the density of mucusmold,
the density of chemical substance of the first stage and the one of chemical substance
of the second stage, respectively. τ > 0 and α > 0 are constants. The system (1.8)
was introduced by Fujie-Ito-Yokota [21] observing that the drift-diffusion process
is taking into account on the original Chaplain-Anderson model [12] (cf. Fujie-Ito-
Winkler-Yokota [22]). If the third component of the system (1.8) is a given function,
then the solution of the second equation is given by the third component φτ as
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α fα,τ (t, x) = α f0(x) exp

(

−α

∫ t

0
φτ (s, x)ds

)

.

T. Senba considered the critical setting of the system (1.8) as the global behavior of
solution in the whole space � = R

n and consider the case when

α f0(x) exp

(

−α

∫ t

0
φτ (s, x)ds

)

→ α∗ (constant).

Then the system (1.8) is reduced into the following slightly simplified Cauchy prob-
lem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t uτ − �uτ + ∇ · (uτ∇ψτ ) = 0, t > 0, x ∈ R
n,

1

τ
∂tφτ − �φτ = uτ , t > 0, x ∈ R

n,

1

τ
∂tψτ − �ψτ = φτ , t > 0, x ∈ R

n,

uτ (0, x) = u0(x),

φτ (0, x) = φ0(x), ψτ (0, x) = ψ0(x), t = 0, x ∈ R
n,

(1.9)

where α∗ is chosen as 1 for simplicity. The mathematical structure of the simplified
Chaplain-Anderson equation is interesting since it has double staged potentials and
it makes the system critical when the spatial dimension n = 4 comparing with the
case of Patlak-Keller-Segel system (1.1). Passing to the limiting problem:

⎧
⎪⎨

⎪⎩

uτ (t, x) → u(t, x),

φτ (t, x) → φ(t, x),

ψτ (t, x) → ψ(t, x)

as τ → ∞, the limiting functions formally solve the following version of drift-
diffusion system studied by Fujie-Senba [23]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u − �u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

− �φ = u, t > 0, x ∈ R
n,

− �ψ = φ, t > 0, x ∈ R
n,

u(0, x) = u0(x), t = 0, x ∈ R
n.

(1.10)

Then the system (1.9) is observed that the solution blows up in a finite time for the
four dimensional case in Fujie-Senba [23] analogously to the case of drift-diffusion
system (1.4) under the assumption ‖u0‖1 > (8π)2.

The setting in the four space dimension is a natural extension from the case to the
problem (1.1) and (1.4) in two space dimension. We consider such a large initial data
case, the solution of the full-parabolic system of Chaplain-Anderson type equation
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converges to the solution to Fujie-Senba equation (1.10) of the drift-diffusion type
in a critical function space.

In themedical sciencemodel, there is another problem closely related to the above
problem (1.10). For a positive constant β > 0 we consider the Cauchy problem of
the multi-component chemical attraction model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u − �u + ∇ · (u∇(ψ − βφ)) = 0, t > 0, x ∈ R
n,

1

τ
∂tφ − �φ + λ1φ = u, t > 0, x ∈ R

n,

1

τ
∂tψ − �ψ + λ2ψ = u, t > 0, x ∈ R

n,

u(0, x) = u0(x), t = 0, x ∈ R
n,

φ(0, x) = φ0(x), ψ(0, x) = ψ0(x), t = 0, x ∈ R
n.

(1.11)

The original system of the model was introduced for describing the aggregation of
microglia in Alzheimer’s disease and ψ and φ are the concentration of chemoattrac-
tant and chemo-repellent, respectively. By passing a limit τ → ∞, one can derive a
similar problem of drift-diffusion system;

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u − �u + ∇ · (u∇(ψ − βφ)) = 0, t > 0, x ∈ R
n,

− �φ + λ1φ = u, t > 0, x ∈ R
n,

− �ψ + λ2ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), t = 0, x ∈ R
n.

(1.12)

Under the assumption λ1 = λ2 > 0, the nature of the solution (u,ψ,φ) to (1.12) is
related to the problem (1.4) if 0 ≤ β < 1, namely instability and finite time blowing-
up happen for n = 2 while it is rather closer to (1.10) when β = 1. The solution
remains bounded for the lower space dimensions n = 2, 3 but may occur finite time
blow-up for n = 4 as the model (1.10). The global well-posedness for the non-
negative solution is obtained by Jin-Liu [29], Shi-Wang [66], Nagai-Yamada [53–55]
for β = 1.

Analogous theory for the Cauchy problems from (1.9) to (1.10) and (1.11) to
(1.12) can be available in the scaling critical function spaces (cf. Kurokiba-Ogawa
[40, 41]). Both of the systems (1.9) and (1.10) are invariant under the following
scaling transform:

⎧
⎪⎨

⎪⎩

uμ(t, x) = μ4u(μ2t,μx),

φμ(t, x) = μ2φ(μ2t,μx),

ψμ(t, x) = ψ(μ2t,μx)

for μ > 0, and the invariant class of the sense of Fujita-Kato is now identified in the
Lebesgue-Bochner class as
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ Lθ
(
R+; Lq(Rn)

)
,

2

θ
+ n

p
= 4,

n

4
≤ p ≤ θ,

φ ∈ Lρ
(
R+; Ls(Rn)

)
,

2

ρ
+ n

q
= 2,

n

2
≤ q ≤ ρ,

ψ ∈ Lσ
(
R+; Lr (Rn)

)
,

2

σ
+ n

r
= 0, ∞ ≤ r ≤ σ.

It is natural to choose θ = σ = ∞ in order to find a solution in the same Lebesgue
class as the initial data for all the time, then we find that p = n

4 , q = n
2 , r = ∞.

As is mentioned above, there is a difficulty associated with regularity of the third
component if n = 4. Namely under r = ∞, it is generally difficult to obtain ψ ∈
L∞(Rn) from u ∈ L

n
2 in four spatial dimensions. In stead of that, it is natural to

choose the class for ψ in the class of bounded mean oscillation, BMO(Rn) [34].

Definition For a measurable function f = f (x) with x ∈ R
n ,

BMO(Rn) = { f ∈ L1
loc(R

n); ‖ f ‖BMO < ∞},

where

‖ f ‖BMO ≡ sup
x∈Rn ,R>0

1

|BR|
∫

BR(x)
| f (y) − fBR |dy, fBR = 1

|BR|
∫

Br (x)
f (y)dy

and BR(x) denotes n-dimensional ball centered at x with radius R > 0. For s ≥ 0,
let

˙BMO
s = ˙BMO

s
(Rn) ≡

{
f ∈ L1

loc(R
n); |∇|s f ∈ BMO(Rn)

}
.

Let C0(R
n) be a set of all continuous functions over R

n with vanishing at |x | →
∞. We set V MO = V MO(Rn) (vanishing mean oscillation) by the completion of

C0(R
n) by BMO semi-norm, i.e., V MO(Rn) = C0(Rn)

BMO
.

The class BMO and V MO are quasi-Banach spaces and if we identify the ele-
ments of BMO up to constants, it is regarded as the Banach space.We also introduce

the space-time space L̃2(I ; BMO) that is introduce by Koch-Tataru [33] for solving
the incompressible Navier-Stokes equation in the limiting scaling invariant class.

Definition For I = (0, T ) with T ≤ ∞,

L̃2(I ; BMO(Rn)) ≡
{
f = f (t, x); I × R

n → R; ‖ f ‖
L̃2(I ;BMO)

< ∞
}
,

with

‖ f ‖2
˜L2(I ;BMO)

≡ sup
x0∈Rn ,R>0

∫

I∩(0,R2)

1

|BR |2
∫∫

BR (x0)×BR (x0)

∣
∣ f (t, x) − f (t, y)

∣
∣2dxdydt

� sup
x0∈Rn ,R>0

∫

I∩(0,R2)

1

|BR |
∫

BR (x0)

∣
∣ f (t, x) − fBR (x0)(t)

∣
∣2dxdydt,
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where

fBR (t) = 1

|BR|
∫

BR(x0)
f (t, x)dx .

The class L̃2(I ; V MO(Rn)) is similarly introduced as above.

The equivalent norm in the above can be identify from this definition of mean
average immediately.

The class BMO , ˙BMO
s
and V MO are quasi-Banach spaces and if we identify

the elements of those spaces up to constants, they are regarded as Banach spaces.

Definition We call the set of the exponents (θ, q), (σ, r) as the admissible for the
problem (1.1), if they satisfy

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ Lθ
(
R+; Lq(Rn)

)
,

2

θ
+ n

q
= 2,

n

2
< q < 2 < θ,

∇ψ ∈ Lσ
(
R+; Lr (Rn)

)
,

2

σ
+ n

r
= 1, n < r < σ.

(1.13)

Definition We call the set of the exponents (θ, p), (ρ, q), (σ, r) as the admissible
for the problem (1.9), if they satisfy n

4 < p < 2, n
3 < q < n, n < r and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ Lθ
(
R+; L p(Rn)

)
,

2

θ
+ n

p
= 4,

n

4
< p < θ,

φ ∈ Lρ
(
R+; Lq(Rn)

)
,

2

ρ
+ n

q
= 2,

n

2
< q < ρ,

∇ψ ∈ Lσ
(
R+; Lr (Rn)

)
,

2

σ
+ n

r
= 1, n < r < σ.

(1.14)

We should note that the limiting case θ = ρ = σ = ∞ and p = 1, q = 2 and
r = ∞ is the class where we consider the solution of both the systems (1.9) and
(1.10).

2 Well-Posedness Issue in the Critical Setting

In what follows, we consider the solvability of the Cauchy problems (1.1), (1.4) and
(1.9), (1.10) in the scaling invariant class, namely the admissible class defined in the
above and consider the singular limit problem τ → ∞. To this end, we apply the
method of generalized maximal regularity for the heat equation developed in [61].

First we consider the well-posedness issue for the Cauchy problems (1.1) and
(1.4) (see [40, 41]).

Definition Let τ > 0 and 1 ≤ p, r ≤ ∞. For initial data (u0,ψ0) ∈ L p(Rn) ×
Ẇ 1,r (Rn), (uτ ,ψτ ) is a (mild) solution to (1.1) if the following integral equation
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is solved: ⎧
⎪⎪⎨

⎪⎪⎩

uτ (t) = et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

ψτ (t) = etτ�ψ0 +
∫ t

0
e(t−s)τ�τuτ (s)ds

in C(I ; L p(Rn)) × C(I ; Ẇ 1,r (Rn)).

Definition Let 1 ≤ p, r ≤ ∞. For initial data u0 ∈ L p(Rn), (u,ψ) is a (mild) solu-
tion to (1.4) if the following integral equation is solved:

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = et�u0 +
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)

)
ds,

ψ(t) = (−� + λ)−1u(t) = lim
t→∞

∫ t

0
es�u(t)ds

in C(I ; L p(Rn)) × C(I ; Ẇ 1,r (Rn)).

Here we give the definition of the mild solution as follows:

Definition Let τ > 0. For initial data (u0,φ0,ψ0) ∈ L1(R4)×L2(R4)×V MO(R4),
(uτ ,φτ ,ψτ ) is a (mild) solution to (1.9) if following integral equation is solved:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uτ (t) = et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

φτ (t) = etτ�φ0 +
∫ t

0
e(t−s)τ�τuτ (s)ds,

ψτ (t) = etτ�ψ0 +
∫ t

0
e(t−s)τ�τφτ (s)ds.

in C(I ; L1(R4)) × C(I ; L2(R4)) × C(I ; V MO(R4)).

One can relax the condition on the initial data and solution into ψ0 ∈ BMO(R4)

and ψτ ∈ Cw(I ; BMO(R4)) in the above definition. For initial data u0 ∈ L1(R4),
(u,φ,ψ) is a (mild) solution to (1.10) if the following integral equation is solved:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = et�u0 +
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)

)
ds,

φ(t) = (−�)−1u(t) = lim
t→∞

∫ t

0
es�φ(t)ds,

ψ(t) = (−�)−1u(t) = lim
t→∞

∫ t

0
es�ψ(t)ds

in C(I ; L1(R4)) × C(I ; L2(R4)) × C(I ; BMO(R4)), where (−�)−1u ≡ − 1
2π

log |x | ∗ u(x).
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2.1 Well-Posedness of the Full System

We first state the existence and well-posedness in both time local and global with
small data as follows:One of the difficulty of the problem is regularity for the solution
φτ and φ since φ is involving the four-dimensional bi-Poisson equations. To avoid
such a difficulty, we introduce a class of functions with bounded mean oscillation
(BMO).

We define a mild (strong) solution of system (1.1) and (1.4). Let et� denote the
heat evolution operator given by

et�u0 ≡
∫

Rn

Gt (x − y)u0(y)dy for u0 ∈ C0(R
n), (2.1)

where Gt (x) = 1
(4πt)n/2 exp

(
−|x |2

4t

)
is the Gauss kernel for t > 0.

We choose pair of exponents for the solution class as (θ, q) and (θ, r) defined in
(1.14). Then a natural class for the common initial data is indeed given by the sharp
trace estimate from the semi-group representation in the real interpolation theory
such as

‖et�u0‖Lθ(I ;L p) < ∞,

‖∇et�ψ0‖Lσ(I ;Lr ) < ∞,

}

=⇒ (u0,ψ0) ∈ Ḃ
− 2

θ

p,θ (Rn) × Ḃ
1− 2

σ
r,σ (Rn).

Definition The homogeneous Besov spaces. Let s ∈ R, 1 ≤ p,σ ≤ ∞. The homo-
geneous Besov space denoted by Ḃs

p,σ = Ḃs
p,σ(Rn) is given by defined by

‖ f ‖Ḃs
p,σ

=
(∑

j∈Z

2sσ j‖φ j ∗ f ‖σ
p

)1/σ
,

where {φ j } stands for the Littlewood-Paley dyadic decomposition of unity in the
Fourier space ξ ∈ R

n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̂(ξ) = ϕ̂(|ξ|), ξ ∈ R
n,

φ̂(ξ) ∈ C∞
0 (B2(0) \ B1/2(0)).

φ̂ j (ξ) ≡ φ̂(2 jξ) with
∑

j∈Z

φ̂(ξ) ≡ 1, ξ = 0

(cf. Triebel [70]).
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2.2 Well-Posedness of the Keller-Segel System

We first state the existence and well-posedness of the problem (1.1) in both time
local and global with small data as follows: We assume κ = 1 throughout the paper.

Proposition 2.1 Let n ≥ 2, and (θ, q), (σ, r) be the admissible pairs defined in
(1.13). For n

2 ≤ p < n, λ ≥ 0 and fix τ > 0. For n = 2, we further assume that
λ > 0 and u0 ∈ L1(R2) ∩ Ḃ0

1,4(R
2).

(1) For n
2 < p < n, let (u0,ψ0) ∈ L p(Rn) × Ẇ 1, np

n−p (Rn). Then there exist T =
T (‖u0‖p, ‖∇ψ0‖n) > 0 and the unique strong solution (uτ ,ψτ ) to (1.1) in

uτ ∈ C
([0, T ); L p(Rn)

) ∩ L2
(
0, T ; Ẇ 1,p(Rn)

)
,

ψτ ∈ C
([0, T ); Ẇ 1, np

n−p (Rn)
) ∩ L2(0, T ; Ẇ 1, np

n−p (Rn)
)
.

(2) Let (u0,ψ0) ∈ L
n
2 (Rn) × Ẇ 1,n(Rn). Then there exist T = T (u0,ψ0) > 0 and

the unique strong solution (uτ ,ψτ ) to (1.1) in

uτ ∈ C
([0, T ); L n

2 (Rn)
) ∩ Lθ

(
0, T ; Lq(Rn)

)
,

ψτ ∈ C
([0, T ); Ẇ 1,n(Rn)

) ∩ Lσ
(
0, T ; Ẇ 1,r (Rn)

)
.

(3) There exists ε0 > 0 such that for any (u0,ψ0) ∈ L
n
2 (Rn) × Ẇ 1,n(Rn) with

‖u0‖L
n
2

+ ‖∇ψ0‖Ln < ε0, (2.2)

there exists a unique global solution (uτ ,ψτ ) to (1.1) such that

uτ ∈ BUC
(
R+; L n

2 (Rn)
) ∩ Lθ

(
R+; Lq(Rn)

)
,

ψτ ∈ BUC
(
R+; Ẇ 1,n(Rn)

) ∩ Lσ
(
R+; Ẇ 1,r (Rn)

)
,

where (θ, q) and (σ, r) are admissible pairs and BUC(I ; X) denotes the set
of bounded continuous functions on X. Furthermore, the solution satisfies the a
priori estimate: For admissible pairs (θ, q) and (σ, r),

sup
t>0

‖uτ (t)‖L
n
2

+ ‖uτ‖Lθ(R+;Lq ) + sup
t>0

‖∇ψτ (t)‖Ln + ‖∇ψτ‖Lσ(R+;Lr ) ≤ ε̃0,

where ε̃0 is independent of τ > 0.

Our statement also assures that the existence and the a priori bound for the solution
is independent of τ > 0. The extra assumption u0 ∈ Ḃ0

1,4(R
n) on the initial data for

the two dimensional case is required for treating the solution in Bochner spaces.
On the other hand, the solvability of the initial value problem (1.4) is shown

in non-critical spaces (Kurokiba-Ogawa [37, 38]), and the critical space (Kozono-



116 T. Ogawa

Sugiyama-Yahagi [34], Corrias-Escobedo-Matos [14]). Biler-Brandolese [5] con-
structed a strong solution in a weaker scaling invariant class and Lemarié-Rieusset
generalize it into the Morrey class [44]. Comparing with Proposition 2.1, we restrict
the choice of the critical exponent (θ, q) and (σ, r) with θ = σ (and naturally
n

q
− n

r
= 1), since the system (1.4) is of parabolic-elliptic type and the function

class for the solution has to have a common time integrability.

Proposition 2.2 Let n ≥ 2 and let (θ, q) and (σ, r) be admissible pairs defined in
(1.13)with restricting θ = σ. For n

2 ≤ p < n and λ ≥ 0, assume that λ > 0 if n = 2.

(1) For n
2 < p < n assume u0 ∈ L p(Rn). Then there exists T = T (‖u0‖p) > 0 and

the strong solution (u,ψ) to (1.4) uniquely exists and

u ∈ C
([0, T ); L p(Rn)

) ∩ L2
(
0, T ; Ẇ 1,p(Rn)

)
,

ψ ∈ C
([0, T ); Ẇ 1, np

n−p (Rn)
) ∩ L2

(
0, T ; Ẇ 1,p(Rn)

)
.

(2) Let λ > 0 and u0 ∈ L
n
2 (Rn). Assume further u0 ∈ L1(R2) ∩ Ḃ0

1,4(R
2) if n = 2.

Then there exists T = T (u0) > 0 such that the unique strong solution (u,ψ) to
(1.4) exists and

u ∈ C
([0, T ); L n

2 (Rn)
) ∩ Lθ

(
0, T ; Lq(Rn)

)
,

ψ ∈ C
([0, T ); Ẇ 1,n(Rn)

) ∩ Lθ
(
0, T ; Ẇ 1,r (Rn)

)
.

(3) There exists ε0 > 0 such that for any u0 ∈ L
n
2 (Rn) with

‖u0‖L
n
2

< ε0,

there exists a unique global solution (uτ ,ψτ ) to (1.4) such that

u ∈ BUC
(
R+; L n

2 (Rn)
) ∩ Lθ

(
R+; Lq(Rn)

)
,

ψ ∈ BUC
(
R+; Ẇ 1,n(Rn)

) ∩ Lθ
(
R+; Ẇ 1,r (Rn)

)
.

Furthermore, the solution satisfies the a priori estimate: For admissible pairs
(θ, q) and (σ, r),

sup
t>0

‖u(t)‖L
n
2

+ ‖u‖Lθ(R+;Lq ) + sup
t>0

‖∇ψ(t)‖Ln + ‖∇ψ‖Lθ(R+;Lr ) ≤ ε̃0.

The threshold constant ε0 is known to be 8π for n = 2 but not known for higher
dimensional cases n ≥ 3. The best known result states that ε0 = 8

nS2b
and Sb is the

best constant of the Sobolev inequality (see [15, 60]). One conjecture is that when
λ = 0, ε0 = ( 2n

n−2

)
C−1

HLS , where CHLS is the best constant of the Hardy-Littlewood-
Sobolev inequality. One can find regularity of the solution ψ in Proposition 2.2 as
ψ ∈ BMO(Rn) for all n ≥ 2 (cf. [34]). On the other hand the solution to (1.1), it is
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not clear if the similar regularity can be obtained because of maximal regularity is
not clear for ψ.

In both propositions, the limiting case n = 2 and λ = 0 is excluded since the
limiting functionψ does not belong to Ẇ 1,2(R2). Biler-Brandolese [5] andRaczyński
[63] treated this case with an elegant method of functional analysis with a choice
of a suitable class where one can treat the solution of the Poisson equation and the
limiting process with both solutions to (1.1) and (1.4) for small data case. We treat
this limiting case in the other place since we need more delicate treatment on the
regularity of the solutions (cf. [40]).

As in stated in Proposition 2.2, the existence and the uniqueness of the solution
to (1.1) for each τ > 0 is known (Kozono-Sugiyama-Yahagi [34]).

2.3 Two-Dimensional Critical Case for Keller-Segel System

Let n = 2 and λ = 0. In this case we need a slight modification of the statement of
the well-posedness in Propositions 2.1 and 2.2. We re-define the mild solution of
system (1.1) and (1.4). Let et� denote the heat evolution operator given by (2.1).

Definition Let τ > 0. For initial data (u0,ψ0) ∈ L1(R2) × BMO(R2), (uτ ,ψτ ) is
a (mild) solution to (1.1) if the following integral equation is solved:

⎧
⎪⎪⎨

⎪⎪⎩

uτ (t) = et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

ψτ (t) = etτ�ψ0 +
∫ t

0
e(t−s)τ�τuτ (s)ds

in C(I ; L1(R2)) × C(I ; V MO(R2)).

For initial data u0 ∈ L1(R2), (u,ψ) is a (mild) solution to (1.4) if the following
integral equation is solved:

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = et�u0 +
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)

)
ds,

ψ(t) = (−�)−1u(t) = lim
t→∞

∫ t

0
es�u(t)ds

in C(I ; L1(R2)) × C(I ; BMO(R2)), where (−�)−1u ≡ − 1
2π log |x | ∗ u(x).

We choose pair of exponents for the solution class as (q, θ) and (θ, r) defined in
(1.13). Then a natural class for the common initial data is indeed given by the sharp
trace estimate from the semi-group representation in the real interpolation theory
such as



118 T. Ogawa

‖et�u0‖Lθ(I ;Lq ) < ∞,

‖∇et�ψ0‖Lσ(I ;Lr ) < ∞,

}

=⇒ (u0,ψ0) ∈ Ḃ
− 2

θ

q,θ (R2) × Ḃ
1− 2

θ

r,θ (R2).

By the embedding theorem, the limiting case q → 2, r → ∞ is realized by

u0 ∈ Ḃ0
1,θ(R

2) ⊂ Ḃ
− 2

θ

q,θ (R2),
1

q
= 1 − 1

θ
,

ψ0 ∈ Ḃ
1− 2

θ

r,θ (R2) ⊂ Ḃ0
∞,θ(R

2),
1

r
= 1

2
− 1

θ
.

Or one can restrict the class of ψ0 itself by choosing at θ = 2 and r = ∞ to have

‖ψ0‖Ḃ0∞,2(R
2) � ‖∇ψ0‖

Ḃ
− 2

θ
r,θ

.

Hence we introduce a common class for the initial data and consider the equation in
the class

(uτ (t),ψτ (t)) ∈ C(I ; L1 ∩ Ḃ
− 2

θ

q,θ ) × C(I ; BMO ∩ Ḃ
1− 2

θ

r,θ ).

One can find regularity of the solution ψ in Proposition 2.2 as ψ ∈ BMO(Rn) (cf.
[34]). On the other hand the solution to (1.1), it is not clear if the similar regularity
can be obtained. We first illustrate that such a common space is possible for both of
system (1.1) and (1.4).

Theorem 2.3 Let n = 2 and λ = 0. For admissible pairs (θ, q) and (θ, r) defined

in (1.13), assume (u0,ψ0) ∈ (L1(R2) ∩ Ḃ
− 2

θ

q,θ (R2)
)× (V MO(R2) ∩ Ḃ

1− 2
θ

r,θ (R2)
)
.

(1) Then there exist T = T (u0,ψ0) > 0 and the unique strong solution (uτ ,ψτ ) to
(1.1) in

uτ ∈ C
([0, T ); L1(R2)

) ∩ Lθ
(
0, T ; Lq(R2)

)
,

ψτ ∈ C
([0, T ); V MO(R2)

) ∩ Lθ
(
0, T ; Lr (R2)

)
.

Furthermore, the solution satisfies the regularity estimates: For any admissible
pairs (θ, q) and (θ, r),

sup
t∈[0,T )

‖uτ (t)‖L1 + sup
1<q≤2

‖uτ‖Lθ(0,T ;Lq )

+ sup
t∈[0,T )

‖ψτ‖V MO + sup
2<r<∞

‖∇ψτ‖Lθ(0,T ;Lr ) < ∞.

(2) Assume further that for some ε0 > 0,

‖u0‖L1 + ‖ψ0‖BMO ≤ ε0,

then there exists a unique global solution (uτ ,ψτ ) to (1.1) such that
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uτ ∈ BUC
(
R+; L1(R2)

) ∩ Lθ
(
R+; Lq(R2)

) ∩ L2
(
R+; L2(R2)

)
,

ψτ ∈ L∞(
R+; BMO(R2)

) ∩ Lθ
(
R+; Lr (R2)

) ∩ L̃2(R+; ˙BMO
1
(R2)).

Furthermore, the solution satisfies the a priori estimate: For any admissible
pairs (θ, q) and (θ, r),

sup
t>0

‖uτ (t)‖L1 + sup
1<q≤2

‖uτ‖Lθ(R+;Lq )

+ sup
t>0

‖ψτ (t)‖BMO + sup
2<r<∞

‖∇ψτ‖Lθ(R+;Lr ) + ‖∇ψτ‖L̃2(R+;BMO)
≤ ε̃0,

where ε̃0 is independent of τ > 0.

Remark Our statement also assures that the existence and the a priori bound for
the solution is independent of τ > 0. The extra assumption (u0,ψ0) ∈ Ḃ0

1,θ(R
2) ×

Ḃ
1− 2

θ

r,θ (R2) on the initial data is required for estimate involving maximal regularity.
The possible weakest assumption is choosing θ = 4 in our setting. Indeed, such an
extra assumption on the initial data can be removed if we employ theweaker topology
for constructing the solution: For instance

sup
t>0

‖uτ (t)‖1 + sup
t>0

t
1
θ ‖uτ (t)‖L1 < ∞,

sup
t>0

‖ψτ (t)‖VMO + ‖∇ψτ‖L̃2(I ;V MO)
< ∞.

Then the assumption on the initial data can be relaxed into the simplestway (u0,ψ0) ∈
L1(R2) × V MO(R2). Such a function space is not suitable for proving the singular
limit problem as we see below (see Sect. 1.3). Then we modify the existence class
such as following: For any small η0 > 0

uτ ∈ C
([0, T ); L1(R2)

) ∩ C
(
0, T ; L2(R2)

) ∩ Lθ
(
η0, T ; Lq(R2)

)
,

ψτ ∈ C
([0, T ); V MO(R2)

) ∩ ˜L2([0, T ); ˙V MO
1
(R2)) ∩ Lθ

(
η0, T ; Lr (R2)

)
.

This is possible because the solution is getting smoother after t > 0 and (uτ ,ψτ ) ∈
Ḃ0
1,θ(R

2) × Ḃ
1− 2

θ

r,θ (R2). We notice that the smallness assumption on the initial condi-
tion on (u0,ψ0) can be relaxed into ε0 = 4π if the both initial data are non-negative
(cf. [49]).

The corresponding solvability of the initial value problem (1.4) has already known
in non-critical space (Kurokiba-Ogawa [37, 38]), and the critical space (Nagai-
Ogawa [50]). Here we show the result as a summary:

Theorem 2.4 ([37, 50]) Let n = 2, λ = 0 and assume that (θ, q) and (θ, r) be
admissible pairs defined in (1.13). Let u0 ∈ L1(R2) ∩ Ḃ0

1,θ(R
2).
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(1) There exists T = T (u0) > 0 such that the unique strong solution (u,ψ) to (1.4)
exists and

u ∈ C
([0, T ); L1(R2)

) ∩ Lθ
(
0, T ; Lq(R2)

)
,

ψ ∈ C
([0, T ); V MO(R2)

) ∩ Lθ
([0, T ); Lr (R2)

)
.

(2) There exists ε0 > 0 such that for any u0 ∈ L1(R2) with

‖u0‖L1 < M∗, (2.3)

there exists a unique global solution (uτ ,ψτ ) to (1.4) such that

u ∈ BUC
(
R+; L1(R2)

) ∩ Lθ
(
R+; Lq(R2)

)
,

ψ ∈ L∞(
R+; BMO(R2)

) ∩ Lθ
(
R+; Lr (R2)

) ∩ L̃2(R+; ˙BMO
1
(R2)).

Furthermore, the solution satisfies the a priori estimate: If ‖u0‖1 ≤ ε0,

sup
t>0

‖u(t)‖L1 + ‖u‖Lθ(R+;Lq ) + sup
t>0

‖ψ(t)‖BMO + ‖∇ψ‖
L̃2(R+;BMO)

≤ ε̃0.

Remark As is well-known, the threshold mass M∗ is known as 8π if the initial data
u0 is non-negative function [4, 6, 50, 52]. The existence and the uniqueness of the
solution to (1.4) for u0 ∈ L1(R2) is considered in Kozono-Sugiyama-Yahagi [34],
where ψ ∈ C(I ; BMO(R2)).

The main difference from our previous result [40] is that ψτ nor ψ never belongs
to Ẇ 1,2(R2) in two spatial dimension. Therefore we avoid to choose function spaces
such as Lθ(0, T ; Ẇ 1,r (R2)) since it naturally requires that ψτ ∈ Ḃ1

r,θ(R
2)which may

not be true for τ = 0.

2.4 Singular Limit for the Keller-Segel System

One can find that the singular limit problem accompanies with the initial layer if we
consider the presence of the initial data ψ0. Since the system (1.1) and (1.4) have a
common structure in the equation for uτ and u, the main issue is how to formulate
for the equation of ψτ and ψ. Indeed, noticing

lim
τ→∞

∫ t

0
es�u(t)ds =

[
�−1es�

]∞
s=0

u(t)

=(−� + λ)−1u(t),

we compare the equations
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ψτ (t) = etτ�ψ0 +
∫ t

0
e(t−s)τ�τu(s)ds,

ψ(t) = (−� + λ)−1u(t) = lim
t→∞

∫ t

0
es�u(t)ds.

Then we show by employing analogous argument for proving the existence of solu-
tion via the contraction mapping theorem, we show the difference of those equation
converges to 0 as τ → ∞ except the initial layer. We then consider the singular limit
problem as τ → ∞ in the scaling invariant space.

Theorem 2.5 ([40]) Let n ≥ 3 and τ > 0 and assume that (u0,ψ0) ∈ L
n
2 (Rn) ×

Ẇ 1,n(Rn).1 Let (uτ ,ψτ ) be a unique strong solution to (1.1) in
(
C(I ; L n

2 (Rn)) ∩
Lθ(I ; Lq(Rn))

)× (C(I ; Ẇ 1,n(Rn)
) ∩ Lθ(I ; Ẇ 1,r (Rn))

)
, where (θ, q) and (θ, r)

are admissible pairs defined in (1.13) and I = (0, T ) with T ≤ ∞. For T = ∞,
the smallness of the data (2.2) is assumed.

(1) (Existence of the limit solution) Then for the same initial data u0, there exists a
unique strong solution (u,ψ) to (1.4) as

(u,ψ) ∈ (C(I ; L n
2 (Rn)) ∩ Lθ(I ; Lq (Rn))

)× (C(I ; Ẇ 1,n(Rn)) ∩ Lθ(I ; Ẇ 1,r (Rn)
)
.

(2) (Singular limit) For any admissible pairs (θ, q) and (σ, r) defined in (1.13) with
θ = σ,

lim
τ→∞

(
‖uτ − u‖Lθ(I ;Lq ) + ‖∇ψτ − ∇ψ‖Lθ(I ;Lr )

)
= 0.

(3) (Initial layer) For any t0 > 0, setting It0 = (t0,∞) ∩ I ,

sup
t∈It0

‖uτ (t) − u(t)‖L
n
2

+ sup
t∈It0

‖∇ψτ (t) − ∇ψ(t)‖Ln → 0. τ → ∞, (2.4)

On the other hand, for some small t1 > 0, let

ητ (t) = χ[0,t1τ−1](t)
(
ψ0 − (−�)−1u0

)

and χ[a,b](t) be the characteristic function on [a, b]. Then
sup

t∈[0,t1τ−1]
‖uτ (t) − u(t)‖

L
n
2

+ sup
t∈[0,t1τ−1]

‖∇ψτ (t) − ∇ψ(t) − ∇ητ (t)‖Ln → 0. τ → ∞,

(2.5)
Namely ψτ (t) shows the initial layer ψ0 − (−�)−1u0 as τ → ∞.

Twodimensional case is stated in a differentway.We consider theCauchy problem
(1.1) with λ = 0 in R

2. We restrict ourselves in the case of the small data global
solution (for general setting see Kurokiba-Ogawa [41]).

1It is also valid for n = 2. Assuming further λ > 0 and u0 ∈ Ḃ0
1,4(R

n).



122 T. Ogawa

Theorem 2.6 ([41]) Let n = 2. For admissible pairs (θ, q) and (θ, r) defined in

(1.13), assume that (u0,ψ0) ∈ L1(R2) ∩ Ḃ
− 2

θ

q,θ (R2) × V MO(R2) ∩ Ḃ
1− 2

θ

r,θ (R2) with
the smallness assumption (2.3). For τ > 0, let (uτ ,ψτ ) be a unique strong solution

to (1.1) in
(
C(I ; L1(R2)) ∩ Lθ(I ; Lq(R2))

)× (C(I ; BMO(R2)
) ∩ L̃2(I ; ˙BMO

1

(R2))
)
, where I = (0,∞).

(1) (Existence of the limit solution) Then for the same initial data u0, there exists a
unique strong solution (u,ψ) to (1.4) as

(u,ψ) ∈ (C(I ; L1(R2)) ∩ Lθ(I ; Lq (R2))
)× (C(I ; BMO(R2)) ∩ L̃2(I ; ˙BMO

1
(R2))

)
.

If T < ∞, then ψ ∈ (BUC(I ; V MO(R2)) ∩ Lθ(I ; Ẇ 1,r (R2))
)
.

(2) (Singular limit) For any admissible pairs (θ, q) and (θ, r) defined in (1.13),

lim
τ→∞

(
‖uτ − u‖Lθ(I ;Lq ) + ‖∇(ψτ − ψ)‖Lθ(I ;Lr ) + ‖∇(ψτ − ψ)‖

˜L2(I ;BMO)

)
= 0.

(3) (Initial layer) For any η0 > 0,

sup
t∈[η0,∞)∩I

‖uτ (t) − u(t)‖L1 + sup
t∈[η0,∞)∩I

‖ψτ (t) − ψ(t)‖BMO → 0, τ → ∞.

Besides, ψτ (t) has the initial layer as τ → ∞. Namely it never converges to
ψ = (−�)−1u(0) = (−�)−1u0 for t < η0.

We should like to emphasize that the solution to drift-diffusion equation (1.1) is
inC(I ; L1(R2)) × C(I ; V MO(R2)) and the solution for (1.4) is inC(I ; L1(R2)) ×
C(I ; BMO(R2)). Namely the class of the solutions of two system are different forψτ

and ψ each other (cf. [5]). Nevertheless, the convergence is shown in the topology in
wider topology C(It0; L1(R2)) × C(It0; BMO(R2)) except the initial layer, where
It0 = (t0,∞) ∩ I . It is interesting to consider the limiting case θ = q = 2 and r = ∞.
In this case, (u0,ψ0) ∈ Ḃ−1

2,2(R
2) × Ḃ0∞,2(R

2).
Some generalization of the singular limit observed above can be derived. For

instance, we may consider the Cauchy problem of the Keller-Segel type equation
with a fractional dissipative system [9]. Let 1 ≤ α ≤ 2.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t uτ + (−�)α/2uτ + ∇ · (uτ∇ψτ ) = 0, t > 0, x ∈ R
n,

1

τ
∂tψτ + (−�)α/2ψτ = uτ , t > 0, x ∈ R

n,

uτ (0, x) = u0(x), ψτ (0, x) = ψ0(x), t = 0, x ∈ R
n,

Then the singular limit problem in a critical function class

⎧
⎪⎨

⎪⎩

u ∈ Lθ
(
R+; Lq(Rn)

)
,

α

θ
+ n

q
= 2α − 2,

n

2(α − 1)
≤ q, α ≤ θ,

∇ψ ∈ Lσ
(
R+; Lr (Rn)

)
,

α

σ
+ n

r
= α − 1,

n

α − 1
≤ q, q ≤ σ,
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and the limit function (u,ψ) by τ → ∞ solves

⎧
⎪⎨

⎪⎩

∂t u + (−�)α/2u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

(−�)α/2ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), t = 0, x ∈ R
n.

We discuss such a problem in [42].

2.5 Formal Observation for the Singular Limit

Let us consider the formulation how to prove the singular limit problem (2.4). The
external term of the φτ -equation in (1.9) can be regarded by changing variable τ t −
τs = s ′ (s = t − 1

τ
s ′)

ψτ (t) =etτ�ψ0 +
∫ t

0
e(t−s)τ�τuτ (s)ds

=etτ�ψ0 +
∫ τ t

0
es

′�uτ (t − τ−1s ′)ds ′
(2.6)

and thus

ψτ (t) − ψ(t) =eτ t�ψ0 +
∫ t

0
eτ (t−s)�τuτ (s)ds − (−�)−1u(t)

=eτ t�ψ0 +
∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

+
∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds −

∫ ∞

τ t
es�u(t)ds

≡I0 + I1 + I2 + I3.

(2.7)

Then by using the dissipative estimates for the heat equation of u, we show that

∥
∥
∥u(t − τ−1t) − u(t)

∥
∥
∥
1

→ 0 τ → ∞ a.a. t.

Such a formal computation can be justified by employing the similar argument to
construct the solution. In particular, in order to justify the above procedure, one may
introduce a typical metric induced from the norm such as

|||u|||θ,q ≡ sup
t>0

t1/θ‖u(t)‖p, |||ψ|||θ,r ≡ sup
t>0

t1/θ‖ψ‖q , |||∇ψ|||θ,r ≡ sup
t>0

t1/θ‖∇ψ‖r ,
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where (θ, p), (θ, q) and (θ, r) are the admissible exponents given in (1.14). However
such a choice of metric does not work well for the critical cases since the integrability
conditions and the stability conditions are not consistent in the following estimate:
For the first term of the right hand side of (2.7),

‖I1‖Ẇ 1,r ≤C
∫ τ t

0
|s|−

(
1
q − 1

r

)
− 1

2
∥
∥uτ

(
t − s

τ

)
− u

(
t − s

τ

) ∥
∥
qds

≤C
∫ τ t

0
|s|−

(
1
q − 1

r

)
− 1

2
∣
∣t − s

τ

∣
∣− 1

θ ds |||uτ (·) − u(·)|||θ,q

=Ct
−
(

1
q − 1

r

)
− 1

2− 1
θ

∫ τ t

0

∣
∣
∣
s

t

∣
∣
∣
−
(

1
q − 1

r

)
− 1

2
∣
∣
∣1 − s

τ t

∣
∣
∣
− 1

θ ds |||uτ (·) − u(·)|||θ,q

≤Cτ
1
2−
(

1
q − 1

r

)

· t
1
2−
(

1
q − 1

r

)
− 1

θ B

(
1

2
−
( 1

q
− 1

r

)
, 1 − 1

θ

)

|||uτ (·) − u(·)|||θ,q ,

where B(p, q) denotes the Beta function given by

B(p, q) =
∫ 1

0
(1 − s)p−1sq−1ds.

Now we notice that the condition on the convergence of the Beta function requires

1

2
−
( 1

q
− 1

r

)
> 0

while the stable condition on the exponent τ should be given by

1

2
−
( 1

q
− 1

r

)
≤ 0

to justify the singular limit τ → ∞. Unfortunately those conditions do not hold
simultaneously. To avoid such a difficulty, Biler-Brandolese [5] and Raczyński [63]
used a smoothing property of the solution. Kurokiba-Ogawa [41] used a generalized
version of maximal regularity, where the convergences are stated both in the large
data local case and small data global case.

3 The Singular Limit Problem for the Chaplain-Anderson
Systems

Wedeveloped the similarmethod for the simplified version of theChaplain-Anderson
system (1.9) and the limit function solves the Fujie-Senba system (1.10). We sum-
marized the result in the following.
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3.1 The Well-Posedness

By the embedding theorem, the limiting case p, q, r → ∞ is realized by

u0 ∈ Ḃ
− 2

θ

p,θ (R4) ⊂ Ḃ
−4+ 4

p

p,θ (R4),
1

p
= 1 − 1

2θ
,

φ0 ∈ Ḃ
− 2

ρ
q,ρ (R4) ⊂ Ḃ

−2+ 4
q

q,ρ (R4),
1

q
= 1

2
− 1

2ρ
,

ψ0 ∈ Ḃ
1− 2

σ
r,σ (R4) ⊂ Ḃ

4
r
r,σ(R4),

1

r
= 1

4
− 1

2σ
.

Or one can restrict the class of φ0 itself by choosing at σ = 2 and r = ∞ to have

‖ψ0‖
Ḃ
1− 2

σ
r,θ (R2)

� ‖ψ0‖Ḃ0∞,2
,

where Ḃ0∞,2(R
4) � BMO(R4). Hence we introduce a common class for the initial

data and consider the equation in the class

(uτ (t),φτ (t),ψτ (t)) ∈ C(I ; L1 ∩ Ḃ
− 2

θ
p,θ ) × C(I ; L2 ∩ Ḃ

− 2
ρ

q,θ ) × C(I ; V MO ∩ Ḃ
1− 2

σ
r,θ ).

It is known that regularity of the solution ψ in Proposition 2.2 as ψ ∈ BMO(Rn) (cf.
[34]). On the other hand the solution to (1.1), it is not clear if the similar regularity
can be obtained. We first illustrate that such a common space is available for treating
both of system (1.1) and (1.4).

Theorem 3.1 Let n = 4, and (θ, p), (ρ, q) and (σ, r) are admissible pairs defined

in (1.14). Assume (u0,φ0,ψ0) ∈ (L1(R4) ∩ Ḃ
− 2

θ

p,θ (R4)
)× (L2(R4) ∩ Ḃ

− 2
ρ

q,ρ (R4)
)×

(
V MO(R4) ∩ Ḃ

1− 2
σ

r,σ (R4)
)
.

(1) Then there exist T = T (u0,ψ0) > 0 and the unique strong solution (uτ ,φτ ,ψτ )

to (1.9) in

uτ ∈ C
([0, T ); L1(R4)

) ∩ Lθ
(
0, T ; L p(R4)

)
,

φτ ∈ C
([0, T ); L2(R4)

) ∩ Lρ
(
0, T ; Lq(R4)

)
,

ψτ ∈ C
([0, T ); V MO(R4)

) ∩ Lσ
(
0, T ; Ẇ 1,r (R4)

)
.

Furthermore, the solution satisfies the regularity estimates: For any admissible
pairs (θ, q), (ρ, s) and (σ, r), there exists M > 0 independent of τ such that
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sup
t∈[0,T )

‖uτ (t)‖1 + ‖uτ‖Lθ(0,T ;L p)

+ sup
t∈[0,T )

‖φτ‖2 + ‖φτ‖Lρ(0,T ;Lq )

+ sup
t∈[0,T )

‖ψτ‖V MO + ‖∇ψτ‖Lσ(0,T ;Lr ) ≤ M.

(3.1)

(2) Assume further that for some ε0 > 0,

‖u0‖1 + ‖u0‖
Ḃ

− 2
θ

p,θ

+ ‖φ0‖2 + ‖φ0‖
Ḃ

− 2
ρ

q,ρ

+ ‖ψ0‖BMO + ‖ψ0‖
Ḃ
1− 2

σ
r,σ

≤ ε0, (3.2)

then there exists a unique global solution (uτ ,φτ ,ψτ ) to (1.9) such that

uτ ∈ BUC
(
R+; L1(R4)

) ∩ Lθ
(
R+; L p(R4)

)
,

φτ ∈ BUC
(
R+; L2(R4)

) ∩ Lρ
(
R+; Lq(R4)

)
,

ψτ ∈ BUC
(
R+; BMO(R4)

) ∩ Lσ
(
R+; Ẇ 1,r (R4)

)
.

Furthermore, the solution satisfies the a priori estimate: For any admissible
pairs (θ, p), (ρ, q) and (σ, r),

sup
t>0

‖uτ (t)‖1 + ‖uτ‖Lθ(R+;L p)

+ sup
t>0

‖φτ (t)‖2 + ‖φτ‖Lρ(R+;Lq )

+ sup
t>0

‖ψτ (t)‖BMO + ‖∇ψτ‖Lσ(R+;Lr ) ≤ ε̃0,

where ε̃0 is independent of τ > 0.

Our statement also assures that the existence and the a priori bound for the solution
is independent of τ > 0. The extra assumption

(u0,φ0,ψ0) ∈ Ḃ
− 2

θ
p,θ (R4) × Ḃ

− 2
ρ

q,ρ (R4) × Ḃ
1− 2

σ
r,σ (R4) = Ḃ

−4+ 4
p

p,θ (R4) × Ḃ
−2+ 4

q
q,ρ (R4) × Ḃ

4
r
r,σ(R4)

on the initial data is required for estimates involving maximal regularity (p = 1,
q = 2, r = ∞ and θ = ρ = σ = 2 is the best possible choice). One can relax this
condition by employing another kind of function space with satisfying

sup
t>0

t
1
θ ‖uτ (t)‖p + sup

t>0
t
1
ρ ‖φτ (t)‖q + sup

t>0
t

1
σ ‖∇ψτ (t)‖r < ∞.

Within such a function class, one may construct a local or global solution to (1.1) for

(u0,φ0,ψ0) ∈(L1(R2) ∩ Ḃ
− 2

θ
p,∞(R4)

)× (L2(R4) ∩ Ḃ
− 2

ρ
q,∞(R4)

)× (V MO(R4) ∩ Ḃ
1− 2

σ
r,∞ (R4)

)

= (L1(R4) × L2(R4) × V MO(R4)).
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However such a function space is not suitable for the singular limit problem with
the initial trace as we see below (see Sect. 1.3). Indeed, such an extra-assumption
in the initial data can be removed by using the fact that the solution of Keller-Segel
equation has a higher regularity after t > 0 and such a smoothing effect gives a better
regularity assumption as in Theorem 3.1.

We notice that the smallness assumption on the initial condition on (u0,ψ0) can
be relaxed into ε0 = 4π if the both initial data are non-negative (cf. [49]).

The corresponding solvability of the initial value problem (1.4) has already known
in non-critical space (Kurokiba-Ogawa [38]), and the critical space (Nagai-Ogawa
[50]). Here we show the result for the system (1.10).

Proposition 3.2 ([23], cf. [50]) Let (θ, p), (ρ, q) and (σ, r) be admissible pair

defined in (1.14) and let u0 ∈ L1(R4) ∩ Ḃ
− 2

θ

p,θ (R4).

(1) There exists T = T (u0) > 0 such that the unique strong solution (u,φ,ψ) to
(1.10) satisfying −�φ = ψ exists and

u ∈ C
([0, T ); L1(R4)

) ∩ Lθ
(
0, T ; L p(R4)

)
,

φ ∈ C
([0, T ); L2(R4)

) ∩ Lρ
([0, T ); Lq(R4)

)
,

ψ ∈ C
([0, T ); BMO(R4)

) ∩ Lσ
([0, T ); Ẇ 1,r (R4)

)
.

Besides the solution satisfies the bound similar to (3.1).
(2) There exists ε0 > 0 such that for any u0 ∈ L1(R2) with

‖u0‖1 < M∗,

there exists a unique global solution (u,φ,ψ) to (1.10) such that

u ∈ BUC
(
R+; L1(R4)

) ∩ Lθ
(
R+; L p(R4)

)
,

φ ∈ BUC
(
R+; L2(R4)

) ∩ Lρ
(
R+; Lq(R4)

)
,

ψ ∈ BUC
(
R+; BMO(R4)

) ∩ Lσ
(
R+; Ẇ 1,r (R4)

)
.

Furthermore, the solution satisfies the a priori estimate: If ‖u0‖1 ≤ ε0,

sup
t>0

‖u(t)‖1+‖u‖Lθ(R+;Lq ) + sup
t>0

‖ψ(t)‖2 + ‖ψ‖Lρ(R+;Lq )

+ sup
t>0

‖φ(t)‖BMO + ‖∇φ‖Lσ(R+;Lr ) ≤ ε̃0.

As is observed in [23], the threshold mass M∗ is given by (8π)2 if the initial data
u0 is non-negative function (cf. [4, 6, 50, 52] for two dimensional case of (1.4)). The
existence and the uniqueness of the solution to (1.4) for u0 ∈ L1(R2) is considered
in Kozono-Sugiyama-Yahagi [34], where ψ(t) ∈ C(I ; BMO).
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3.2 Singular Limit Problem

The solution to (1.9) is formulated by the Duhamel formula as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uτ (t) = et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

φτ (t) = etτ�φ0 +
∫ t

0
e(t−s)τ�τuτ (s)ds,

ψτ (t) = etτ�ψ0 +
∫ t

0
e(t−s)τ�τφτ (s)ds.

(3.3)

One canfind that the singular limit problemaccompanieswith the initial layer because
of the presence of the initial data ψ0. Since the system (1.9) and (1.10) have the
common structure in the equation for uτ and u, the main issue is how to formulate for
the equation of (φτ ,ψτ ) and (φ,ψ). By employing analogous argument for proving
the singular limit problem from (1.1) to (1.4) in Kurokiba-Ogawa [40, 41], we show
the singular limit of the simplified Chaplain-Anderson system to the Fujie-Senba
system ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = et�u0 +
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)

)
ds,

φ(t) = (−�)−1ψ(t) = lim
t→∞

∫ t

0
es�u(t)ds,

ψ(t) = (−�)−1u(t) = lim
t→∞

∫ t

0
es�φ(t)ds

(3.4)

as follows:

Theorem 3.3 Let n = 4 and let (θ, p), (θ, q) and (θ, r) be admissible pairs

defined in (1.14) and assume that (u0,φ0,ψ0) ∈ (L1(R4) ∩ Ḃ
− 2

θ

p,θ (R4)
)×

(
L2(R4) ∩

Ḃ
− 2

θ

q,θ (R4)
)

×
(
V MO(R4) ∩ Ḃ

1− 2
θ

r,θ (R4)
)
. For τ > 0, let (uτ ,φτ ,ψτ ) be a unique

strong solution to (1.9) in
(
C(I ; L1(R4)) ∩ Lθ(I ; L p(R4))

)× (C(I ; L2(R4)) ∩
Lθ(I ; Lq(R4))

)× (C(I ; V MO(R4)
) ∩ Lθ(I ; Ẇ 1,r (R4))

)
, where I = (0, T ) with

T ≤ ∞. For the global interval T = ∞, the smallness of the initial data (3.2) with
θ = ρ = σ is assumed.

(1) (Existence of the limit solution) Then for the same initial data u0, there exists a
unique strong solution (u,φ,ψ) to (1.10) as

(u,φ, ψ) ∈(C(I ; L1(R4)) ∩ Lθ(I ; L p(R4))
)× (C(I ; L2(R4)) ∩ Lθ(I ; Lq (R4))

)

× (L∞(I ; BMO(R4)) ∩ Lθ(I ; Ẇ 1,r (R4))
)
.

If T < ∞, then ψ ∈ (BUC(I ; V MO(R4)) ∩ Lθ(I ; Ẇ 1,r (R4))
)
.



Singular Limit Problem to the Keller-Segel System in Critical … 129

(2) (Singular limit) For any admissible pairs (θ, p), (θ, q) and (θ, r) defined in
(1.14),

lim
τ→∞

(
‖uτ − u‖Lθ(I ;L p) + ‖φτ − φ‖Lθ(I ;Lq ) + ‖∇(ψτ − ψ)‖Lθ(I ;Lr )

)
= 0.

(3) (Initial layer) For any t0 > 0,

sup
t∈[t0,∞)∩I

‖uτ (t) − u(t)‖L1 + sup
t∈[t0,∞)∩I

‖ψτ (t) − ψ(t)‖L2

+ sup
t∈[t0,∞)∩I

‖φτ (t) − φ(t)‖BMO → 0,
(3.5)

as τ → ∞. Besides, (φτ (t),ψτ (t)) has the initial layer as τ → ∞. Namely it
never converges to neitherφ = (−�)−1u(0) = (−�)−1u0 norψ = (−�)−2u(0)
= (−�)−2u0 for t < η0.

We should like to emphasize that the solution to the Chaplain-Anderson type
equation (1.9) is inC(I ; L1(R4)) × C(I ; L2(R4)) × C(I ; V MO(R4)) and the solu-
tion for the Fujie-Senba equation (1.10) is in C(I ; L1(R4)) × C(I ; L2(R4)) ×
C(I ; BMO(R4)). Namely the class of the solutions of two systems are different from
each other (cf. [5, 41]). Nevertheless, the convergence is shown in the weaker topol-
ogy C(It0; L1(R4)) × C(It0; L2(R4)) × C(It0; BMO(R4)) except the initial layer,
where It0 = (t0,∞) ∩ I .

RemarkWe should alsomention that the very similar result for themulti-component
parabolic equation of Keller-Segel type (1.11) holds. In such a case, the global behav-
ior of solutions for β1 = β2 is very close to the simpler model (1.1) and one for (1.12)
is close to (1.4). However the global behavior for the equi-coefficient case β1 = β2,
the behavior is closer to the case of simplified Chaplain-Anderson model and Fujie-
Senba model and the global behavior of solutions are stable in two dimension but
not the case in four dimension that was observed for the solution for (1.10) in [23].
One can derive very similar setting of the function class as the above theorem.

In what follows, for 1 ≤ p, r, θ ≤ ∞, let L p(Rn) be the Lebesgue space in the
variable x , let Lθ(I ; X) be a Bochner class on the Banach space X over the time
interval I = (0, T ) (T ≤ ∞), Ẇ 1,r (Rn) denotes the homogeneous Sobolev space
with ‖∇ f ‖r < ∞. For s ∈ R and 1 ≤ σ ≤ ∞, let Ḃs

p,σ = Ḃs
p,σ(Rn) and Ḟ s

p,σ =
Ḟ s
p,σ(Rn) the homogeneous Besov and Lizorkin-Triebel spaces, respectively and the

norms of those spaces are given by the following: For 1 ≤ p,σ ≤ ∞ and s ∈ R,

‖ f ‖Ḃs
p,σ

=
(∑

j∈Z

2sσ j‖φ j ∗ f ‖σ
p

)1/σ
,

‖ f ‖Ḟ s
p,σ

=
∥
∥
∥

(∑

j∈Z

2sσ j |φ j ∗ f |σ
)1/σ∥∥

∥
p
,
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where {φ j } denotes the Littlewood-Paley dyadic decomposition of unity. In particu-
lar, we notice that Ḟ s

p,2 � Ẇ s,p(Rn) for s ∈ R and 1 < p < ∞ by the well-known
Littlewood-Paley theorem.We should notice that the inclusion of the sequence space
�θ ⊂ �σdirectly gives that Ḃs

p,θ(R
n) ⊂ Ḃs

p,σ(Rn) and Ḟ s
p,θ(R

n) ⊂ Ḟ s
p,σ(Rn) if θ ≤ σ.

4 Preliminary Estimates

4.1 Inequalities and Embeddings in Four Space Dimensions

In general, the function inequality in two dimensional Euclidian space is different
from higher dimensions. Here we summarized the Sobolev type inequalities in two
dimensions.

Lemma 4.1 Let n = 2 and let f = f (x) be a measurable function on R
2. There

exists a constant C > 0 such that the following inequality hold:

‖ f ‖2 ≤C‖∇ f ‖1, (4.1)

‖ f ‖Ḃ−1
2,σ

≤C‖ f ‖Ḃ0
1,σ

, 1 ≤ σ ≤ ∞. (4.2)

‖∇g‖Ḃ−1
2,2

≤C‖∇g‖1, (4.3)

‖|∇|−1∇g‖2 ≤C‖∇g‖1, (4.4)

‖ f ‖BMO ≤C‖∇ f ‖2. (4.5)

‖|∇|−1 f ‖BMO ≤C‖ f ‖2. (4.6)

‖|∇|−1 f ‖Ḃ0∞,2
≤C‖ f ‖2. (4.7)

Proof of Lemma 4.1 The inequality (4.1) is due to Gagliardo and Nash, and is
obtained by a straightforward computation (see for instance [8]). Indeed, by inte-
grating the both sides of the following inequality in x-y ∈ R

2,

| f (x, y)|2 =
(∫ x

−∞
∂x f (z, y)dz

)(∫ y

−∞
∂y f (x, w)dw

)

,

we obtain (4.1). The embedding (4.2) and (4.7) are direct consequences of the Bern-
stein type lemma and Hausdorf-Young’s inequality. Equations (4.2), (4.3) and (4.4)
follow from (4.1) and the boundedness of the singular integral operator in L2(Rn).
The inequality (4.5) follows from the Poincaré inequality in two dimensions. The
inequality (4.6) is a consequence from (4.5) and the boundedness of the singular
integral operators in BMO . �

We notice that the following inequalities generally fail to hold in n = 2.
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‖ f ‖∞ ≤C‖∇ f ‖2.
‖ f ‖Ẇ−1,∞ ≤C‖ f ‖2.

Lemma 4.2 Let (θ, q) and (θ, r) be admissible pairs defined in (1.14)with 1 ≤ q ≤
2 ≤ θ < ∞ and 2 < θ. Then the following continuous embeddings hold:

L
pr
p+r (R4) ⊂ Ẇ−1+ 2

σ ,p(R4) � Ḟ
−1+ 2

σ

p,2 (R4) ⊂ Ḟ
−1+ 2

σ

p,θ (R4) ⊂ Ḃ
−1+ 2

σ

p,θ (R4). (4.8)

Proof of Lemma 4.2 Noticing the relations

1

2θ
+ 1

p
= 1,

1

2ρ
+ 1

q
= 3

4
,

1

2σ
+ 1

r
= 1

4
,

the first embedding is due to the Sobolev inequality

‖ f ‖
Ẇ−1+ 2

σ ,p ≤ Sb‖ f ‖ pr
p+r

with
1

p
− 1

4

(

−1 + 2

σ

)

= 1

p
+ 1

r
.

The second relation is due to the well-known theorem by Littlewood-Paley: Ḟ0
q,2(R

n)

� Lq(Rn) for any 1 < q < ∞ (see Stein [68]). The third embedding is due to the
property of the sequence spaces �2 ⊂ �θ under 2 ≤ θ. The last embedding is given
by the Minkowski inequality such as

‖ f ‖
Ḃ

−1+ 2
σ

p,θ

=
(∑

j∈Z

2(−1+ 2
σ ) jθ‖φ j ∗ f ‖θ

p

)1/θ ≤
∥
∥
∥

(∑

j∈Z

2(−1+ 2
σ ) jθ|φ j ∗ f |θ

)1/θ∥∥
∥
p

= ‖ f ‖
Ḟ

−1+ 2
σ

p,θ

under the restriction q ≤ θ < ∞. �
Here we recall the embedding results between the function spaces involving the

real interpolation spaces:

Lemma 4.3 Let (θ, q) and (σ, r) be admissible pairs defined in (1.13)with 1 ≤ q ≤
2 ≤ θ < ∞ and 2 ≤ n < σ. Then the following continuous embeddings hold:

L
qr
q+r (Rn) ⊂ Ẇ−1+ 2

σ ,q(Rn) � Ḟ
−1+ 2

σ

q,2 (Rn) ⊂ Ḟ
−1+ 2

σ

q,θ (Rn) ⊂ Ḃ
−1+ 2

σ

q,θ (Rn). (4.9)

Proof of Lemma 4.3 Noticing the relations

2

θ
+ n

q
= 2,

2

σ
+ n

r
= 1,
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the first embedding is due to the Sobolev inequality

‖ f ‖
Ẇ−1+ 2

σ ,q ≤ Sb‖ f ‖ rq
r+q

with
1

q
− 1

n

(

−1 + 2

σ

)

= 1

r
+ 1

q
.

The second relation is due to the well-known theorem by Littlewood-Paley: Ḟ0
q,2(R

n)

� Lq(Rn) for any 1 < q < ∞ (see Stein [68]). The third embedding is due to the
property of the sequence spaces �2 ⊂ �θ under 2 ≤ θ. The last embedding is given
by the Minkowski inequality such as

‖ f ‖
Ḃ

−1+ 2
σ

q,θ

=
(∑

j∈Z

2(−1+ 2
σ ) jθ‖φ j ∗ f ‖θ

q

)1/θ ≤
∥
∥
∥

(∑

j∈Z

2(−1+ 2
σ ) jθ|φ j ∗ f |θ

)1/θ∥∥
∥
q

= ‖ f ‖
Ḟ

−1+ 2
σ

q,θ

under the restriction q ≤ θ < ∞. �

4.2 Heat Evolution on VMO

It is well-known that the heat kernel has a dissipative estimate of L p-Lq type:

‖et�u0‖p ≤ Ct−
n
2 ( 1

q − 1
p )‖u0‖q (4.10)

for any 1 ≤ q ≤ p ≤ ∞. Here is a dissipative estimate for the heat kernel on BMO
and V MO . Besides by the density, the heat evolution {et�}t≥0 generates a C0-
semigroup over V MO but not over BMO .

Lemma 4.4 The heat evolution operator et� is a bounded operator from BMO(Rn)

to BMO(Rn). If u0 ∈ V MO(Rn), then

‖et�u0‖V MO → 0 as t → ∞. (4.11)

Proof of Lemma 4.4 Let Ak = Bk+1 \ Bk be annulus with Bk = B2k R(x0). Since et�

is a bounded operator on L2(Rn), we see that for u0 ∈ BMO(Rn)

‖et�u0‖BMO

≤C sup
x0,R>0

(
1

|BR |2
∫∫

BR (x0)×BR (x0)
|et�x u0(x) − et�y u0(y)|2dxdy

)1/2

≤C sup
x0,R>0

(
1

|BR |2
∫∫

Rn×Rn
|et�x et�y χBR×BR (x, y)(u0(x) − u0(y))|2dxdy

)1/2

+ C sup
x0,R>0

∑

k≥1

(
1

|BR |2
∫∫

BR (x0)×BR (x0)
|et�x et�y χAk×Ak (x, y)(u0(x) − u0(y))|2dxdy

)1/2
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≤C sup
x0,R>0

(
1

|BR |2
∫∫

BR (x0)×BR (x0)
|u0(x) − u0(y)|2dxdy

)1/2

+ C sup
x0,R>0

∑

k≥1

(
1

|BR |2
∫∫

Bk×Bk

×
(∫∫

Ak×Ak

t1/2

(t1/2 + |x − x1|)n+1

t1/2

(t1/2 + |y − y1|)n+1 |u0(x1) − u0(y1)|2dx1dy1
)2

dxdy

)1/2

≤C‖u0‖BMO + C
∑

k≥1

2−k sup
x0,R>0

(
1

|Bk |2
∫∫

Bk×Bk
|u0(x1) − u0(y1)|2dx1dy1

)1/2

≤C‖u0‖BMO . (4.12)

See for the details Stein [68, p.159]. Besides for any u0 ∈ V MO(Rn) there exists a
sequence {u0,n}∞n=1 ⊂ C0(R

n) such that for any ε > 0 there exists n >> 1 such that

‖u0,n − u0‖V MO < ε.

Then from the dissipative estimate (4.10) and (4.12),

‖et�u0‖V MO ≤‖et�u0,n‖V MO + ‖et�(u0,n − u0)‖V MO

≤2‖et�u0,n‖∞ + 2‖u0,n − u0‖V MO

≤Ct−
n
2 ‖u0,n‖1 + ε.

By passing t → ∞, we obtain (4.11). �

5 Generalized Maximal Regularity

Let X be a proper Banach space, and we regard A = (−�)α/2 as a closed linear
operator in X with a dense domain D(A). Given u0 ∈ X and f ∈ Lρ(0, T ; X) (1 ≤
ρ ≤ ∞), we consider the abstract Cauchy problem

⎧
⎨

⎩

d

dt
u + Au = f, t > 0,

u(0) = u0.

Then it is called that A has maximal Lρ-regularity if there exists a unique solution

u ∈ C([0, T ); X) such that
d

dt
u, Au ∈ Lρ(0, T ; X) and it satisfies the estimate

∥
∥
∥
d

dt
u
∥
∥
∥
Lρ(0,T ;X)

+ ‖Au‖Lρ(0,T ;X) ≤ C
(
‖u0‖(X,D(A))1− 1

ρ ,ρ
+ ‖ f ‖Lρ(0,T ;X)

)
,
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under the restriction u0 ∈ (X,D(A))1− 1
ρ ,ρ, where (X,D(A))1− 1

ρ ,ρ denotes the real
interpolation space between X and D(A) and C is a positive constant independent
of u0 and f . Maximal regularity for parabolic equations is well established within
the general framework on Banach spaces X that satisfy the unconditional martingale
differences (called as UMD). For details, see [1, 3, 16–20, 31, 43, 72]. On the other
hand, maximal regularity on Banach spaces which is not UMD, for instance non-
reflexive Banach space such as L1 or L∞ requires a different treatment. For example,
we explicitly proved maximal regularity on the homogenous Banach spaces in [57].

We consider the Cauchy problem of the heat equation: For ν > 0,

{
∂tv − ν�v = f, t > 0, x ∈ R

n,

v(0, x) = v0(x), t > 0, x ∈ R
n.

(5.1)

Then maximal regularity is given by the following way:

(1) ([57]) For any 1 < ρ, p ≤ ∞, there exists a constant C > 0 independent of u
and T such that

‖∂tv‖Lρ(I ;L p) + ν‖∇2v‖Lρ(I ;L p) ≤ C
(‖v0‖

Ḃ
2
ρ′
p,σ

+ ‖ f ‖Lρ(I ;L p)

)
.

(2) ([17, 58]) For any 1 ≤ p ≤ ∞,

‖∂tv‖L1(I ;Ḃ0
p,ρ)

+ ν‖∇2v‖L1(I ;Ḃ0
p,ρ)

≤ C
(‖v0‖Ḃ0

p,1
+ ‖ f ‖Lρ(I ;Ḃ0

p,1)

)
. (5.2)

The first estimate is well-known result from the general framework [3, 18, 20,
26] and the case σ = ∞ is generally excluded since such spaces are not UMD
(unconditional martingale difference) and it is not covered by the general theory of
UMD. The remarkable feature of the latter estimates is that the estimate (5.2) allows
the case σ = ∞ and it is useful to estimate for applying the integral equation. On
the other hand the latter estimate involves the homogeneous Besov spaces and it is
not easy to make clear the relation between the Legesgue spaces since

Ḃ0
p,2(R

n) ⊂ Ḟ0
p,2(R

n) � L p(Rn) ⊂ Ḃ0
p,∞

if 2 ≤ p < ∞, and

Ḃ0
p,1(R

n) ⊂ Ḟ0
p,2(R

n) � L p(Rn) ⊂ Ḃ0
p,2

if 1 ≤ p ≤ 2.
We state the following general version is useful to apply the semi-linear parabolic

equations [39–42, 61].

Theorem 5.1 (Generalizedmaximal regularity [40]) Let 1 ≤ ν ≤ ρ ≤ ∞, 1 ≤ p ≤
∞, s ∈ R, μ > 0 and let I = (0, T ) ⊂ R+ be an interval (possibly I = R+). Given
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initial data v0 ∈ Ḃs+2−2/ρ
p,ρ (Rn) and the external force f ∈ Lν(I ; Ḃs+2/ν−2/ρ

p,ν (Rn)),
the solution of the Cauchy problem of the heat equation (5.1) fulfills following esti-
mates:

(1) Suppose that f ≡ 0. Then for any 1 ≤ σ ≤ ∞, there exists a constant C > 0
independent of T such that

∥
∥∂tv

∥
∥
Lρ(I ;Ḃs

p,σ)
+ ν
∥
∥∇2v

∥
∥
Lρ(I ;Ḃs

p,σ)
≤ C‖v0‖

Ḃ
s+2− 2

ρ
p,ρ

, (5.3)

where ∇2 = ∂xi ∂x j .
(2) Suppose that u0 = 0, then for any ν ≤ σ ≤ ρ, there exists a constant C > 0

independent of T > 0 such that

∥
∥∂tv

∥
∥
Lρ(I ;Ḃs

p,σ)
+ ν
∥
∥∇2v

∥
∥
Lρ(I ;Ḃs

p,σ)
≤ C‖ f ‖

Lν (I ;Ḃs+ 2
ν − 2

ρ
p,σ )

. (5.4)

We notice that the above estimates remain valid for the problem:

{
∂tv − ν�v + λu = f, t > 0, x ∈ R

n,

v(0, x) = v0(x), x ∈ R
n,

where λ > 0. Indeed, the case λ > 0 can be reduced into the case λ = 0 by the
estimate

‖et�φ j ∗ u0‖p ≤ ‖et�φ j ∗ u0‖p

for all 1 ≤ p ≤ ∞, where {φ j } j is the Littlewood-Paley partition of unity.
The proof of Theorem 5.1 is separated into a homogeneous estimate and an inho-

mogeneous estimate (cf. [57]): For the homogeneous term, the following propo-
sition directly shows the result (5.3). For simplicity, we assume that ν = 1. The
general case can be obtained by using the scaling transformation t ′ = √

νt and
f ′(t ′, x) = ν−1 f (t, x).

Proposition 5.2 For 0 < T ≤ ∞, we set I = [0, T ). Let 1 ≤ p,σ ≤ ∞, 1 ≤ ρ ≤
∞ and s ∈ R. For v0 ∈ Ḃs−2/ρ

p,ρ , the solution of the heat equation et�v0 satisfies the
following estimate: we have for any 0 < T ≤ ∞ and s ∈ R, that

(∫ T

0
‖et�v0‖ρ

Ḃs
p,σ
dt

)1/ρ

≤ C‖v0‖
Ḃ
s− 2

ρ
p,ρ

. (5.5)

For v0 ∈ Ḃs− 2
ρ∞,ρ = C∞

0
Ḃ
s− 2

ρ∞,ρ
, then for any 0 < T ≤ ∞ and 1 ≤ σ ≤ ∞, 1 ≤ ρ ≤ ∞,

(∫ T

0
‖et�v0‖ρ

Ḃs∞,σ

dt

)1/ρ

≤ C‖v0‖
Ḃ

s− 2
ρ∞,ρ

, (5.6)
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where C is independent of T .

Those estimates (5.5), (5.6) are known as a characteristic definition of the Besov
space by the heat semi-group. Indeed the reversed inequalities also hold if T = ∞.
For the proof, see for instance [40, 58, 61].

Remark It is known by the evolutional Besov formulation that for any 1 ≤ p ≤ ∞
with 1/ρ + γ > 0. The above estimate (5.6) is an extension of such an expression.

We next consider the solution of the inhomogeneous heat equation with 0-initial
data: {

∂tv − �v = f, t > 0, x ∈ R
n,

v(0, x) = 0, x ∈ R
n .

The following proposition is the key to proving Theorem 5.1 (cf. Ogawa-Shimizu
[57]).

Proposition 5.3 ([40]) Let {et�}t≥0 be a heat semigroup in R
n and I = (0, T ) for

any 0 < T ≤ ∞. Then for 1 ≤ p, γ ≤ ∞ and 1 < ν,σ ≤ ∞with 1 < ν ≤ σ ≤ ρ <

∞, we have

∥
∥
∥
∥

∫ t

0
e(t−s)� f (s)ds

∥
∥
∥
∥
Lρ(I ;(Ḃs+2

p,γ ,Ḃs
p,γ)1−1/ρ,σ)

≤ C‖ f ‖Lν (I ;(Ḃs−2
p,γ ,Ḃs

p,γ)1/ν,σ). (5.7)

Proof of Proposition 5.3 Since we show the result by using the duality argument, we
show only the case for 1 < ρ < ∞ and 1 < p ≤ ∞. For the case p = 1, the proof
requires a similar treatment involving the Hardy space H1(Rn). This is because the
base space L1(Rn) is not the dual of L∞(Rn) (see for the detail [57]). The end-point
case ρ = 1 required another treatment, too (see [58]). We also show the inequality
for the case T = ∞. The other case is obtained by letting f (t) by χ(0,T )(t) f (t). Let

χ j (r) =
{
1, 2 j < r ≤ 2 j+1,

0, otherwise

and g(t) ∈ C∞(I ;S(Rn)). We consider the dual coupling: For j ∈ Z,

∣
∣
∣
∣

∫ ∞

0

(∫ t

0
e(t−s)� f (s)ds, g(t)

)

L2

dt

∣
∣
∣
∣

≤
∑

j∈Z

∫∫

t>s>0
χ j (t − s)

∣
∣
(
e(t−s)� f (s), g(t)

)

L2

∣
∣ dsdt.

Introducing

Tj ( f, g) ≡
∫∫

t>s>0
χ j (t − s)

∣
∣(e(t−s)� f (s), g(t))

∣
∣ dsdt,
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we claim that T : ( f × g) → {Tj ( f, g)} j is a bilinear bounded form:

Lν
(
I ; (Ḃs−2

p,γ , Ḃs
p,γ)1/ν,ρ

)× Lρ′(
I ; (Ḃ−s−2

p′,γ′ , Ḃ−s
p′,γ′)1−1/ρ,ρ′

)→ �1,

where 1 ≤ p, γ ≤ ∞, 1 < ρ ≤ ∞, 1 ≤ ν < ∞ with ν ≤ ρ. From the dissipative
estimate for the heat evolution operator,

∥
∥et�u0‖Ḃs

p,γ
≤ Ct−

n
2

(
1
q − 1

p

)
− s−s′

2 ‖u0‖Ḃs′
q,γ

,

we have for l = 0, 2 and m = 0, 2 that

Tj ( f, g) ≤
∫∫

t>s>0
χ j (t − s)‖e(t−s)� f (s)‖Ḃs+l

p,γ
‖g(t)‖Ḃ−s−l

p′,γ′ dsdt

≤ C
∫∫

t>s>0
χ j (t − s)|t − s|−(l+m)/2‖ f (s)‖Ḃs−m

p,γ
‖g(t)‖Ḃ−s−l

p′,γ′ dsdt

≤ C2−(l+m) j/2
∫∫

t>s>0
χ j (t − s)‖ f (s)‖Ḃs−m

p,γ
‖g(t)‖Ḃ−s−l

p′,γ′ dsdt.

(5.8)

We decompose that f = f0 + f1 with f0 ∈ Ḃs−2
p,γ and f1 ∈ Ḃs

p,γ , and g = g0 + g1
with g0 ∈ Ḃ−s−2

p′,γ′ and g1 ∈ Ḃ−s
p′,γ′ and taking the infimum over all representations of

g ∈ Ḃ−s−2
p′,γ′ + Ḃ−s

p′,γ′ ,

|Tj ( f0, g)| ≤ inf
g=g0+g1

(|Tj ( f0, g0)| + |Tj ( f0, g1)|),
|Tj ( f1, g)| ≤ inf

g=g0+g1
(|Tj ( f1, g0)| + |Tj ( f1, g1)|).

Adding both sides and taking the infimum over all representations f ∈ Ḃs−2
p,γ + Ḃs

p,γ ,

|Tj ( f, g)| ≤ inf
f = f0+ f1

{
inf

g=g0+g1
(|Tj ( f0, g0)| + |Tj ( f0, g1)|)

+ inf
g=g0+g1

(|Tj ( f1, g0)| + |Tj ( f1, g1)|)
}
.

Adding in j and applying the estimates (5.8), we have

∑

j∈N

|Tj ( f, g)|

≤ C
∑

j∈Z

2
j
ν − j

ρ − j
∫∫

t>s>0
χ j (t − s) inf

f = f0+ f1

(
2− j

ν ‖ f0(s)‖Ḃs−2
p,γ

+ 2 j (1− 1
ν )‖ f1(s)‖Ḃs

p,γ

)

× inf
g=g0+g1

(
2− j (1− 1

ρ )‖g0(t)‖Ḃ−s−2
p′,γ′ + 2

j
ρ ‖g1(t)‖Ḃ−s

p′,γ′

)
dsdt.
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We then let
⎧
⎪⎪⎨

⎪⎪⎩

Fj (s) ≡‖ f (s)‖{Ḃs−2
p,γ ,Ḃs

p,γ }1/ν, j
≡ inf

f = f0+ f1

(
2− j

ν ‖ f0(s)‖Ḃs−2
p,γ

+ 2 j (1− 1
ν )‖ f1(s)‖Ḃs

p,γ

)
,

G j (t) ≡‖g(t)‖{Ḃ−s−2
p′,γ′ ,Ḃ−s

p′,γ′ }1−1/ρ, j
≡ inf

g=g0+g1

(
2− j (1− 1

ρ )‖g0(t)‖Ḃ−s−2
p′,γ′ + 2

j
ρ ‖g1(t)‖Ḃ−s

p′,γ′
)
.

It follows by letting 1
μ

+ 1
ρ′ + 1

ν
= 2 and using the Hausdorff-Young inequality

(including the case ν = 1) that

∑

j∈Z

|Tj ( f, g)|

≤ C
∑

j∈Z

2 j ( 1
ν − 1

ρ −1)
(∫ ∞

0
χ j (r)

μdr

)1/μ (∫ ∞

0
Fj (s)

νds

)1/ν (∫ ∞

0
G j (t)

ρ′
dt

)1/ρ′

≤ C
∑

j∈Z

(∫ ∞

0
Fj (s)

νds

) 1
ν
(∫ ∞

0
G j (t)

ρ′
dt

) 1
ρ′

.

Here we used the fact that 1
μ

= 2 − 1
ν

− 1
ρ′ = 1 − 1

ν
+ 1

ρ
. By using the fact that

∫

2 j<λ≤2 j+1
dλ
λ

= ∫
R+ χ j (λ) dλ

λ
= log 2, we apply the Hölder inequality for j in 1

σ
+

1
σ′ = 1 and noting σ′ ≥ ρ′ and the Minkowski inequality, ν ≤ σ, we obtain

∑

j∈Z

|Tj ( f, g)| ≤ C
∑

j∈Z

∥
∥Fj (s)

∥
∥
Lν (I )

∥
∥G j (t)

∥
∥
Lρ′

(I )

≤ C

⎛

⎝
∑

j∈Z

∥
∥Fj (s)

∥
∥σ
Lν (I )

⎞

⎠

1/σ ⎛

⎝
∑

j∈Z

∥
∥G j (t)

∥
∥σ′
Lρ′

(I )

⎞

⎠

1/σ′

(Minkowski’s inequality byν ≤ σandρ′ ≤ σ′)

≤ C

⎛

⎝

∫ ∞

0

(∑

j∈Z

Fj (s)
σ
) ν

σ
ds

⎞

⎠

1/ν ⎛

⎝

∫ ∞

0

(∑

j∈Z

G j (t)
σ′)ρ′/σ′

dt

⎞

⎠

1/ρ′

≤ C

⎛

⎝

∫ ∞

0

(∑

j∈Z

∫

2 j<λ≤2 j+1
‖ f (s)‖σ

{Ḃs−2
p,γ ,Ḃs

p,γ }1/ν, j

dλ

λ

)ν/σ
ds

⎞

⎠

1/ν

×
⎛

⎝

∫ ∞

0

(∑

j∈Z

∫

2 j<λ≤2 j+1
‖g(t)‖σ′

{Ḃ−s−2
p′,γ′ ,Ḃ−s

p′,γ′ }1−1/ν, j

dλ

λ

)ρ′/σ′
dt

⎞

⎠

1/ρ′

= C‖ f ‖Lν (I ;(Ḃs−2
p,γ ,Ḃs

p,γ )1/ν,σ)
‖g‖Lρ′

(I ;(Ḃ−s−2
p′,γ′ ,Ḃ−s

p′,γ′ )1−1/ρ,σ′ ).

We conclude that
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‖{Tj ( f, g)} j‖�1 ≤C‖ f ‖Lν (I ;(Ḃs−2
p,γ ,Ḃs

p,γ)1/ν,σ)‖g‖Lρ′
(I ;(Ḃ−s−2

p′,γ′ ,Ḃ−s
p′ ,γ′ )1−1/ρ,σ′ ).

Noting for 1 < ν < ∞, 1 ≤ γ′ < ∞ and 1 ≤ p′ < ∞,

(
(Ḃ−s−2

p′,γ′ , Ḃ−s
p′,γ′)1−1/ν,σ′

)∗ = (Ḃs+2
p,γ , Ḃs

p,γ)1−1/ν,σ,

we obtain the desired estimate (5.7) by a duality argument. �
Proof of Theorem 5.1 For simplicity we show the proof for the case μ = 1. The other
cases are shown by a simple scaling argument of time-variable t → t ′/μ. Since the
homogeneous estimate (5.3) can be obtained from Proposition 5.2, we only show the
estimate (5.4). For 1 < ν ≤ σ ≤ ρ < ∞, we have shown that

∥
∥
∥
∥

∫ t

0
e(t−s)� f (s)ds

∥
∥
∥
∥
Lρ(I ;Ḃs+ 2

ρ
p,σ )

≤ C‖ f ‖
Lν (I ;Ḃs−2+ 2

ν
p,σ )

(5.9)

from the interpolation result. Then the estimate (5.4) follows from (5.9), since ∂t u =
�u + f .

Finally we treat the case ρ = ∞. In this case, we modify the above argument in
the different interpolation parameter. Namely, we have from (5.8) that

∑

j∈Z

|Tj ( f, g)| ≤ C
∑

j∈Z

2
j
ν − j
∫∫

t>s>0
χ j (t − s)Fj (s)G j (t)dsdt,

where
⎧
⎪⎪⎨

⎪⎪⎩

Fj (s) ≡‖ f (s)‖{Ḃs−2
p,γ ,Ḃs

p,γ } 1
2 + 1

ν , j
≡ inf

f = f0+ f1

(
2− j ( 12 + 1

ν )‖ f0(s)‖Ḃs−2
p,γ

+ 2 j ( 12 − 1
ν )‖ f1(s)‖Ḃs

p,γ

)
,

G j (t) ≡‖g(t)‖{Ḃ−s−2
p′,γ′ ,Ḃ−s

p′,γ′ } 1
2 , j

≡ inf
g=g0+g1

(
2− 1

2 j‖g0(t)‖Ḃ−s−2
p′,γ′ + 2

1
2 j‖g1(t)‖Ḃ−s

p′,γ′
)
.

It follows by letting 1
μ

+ 1
ν

+ 1 = 2 and using the Hausdorff-Young inequality with
1
μ

= 2 − 1 − 1
ν

= 1 − 1
ν
,

∑

j∈Z

|Tj ( f, g)| ≤ C
∑

j∈Z

2 j ( 1
ν −1)‖χ j (·)‖μ‖Fj (·)‖Lν (I )‖G j (·)‖L1(I )

= C
∑

j∈Z

‖Fj (·)‖Lν (I )‖G j (·)‖L1(I )

≤ C

⎛

⎝
∑

j∈Z

‖Fj (·)‖σ
Lν (I )

⎞

⎠

1/σ ⎛

⎝
∑

j∈Z

‖G j (·)‖σ′
L1(I )

⎞

⎠

1/σ′

.

By using the fact that
∫

2 j<λ≤2 j+1
dλ
λ

= ∫
R+ χ j (λ) dλ

λ
= log 2, we apply the Hölder and

the Minkowski inequalities for j to obtain
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∑

j∈Z

|Tj ( f, g)| ≤ C‖ f ‖Lν (I ;(Ḃs−2
p,γ ,Ḃs

p,γ) 1
2 + 1

ν ,σ
)‖g‖L1(I ;(Ḃ−s−2

p′,γ′ ,Ḃ−s
p′ ,γ′ ) 1

2 ,σ′ ).

We conclude that

‖{Tj ( f, g)} j‖�1 ≤C‖ f ‖Lν (I ;(Ḃs−2
p,γ ,Ḃs

p,γ) 1
2 + 1

ν ,σ
)‖g‖L1(I ;(Ḃ−s−2

p′,γ′ ,Ḃ−s
p′ ,γ′ ) 1

2 ,σ′ ).

Noting for 2 < ν ≤ ρ = ∞, 1 ≤ γ′ < ∞ and 1 ≤ p′ < ∞,

(
(Ḃ−s−2

p′,γ′ , Ḃ−s
p′,γ′) 1

2 − 1
ρ ,σ′
)∗ = (Ḃs+2

p,γ , Ḃs
p,γ) 1

2 − 1
ρ ,σ,

we obtain the desired estimate (5.7) by letting ρ = ∞ and the duality argument. �

Theorem 5.4 (Maximal regularity in BMO [33, 59]) There exists CM > 0 such

that for all f ∈ L̃2(R+;BMO(Rn)) and ∇u0 ∈ BMO(Rn), then the solution of

the Cauchy problem (5.1) admits a unique solution v ∈ ˜̇W 1,2(R+; BMO(Rn)) ∩
L̃2(R+; ˙BMO

2
(Rn)) which satisfies the following estimate:

‖∂tv‖
L̃2(R+;BMO)

+ ν‖�v‖
L̃2(R+;BMO)

≤ CM
(‖∇u0‖BMO + ‖ f ‖

L̃2(R+;BMO)

)
.

The proof of Theorem 5.4 can be seen in [59].

6 Proof of Well-Posedness for Keller-Segel System

In this section we show the local and global well-posedness of the solution to (1.1)
stated in Proposition 2.1. The proof of Proposition 2.2 for the limiting equation (1.4)
is very similar to the case for (1.1) and it is indeed simpler than Proposition 2.1 and
we do not show the case for (1.4) (cf. [34, 38]).

Proof of Proposition 2.1 Since the case p > n
2 is not the end-point case, the proof

is easier and the result is more or less known. Hence we only show the critical case:
p = n

2 . We show first the local existence of solution for I = (0, T ). Consider the
mild solution to the corresponding integral equation:

⎧
⎪⎪⎨

⎪⎪⎩

uτ (t) = et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

ψτ (t) = etτ�ψ0 +
∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds.

(6.1)

〈Step 1〉 (The local wellposedness): Let n ≥ 3,λ ≥ 0 and τ > 0.We show the local in
time existence andwell-posedness of the solutions for the large initial data (u0,ψ0) ∈
L

n
2 (Rn) × Ẇ 1,n(Rn). Let (q, θ) and (r, θ) satisfy the Serrin admissible conditions:
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⎧
⎪⎪⎨

⎪⎪⎩

2

θ
+ n

q
= 2,

n

2
< q ≤ θ, 2 ≤ θ,

2

σ
+ n

r
= 1, 2 ≤ n < r ≤ σ

(6.2)

and set I = (0, T ) for some 0 < T < ∞ chosen later and let

XM =
{
(u,ψ) ∈

(
C(I ; L n

2 ) ∩ Lθ(I ; Lq)
)

×
(
C(I ; Ẇ 1,n) ∩ Lσ(I ; Ẇ 1,r )

)
;

‖u‖L∞(I ;L n
2 )

+ ‖∇ψ‖L∞(I ;Ln) ≤ M,

‖u‖Lθ(I ;Lq ) + ‖∇ψ‖Lσ(I ;Lr ) ≤ N
}
,

where
M = 4C0

(‖u0‖ n
2
+ ‖∇ψ0‖2n

)

and N > 0 is chosen small later. Introducing the metric on XM by

|||(u,ψ) − (ũ, ψ̃)|||T ≡ ‖u − ũ‖Lθ(I ;Lq ) + ‖∇(ψ − ψ̃)‖Lσ(I ;Lr ),

one can show that XM is a complete metric space.
We then introduce a pair of the solution maps (�[uτ ,ψτ ], �[uτ ,ψτ ]) as follows:

For (u0,ψ0) ∈ L
n
2 × Ẇ 1,n and (uτ ,ψτ ) ∈ XM , let

⎧
⎪⎪⎨

⎪⎪⎩

�[uτ ,ψτ ](t) ≡ et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

�[uτ ,ψτ ](t) ≡ eτ t�ψ0 +
∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

(6.3)

and claim that the map (�,�) is contraction in the critical space XM .
Then by maximal regularity (5.3) in Theorem 5.1 with s = −2, σ = 1 with

the embeddings Ḃ0
q,1(R

n) ⊂ Lq(Rn) and Ẇ− 2
θ ,q(Rn) � Ḟ

− 2
θ

q,2 (Rn) ⊂ Ḟ
− 2

θ

q,θ (Rn) ⊂
Ḃ

− 2
θ

q,θ (Rn) (note that we assume q < θ and 2 ≤ θ) to see

‖et�u0‖Lθ(I ;Lq ) ≤‖et�u0‖Lθ(I ;Ḃ0
q,1)

≤C‖u0‖
Ḃ

−2+ 2
θ′

q,θ

≤ C‖u0‖
Ḟ

− 2
θ

q,θ

≤C‖u0‖
Ḟ

− 2
θ

q,2

≤ C‖u0‖Ẇ− 2
θ

,q

≤C0Sb‖u0‖ n
2
,

(6.4)

where we used the Sobolev type inequality with the relation of the critical exponents
(6.2);
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‖ f ‖
Ẇ− 2

θ
,q ≤ Sb‖ f ‖ n

2
with

1

q
+ 2

nθ
= 2

n
.

Also it follows similarly for ∇ψ0 that

‖∇eτ t�ψ0‖Lσ(I ;Lr ) ≤C‖∇ψ0‖
Ḃ

−2+ 2
σ′

r,σ

≤ C‖∇ψ0‖
Ḟ

− 2
σ

r,σ

≤C0Sb‖∇ψ0‖n,
(6.5)

where we used the Sobolev type inequality with (6.2);

‖ f ‖
Ẇ− 2

σ ,r ≤ Sb‖ f ‖n with 1

r
+ 2

nσ
= 1

n
.

Hence from (6.4) and (6.5), we can choose the time interval |I | ≤ T sufficiently2

small such that for some small ε0 > 0,

‖et�u0‖Lθ(I ;Lq ) < ε0,

‖eτ t�∇ψ0‖Lσ(I ;Lr ) ≤ ‖et�∇ψ0‖Lσ(I ;Lr ) < ε0
(6.6)

for any τ > 1 and the choice of T is independent of τ > 1.
Noticing n

2 < q < θ < ∞, we apply (6.6), maximal regularity (5.4) and the
embedding (4.9) to have

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

≤‖et�u0‖Lθ(I ;Lq ) +
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds
∥
∥
∥
Lθ(I ;Ḃ−2

q,1)

≤ε0 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
q,θ )

≤ε0 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;L

rq
r+q )

≤ε0 + C
∥
∥uτ (·)‖Lθ(I ;Lq )

∥
∥∇ψτ (·)

∥
∥
Lσ(I ;Lr ).

(6.7)

Meanwhile by the embedding

Lq(Rn) ⊂ Ẇ−n( 1
q − 1

r ),r
(Rn),

1

r
= 1

q
− 1

n

(
n

q
− n

r

)

(6.8)

and noting the relations

2

θ
− 2

σ
= 1 − n

q
+ n

r
, θ ≤ σ, 2 ≤ n < r < σ,

2The choice of T is independent of τ > 1.
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∥
∥∇�[uτ ,ψτ ]

∥
∥
Lσ(I ;Lr )

≤‖eτ t�∇ψ0‖Lσ(I ;Lr ) +
∥
∥
∥∇
∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds
∥
∥
∥
Lσ(I ;Lr )

≤ε0 + C
∥
∥
∥uτ (τ

−1s)
∥
∥
∥
Lθ(I ;Ḃ−1+ 2

θ
− 2

σ
r,σ )

≤ε0 + C
∥
∥
∥uτ (τ

−1s)|s=τ t

∥
∥
∥
Lθ(I ;Ḟ−1+ 2

θ
− 2

σ
r,2 )

≤ε0 + C
∥
∥uτ (t)

∥
∥
Lθ(I ;Ẇ−n( 1q − 1

r ),r
)

≤ε0 + C
∥
∥uτ (·)

∥
∥
Lθ(I ;Lq )

.

(6.9)
From (6.7) and (6.9),

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

+ ∥∥∇�[uτ ,ψτ ]
∥
∥
Lσ(I ;Lr )

≤2ε0 + C1

(∥
∥uτ

∥
∥
Lθ(I ;Lq )

)2
.

(6.10)
Choosing ε0 > 0 small enough in (6.10) and we conclude that by choosing (θ, q)

and (σ, r)

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

+ ∥∥∇�[uτ ,ψτ ]
∥
∥
Lσ(I ;Lr )

≤ 4ε0 ≡ N . (6.11)

Similarly by Lemma 4.3, we proceed the estimate similar to (6.9) to see that

∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;L n

2 )
≤‖et�u0‖L∞(I ;L n

2 )
+
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds
∥
∥
∥
L∞(I ;Ḃ−2

n
2 ,1

)

≤C0‖u0‖ n
2

+ C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
Lσ(I ;L nr

2r+n )

≤1

4
M + C

∥
∥uτ (·)‖L∞(I ;L n

2 )

∥
∥∇ψτ (·)

∥
∥
Lσ(I ;Lr ) ≤ 1

4
M + Cε0M ≤ 1

2
M

(6.12)
and

∥
∥∇�[uτ ,ψτ ]

∥
∥
L∞(I ;Ln)

≤‖eτ t�∇ψ0‖L∞(I ;Ln) +
∥
∥
∥∇
∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds
∥
∥
∥
L∞(I ;Ln)

≤C0‖∇ψ0‖n + C
∥
∥
∥uτ (τ

−1s)
∥
∥
∥
Lθ(I ;Ḃ−1+ 2

θ
n,∞ )

≤1

4
M + C

∥
∥uτ (t)

∥
∥
Lθ(I ;Ẇ−1+ 2

θ
,n

)
(

since
1

n
= 1

q
− 1

n

(

1 − 2

θ

))

≤1

4
M + C

∥
∥uτ (·)

∥
∥
Lθ(I ;Lq )

≤ 1

2
M.

(6.13)
The estimates (6.12) and (6.13) implies

∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;L n

2 )
+ ∥∥∇�[uτ ,ψτ ]

∥
∥
L∞(I ;Ln)

≤ M. (6.14)
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Combining (6.11) and (6.14), we obtain that (�[uτ ,ψτ ], �[uτ ,ψτ ]) ∈ XM . Analo-
gously from (6.7) for the difference of solutions

∥
∥
∥�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

∥
∥
∥
Lθ(I ;Lq )

≤
∥
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

)
ds

∥
∥
∥
∥
Lθ(I ;Ḃ−2

q,1)

≤C
∥
∥
∥uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
q,θ )

≤C
∥
∥
∥uτ (s)∇(ψτ (s) − ψ̃τ (s))

∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

+ C
∥
∥
∥
(
uτ (s) − ũτ (s)

)∇ψ̃τ (s)
∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

≤C
∥
∥uτ (s)

∥
∥
Lθ(I ;Lq )

∥
∥∇(ψτ (s) − ψ̃τ (s))

∥
∥
Lσ(I ;Lr )

+ C
∥
∥uτ (s) − ũτ (s)‖Lθ(I ;Lq )

∥
∥∇ψ̃τ (s)

∥
∥
Lσ(I ;Lr )

≤CN |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||M .

(6.15)

Analogously from (6.9) and (6.15), we have

∥
∥
∥∇
(
�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

)∥
∥
∥
Lσ(I ;Lr )

≤
∥
∥
∥
∥

∫ τ t

0
∇e(τ t−s)�

(
�[uτ ,ψτ ](τ−1s) − �[ũτ , ψ̃τ ](τ−1s)

)
ds

∥
∥
∥
∥
Lσ(I ;Lr )

≤C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|τ t − �[ũτ , ψ̃τ ](τ−1s)|τ t

∥
∥
∥
Lθ(I ;Ḟ−1+ 2

θ
− 2

σ
r,2 )

≤C
∥
∥�[uτ ,ψτ ](t) − �[ũτ , ψ̃τ ](t)

∥
∥
Lθ(I ;Ẇ−n( 1q − 1

r ),r
)

≤C
∥
∥�[uτ ,ψτ ](t) − �[ũτ , ψ̃τ ](t)

∥
∥
Lθ(I ;Lq )

≤CN |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||M .

(6.16)
Choosing N smaller as

CN ≤ 1

4
, (6.17)

if necessary, (6.15) and (6.16) with (6.17) yield that

|||(�[uτ ,ψτ ],�[uτ ,ψτ ]) − (�[ũτ , ψ̃τ ], �[ũτ , ψ̃τ ])|||T
≤1

2
|||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||T

under the smallness assumption (6.6) on the interval. Thus the map (�,�) is con-
traction onto XM and the Banach fixed point theorem implies that there exists a
unique fixed point (uτ ,ψτ ) ∈ XM that solves the Eq. (1.1) in the critical space. In
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particular, from (6.12) and (6.14), the a priori estimate

‖uτ‖L∞(I ;L n
2 )

+ ‖uτ‖Lθ(I ;Lq ) + ‖∇ψτ‖L∞(I ;Ln) + ‖∇ψτ‖Lσ(I ;Lr ) ≤ M

does not depend on the parameter τ > 0.
〈Step 2〉 (Global existence for small data). We show the case of global existence with
the critical small data. Let n ≥ 3, λ ≥ 0 and τ > 0 or n = 2, λ > 0 and τ > 0, and
let (θ, q), (σ, r) be Serrin-admissible as is given by

⎧
⎪⎪⎨

⎪⎪⎩

2

θ
+ n

q
= 2,

n

2
< q < n, n < θ < ∞,

2

σ
+ n

r
= 1, n < r ≤ σ < ∞.

Also we call
(θ, q) =

(
∞,

n

2

)
, (σ, r) = (∞, n)

the end-point admissible pairs. Fixing the admissible pair for I = R+ as (θ, q),
(σ, r), we introduce the complete metric space:

XM =
{
(u, ψ) ∈

(
C(I ; L n

2 ) ∩ Lθ(I ; Lq )
)

×
(
C(I ; Ẇ 1,n) ∩ Lσ(I ; Ẇ 1,r )

)
;

|||(u, ψ)|||M ≡ ‖u‖
L∞(I ;L n

2 )
+ ‖u‖Lθ(I ;Lq ) + ‖∇ψ‖L∞(I ;Ln ) + ‖∇ψ‖Lσ (I ;Lr ) ≤ M

}
,

where
M = 4C0

(‖u0‖ n
2
+ ‖∇ψ0‖2n

)

is chosen small later. For any admissible exponents (θ, q) and (σ, r) (not the end-
point exponents), we define the metric on XM by

|||(u,ψ) − (ũ, ψ̃)|||M ≡ ‖u − ũ‖Lθ(I ;Lq ) + ‖∇(ψ − ψ̃)‖Lσ(I ;Lr ).

By this metric, XM is a complete metric space. For (u0,ψ0) ∈ L
n
2 × Ẇ 1,n and

(uτ ,ψτ ) ∈ XM , we define a pair of the solution maps (�[uτ ,ψτ ], �[uτ ,ψτ ]) by
(6.3) and claim that the map (�,�) is contraction in the critical space XM . Let
n ≥ 3. Noticing n

2 < q < θ < ∞ and the embedding (4.9), we apply maximal reg-
ularity and the embedding (6.4) to have

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

≤‖et�u0‖Lθ(I ;Ḃ0
q,1)

+
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds
∥
∥
∥
Lθ(I ;Ḃ0

q,1)

≤C0‖u0‖
Ḃ

− 2
θ

q,θ

+ C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
q,θ )

≤C0‖u0‖ n
2

+ C
∥
∥uτ (·)‖Lθ(I ;Lq )

∥
∥∇ψτ (·)

∥
∥
Lσ(I ;Lr )

.

(6.18)
Meanwhile by the embedding
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Lq(Rn) ⊂ Ẇ−n( 1
q − 1

r ),r
(Rn),

1

r
= 1

q
− 1

n

(
n

q
− n

r

)

and noting the relations

2

θ
− 2

σ
= 1 − n

q
+ n

r
, θ ≤ σ, 2 ≤ n < r < σ,

we have from maximal regularity and the embeddings (6.5) and (6.8) to obtain

∥
∥∇�[uτ ,ψτ ]

∥
∥
Lσ(I ;Lr )

≤C0‖eτ t�∇ψ0‖Lσ(I ;Lr ) +
∥
∥
∥∇
∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds
∥
∥
∥
Lσ(I ;Lr )

≤C0‖∇ψ0‖
Ḃ

− 2
σ

r,σ

+ C
∥
∥
∥uτ (τ

−1s)
∥
∥
∥
Lθ(I ;Ḃ−1+ 2

θ
− 2

σ
r,σ )

≤C0‖∇ψ0‖n + C
∥
∥uτ (·)

∥
∥
Lθ(I ;Lq )

.

(6.19)
From (6.18) and (6.19),

∥
∥�[uτ ,ψτ ]∥∥Lθ(I ;Lq )

+ ∥∥∇�[uτ , ψτ ]
∥
∥
Lσ(I ;Lr ) ≤C0

(
‖u0‖ n

2
+ ‖∇ψ0‖2n

)
+ C1

(∥
∥uτ

∥
∥
Lθ(I ;Lq )

)2
.

(6.20)
Choosing ε0 > 0 small enough and

C0
(‖u0‖ n

2
+ ‖∇ψ0‖n

) ≡ M

4
≤ ε0, C1M ≤ 1

4
(6.21)

in (6.20), we conclude that by choosing (θ, q) and (σ, r)

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

+ ∥∥∇�[uτ ,ψτ ]
∥
∥
Lσ(I ;Lr )

≤ 1

2
M. (6.22)

Similar estimates of (6.12) and (6.13) imply that

∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;L n

2 )
+ ∥∥∇�[uτ ,ψτ ]

∥
∥
L∞(I ;Ln)

≤ 1

2
M. (6.23)

Combining (6.22) and (6.23), we obtain that (�[uτ ,ψτ ], �[uτ ,ψτ ]) ∈ XM . Analo-
gously from (6.18) for the difference of solutions
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∥
∥�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

∥
∥
Lθ(I ;Lq )

≤
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

)
ds
∥
∥
∥
Lθ(I ;Ḃ−2

q,1)

≤C
∥
∥
∥uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
q,θ )

≤C
∥
∥
∥uτ (s)∇(ψτ (s) − ψ̃τ (s))

∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

+ C
∥
∥
∥
(
uτ (s) − ũτ (s)

)∇ψ̃τ (s)
∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

≤C
∥
∥uτ (s)

∥
∥
Lθ(I ;Lq )

∥
∥∇(ψτ (s) − ψ̃τ (s))

∥
∥
Lσ(I ;Lr )

+ C
∥
∥uτ (s) − ũτ (s)‖Lθ(I ;Lq )

∥
∥∇ψ̃τ (s)

∥
∥
Lσ(I ;Lr )

≤CM |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||M .

(6.24)

Analogously from (6.16) and using (6.24), we have

∥
∥
∥∇
(
�[uτ , ψτ ]−�[ũτ , ψ̃τ ]

)∥
∥
∥
Lσ(I ;Lr )

≤
∥
∥
∥

∫ τ t

0
∇e(τ t−s)�

(
�[uτ , ψτ ](τ−1s) − �[ũτ , ψ̃τ ](τ−1s)

)
ds
∥
∥
∥
Lσ(I ;Lr )

≤C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|τ t − �[ũτ , ψ̃τ ](τ−1s)|τ t

∥
∥
∥
Lθ(I ;Ḟ−1+ 2

θ
− 2

σ
r,2 )

≤C
∥
∥
∥�[uτ ,ψτ ](t) − �[ũτ , ψ̃τ ](t)

∥
∥
∥
Lθ(I ;Ẇ−n( 1q − 1

r ),r
)

≤C
∥
∥�[uτ ,ψτ ](t) − �[ũτ , ψ̃τ ](t)∥∥Lθ(I ;Lq )

≤CM |||(uτ , ψτ ) − (ũτ , ψ̃τ )|||M .

(6.25)
Choosing M smaller as

CM ≤ 1

4
,

if necessary, we have from (6.24), (6.25), that

|||(�[uτ ,ψτ ],�[uτ ,ψτ ]) − (�[ũτ , ψ̃τ ], �[ũτ , ψ̃τ ])|||M
≤1

2
|||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||M

under the smallness assumption (6.21) on the initial data. Thus the map (�,�) is
contraction onto XM and the Banach fixed point theorem implies that there exists a
unique fixed point (uτ ,ψτ ) ∈ XM that solves the Eq. (1.1) in the critical space. In
particular, from (6.22) and (6.23), the a priori estimate

‖uτ‖L∞(I ;L n
2 )

+ ‖uτ‖Lθ(I ;Lq ) + ‖∇ψτ‖L∞(I ;Ln) + ‖∇ψτ‖Lσ(I ;Lr ) ≤ M (6.26)
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does not depend on the parameter τ > 0. �
For two dimensional case, we need to involve the class of bounded mean oscillations
(BMO(R2)) for the small data global existence and the vanishing mean oscillation
(V MO(R2)) for the local existence for large data. The proof is entirely close to the
higher dimensional case but the role of those limiting function class is subtle. See
for the detailed proof of Theorem 2.3, Kurokiba-Ogawa [41].

7 Proof for the Singular Limit

In this section, we recall the proof of the convergence of the singular limit prob-
lem for the higher dimensional Patlak-Keller-Segel equation (1.1). The key part is
to introduce the critical Bochner- Lebesgue spaces with the admissible exponents
defined in (1.13). We only show the proof for Theorem 2.5. See for the proof of
Theorem 2.6 [41].

The following lemma is useful for proving the strong convergence in the critical
Bochner spaces (cf. [40]).

Lemma 7.1 Let 1 ≤ θ, p ≤ ∞ and f ∈ W 1,θ(I ; L p(Rn)) ∩ Lθ(I ; Ẇ 2,p(Rn)),
where t ∈ I = (0, T ) with T ≤ ∞. Then for any τ > 0,

∥
∥
∥

∫ τ t

0
�es�

(
f
(
t − s

τ

)− f (t)
)
ds
∥
∥
∥
Lθ(I ;L p)

≤
∥
∥
∥

∫ τ t

0
er�

∂

∂r
f
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;L p)

+ ∥∥eτ t� f (0)
∥
∥
Lθ(I ;L p)

+ ∥∥eτ t� f (t)
∥
∥
Lθ(I ;L p)

.

Proof of Lemma 7.1 Since f is absolute continuous in L p(Rn), by the mean value
theorem and change of order of integration, we see

∥
∥
∥

∫ τ t

0
�es�

(
f
(
t − s

τ

)− f (t)
)
ds
∥
∥
∥
Lθ(I ;L p)

=
∥
∥
∥

∫ τ t

0
�es�

( ∫ s

0

∂

∂r
f
(
t − r

τ

)
dr
)
ds
∥
∥
∥
Lθ(I ;L p)

=
∥
∥
∥

∫ τ t

0

(∫ τ t

r
�es�ds

)
∂

∂r
f
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;L p)

=
∥
∥
∥

∫ τ t

0
er�

∂

∂r
f
(
t − r

τ

)
dr − eτ t�

[
f
(
t − r

τ

)]τ t

r=0

∥
∥
∥
Lθ(I ;L p)

≤
∥
∥
∥

∫ τ t

0
er�

∂

∂r
f
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;L p)

+ ∥∥eτ t� f (0)
∥
∥
Lθ(I ;L p)

+ ∥∥eτ t� f (t)
∥
∥
Lθ(I ;L p)

.

�
Proof of Theorem 2.5Wefirst showTheorem2.5 for the small data case: For the large
data case, the proof is simply changed by T < ∞. Note that we restrict ourselves
as θ = σ. For the small initial data, one can obtain the a priori estimate for uτ in
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BUC(R+; L n
2 ) ∩ L2(R+; L n

2 ) and the bound is independent of τ > 0 since it is
determined by the initial data. Namely by (6.26),

‖uτ (t)‖L∞(R+;L n
2 )

+ ‖∇ψτ (t)‖L∞(R+;Ln) ≤ C(‖u0‖ n
2
+ ‖∇ψ0‖2n).

〈Step 1〉: Let I = (0,∞) and we consider the difference of solutions between (6.1)
and the following:

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = et�u0 +
∫ t

0
e(t−s)�∇ · (u(s)∇ψ(s)

)
ds,

ψ(t) =
∫ τ t

0
es�uτ (τ

−1s)ds +
∫ ∞

τ t
es�u(t)ds,

(7.1)

as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uτ (t) − u(t) =
∫ t

0
e(t−s)�∇ · ((uτ (s) − u(s)

)∇ψτ (s)
)
ds

+
∫ t

0
e(t−s)�∇ · (u(s)

(∇ψτ (s) − ∇ψ(s)
))
ds, t ∈ I,

ψτ (t) − ψ(t) = eτ t�ψ0 +
∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

+
∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds −

∫ ∞

τ t
es�u(t)ds, t ∈ I.

(7.2)
Choose admissible exponents (θ, q), (σ, r) with θ = σ such as

⎧
⎪⎪⎨

⎪⎪⎩

2

θ
+ n

q
= 2,

n

2
< q ≤ θ, 2 ≤ θ,

2

θ
+ n

r
= 1, 2 ≤ n < r ≤ σ = θ.

Let the time interval I = (0,∞). We apply the similar estimate in (6.24), it follows
from Lemma 4.3 that

‖uτ − u‖Lθ(I ;Lq ) ≤C‖(uτ − u)∇ψτ‖
L

θ
2 (I ;Ḃ−1+ 2

θ
q,θ )

+ C
∥
∥u(t)∇(ψτ − ψ)

∥
∥
L

θ
2 (I ;Ḃ−1+ 2

θ
q,θ )

≤C
∥
∥(uτ − u)∇ψτ

∥
∥
L

θ
2 (I ;L

rq
r+q )

+ C
∥
∥u∇(ψτ − ψ)

∥
∥
L

θ
2 (I ;L

rq
r+q )

≤C‖uτ − u‖Lθ(I ;Lq )

∥
∥∇ψτ

∥
∥
Lθ(I ;Lr ) + C‖u‖Lθ(R+;Lq )

∥
∥∇(ψτ − ψ)

∥
∥
Lθ(I ;Lr )

≤CM
(
‖uτ − u‖Lθ(I ;Lq ) + ∥∥∇ψτ − ∇ψ

∥
∥
Lθ(I ;Lr )

)
.

(7.3)
Similarly for the difference for wψ,
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‖∇ψτ − ∇ψ‖Lθ(I ;Lr ) =‖∇eτ t�ψ0‖Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ τ t

0
∇es�

(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

∥
∥
∥
∥
Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ τ t

0
∇es�

(
u(t − τ−1s) − u(t)

)
ds

∥
∥
∥
∥
Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ ∞

τ t
∇es�u(t)ds

∥
∥
∥
∥
Lθ(I ;Lr )

≡I0 + I1 + I2 + I3.
(7.4)

We see from θ < ∞ that

I0 =
(∫ ∞

0

∥
∥
∥eτ t�∇ψ0

∥
∥
∥

θ

Lr
dt

)1/θ

=τ−1/θ

(∫ ∞

0

∥
∥
∥es�∇ψ0

∥
∥
∥

θ

Lr
ds

)1/θ

→ 0 as τ → ∞.

(7.5)

Since (θ, r) is the admissible, i.e., 2 ≤ n < r ≤ θ, we have from (2.6) and the gen-
eralized maximal regularity (5.4) in Theorem 5.1 that

I1 =
∥
∥
∥

∫ τ t

0
∇es�

(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds
∥
∥
∥
Lθ(I ;Lr )

=
∥
∥
∥

∫ τ t

0
∇e(τ t−s)�

(
uτ (τ

−1s) − u(τ−1s)
)
ds
∥
∥
∥
Lθ(I ;Lr )

≤C
∥
∥uτ (τ

−1s) − u(τ−1s)|s=τ t

∥
∥
Lθ(I ;Ḃ−1

r,θ )

≤C
∥
∥uτ − u

∥
∥
Lθ(I ;Ẇ−1,r )

≤C
∥
∥uτ − u

∥
∥
Lθ(I ;Lq )

(7.6)

for all τ ≥ 2, where C > 0 is independent of τ > 0 and

Lq(Rn) ⊂ Ẇ−1.r (Rn),
1

q
= 1

r
+ 1

n
.

The third term of (7.4), we apply the Sobolev inequality and Lemma 7.1 to see
that
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I2 ≤Sb
∥
∥
∥

∫ τ t

0
�es�

(
u
(
t − s

τ

)− u(t)
)
ds
∥
∥
∥
Lθ(I ;L nr

n+r )

=Sb
∥
∥
∥

∫ τ t

0
�es�

( ∫ s

0

∂

∂r
u
(
t − r

τ

)
dr
)
ds
∥
∥
∥
Lθ(I ;Lq )

≤Sb
∥
∥
∥

∫ τ t

0
er�

∂

∂r
u
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;Lq )

+ Sb
∥
∥eτ t�u0

∥
∥
Lθ(I ;Lq )

+ Sb
∥
∥eτ t�u(t)

∥
∥
Lθ(I ;Lq )

=I2,1 + I2,2 + I2,3.

(7.7)

For treating the first term of the right hand side of (7.7), we proceed by changing the
variable r = τs

I2,1 =
∥
∥
∥
∥

∫ t

0
eτs� ∂

∂s
u
(
t − s

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

≤
∥
∥
∥
∥

∫ t

0
eτs��u

(
t − s

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

+
∥
∥
∥
∥

∫ t

0
eτs�∇ · (u(t − s)∇ψ(t − s)

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

≡J1 + J2.
(7.8)

Then applying (5.4) inTheorem5.1 and the remark after the statement to the equation;

{
∂tv − τ (�v − λv) = u, t > 0, x ∈ R

n,

v(0, x) = 0, x ∈ R
n,

we see by regarding ν → τ , that

J1 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)��u

(
r
)
dr

∥
∥
∥
∥
Lθ(I ;Lq )

≤ Cτ−1‖u‖Lθ(I ;Lq ). (7.9)

Similarly analogous estimate (6.18), it follows that

J2 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)�∇ · (u∇ψ)

(
r
)
dr

∥
∥
∥
∥
Lθ(I ;Lq )

≤Cτ−1‖u∇ψ‖
L

θ
2 (I ;L rq

r+q )

≤Cτ−1‖u‖Lθ(I ;Lq )‖∇ψ‖
L

θ
2 (I ;Lr )

.

(7.10)

On the other hand, since u0 and u(t) ∈ Lq for almost everywhere,

lim
τ→∞ ‖eτ t�{u0 − u(t)}‖q = 0

and eτ t� is a bounded operator from Lq to itself. Since
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‖et�u0‖Lθ(I ;Lq ) ≤ C‖u0‖
Ḃ

− 2
θ

q,θ

≤ C‖u0‖ n
2
,

‖et�u(t)‖Lθ(I ;Lq ) ≤ C‖u‖Lθ(I ;Lq ),

we see for all τ > 1 that

‖eτ t�u0‖θ
q ≤ C‖et�u0‖θ

q ∈ L1(I ),

‖eτ t�u(t)‖θ
q ≤ C‖et�u(t)‖θ

q ∈ L1(I ).

Hence by the Lebesgue dominated convergence theorem, for any ε > 0, we may
choose sufficiently large τ > 0 such that

I2,2 + I2,3 < ε (7.11)

Combining the estimates (7.7)–(7.10) and (7.11), we obtain that for any ε > 0, there
exists a large τ > 0 such that

I2 ≤ ε. (7.12)

Lastly for the forth term, setting I = (η0τ
−1,∞), employing the Sobolev embed-

ding:
‖ f ‖r ≤ Sb‖∇ f ‖ nr

n+r
, r < ∞,

we see
I3 =

∥
∥
∥∇(−�)−1eτ t� u(t)

∥
∥
∥
Lθ(I ;Lr )

≤ Sb
∥
∥
∥∇2(−�)−1eτ t� u(t)

∥
∥
∥
Lθ(I ;L nr

r+n )

= Sb

(∫ ∞

0

∥
∥eτ t� u(t)

∥
∥θ

nr
r+n

dt

)1/θ

= Sb

(∫ ∞

0

∥
∥u(s)

∥
∥θ

nr
r+n

ds

)1/θ

.

(7.13)

For the admissible (θ, q), the limiting solution u is integrable in Lθ(0,∞; Lq) and
especially, by

2

θ
+ n(r + n)

rn
= 2

σ
+ n

r
+ 1 = 2,

we find that (σ, rn
r+n ) = (θ, q) and is also the admissible exponent for u and

(∫ ∞

0

∥
∥u(s)

∥
∥σ

rn
r+n

ds

)1/σ

=
(∫ ∞

0

∥
∥u(s)

∥
∥θ

qds

)1/θ

< ∞. (7.14)

Hence from the fourth line of (7.13), the integrant
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∥
∥eτ t� u(t)

∥
∥θ

nr
r+n

is L1(R+) and it is dominated by the integrable function
∥
∥u(s)

∥
∥θ

nr
r+n

as

∥
∥eτ t� u(t)

∥
∥θ

nr
r+n

≤ C
∥
∥u(t)

∥
∥θ

nr
r+n

.

Besides for almost all t > 0,

lim
τ→∞ ‖eτ t� u(t)‖θ

nr
r+n

= 0. (7.15)

Applying the Lebesgue dominated convergence theorem, it follows from (7.13),
(7.14) and (7.15) that for any ε > 0

I3 =
∥
∥
∥

∫ ∞

τ t
∇es�ds u(t)

∥
∥
∥
Lθ(I ;Lr )

≤Sb

(∫ ∞

0

∥
∥eτ t� u(t)

∥
∥θ

nr
r+n

dt

)1/θ

< ε,

(7.16)

as τ → ∞. Combining all the estimates (7.4), (7.5), (7.6), (7.12) and (7.16), we
obtain

‖∇ψτ (t) − ∇ψ(t)‖Lθ(I ;Lr ) ≤C‖uτ − u‖Lθ(I ;Lq ) + ε. (7.17)

Gathering (7.3) and (7.17), we see that for any ε > 0, choosing τ sufficiently large
such that

‖uτ − u‖Lθ(I ;Lq ) ≤ CM
(
‖uτ − u‖Lθ(I ;Lq ) + ε

)
. (7.18)

In particular, from (7.17) and (7.18), for small M , we see by choosing τ > 0 small
that

‖uτ − u‖Lθ(I ;Lq ) + ‖∇ψτ − ∇ψ‖Lθ(I ;Lr ) ≤ ε. (7.19)

〈Step 2〉: From maximal regularity (5.4) in Theorem 5.1, we estimate the first com-
ponent of the integral equation (7.2) as follows:
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‖uτ −u‖
L∞(I ;L n

2 )

≤
∥
∥
∥
∥

∫ t

0
∇e(t−s)�

(
uτ (s)∇ψτ (s) − u(s)∇ψ(s)

)
ds

∥
∥
∥
∥
L∞(I ;L n

2 )

≤C
∥
∥uτ (s)∇ψτ (s) − u(s)∇ψ(s)

∥
∥

L
θ
2 (I ;Ḃ−1+ 4

θ
n
2 ,∞ )

≤C
(∥
∥
(
uτ (s) − u(s)

)∇ψτ (s)
∥
∥

L
θ
2 (I ;Ẇ−1+ 4

θ
, n2 )

+ ∥∥u(s)
(∇ψτ (s) − ∇ψ(s)

)∥
∥

L
θ
2 (I ;Ẇ−1+ 4

θ
, n2 )

)

≤C
(∥
∥
(
uτ (s) − u(s)

)∇ψτ (s)
∥
∥

L
θ
2 (I ;L

rq
r+q )

+ ∥∥u(s)
(∇ψτ (s) − ∇ψ(s)

)∥
∥

L
θ
2 (I ;L

rq
r+q )

)

≤C
(
‖uτ − u‖Lθ(I ;Lq )

∥
∥∇ψτ

∥
∥
Lθ(I ;Lr ) + ‖∇ψτ − ∇ψ‖Lθ(I ;Lr )

∥
∥u
∥
∥
Lθ(I ;Lq )

)
,

(7.20)
where

‖ f ‖
Ẇ−1+ 4

θ
, n2

≤ C‖ f ‖ rq
r+q

,
2

n
− 1

n

(

−1 + 4

θ

)

= 1

r
+ 1

q
.

For any t0 > 0 set It0 = I ∩ (t0,∞) with I = (0, T ). Let ητ (t) ≡ χ[0,t1τ−1](t)(eτ t�

ψ0 − (−� + λ)−1u0). From (7.2),

ψτ (t) − ψ(t) − ητ (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eτ t�ψ0 +
∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

+
∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds −

∫ ∞

τ t
es�u(t)ds, t ∈ It0 ,

eτ t�ψ0 − ψ0 + (−� + λ)−1u0 −
∫ ∞

0
es�u(t)ds

+
∫ τ t

0
e(τ t−s)�uτ (τ−1s)ds, t ∈ (0, τ−1t1).

(7.21)
For any ε > 0, choose t0 > 0 small enough such that applying the similar estimate
from (7.5), (7.6), (7.12), (7.13) and (7.16) we see for large τ > 0 that

‖∇ψτ − ∇ψ − ∇ητ ‖L∞(It0 ;Ln ) = ‖∇ψτ − ∇ψ‖L∞(It0 ;Ln )

≤∥∥∇eτ t�ψ0
∥
∥
L∞(It0 ;Ln )

+
∥
∥
∥
∥∇
∫ τ t

0
es�

(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

∥
∥
∥
∥
L∞(It0 ;Ln )

+
∥
∥
∥
∥∇
∫ τ t

0
es�

(
u(t − τ−1s) − u(t)

)
ds

∥
∥
∥
∥
L∞(It0 ;Ln )

+
∥
∥
∥
∥∇
∫ ∞
τ t

es�u(t)ds

∥
∥
∥
∥
L∞(It0 ;Ln )

≤∥∥∇eτ t0�ψ0
∥
∥
n + C

∥
∥
∥uτ (t − τ−1t) − u(t − τ−1t)

∥
∥
∥
Lθ(It0 ;Ḃ−1+ 2

θ
r,∞ )

+
∥
∥
∥u
(
t − τ−1t

)− u(t)
∥
∥
∥
Lθ(It0 ;Lq )

+ Sb
∥
∥eτ t0�u(t)

∥
∥
Lθ(It0 ;L nr

r+n )

≤∥∥∇eτ t0�ψ0
∥
∥
n + C

∥
∥uτ − u

∥
∥
Lθ(It0 ;Lq )

+ 2ε ≤ 4ε.

(7.22)
Hence ∇ψτ (t) converges to ∇ψ(t) locally uniformly in Ln(Rn) over I . On the other
hand, from the second expression for ψτ − ψ − ητ in (7.21), we choose t1 > 0 small
enough so that
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‖∇ψτ − ∇ψ − ∇ητ ‖L∞(0,τ−1 t1;Ln )

≤∥∥∇eτ t�ψ0 − ∇ψ0
∥
∥
L∞(0,τ−1 t1;Ln )

+
∥
∥
∥
∥∇(−� + λ)−1u0 − ∇

∫ ∞

0
es�u(t)ds

∥
∥
∥
∥
L∞(0,τ−1 t1;Ln )

+
∥
∥
∥
∥∇
∫ τ t

0
e(τ t−s)�uτ (τ−1s)ds

∥
∥
∥
∥
L∞(0,τ−1 t1;Ln )

≤ sup
t≤[0,τ−1 t1]

∥
∥
(
eτ t� − I

)∇ψ0
∥
∥
n + C

∥
∥
∥∇(−� + λ)−1u0 − ∇(−� + λ)−1u(t)

∥
∥
∥
L∞(0,τ−1 t1;Ln )

+ C
∥
∥
∥uτ (t − τ−1s)|s=τ t

∥
∥
∥
Lθ(0,τ−1 t1;Ḃ

−1+ 2
θ

n,∞ )

≤∥∥(et1� − I
)∇ψ0

∥
∥
n + C

∥
∥u(t) − u0

∥
∥
L∞(0,τ−1 t1;L

n
2 )

+ C
∥
∥uτ (t)

∥
∥
Lθ(0,τ−1 t1;Lq )

≤3ε,

(7.23)

because of the strong continuity of solution uτ (t) in L
n
2 (Rn) and uniform bound for

uτ ∈ Lθ(I ; Lq).
Hence by passing τ → ∞ in (7.20), (7.22) and (7.23) we conclude from (7.19)

that the convergence (2.4) and (2.5) hold. This completes the proof. �

8 Proof for the Well-Posedness of Chaplain-Anderson and
Fujie-Senba System

The proof for the well-posedness of the simplified Chaplain-Anderson system (1.9)
is very much similar to the case of the Keller-Segel system (1.1). The only minor
difference is how to treat the second component φτ .

Proof of Theorem 3.1 〈Step 1〉 (The local wellposedness): Let τ > 0. We show
the local in time existence and well-posedness of the solutions for the large initial

data (u0,φ0,ψ0) ∈ (L1(R4) ∩ Ḃ0
1,θ(R

4)
)× (L2(R4) ∩ Ḃ

1− 2
ρ

1,ρ (R4)
)× (V MO(R4) ∩

Ḃ
1− 2

σ
r,σ (R4)

)
. Let (θ, p), (ρ, q) and (σ, r) satisfy admissible conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2θ
+ 1

p
= 1, 1 < p ≤ θ, 2 < θ,

1

2ρ
+ 1

q
= 1

2
, 2 < q ≤ ρ, θ ≤ ρ,

1

2σ
+ 1

r
= 1

4
, 4 < r ≤ σ, max

(

ρ,
pq

p + q

)

< σ,
1

2
− 1

θ
+ 1 − 1

θ
= 1

r
+ 1

q
>

1

θ
(8.1)

and set I = (0, T ) for some 0 < T < ∞ chosen later and let

XT =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈Lθ(I ; Lq(R4)),

φ ∈C(I ; L2(R4)) ∩ Lρ(I ; Ẇ 1,q(R4))

ψ ∈C(I ; BMO(R2)) ∩ Lσ(I ; Ẇ 1,r (R4));
‖φ‖L∞(I ;L2) + ‖ψ‖L∞(I ;VMO) ≤ M,

max
(‖u‖Lθ(I ;L p(R4)), ‖φ‖Lρ(I ;Lq (R4)), ‖∇ψ‖Lσ(I ;Lr (R4))

) ≤ N

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,
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where
M = 4C0

(‖u0‖1 + ‖φ0‖2 + ‖ψ0‖2BMO

)

and N > 0 will be determined later. Introducing the metric on XM by

|||(u,φ,ψ) − (ũ, φ̃, ψ̃)|||T ≡ ‖u − ũ‖Lθ(I ;L p) + ‖φ − φ̃‖Lρ(I ;Lq ) + ‖∇(ψ − ψ̃)‖Lσ(I ;Lr ),

we can show that XM is a complete metric space. Indeed, since

C([0, T ]; V MO(R4)) ⊂ L∞(0, T ; BMO(R4)),

the pre-dual of L∞(0, T ; BMO(R4)) coincides L1(0, T ;H1(R4)),whereH1 denotes
the Hardy space with absolute integrable, which is separable. Hence the Banach-
Alaoglu theorem implies that the weak-∗ sequence compactness holds in L∞(0, T ;
BMO(R4)) (cf. Brezis [8, Cor. III.26.]). By this fact, any Cauchy sequence con-
verges a limit (u,φ,ψ) in Lθ(I ; L p(R4)) × Lρ(I ; Lq(R4)) × Lσ(I ; Ẇ 1,r (R4)) and
weak-∗ compactness ensures that the limit indeed belongs to XT .

We then introduce a pair of solution map
(
�[uτ ,ψτ ],�[uτ ,ψτ ], �[uτ ,ψτ ]

)
as

follows: For (u0,φ0,ψτ ) ∈ (L1(R4) ∩ Ḃ
− 2

θ

p,θ (R4)
)× (L2(R4) ∩ Ḃ

− 2
ρ

q,ρ (R4)
)×

(
BMO(R4) ∩ Ḃ

1− 2
σ

r,σ (R4)
)
and (uτ ,φτ ,ψτ ) ∈ XM , let

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�[uτ ,ψτ ](t) ≡ et�u0 +
∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds,

�[uτ ,ψτ ](t) ≡ eτ t�φ0 +
∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds,

�[uτ ,ψτ ](t) ≡ eτ t�ψ0 +
∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

(8.2)

and claim that the map
(
�,�,�

)
is contraction in the critical space XT .

First we claim that (�,�,�) is onto XT . Bymaximal regularity (5.3) in Theorem
5.1 with s = −2, σ = 1 to see by the Littlewood-Paley theorem that

‖et�u0‖Lθ(I ;L p) ≤C‖et�u0‖Lθ(I ;Ḟ0
p,2)

≤C‖u0‖
Ḃ

−2+ 2
θ′

p,θ

≤ C‖u0‖
Ḃ

− 2
θ

p,θ

,
(8.3)

‖eτ t�φ0‖Lρ(I ;Lq ) ≤‖eτ t�φ0‖Lρ(I ;Ḃ0
q,2)

≤ C‖φ0‖
Ḃ

− 2
ρ

q,ρ
(8.4)

and
‖∇eτ t�ψ0‖Lσ(I ;Lr ) ≤‖∇eτ t�ψ0‖Lσ(I ;Ḃ0

r,2)
≤ C‖ψ0‖

Ḃ
1− 2

σ
r,σ

. (8.5)
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Hence from (8.3)–(8.5), we can choose the time interval |I | ≤ T sufficiently small
such that for some small ε0 > 0,3

‖et�u0‖Lθ(I ;L p) ≤ ε0,

‖eτ t�φ0‖Lρ(I ;Lq ) ≤ ε0,

‖∇eτ t�ψ0‖Lσ(I ;Lr ) ≤ ε0

(8.6)

for any τ > 1 and the choice of T is independent of τ > 1. Since (θ, p), (ρ, q) and
(σ, r) are admissible pairs, it follows from (8.1) that

1

2θ
+ 1

p
= 1,

1

2σ
+ 1

r
= 1

4
,

we apply (8.6), maximal regularity (5.4), the bound for the initial data (8.3) and the
embedding (4.8) in Lemma 4.3 to have

∥
∥�[uτ , ψτ ]∥∥Lθ(I ;L p )

≤‖et�u0‖Lθ(I ;L p ) +
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds
∥
∥
∥
Lθ(I ;Ḃ0

p,1)

≤ε0 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
p,θ )

≤ε0 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḟ−1+ 2

σ
p,θ )

(

since L
pr
p+r � Ḟ0

pr
r+p ,2 ⊂ Ḟ

−1+ 2
σ

p,2 ⊂ Ḟ
−1+ 2

σ
p,θ by

1

p
− 1

4

(

−1 + 2

σ

)

= 1

p
+ 1

r

)

≤ε0 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θσ
θ+σ (I ;L

pr
p+r )

≤ε0 + C
∥
∥uτ (·)∥∥Lθ(I ;L p )

∥
∥∇ψτ (·)∥∥Lσ (I ;Lr )

≤ε0 + CN 2 ≤ N

(8.7)
for any 2 < θ ≤ 4 and 1 < q < 2, and for some small ε0, CN 2 ≤ 1

2N .
From (8.1) in particular, 1/2θ + 1/p = 1, 1/2ρ + 1/q = 1/2, we see that

1

q
− 1

4

(

−2 + 2

θ
− 2

ρ

)

= 1

p

and from (5.4) in Theorem 5.1 and (6.6), it follows

3The choice of T is independent of τ > 1.
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∥
∥�[uτ ,ψτ ]

∥
∥
Lρ(I ;Lq )

≤‖eτ t�ψ0‖Lρ(I ;Lq ) +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

∥
∥
∥
Lρ(I ;Lq )

≤ε0 + C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lθ(I ;Ḃ−2+ 2

θ
− 2

ρ
q,ρ )

≤ε0 + C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lθ(I ;Ḟ−2+ 2

θ
− 2

ρ
q,2 )

≤ε0 + C
∥
∥�[uτ ,ψτ ](t)

∥
∥
Lθ(I ;Ẇ−2+ 2

θ
− 2

ρ ,q
)

≤ε0 + C
∥
∥�[uτ ,ψτ ](·)

∥
∥
Lθ(I ;L p)

≤ε0 + C
(
ε0 + CN 2) ≤ N .

(8.8)

Similarly by
2

ρ
+ 4

q
= 2,

2

σ
+ 4

r
= 1,

we see that
1

r
− 1

4

(

−1 + 2

ρ
− 2

σ

)

= 1

q

and it follows that

∥
∥∇�[uτ ,ψτ ]

∥
∥
Lσ(I ;Lr ) ≤‖eτ t�∇ψ0‖Lσ(I ;Lr ) +

∥
∥
∥∇
∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

∥
∥
∥
Lσ(I ;Lr )

≤ε0 + C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lρ(I ;Ḃ−1+ 2

ρ − 2
σ

r,θ )

≤ε0 + C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lρ(I ;Ḟ−1+ 2

ρ − 2
σ

r,2 )

≤ε0 + C
∥
∥�[uτ ,ψτ ](t)

∥
∥
Lρ(I ;Ẇ−1+ 2

ρ − 2
σ ,r

)

≤ε0 + C
∥
∥�[uτ ,ψτ ](·)

∥
∥
Lρ(I ;Lq )

≤ε0 + ((1 + C)ε0 + CN 2) ≤ N (8.9)

under the conditions (2 + C)ε0 < 1
2N and CN ≤ 1

2 .
From (8.9), and choosing N > 0 small enough so that for some small ε0 > 0,

max
(∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;L p)

,
∥
∥�[uτ ,ψτ ]

∥
∥
Lρ(I ;Lq )

,
∥
∥∇�[uτ ,ψτ ]

∥
∥
Lσ(I ;Lr )

)
≤N .

(8.10)
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On the other hand, since the heat kernel is a bounded operator in V MO(R2),
we again use generalized maximal regularity (5.4) and the embeddings Ḃ0∞,2(R

4) ⊂
BMO(R4) and Ḃ

−3+ 2
ρ

∞,2 (R4) ⊂ Ḃ0
q,2(R

4) to see that

∥
∥�[uτ , ψτ ]∥∥L∞(I ;V MO)

≤‖eτ t�ψ0‖L∞(I ;V MO) +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ , ψτ ](τ−1s)ds

∥
∥
∥
L∞(I ;V MO)

≤C0‖ψ0‖V MO +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ , ψτ ](τ−1s)ds

∥
∥
∥
L∞(I ;Ḟ0∞,2)

≤ 1

4
M + C

∥
∥
∥�[uτ , ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lρ(I ;Ḟ−2+ 2

ρ
∞,2 )

≤ 1

4
M + C

∥
∥
∥�[uτ , ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lρ(I ;Ḟ0

q,2)

(sinceq < 2, Lq (R4) � Ḟ0
q,2(R

4) ⊂ Ḟ
−2+ 2

ρ

∞,2 (R4))

≤ 1

8
M + C

∥
∥
∥�[uτ , ψτ ](t)

∥
∥
∥
Lρ(I ;Lq )

≤ 1

4
M

(8.11)
under the assumption

CN ≤ 1

8
M

and (8.10).
Combining (8.10) and (8.11), we obtain

(
�[uτ ,ψτ ], �[uτ ,ψτ ],�[uτ ,ψτ ]

) ∈
XM . Analogously from (6.15), we have for the difference of solutions that

∥
∥
∥�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

∥
∥
∥
Lθ(I ;L p)

≤
∥
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

)
ds

∥
∥
∥
∥
Lθ(I ;Ḃ0

p,1)

≤C
∥
∥
∥uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ
q,θ )

≤C
∥
∥
∥uτ (s)∇(ψτ (s) − ψ̃τ (s))

∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

+ C
∥
∥
∥
(
uτ (s) − ũτ (s)

)∇ψ̃τ (s)
∥
∥
∥
L

θσ
θ+σ (I ;L rq

r+q )

≤C
∥
∥uτ (s)

∥
∥
Lθ(I ;L p)

∥
∥∇(ψτ (s) − ψ̃τ (s))

∥
∥
Lσ(I ;Lr )

+ C
∥
∥uτ (s) − ũτ (s)‖Lθ(I ;L p)

∥
∥∇ψ̃τ (s)

∥
∥
Lσ(I ;Lr )

≤C1N |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||T , (8.12)
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∥
∥�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

∥
∥
Lρ(I ;Lq )

≤
∥
∥
∥

∫ t

0
e(t−s)��[uτ (s),ψτ (s)] − �[ũτ (s), ψ̃τ (s)]

)
ds
∥
∥
∥
Lρ(I ;Ḃ0

q,1)

≤C
∥
∥
∥�[uτ (s),ψτ (s)] − �[ũτ (s), ψ̃τ (s)]

∥
∥
∥
Lθ(I ;Ḃ−2+ 2

θ
− 2

ρ
q,θ )

≤C
∥
∥
∥�[uτ (s),ψτ (s)] − �[ũτ (s), ψ̃τ (s)]

∥
∥
∥
Lθ(I ;L p)

≤CC1N |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||T . (8.13)

Again from (8.7) and (8.13), we have

∥
∥
∥∇
(
�[uτ ,ψτ ]−�[ũτ , ψ̃τ ]

)∥
∥
∥
Lσ(I ;Lr )

≤
∥
∥
∥

∫ τ t

0
∇e(τ t−s)�

(
�[uτ ,ψτ ](τ−1s) − �[ũτ , ψ̃τ ](τ−1s)

)
ds
∥
∥
∥
Lσ(I ;Lr )

≤C
∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t − �[ũτ , ψ̃τ ](τ−1s)|s=τ t

∥
∥
∥
Lρ(I ;Ḟ−1+ 2

ρ − 2
σ

r,2 )

≤C
∥
∥∇�[uτ ,ψτ ](t) − ∇�[ũτ , ψ̃τ ](t)

∥
∥
Lρ(I ;Ẇ−2+ 2

ρ − 2
σ ,r

)

≤C
∥
∥∇�[uτ ,ψτ ](t) − ∇�[ũτ , ψ̃τ ](t)

∥
∥
Lρ(I ;Lq )

≤C2C1N |||(uτ ,ψτ ) − (ũτ , ψ̃τ )|||T . (8.14)

Choosing ep0 and hence N small enough

(1 + C + C2)C1N ≤ 1

2
, (8.15)

if necessary, (8.12) and (8.13) with (8.15) yield that

|||(�[uτ ,ψτ ],�[uτ ,ψτ ], �[uτ ,ψτ ]) − (�[ũτ , ψ̃τ ],�[ũτ , ψ̃τ ], �[ũτ , ψ̃τ ])|||T
≤ 1

2
|||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T

under the smallness assumption (8.6) on the interval. Thus the map (�,�,�) is
contraction onto XM and the Banach fixed point theorem implies that there exists a
unique fixed point (uτ ,φτ ,ψτ ) ∈ XM that solves the Eq. (1.1) in the critical space.

In particular by (8.11), it follows that for u0 ∈ L1(R4) ∩ Ḃ
− 2

θ

p,θ (R4), φ0 ∈ L2(R4) ∩
Ḃ

− 2
ρ

q,ρ (R4) and ψ0 ∈ BMO(R4) ∩ Ḃ
1− 2

σ
r,σ (R4),

‖uτ‖L2(I ;L2) + ‖ψτ‖L∞(I ;BMO) ≤ 2M
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does not dependon theparameter τ > 0.Next,we show the continuous dependenceof
the initial data in Lθ(I ; L p) × Lρ(I ; Ẇ 1,q) × (L∞(I ; BMO) ∩ Lσ(I ; Ẇ 1,r )

)
. Let

(uτ ,φτ ,ψτ ) and (ũτ , φ̃τ , ψ̃τ ) be a solution of (1.9) corresponding to the initial data
(u0,φτ ,ψ0) and (ũ0, φ̃0, ψ̃0), respectively. Then verymuch similar estimate of (6.15)
and (6.16), we obtain from

2

θ
+ 4

p
= 4,

1

2σ
+ 1

r
= 1

4
,

we see that
1

p
− 1

4

(

−2

θ

)

= 1,
1

2σ
+ 1

r
= 1

4
,

and hence
∥
∥uτ −ũτ

∥
∥
Lθ(I ;L p)

≤‖et�u0 − et�ũ0‖Lθ(I ;L p)
+
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

)
ds
∥
∥
∥
Lθ(I ;Ḃ0p,1)

≤C0‖u0 − ũ0‖
Ḃ

− 2
θ

p,θ

+ C
∥
∥
∥uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

∥
∥
∥
L

θσ
θ+σ (I ;Ḃ−1+ 2

σ − 2
θ

p,θ )

≤C0‖u0 − ũ0‖
Ḃ

− 2
θ

p,θ

+ C
∥
∥uτ (s)

∥
∥
Lθ(I ;Lq )

∥
∥∇(ψτ (s) − ψ̃τ (s))

∥
∥
Lσ(I ;Lr )

+ C
∥
∥uτ (s) − ũτ (s)‖Lθ(I ;Lq )

∥
∥∇ψ̃τ (s)

∥
∥
Lσ(I ;Lq )

≤C0‖u0 − ũ0‖
Ḃ

− 2
θ

p,θ

+ C1N |||(uτ , φτ , ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .

(8.16)
On the other hand, since

1

4

(
2

ρ
+ 4

q

)

= 1

2
⇒ 1

q
− 1

4

(

1 − 2

ρ

)

= 1

2

and

1

4

(
2

θ
+ 4

p

)

= 1

4
,

1

4

(
2

ρ
+ 4

q

)

= 1

2
⇒ 1

q
− 1

4

(

−2

ρ
+ 2

θ

)

= 1

p

the embedding Ẇ 1− 2
ρ ,q

(R4) ⊂ L2(R4) and Ḃ
− 2

ρ + 2
θ

q,∞ (R4) ⊂ Ḃ0
p,∞(R4) hold andAlong

the similar way to (8.8) and (8.9), we see that
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∥
∥φτ−φ̃τ

∥
∥
Lρ(I ;Lq )

≤‖eτ t�φ0 − eτ t�φ̃0‖Lρ(I ;Lq ) +
∥
∥
∥

∫ τ t

0
e(τ t−s)�(uτ (τ

−1s) − ũτ (τ
−1s)

)
ds
∥
∥
∥
Lρ(I ;Lq )

≤C0‖φ0 − φ̃0‖
Ḃ

− 2
ρ

q,ρ

+ C
∥
∥uτ (t) − ũτ (t)

∥
∥
Lθ(I ;L p)

≤C0‖ψ0 − ψ̃0‖
Ḃ

− 2
ρ

q,ρ

+ C1|||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .

(8.17)
and
∥
∥∇(ψτ−ψ̃τ

)∥
∥
Lσ(I ;Lr )

≤‖∇(eτ t�ψ0 − eτ t�ψ̃0)‖Lσ(I ;Lr ) +
∥
∥
∥

∫ τ t

0
∇e(τ t−s)�(φτ (τ

−1s) − φ̃τ (τ
−1s)

)
ds
∥
∥
∥
Lσ(I ;Lr )

≤C0‖ψ0 − ψ̃0‖
Ḃ
1− 2

σ
r,σ

+ C
∥
∥φτ (t) − φ̃τ (t)

∥
∥
Lρ(I ;Lq )

≤C0‖ψ0 − ψ̃0‖
Ḃ
1− 2

σ
r,σ

+ C1|||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .

(8.18)
Finally likewise in (8.11), and

∥
∥ψτ − ψ̃τ

∥
∥
L∞(I ;V MO)

≤‖eτ t�ψ0 − eτ t�ψ̃0‖V MO

+
∥
∥
∥

∫ τ t

0
e(τ t−s)�(φτ (τ

−1s) − φ̃τ (τ
−1s)

)
ds
∥
∥
∥
L∞(I ;V MO)

≤C0‖ψ0 − ψ̃0‖V MO +
∥
∥
∥

∫ τ t

0
e(τ t−s)�(φτ (τ

−1s) − φ̃τ (τ
−1s)

)
ds
∥
∥
∥
L∞(I ;Ḃ0∞,2)

≤C0‖ψ0 − ψ̃0‖V MO + C
∥
∥
∥
(
φτ (τ

−1s) − φ̃τ (τ
−1s)

)|s=τ t

∥
∥
∥
Lρ(I ;Ḃ−2+ 2

ρ∞,∞ )

≤C0‖ψ0 − ψ̃0‖V MO + C
∥
∥
∥φτ − φ̃τ

∥
∥
∥
Lρ(I ;Ḃ0

q,∞)

≤C0‖ψ0 − ψ̃0‖V MO + C |||(uτ , φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .

(8.19)
Those estimates (8.16)–(8.19) yield that the solution (uτ ,φτ ,ψτ ) converges to
(ũτ , φ̃τ , ψ̃τ ) in Lθ(I ; L p) × Lρ(I ; Ẇ 1,q) × (C(I ; V MO) ∩ Lσ(I ; Ẇ 1,r )

)
as

(u0,φ0,ψ0) → (ũ0, φ̃, ψ̃0) in Ḃ
− 2

θ

p,θ × Ḃ
− 2

ρ
q,ρ × (Ḃ

1− 2
σ

r,σ ∩ V MO).
Finally we show that the solution (uτ ,φτ ,ψτ ) obtained above is in

L∞(I ; L1(R4)
)× L∞(I ; L2(R4)

)× L∞(I ; V MO(R4)
)
,

where I = (0, T ). Choosing θ = σ = 4, the choice (4, 8
7 ) and (4, 8) corresponds the

admissible for (θ, p) and (σ, r) with

2

θ
+ 4

p
= 4,

2

σ
+ 4

r
= 1,

we use generalized maximal regularity (5.4) in Theorem 5.1 and the embedding
L1(Rn) ⊂ Ḃ0

1,∞(Rn) to have
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∥
∥uτ

∥
∥
L∞(I ;L1)

≤C0‖u0‖Ḃ0
1,∞ +

∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
ds
∥
∥
∥
L∞(I ;Ḃ0

1,1)

≤C0‖u0‖1 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θ
2 (I ;Ḃ−1+ 4

θ
1,∞ )

≤C0‖u0‖1 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

4
2 (I ;L1)

≤1

4
M + C

∥
∥uτ (s)‖L4(I ;L 8

7 )

∥
∥∇ψτ (s)

∥
∥
L4(I ;L4)

≤ M.

(8.20)

Besides let (uτ ,φτ ,ψτ ) and (ũτ , φ̃τ , ψ̃τ ) are two solutions of (1.9) corresponding
the initial data (u0,φ0,ψ0) and (ũ0, φ̃0, ψ̃0), respectively. Then,

∥
∥uτ−ũτ

∥
∥
L∞(I ;L1)

≤C0‖u0 − ũ0‖Ḃ0
1,∞

+
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s) − ũτ (s)∇ψ̃τ (s)

)
ds
∥
∥
∥
L∞(I ;Ḃ0

1,1)

≤C0‖u0 − ũ0‖1 + C
∥
∥uτ (s) − uτ (s)‖

L4(I ;L 8
7 )

∥
∥∇ψτ (s)

∥
∥
L4(I ;L8)

+ C
∥
∥uτ (s)‖

L4(I ;L 8
7 )

∥
∥∇ψτ (s) − ∇ψ̃τ (s)

∥
∥
L4(I ;L8)

≤C0‖u0 − ũ0‖1 + C |||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .

(8.21)
From (8.20) and (8.21), the continuous dependence of the solution uτ in L∞(I ; L1) is
also shown. Choosing θ = 2, the choice (2, 4

3 ) and (4, 8) corresponds the admissible
for (θ, p) and (σ, r) with

2

θ
+ 4

p
= 4,

2

σ
+ 4

r
= 1,

we use generalized maximal regularity (5.4) in Theorem 5.1 and the embedding
L1(Rn) ⊂ Ḃ0

1,∞(Rn) to have

∥
∥φτ

∥
∥
L∞(I ;L2)

≤C0‖φ0‖Ḃ0
2,∞ +

∥
∥
∥

∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds
∥
∥
∥
L∞(I ;Ḃ0

2,1)

≤C0‖φ0‖2 + C
∥
∥
∥uτ (τ

−1s)|s=τ t

∥
∥
∥
Lθ(I ;Ḃ−2+ 2

θ
2,∞ )

≤1

4
M + C

∥
∥uτ

∥
∥
L2(I ;L 4

3 )
≤ M.

(8.22)
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For the convergence of φτ in L∞(I ; L2) is also shown in a similar way.

∥
∥φτ − φ̃τ

∥
∥
L∞(I ;L2)

≤C0‖φ0 − φ̃0‖2 + C
∥
∥uτ (s) − ũτ (s)‖L2(I ;L 4

3 )

≤C0‖u0 − ũ0‖2 + C |||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||T .
(8.23)

Those estimates (8.20)–(8.23) and (8.19) conclude the continuous dependence of the
solution on the initial data in (8). This show the local well-posedness of (1.1).

〈Step 2〉 (Global existence for small data). Since our function space in the previous
step is scaling invariant, the global existence for (1.1) also follows almost similar
(but somewhat simpler) way to the case for local well-posedness. Let (θ, p), (ρ, q),
(σ, r) be admissible pairs given by (6.2). Fixing the admissible pair for I = R+ as
(θ, p), (ρ, q), (σ, r), we introduce the complete metric space:

XM =
{

u ∈ BUC(I ; L1(R4)) ∩ Lθ(I ; Lq (R4)),

φ ∈ BUC(I ; L2(R4)) ∩ Lρ(I ; Lq (R4)),

ψ ∈ BUC(I ; BMO(R4)) ∩ Lσ(I ; Ẇ 1,r (R4));
‖u‖L∞(I ;L1), ‖u‖Lθ(I ;L p), ‖φ‖L∞(I ;L2), ‖∇φ‖Lρ(I ;Lq ), ‖ψ‖L∞(I ;BMO), ‖∇ψ‖Lσ (I ;Lr ) ≤ M

}
,

where

M = 4C0
(‖u0‖1 + ‖u0‖Ḃ0

1,θ
+ ‖φ0‖2 + ‖φ0‖

Ḃ
1− 2

ρ
q,ρ

+ ‖ψ0‖BMO + ‖∇ψ0‖
Ḃ
1− 2

σ
r,σ

)

is chosen small later. For any admissible exponents (θ, p), (ρ, q) and (σ, r) (note
that they are not the end-point exponents), we define the metric on XM by

|||(u,φ,ψ) − (ũ, φ̃, ψ̃)|||M ≡ ‖u − ũ‖Lθ(I ;L p) + ‖φ − φ̃‖Lρ(I ;Lq ) + ‖∇(ψ − ψ̃)‖Lσ(I ;Lr ).

By this metric, XM is a complete metric space. For (u0,ψ0,φ0) ∈ (L1(R4) ∩
Ḃ

− 2
θ

p,θ (R4)
)× (L2(R4) ∩ Ḃ

1− 2
θ

q,θ (R4)
)× (BMO(R4) ∩ Ḃ

1− 2
θ

r,θ (R4)
)
and (uτ ,ψτ ,φτ ) ∈

XM , we define a pair of the solution map
(
�[uτ ,ψτ ], �[uτ ,ψτ ],�[uτ ,ψτ ]

)
by (8.2)

and claim that the map (�,�,�) is contraction in the critical space XM . Noticing
1 < p < 2 < q ≤ r , 2 < θ < ∞ and the embedding (4.8), we apply maximal regu-
larity and the embedding
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∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;L1)

≤C0‖u0‖Ḃ0
1,∞ +

∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s)∇ψτ (s)

)
dss
∥
∥
∥
L∞(I ;Ḃ0

1,1)

≤C0‖u0‖1 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θρ
θ+ρ (I ;Ḃ−1+ 2

σ − 2
θ

1,∞ )

≤C0‖u0‖1 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θρ
θ+ρ (I ;Ḃ0

pq
p+q ,∞)

≤C0‖u0‖1 + C
∥
∥
∥uτ (s)∇ψτ (s)

∥
∥
∥
L

θρ
θ+ρ (I ;L1)

≤1

4
M + C

∥
∥uτ (s)‖Lθ(I ;L p)

∥
∥∇ψτ (s)

∥
∥
Lρ(I ;Lq )

≤1

4
M + CM2 ≤ M (8.24)

under CM ≤ 1
2 . For any admissible exponents (θ, p) (ρ, q) and (σ, r),

∥
∥�[uτ ,ψτ ]

∥
∥
Lρ(I ;Lq )

≤‖et�u0‖Lρ(I ;Lq ) +
∥
∥
∥

∫ t

0
e(t−s)�uτ (s)ds

∥
∥
∥
Lρ(I ;Ḃ0

q,1)

≤C0‖u0‖
Ḃ

− 2
ρ

q,ρ

+ C
∥
∥uτ (s)

∥
∥
Lθ(I ;Ḃ−2+ 2

θ
− 2

ρ
q,θ )

≤C0‖u0‖
Ḃ

− 2
ρ

q,ρ

+ C
∥
∥uτ (s)

∥
∥
Lθ(I ;Ḟ−2+ 2

θ
− 2

ρ
q,θ )

≤C0‖u0‖
Ḃ

− 2
ρ

q,ρ

+ C
∥
∥uτ (s)

∥
∥
Lθ(I ;L p)

≤1

4
M + CM2 ≤ M (8.25)

for CM ≤ 1
2 .

∥
∥∇�[uτ ,ψτ ]

∥
∥
Lσ(I ;Lr )

≤‖∇et�ψ0‖Lσ(I ;Lr ) +
∥
∥
∥∇
∫ t

0
e(t−s)�φτ (s)ds

∥
∥
∥
Lσ(I ;Ḃ0

r,1)

≤C0‖ψ0‖
Ḃ
1− 2

σ
r,σ

+ C
∥
∥φτ (s)

∥
∥
Lρ(I ;Ḃ−1− 2

σ + 2
ρ

r,σ )

≤C0‖ψ0‖
Ḃ
1− 2

σ
r,σ

+ C
∥
∥φτ (s)

∥
∥
Lρ(I ;Ḟ0

q,2)

≤C0‖ψ0‖
Ḃ
1− 2

σ
r,σ

+ C
∥
∥∇φτ (s)

∥
∥
Lρ(I ;Lq )

≤1

4
M + CM2 ≤ M

(8.26)
for CM ≤ 1

2 .
It follows from (8.24), (8.25) and (8.26) that

max
{∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;L1)

,
∥
∥�[uτ ,ψτ ]

∥
∥
Lρ(I ;Lq )

,
∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lr )

}
≤ M.

(8.27)
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Meanwhile by embedding Ḃ0∞,2(R
n) ⊂ BMO(Rn) and maximal regularity

∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;BMO)

≤‖eτ t�ψ0‖BMO +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

∥
∥
∥
L∞(I ;BMO)

≤C0‖ψ0‖BMO +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

∥
∥
∥
L∞(I ;Ḃ0∞,2)

≤1

4
M + C

∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
L4(I ;Ḃ−2+ 2

4∞,2 )

≤1

4
M + C

∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
L4(I ;Ḃ− 3

2∞,2)

≤1

4
M + C

∥
∥
∥�[uτ ,ψτ ](t)

∥
∥
∥
L4(I ;Ḃ0

4
3 ,2

)

(sinceq < 2, L
4
3 (R2) � Ḟ0

4
3 ,2

(R2) ⊂ Ḃ0
4
3 ,2

(R2))

≤1

4
M + C

∥
∥�[uτ ,ψτ ](t)

∥
∥
L4(I ;L 4

3 )

≤1

4
M + (

1

4
+ CM)M ≤ M

(8.28)
for small CM ≤ 1

4 .

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lr )

≤‖eτ t�ψ0‖Lθ(I ;Lr ) +
∥
∥
∥

∫ τ t

0
e(τ t−s)��[uτ ,ψτ ](τ−1s)ds

∥
∥
∥
Lθ(I ;Lr )

≤C0‖ψ0‖
Ḃ
1− 2

θ
r,θ

+ C
∥
∥
∥�[uτ ,ψτ ](τ−1s)

∥
∥
∥
Lθ(I ;Ḃ−2+ 2

θ
r,θ )

≤1

4
M + C

∥
∥
∥�[uτ ,ψτ ](τ−1s)|s=τ t

∥
∥
∥
Lθ(I ;Ḃ−2+ 2

θ
r,θ )

≤1

4
M + C

∥
∥�[uτ ,ψτ ](t)

∥
∥
Lθ(I ;Ḟ−2+ 2

θ
r,θ )

≤1

4
M + C

∥
∥�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lq )

≤1

4
M + C

(
1

4
+ CM

)

M ≤ M. (8.29)

From (8.28) and (8.29),

max
{∥
∥�[uτ ,ψτ ]

∥
∥
L∞(I ;BMO)

,
∥
∥∇�[uτ ,ψτ ]

∥
∥
Lθ(I ;Lr )

} ≤M. (8.30)

Combining (8.27) and (8.30), we obtain that (�[uτ ,ψτ ], �[�[uτ ,ψτ ]]) ∈ XM .
Analogously from (8.12)–(8.14) for the difference of solutions
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∥
∥�[uτ ,ψτ ] − �[ũτ , ψ̃τ ]

∥
∥
Lθ(I ;Lq )

≤ CM |||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||M ,
∥
∥�[uτ ,ψτ ] − �[ũτ , ψ̃τ ]

∥
∥
Lρ(I ;Lq )

≤ CM |||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||M ,
∥
∥∇(�[uτ ,ψτ ] − �[ũτ , ψ̃τ ]

)∥
∥
Lσ(I ;Lr )

≤ CM |||(uτ ,φτ ,ψτ ) − (ũτ , φ̃τ , ψ̃τ )|||M .

(8.31)
Choosing M smaller as

CM ≤ 1

4
,

if necessary, we have from (8.31) that

|||(�[uτ ,ψτ ],�[uτ , ψτ ], �[uτ , ψτ ]) − (�[ũτ , ψ̃τ ],�[ũτ , ψ̃τ ], �[ũτ , ψ̃τ ])|||M ≤ 1

2
|||(uτ , ψτ ) − (ũτ , ψ̃τ )|||M

under the smallness assumption on the initial data. Thus the map (�,�,�) is con-
traction onto XM and the Banach fixed point theorem implies that there exists a
unique fixed point (uτ ,ψτ ) ∈ XM that solves the Eq. (1.9) in the critical space. In
particular, from (8.27) and (8.30), the a priori estimate

max
(
‖uτ ‖L∞(I ;L1)

, ‖uτ ‖
Lθ (I ;L p )

, ‖φτ ‖L∞(I ;L2)
, ‖∇ψτ ‖Lρ(I ;Lq ), ‖ψτ ‖L∞(I ;BMO), ‖∇ψτ ‖

Lθ(I ;Lr )

)
≤ M

does not depend on the parameter τ > 0. �

9 Proof for the Singular Limit for Chaplain-Anderson
Model

Proof of Theorem 3.3 We first show Theorem 3.3 for the small data case:
〈Step 1〉: For any η0 > 0, let I = (0,∞) and we consider the difference of solutions
between (3.3) and (3.4) as the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uτ (t) − u(t) =
∫ t

0
e(t−s)�∇ · ((uτ (s) − u(s)

)∇ψτ (s)
)
ds

+
∫ t

0
e(t−s)�∇ · (u(s)

(∇ψτ (s) − ∇ψ(s)
))
ds, t ∈ I,

φτ (t) − φ(t) = eτ t�φ0 +
∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

+
∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds +

∫ ∞

τ t
es�u(t)ds, t ∈ I,

ψτ (t) − ψ(t) = eτ t�ψ0 +
∫ τ t

0
es�
(
φτ (t − τ−1s) − φ(t − τ−1s)

)
ds

+
∫ τ t

0
es�
(
φ(t − τ−1s) − φ(t)

)
ds +

∫ ∞

τ t
es�φ(t)ds, t ∈ I.

(9.1)
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As we have seen in (1.14), we choose the admissible exponents (θ, p), (θ, q) (θ, r)
for n = 4 as ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2θ
+ 1

p
= 1, 1 < p ≤ 2 ≤ θ,

1

2θ
+ 1

q
= 1

2
, 2 < q ≤ θ,

1

2θ
+ 1

r
= 1

4
, 4 < r ≤ θ.

Let the time interval I = (η0τ
−1,∞) for any η0 > 0. We apply the similar estimate

in (6.15), it follows from Lemma 4.3 that

‖uτ−u‖Lθ(I ;L p)

≤C

∥
∥
∥
∥

∫ t

0
e(t−s)�∇ · (uτ (s) − u(s)

)∇ψτ (s)ds

∥
∥
∥
∥
Lθ(I ;L p)

+ C

∥
∥
∥
∥

∫ t

0
e(t−s)�∇ · u(s)

(∇ψτ (t) − ∇ψτ (s)
)
ds

∥
∥
∥
∥
Lθ(I ;L p)

≤C‖(uτ − u
)∇ψτ‖

L
θ
2 (I ;Ḃ−1+ 2

θ
p,θ )

+ C
∥
∥u∇(ψτ − ψ

)∥
∥
L

θ
2 (I ;Ḃ−1+ 2

θ
p,θ )

≤C
∥
∥
(
uτ − u

)∇ψτ

∥
∥
L

θ
2 (I ;L pr

p+r )
+ C

∥
∥u∇(ψτ − ψ

)∥
∥
L

θ
2 (I ;L pr

p+r )

≤C‖uτ − u‖Lθ(I ;L p)

∥
∥∇ψτ

∥
∥
Lθ(I ;Lr )

+ C‖u‖Lθ(R+;L p)

∥
∥∇(ψτ − ψ

)∥
∥
Lθ(I ;Lr )

≤CM
(
‖uτ − u‖Lθ(I ;L p) + ∥∥∇ψτ − ∇ψ(t)

∥
∥
Lθ(I ;Lq )

)
.

(9.2)
For the second equation of (9.1),

‖φτ − φ‖Lθ(I ;Lq ) =‖eτ t�φ0‖Lθ(I ;Lq )

+
∥
∥
∥
∥

∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

+
∥
∥
∥
∥

∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

+
∥
∥
∥
∥

∫ ∞

τ t
es�u(t)ds

∥
∥
∥
∥
Lθ(I ;Lq )

≡I0 + I1 + I2 + I3. (9.3)

Let t ∈ (0,∞), we see under the assumption φ0 ∈ Ḃ
− 2

θ

q,θ (R4) that
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I0 =
(∫ ∞

0

∥
∥
∥eτ t�φ0

∥
∥
∥

θ

Lq
dt

)1/θ

=τ−1/θ

(∫ ∞

0

∥
∥
∥es�φ0

∥
∥
∥

θ

Lq
ds

)1/θ

≤τ−1/θ

(∫ ∞

0

∥
∥
∥es�φ0

∥
∥
∥

θ

Lq
ds

)1/θ

→ 0 as τ → ∞.

(9.4)

We note that (θ, q) is the admissible, i.e., 2 < q ≤ θ that

2

θ
+ 4

p
= 4,

2

θ
+ 4

q
= 2,⇒ 1

q
= 1

p
− 1

4
· 2 (9.5)

and hence from (5.4) in Theorem 5.1, the second term of the right hand side of (9.3)
is estimated as follows:

I1 =
∥
∥
∥

∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds
∥
∥
∥
Lθ(I ;Lq )

≤C
∥
∥uτ (t − τ−1t) − u(t − τ−1t)

∥
∥
Lθ(I ;Ḃ−2

q,θ)

≤C
∥
∥uτ

(
(1 − τ−1)t

)− u
(
(1 − τ−1)t

)∥
∥
Lθ(I ;Ḟ−2

q,θ )

≤C(1 − τ−1)−1/θ
∥
∥uτ (t) − u(t)

∥
∥
Lθ(I ;Ḟ−2

q,2 )
≤ C

∥
∥uτ (t) − u(t))

∥
∥
Lθ(I ;L p)

≤C
∥
∥uτ − u

∥
∥
Lθ(I ;L p)

(9.6)

for all τ ≥ 2, whereC > 0 is independent of τ > 0. The third term of (9.3), we apply
the relation (9.5) and the Sobolev inequality

‖ f ‖q ≤ C‖� f ‖p,
1

q
= 1

p
− 2

4

and Lemma 7.1 to see that

I2 =
∥
∥
∥

∫ τ t

0
es�
(
u
(
t − s

τ

)− u(t)
)
ds
∥
∥
∥
Lθ(I ;Lq )

≤Sb
∥
∥
∥

∫ τ t

0
�es�

(
u
(
t − s

τ

)− u(t)
)
ds
∥
∥
∥
Lθ(I ;L p)

≤Sb
∥
∥
∥

∫ τ t

0
er�

∂

∂r
u
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;L p)

+ Sb
∥
∥eτ t�u0

∥
∥
Lθ(I ;L p)

+ Sb
∥
∥eτ t�u(t)

∥
∥
Lθ(I ;L p)

=I2,1 + I2,2 + I2,3.

(9.7)

For treating the first term of the right hand side of (9.7), we proceed by changing the
variable r = τs
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I2,1 =
∥
∥
∥
∥

∫ t

0
eτs� ∂

∂s
u
(
t − s

)
ds

∥
∥
∥
∥
Lθ(I ;L p)

≤
∥
∥
∥
∥

∫ t

0
eτs��u

(
t − s

)
ds

∥
∥
∥
∥
Lθ(I ;L p)

+
∥
∥
∥
∥

∫ t

0
eτs�∇ · (u(t − s)∇ψ(t − s)

)
ds

∥
∥
∥
∥
Lθ(I ;L p)

≡J1 + J2.

(9.8)

Then applying (5.4) in Theorem 5.1, we see by regarding μ → τ , that

J1 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)��u

(
r
)
dr

∥
∥
∥
∥
Lθ(I ;L p)

≤ Cτ−1‖u‖Lθ(I ;L p). (9.9)

Similarly by an analogous estimate of (6.7), it follows that

J2 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)�∇ · (u∇ψ)

(
r
)
dr

∥
∥
∥
∥
Lθ(I ;L p)

≤Cτ−1‖u∇ψ‖
L

θ
2 (I ;L pr

p+r )

≤Cτ−1‖u‖Lθ(I ;L p)‖∇ψ‖Lθ(I ;Lr ).

(9.10)

On the other hand, since u0 and u(t) ∈ Lq for almost everywhere,

lim
τ→∞ ‖eτ t�{u0 − u(t)}‖p = 0

and eτ t� is a bounded operator from L p to itself. Since

‖et�u0‖Lθ(I ;L p) ≤ C‖u0‖
Ḃ

− 2
θ

p,θ

,

‖et�u(t)‖Lθ(I ;L p) ≤ C‖u‖Lθ(I ;L p),

we see for all τ > 1 that

‖eτ t�u0‖θ
p ≤ C‖et�u0‖θ

p ∈ L1(I ),

‖eτ t�u(t)‖θ
p ≤ C‖et�u(t)‖θ

p ∈ L1(I ).

Hence by the Lebesgue dominated convergence theorem, for any ε > 0, we may
choose sufficiently large τ > 0 such that

I2,2 + I2,3 < ε (9.11)

Combining the estimates (9.7)–(9.11), we obtain that for any ε > 0, there exists a
large τ > 0 such that

I2 ≤ ε. (9.12)
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Lastly for the forth term, setting I = (η0τ
−1,∞), employing theSobolev embedding,

we see

I3 =
∥
∥
∥

∫ ∞

τ t
es�ds u(t)

∥
∥
∥
Lθ(I ;Lq )

=
∥
∥
∥(−�)−1eτ t� u(t)

∥
∥
∥
Lθ(I ;Lq )

≤Sb
∥
∥
∥∇2(−�)−1eτ t� u(t)

∥
∥
∥
Lθ(I ;L p)

=Sb

(∫ ∞

0

∥
∥eτ t� u(t)

∥
∥θ

pdt

)1/θ

=Sb

(∫ ∞

0

∥
∥u(s)

∥
∥θ

pds

)1/θ

.

(9.13)

Since (∫ ∞

0

∥
∥u(s)

∥
∥θ

p
ds

)1/θ

< ∞.

Hence from the fourth line of (9.13), the integrant

∥
∥eτ t� u(t)

∥
∥θ

p

is L1(R+) and it is dominated by the integrable function
∥
∥u(s)

∥
∥θ

p as;

∥
∥eτ t� u(t)

∥
∥θ

p
≤ ∥∥u(t)

∥
∥θ

p
.

Besides for almost all t > 0,

lim
τ→∞ ‖eτ t� u(t)‖θ

p = 0. (9.14)

Applying the Lebesgue dominated convergence theorem, it follows from (9.14) that
for any ε > 0

I3 =
∥
∥
∥

∫ ∞

τ t
∇es�ds u(t)

∥
∥
∥
Lθ(I ;Lq )

≤Sb

(∫ ∞

0

∥
∥eτ t� u(t)

∥
∥θ

pdt

)1/θ

< ε,

(9.15)

as τ → ∞. Combining all the estimates (9.3), (9.4), (9.6), (9.12) and (9.15), we
obtain ∥

∥∇(φτ (t) − φ(t)
)∥
∥
Lθ(I ;Lr )

≤C‖uτ − u‖Lθ(I ;Lq ) + ε. (9.16)

For the third component of the system, we proceed in a similar way to the case of
second component:
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‖∇ψτ − ∇ψ‖Lθ(I ;Lr ) =‖∇eτ t�ψ0‖Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ τ t

0
∇es�

(
φτ (t − τ−1s) − φ(t − τ−1s)

)
ds

∥
∥
∥
∥
Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ τ t

0
∇es�

(
φ∞(t − τ−1s) − φ(t)

)
ds

∥
∥
∥
∥
Lθ(I ;Lr )

+
∥
∥
∥
∥

∫ ∞

τ t
∇es�φ(t)ds

∥
∥
∥
∥
Lθ(I ;Lr )

≡K0 + K1 + K2 + K3.

(9.17)

Let t ∈ (0,∞), we see under the assumption ψ0 ∈ Ḃ
1− 2

θ

r,θ (R2) that

K0 =
(∫ ∞

0

∥
∥
∥eτ t�∇ψ0

∥
∥
∥

θ

Lr
dt

)1/θ

=τ−1/θ

(∫ ∞

0

∥
∥
∥es�∇ψ0

∥
∥
∥

θ

Lr
ds

)1/θ

≤τ−1/θ

(∫ ∞

0

∥
∥
∥es�∇ψ0

∥
∥
∥

θ

Lr
ds

)1/θ

→ 0 as τ → ∞.

(9.18)

We have from the second equation of (9.1), (5.4) in Theorem 5.1 and (θ, r) is the
admissible, i.e., 2 < r ≤ θ that

K1 =
∥
∥
∥

∫ τ t

0
∇es�

(
φτ (t − τ−1s) − φ(t − τ−1s)

)
ds
∥
∥
∥
Lθ(I ;Lr )

≤C
∥
∥φτ (t − τ−1t) − φ(t − τ−1t)

∥
∥
Lθ(I ;Ḃ−1

r,θ )

≤C
∥
∥φτ

(
(1 − τ−1)t

)− φ
(
(1 − τ−1)t

)∥
∥
Lθ(I ;Ḟ−1

r,θ )

≤C(1 − τ−1)−1/θ
∥
∥φτ (t) − φ(t)

∥
∥
Lθ(I ;Ḟ−1

r,2 )
≤ C

∥
∥φτ (t) − φ(t)

∥
∥
Lθ(I ;Ẇ−1,r )

≤C
∥
∥φτ − φ

∥
∥
Lθ(I ;Lq )

(9.19)
for all τ ≥ 2, where C > 0 is independent of τ > 0.

The third term of (9.17), we apply the Sobolev inequality and Lemma 7.1 to see
that
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K2 =
∥
∥
∥

∫ τ t

0
∇es�

(
φ
(
t − s

τ

)− φ(t)
)
ds
∥
∥
∥
Lθ(I ;Lr )

≤Sb
∥
∥
∥

∫ τ t

0
�es�

(
φ
(
t − s

τ

)− φ(t)
)
ds
∥
∥
∥
Lθ(I ;Lq )

≤Sb
∥
∥
∥

∫ τ t

0
er�

∂

∂r
φ
(
t − r

τ

)
dr
∥
∥
∥
Lθ(I ;Lq )

+ Sb
∥
∥eτ t�φ0

∥
∥
Lθ(I ;Lq )

+ Sb
∥
∥eτ t�φ(t)

∥
∥
Lθ(I ;Lq )

=L2,1 + L2,2 + L2,3.

(9.20)

For treating the first term of the right hand side of (9.20), we proceed by changing
the variable r = τs

L2,1 =
∥
∥
∥
∥

∫ t

0
eτs� ∂

∂s
φ
(
t − s

)
ds

∥
∥
∥
∥
Lθ(I ;Lq )

≤Cτ−1‖φ‖Lθ(I ;Lq ).

(9.21)

On the other hand, since φ0 and φ(t) ∈ Lq for almost everywhere,

lim
τ→∞ ‖eτ t�(φ0 − φ(t))‖q = 0

and eτ t� is a bounded operator from Lq to itself. Since

‖et�φ0‖Lθ(I ;Lq ) ≤ C‖φ0‖
Ḃ

− 2
θ

q,θ

,

‖et�φ(t)‖Lθ(I ;Lq ) ≤ C‖φ‖Lθ(I ;Lq ),

we see for all τ > 1 that

‖eτ t�φ0‖θ
q ≤ C‖et�φ0‖θ

q ∈ L1(I ),

‖eτ t�φ(t)‖θ
q ≤ C‖et�φ(t)‖θ

q ∈ L1(I ).

Hence by the Lebesgue dominated convergence theorem, for any ε > 0, we may
choose sufficiently large τ > 0 such that

L2,2 + L2,3 < ε (9.22)

Combining the estimates (9.20), (9.21) and (9.22), we obtain that for any ε > 0, there
exists a large τ > 0 such that

K2 ≤ ε. (9.23)

For the forth term, setting I = (η0τ
−1,∞), employing the Sobolev embedding:
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‖ f ‖r ≤ Sb‖∇ f ‖q , 1

r
= 1

q
− 1

4

and boundedness of the semi-group et� : Lq → Lq , we see

K3 =
∥
∥
∥∇(−�)−1eτ t� φ(t)

∥
∥
∥
Lθ(I ;Lr )

≤Sb
∥
∥
∥∇2(−�)−1eτ t� φ(t)

∥
∥
∥
Lθ(I ;Lq )

=Sb

(∫ ∞

0

∥
∥eτ t� φ(t)

∥
∥θ

qdt

)1/θ

≤CSb

(∫ ∞

0

∥
∥φ(s)

∥
∥θ

q
ds

)1/θ

.

(9.24)

Since (∫ ∞

0

∥
∥φ(s)

∥
∥θ

qds

)1/θ

< ∞,

the integrant in the fourth line of (9.24);

∥
∥eτ t� φ(t)

∥
∥θ

q

is L1(R+) and it is dominated by the integrable function
∥
∥u(s)

∥
∥θ

4q
q+4

as;

∥
∥eτ t� u(t)

∥
∥θ

q ≤ ∥∥u(t)
∥
∥θ

q .

Besides for almost all t > 0,

lim
τ→∞ ‖eτ t� u(t)‖θ

q = 0. (9.25)

Applying the Lebesgue dominated convergence theorem, it follows from (9.25) that
for any ε > 0

K3 =
∥
∥
∥

∫ ∞

τ t
∇es�ds u(t)

∥
∥
∥
Lθ(I ;Lr )

≤Sb

(∫ ∞

0

∥
∥eτ t� u(t)

∥
∥θ

qdt

)1/θ

< ε,

(9.26)

as τ → ∞. Combining all the estimates (9.17), (9.18), (9.19), (9.23) and (9.26), we
obtain ∥

∥∇(ψτ − ψ
)∥
∥
Lθ(I ;Lr )

≤C‖φτ − φ‖Lθ(I ;Lq ) + ε. (9.27)

Gathering (9.2), (9.16) and (9.27), we see that for any ε > 0, choosing τ sufficiently
large such that
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‖uτ − u‖Lθ(I ;Lq ) ≤ CM
(
‖uτ − u‖Lθ(I ;Lq ) + ε

)
. (9.28)

In particular, from (9.16), (9.27) and choosing M > 0 small enough in (9.28), for
small ε > 0,

‖uτ − u‖Lθ(I ;Lq ) + ‖∇φτ − ∇φ‖Lθ(I ;Lq ) + ‖∇ψτ − ∇ψ‖Lθ(I ;Lr ) ≤ ε. (9.29)

〈Step 2〉: For any η0 > 0, let I = (0, T ) ∩ (η0,∞). From maximal regularity (5.4)
in Theorem 5.1, we estimate the first component of the integral equation (9.1) as
follows: Recalling

2

θ
+ 4

p
= 4,

2

θ
+ 4

r
= 1,

we proceed in very similar way in (8.21) by the Hölder inequality with for θ = 4,
p = 8

7 , r = 8 that

‖uτ−u‖L∞(I ;L1)

≤
∥
∥
∥
∥

∫ t

0
∇e(t−s)�

(
uτ (s)∇ψτ (s) − u(s)∇ψ(s)

)
ds

∥
∥
∥
∥
L∞(I ;Ḃ0

1,1)

≤C
∥
∥uτ (s)∇ψτ (s) − u(s)∇ψ(s)

∥
∥
L

θ
2 (I ;Ḃ−1+ 4

θ
1,∞ )

≤C
(∥
∥
(
uτ (s) − u(s)

)∇ψτ (s)
∥
∥
L2(I ;L1)

+ ∥∥u(s)
(∇ψτ (s) − ∇ψ(s)

)∥
∥
L2(I ;L1)

)

≤C
(
‖uτ − u‖

L4(I ;L 8
7 )

∥
∥∇ψτ

∥
∥
L4(I ;L8)

+ ‖∇ψτ − ∇ψ‖L4(I ;L8)

∥
∥u
∥
∥
L4(I ;L 8

7 )

)
.

(9.30)
Then the limiting process (9.29) implies the convergence for this case, too.

On the other hand, for the second component, we choose θ = 2 p = 4
3 , that

‖φτ − φ‖L∞(I ;L2)

≤∥∥eτ t�φ0
∥
∥
L∞(I ;L2)

+
∥
∥
∥
∥

∫ τ t

0
es�
(
uτ (t − τ−1s) − u(t − τ−1s)

)
ds

∥
∥
∥
∥
L∞(I ;L2)

+
∥
∥
∥
∥

∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds

∥
∥
∥
∥
L∞(I ;L2)

+
∥
∥
∥
∥

∫ ∞

τ t
es�u(t)ds

∥
∥
∥
∥
L∞(I ;L2)

≤∥∥eτη0�ψ0
∥
∥
2 + C

∥
∥uτ (t − τ−1t) − u(t − τ−1t)

∥
∥
L2(I ;Ḃ−1

2,∞)

+ CSb

∥
∥
∥
∥

∫ τ t

0
es�
(
u(t − τ−1s) − u(t)

)
ds

∥
∥
∥
∥
L∞(I ;L2)

+ C
∥
∥eτη0� u(t)

∥
∥
L2(I ;Ḃ−1

2,∞)

≤∥∥eτη0�ψ0
∥
∥
2 + CSb

∥
∥uτ − u

∥
∥
L2(I ;L 4

3 )
+ Ĩ2 + Ĩ3.

(9.31)
As in a similar manner, the last two terms in the right hand side of (9.31) can be
treated as follows: For the third term, we apply Lemma 7.1 to obtain
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Ĩ2 =
∥
∥
∥

∫ τ t

0
es�
(
u
(
t − s

τ

)− u(t)
)
ds
∥
∥
∥
L∞(I ;L2)

≤Sb
∥
∥
∥

∫ τ t

0
�es�

(
u
(
t − s

τ

)− u(t)
)
ds
∥
∥
∥
L∞(I ;L1)

≤Sb
∥
∥
∥

∫ τ t

0
er�

∂

∂r
u
(
t − r

τ

)
dr
∥
∥
∥
L∞(I ;L1)

+ Sb
∥
∥eτ t�u0

∥
∥
L∞(I ;L1)

+ Sb
∥
∥eτ t�u(t)

∥
∥
L∞(I ;L1)

= Ĩ2,1 + Ĩ2,2 + Ĩ2,3.

(9.32)

For treating the first term of the right hand side of (9.32), we proceed by changing
the variable r = τs

Ĩ2,1 =
∥
∥
∥
∥

∫ t

0
eτs� ∂

∂s
u
(
t − s

)
ds

∥
∥
∥
∥
L∞(I ;L1)

≤
∥
∥
∥
∥

∫ t

0
eτs��u

(
t − s

)
ds

∥
∥
∥
∥
L∞(I ;Ḃ0

1,∞)

+
∥
∥
∥
∥

∫ t

0
eτs�∇ · (u(t − s)∇ψ(t − s)

)
ds

∥
∥
∥
∥
L∞(I ;Ḃ0

1,∞)

≡J1 + J2.
(9.33)

Then applying (5.4) in Theorem 5.1, we see by regarding μ → τ , that

J1 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)��u

(
r
)
dr

∥
∥
∥
∥
L∞(I ;Ḃ0

1,∞)

≤ Cτ−1‖u‖L∞(I ;Ḃ0
1,∞) ≤ Cτ−1‖u‖L∞(I ;L1).

(9.34)
Similarly by the analogous estimate of (8.24), choosing θ = 4, p = 8

7 and r = 8, it
follows that

J2 =
∥
∥
∥
∥

∫ t

0
eτ (t−r)�∇ · (u∇ψ)

(
r
)
dr

∥
∥
∥
∥
L∞(I ;Ḃ0

1,∞)

≤Cτ−1‖u∇ψ‖
L

θ
2 (I ;Ḃ−1+ 4

θ
1,∞ )

≤Cτ−1‖u∇ψ‖L2(I ;L1)

≤Cτ−1‖u‖
L4(I ;L 8

7 )
‖∇ψ‖L4(I ;L8).

(9.35)

On the other hand, since u0 and u(t) ∈ Lq for almost everywhere, eτ t� is a bounded
operator from L p to itself. Since

‖et�u0‖L∞(I ;L1) ≤ C‖u0‖1,
‖et�u(t)‖L∞(I ;L1) ≤ C‖u‖1,

we see for all τ > 1 that
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‖eτ t�u0‖1 ≤ C‖et�u0‖1 ∈ L1(I ),

‖eτ t�u(t)‖1 ≤ C‖et�u(t)‖1 ∈ L1(I ).

Hence by the Lebesgue dominated convergence theorem, for any ε > 0, we may
choose sufficiently large τ > 0 such that

Ĩ2,2 + Ĩ2,3 < ε (9.36)

Combining the estimates (9.32)–(9.36), we obtain that for any ε > 0, there exists a
large τ > 0 such that

Ĩ2 ≤ ε. (9.37)

The last term in (9.39),

Ĩ3 ≤∥∥eτη0� u(t)
∥
∥
L2(I ;Ḃ−1

2,∞)
≤ ε (9.38)

since ∥
∥eτη0� u(t)

∥
∥2
Ḃ−1
2,∞

→ 0, τ → ∞,
∥
∥eτη0� u(t)

∥
∥
L2(I ;Ḃ−1

2,∞)
≤∥∥eη0� u(t)

∥
∥
L2(I ;Ḃ−1

2,∞)

and the Lebesgue dominated convergence theorem. From (9.31), (9.37) and (9.38),
we conclude that

‖φτ − φ‖L∞(I ;L2) → 0 τ → ∞. (9.39)

For the third component, we see in a similar way that

‖ψτ − ψ‖L∞(I ;V MO)

≤∥∥eτ t�ψ0
∥
∥
L∞(I ;V MO)

+
∥
∥
∥
∥

∫ τ t

0
es�
(
φτ (t − τ−1s) − (φ(t − τ−1s)

)
ds

∥
∥
∥
∥
L∞(I ;V MO)

+
∥
∥
∥
∥

∫ τ t

0
es�
(
φ(t − τ−1s) − φ(t)

)
ds

∥
∥
∥
∥
L∞(I ;V MO)

+
∥
∥
∥
∥

∫ ∞

τ t
es�φ(t)ds

∥
∥
∥
∥
L∞(I ;V MO)

≤∥∥eτη0�ψ0
∥
∥
V MO + C

∥
∥
∥φτ (t − τ−1t) − φ(t − τ−1t)

∥
∥
∥
L4(I ;Ḃ−2+ 2

4
2,∞ )

+ CSb

∥
∥
∥
∥

∫ τ t

0
es�
(
φ(t − τ−1s) − φ(t)

)
ds

∥
∥
∥
∥
Lθ(I ;V MO)

+ C
∥
∥eτη0� φ(t)

∥
∥
Lθ(I ;V MO)

≤∥∥eτη0�ψ0
∥
∥
V MO + C

∥
∥φτ − φ

∥
∥
L4(I ;L 4

3 )
+ Sb

∥
∥
∥

∫ τ t

0
er�

∂

∂r
φ
(
t − r

τ

)
dr
∥
∥
∥
L∞(I ;V MO)

+ Sb
∥
∥eτ t�φ0

∥
∥
L∞(I ;L1)

+ Sb
∥
∥eτ t�φ(t)

∥
∥
L∞(I ;L1)

+ C
∥
∥eτη0� φ(t)

∥
∥
Lθ(I ;V MO)

.

(9.40)
Thefirst, second and the last three terms in the right hand side of (9.40) are converging
to 0 as τ → ∞ as before. The remaining third term treated as follows:
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∥
∥
∥

∫ τ t

0
er�

∂

∂r
φ
(
t − r

τ

)
dr
∥
∥
∥
L∞(I ;V MO)

=
∥
∥
∥

∫ t

0
eτs� ∂

∂s
φ
(
t − s

)
ds
∥
∥
∥
L∞(I ;V MO)

≤Cτ−1
∥
∥
∥φ
(
t − s

)|s=t

∥
∥
∥
L∞(I ;V MO)

→ 0 τ → ∞.

(9.41)
Combining (9.40) and (9.41), we conclude the convergence

lim
τ→∞ ‖ψτ − ψ‖L∞(I ;VMO) = 0 (9.42)

and hence (3.5) in Theorem 3.3 has proven by gathering (9.30), (9.39) and (9.42).
〈Step 3〉 For the interval near t = 0, we treat the initial layer for the second

and third equations. Since the argument are very similar, we only treat the second
equation: Let η(t) ≡ χ[0,t0](t)(φ0 − (−�)−1u0). From (9.1),

φτ (t) − φ(t) − η(t) =eτ t�φ0 − φ0 + (−�)−1u0

+
∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds −
∫ ∞

0
es�u(t)ds t ∈ (0, t0).

(9.43)
Then for any ε > 0, choose t0 > 0 small enough so that applying the Sobolev

embedding

Lq(R2) � Ḟ0
q,2(R

2) ⊂ Ḃ0
q,∞(R2) ⊂ Ḃ

−2+ 2
θ∞,∞ (R2),

we estimate (9.43) to obtain

∥
∥φτ − φ − η

∥
∥
L∞(0,t0;L2)

≤∥∥eτ t�φ0

∥
∥
L∞(0,t0;L2)

+
∥
∥
∥
∥(−�)−1u0 −

∫ ∞

0
es�u(t)ds

∥
∥
∥
∥
L∞(0,t0;L2)

+
∥
∥
∥
∥

∫ τ t

0
e(τ t−s)�uτ (τ

−1s)ds

∥
∥
∥
∥
L∞(0,t0;L2)

≤ sup
t≤t0

∥
∥eτ t�φ0

∥
∥
2 + C

∥
∥
∥(−�)−1u0 − (−�)−1u(t)

∥
∥
∥
L∞(0,t0;L2)

+ C
∥
∥
∥uτ (t − τ−1s)|s=τ t

∥
∥
∥
Lθ(0,t0;Ḟ−2+ 2

θ
2,∞ )

≤ sup
t≤t0

∥
∥eτ t�φ0

∥
∥
2 + C

∥
∥u(t) − u0

∥
∥
L∞(0,t0;L1)

+ C
∥
∥uτ (τ

−1s)|s=τ t

∥
∥
Lθ(0,t0;L p)

≤ sup
t≤t0

∥
∥eτ t�φ0

∥
∥
2 + C

∥
∥u(t) − u0

∥
∥
L∞(0,t0;L1)

+ C
∥
∥uτ (t)

∥
∥
Lθ(0,t0;L p)

≤ sup
t≤t0

∥
∥eτ t�φ0

∥
∥
2 + 2ε,

(9.44)

for small t0 > 0 because of the uniform bound for uτ ∈ Lθ(I ; Lq). Since φ0 ∈
L2(R4), we have for any η0 > 0 that
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‖eτη0�φ0‖2 → 0 (9.45)

as τ → ∞ for and by passing τ → ∞, we conclude from (9.44) and (9.45) that the
locally uniform convergence (3.5) holds. This completes the proof. �
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Abstract The paper is an extended version of lecture notes from a mini-course
given by the author in the workshop Optimal Control and PDE in Tohoku University
in 2017. The main objective of the lecture notes is to give a short but rigorous
introduction to the dynamic programming approach to stochastic optimal control
problems. The manuscript discusses, among other things, the classical necessary and
sufficient conditions for optimality, properties of the value function, and it contains
a proof of the dynamic programming principle, and a proof that the value function
is a unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
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1 Introduction

This expository paper is an extended version of lecture notes from a mini-course lec-
tures given by the author in the workshop Optimal Control and PDE in the Thematic
Program ‘Nonlinear Partial Differential Equations for Future Applications’, Tohoku
University, July 17–21, 2017. The main objective of the lecture notes is to give a
short but rigorous introduction to the dynamic programming approach to stochastic
optimal control problems with a proof of the dynamic programming principle (DPP)
and the derivation of the associated Hamilton-Jacobi-Bellman equation.

The central theme of the manuscript is the DPP which links the stochastic optimal
control problem to aHamilton-Jacobi-Bellman partial differential equation. Contrary
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to the deterministic case where its proof is rather elementary, the proof of the DPP in
the stochastic case is very difficult and technical and cannot be taken for granted. Thus
its good understanding is essential and very important. The setup of the stochastic
optimal control problem presented in this paper and the proof of the DPP follows
the more abstract presentation in [9], which was based on the approach of [24]. The
reader should consult [9] for more details on various concepts used here and missing
proofs of some results used in the manuscripts. Other proofs of the DPP for various
setups and control problems can be found in [3–5, 8, 11–13, 16–19, 22, 23, 25].
The reader can read Sect. 2.7 (Bibliographical Notes) of [9] for more information
about these proofs and different approaches. Also, there are many books available
[2, 3, 7, 10, 11, 13–16, 18, 19, 21, 24], where the reader can learn more about
various aspects of stochastic optimal control and dynamic programming. Regarding
viscosity solutions, their basic theory can be found for instance in [1, 6, 11], also [9]
can be useful even though it deals with infinite dimensional problems.

2 Stochastic Optimal Control Problem

Throughout the paper, for x, y ∈ R
n , we will write |x | for the Euclidean norm of x

and 〈x, y〉 for the inner product of x and y. If r ∈ R, |r | will also mean the absolute
value of r . For a matrix X , we will write ‖X‖ to denote the operator norm of X .

Let T > 0 be a fixed constant. For any initial time t ∈ [0, T ] and x ∈ R
n , the state

equation of the problem is given by a stochastic differential equation (SDE)

{
dX (s) = b(s, X (s), a(s))ds + σ(s, X (s), a(s))dW (s), s ∈ (t, T ]
X (t) = x,

(2.1)

where W is a standar m-dimensional Brownian motion, and a(·) : [0, T ] → � is a
control process. We make the following assumptions throughout this paper.

• The control space � is a Polish space (a complete separable metric space).
• The functionsb : [0, T ] × R

n × � → R
n ,σ : [0, T ] × R

n × � → R
n×m are con-

tinuous, b(·, ·, a), σ(·, ·, a) are uniformly continuous on bounded subsets of
[0, T ] × R

n , uniformly for a ∈ �.
• There exists C ≥ 0 such that

|b(s, x, a) − b(s, y, a)| ≤ C |x − y|

‖σ(s, x, a) − σ(s, y, a)‖ ≤ C |x − y|

|b(s, x, a)| + ‖σ(s, x, a)‖ ≤ C(1 + |x |),

for all s ∈ [0, T ], x, y ∈ R
n , a ∈ �.
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The goal is to minimize, over all a(·) which will be specified later, the cost
functional

J (t, x; a(·)) = E

[ ∫ T

t
e− ∫ s

t c(X (r))dr L(s, X (s), a(s))ds

+ e− ∫ T
t c(X (r))drg(X (T ))

]
,

where L : [t, T ] × R
n × � → R, c, g : Rn → R are continuous functions and c is

nonnegative. Here, c is a function responsible for discounting, L is the so-called
running cost, and g is the terminal cost.

We assume the following throughout the paper.

• The functions L : [0, T ] × R
n × �→R,g : Rn → R are continuous, and L(·, ·, a)

is uniformly continuous on bounded subsets of [0, T ] × R
n , uniformly for a ∈ �.

• There exist C , N ≥ 0 such that

|L(t, x, a)| + |g(x)| ≤ C(1 + |x |N )

for all (t, x, a) ∈ [0, T ] × R
n × �.

We do not give precise assumptions on the function c since later we will assume that
c ≡ 0.

Definition 2.1 (generalized reference probability space) Let t ∈ [0, T ). The 5-tuple
μ = (�,F ,F t

s ,P,W ) is called a generalized reference probability space if:

• (�,F ,P) is a complete probability space;
• {F t

s }t≤s≤T is a right-continuous complete filtration in F , i.e. it is a family of
σ -fields such that F t

s1 ⊂ F t
s2 for t ≤ s1 ≤ s2 ≤ T ,

F t
s =

⋂
r>s

F t
r for every s,

and F t
s contains all P-null sets of F for every s;

• W is a standardF t
s -Brownian motion inRm , i.e. it is a process adapted toF t

s such
that W (t2) − W (t1) is independent of F t

t1 for t ≤ t1 < t2 ≤ T , W (t2) − W (t1) ∼
N (0, (t2 − t1)I ) for t ≤ t1 < t2 ≤ T , andW has continuous trajectories P-almost
surely.

Definition 2.2 (reference probability space) We say that a generalized reference
probability space μ is a reference probability space (RPS) if F t

s = σ(F t,0
s ,N ),

where F t,0
s = σ(W (r) : t ≤ r ≤ s) is the filtration generated by W , and N is the

collection of all the P-null sets inF , and moreover if W (t) = 0, P-almost surely.
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2.1 Strong Formulation of Optimal Control Problem

For a generalized reference probability space μ = (�,F ,F t
s ,P,W ), we consider

the set of admissible controls

Uμ
t = {a(·) : [t, T ] × � → � : a(·) isF t

s -progressively measurable}.

Aprocess a(·) is progressivelymeasurable if for every s ∈ (t, T ], a(·) : [t, s] × � →
� is B([t, s]) ⊗ F t

s /B(�) measurable.
The goal in the strong formulation of optimal control problem is to minimize

J (t, x; a(·)) over all a(·) ∈ Uμ
t . In this formulation the generalized reference prob-

ability space μ is fixed.

2.2 Weak Formulation of Optimal Control Problem

In the weak formulation of optimal control problem, we set

Ut =
⋃
μ

Uμ
t ,

where the union is taken over all generalized reference probability spaces μ. The
goal then is to minimize J (t, x; a(·)) over all a(·) ∈ Ut .

We will consider here a special weak formulation of our optimal control problem,
where

Ut =
{⋃

μ

Uμ
t : μ is a reference probability space

}
. (2.2)

In the rest of the paper, unless stated otherwise, Ut will always be defined by (2.2).

2.3 State Equation

We say that X (·) is a solution of the state equation (2.1) if X (·) is progressively
measurable and for every s ≥ t

X (s) = x +
∫ s

t
b(r, X (r), a(r))dr +

∫ s

t
σ(r, X (s), a(r))dW (r), P-a.s.

The theorem below collects basic properties of the solutions of (2.1) (see e.g. [13],
Chap. 2, Sect. 5, also [9], Theorem 1.130).
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Theorem 2.3 Let t ∈ [0, T ], let μ = (�,F ,F t
s ,P,W ) be a generalized reference

probability space, and a(·) ∈ Uμ
t . Then for anyR

n-valued ξ ∈ L p(�,F t
t ,P), p ≥ 2,

the SDE (2.1) has unique solution X (s; t, ξ, a(·)) such that:

• X (·) has continuous trajectories;
•

E

[
max
t≤s≤T

|X (s; t, ξ, a(·))|p
]

≤ Cp(1 + E[|ξ |p]), ;

•
E

[
max
t≤s≤T

|X (s) − Y (s)|2
]

≤ C |x − y|2,

where X (s) = X (s; t, x, a(·)), Y (s) = Y (s; t, y, a(·)) are solutions of (2.1) with
initial conditions X (t) = x ∈ R

n, Y (t) = y ∈ R
n;

•
E

[
max
t≤r≤s

|X (r) − x |2
]

≤ CR(s − t),

if x ∈ R
n, |x | ≤ R, where X (s) = X (s; t, x, a(·)).

The solution of (2.1) can be obtained as the fixed point of the map

K [Y ](s) = ξ +
∫ s

t
b(r,Y (r), a(r))dr +

∫ s

t
σ(r,Y (r), a(r))dW (r)

in the space of continuous, progressively measurable processes such that ‖Y‖ :=(
E

[
max
t≤s≤T

|Y (s)|p
]) 1

p

< +∞.

3 Dynamic Programming Principle and HJB Equation

The value function for (2.1) in the weak formulation with initial time t is defined as

V (t, x) = inf
a(·)∈Ut

J (t, x; a(·)),

where Ut is defined by (2.2).
The central part of the theory is the dynamic programming principle, which states

that if 0 ≤ t < η < T , then

V (t, x) =
inf

a(·)∈Ut

E

[∫ η

t
e− ∫ s

t c(X (r))dr L(r, X (r), a(r))dr + e− ∫ η

t c(X (r))dr V (η, X (η))

]
,



188 A. Święch

where X (r) = X (r; t, x, a(·)).
The dynamic programming principle is a functional equation for the value func-

tion. It connects the stochastic optimal control problem with a partial differential
equation (PDE) called the Hamilton-Jacobi-Bellman (HJB) equation which can be
used to prove verification theorems, obtain conditions for optimality, construct opti-
mal feedback controls, etc. We remark that the statement of the DPP implies that the
functions V (η, X (η)) are measurable, i.e. it requires some apriori knowledge about
V . Obviously V (η, X (η)) is measurable if V (η, ·) is Borel measurable, in particular
if V (η, ·) is continuous. We will prove the DPP in Sect. 4.6 assuming for simplicity
that c ≡ 0. The proof contains all essential difficulties and the proof in the general
case can be easily deduced from it.

We define

Tt,r (ψ) =
inf

a(·)∈Ut

E

[ ∫ r

t
e− ∫ s

t c(X (τ ))dτ L(s, X (s), a(s))ds + e− ∫ r
t c(X (τ ))dτψ(X (r))

]
.

If the DPP holds, then we have Tt,T (ψ) = Tt,r (Tr,T (ψ)) for t < r < T . Thus the
DPP defines a two parameter evolution system and the HJB equation is the PDE
associated to this evolution system, the generator equation. The HJB equation has
the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + inf
a∈�

{
1

2
Tr[σ(t, x, a)σ ∗(t, x, a)D2u] + 〈b(t, x, a)Du〉

− c(x)u + L(t, x, a)

}
= 0, (t, x) ∈ (0, T ) × R

n,

u(T, x) = g(x), x ∈ R
n.

(3.1)

For (t, x, r, p, S, a) ∈ [0, T ] × R
n × R × R

n × S(n) × �, where S(n) is the set
of all symmetric n × n matrices, we denote

FCV (t, x, r, p, S, a) := 1

2
Tr

[
σ(t, x, a)σ ∗(t, x, a)S

] + 〈b(t, x, a), p〉
− c(x)r + L(t, x, a),

and call it the current value Hamiltonian of the system. Its infimum over a ∈ �,

F(t, x, r, p, S) := inf
a∈�

{
1

2
Tr

[
σ(t, x, a)σ ∗(t, x, a)S

] + 〈b(t, x, a), p〉 (3.2)

− c(x)r + L(t, x, a)

}
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is called theHamiltonian. Using this notation, theHJB equation (3.1) can be rewritten
as {

ut + F(t, x, u, Du, D2u) = 0, (t, x) ∈ (0, T ) × R
n,

u(T, x) = g(x), x ∈ R
n.

(3.3)

In the rest of the paper we will always assume that

• c ≡ 0.

3.1 Verification Theorem, Necessary and Sufficient
Conditions for Optimality

The HJB equation can be used to characterize optimal controls. We call (X (·; t, x,
a(·)), a(·)) an admissible pair if X (·; t, x, a(·)) : [t, T ] → R

n is the unique solution
of the state equation (2.1).

Theorem 3.1 (Verification Theorem, Sufficient Condition for Optimality) Let u :
[0, T ] × R

n → R be a classical solution of (2.1) such that there exist C, p ≥ 0 such
that

|u(t, x)|, |ut (t, x)|, |Du(t, x)|, ‖D2u(t, x)‖ ≤ C(1 + |x |p) (3.4)

for all (t, x) ∈ [0, T ] × R
n. Let (X∗(·), a∗(·)) be an admissible pair at (t, x) such

that

a∗(s) ∈ argmin
a∈�

FCV (s, X∗(s), Du(s, X∗(s)), D2u(s, X∗(s)), a) (3.5)

for almost every s ∈ [t, T ] and P-a.s. Then the pair (X∗(·), a∗(·)) is optimal at (t, x)
and u(t, x) = V (t, x).

Proof If a(·) ∈ Ut , then by Ito’s formula,

u(t, x) = E

[
u(T, X (T )) −

∫ T

t

{
ut (s, X (s)) + 〈b(s, X (s), a(s)), Du(s, X (s))〉

+ 1

2
Tr(σ (s, X (s), a(s))σ ∗(s, X (s), a(s))D2u(s, X (s)))

}
ds

]

= E

[
g(X (T )) −

∫ T

t

[
ut (s, X (s)) − L(s, X (s), a(s))

+ FCV (s, X (s), Du(s, X (s)), D2u(s, X (s), a(s)))
]

≤ J (t, x; a(·)), (3.6)
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where the last inequality follows since FCV − F ≥ 0. The equality above holds if and
only if FCV = F . Therefore, we have u ≤ V by taking the infimum over a(·) ∈ Ut

in the right hand side of (3.6).
Now, let (X∗(·), a∗(·)) be an admissible pair at (t, x) satisfying (3.5). If a(·) =

a∗(·), then the above gives u(t, x) = J (t, x; a∗(·)) ≥ V (t, x). Thus, we have
u(t, x) = V (t, x) = J (t, x; a∗(·)), which implies that a∗(·) is optimal. �

If we know from the beginning that the solution u in Theorem 3.1 is the value
function V , then (3.5) also becomes a necessary condition for optimality.

Corollary 3.2 (Verification Theorem, Necessary Condition for Optimality) Let u =
V in Theorem 3.1 (i.e. the value function V is a smooth solution of (3.1) satisfying
(3.4)). If (X∗(·), a∗(·)) is an optimal pair at (t, x), then we must have

a∗(s) ∈ argmin
a∈�

FCV (s, X∗(s), Du(s, X∗(s)), D2u(s, X∗(s)), a)

for almost every s ∈ [t, T ] and P-a.s.

Proof Since (X∗(·), a∗(·)) is an optimal pair at (t, x), we have V (t, x) = J (t, x;
a∗(·)). Thus inequality (3.6) for a(·) = a∗(·) becomes equality and thus we must
have

FCV (s, X∗(s),Du(s, X∗(s)), D2u(s, X∗(s)), a∗(s))

= F(s, X∗(s), Du(s, X∗(s)), D2u(s, X∗(s)))

for almost every s ∈ [t, T ] and P-a.s. Hence the claim follows. �

3.2 Construction of Optimal Feedback Controls

We define the multivalued function{
φ : (0, T ) × R

n → P(�)

φ : (t, x) → argmin
a∈�

FCV (t, x, DV (t, x), D2V (t, x), a)
(3.7)

and consider the Closed Loop Equation

{
dX (s) ∈ b(s, X (s), φ(s, X (s)))ds + σ(s, X (s), φ(s, X (s)))dW (s)

X (t) = x .
(3.8)

Corollary 3.3 Suppose thatφ admits ameasurable selectionψt : (t, T ) × R
n → �

such that the Closed Loop Equation
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{
dX (s) = b(s, X (s), ψt (s, X (s)))ds + σ(s, X (s), ψt (s, X (s)))dW (s)

X (t) = x .
(3.9)

has a solution Xψt (·) in some generalized reference probability space μ. Then the
pair (Xψt (·), aψt (·)) is optimal at (t, x), where aψt (·) = ψt (·, Xψt (·)).

3.3 Uniqueness in Law

Definition 3.4 Let Xi (s) : (�i ,Fi ,Pi ) → (�,F ) be two processes for i = 1, 2.
X1(·) and X2(·) have the same finite-dimensional distributions on [t, T ] if there is a
set D of full measure on [t, T ] such that for any n ≥ 1, t ≤ t1 < t2 < · · · < tn ≤ T ,
t j ∈ D (1 ≤ j ≤ n) and A ∈ F ⊗ F ⊗ . . . ⊗ F︸ ︷︷ ︸

n−times

,

P1(w1 : (X1(t1), . . . , X1(tn))(ω1) ∈ A) = P2(w2 : (X2(t1), . . . , X2(tn))(ω2) ∈ A).

In this case we write LP1(X1(·)) = LP2(X2(·)).
Let (�1,F1,F 1,t

s ,P1,W1) and (�2,F2,F 2,t
s ,P2,W2) be two generalized ref-

erence probability spaces. Let (�̃, F̃ ) be a measurable space and �i : �i → �̃,
i = 1, 2, be two random variables. Let fi : [t, T ] × �i → R

n , i = 1, 2, be two pro-
cesses satisfying

E

{∫ T

t
| fi (s)|ds

}
< +∞, i = 1, 2,

and let φi : [t, T ] × �i → R
n×m , i = 1, 2, be two F i,t

s -progressively measurable
processes satisfying

E

{∫ T

t
‖φi (s)‖2ds

}
< +∞, i = 1, 2.

The following facts can be proved (see [20], Theorems 8.3 and 8.6, where they were
proved for more general Banach space-valued processes).

• If LP1( f1(·),�1) = LP2( f2(·),�2) on [t, T ], then

LP1

(∫ ·

t
f1(s)ds,�1

)
= LP2

(∫ ·

t
f2(s)ds,�2

)
on [t, T ].

• If LP1(φ1(·),W1(·),�1) = LP2(φ2(·),W2(·),�2), then

LP1

(∫ ·

t
φ1(s)dW1(s),�1

)
= LP2

(∫ ·

t
φ2(s)dW2(s),�2

)
on [t, T ].
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Theorem 3.5 Let μi = (�i ,Fi ,F i,t
s ,Pi ,Wi ), i = 1, 2, be two generalized refer-

ence probability spaces, ai (·) ∈ Uμi
t , i = 1, 2, and let ξi ∈ L2(�i ,F

i,t
t ,Pi ), i = 1, 2,

be two R
n-valued random variables. Let Xi (·) be the unique solution of the state

equation with control ai (·) and such that Xi (t) = ξi . If LP1(a1(·),W1(·), ξ1) =
LP2(a2(·),W2(·), ξ2) on [t, T ], then LP1(X1(·), a1(·)) = LP2(X2(·), a2(·)) on [t, T ].
Proof The solutions Xi (·) are obtained as the limits of maps

Ki [Zi (·)](s) = ξi +
∫ s

t
b(r, Zi (r), ai (r))dr +

∫ s

t
σ(r, Zi (r), ai (r))dWi (r),

i.e. Z1
i (s) = ξi , Z

k+1
i (s) = Ki [Zk

i ](s). Using previous result we have

LP1(Z
k
1(·),W1(·), a1(·)) = LP2(Z

k
2(·),W2(·), a2(·))

so passing to the limit as k → +∞ gives the result. We refer to the proofs of Lemma
1.136 and Proposition 1.137 of [9] for the full details of the proof. �

4 Value Function and Proof of Dynamic Programming
Principle

We first need to introduce and develop more technical tools. From now on we will
always assume without loss of generality that W has everywhere continuous trajec-
tories.

4.1 Predictable Processes

Definition 4.1 Let μ = (�,F ,F t
s ,P,W ) be a reference probability space. The

σ -field ofF t,0
s -predictable sets P�

[t,T ] is the σ -field generated by all sets of the form

(s, r ] × A, t ≤ s < r ≤ T , A ∈ F t,0
s and {t} × A, A ∈ F t,0

t . The process a(·) with
values in � isF t

s -predictable if it is P�
[t,T ]/B(�) measurable.

Lemma 4.2 Assume a(·) ∈ Uμ
t . Then there exists F t,0

s -predictable process ã(·)
such that ã(·) = a(·), dt ⊗ P-a.e.

The proof of Lemma 4.2 is in [9], Lemma 1.99. The idea is to approximate a(·) by
simple processes.

It is easy to see that X (·; t, x, a(·)) is indistinguishable with X (·; t, x, ã(·)), i.e.,
there is a set �1 ⊂ �, P(�1) = 1 such that X (·; t, x, a(·))(ω) = X (·; t, x, ã(·))(ω)

on [t, T ] for any ω ∈ �1. Therefore, without loss of generality, we can assume that
all controls in Uμ

t areF t,0
s -predictable.
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4.2 Canonical Reference Probability Space

Set W := {ω ∈ C([t, T ],Rm) : ω(t) = 0}, equipped with the usual sup-norm. Let
B(W) be the Borel σ -field and P∗ be the Wiener measure on (W,B(W)), i.e.
the unique probability measure on W that makes the mapping W : [t, T ] × W →
R

m,W(s, ω) = ω(s), a Wiener process on W with values in Rm . Denote byF∗ the
completion of B(W), set Bt,0

s = σ(W(τ ); t ≤ τ ≤ s), Bt
s = σ(Bt,0

s ,N∗), whereN∗
are the P∗-null sets, and let PW

[t,T ] be the σ -field of Bt,0
s -predictable sets. The 5-tuple

νW := (W,F∗,Bt
s,P∗,W) is called the canonical reference probability space.

4.3 Independence of Value Function of Reference
Probability Spaces

The following lemma gives a representation of control processes and its proof can
be found in [9], Lemma 2.20.

Lemma 4.3 Letμbea referenceprobability spaceanda(·)∈Uμ
t beF t,0

s -predictable.
Then there exists aPW

[t,T ]/B(�)-measurable function f : [t, T ] × W → � such that
a(s, ω) = f (s,W (·, ω)) for ω ∈ �, s ∈ [t, T ].

Let now a(·) ∈ Uμ
t and f be from Lemma 4.3. Suppose thatμ1 = (�1,F1,F 1,t

s ,

P,W1) is another reference probability space. Then a1(s, ω) = f (s,W1(·, ω)) is
F 1,t,0

s -predictable and LP(a(·),W (·)) = LP1(a1(·),W1(·)). Thus it follows that
V μ1(t, x) ≤ V μ(t, x), and by the same argument we can also obtain the reverse
inequality. Thus the value function is independent of the choice of a reference prob-
ability space and we have the following theorem.

Theorem 4.4 For every reference probability space μ, we have

V μ(t, x) = inf
a(·)∈Uμ

t

J (t, x; a(·)) = V (t, x).

4.4 Standard Reference Probability Spaces

Definition 4.5 A measurable space (�′,F ′) is standard if it is Borel isomorphic
to one of the following: ({1, . . . , n},B({1, . . . , n})), (N,B(N)) or ({0, 1}N,

B({0, 1}N)).

If S is a Polish space, then (S,B(S)) is standard. Also if (�′,F ′) is standard then
it is Borel isomorphic to [0, 1] with the Borel σ -field.
Definition 4.6 A reference probability space μ is standard if there exists σ -fieldF ′
such that F t,0

T ⊂ F ′ ⊂ F ,F is the completion of F ′, and (�,F ′) is standard.
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The canonical reference probability space μW is standard.
The following is very important. If (�′,F ′,P) is a probability space such that

(�′,F ′) is standard, then for any σ -field G ⊂ F ′ there exists a regular conditional
probability p : �′ × F ′ → [0, 1] given G (see e.g. [9], Sect. 1.1.5 for definitions and
details). So if μ is a standard reference probability space then there exists regular
conditional probability given F t,0

s . We will write Pω0 := p(ω0, ·) or, with abuse of
notation, when we want to emphasize the σ -field, we will write P(·|F t,0

s )(ω0). We
will write Eω0 to denote the expectation with respect to the measure Pω0 .

We have that for everyF t,0
s /B(Rn) measurable random variable Y , for P-a.s. ω0,

Pω0(Y (ω) = Y (ω0)) = 1 (see [9], Theorem 1.45, and references there). Also (see
e.g. [9], page 102), if Y ∈ L1(�,F ,P), then Eω0 (as a function of ω0) belongs to
L1(�,F ,P) and

E[Y ] = E[E[Y |F t
s ]] = E[Eω0 [Y ]].

4.5 “Conditioned” Reference Probability Spaces

Suppose that 0 ≤ t < η < T , and μ = (�,F ,F t
s ,P,W ) is a standard reference

probability space. We set Wη(s) = W (s) − W (η). We will use conditional expecta-
tions in the proof of the dynamic programming principle so we need to make sure
that we stay within the framework of the reference probability spaces. The following
two lemmas guarantee this. They correspond to Lemmas 2.25 and 2.26 of [9] and
their proofs can be found there.

Lemma 4.7 For P-a.s. ω0, μω0 = (�,Fω0 ,F
η
ω0,s,Pω0) is a reference probability

space on [η, T ], where Fω0 is the completion of F ′ by Pω0 = P(·|F t,0
s )(ω0) null

sets, and F η
ω0,s is the augmented filtration generated by Wη.

Lemma 4.8 Let μ, μω0 be as above, and let a(·) ∈ Uμ
t be F t,0

s -predictable. Then
a|[η,T ](·) ∈ Uμω0

η for P-a.e. ω0.

We just remark here that Lemma 4.8 follows easily after we show that F t,0
s ⊂

F η
ω0,s for η ≤ s ≤ T .
Finally we need to ensure that the solution of (2.1) in the reference probability

space μ is also the solution in the reference probability spaces μω0 .

Lemma 4.9 Let μ, μω0 and a(·) be as in Lemma 4.8, and let Xμ(·; t, x, a(·)) be the
solution of (2.1) in the reference probability spaceμ. Then,up to an indistinguishable
modification, for P-a.e. ω0, Xμ(·; t, x, a(·)) is the solution of (2.1) on [η, T ], with
initial condition Xμ(η), in the reference probability space μω0 , i.e. for P-a.e. ω0,
Xμ(·; t, x, a(·)) = Xμω0

(·; η, Xμ(η), a(·)).
Proof Wefirst observe that, using the continuity of trajectories of Xμ(·):=Xμ(·; t, x,
a(·)), one can show that, up to an indistinguishable modification, Xμ(·) can be
considered to be F η

ω0,s-progressively measurable on [η, T ] for P-a.e. ω0 (see [9],
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the proof of Proposition 2.26, page 103, for a precise argument). In fact one obtains
that Xμ(·) is indistinguishable with a process which is σ(F t,0

s , �̃)-progressively
measurable for some �̃ such that P(�̃) = 1.

It is easy to see that P a.s. we have

Xμ(s) = Xμ(η) +
∫ s

η

b(s, Xμ(s), a(s))ds +
∫ s

η

σ (s, Xμ(s), a(s))dWη(s) on [η, T ].

Since for every set �1 such that P(�1) = 1, we have Pω0(�1) = 1 for P-a.e. ω0,
the above identity is satisfied Pω0 -a.s. for P a.e. ω0. Thus to prove that Xμ(·) is the
solution in the reference probability spaces μω0 , it is enough to show that for P-a.e.
ω0, the stochastic integral

Iμ(s) =
∫ s

η

σ (s, Xμ(s), a(s))dWη(s)

in the reference probability spaceμ is Pω0 -a.e. equal on [η, T ] to the same stochastic
integral in the reference probability space μω0 . We denote this integral by Iμω0 (s).
Since the stochastic integrals have continuous paths it is enough to show it for a single
s. We note that Iμω0 (s) is well defined since σ(s, Xμ(s), a(s)) isF η

ω0,s-progressively
measurable on [η, T ] for P-a.e. ω0. We also note that since

E

[∫ s

η

|Xμ(r)|2dr
]

= E

[
Eω0

[∫ s

η

|Xμ(r)|2dr
]]

,

we have Eω0

[∫ s
η

|Xμ(r)|2dr
]

< ∞ for P-a.e. ω0.

Denote (s) = σ(s, Xμ(s), a(s)). There exist a sequence of elementary and
F t,0

r -progressively measurable processes n , such that

E

∫ s

η

|(r) − n(r)|2dr → 0.

The processes n are also F η
ω0,r -progressively measurable. Since E| ∫ s

η
[(r) −

n(r)]dWη(r)|2 → 0, passing to a subsequence if necessary, we can assume that

∫ s

η

n(r)dWη(r) → Iμ(s), on �2, (4.1)

where �2 is a set such that P(�2) = 1 and hence Pω0(�2) = 1 for P-a.e. ω0. Since

E

[
Eω0

[∫ s

η

|(r) − n(r)|2dr
]]

= E

[∫ s

η

|(r) − n(r)|2dr
]

→ 0

as n → ∞, up to a subsequence, for P-a.e. ω0, we have
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Eω0

[∫ s

η

|(r) − n(r)|2dr
]

→ 0

as n → ∞. So, for P-a.e. ω0, there exists a subsequence of n such that

∫ s

η

n(r)dWη(r) → Iμω0 (s), Pω0 -a.e. (4.2)

Thus (4.1) and (4.2) imply that, for P-a.e. ω0, Iμ(s) = Iμω0 (s), Pω0 -a.e.
�

4.6 Proof of the Dynamic Programming Principle

We first show the uniform continuity in x of the cost functionals.

Lemma 4.10 For every R > 0, there is a modulus ρR such that

|J (t, x; a(·)) − J (t, y; a(·))| + |V (t, x) − V (t, y)| ≤ ρR(|x − y|)

for all t ∈ [0, T ], x, y ∈ R
n, |x |, |y| ≤ R, a(·) ∈ Ut . Moreover,

|J (t, x; a(·))| + |V (t, x)| ≤ C(1 + |x |N )

for all (t, x) ∈ [0, T ] × R
n, a(·) ∈ Ut .

Proof The result follows easily from the assumptions about L and g, and the esti-
mates of Theorem 2.3. �

We can now prove the DPP. We remind that we assume that c ≡ 0.

Theorem 4.11 (Dynamic Programming Principle) Let 0 ≤ t < η ≤ T, x ∈ R
n.

Then

V (t, x) = inf
a(·)∈Ut

E

[∫ η

t
L(r, X (r), a(r))dr + V (η, X (η))

]
,

where X (r) = X (r; t, x, a(·)).
Proof Denote

Ũt =
{⋃

μ

Uμ
t : μ is a standard RPS

}
.

It is enough to show DPP with Ut replaced by Ũt since V η is the same for every
reference probability space μ and we have joint uniqueness in law. Of course it is
enough to assume t < η < T . Thus we will show
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V (t, x) = inf
a(·)∈Ũt

E

[∫ η

t
L(s, X (s), a(s))ds + V (η, X (η))

]
(4.3)

for t < η < T . In fact it would be enough to replace Ut by U νW
t , where νW is the

canonical RPS.
Part 1. (Inequality ≥ in (4.3)) Let μ be standard reference probability space and

a(·) ∈ Uμ
t . We can assume that a(·) is F t,0

s -predictable and hence, by Lemma 4.8,
a|[η,T ](·) ∈ Uμω0

η for P-a.e. ω0. By Lemma 4.9, for P-a.e. ω0, Xμ(·) = Xμω0
(·; η,

Xμ(η), a(·)) on [η, T ], where μω0 = (�,Fω0 ,F
η
ω0,s,Pω0 ,Wη). We also recall that

for P-a.e. ω0, Pω0({ω : X (η, ω) = X (η, ω0)}) = 1. Therefore,

J (t, x, a(·)) = E

[∫ η

t
L(s, X (s), a(s))ds

]

+ E

[∫ T

η

L(s, X (s), a(s))ds + g(X (T ))

]

= E

[∫ η

t
L(s, X (s), a(s))ds

]
+ E

[
Eω0

[∫ T

η

L(s, X (s), a(s))ds + g(X (T ))

]]

= E

[∫ η

t
L(s, X (s), a(s))ds

]
+ E

[
Jμω0

(η, X (η, ω0); a(·))]
≥ E

[∫ η

t
L(s, X (s), a(s))ds + V (η, X (η))

]
.

Taking infimum over all a(·) ∈ Ũt above implies

V (t, x) ≥ inf
a(·)∈Ũt

E

[∫ η

t
L(s, X (s), a(s))ds + V (η, X (η))

]
.

Part 2. (Inequality ≤ in (4.3)) Let ε > 0 and let a(·) ∈ Uμ
t for some standard

reference probability space μ = (�,F ,F t
s ,P,W ). Using continuity of J and V in

x from Lemma 4.10, we can find a partition {Dj } of Rn into disjoint Borel sets Dj ,
j = 1, 2, · · · such that if x, y ∈ Dj and ã(·) ∈ Ut then

|J (η, x; ã(·)) − J (η, y; ã(·))| + |V (η, x) − V (η, y)| < ε.

For each j , we choose x j ∈ Dj and a j (·) ∈ Uμ j
t for some reference probability space

μ j = (� j ,F j ,F
η

j,s,P j ,Wj ) such that

J (η, x j ; a j (·)) < V (η, x j ) + ε.

We can assume that a j (·) areF η,0
j,s -predictable.

Now let f j : [η, T ] × C([η, T ],Rn) → � be functions such that
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a j (s, ω) = f j (s,Wj (·, ω)).

Then the processes
ã j (s, ω) = f j (s,Wη(·, ω))

areF t,0
s -progressivelymeasurable and forP-a.e.ω0 areF

η
ω0,s-progressivelymeasur-

able in the reference probability spaces μω0 = (�,Fω0 ,F
η
ω0,s,Pω0 ,Wη). Moreover,

LPω0
(̃a j (·),Wη) = LP j (a j (·),Wj ).

We define new control

aη(s, ω) = a(s, ω)1{t≤s<η} + 1{s≥η}
∑
j∈N

ã j (s, ω)1{X (η;t,x,a(·))∈Dj }.

DenoteOj = {w : X (η; t, x, a(·)) ∈ Dj }.Wenotice thataη(·) ∈ Uμ
t .Denote X (s) =

X (s; t, x, aη(·)). Then X (s) = X (s; t, x, a(·)) on [t, η], P a.s. Since for P-a.e. ω0,
X (η, ω) = X (η, ω0), Pω0 -a.s., if ω0 ∈ Oj then aη(·) = ã j (·) on [η, T ], Pω0 -a.s., and
thus for P-a.s. ω0, a

η

|[η,T ] ∈ Uμω0

η , and

LPω0
(aη(·),Wη(·)) = LP j (a j (·),Wj (·)).

Moreover, by Lemma 4.9, we can assume that forP-a.e.ω0, X (·) = Xμω0
(·; η, X (η),

aη(·)) on [η, T ], Pω0 a.s. Thus, by Theorem 3.5,

LPω0
(X (·), aη(·)) = LP j (X

μ j (·), a j (·)), (4.4)

where Xμ j = X (s; η, X (η; t, x, a(·))(ω0), a j (·)). Therefore,

E

[∫ T

η

L(s, X (s), aη(s))ds + g(X (T ))

]

= E

[
Eω0

[∫ T

η

L(s, X (s), aη(s))ds + g(X (T ))

]]

=
∞∑
j=1

∫
Oj

Eω0

[∫ T

η

L(s, X (s), aη(s))ds + g(X (T ))

]
dP(ω0)

=
∞∑
j=1

∫
Oj

JPω0
(η, X (η; t, x, a(·))(ω0); aη(·))dP(ω0)

=
∞∑
j=1

∫
Oj

JP j (η, X (η; t, x, a(·))(ω0); a j (·))dP(ω0),

where we used (4.4) to get the last equality. Now, for ω0 ∈ Oj ,
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JP j (η, X (η; t, x, a(·))(ω0); a j (·)) < JP j (η, x j ; a j (·)) + ε

< V (η, x j ) + 2ε

< V (η, X (η; t, x, a(·))(ω0)) + 3ε.

Therefore,

E

[∫ T

η

L(s, X (s), aη(s))ds + g(X (T ))

]
< E[V (η, X (η))] + 3ε,

so we obtain

J (t, x; aη(·)) ≤ E

[∫ η

t
L(s, X (s), a(s))ds + V (η, X (η))

]
+ 3ε.

Since a(·) was arbitrary, the above inequality implies

V (t, x) ≤ inf
a(·)∈Ũt

E

[∫ η

t
L(s, X (s), a(s))ds + V (η, X (η))

]
+ 3ε.

It now remains to send ε → 0. �

4.7 Continuity of the Value Function in t

Having the dynamic programming principle we can now easily prove the continuity
of the value function in t .

Corollary 4.12 For every R > 0 there exists a modulus ρ̄R such that

|V (t, x) − V (s, x)| ≤ ρ̄R(|t − s|) for all t, s ∈ [0, T ], x ∈ R
n, |x | ≤ R.

Proof Suppose s > t , and |x | ≤ R, R ≥ 1. Using the dynamic programming prin-
ciple, and estimates of Theorem 2.3 and Lemma 4.10, we have
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|V (t, x) − V (s, x)| ≤ sup
a(·)∈Ut

E

∣∣∣∣
∫ s

t
L(r, X (r), a(r))dr + V (s, X (s)) − V (s, x)

∣∣∣∣
≤ sup

a(·)∈Ut

E

∫ s

t
C(1 + |X (r)|N )dr + sup

a(·)∈Ut

E|V (s, X (s)) − V (s, X)|

≤ C(1 + |x |N )(s − t) + sup
a(·)∈Ut

E
[
ρ2R

(|X (s) − x |1{|X (s)|≤2R}
)]

+ sup
a(·)∈Ut

E
[
C(1 + |X (s)|N + |x |N )1{|X (s)|>2R}

]
≤ CR(s − t) + sup

a(·)∈Ut

ρ2R (E|X (s) − x |) + sup
a(·)∈Ut

CR (P ({|X (s)| > 2R})) 1
2

≤ CR(s − t) + ρ2R
(
CR

√
s − t

) + CR
√
s − t .

Above we also used Jensen’s inequality and the fact that we can assume that the
moduli ρ2R are concave. �

4.8 Dynamic Programming Principle with Stopping Times

Theknowledge thatV is continuous allows us to formulate the dynamic programming
principle in a stopping time version.

For everya(·) ∈ Uμ
t for some referenceprobability spaceμ = (�,F ,F t

s ,P,W ),
we choose anF t

s -stopping time τa(·) with values in [t, T ]. We define Vt to be the set
of such pairs (a(·), τa(·)), over all a(·) ∈ Ut . The set of all F t

s -stopping times with
values in [t, T ] will be denoted by Aμ.

We recall that τ is an F t
s -stopping time if for all s ≥ t , {τ ≤ s} = {ω ∈ � :

τ(ω) ≤ s} ∈ F t
s . For instance if A is an open or a closed subset of Rn , then the exit

time of X (·) from A is a stopping time.

Theorem 4.13 (DPP-Stopping Time Formulation I)) Let 0 ≤ t ≤ T, x ∈ R
n. Then

V (t, x) = inf
(a(·),τa(·))∈Vt

E

[∫ τa(·)

t
L(s, X (s), a(s))ds + V (τa(·), X (τa(·)))

]
.

The proof of Theorem 4.13 in its Hilbert space version can be found in [9], page 241
(Theorem 3.70 there). Theorem 4.13 in turn easily implies another formulation of
the dynamic programming principle with stopping times, given below in Theorem
4.14. In a slightly different formulation such a version of the dynamic programming
principle can be found for instance in [11], page 176.

Theorem 4.14 (DPP-Stopping Time Formulation II) Let 0 ≤ t ≤ T, x ∈ R
n. Then
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V (t, x) = inf
μ∈R,a(·)∈Uμ

t

inf
τ∈Aμ

t

E

[∫ τ

t
L(s, X (s), a(s))ds + V (τ, X (τ ))

]

= inf
μ∈R,a(·)∈Uμ

t

sup
τ∈Aμ

t

E

[∫ τ

t
L(s, X (s), a(s))ds + V (τ, X (τ ))

]
,

where R is the set of all reference probability spaces.

5 Value Function Solves the HJB Equation

We can now prove that the value function V is the viscosity solution of the HJB
equation (3.3). The stopping time formulation of the dynamic programming principle
is very useful for this purpose.

Definition 5.1 An upper-semicontinuous function u : (0, T ] × R
n → R is a vis-

cosity subsolution of the terminal value problem (3.3) if u(T, x) ≤ g(x) for all
x ∈ R

n , and whenever u − φ has a local maximum at (t, x) ∈ (0, T ) × R
n for some

φ ∈ C1,2((0, T ) × R
n), then

φt (t, x) + F(t, x, Dφ(t, x), D2φ(t, x)) ≥ 0.

A lower-semicontinuous function u : (0, T ] × R
n → R is a viscosity supersolution

of the terminal value problem (3.3) if u(T, x) ≥ g(x) for all x ∈ R
n , and whenever

u − φ has a local minimum at (t, x) ∈ (0, T ) × R
n for some φ ∈ C1,2((0, T ) × R

n),
then

φt (t, x) + F(t, x, Dφ(t, x), D2φ(t, x)) ≤ 0.

A function u is a viscosity solution of (3.3) if it is a viscosity subsolution and a
viscosity supersolution of (3.3).

Theorem 5.2 Value function V is the unique viscosity solution of the HJB equation
(3.1). The uniqueness holds within the class of continuous functions u : (0, T ] ×
R

n → R such that there exist C, a > 0 such that

|u(t, x)| ≤ Cea(log(1+|x |))2 for all (t, x) ∈ (0, T ] × R
n.

Proof We will only prove the existence part. The proof of uniqueness can be found
for instance in [9], Theorem 3.50, pages 206–212.

V is a viscosity supersolution:Suppose thatV − φ has a localminimumat (t, x) ∈
(0, T ) × R

n for some φ ∈ C1,2((0, T ) × R
n). Let 0 < ε < 1. For a(·) ∈ Ut we take

τa(·) = min(t + ε, τ ε
a(·)), where τ ε

a(·) is the exit time of X (s) = X (s; t, x, a(·)) from
B

ε
1
4
(x). Recall that we have
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E

[
sup

t≤r≤t+ε

|X (r) − x |2
]

≤ Cε,

which implies
P(τ ε

a(·) < t + ε) < C
√

ε. (5.1)

Now, for (s, y) in a neighborhood of (t, x),

V (s, y) − V (t, x) ≥ φ(s, y) − φ(t, x). (5.2)

ByTheorem4.13, there exists aε(·) ∈ Ut such that, denoting τε := τaε(·) and Xε(s) :=
X (s; t, x, aε(·)),

V (t, x) + ε2 ≥ E

[∫ τε

t
L(s, Xε(s), aε(s))ds + V (τε, Xε(τε))

]
.

Therefore, by (5.2) and Itô’s formula,

ε2 ≥ E

[∫ τε

t
L(s, Xε(s), aε(s))ds

]
+ E[φ(τε, Xε(τε)) − φ(t, x)] (5.3)

= E

[ ∫ τε

t

[
L(s, Xε(s), aε(s)) + φt (s, Xε(s))

+ 1

2
Tr(σ (s, Xε(s), aε(s))σ

∗(s, Xε(s), aε(s))D
2φ(s, Xε(s)))

+ 〈Dφ(s, Xε(s)), b(s, Xε(s), aε(s))〉
]
ds

]

≥ E

[ ∫ τε

t

[
φt (t, x) + 1

2
Tr(σ (t, x, aε(s))σ

∗(t, x, aε(s))D
2φ(t, x))

+ 〈Dφ(t, x), b(t, x, aε(s))〉 + L(t, x, aε(s))
]
ds

]
− ερ̃(ε), (5.4)

where ρ̃(ε) → 0 as ε → 0. Therefore, taking the infimum inside the integral and
using (5.1), we obtain

ε2 ≥ E

[ ∫ t+ε

t
inf
a∈�

[
φt (t, x) + 1

2
Tr(σ (t, x, a)σ ∗(t, x, a)D2φ(t, x))

+ 〈b(t, x, a), Dφ(t, x)〉 + L(t, x, a)
]
ds

]
− ερ̃(ε) − Cε

√
ε

= ε
[
φt (t, x) + F(t, x, Dφ(t, x), D2φ(t, x))

] − ερ̃(ε) − Cε
√

ε.

We now divide both sides of the above inequality by ε and send ε → 0 to obtain
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φt (t, x) + F(t, x, Dφ(t, x), D2φ(t, x)) ≤ 0.

V is a viscosity subsolution:We fix a ∈ � and take the constant control a(s) ≡ a.
Let now V − φ have a local maximum at (t, x) ∈ (0, T ) × R

n for some φ ∈
C1,2((0, T ) × R

n). Let 0<ε < 1.ByTheorem4.13, denoting X (s):=X (s; t, x, a(·)),

V (t, x) ≤ E

[∫ τε

t
L(s, X (s), a)ds + V (τε, X (τε))

]
,

where τε = min(t + ε, τ ε
a ), where as before τ ε

a is the exit time of X (s) from B
ε
1
4
(x).

The rest of the proof follows the proof of the supersolution property and the arguments
are even easier as neither the process X (·) nor the control changes with ε. We obtain
in place of (5.3),

E

[ ∫ τε

t

[
φt (t, x) + 1

2
Tr(σ (t, x, a)σ ∗(t, x, a)D2φ(t, x))

+ 〈Dφ(t, x), b(t, x, a)〉 + L(t, x, a)
]
ds

]
≥ −ερ̃(ε)

which, using (5.1), produces

φt (t, x) + 1

2
Tr(σ (t, x, a)σ ∗(t, x, a)D2φ(t, x))

+ 〈b(t, x, a), Dφ(t, x)〉 + L(t, x, a) ≥ −ρ̃(ε) − C
√

ε.

We then send ε → 0 and take the infimum over all a ∈ �.
We remark that, alternatively, one can also argue using the dominated convergence

theorem here. �
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Regularity of Solutions of Obstacle
Problems –Old & New–

Shigeaki Koike

Abstract Twokinds ofmachinery to showregularity of solutions of bilateral/unilateral
obstacle problems are presented. Some generalizations of known results in the lit-
erature are included. Several important open problems in the topics are given.

Keywords Bilateral/Unilateral obstacle problem · Regularity of solutions ·
Bernstein method · Bellman-Isaacs equation · Penalization · Fully nonlinear
elliptic equation · Weak Harnack inequality · L p viscosity solution
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1 Introduction

In this survey, we overview regularity of solutions of obstacle problems associ-
ated with second-order uniformly elliptic partial differential equations (PDE for
short). Particularly, we show two different arguments to obtain estimates on solu-
tions of obstacle problems due to maximum principles. On the other hand, there have
appeared a huge amount of results concerning on regularity of solutions of variational
inequalities, whose typical example is the obstacle problem. However, our methods
here do not rely on integration by parts.

One of techniques here is the so-called Bernstein method, which is relatively
old, while the other is quite a new one. Inspired by an idea in [20], we have found
an interesting argument in [42], which can be applied to fully nonlinear PDE with
unbounded coefficients and inhomogeneous terms.

According to [52], it seems that Fichera [24, 25] first studied the Signorini problem
as a variational inequality, where a free boundary arises on the boundary of domains.
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Stampacchia in [54] announced variational inequalities in Hilbert spaces as a modifi-
cation of Lax-Milgram theorem. Later, Lions-Stampacchia in [46] introduced unilat-
eral obstacle problems in the whole domain as an example of minimization problems
associated with energy functionals over closed convex sets.

Afterwards, several regularity results on solutions of variational inequalities
appeared in [6, 7, 27, 44].

We shall first consider a minimizing problem of given energies under restrictions.
Fix a bounded domain � ⊂ R

n with smooth boundary ∂�. For a given ψ ∈ C(�),
which is called an upper obstacle, we set a closed convex set

K ψ := {u ∈ H 1
0 (�) | u ≤ ψ a.e. in �},

where H 1
0 (�) is the closure of C∞

0 (�) with respect to H 1(�) norm.
For any fixed f ∈ L2(�), by setting our energy

E[u] :=
∫

�

(
1

2
|Du|2 − f u

)
dx

for u ∈ K ψ, it is known that there is a unique u ∈ K ψ such that

E[u] = min
v∈Kψ

E[v].

Formally, we observe that

⎧⎨
⎩

−�u ≤ f in �,

u ≤ ψ in �,

−�u = f in {x ∈ � | u(x) < ψ(x)}.

Hence, we may write down this problem as a Bellman equation

max{−�u − f, u − ψ} = 0 in � (1.1)

under the Dirichlet condition u = 0 on ∂�.
Obstacle problems arise in various settings both from purely mathematical inter-

ests and from their rich applications. For later topics, we only refer to some text
books [3, 26, 34, 45, 53, 56] because it is too wide for this article to mention these
issues. We will concentrate on regularity of solutions of obstacle problems but not
on regularity of the free boundary, which may be more interesting subject. See [11,
14, 28] and references therein for this topics.

It is worth mentioning that for (1.1), we can only expect solutions to belong to
W 2,∞(�) in general even ifψ and f are smooth enough. The first example is a simple
one.
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Example 1.1 Let � := (− 5
4 ,

5
4 ) for n = 1, and ψ(x) = x2 − 1. We easily see that

u(x) :=
{ |x | − 5

4 ( 12 < |x | ≤ 5
4 ),

x2 − 1 (|x | ≤ 1
2 ),

satisfies

max

{
−d2u

dx2
, u − ψ

}
= 0 a.e. in �

under the Dirichlet condition u(± 5
4 ) = 0. We notice that this u is not twice differen-

tiable at x = ± 1
2 .

We next show the other example when there is a 0th order term of unknown
functions.

Example 1.2 Let � and ψ be the same ones as in Example 1.1. For the inhomoge-
neous term f ∈ C2(�), we choose

f (x) =
{ |x | − 5

4 ( 14 < |x | ≤ 5
4 ),−8x4 + 3x2 − 37

32 (|x | ≤ 1
4 ).

It is easy to verify that the same function u in Example 1.1 satisfies

max

{
−d2u

dx2
+ u − f, u − ψ

}
= 0 a.e. in �.

We next consider a minimizing problem under the other kind of restriction. Given
two obstacles ϕ,ψ ∈ C(�) satisfying the compatibility condition

ϕ ≤ ψ in �, and ϕ ≤ 0 ≤ ψ on ∂�, (1.2)

we introduce the closed convex set

K ψ
ϕ := {u ∈ H 1

0 (�) | ϕ ≤ u ≤ ψ a.e. in �}.

Again, it is known that there is a unique u ∈ K ψ
ϕ such that

E[u] = min
v∈Kψ

ϕ

E[v].

We observe that u satisfies at least formally

min{max{−�u − f, u − ψ}, u − ϕ} = 0 in �. (1.3)

This is a bilateral obstacle problem, which is an Isaacs equation while (1.1) is called
a Bellman equation for unilateral obstacle problems.
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Because of (1.2), it is easy to see formally that (1.3) is equivalent to the following
PDE:

max{min{−�u − f, u − ϕ}, u − ψ} = 0 in �.

Using the standard Euclidean inner product 〈·, ·〉, we consider the energy

E[u] :=
∫

�

(
1

2
〈ADu, Du〉 + 1

2
cu2 − f u

)
dx,

where A := (ai j ) : � → Sn is positively definite; ∃θ > 0 such that

〈A(x)ξ, ξ〉 ≥ θ|ξ|2 for any ξ ∈ R
n and x ∈ �. (1.4)

Here and later Sn denotes the set of real-valued symmetric matrices of order n.
When ai j ∈ C1(�) for simplicity, the minimizer of E[·] over H 1

0 (�) formally
satisfies

Lu = f in �,

where
Lu := −Tr(AD2u) + 〈b, Du〉 + cu.

Here, we set

b := (b1, . . . , bn) = −
⎛
⎝ n∑

j=1

∂a1 j
∂x j

, . . . ,

n∑
j=1

∂anj
∂x j

⎞
⎠ .

Hence, as before, we derive the Bellman equation associated with the minimization
of E[·] over K ψ:

max{Lu − f, u − ψ} = 0 in �.

Throughout this paper, we shall suppose that there is Mc > 0 such that

0 ≤ c(x) ≤ Mc for x ∈ �. (1.5)

If we suppose that c is positive in�, then particularly, L∞ estimates become easier to
prove. In fact, under (1.5), we need a perturbation function such as w in Proposition
2.1. We choose R0 > 0 such that

� ⊂ BR0 . (1.6)

Here and later, we set Br := {y ∈ R
n | |x | < r}, and Br (x) := x + Br for x ∈ R

n .
In this survey, we are concernedwith regularity of solutions for obstacle problems,

where the PDE part is given by the above linear second-order uniformly elliptic
operator L or Bellman-Isaacs ones. We will always assume that the existence of
(approximate) solutions of each obstacle problem. In Sects. 2 and 3, using Bernstein
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method, we obtain (local)W 2,∞(�) estimates on solutions of approximate equations
via penalization. We consider the case when the PDE part is linear with bilateral
obstacles in Sect. 2 while we deal with Bellman equations with bi- and unilateral
obstacles in Sect. 3. In Sect. 4, to show the Hölder continuity of the first derivative,
we apply the weak Harnack inequality to solutions of bilateral obstacle problems,
where the main PDE part can be of Isaacs type, and moreover, coefficients and
inhomogeneous terms can be unbounded. Since fully nonlinear PDE contain 0th
order terms in Sect. 4, we need to modify basic tools such as the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, weak Harnack inequality and
local maximum principle to PDE with 0th order terms. In Appendix, we present
those for the reader’s convenience.

2 A Linear Operator Case

Although some results in this section will be generalized in Sect. 3, we will present
those to clarify our basic argument.

In this section, for coefficients in the linear operator L , and obstacles, we impose
that

ai j , bi , f, c,ϕ,ψ ∈ C2(�). (2.1)

To introduce penalty equations, we need β ∈ C2(R) such that

⎧⎨
⎩

(i) β(t) = 0 for t ≤ 0,
(i i) β(t) grows linearly t >> 1,
(i i i) β′ ≥ 0 and β′′ ≥ 0 in R.

(2.2)

For instance, it is easy to verify that β ∈ C2(R) defined by

β(t) :=
⎧⎨
⎩
0 for t ≤ 0,
−t4 + 4t3 for t ∈ (0, 2),
16(t − 1) for t ≥ 2

satisfies all the properties in (2.2).
For ε ∈ (0, 1), we will use βε(t) := β(t/ε) for t ∈ R. Furthermore, we easily

observe that

there is Ĉ > 0 such that − Ĉ ≤ βε(t) − tβ′
ε(t) ≤ 0. (2.3)

We shall consider approximate equations with penalized terms:

Lu + βε(u − ψ) − βε(ϕ − u) = f in � (2.4)

under the Dirichlet condition
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u = 0 on ∂�. (2.5)

Hereafter, we will use the notations: for t, s ∈ R,

t ∨ s := max{t, s} and t ∧ s := min{t, s}.

For simplicity, we will write

uxi , uxi x j , etc. for
∂u

∂xi
,

∂2u

∂xi∂x j
, etc., respectively.

We also use the summation convention for repeated indices, e.g..

ai j uxi x j =
n∑

i, j=1

ai j uxi x j .

Proposition 2.1 (L∞ estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let uε ∈
C(�) ∩ C2(�) be solutions of (2.4) satisfying (2.5). Then, there is Ĉ > 0 such
that

−Ĉ max
�

f − − max
�

ψ− ≤ uε ≤ max
�

ϕ+ + Ĉ max
�

f + in � for ε ∈ (0, 1).

Proof We shall only prove the second inequality since the first one can be shown
similarly. We shall write u for uε for simplicity.

Setting C0 := max� ϕ+ ≥ 0 and C1 := max� f +, we shall suppose

� := max
�

{u − C0 − μ(C1 + δ)w} > 0.

Hereμ > 0, δ ∈ (0, 1) andw(x) := e2γR0 − eγ(x1+R0) > 0 for x = (x1, . . . , xn) ∈ �,
where γ ≥ 1, and R0 > 0 is from (1.6).

By letting x̂ ∈ � satisfy � = u(x̂) − C0 − μ(C1 + δ)w(x̂), (2.5) yields x̂ ∈ �.
Hence, at x̂ = (x̂1, . . . , x̂n) ∈ �, the weak maximum principle implies

0 ≤ −ai j uxi x j + biuxi + μ(C1 + δ)γeγ(x̂1+R0)(−a11γ + b1)
≤ f − cu − βε + βε + μ(C1 + δ)γeγ(x̂1+R0)(−θγ + |b1|). (2.6)

Here and later, to distinguish composite functions βε(u − ψ) and βε(ϕ − u), we use
the following notation:

βε(·) := βε(u(·) − ψ(·)) and βε(·) := βε(ϕ(·) − u(·)).

Thus, for a fixed γ := (max� |b1| + θ)/θ, (2.6) together with (1.5) implies
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θμ(C1 + δ)γ ≤ f − c{C0 + μ(C1 + δ)w} + βε ≤ f + βε at x̂ .

Since ϕ − u ≤ ϕ − C0 − μ(C1 + δ)w ≤ ϕ − C0 ≤ 0 at x̂ , this inequality yields

θμ(C1 + δ)γ ≤ f (x̂),

which is a contradiction for μ > 1/(θγ). Therefore, for fixed μ, γ > 0 in the above,
we have � ≤ 0, which concludes the proof. �

We notice that in the above proof, we do not need the whole of (2.1) but we do
not present “minimal” hypotheses on regularity of given functions for the sake of
presentations.

Proposition 2.2 (W 2,p estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let uε ∈
C2(�) be solutions of (2.4) satisfying (2.5). Then, there is C̃ > 0 such that for
ε ∈ (0, 1),

⎧⎨
⎩

‖βε(u
ε − ψ)‖L∞(�) ≤ max

�

f + + Mc max
�

ψ− + C̃‖Dψ‖W 1,∞(�),

‖βε(ϕ − uε)‖L∞(�) ≤ max
�

f − + Mc max
�

ϕ+ + C̃‖Dϕ‖W 1,∞(�).
(2.7)

In particular, for each p ∈ (1,∞), there is C̃ p > 0 such that

‖uε‖W 2,p(�) ≤ C̃ p for ε ∈ (0, 1). (2.8)

Proof Weshall only show the bound forβε sincewe can prove the other one similarly.
We shall simply write u for uε again.

Suppose that � := max� βε > 0. In view of the second inequality of (1.2), we
can choose x̂ ∈ � such that � = βε(u(x̂) − ψ(x̂)). Since βε is nondecreasing, we
see that u − ψ attains its maximum at x̂ ∈ �. Hence, we have at x̂ ,

0 ≤ −ai j (u − ψ)xi x j + bi (u − ψ)xi
= f − cu − βε + βε + ai jψxi x j − biψxi

≤ f − cψ − βε + βε + C‖Dψ‖W 1,∞(�).

Here and later, C denotes the various positive constant depending only on known
quantities.

Note that the first inequality of (1.2) yields

(ϕ − u)(x̂) ≤ (ψ − u)(x̂) < 0.

Therefore, we have 0 ≤ βε ≤ βε(x̂) ≤ max� f + + Mc max� ψ− + C‖Dψ‖W 1,∞(�)

in �, where Mc > 0 is the constant in (1.5) �
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Remark 2.3 When we consider Bellman operators in Sect. 3, the L∞ estimate on
the penalty terms for obstacles does not imply (2.8) because we will have one more
penalty term, which cannot be evaluated by the above argument.

Now,we show localW 2,∞ estimates on solutions of (2.4). Our argument ismore or
less standard though we do not know if the next proposition has appeared somewhere
to our knowledge.

Proposition 2.4 (Local W 2,∞ estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let
uε ∈ C4(�) ∩ C1(�) be solutions of (2.4). Then, for each compact set K � �, there
is C̃K > 0 independent of ε ∈ (0, 1) such that

max
K

|D2uε| ≤ C̃K .

Proof Choose ζ ∈ C∞
0 (�) such that

0 ≤ ζ ≤ 1 in �, and ζ = 1 on K .

Putting M := max� ζ|D2uε|, we may suppose M ≥ 1.
Writing u and β for uε and βε, respectively, we set

V := ζ2|D2u|2 + γM{β(u − ψ) + β(ϕ − u)} + γM |Du|2.

We shall write β := β(u − ψ) and β := β(ϕ − u) again for simplicity. In the pro-
ceeding calculations, we shall more simply write ui j , ui jk , ai j,k etc. for uxi x j , uxi x j xk ,
(ai j )xk etc., respectively.

We may suppose that max� V = V (x̂) > 0 for some x̂ ∈ �. By setting L0ξ :=
−ai jξi j + biξi , since L0V (x̂) ≥ 0 by the weak maximum principle, at x̂ , we have

0 ≤ −ai j

⎧⎪⎪⎨
⎪⎪⎩

2ζζi j |D2u|2 + 2ζiζ j |D2u|2 + 8ζζi uk�uk�j + 2ζ2uk�uk�i j
+2ζ2uk�i uk�j + γMβ

′′
(u − ψ)i (u − ψ) j + γMβ

′
(u − ψ)i j

+γMβ′′(ϕ − u)i (ϕ − u) j + γMβ′(ϕ − u)i j + 2γMukuki j
+2γMukiuk j

⎫⎪⎪⎬
⎪⎪⎭

+bi

{
2ζζi |D2u|2 + 2ζ2uk�uk�i + γMβ

′
(u − ψ)i + γMβ′(ϕ − u)i

+2γMukuki

}

≤ −2θ(ζ2|D3u|2 + γM |D2u|2) − γMθ(β
′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2)

+C(|D2u|2 + ζ|D2u||D3u|) + γMβ
′
L0(u − ψ) + γMβ′L0(ϕ − u)

+2ζ2uk�L0uk� + 2γMukL0uk .

By Young’s inequality, at x̂ , we have

I0 := θζ2|D3u|2 + θγM{|D2u|2 + β
′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2)}

≤ γM{β′
L0(u − ψ) + β′L0(ϕ − u)} + 2ζ2uk�L0uk� + 2γMukL0uk

=: I1 + I2 + I3

for large γ > 1.
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Since (2.8) for p > n implies the W 1,∞ estimates on u, we will not mention
the dependence on ‖u‖W 1,∞(�) in the calculations below. In order to estimate I3, we
differentiate (2.4) with respect to xk to obtain

L0uk = fk + ai j,kui j − bi,kui − cuk − cku − β
′
(u − ψ)k + β′(ϕ − u)k .

Thus, we have

I0 ≤ CγM(1 + |D2u|) + I1 + I2
+γM{β′

(−|Du|2 + |Dψ|2) + β′(−|Du|2 + |Dϕ|2)}. (2.9)

To estimate I2, we differentiate (2.4) with respect to xk and x� to obtain

L0uk� = fk� + ai j,k�ui j + ai j,kui j� + ai j,�ui jk − bi,k�ui − bi,kui� − bi,�uik
−β

′
(u − ψ)k� − β

′′
(u − ψ)k(u − ψ)� + β′(ϕ − u)k�

+β′′(ϕ − u)k(ϕ − u)�.

Hence, we have

I2 ≤ θζ2|D3u|2 + C(1 + |D2u|2) + 2M{β′′|D(u − ψ)|2 + β′′|D(ϕ − u)|2}
+ζ2{β′

(−|D2u|2 + |D2ψ|2) + β′(−|D2u|2 + |Dϕ|2)}.

Thus, inserting this in (2.9) with γ ≥ 2/θ, we have

θγM |D2u|2 ≤ CγM(1 + |D2u|) + C(1 + |D2u|2)
+β

′
{−ζ2(|D2u|2 − |D2ψ|2) − M(|Du|2 − |Dψ|2)

+γM( f − u − β + β − L0ψ)

}

+β′
{−ζ2(|D2u|2 − |D2ϕ|2) − M(|Du|2 − |Dϕ|2)

+γM(− f + u + β − β + L0ϕ)

}

=: J1 + J2 + J3.

Case 1 : J2 ≤ 0 and J3 ≤ 0: In this case, for a largely fixed γ >> 2/θ, we imme-
diately have

|D2u|2(x̂) ≤ C,

which together with Propositions 2.1 and 2.2 implies

M2 ≤ V (x̂) ≤ C(1 + M).
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Case 2 : J2 > 0 or J3 > 0: We shall only consider the case of J2 > 0 since the
other one can be shown similarly. In view of (2.7), we see that

ζ2|D2u|2(x̂) ≤ C(1 + M),

which yields
M2 ≤ V (x̂) ≤ C(1 + M).

Therefore, M is bounded independently from ε ∈ (0, 1). �

Remark 2.5 We note that our choice of auxiliary functions V does not work for
Bellman operators in Sect. 3. Instead, we will barrow a different one from [23],
which can be applied only to unilateral obstacle problems.

As mentioned in Sect. 1, Jensen in [32] showed W 2,∞(�) estimates under addi-
tional assumptions on the coefficients. Here, in order to simplify the argument, we
shall obtain the W 2,∞ bound near the flat boundary under additional assumptions.
Setting x ′ = (x1, . . . , xn−1) ∈ R

n−1, we suppose that � satisfies

{
� ∩ B1 = {x = (x ′, xn) | |x | < 1, xn > 0},
∂� ∩ B1 = {(x ′, 0) | |x ′| < 1}. (2.10)

To show W 2,∞ estimates near ∂� for bilateral obstacle problems, we follow the
argument in [31].

Theorem 2.6 Assume (1.2), (1.4), (1.5), (2.1) and (2.10). Assume also that

ain = 0 on ∂� ∩ B1. (2.11)

Let uε ∈ C4(�) be solutions of (2.4). Then, there is Ĉ > 0 such that

|D2uε| ≤ Ĉ in � ∩ B 1
2
.

Remark 2.7 Under hypothesis (2.11), we note that

− annu
ε
nn + bnu

ε
n = f on ∂� ∩ B1 (2.12)

since uε
i = uε

i j = 0 for 1 ≤ i, j ≤ n − 1 on ∂� ∩ B1 by (2.5).

Proof As before, we shall write u for uε, and use other simplified notations.
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We choose η ∈ C∞
0 (B1) such that

⎧⎨
⎩
0 ≤ η ≤ 1 in B1,

η = 1 in B 1
2
,

ηxn = 0 on ∂� ∩ B1.

(2.13)

Setting

vi j :=
{
ui j for (i, j) �= (n, n),

unn − b̂nun + f̂ for (i, j) = (n, n),

where b̂n = bn/ann and f̂ = f/ann , we define

|D2v|2 :=
n∑

i, j=1

v2
i j =

∑
(i, j)�=(n,n)

u2i j + (unn − b̂nun + f̂ )2.

Consider W defined by

W := eAxnη2|D2v|2 + γM(β + β) + γM |Du|2,

where M := max� η|D2u|, and A, γ > 1 will be fixed. We may suppose M ≥ 1.
Let x̂ = (x̂1, x̂2, . . . , x̂n) ∈ � ∩ B1 be a point such thatmax�∩B1

W = W (x̂) > 0.
Because of W (x̂) > 0, we may also assume that x̂ ∈ � ∩ B1.

Since the argument in the proof of Proposition 2.4 can be applied to the case when
x̂ ∈ � ∩ B1 with some minor changes, we may suppose x̂ ∈ ∂� ∩ B1, and we will
obtain a contradiction. Since |D2v|2 = 2

∑n−1
i=1 u

2
in at x̂ , (2.5) implies

Wn = 2eAx̂nη2
n−1∑
i=1

(Au2in + 2uinuinn) + 2γMun(b̂nun − f̂ ).

By noting uinn = (b̂nun − f̂ )i at x̂ , this equality implies

Wn ≥ 2eAx̂nη2

{
(A − C)

n−1∑
i=1

u2in − C

}
− CM

≥ 2eAx̂n

{
η2(A − C)

n−1∑
i=1

u2in − CM

}

≥ 2eAx̂n (η2|D2v|2 − CM)

for a fixed A > 1. If the right hand side of the above is non-positive, then we have

η2|D2v|2(x̂) ≤ CM,
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which implies the uniform bound of M independent of ε ∈ (0, 1). Therefore, we
have Wn(x̂) > 0 but this implies that x̂ is not the maximum of W , which is a
contradiction. �

Following [31], we give a sufficient condition to derive (2.11). We use the fol-
lowing notation:

B+
r := {x = (x1, . . . , xn) ∈ Br | xn > 0}.

Although B+
1 is not a smooth domain, considering an appropriate smooth

domain � ⊃ B+
1 , we may assume ∂B+

1 is smooth. The next proposition
yields (2.11).

Proposition 2.8 Suppose that there is α ∈ (0, 1) such that

ai j ∈ C3,α(B
+
1 ) for 1 ≤ i, j ≤ n.

There is a C4-diffeomorphism T = (T1, . . . , Tn) : B+
1 → T (B

+
1 ) such that Tk ∈

C4,α(B
+
1 ) such that

âkl(y) =
n∑

i, j=1

ai j (T
−1(y))

∂Tk
∂xi

(x)
∂T�

∂x j
(x)

and
âkn(y

′, 0) = 0 (1 ≤ k ≤ n − 1), for T−1(y′, 0) ∈ B
+
1 .

Proof. We begin with considering the following PDE

−ai j (x)uxi x j + bi (x)uxi + c(x)u + βε(u − ψ) − βε(ϕ − u) = f (x) in B+
1

such that u(x) = 0 for x = (x1, . . . , xn−1, 0) ∈ B
+
1 . Consider the change of variable

T̂ = (T̂ 1, . . . , T̂ n) : B1
+ → R

n defined by

yk = T̂ k(x) =
{
xk + T k(x) − T k(x ′, 0) for x = (x ′, xn) ∈ B

+
1 , 1 ≤ k ≤ n − 1,

xn for x = (x ′, xn) ∈ B
+
1 , k = n.

Here, T = (T 1, . . . , T n) ∈ C4,α(B
+
1 ;Rn) is the solution of

{−�T k + T k = 0 in B+
1 ,

〈DT k, ν〉 = akn
ann

on ∂B+
1 ,

(2.14)

where ν is the outward unit normal of ∂B+
1 .



Regularity of Solutions of Obstacle Problems –Old & New– 217

It is easy to rewrite the equation for v(y) := u(x)with this newvariable y = T̂ (x):

−âi j (y)vyi y j + b̂i (y)uyi + ĉ(y)v + βε(v − ψ̂) − βε(ϕ̂ − v) = f̂ (y),

where ĉ(y) = c(x), f̂ (y) = f (x), ψ̂(y) = ψ(x), ϕ̂(y) = ϕ(x),

âi j (y) =
n∑

k,�=1

ak�(x)T̂
i
xk (x)T̂

j
x�
(x),

and

b̂i (y) =
n∑

k=1

bi (x)T̂
i
xk (x) −

n∑
k,�=1

ak�(x)T̂
i
xk x�

(x).

In view of the boundary condition of (2.5), it is immediate to verify that for
1 ≤ i ≤ n − 1,

âin(y′, 0) =
n∑

k,�=1

ak�(x
′, 0)T̂ i

xk (x
′, 0)T̂ n

x�
(x ′, 0)

=
n∑

k=1

akn(x
′, 0)T̂ i

xk (x
′, 0)

= ain(x ′, 0) + ann(x ′, 0)T̂ i
xn (x

′, 0) = 0. �

Open question 1: Is it possible to obtain W 2,∞(�) estimates with no extra assump-
tion (2.11) on ai j?

3 A Bellman Type Operator Case

In this section, we obtain W 1,∞ bounds for solutions of bilateral obstacle problems
when the PDE part is of Bellman type. However, we do not know if we can show
further estimates on the second derivative of solutions of penalized systems below
for bilateral obstacle problems. Thus, following [43], we will discuss local W 2,∞
estimates on solutions of unilateral obstacle problems for Bellman equations.

3.1 Bilateral Obstacles

We first consider the following bilateral obstacle problems

min{max{F(x, u, Du, D2u), u − ψ}, u − ϕ} = 0 in �, (3.1)
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where F : � × R × R
n × Sn → R is defined by

F(x, r, ξ, X) := max
k∈N

{−Tr(Ak(x)X) + 〈bk(x), ξ〉 + ck(x)r − f k(x)}. (3.2)

Here, by letting N ≥ 2 be a fixed integer, for k ∈ N := {1, 2, . . . , N }, functions
Ak = (aki j ) : � → Sn ,bk = (bki ) : � → R

n , ck : � → R and f k : � → R are given.
We will use linear operators

Lku := −Tr(Ak(x)D2u) + 〈bk(x), Du〉 + ck(x)u.

As in Sect. 2, we suppose that there is θ > 0 such that

〈Ak(x)ξ, ξ〉 ≥ θ|ξ|2 for any ξ ∈ R
n and (x, k) ∈ � × N , (3.3)

and there is Mc > 0 such that

0 ≤ ck ≤ Mc in � for k ∈ N . (3.4)

Following [22], we introduce a system of PDE via penalization: for k ∈ N ,

{
Lkuk + βε(uk − uk+1) + βε(uk − ψ) − βε(ϕ − uk) = f k in �,

uk = 0 on ∂�,
(3.5)

where uN+1 := u1 and βε is given in Sect. 2. In order to distinguish three βε in (3.5),
we will simply write

⎧⎪⎨
⎪⎩

βk(x) := βk
ε (x) = βε(uk(x) − uk+1(x)),

β
k
(x) := β

k
ε(x) = βε(uk(x) − ψ(x)),

βk(x) := βk
ε
(x) = βε(ϕ(x) − uk(x)).

For given functions, we suppose that

aki j , b
k
i , f k, ck,ψ,ϕ ∈ C2(�) for 1 ≤ i, j ≤ n, and k ∈ N . (3.6)

Setting
f := max

k∈N
f k,+, and f := max

k∈N
f k,−,

we have the L∞ estimates on uk,ε independent of (ε, k) ∈ (0, 1) × N .

Proposition 3.1 (L∞ estimates) Assume (1.2), (3.3) and (3.6). Let uε := (uk,ε) ∈
C2(�;RN ) be solutions of (3.5). Then, there is Ĉ > 0 such that

−Ĉ max
�

f − max
�

ψ− ≤ uk,ε ≤ max
�

ϕ+ + Ĉ max
�

f in � for (ε, k) ∈ (0, 1) × N .
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Proof Setting C0 := max� ψ− and C1 := max� f , we suppose

min
k∈N ,x∈�

uk,ε(x) + C0 + μ(C1 + δ)w(x) < 0.

Here, δ > 0 will be sent to 0 in the end, and w is the function in the proof of
Proposition 2.1; w(x) := e2γR0 − eγ(x1+R0) > 0 in � ⊂ BR0 , where γ > 0 will be
fixed later. Dropping ε > 0 from uk,ε and βε, we may assume that there is x̂ ∈ �

such that

u1(x̂) + C0 + μ(C1 + δ)w(x̂) = min
k∈N ,x∈�

{uk(x) + C0 + μ(C1 + δ)w(x)} < 0.

By setting γ := (
maxk∈N ,x∈� |bk1| + θ

)
/θ, the weakmaximumprinciple implies that

at x̂ ∈ �,

0 ≥ −a1i j u
1
i j + b1i u

1
i + μ(C1 + δ)eγ(x̂1+R0)γ(γa111 − b11)

≥ f 1 − c1u − β(u1 − u2) − β(u1 − ψ) + θμ(C1 + δ)γ
≥ − f + c1{C0 + μ(C1 + δ)w} − β(u1 − u2) − β(u1 − ψ) + μ(C1 + δ)γ.

Since u1 ≤ u2 and u1 − ψ ≤ 0 at x̂ , these observation yield

f (x̂) ≥ θμ(C1 + δ)γ,

which gives a contradiction when μ > 1/(θγ). Therefore, we conclude the proof of
the first inequality.

The second inequality can be shown more easily since we may avoid the penalty
term βε(uk − uk+1) in the opposite inequalities. �

Next, we show L∞ estimates on βε(uk − ψ) and βε(ϕ − uk) independent of
(ε, k) ∈ (0, 1) × N .

Proposition 3.2 (L∞ estimates on penalty terms) Assume (1.2), (3.3) and (3.6). Let
uε := (uk,ε) ∈ C2(�;RN ) be solutions of (3.5). Then, there exists C̃1 > 0 such that
for ε ∈ (0, 1) and k ∈ N ,

⎧⎨
⎩

‖βε(u
k,ε − ψ)‖L∞(�) ≤ max

�

f + Mc max
�

ψ− + C̃1‖Dψ‖W 1,∞(�),

‖βε(ϕ − uk,ε)‖L∞(�) ≤ max
�

f + Mc max
�

ϕ+ + C̃1‖Dϕ‖W 1,∞(�).

Proof We shall write uk for uk,ε as before. By the same reason in the proof of
Proposition 3.1, we shall only show the estimates on βε(ϕ − uk).

Suppose max�,N βk = β1(x0) > 0 for some x0 ∈ �. Thus, we may assume
max�,N (ϕ − uk) = (ϕ − u1)(x0) > 0. Hence, at x0 ∈ �, we have

0 ≤ −a1i j (ϕ − u1)i j + b1i (ϕ − u1)i ≤ − f 1 + c1u1 + β1 + β
1 − β1 + C‖Dϕ‖W 1,∞(�).
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Since u1 − u2 ≤ 0, and ϕ − u1 > 0 at x0, we have

β1 ≤ − f 1 + c1ϕ + C‖Dϕ‖W 1,∞(�),

which concludes the assertion as in the proof of Proposition 2.2. �

Remark 3.3 Notice that we cannot apply the above argument to obtain L∞-
estimates on βε(uk,ε − uk+1,ε). Therefore, unlike Proposition 2.2, we cannot obtain
W 2,p estimates on uk,ε.

For further regularity, we first obtain the estimate of first derivatives on ∂� in
Proposition 3.4 below. To this end, we shall use W 1,∞ estimates on approximate
solutions of the associated unilateral obstacle problems via penalization.

Proposition 3.4 (Gradient estimates on∂�)Assume (1.2), (3.3) and (3.6). Let uε :=
(uk,ε) ∈ C1(�;Rn) ∩ C2(�;Rn) be solutions of (3.5). Then, there exists C̃2 > 0
such that for ε ∈ (0, 1) and k ∈ N ,

‖Duk,ε‖L∞(∂�) ≤ C̃2.

Proof Because uk,ε = 0 on ∂�, we only need the estimate

∣∣∣∣∂u
k,ε

∂n
(z)

∣∣∣∣ ≤ C for any z ∈ �,

where n = n(z) ∈ ∂B1 denotes the outward unit vector at z ∈ ∂�.
Let vε = (vk,ε) : � → R

N be the unique solution of the penalized system of the
following unilateral obstacle problem.

{
Lkvk + βε(v

k − vk+1) + βε(v
k − ψ) = f k in �,

vk = 0 on ∂�.
(3.7)

Due to Lemmas 2.1, 2.2 and 3.1 in [43], we find Ĉ1 > 0, and for each compact
K � �, Ĉ1(K ) > 0 such that

‖vk,ε‖W 1,∞(�) ≤ Ĉ1, and ‖D2vk,ε‖L∞(K ) ≤ Ĉ1(K ). (3.8)

We claim that

vk,ε ≤ uk,ε in � for (ε, k) ∈ (0, 1) × N .

Indeed, if we suppose � := max�,N (vk,ε − uk,ε − δw) > 0, where δ > 0 will be
sent to 0, and w is the function in Proposition 2.1, then we may suppose � =
(v1,ε − u1,ε − δw)(x̂) for some x̂ ∈ �. Hence, at x̂ , we have
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0 ≤ −a1i j (v
1,ε − u1,ε)i j + b1i (v

1,ε − u1,ε)i + δγeγ x̂1(−θγ + |b11|)
≤ −c1(v1,ε − u1,ε) − βε(v

1,ε − v2,ε) − βε(v
1,ε − ψ) + βε(u1,ε − u2,ε)

+βε(u1,ε − ψ) − βε(ϕ − u1,ε) − θδγ

provided γ ≥ (maxN ,� |bk1| + θ)/θ. Since v1,ε > u1,ε and v1,ε − v2,ε ≥ u1,ε − u2,ε

at x̂ , we immediately obtain a contradiction. Therefore, we have

vk,ε ≤ uk,ε + δw in �,

which concludes the claim by sending δ → 0. Therefore, we have

∂uk,ε

∂n
(z) ≤ ∂vk,ε

∂n
(z) ≤ Ĉ1 for any z ∈ ∂�. (3.9)

On the other hand, for each k ∈ N , we next let wk,ε be solutions of

{
Lku − βε(ϕ − u) = f k in �,

u = 0 on ∂�.

We claim that for (ε, k) ∈ (0, 1) × N ,

uk,ε ≤ wk,ε in �.

Indeed, assuming max�,N (uk,ε − wk,ε − δw) = (u1,ε − w1,ε − δw)(x̂) > 0 for
some x̂ ∈ �, at x̂ , we have

0 ≤ −a1i j (u
1,ε − w1,ε)i j + b1i (u

1,ε − w1,ε)i + δγeγ x̂1(−θγ + |b11|)
< −β1

ε (u
1,ε − u2,ε) − β1

ε (u
1,ε − ψ) + βε(ϕ − u1,ε) − βε(ϕ − w1,ε) − θδγ

< 0

for large γ > 1 as before. Hence, the same argument to obtain (3.9) implies

∂uk,ε

∂n
(z) ≥ ∂wk,ε

∂n
(z) for any z ∈ ∂�. (3.10)

By the same argument as in the proof of Proposition 2.2, we find C̃ > 0 such that

0 ≤ βε(ϕ − wk,ε) ≤ C̃ in � and for (ε, k) ∈ (0, 1) × N ,

which implies
max
k∈N

‖Dwk,ε‖L∞(�) ≤ C for any ε ∈ (0, 1).

This together with (3.9) and (3.10) concludes the assertion. �

Now, we shall use Bernstein method to derive W 1,∞(�) estimates on uk,ε.
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Proposition 3.5 Assume (1.2), (3.3) and (3.6). Let uε = (uk,ε) ∈ C1(�;RN ) ∩
C3(�;RN ) be solutions of (3.5). There exists C̃3 > 0 such that

max
k∈N

‖uk,ε‖W 1,∞(�) ≤ C̃3 for ε ∈ (0, 1).

Proof We shall drop ε from uk,ε. Set

V k(x) := |Duk |2 + γ(uk)2.

In view of Proposition 3.4, we may suppose that

max
N ,�

V k = V 1(x̂) > 0

for some x̂ ∈ �. We shall write u and v for u1 and u2, respectively. Furthermore, we

shall write β, β and β for β1, β
1
and β1, respectively.

We then have at x̂ ∈ �,

0 ≤ −2a1i j (ukiuk j + ukuki j + γuiu j + γuui j ) + 2b1i (ukuki + uui )
≤ −2θ(|D2u|2 + γ|Du|2) + 2γu( f 1 − c1u − β − β + β)

+2uk

{
f 1k + a1i j,kui j − b1i,kui − c1ku − c1uk
−β′(u − v)k − β

′
(u − ψ)k + β′(ϕ − u)k

}

≤ −γθ|Du|2 + C + β′(−|Du|2 + |Dv|2 − γu2 + γv2)

+β
′
(−|Du|2 + |Dψ|2 − γu2 + γψ2)

+β′(−|Du|2 + |Dϕ|2 − γu2 + γϕ2)

for large γ > 1. We use (2.3) to obtain the last inequality in the above.
Since we may suppose the last two terms are non-positive and V 1 ≥ V 2 at x̂ , we

have γθ|Du(x̂)|2 ≤ C , which concludes the assertion. �

Since we do not know L∞ estimates on βε(uk − uk+1), it seems difficult to find
a weak (or viscosity) solution of (3.1) only with W 1,∞ estimates. Thus, we shall
switch to unilateral obstacle problems.

3.2 Unilateral Obstacles

In order to show local W 2,∞ estimates on solutions of obstacle problems, we shall
restrict ourselves to consider unilateral obstacle ones;

{
max{F(x, u, Du, D2u), u − ψ} = 0 in �,

u = 0 on ∂�,
(3.11)
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where F is of Bellman type defined in (3.2).
Lenhart in [43] showed the W 2,∞

loc (�) estimates on solutions of (3.11). We will
recall the argument here.

We notice that proceeding arguments for W 2,∞ estimates can not be applied to
the following unilateral obstacle problem with the same F because the PDE below
is of Isaacs type:

min{F(x, u, Du, D2u), u − ϕ} = 0 in �. (3.12)

Open question 2: Is it possible to obtain (local) W 2,∞ estimates on solutions of
(3.12)?

In place of (1.2), we only need to suppose

ψ ≥ 0 on ∂�. (3.13)

The penalized system of (3.11) is as follows: for uε = (uk,ε),

{
Lkuk,ε + βε(uk,ε − uk+1,ε) + βε(uk,ε − ψ) = f k in �,

uk,ε = 0 on ∂�,
(3.14)

where uN+1,ε := u1,ε.
It is easy to establish the next lemma by following the proofs of Propositions 3.1,

3.2 and 3.5. We note that the Bernstein method with the standard barrier argument
can also work for the Bellman equation with unilateral obstacles. We refer to Lemma
2.1 in [43] for the details.

Lemma 3.6 There exists Ĉ > 0 such that

‖uk,ε‖W 1,∞(�) + ‖βε(u
k,ε − ψ)‖L∞(�) ≤ Ĉ for (ε, k) ∈ (0, 1) × N .

Following the argument in [43] with a bit simpler auxilialy function V below than
that there, we establish W 2,∞

loc (�) estimates.

Theorem 3.7 (Local W 2,∞ estimates) Assume (3.3), (3.6) and (3.13). Let uε =
(uk,ε) ∈ C4(� : RN ) ∩ C1(� : RN ) be solutions of (3.14). Then, for each compact
K � �, there is CK > 0 such that

max
x∈K ,k∈N

|D2uk,ε(x)| ≤ CK for ε ∈ (0, 1).

Proof We shall simply write uk for uk,ε again.
Let ζ ∈ C∞

0 (�) be the same function as in the proof of Proposition 2.4. Putting
Mk = max� ζ|D2uk |, we may suppose M = maxN Mk = ζ(ẑ)|D2u1(ẑ)| ≥ 1 for
some ẑ ∈ �. By change of variables using the orthogonal matrix B such that
BA1(ẑ)t B = (αkδk�), we may suppose that
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L1u1(ẑ) = −αku
1
kk(ẑ) + b1k(ẑ)u

1
k(ẑ) + c1(ẑ)u1(ẑ)

for some αk ≥ θ. For each i ∈ N , setting

V i := ζ2|D2ui |2 + γMζ2αku
i
kk + γM |Dui |2,

we may suppose that maxN ,� V i = V i0(x̂) > 0 for some x̂ ∈ � and i0 ∈ N .
We note that

M2 = ζ2|D2u1|2(ẑ) ≤ V i0(x̂) − γMζ2αku1kk(ẑ)≤ V i0(x̂) + γMζ2( f 1 − b1i u
1
i − c1u1)(ẑ).

Thus, for a fixed γ > 1, once we obtain

|D2ui0 |2(x̂) ≤ CM, (3.15)

then we have
M2 ≤ V i0(x̂) + CM ≤ CM(1 + √

M),

which concludes the assertion.
We shall write ai j , bi , c, V , u and v for ai0i j , b

i0
i , c

i0 , V i0 , ui0 and ui0+1, respectively,
for simplicity. The weak maximum principle yields, at x̂ ,

0 ≤ −ai j Vi j + bi Vi

= −ai j

⎧⎨
⎩
2ζζi j |D2u|2 + 2ζiζ j |D2u|2 + 8ζζi uk�uk�j + 2ζ2uk�uk�i j
+2ζ2uk�i uk�j + 2γMζζi jαkukk + 2γMζiζ jαkukk
+4γMζζiαkukk j + γMζ2αkukki j + 2γMukuki j + 2γMukiuk j

⎫⎬
⎭

+bi

{
2ζζi |D2u|2 + 2ζ2uk�uk�i + 2γMζζiαkukk + γMζ2αkukki
+2γMukuki

}
.

Hence, setting L0v := −ai jvi j + bivi , at x̂ , we have

2θ(ζ2|D3u|2 + γM |D2u|2)
≤ C(|D2u|2 + ζ|D2u||D3u| + γM |D2u| + γMζ|D3u|)

+γMζ2αk L0ukk + 2ζ2uk�L0uk� + 2γMukL0uk
=: I1 + I2 + I3 + I4.

By the definition of I2 and I3, we have
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I2 + I3 = γMζ2αk

⎧⎨
⎩

fkk + ai j,kkui j + 2ai j,kui jk − bi,kkui − 2bi,kuik
−ckku − 2ckuk − cukk − β′′(u − v)2k
−β′(u − v)kk − β

′′
(u − ψ)2k − β

′
(u − ψ)kk

⎫⎬
⎭

+2ζ2uk�

⎧⎨
⎩

fk� + ai j,k�ui j + 2ai j,kui j� − bi,k�ui − 2bi,kui�
−ck�u − cku� − c�uk − cuk� − β′′(u − v)k(u − v)�

−β′(u − v)k� − β
′′
(u − ψ)k(u − ψ)� − β

′
(u − ψ)k�

⎫⎬
⎭

≤ γMζ2
{
C(1 + |D2u| + |D3u|) − θβ′′|D(u − v)|2
−αkβ

′(u − v)kk − θβ
′′|D(u − ψ)|2 − αkβ

′
(u − ψ)kk

}

+ζ2

⎧⎨
⎩
C |D2u|(1 + |D2u| + |D3u|) + 2β′′|D(u − v)|2|D2u|
+β′(−|D2u|2 + |D2v|2) + 2β

′′|D(u − ψ)|2|D2u|
+β

′
(−|D2u|2 + |D2v|2)

⎫⎬
⎭ .

Moreover, I4 is estimated by

I4 ≤ 2γMuk{ fk + ai j,kui j − bi,kui − cku − cuk − β′(u − v)k − β
′
(u − ψ)k}

≤ γM{C(1 + |D2u|) + β′(−|Du|2 + |Dv|2) + β
′
(−|Du|2 + |Dψ|2)}.

Hence, these inequalities together with Young’s inequality give

θ(ζ2|D3u|2 + γM |D2u|2)
≤ I1 + CγM(γM + |D2u|) + M(2 − γθ)ζ2β′′|D(u − v)|2

+M(2 − γθ)ζ2β
′′|D(u − ψ)|2 + β′(−V i0 + V i0+1)

+β
′
(−V i0 + ζ2|D2ψ|2 + γMζ2αkψkk + γM |Dψ|2).

Note V i0 ≥ V i0+1 at x̂ . Furthermore, we may suppose 0 ≥ −V i0 + ζ2|D2ψ|2 +
γMζ2αkψkk + γM |Dψ|2 at x̂ . Thus, taking γ ≥ 2/θ, we have

θ(ζ2|D3u|2 + γM |D2u|2) ≤ I1 + CγM(γM + |D2u|)
≤ C(1 + |D2u|2 + γ2M2) + θζ2|D3u|2.

Remembering M, γ ≥ 1, we have

(θγM − C)|D2u|2(x̂) ≤ C(1 + γ2M2),

which implies
θγM |D2u|2(x̂) ≤ Cγ2M2

provided θγM ≥ 2C . This yields (3.15). �

Open question 3: Is it possible to obtainW 2,∞(�) orW 2,p(�) estimates forBellman
equations with unilateral obstacles under additional conditions if necessary?
Open question 4: Is it possible to obtain localW 2,∞

loc (�) estimates for Bellman equa-
tions with bilateral obstacles?
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4 A Fully Nonlinear Operator Case

In Sects. 2 and 3, thanks to Bernstein method, we establish estimates on solutions
of approximate PDE (or systems of PDE), which present the existence of (strong)
solutions belonging to the associated function spaces (i.e. W 2,∞(�) or W 2,∞

loc (�)).
See [43, 47] for the details. We also refer to [2] for a modern version of Bernstein
method.

We note that there is a fully nonlinear uniformly elliptic equation which does
not have classical solutions. See [48]. Furthermore, in [49], it is shown that there
exists a viscosity solution of a fully nonlinear uniformly elliptic PDE whose second
derivative is not bounded.On the other hand,we also know there is a classical solution
of a special Isaacs equation consisting of three linear operators in [9].

In this section, we study more general PDE such as Isaacs equations with bilateral
obstacles, and with unbounded, possibly discontinuous coefficients and inhomoge-
neous terms. In fact, to our knowledge, we do not know any regularity results for
obstacle problems of Isaacs equations via penalization. In order to see a difficulty
in the study of Isaacs equations via penalization, let us consider approximate Isaacs
equations with no obstacles via penalization:

Lk,�uk,� + βε(u
k,� − uk+1,�) − βε(u

k,�+1 − uk,�) = f k,� in �, (4.1)

where uM+1,� = u1,� for � ∈ N and uk,N+1 = uk,1 for k ∈ M. Here, by settingM :=
{1, . . . , M} andN := {1, . . . , N }, uk,� : � → R for (k, �) ∈ M × N are unknown
functions, and linear operators are defined by

Lk,�ζ := −Tr(Ak,�(x)D2ζ) + 〈bk,�(x), Dζ〉 + ck,�(x)ζ,

where given functions Ak,� : � → Sn , bk,� : � → R
n and ck,� : � → [0,∞) satisfy

enough regularity.
If we obtain L∞

loc estimates on βε(uk,� − uk+1,�) and βε(uk,�+1 − uk,�), then it is
easy to verify that uk,�ε converge to a single limit u as ε → 0 (along a subsequence if
necessary), which is a solution of

min
�∈N

max
k∈M

{Lk,�u − f k,�} = 0 in �. (4.2)

However, it is difficult to show L∞ estimates on the first and second penalty terms. In
fact, in a pioneering work [47], we first deriveW 2,∞ estimates on solutions of penal-
ized problems for Bellman equations (i.e. N = 1), and then this gives L∞ bounds
for the penalty term. Moreover, Bernstein method does not work to obtain W 2,∞
estimates on solutions of (4.1). Furthermore, even if we establishW 2,∞ estimates on
approximate solutions, since we have two penalty terms with opposite signs in (4.1),
we still do not know if solutions of the system (4.1) converge to a single solution of
(4.2).
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Open question 5: Is it possible to obtain aweak/viscosity solution of (4.2) satisfying
(2.5) via penalization?

If we restrict ourselves to try to establish C1,γ estimates on solutions of bilateral
obstacle problems for γ ∈ (0, 1), then we can accomplish such estimates even when
F is of Isaacs type;

G(x, r, ξ, X) := min
�∈N

max
k∈M

{−Tr(Ak,�(x)X) + 〈bk,�(x), ξ〉 + ck,�(x)r
}
.

Moreover, since we do not need systems of PDE via penalization, we may deal
with compact sets M,N in R

m for some m ∈ N. Furthermore, since we will not
differentiate PDE (because it is impossible!), it is possible to treat discontinuous
coefficients and inhomogeneous terms. In this procedure, we need to show the exis-
tence of weak/viscosity solutions of Isaacs equations with obstacles by a different
method. We only refer to [16] and [42] for the existence issue.

This section is based on a recent work by the author and Tateyama in [42].

4.1 Equi-Continuity

Modifying arguments by Duque in [20], we present an idea to apply the weak Har-
nack inequality to obtain estimates on solutions of obstacle problems when the PDE
part may be fully nonlinear. Here, the terminology fully nonlinear means that the
mapping (ξ, X) ∈ R

n × Sn → G(x, r, ξ, X) ∈ R is neither convex nor concave for
each (x, r) ∈ � × R.

In what follows, we suppose that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) G(x, 0, 0, O) = 0 for x ∈ �,

(i i) P−(X − Y ) ≤ G(x, r, ξ, X) − G(x, r, ξ,Y ) ≤ P+(X − Y )

for x ∈ �, r ∈ R, ξ ∈ R
n, X,Y ∈ Sn,

(i i i) there is μ ∈ Lq(�) such that q > n, and
|G(x, r, ξ, X) − G(x, r, η, X)| ≤ μ(x)|ξ − η|
for x ∈ �, r ∈ R, ξ, η ∈ R

n, X ∈ Sn,
(iv) there is c0 ∈ C(�) such that c0 ≥ 0 in �, and

G(x, r, ξ, X) − G(x, s, ξ, X) ≥ c0(x)(r − s)
for x ∈ �, r, s ∈ R, ξ ∈ R

n, X ∈ Sn,
(v) f ∈ L p(�) for q ≥ p > p0.

(4.3)

Here, p0 ∈ [ n2 , n) is the so-called Escauriaza’s constant in [21], and for a fixed θ ∈
(0, 1], Pucci operators P± : Sn → R are defined as follows:

P+(X) := max{−Tr(AX) | A ∈ Snθ } and P−(X) := min{−Tr(AX) | A ∈ Snθ },
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where Snθ := {X ∈ Sn | θ I ≤ X ≤ θ−1 I }. Under hypotheses (i)−(iv) in (4.3), we
easily verify that

P−(X) − μ(x)|ξ| + c0(x)r ≤ G(x, r, ξ, X) ≤ P+(X) + μ(x)|ξ| + c0(x)r

for x ∈ �, r ∈ R, ξ ∈ R
n and X ∈ Sn .

In a celebrated paper [10] by Caffarelli, it has turned out that to establish the
regularity of viscosity solutions of fully nonlinear uniformly elliptic PDE

G(x, u, Du, D2u) = f (x) in �,

instead of this equation, it is essential to study extremal inequalities:

G−(x, u, Du, D2u) ≤ f +(x) and G+(x, u, Du, D2u) ≥ − f −(x),

where G±(x, r, ξ, X) := P±(X) ± μ(x)|ξ| ± c0(x)r±.
Furthermore, according to [10] again, the key for the regularity theory is the weak

Harnack inequality for supersolutions.
We recall the definition of L p-viscosity solutions of

H(x, u, Du, D2u) = 0 in �, (4.4)

where H : � × R × R
n × Sn → R is given (not necessarily continuous).

Definition 4.1 We say that u ∈ C(�) is an L p viscosity subsolution (resp.,
supersolution) of (4.4) if it follows that

lim
r→0

ess. inf
Br (x)

H(y, u(y), Dζ(y), D2ζ(y)) ≤ 0

(
resp., lim

r→0
ess. sup

Br (x)
H(y, u(y), Dζ(y), D2ζ(y)) ≥ 0

)

whenever for any ζ ∈ W 2,p
loc (�), u − ζ attains its local maximum (resp., minimum)

at x ∈ �. Finally, we say that u ∈ C(�) is an L p viscosity solution of (4.4) if it is
both of an L p viscosity subsolution and an L p viscosity supersolution of (4.4).

Throughout this section, we at least suppose that

ϕ,ψ ∈ C(�) (4.5)

satisfy (1.2). Under hypotheses (4.3), (4.5) and (1.2), we consider

min{max{G(x, u, Du, D2u) − f (x), u − ψ(x)}, u − ϕ(x)} = 0 in � (4.6)
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under the Dirichlet condition (2.5). It is immediate to see that if u ∈ C(�) is an
L p viscosity subsolution (resp., supersolution) of (4.6) with this G, then it is an L p

viscosity subsolution (resp., supersolution) of

min{max{G−(x, u, Du, D2u) − f +(x), u − ψ(x)}, u − ϕ(x)} = 0

(
resp., min{max{G+(x, u, Du, D2u) + f −(x), u − ψ(x)}, u − ϕ(x)} = 0

)

in �. We will only use these information in the argument below.
We recall a reasonable result without proof.

Proposition 4.2 (Proposition 2.9 in [42])Under the same hypotheses as in Theorem
4.3, if u ∈ C(�) is an L p viscosity subsolution (resp., supersolution) of (4.6), then
it follows that

u ≤ ψ (resp., u ≥ ϕ) in �.

In what follows, we call ω a modulus of continuity of functions if

ω ∈ C([0,∞)) is nondecreasing, and ω(0) = 0.

We also use the notation Ai for the set of interior points of A ⊂ R
n .

Theorem 4.3 (Theorem 2.10 in [42]) Assume (4.3), (4.5) and (1.2). Then, there
exists a modulus of continuity ω such that for any L p viscosity solution of (4.6)
satisfying (2.5), it follows that

|u(x) − u(y)| ≤ ω(|x − y|) for any x, y ∈ �.

Moreover, if we suppose ϕ,ψ ∈ Cα(�) for some α ∈ (0, 1), then there are Ĉ > 0
and α̂ ∈ (0,α] such that for any L p viscosity solution of (4.6) satisfying (2.5), it
follows that

|u(x) − u(y)| ≤ Ĉ |x − y|α̂ for any x, y ∈ �.

For r > 0 and x ∈ R
n , we define closed cubes as follows:

Qr :=
[
− r

2
,
r

2

]n
, Qr (x) := x + Qr .

Proof We shall only give a proof for local estimates since we can modify the argu-
ment below by using the weak Harnack inequality near ∂�. See [29] for its usage.

Fix any K � �. We shall divide K by

K+ := {x ∈ K | u(x) = ψ(x)}, K− := {x ∈ K | u(x) = ϕ(x)},

and K0 := K \ (K+ ∪ K−).
It is standard to show the assertion when x, y ∈ K i

0. See [42] for the details.
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Let ω0 be the modulus of continuity of obstacles;

|ψ(x) − ψ(y)| ∨ |ϕ(x) − ϕ(y)| ≤ ω0(|x − y|) for x, y ∈ �.

Fix any x̂ ∈ K . We may suppose x̂ = 0 by translation. For r ∈ (0, d0/(2
√
n)),

where d0 := dist(∂�, K ), we set

u := u ∨ (ϕ(0) + ω0(2
√
nr)) and u := u ∧ (ψ(0) − ω0(2

√
nr)).

Notice that ϕ(0) + ω0(2
√
nr) ≥ ϕ and ψ ≥ ψ(0) − ω0(2

√
nr) in Q4r ⊂ �. It is

standard to see that u and u are, respectively, an L p viscosity subsolution and super-
solution of

G−(x, u, Du, D2u) − f +(x) = 0 and G+(x, u, Du, D2u) + f −(x) = 0 inQ4r .

For s ∈ (0, d0), set
Ms := sup

Qs

u and ms := inf
Qs

u.

We then define

U := M4r − u and U := u − m4r for r ∈ (0, d0/(2
√
n)).

It is immediate to see that U and U are nonnegative L p viscosity supersolutions of

P+(D2u) + μ|Du| + c0u + f ± = 0 in Q4r .

Since ‖μ‖Ln(Q4r ) ≤ ‖μ‖Lq (Q4r )(2
√
nr)1−

n
q , we can apply Proposition 5.7 inAppendix

with the standard scaling to have

(∫
Qr

U
ε0dx

) 1
ε0 ≤ Cr

n
ε0

(
inf
Qr

U + rα0‖ f +‖L p∧n(Q4r )

)
,

(∫
Qr

U ε0dx

) 1
ε0 ≤ Cr

n
ε0

(
inf
Qr

U + rα0‖ f −‖L p∧n(Q4r )

)
,

where α0 := 2 − n
p∧n ∈ (0, 1]. By noting M4r − m4r = U + (u − u) + (u − u) +

U ≤ U + 4ω0(2
√
nr) +U , the above inequalities imply

M4r − m4r ≤ C

(
inf
Qr

U + inf
Qr

U + rα0 + ω0(2
√
nr)

)
,

which gives a decay estimate of oscillations:

Mr − mr ≤ θ0(M4r − m4r ) + rα0 + ω0(2
√
nr).
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Since u(x) − u(y) ≤ u(x) − u(y), it is standard (e.g. in [29]) to obtain equi-
continuity of u.

If ϕ and ψ are Hölder continuous, then the above estimate implies the Hölder
continuity with some exponent. �

4.2 C1,γ Estimates

Now, assuming that there is γ̂ ∈ (0, 1) such that

ϕ,ψ ∈ C1,γ̂(�), (4.7)

we will suppose (4.3) but q ≥ p > n in (v). Under this assumption, we will use the
Hölder exponent

γ0 := min

{
1 − n

p
, γ̂

}
∈ (0, 1).

For simplicity, we will also suppose

ϕ < ψ in �. (4.8)

For G in (4.3), we use the notation:

θ(x, y) := sup
X∈Sn

|G(x, 0, 0, X) − G(y, 0, 0, X)|
1 + ‖X‖ for x, y ∈ �.

Theorem 4.4 Assume (4.3) replaced by q ≥ p > n in (v), (4.7) and (4.8). For any
K � �, there exist ĈK > 0, γ ∈ (0, γ0], r0 ∈ (0, dist(K , ∂�)), and δ0 > 0 such that
if u ∈ C(�) is an L p viscosity solution of (4.6), and if

r−1‖θ(y, ·)‖Ln(Br (y)) ≤ δ0 for r ∈ (0, r0) and y ∈ NK , (4.9)

where by setting CK [u] := {x ∈ K | u(x) = ϕ(x) or u(x) = ψ(x)}, we define the
non-coincidence set by NK [u] := {x ∈ K | dist(x,CK [u]) > 0}, then it follows that

|Du(x) − Du(y)| ≤ ĈK |x − y|γ for x, y ∈ K .

Proof Following the argument in the proof of Proposition 5.1 in [42], we can find
γ1 ∈ (0, 1) such that

|Du(x) − Du(y)| ≤ C |x − y|γ1 Br (x) ⊂ NK [u] for some r > 0. (4.10)
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In fact, we need some modification of the standard argument in [10] since our PDE
contains unbounded ingredients. See Sect. 5.1 in [42] for the details. We only need
(4.9) to prove this fact.

We shall show the assertion near the coincidence set. Thus, we shall fix z ∈ K
such that u(z) = ϕ(z). Again, we may suppose z = 0 by translation. We will show
that

|u(x) − u(0) − 〈Dϕ(0), x〉| ≤ Cr1+γ0 x ∈ Q r
4
,

which implies that u is differentiable at 0, Du(0) = Dϕ(0), and moreover,

|Du(x) − Du(0)| ≤ C |x |γ0 for x ∈ Q r
4
.

We refer to [1] for its readable proof.
Setting v := u − ϕ(0) − 〈Dϕ(0), x〉 + Ar1+γ̂ for large A > 0, we claim that v is

a nonnegative L p viscosity supersolution of

P+(D2u) + μ|Du| + c0v + g− = 0 in Q4r ,

whereg−(x) := f −(x) + |Dϕ(0)|μ(x) + c0{ϕ(0) + 〈Dϕ(0), x〉}. Considering v̂ :=
v
(
infQr u + δ−1

0 ‖g−‖L p∧n(Q4r )

)−1
, we note that we may apply Proposition 5.7 to find

ε0 > 0 such that

r− n
ε0 ‖v‖Lε0 (Qr ) ≤ C

(
inf
Qr

v + r2−
n
p ‖g−‖Ln(Q4r )

)

≤ C(v(0) + r2−
n
p )

≤ Cr1+γ0 .

(4.11)

For large ν > 1, it is easy to verify that w := v ∨ (νAr1+γ̂) is an L p viscosity
subsolution of

P−(D2u) − μ|Du| − g+ = 0 in Q4r ,

where g+ = f + + |Dϕ(0)|μ − c0{ϕ(0) + 〈Dϕ(0), x〉 − Ar1+γ̂}. In view of
Proposition 5.8, we have

sup
Q r

4

v ≤ C̃

{
r− n

ε0

(∫
Qr

wε0dx

) 1
ε0 + r2−

n
p ‖ f + + μ‖Ln(Q4r )

}
,

where C̃ = C̃(ε0) > 0. Hence, by (4.11), we have

v ≤ Cr1+γ0 in Q r
4
.

The opposite inequality is trivial because Proposition 4.2 yields
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u(x) − ϕ(0) − 〈Dϕ(0), x〉 ≥ ϕ(x) − ϕ(0) − 〈Dϕ(0), x〉 ≥ −Cr1+γ̂ ≥ −Cr1+γ0

for |x | ≤ r .
Now, we shall combine two cases to establish the estimate. For x, y ∈ NK , we

may assume 0 < dist(y,CK [u]) ≤ dist(x,CK [u]). Choose x̂, ŷ ∈ CK [u] such that

|x − x̂ | = dist(x,CK [u]) ≥ |y − ŷ| = dist(y,CK [u]).

Case 1 : |x − y| < 1
2 |x − x̂ |. In this case, by (4.10), we have

|Du(x) − Du(y)| ≤ C |x − y|γ1 .

Case 2 : |x − y| ≥ 1
2 |x − x̂ | ≥ 1

2 |y − ŷ|. We may suppose that (u − ϕ)(x̂) =
(u − ϕ)(ŷ) (or (u − ψ)(x̂) = (u − ψ)(ŷ)) because ψ(x) − ϕ(y) ≥ τ0 > 0 for y ∈
Br (x) ∩ K with small r > 0.

Thus, due to the above observation, we have

|Du(x) − Du(y)|
≤ |Du(x) − Du(x̂)| + |Du(x̂) − Du(ŷ)| + |Du(ŷ) − Du(y)|
≤ C |x − x̂ |γ0 + |Dϕ(x̂) − Dϕ(ŷ)| + C |y − ŷ|γ0
≤ C |x − y|γ0 + C |x̂ − ŷ|γ̂
≤ C |x − y|γ0

because |x̂ − ŷ|γ̂ ≤ |x̂ − x |γ̂ + |x − y|γ̂ + |y − ŷ|γ̂ and γ0 ≤ γ̂. �

Open question 6: What is a sufficient condition to obtain W 2,∞
loc (�) or W 2,p

loc (�)

estimates on solutions of Isaacs equations with obstacles?

5 Appendix

In [38, 39], we established theABPmaximumprinciple andweakHarnack inequality
for L p viscosity solutions only when the PDE does not contain 0th order terms for
the sake of simplicity. Since in Sect. 4 we obtain the results assuming (4.3), which
allows the PDE to admit 0th order terms, we shall give the ABP maximum principle
and weak Harnack inequality for those.

The ABP maximum principle can be proved immediately due to known results.

Proposition 5.1 Assume μ ∈ Lq(�), f ∈ L p(�) for q > n and q ≥ p > p0.
Assume also that c0 ∈ C(�) is nonnegative in �. Then, there exists a universal
constant C0 > 0 (depending on ‖μ‖Lq (�)) such that if u ∈ C(�) is an L p viscosity
subsolution (resp., supersolution) of

P−(D2u) − μ(x)|Du| − c0(x)u
− − f +(x) = 0 in � (5.1)
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(
P+(D2u) + μ(x)|Du| + c0(x)u

+ + f −(x) = 0 in �
)
,

then it follows that

max
�

u ≤ max
∂�

u+ + C0d
2− n

p

� ‖ f +‖L p∧n(�+[u]) (5.2)

(
resp., min

�
u ≥ −max

∂�
u− − C0d

2− n
p

� ‖ f −‖L p∧n(�−[u])
)

,

where�±[u] := {x ∈ � | ± u(x) > max∂� u±} and d� := sup{|x − y| | x, y ∈ �}.
Proof We shall only show the first assertion. It is immediate to verify that u is an
L p viscosity subsolution of

P−(D2u) − μ(x)|Du| − f +(x) = 0 in �+[u].

Hence, we can apply Proposition 2.8 and Theorem 2.9 in [38] to conclude our
proof. �

Wenext show theweakHarnack inequality.Wefirst present a decay of distribution
functions of L p viscosity supersolutions.

Lemma 5.2 (cf. Theorem 2.3 in [41]) Assume the same hypotheses in Proposition
5.1. There are r0, δ0 > 0 and A ≥ 1 such that for any nonnegative L p viscosity
supersolution of

P+(D2u) + μ(x)|Du| + c0(x)u − f (x) = 0 in Q4,

if infQ1 u ≤ 1 and ‖μ‖L p∧n(Q4) ∨ ‖ f −‖L p∧n(Q4) ≤ δ0, then we have

|{x ∈ Q1 | u(x) > t}| ≤ A

tr0
for t > 1.

Remark 5.3 It is trivial that the conclusion holds true for any t > 0 since A ≥ 1.

Remark 5.4 The assertion is known in [39] when c0 ≡ 0. In fact, in our case, we
do not know if the strong maximum principle holds when the coefficient to the first
derivative (i.e. μ) is unbounded. Therefore, we will use an auxiliary function ϕ0,
which is a strong solution of PDE with no first derivative terms. We notice that if we
add μ|Dϕ0| in the left hand side of (5.3), then we cannot show (5.4) below. We will
then have μ in the inhomogeneous term which is small in Ln norm.

Proof In view of Proposition 2.4 in [40] with some modifications as in the proof of
Lemma 4.2 in [39], there exists ϕ0 ∈ W 2,p′

(Q4 \ Q1) ∩ C(Q4 \ Qi
1) for any p′ > n

such that
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⎧⎨
⎩
P−(D2u) + c0(x)u = 0 in Qi

4 \ Q1,

u = 0 on ∂Q4,

u = −1 on ∂Q1.

(5.3)

Since ϕ is also an L p′
viscosity solution of the PDE in the above, if we suppose

supQ4\Q1
ϕ0 > 0 or infQ4\Q1 ϕ0 < −1, then this contradicts to the definition of L p′

viscosity solution. Thus, we have −1 ≤ ϕ0 ≤ 0 in Q4 \ Q1.
Furthermore, we claim that there is θ0 > 0 such that

ϕ0 ≤ −θ0 in Q3 \ Q1. (5.4)

Although the proof of (5.4) is known in [33] for instance, we will give a proof of
this claim for the reader’s convenience in the end.

Extending ϕ0 appropriately in Q1, for large λ > 1, we may suppose that ϕ :=
λϕ0 ∈ W 2,p′

(Q4) is an L p′
strong solution of

P−(D2u) + c0u = ξ in Q4

such that ϕ ≤ −2 in Q3, where ξ ∈ Lq(Q1) satisfies ξ = 0 in Q4 \ Q1.
We observe that w := u + ϕ is an L p viscosity supersolution of

P+(D2w) + μ|Dw| + c0w
+ = −μ|Dϕ| − f − + ξ in Q4.

Hence, setting � := {x ∈ Qi
4 | w(x) < 0}, by Proposition 5.1, we have

−1 ≥ inf
Q1

w ≥ inf
Q4

w = inf
�

w

≥ −C‖μ|Dϕ| + f − − ξ‖L p∧n(�)

≥ −C
(
δ0 + |{x ∈ Q1 | w(x) < 0}| 1

p∧n
)

.

Therefore, for a fixed δ0 > 0, we can find θ1 ∈ (0, 1) such that

θ1 ≤ |{x ∈ Q1 | u(x) ≤ M}|,

where M := maxQ4(−ϕ) > 1. It is now standard by an induction argument to see
that

|{x ∈ Q1 | u(x) > Mk}| ≤ (1 − θ1)
k k ∈ N,

which implies the decay of distribution function of u. Therefore, we conclude the
assertion by the standard argument. See [39] for the details.

Proof of claim (5.4) (cf. Theorem 1 in [33]) It is enough to show that ϕ0(x) < 0 for
x ∈ Qi

4 \ Q1. Setting K0 := {x ∈ Qi
4 \ Q1 | ϕ0(x) = 0}, we may suppose K0 �= ∅.

We can choose R > 0, z ∈ K0 and ẑ ∈ �0 := (Qi
4 \ Q1) ∩ Kc

0 such that
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BR(ẑ) \ {z} ⊂ �0, and ∂BR(ẑ) ∩ K0 = {z}.

Setting an open annulus A0 := {x ∈ R
n | R/2 < |x − ẑ| < R}, we introduce ζ(x) :=

ε(e−βR2/2 − e−β|x−ẑ|2/2) ≤ 0, where β > 1 and ε ∈ (0, 1) will be chosen later. Fur-
thermore, we have

M1 := max
x∈A0

(ϕ0 − ζ)(x) ≥ (ϕ0 − ζ)(z) = 0.

We also note that (ϕ0 − ζ)(x) < 0 if x ∈ ∂BR(ẑ) \ {z}. Now, setting θ0 :=
minx∈∂BR/2(ẑ)(−ϕ0(x)) > 0 and ε := θ0/2, we observe that

max
x∈∂BR/2(ẑ)

(ϕ0 − ζ)(x) ≤ −θ0 + εe− βR2

8 ≤ −θ0

2
< 0.

Next, assume that ϕ0 − ζ attains its maximum at x̂ ∈ A0. Since ϕ0 is a viscosity
subsolution of

P−(D2u) + c0u = 0 in Qi
4 \ Q1,

we have

0 ≥ e− β|x̂−ẑ|2
2

{
βP−(I − β(x̂ − ẑ) ⊗ (x̂ − ẑ))

} + c0(x̂)ϕ0(x̂).

Following an argument in p. 20 of [12], since P−(I − β(x̂ − ẑ) ⊗ (x̂ − ẑ)) ≥
− n−1

θ
+
(

βR2

4 − 1
)

θ ≥ 1 provided β ≥ β0 for some β0 > 1, we have

0 ≥ e− β|x̂−ẑ|2
2 (β − c0(x̂)),

which yields a contradiction when β > β0 + maxx∈� c0. Therefore, because (ϕ0 −
ζ)(z − he) ≤ (ϕ0 − ζ)(z) = 0 for small h > 0, where e := (z − ẑ)/|z − ẑ|, we have

ϕ0(z − he) − ϕ0(z)

−h
≥ ε

e− β|z−he−ẑ|2
2 − e− β|z−ẑ|2

2

h
.

Sending h → 0+, we have 〈Dϕ0(z), e〉 = 0 ≥ εe− βR2

2 βR > 0, which is a contra-
diction. Hence, we have K0 = ∅. �

Remark 5.5 It is possible to give precise functions ϕ0 by considering larger ball
B2

√
n ⊃ Q4. See [30] for such a function.

Remark 5.6 Concerning the strong maximum principle for PDE of divergence type
with 0th order terms, we refer to [51] and references therein.

Now, we present our weak Harnack inequality.
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Proposition 5.7 (cf. Theorem 3.1 in [39]) Assume the same hypotheses in
Proposition 5.1. There are ε0 > 0, δ0 > 0 and Ĉ > 0 such that for any nonnega-
tive L p viscosity supersolution of

P+(D2u) + μ|Du| + c0u − f = 0 in Q4,

if ‖μ‖L p∧n(Q4) ≤ δ0, then we have

(∫
Q1

uε0dx

) 1
ε0 ≤ Ĉ

(
inf
Q1

u + ‖ f −‖L p∧n(Q4)

)
.

Proof In place of u, considering

V := u

inf
Q1

u + δ−1
0 ‖ f −‖L p∧n(Q4) + ε

,

where ε > 0 will be sent to 0 in the end, and δ0 > 0 will be fixed later, we may
suppose ‖ f −‖L p∧n(Q4) ≤ δ0 and infQ1 u ≤ 1.

In view of Lemma 5.2, we easily verify that for any ε0 ∈ (0, r0), there is Ĉ =
Ĉ(ε0) > 0 such that (∫

Q1

V ε0dx

) 1
ε0 ≤ Ĉ,

which implies the conclusion by sending ε → 0. �

In order to establish the Harnack inequality, we combine the weak Harnack
inequality with the next local maximum principle.

Proposition 5.8 (Theorem 3.1 in [41]) Assume the same hypotheses in Proposition
5.1. For any ε > 0, there is Ĉε > 0 such that for any L p viscosity subsolution of

P−(D2u) − μ|Du| − c0u
− − f = 0 in Q4, (5.5)

we have

sup
Q 1

4

u ≤ Ĉε

{(∫
Q1

(u+)εdx

) 1
ε

+ ‖ f +‖L p(Q4)

}
.

Sincewe have unbounded coefficientμ, we cannot use the standard argument as in
[29]. We follow the idea of the proof of Lemma 4.4 in [12] with some modifications.
We first prepare the following lemma:

Lemma 5.9 (cf. Theorem 2.3 in [41]) For q ≥ p > p0 and q > n, let f ∈ L p(Q4)

and μ ∈ Lq(Q4) be nonnegative. Assume that u ∈ C(Q4) is an L p viscosity subso-
lution of (5.5) satisfying
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|{x ∈ Q1 | u(x) ≥ t}| ≤ A

tr0
for ∀t > 1, (5.6)

where the constants A ≥ 1 and r0 > 0 are from Lemma 5.2. Then, there are an
integer J , ν > 1 and � j > 0 ( j ≥ J ) such that

∑∞
j=J � j < ∞, and if u(x0) ≥ ν j−1

for j ≥ J and x0 ∈ Q 1
2
, then supQ� j (x0)

u ≥ ν j .

Proof We will fix ν > 1, J ∈ N and � j ∈ (0, 1) for j ≥ J . Suppose

sup
Q� j (x0)

u ≤ ν j ,

then we will obtain a contradiction.
Setting x = x0 + � j

4 y for y ∈ Q4, we define

v(y) := α

(
1 − 1

ν j
u(x0 + 4−1� j y)

)
,

where α := ν(ν − 1)−1 (or ν = α(α − 1)−1). Thus, we immediately verify that v ≥
0 in Q4, and infQ3 v ≤ v(0) ≤ α(1 − ν−1) = 1.

We next set

α := 2(2A)
1
r0 > 1

(
i.e. ν = 2(2A)

1
r0 {2(2A)

1
r0 − 1}−1 > 1

)
,

and

� j :=
(
22n+2r0+1A

ν jr0

) 1
n

.

Choose J0 ∈ N such that

α < (22n+2r0+1A)
1
r0 < ν J0 .

Notice that � j < 1 for j ≥ J0. We next choose J1 ≥ J0 such that

α

ν j

(
� j

4

)2− n
p∧n

< 1 for j ≥ J1.

We then see that v is a nonnegative L p viscosity supersolution of

P+(D2u) + μ̂|Du| + ĉ0u + f̂ = 0 in Q4,

where

μ̂(y) = � j

4
μ

(
x0 + � j

4
y

)
, ĉ0 = �2j

16
ν j c0 and f̂ (y) = α�2j

16ν j
f +

(
x0 + � j

4
y

)
.
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Because of our choice of α > 1, � j and J1 ∈ N, we verify that for j ≥ J1,

‖μ̂‖L p∧n(Q4) =
(

� j

4

)1− n
p∧n

‖μ‖L p∧n(Q� j (x0))
≤
(

� j

4

)1− p∧n
q

‖μ‖Lq (Q4),

and

‖ f̂ ‖L p∧n(Q4) = α

ν j

(
� j

4

)2− n
n∧p

‖ f +‖L p∧n(Q� j (x0))
≤ ‖ f +‖L p∧n(Q� j (x0))

.

Finally, we choose J2 ≥ J1 such that ‖μ̂‖L p∧n(Q4) ≤ δ0, where δ0 > 0 is the constant
in Lemma 5.2.

In view of Lemma 5.2, we have

|{x ∈ Q1 | v(x) > α/2}| ≤ A

(
2

α

)r0

,

which yields

∣∣∣∣
{
x ∈ Q � j

4
(x0)

∣∣∣∣ u(x) <
ν j

2

}∣∣∣∣ ≤ A

(
2

α

)r0 (� j

4

)n

≤ 1

2

(
� j

4

)n

.

However, (5.6) implies

∣∣∣∣
{
x ∈ Q � j

4
(x0)

∣∣∣∣ u(x) ≥ ν j

2

}∣∣∣∣ ≤
∣∣∣∣
{
x ∈ Q1

∣∣∣∣ u(x) ≥ ν j

2

}∣∣∣∣ ≤ A

(
2

ν j

)r0

.

Hence, we have
�nj

22n+1
≤ A

(
2

ν j

)r0

,

which implies a contradiction to the definition of � j . �

Proof of Proposition 5.8. We first consider the case of ε = r0, where r0 > 0 is the
constant from Lemma 5.2.

Choose z ∈ Q 1
4
such that u(z) = maxQ 1

4
u. Setting v(y) := u(z + sy) for s > 0,

we observe that v is an L p viscosity subsolution of

P−(D2u) − μ̂|Du| − c0u
− − f̂ = 0 in Q4,

where μ̂(y) := sμ(z + sy) and f̂ (y) := s2 f +(z + sy).

Since we may suppose
∫
Q1

(v+)r0dy > 0, by setting
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w(y) := v(y)

{
A− 1

r0

(∫
Q1

(v+)r0dy

) 1
r0 + δ−1

0 ‖ f̂ ‖L p∧n(Q4)

}−1

,

it is immediate to see that

|{y ∈ Q1 | w(y) ≥ t }| ≤ 1

tr0

∫
Q1

wr0 ≤ A

tr0
.

Furthermore, we verify that w is an L p viscosity subsolution of

P−(D2u) − μ|Du| − g = 0 in Q4,

where g(y) := δ0 f̂ (y)‖ f̂ ‖−1
L p∧n(Q4)

.

Let ν > 1, J ∈ N and � j ∈ (0, 1) be from Lemma 5.9. There is Ĵ ≥ J such that

∞∑
j= Ĵ

� j ≤ 1

8
.

We claim that supQ 1
4

w ≤ ν Ĵ−1. Indeed, if w(x0) ≥ ν Ĵ−1 for some x0 ∈ Q 1
4
, then

thanks to Lemma 5.9, we can choose x j ∈ Q� j (x0) (for j ≥ Ĵ ) such that

w(x j ) ≥ ν j .

Since x j ∈ Q 1
2
for j ≥ Ĵ , this contradicts to the continuity of w ∈ C(Q4). Hence,

we have

sup
Q 1

4

u ≤ sup
Q 1

4

v ≤ C

{(∫
Q1

(v+)r0dx

) 1
r0 + ‖ f̂ ‖L p∧n(Q4)

}

≤ C

{(∫
Q1

(u+)r0dx

) 1
r0 + ‖ f ‖L p∧n(Q4)

}
.

In case when ε > r0, instead of the above w, consider

ŵ(y) := v(y)

{
A− 1

ε

(∫
Q1

(v+)εdy

) 1
ε

+ δ−1
0 ‖ f̂ ‖L p∧n(Q4)

}−1

.

Thus, we have

|{y ∈ Q1 | ŵ(y) ≥ t}| ≤ A

tε
≤ A

tr0
for t > 1.

Therefore, Lemma 5.9 implies the conclusion.
On the other hand, if 0 < ε < r0, then considering
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w̃(y) := v(y)

{
A− 1

r0

(∫
Q1

(v+)εdy

) 1
ε

+ δ−1
0 ‖ f̂ ‖L p∧n(Q4)

}−1

,

we have

|{y ∈ Q1 | w̃(y) ≥ t}| ≤ A

tr0

∫
Q1

(v+)r0dy

(∫
Q1

(v+)εdy

)− r0
ε

≤ A

tr0
for t > 1.

Hence, Lemma 5.9 concludes the proof in this case. �
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High-Energy Eigenfunctions of the
Laplacian on the Torus and the Sphere
with Nodal Sets of Complicated Topology

A. Enciso, D. Peralta-Salas, and F. Torres de Lizaur

Abstract Let � be an oriented compact hypersurface in the round sphere S
n or

in the flat torus T
n , n ≥ 3. In the case of the torus, � is further assumed to be

contained in a contractible subset of Tn . We show that for any sufficiently large
enough odd integer N there exists an eigenfunctions ψ of the Laplacian on Sn or Tn

satisfying �ψ = −λψ (with λ = N (N + n − 1) or N 2 on S
n or Tn , respectively),

and with a connected component of the nodal set of ψ given by �, up to an ambient
diffeomorphism.

Keywords Eigenfunctions of the Laplacian · Nodal sets · Isotopy type · Inverse
localization

Mathematics Subject Classification 58J50

1 Introduction

Let M be a closed manifold of dimension n ≥ 3 endowed with a smooth Riemannian
metric g. The Laplace eigenfunctions of M satisfy the equation

�uk = −λkuk ,

where 0 = λ0 < λ1 ≤ λ2 ≤ . . . are the eigenvalues of the Laplacian. The zero set
u−1
k (0) is called the nodal set of the eigenfunction.
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The study of the nodal sets of the eigenfunctions of the Laplacian in a compact
Riemannian manifold is a classical topic in geometric analysis with a number of
important openproblems [18, 19].When theRiemannianmetric is not fixed, the nodal
set is quite flexible. Indeed, it has been recently shown that [9], given a separating
hypersurface � in M , there is a metric g on the manifold for which the nodal set
u−1
1 (0) of the first eigenfunction is precisely �. This result has been extended to

the class of metrics conformal to a metric g0 prescribed a priori [10], and to higher
codimension submanifolds arising as the joint nodal set of several eigenfunctions
corresponding to a degenerate eigenvalue [5].

For a fixed Riemannian metric, the problem is much more rigid than when one
can freely choose a metric adapted to the geometry of the hypersurface that one
aims to recover from the nodal set of the eigenfunctions. In this case, the techniques
developed in [5, 9, 10] do not work. Nevertheless, since the Hausdorff measure of
the nodal sets of the eigenfunctions grows as the eigenvalue tends to infinity [13, 14],
one expects that the nodal setmay become topologically complicated for high-energy
eigenfunctions.

Our goal in this paper is to establish the existence of high-energy eigenfunctions
of the Laplacian on the round sphere Sn and the flat torus Tn with nodal sets diffeo-
morphic to a given submanifold. All along this paper, Sn denotes the unit sphere in
R

n+1 and T
n is the standard flat n-torus, (R/2πZ)n .

More precisely, ourmain theorem shows that for a sequence of high enough eigen-
values, there exist m eigenfunctions of the Laplacian on S

n or Tn with a joint nodal
set diffeomorphic to a given codimension m submanifold �. For the construction
we need to assume that the normal bundle of � is trivial. This means that a small
tubular neighborhood of the submanifold � must be diffeomorphic to � × R

m . In
the statement, structural stability means that any small enough perturbation of the
corresponding eigenfunction (in the Ck norm with k ≥ 1) still has a union of con-
nected components of the nodal set that is diffeomorphic to the submanifold� under
consideration. Throughout, diffeomorphisms are of class C∞ and submanifolds are
C∞ and without boundary.

Theorem 1.1 Let � be a finite union of (disjoint, possibly knotted or linked) codi-
mension m ≥ 1 compact submanifolds of Sn or T

n, n ≥ 3, with trivial normal
bundle. In the case of the torus, we further assume that � is contained in a con-
tractible subset. If m = 1, we also assume that � is connected. Then for any large
enough odd integer N there are m eigenfunctions ψ1, . . . ,ψm of the Laplacian with
eigenvalue λ = N (N + n − 1) (in S

n) or λ = N 2 (in T
n), and a diffeomorphism

� such that �(�) is the union of connected components of the joint nodal set
ψ−1
1 (0) ∩ · · · ∩ ψ−1

m (0). Furthermore, �(�) is structurally stable.

An important observation is that the proof of this theorem yields a reasonably
complete understanding of the behavior of the diffeomorphism �, which is, in par-
ticular, connected with the identity. Oversimplifying a little, the effect of � is to
uniformly rescale a contractible subset of the manifold that contains � to have a
diameter of order 1/N . In particular, the control that we have over the diffeomor-
phism� allows us to prove an analog of this result for quotients of the sphere by finite
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groups of isometries (lens spaces). Notice that �(�) is not guaranteed to contain all
the components of the nodal set of the eigenfunction.

The proof of the main theorem involves an interplay between rigid and flexible
properties of high-energy eigenfunctions of the Laplacian. Indeed, rigidity appears
because high-energy eigenfunctions in any Riemannian n-manifold behave, locally
in sets of diameter 1/

√
λ, as monochromatic waves in R

n do in balls of diameter 1.
We recall that a monochromatic wave is any solution to the Helmholtz equation
�φ + φ = 0. The catch here is that, in general, one cannot check whether a given
monochromatic wave in Rn actually corresponds to a high-energy eigenfunction on
the compact manifold.

To prove the converse implication, what we call an inverse localization theorem
(see Sects. 2 and 3), it is key to exploit some flexibility that arises in the problem as a
consequence of the fact that large eigenvalues of the Laplacian in the torus or in the
sphere have increasingly high multiplicities (for this reason the proof does not work
in a general Riemannian manifold). The inverse localization is a powerful tool to
ensure that any monochromatic wave in a compact set of Rn can be reproduced in a
small ball of the manifold by a high-energy eigenfunction. This allows us to transfer
any structurally stable nodal set that can be realized in Euclidean space to high-
energy eigenfunctions on S

n and T
n . The inverse localization was first introduced

in [11] to construct high-energy Beltrami fields on the torus and the sphere with
topologically complicated vortex structures, and was also exploited in [6, 7] to solve
a problem of Berry [2] on knotted nodal lines of high-energy eigenfunctions of the
harmonic oscillator and the hydrogen atom, and in [17] to analyze the nodal sets of
the eigenfunctions of the Dirac operator.

One should notice that the techniques introduced in [8] to prove the existence of
solutions to second-order elliptic PDEs in Rn (including the monochromatic waves)
with a prescribed nodal set � do not work for compact manifolds. The reason is
that the proof is based on the construction of a local solution in a neighborhood
of �, which is then approximated by a global solution in R

n using a Runge-type
global approximation theorem. For compact manifolds the complement of the set
� is precompact, so we cannot apply the global approximation theorem obtained
in [8]. In fact, as is well known, this is not just a technical issue, but a fundamental
obstruction in any approximation theorem of this sort. This invalidates the whole
strategy followed in [8] and makes it apparent that new tools are needed to prove
the existence of Laplace eigenfunctions with geometrically complex nodal sets in
compact manifolds.

We finish this introduction with two corollaries. It is known that an oriented
codimension one or two submanifold in S

n or Tn has trivial normal bundle [15],
therefore the main theorem implies the following:

Corollary 1.2 Let � be an oriented, compact, connected hypersurface in Sn or Tn,
n ≥ 3. In the case of the torus, we further assume that� is contained in a contractible
subset. Then for any large enough odd integer N there is an eigenfunction ψ of the
Laplacian with eigenvalue λ = N (N + n − 1) (in S

n) or λ = N 2 (in T
n), and a

diffeomorphism � such that �(�) is a structurally stable connected component of
the nodal set ψ−1(0).
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Corollary 1.3 Let � be a finite union of (disjoint, possibly knotted or linked) codi-
mension two compact submanifolds in S

n or Tn, n ≥ 3. In the case of the torus,
we further assume that � is contained in a contractible subset. Then for any large
enough odd integer N there is a complex-valued eigenfunction ψ of the Laplacian
with eigenvalue λ = N (N + n − 1) (in S

n) or λ = N 2 (in T
n), and a diffeomor-

phism � such that �(�) is a union of structurally stable connected components of
the nodal set ψ−1(0).

The paper is organized as follows. In Sects. 2 and 3 we prove an inverse local-
ization theorem for the eigenfunctions of the Laplacian on S

n and T
n , respectively.

Theorem 1.1 is then proved in Sect. 4. Finally, in Sect. 5, we prove a refinement of
the inverse localization Theorem on S

n that allows us to approximate several given
monochromatic waves by a single eigenfunction of the Laplacian in different small
regions of Sn .

2 An Inverse Localization Theorem on the Sphere

In this section we prove an inverse localization theorem for eigenfunctions of the
Laplacian on S

n for n ≥ 2. We recall that the eigenvalues of the Laplacian on the
n-sphere are of the form N (N + n − 1), where N is a nonnegative integer, and the
corresponding multiplicity is given by

d(N , n) :=
(
N + n − 1

N

)
2N + n − 1

N + n − 1
.

For the precise statement of the theorem, let us fix an arbitrary point p0 ∈ S
n

and take a patch of normal geodesic coordinates � : B → B centered at p0. Here
and in what follows, Bρ (resp. Bρ) denotes the ball in R

n (resp. the geodesic ball
in S

n) centered at the origin (resp. at p0) and of radius ρ, and we shall drop the
subscript when ρ = 1. For the ease of notation, we will use the Rm-valued functions
φ := (φ1, . . . ,φm) and ψ := (ψ1, . . . ,ψm), and the action of the Laplacian on such
functions is understood componentwise.

Theorem 2.1 Let φ be an Rm-valued monochromatic wave in Rn, satisfying �φ +
φ = 0. Fix a positive integer r and a positive constant δ′. For any large enough integer
N, there is an R

m-valued eigenfunction ψ of the Laplacian on S
n with eigenvalue

N (N + n − 1) such that

∥∥∥∥φ − ψ ◦ �−1
( ·
N

)∥∥∥∥
Cr (B)

≤ δ′ .

To prove Theorem 2.1, we will proceed in two successive approximation steps.
First, we will approximate the function φ in B by an Rm-valued function ϕ that can
be written as a finite sum of terms of the form
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c j
|x − x j | n

2 −1
Jn

2 −1(|x − x j |)

with c j ∈ R
m and x j ∈ R

n , j = 1, . . . , N ′, for N ′ large enough (Proposition 2.2
below). Here Jn

2 −1 denotes the Bessel function of the first kind of order n
2 − 1.

Notice that any function of this form is a monochromatic wave. In the second step,
we show that there is a collection ofm eigenfunctions (ψ1, . . . ,ψm) =: ψ in Sn with
eigenvalue N (N + n − 1) such that, when considered in a ball of radius N−1, they
approximate ϕ := (ϕ1, . . . ,ϕm) in the unit ball, provided that N is large enough.

Proposition 2.2 Given any δ > 0, there is a constant R > 0 and finitely many con-
stant vectors {c j }N ′

j=1 ⊂ R
m and points {x j }N ′

j=1 ⊂ BR such that the function

ϕ :=
N ′∑
j=1

c j
|x − x j | n

2 −1
Jn

2 −1(|x − x j |)

approximates the function φ in the unit ball as

‖φ − ϕ‖Cr (B) < δ .

Proof It is more convenient to work with complex-valued functions, so we set φ̃ :=
φ + iφ. First, we notice that, since φ̃ is also a solution of the Helmholtz equation, it
can be written in the ball B2 as an expansion

φ̃ =
∞∑
l=0

d(l,n−1)∑
k=1

blk jl(r) Ylk(ω), (2.1)

where r := |x | ∈ R
+ and ω := x/r ∈ S

n−1 are spherical coordinates in R
n , Ylk is a

basis of spherical harmonics of eigenvalue l(l + n − 2), jl are n-dimensional hyper-
spherical Bessel functions and blk ∈ C

m are constant coefficients.
The series in (2.1) is convergent in the L2 sense, so for any δ′ > 0, we can truncate

the sum at some integer L

φ1 :=
L∑

l=0

d(l,n−1)∑
k=1

blk jl(r) Ylk(ω) (2.2)

so that it approximates φ̃ as

‖φ1 − φ̃‖L2(B2) < δ′ . (2.3)

The C
m-valued function φ1 decays as |φ1(x)| ≤ C/|x | n−1

2 for large enough |x |
(because of the decay properties of the spherical Bessel functions). Hence, Herglotz’s
theorem (see e.g. [12, Theorem 7.1.27]) ensures that we can write
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φ1(x) = 1

(2π)
n
2

∫
Sn−1

f1(ξ) e
ix ·ξ dσ(ξ) , (2.4)

where dσ is the area measure on S
n−1 := {ξ ∈ R

n : |ξ| = 1} and f1 is a Cm-valued
function in L2(Sn−1).

We now choose a smooth C
m-valued function f2 approximating f1 as

‖ f1 − f2‖L2(Sn−1) < δ′ ,

which is always possible since smooth functions are dense in L2(Sn−1). The function
defined as the inverse Fourier transform of f2

φ2(x) := 1

(2π)
n
2

∫
Sn−1

f2(ξ) e
ix ·ξ dσ(ξ) , (2.5)

approximates φ1 uniformly: by the Cauchy–Schwarz inequality, we get

|φ2(x) − φ1(x)| =
∣∣∣∣ 1

(2π)
n
2

∫
Sn−1

( f2(ξ) − f1(ξ)) e
ix ·ξ dσ(ξ)

∣∣∣∣ ≤ C‖ f2 − f1‖L2(Sn−1) < Cδ′

(2.6)

for any x ∈ R
n .

Our next objective is to approximate the function f2 by a trigonometric poly-
nomial: for any given δ′, we will find a constant R > 0, finitely many points
{x j }N ′

j=1 ⊂ BR and constants {c j }N ′
j=1 ⊂ C

m such that the smooth function in R
n

f (ξ) :=
N ′∑
j=1

c j e
−i x j ·ξ ,

when restricted to the unit sphere, approximates f2 in the C0 norm,

‖ f − f2‖C0(Sn−1) < δ′ . (2.7)

In order to do so, we begin by extending f2 to a smooth function g : Rn → C
m

with compact support,

g(ξ) := χ(|ξ|) f2

(
ξ

|ξ|
)

,

where χ(s) is a real-valued smooth bump function, being 1 when, for example,
|s − 1| < 1

4 , and vanishing for |s − 1| > 1
2 . The inverse Fourier transform ĝ of g is

Schwartz, so it is easy to see that, outside some ball BR , the L1 norm of ĝ is very
small, ∫

Rn\BR

|̂g(x)| dx < δ′ ,
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and therefore we get a very good approximation of g by just considering its Fourier
representation with frequencies within the ball BR , that is,

sup
ξ∈Rn

∣∣∣∣g(ξ) − 1

(2π)
n
2

∫
BR

ĝ(x) e−i x ·ξ dx
∣∣∣∣ < δ′/2 . (2.8)

Next, let us show that we can approximate the integral

∫
BR

ĝ(x) e−i x ·ξ dx

by the sum

f (ξ) :=
N ′∑
j=1

c j e
−i x j ·ξ (2.9)

with constants c j ∈ C
m and points x j ∈ BR , so that we have the bound

sup
ξ∈Sn−1

∣∣∣∣
∫
BR

ĝ(x) e−i x ·ξ dx − f (ξ)

∣∣∣∣ < δ′/2 . (2.10)

Indeed, consider a covering of the ball BR by closed sets {Uj }N ′
j=1, with piecewise

smooth boundaries, pairwise disjoint interiors, and diameters not exceeding δ′′. Since
the function e−i x ·ξ ĝ(x) is smooth, we have that for each x, y ∈ Uj

sup
ξ∈Sn−1

∣∣̂g(x) e−i x ·ξ − ĝ(y) e−iy·ξ| < Cδ′′ ,

with the constant C depending on ĝ (and therefore on δ′) but not on δ′′. If x j is any
point in Uj and we set c j := ĝ(x j ) |Uj | in (2.9), we get

sup
ξ∈Sn−1

∣∣∣∣
∫
BR

ĝ(x) e−i x ·ξ dx − f (ξ)

∣∣∣∣ ≤
N ′∑
j=1

∫
Uj

sup
ξ∈Sn−1

∣∣̂g(x) e−i x ·ξ − ĝ(x j ) e
−i x j ·ξ∣∣ dx

≤ Cδ′′ ,

withC depending on δ′ and R but not on δ′′ nor N ′. By taking δ′′ so thatCδ′′ < δ′/2,
the estimate (2.10) follows.

Now, in view of (2.8) and (2.10), one has

‖ f − g‖C0(Sn−1) < δ′ ,

so the estimate (2.7) follows upon noticing that the function f2 is the restriction
to Sn−1 of the function g.

To conclude, set
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ϕ̃(x) := 1

(2π)
n
2

∫
Sn−1

f (ξ) eix ·ξ dσ(ξ) =
N ′∑
j=1

c j
(2π)

n
2

∫
Sn−1

ei(x−x j )·ξ dσ(ξ) =

=
N ′∑
j=1

c j
|x − x j | n

2 −1
Jn

2 −1(|x − x j |) ,

then from Eq. (2.7) we infer that

‖ϕ̃ − φ2‖C0(Rn) ≤
∫
Sn−1

| f (ξ) − f2(ξ)| dσ(ξ) < Cδ′ ,

and from Eqs. (2.3) and (2.6) we get the L2 estimate

‖φ̃ − ϕ̃‖L2(B2) ≤ C‖ϕ̃ − φ2‖C0(Rn) + C‖φ2 − φ1‖C0(Rn)+ (2.11)

+ ‖φ1 − φ̃‖L2(B2) < Cδ′ .

Furthermore, both ϕ̃ and φ̃ areCm-valued functions satisfying theHelmholtz equation
in R

n (note that the Fourier transform of ϕ̃ is supported on S
n−1), so by standard

elliptic regularity estimates we have

‖φ̃ − ϕ̃‖Cr (B) ≤ C‖φ̃ − ϕ̃‖L2(B2) < Cδ′ .

This in particular implies that

‖φ − Re ϕ̃‖Cr (B) < Cδ′ ,

and taking δ′ small enough so that Cδ′ < δ, resetting c j := Re c j , and defining
ϕ := Re ϕ̃, the proposition follows. �

The second step consists in showing that, for any large enough integer N , we
can find an R

m-valued eigenfunction ψ of the Laplacian on S
n with eigenvalue

N (N + n − 1) that approximates, in the ball B1/N , when appropriately rescaled,
the function ϕ in the unit ball. The proof is based on asymptotic expansions of
ultraspherical polynomials, and uses the representation of ϕ as a sum of shifted
Bessel functions which we obtained in the previous proposition as a key ingredient.
It is then straightforward that Theorem 2.1 follows from Propositions 2.2 and 2.3,
provided that N is large enough and δ is chosen so that 2δ < δ′.

Proposition 2.3 Given a constant δ > 0, for any large enough positive integer N
there is anRm-valued eigenfunctionψ of the Laplacian onSn with eigenvalue N (N +
n − 1) satisfying ∥∥∥∥ϕ − ψ ◦ �−1

( ·
N

)∥∥∥∥
Cr (B)

< δ .
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Proof Consider the ultraspherical polynomial of dimension n + 1 and degree N ,
Cn

N (t), which is defined as

Cn
N (t) := �(N + 1)�( n2 )

�(N + n
2 )

P
( n
2 −1, n

2 −1)
N (t) , (2.12)

where �(t) is the gamma function and P (α,β)

N (t) are the Jacobi polynomials (see
e.g. [16, Chap. IV, Sect. 4.7]). We have included a normalizing factor so that
Cn

N (1) = 1 for all N .
Let p, q be two points in S

n , considered as vectors in R
n+1 with |p| = |q| = 1.

The addition theorem for ultraspherical polynomials ensures that Cn
N (p · q) (where

p · q denotes the scalar product in Rn+1 of the vectors p and q) can be written as

Cn
N (p · q) = 2π

n+1
2

�( n+1
2 )

1

d(N , n)

d(N ,n)∑
k=1

YNk(p) YNk(q) , (2.13)

with {YNk}d(N ,n)
k=1 being an arbitrary orthonormal basis of eigenfunctions of the Lapla-

cian on S
n (spherical harmonics) with eigenvalue N (N + n − 1).

The function ϕ is written as the finite sum

ϕ(x) =
N ′∑
j=1

c j
|x − x j | n

2 −1
Jn

2 −1(|x − x j |) ,

with coefficients c j ∈ R
m and points x j ∈ BR . With these c j and x j we define, for

any point p ∈ S
n , the function

ψ(p) :=
N ′∑
j=1

c j
2

n
2 −1�( n2 )

Cn
N (p · p j ) ,

where p j := �−1(
x j

N ). As long as N > R, p j is well defined. In view of Eq. (2.13) it
is clear that ψ is an Rm-valued eigenfunction of the Laplacian on Sn with eigenvalue
N (N + n − 1).

Our aim is to study the asymptotic properties of the eigenfunction ψ. To begin
with, note that if we consider points p := �−1( x

N )with N > R and x ∈ BR , we have

p · p j = cos
(
distSn (p, p j )

) = cos

( |x − x j | + O(N−1)

N

)
, (2.14)

as N → ∞. The last equality comes from � : B → B being a patch of normal
geodesic coordinates (by distSn (p, p j ) we mean the distance between p and p j

considered on the sphere Sn). From now on we set
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ψ̃(x) := ψ ◦ �−1

(
x

N

)
. (2.15)

When N is large, one has

�(N + 1)

�(N + n
2 )

= N 1− n
2 + O(N− n

2 ) ,

so from Eq. (2.14) we infer

Cn
N (p · p j ) =

(
�

(n
2

)
N 1− n

2 + O(N− n
2 )

)
P

( n2 −1, n
2 −1)

N

(
cos

( |x − x j | + O(N−1)

N

))
.

(2.16)

By virtue of Darboux’s formula for the Jacobi polynomials [16, Theorem 8.1.1], we
have the estimate

1

N
n
2 −1

P
( n
2 −1, n

2 −1)
N

(
cos

t

N

)
= 2

n
2 −1

Jn
2 −1(t)

t
n
2 −1

+ O(N−1) ,

uniformly in compact sets (e.g., for |t | ≤ 2R). Hence, in view of Eq. (2.16), the
function ψ̃ can be written as

ψ̃(x) =
N ′∑
j=1

c j
2

n
2 −1�( n2 )

Cn
N

(
cos

( |x − x j | + O(N−1)

N

))

=
N ′∑
j=1

c j
|x − x j | n

2 −1
Jn

2 −1(|x − x j |) + O(N−1) ,

for N big enough and x, x j ∈ BR . From this we get the uniform bound

‖ϕ − ψ̃‖C0(B2) < δ′ (2.17)

for any δ′ > 0 and all N large enough.
It remains to promote this bound to a Cr estimate. For this, note that, since the

eigenfunction ψ has eigenvalue N (N + n − 1), the rescaled function ψ̃ verifies on
B the equation

�ψ̃ + ψ̃ = 1

N
Aψ̃ ,

with
Aψ̃ := −(n − 1)ψ̃ + G1 ∂ψ̃ + G2 ∂2ψ̃ ,

where ∂kψ̃ is a matrix whose entries are k-th order derivatives of ψ̃, and Gk(x, N )

are smooth matrix-valued functions with uniformly bounded derivatives, i.e.,
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sup
x∈B

|∂α
x Gk(x, N )| ≤ Cα , (2.18)

with constants Cα independent of N .
Since ϕ satisfies the Helmholtz equation �ϕ + ϕ = 0 , the difference ϕ − ψ̃ sat-

isfies

�(ϕ − ψ̃) + (ϕ − ψ̃) = 1

N
Aψ̃ ,

and, considering the estimates (2.17) and (2.18), by standard elliptic estimates
(applied to the uniformly elliptic operator � + 1 − N−1A) we get

‖ϕ − ψ̃‖Cr,α(B) < C‖ϕ − ψ̃‖C0(B2) + C

N
‖Aϕ‖Cr−2,α(B2)

< Cδ′ + C

N
‖ϕ‖Cr,α(B2) ,

so we conclude that, for N big enough and δ′ small enough,

‖ϕ − ψ̃‖Cr (B) ≤ Cδ′ + C‖ϕ‖Cr,α

N
< δ .

The proposition then follows. �

3 An Inverse Localization Theorem on the Torus

In this section we prove an inverse localization theorem for eigenfunctions of the
Laplacian on T

n for n ≥ 3. We recall that the eigenvalues of the Laplacian on the
n-torus are the integers of the form

λ = |k|2

for some k ∈ Z
n . In particular, the spectrum of the Laplacian in T

n contains the set
of the squares of integers.

As in the previous section, we fix an arbitrary point p0 ∈ T
n and take a patch of

normal geodesic coordinates � : B → B centered at p0.

Theorem 3.1 Let φ be an R
m-valued function in R

n, satisfying �φ + φ = 0. Fix a
positive integer r and a positive constant δ′. For any large enough odd integer N,
there is an R

m-valued eigenfunction ψ of the Laplacian on T
n with eigenvalue N 2

such that ∥∥∥∥φ − ψ ◦ �−1
( ·
N

)∥∥∥∥
Cr (B)

≤ δ′ .
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Proof Arguing as in the proof of Proposition 2.2 we can readily show that for any
δ > 0, there exists an R

m-valued function φ1 on R
n that approximates the function

φ in the ball B as
‖φ1 − φ‖C0(B2) < δ , (3.1)

and that can be represented as the inverseFourier transformof a distribution supported
on the unit sphere of the form

φ1(x) = 1

(2π)
n
2

∫
Sn−1

f (ξ) eiξ·x dσ(ξ) .

Again Sn−1 denotes the unit sphere {ξ ∈ R
n : |ξ| = 1} and f is a smooth Cm-valued

function on S
n−1 satisfying f (ξ) = f̄ (−ξ).

Let us now cover the sphere S
n−1 by finitely many closed sets {Uk}N ′

k=1 with
piecewise smooth boundaries and pairwise disjoint interiors such that the diameter
of each set is at most ε. We can then repeat the argument used in the proof of
Proposition 2.2 to infer that, if ξk is any point in Uk and we set

ck := f (ξk) |Uk | ,

the function

ψ̃(x) := 1

(2π)
n
2

N ′∑
k=1

ck e
iξk ·x

approximates the function φ1 uniformly with an error proportional to ε:

‖ψ̃ − φ1‖C0(B2) < Cε .

The constant C depends on δ but not on ε nor N ′, so one can choose the maximal
diameter ε small enough so that

‖ψ̃ − φ1‖C0(B2) < δ . (3.2)

In turn, the uniform estimate

‖ψ̃ − φ‖C0(B2) ≤ ‖ψ̃ − φ1‖C0(B2) + ‖φ − φ1‖C0(B2) < 2δ

can be readily promoted to the Cr bound

‖ψ̃ − φ‖Cr (B) < Cδ . (3.3)

This follows from standard elliptic estimates as both ψ̃ (whose Fourier transform is
supported on S

n−1) and φ satisfy the Helmholtz equation:
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�ψ̃ + ψ̃ = 0 , �φ + φ = 0 .

Furthermore, replacing ψ̃ by its real part if necessary, we can safely assume that
the function ψ̃ is Rm-valued.

Let us now observe that for any large enough odd integer N one can choose the
points ξk ∈ Uk ⊂ S

n−1 so that they have rational components (i.e., ξk ∈ Q
n) and the

rescalings Nξk are integer vectors (i.e., Nξk ∈ Z
n). This is because for n ≥ 3, rational

points ξ ∈ S
n−1 ∩ Q

n of height N (and so with Nξ ∈ Z
n) are uniformly distributed

on the unit sphere as N → ∞ through odd values [4] (in fact, the requirement for N
to be odd can be dropped for n ≥ 4 [4]).

Choosing ξk as above, we are now ready to prove the inverse localization theorem
in the torus. Without loss of generality, we will take the origin as the base point
p0, so that we can identify the ball B with B through the canonical 2π-periodic
coordinates on the torus. In particular, the diffeomorphism � : B → B that appears
in the statement of the theorem can be understood to be the identity.

Since Nξk ∈ Z
n , it follows that the function

ψ(x) := 1

(2π)
n
2

N ′∑
k=1

cke
iNξk ·x

is 2π-periodic (that is, invariant under the translation x → x + 2π a for any vector
a ∈ Z

n). Therefore it defines a well-defined function on the torus, which we will still
denote by ψ.

Since the Fourier transform of ψ is now supported on the sphere of radius N , ψ
is an eigenfunction of the Laplacian on the torus Tn with eigenvalue N 2,

�ψ + N 2ψ = 0 .

The theorem then follows provided that δ is chosen small enough for Cδ < δ′. �

We conclude this section noticing that the statement of Theorem 3.1 does not
hold for T2. The reason is that rational points ξ ∈ S

1 ∩ Q
2 with Nξ ∈ Z

2 are no
longer uniformly distributed on the unit circle (not even dense) as N → ∞ through
any sequence of odd values, counterexamples can be found in [3]. Nevertheless, a
slightly different statement can be proved using [3]:

Theorem 3.2 Let φ be an R
m-valued function in R

2, satisfying �φ + φ = 0. Fix a
positive integer r and a positive constant δ′. Then there exists a sequence of inte-
gers {Nl}∞l=1 ↗ ∞, and R

m-valued eigenfunctions ψl of the Laplacian on T
2 with

eigenvalues N 2
l such that

∥∥∥∥φ − ψl ◦ �−1
( ·
N l

)∥∥∥∥
Cr (B)

≤ δ′

for l large enough.
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4 Proof of the Main Theorem

For the ease of notation, we shall write M
n to denote either Tn or Sn . Let �′ be

a diffeomorphism of Mn mapping the codimension m submanifold � into the ball
B1/2 ⊂ M

n , and the ballB1/2 into itself. InSn , the existence of such a diffeomorphism
is trivial, while in the case of Tn it follows from the assumption that � is contained
in a contractible set.

Consider the submanifold�′ in B1/2 ⊂ R
n defined as�′(�) in the patch of normal

geodesic coordinates:
�′ := (� ◦ �′)(�) .

It is shown in [8, Theorem 1.3] ifm ≥ 2 and [8, RemarkA.2] ifm = 1, that there is an
R

m-valued monochromatic wave φ = (φ1, . . . ,φm), satisfying �φ + φ = 0 in R
n ,

and a diffeomorphism�1 (close to the identity, and different from the identity only on
B1/2 when m > 1) such that �1(�

′) ⊂ B1/2 is a union of connected components of
the joint nodal set φ−1

1 (0) ∩ · · · ∩ φ−1
m (0). In addition, the construction in [8] ensures

that the regularity condition rk(∇φ1, . . . ,∇φm) = m holds at any point of �1(�
′),

so it is a structurally stable nodal set of φ by Thom’s isotopy theorem [1].
Now, the inverse localization theorem (Theorem 2.1 in the case of Sn and Theorem

3.1 for Tn) allows us to find, for any large enough odd integer N , an R
m-valued

function ψ = (ψ1, . . . ,ψm) in M
n satisfying �ψ = −λψ (with λ := N (N + n −

1) or λ := N 2 in the sphere or the torus, respectively) and such that ψ ◦ �−1( ·
N )

approximates φ in the Cr (B) norm as much as we want.
The structural stability property ensures the existence of a second diffeomorphism

�2 : Rn → R
n close to the identity, and different from the identity only on B1/2, such

that �2(�1(�
′)) is a union of connected components of the joint nodal set of the

R
m-valued function ψ ◦ �−1( ·

N ). Therefore, the corresponding submanifold

�(�) := �−1
( 1

N
�2(�1((� ◦ �′)(�)))

)

is a union of connected components of the nodal set of ψ. The map � : Mn → B 1
2N

thus defined is easily extended to a diffeomorphism of the whole manifold M
n .

Finally, we have by the construction that �(�) is structurally stable, and hence
Theorem 1.1 follows.

5 Final Remark: Inverse Localization on the Sphere in
Multiple Regions

Theorem2.1 in Sect. 2 can be refined to include inverse localization at different points
of the sphere. This way, we get an eigenfunction of the Laplacian that approximates
several given solutions of the Helmholtz equation in different regions. The fast decay
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of ultraspherical polynomials of high degree outside the domains where they behave
as shiftedBessel functions is behind thismultiple localization.Notice that, in contrast,
trigonometric polynomials do not exhibit this decay, hence the lack of an analog of
the following result in the case of the torus. All along this section we assume that
n ≥ 2.

Let {pα}N ′
α=1 be a set of points in S

n , with N ′ an arbitrarily large (but fixed through-
out) integer. We denote by �α : Bρ(pα) → Bρ the corresponding geodesic patches
on balls of radius ρ centered at the points pα. We fix a radius ρ such that no two balls
intersect, for example by setting

ρ := 1

2
min
α �=β

distSn (pα, pβ) .

We further choose the points {pα}N ′
α=1 so that no pair of points are antipodal in

S
n ⊂ R

n+1, i.e. pα �= −pβ for all α, β. The reason is that the eigenfunctions of the
Laplacian on the sphere with eigenvalue N (N + n − 1) have parity (−1)N :

ψ(pα) = (−1)Nψ(−pα)

(they are the restriction to the sphere of homogenous harmonic polynomials of degree
N ); so that prescribing the behavior of an eigenfunction in a ball around the point
pα automatically determines its behavior in the antipodal ball.

Proposition 5.1 Let {φα}N ′
α=1 be a set of N ′

R
m-valued monochromatic waves in

R
n, 1 ≤ m ≤ n, satisfying �φα + φα = 0. Fix a positive integer r and a positive

constant δ. For any large enough integer N, there is an R
m-valued eigenfunction ψ

of the Laplacian on S
n with eigenvalue N (N + n − 1) such that

∥∥∥∥φα − ψ ◦ �−1
α

( ·
N

)∥∥∥∥
Cr (B)

< δ

for all 1 ≤ α ≤ N ′.

Proof We use the notation introduced in the proof of Proposition 2.3 without further
mention. Applying Theorem 2.1 to eachφα we obtain, for high enough N ,Rm-valued
eigenfunctions of the Laplacian {ψα}N ′

α=1 satisfying the bound

∥∥∥∥φα − ψα ◦ �−1
α

( ·
N

)∥∥∥∥
Cr (B)

< δ′ .

For each α, the Rm-valued eigenfunction ψα(p) is a linear combination (with coef-
ficients in R

m) of ultraspherical polynomials Cn
N (p · q j ), where {q j } is a finite set

of points such that distSn (pα, q j ) is proportional to N−1, for all j . Recall that the
ultraspherical polynomials satisfy the asymptotic formula
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Cn
N (p · q) = �( n2 )

N
n
2 −1

P
( n
2 −1, n

2 −1)
N (cos(distSn (p, q))) + O(N− n

2 ) ,

so considering the fact that the Jacobi polynomials behave as (see [16, Theorem
7.32.2])

N 1− n
2 P

( n
2 −1, n2 −1)

N (cos t) = O(N
1−n
2 )

t
n−1
2

,

uniformly for N−1 < t < π − N−1, we can conclude that the functions Cn
N (p · q j )

are uniformly bounded as

|Cn
N (p · q j )| ≤ Cρ

N
n−1
2

for any point p satisfying

min j distSn (p, q j ) ≥ ρ and min j distSn (p,−q j ) ≥ ρ ,

andwhereCρ is a constant depending only on ρ. The same decay is thus also exhibited
by the eigenfunction ψα,

‖ψα‖C0(Sn\(B(pα,ρ)∪B(−pα,ρ)) ≤ C

N
n−1
2

since it is just a normalized linear combination of ultraspherical polynomials (here
the constant C depends on ρ and on the particular coefficients in the expansion of
ψα, that is, on φα and δ′).

Now, if we define the Rm-valued eigenfunction

ψ :=
N ′∑

α=1

ψα

and we choose N large enough, the statement of the proposition follows for r = 0.
By standard elliptic estimates, the C0 bound can be easily promoted to a Cr bound,
so we are done. �
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