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Preface

The proceedings contain several original surveys by invited speakers in a series of
workshops entitled Partial Differential Equation and Future Applications, which
was organized by Tohoku Forum for Creativity (TFC for short) supported in
Tohoku University from July 2017 to October 2017, and also some research papers
in related fields. The TFC program has started since 2013 and is evolving over
various research fields on natural and human sciences. The above title Nonlinear
Partial Differential Equations for Future Applications is one of the thematic pro-
grams in TFC. In our program, we focussed on nonlinear partial differential
equations arising in fluid mechanics, reaction diffusion, optimal control, modern
physics, material sciences, and geometry. Furthermore, in order to search for new
applications, we invited experts from other areas.
Our program consists of the following workshops:

July 10-14, 2017 Evolution Equations and Mathematical Fluid Dynamics
July 17-21, 2017 Optimal Control and PDE

July 24-28, 2017  Hyperbolic and Dispersive PDE

October 2-6, 2017  Geometry and Inverse Problems”

" in cooperation with A3 Foresight Program

The aim of this series of workshops was to introduce new and active fields of
nonlinear partial differential equations (PDE for short) to young researchers, and
moreover, to discover possibilities to connect related sciences with mathematics.
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The purpose to publish these proceedings is, in addition, to enable the interested
researchers to know valuable surveys with more detailed explanations. Moreover,
we have decided to add several original papers which will be important contribu-
tions to future researches.

Editors
Tokyo, Japan Shigeaki Koike
Tokyo, Japan Hideo Kozono
Sendai, Japan Takayoshi Ogawa

Sendai, Japan Shigeru Sakaguchi
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An Introduction to Maximal Regularity )
for Parabolic Evolution Equations glectie

Robert Denk

Abstract In this note, we give an introduction to the concept of maximal L”-
regularity as a method to solve nonlinear partial differential equations. We first define
maximal regularity for autonomous and non-autonomous problems and describe
the connection to Fourier multipliers and R-boundedness. The abstract results are
applied to a large class of parabolic systems in the whole space and to general
parabolic boundary value problems. For this, both the construction of solution oper-
ators for boundary value problems and a characterization of trace spaces of Sobolev
spaces are discussed. For the nonlinear equation, we obtain local in time well-
posedness in appropriately chosen Sobolev spaces. This manuscript is based on
known results and consists of an extended version of lecture notes on this topic.

Keywords Maximal regularity + Fourier multipliers - Parabolic boundary value
problems - Quasilinear evolution equations

Mathematics Subject Classification Primary 35-02 - 35K90 - Secondary 42B35 -
35B65

1 Introduction

In this survey, we give an introduction to the method of maximal L”-regularity which
has turned out to be useful for the analysis of nonlinear (in particular, quasilinear)
partial differential equations. The aim of this note is to present an overview on the
main ideas and tools for this approach. Therefore, we are not trying to present the
state of the art but restrict ourselves to relatively simple situations. At the same time,
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2 R. Denk

we focus on the mathematical presentation and not on the historical development of
this successful branch of analysis. So we do not give detailed bibliographical remarks
but refer to some nowadays standard literature, where more details on the history and
on the bibliography can be found. This survey could serve as a basis for an advanced
lecture course in partial differential equations, for instance for Ph.D. students. In fact,
the present paper is based on a series of lectures given in July 2017 at the Tohoku
University in Sendai, Japan, and on an advanced course for master students at the
University of Konstanz, Germany, in the summer term 2019.

Although the concept of maximal regularity is classical, some main achievements
for the abstract theory were obtained in the 1990s and in the first decade of the present
century by, e.g., Amann (see [5, 6]) and Priiss (see [29]). The basic idea of maxi-
mal regularity is to solve nonlinear partial differential equations by a linearization
approach. Let us consider an abstract quasilinear equation of the form

Oru(t) — A(w()u(t) = F(u(1)),
(1.1)
u(0) = ug.

The linearization of (1.1) at some fixed function u is given by

(@) — A(D))v(r) = F(u(1)),
1.2)
v(0) = uy.

In the maximal regularity approach, one tries to solve the linear equation in appro-
priate function spaces and to show that the solution has the optimal regularity one
could expect. In this case, let v =: S, (F (u), up) denote the (#-dependent) solution
operator of the linear Eq. (1.2). If S, induces an isomorphism between appropriately
chosen pairs of Banach spaces, then the solvability of the nonlinear equation (1.1)
can be reduced to a fixed-point equation of the form u = S, (F (1), uo). In many sit-
uations, the contraction mapping principle can be applied to obtain a unique solution
of the fixed point equation and, consequently, of the nonlinear equation (1.1). In this
way, typically short-time existence or existence for small data can be shown. For the
long-time asymptotics and the stability of the solution, different methods have to be
used. Here, we mention the monograph by Priiss and Simonett [30], which covers
the abstract theory of maximal regularity, stability results, and many examples in
fluid mechanics and geometry.

As mentioned above, one key ingredient in the maximal regularity approach is the
choice of appropriate function spaces for the right-hand sides and the solution of the
nonlinear equation. In the present note, we restrict ourselves to the L”-setting, where
the basic spaces are L”-Sobolev spaces. (For maximal regularity in Holder spaces, we
mention the monograph by Lunardi [26].) Maximal L?-regularity is closely related to
the question of Fourier multipliers, as we will see in Sect. 3 below. Therefore, it was a
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breakthrough for the application of this concept, when an equivalent description for
maximal regularity in terms of vector-valued Fourier multipliers and R-sectoriality
was found by Weis [34] in the year 2001.

The description of maximal L?-regularity by R-boundedness made it possible
to show that a large class of parabolic boundary value problems have this property.
As standard references for R-boundedness and applications to partial differential
operators, we mention [13] and [25]. For boundary value problems, also the question
of appropriate function spaces on the boundary appears, which leads to the char-
acterization of trace spaces. Here the trace can be taken with respect to time (for
the initial value at time 0) or with respect to the space variable (for inhomogeneous
boundary data). It turns out that the theory of trace spaces is highly nontrivial and
connected with interpolation properties of intersections of Sobolev spaces. In this
way, modern theory of vector-valued Sobolev spaces with non-integer order of dif-
ferentiability enters. Results on trace spaces can be found, e.g., in [14], for a survey
on vector-valued Sobolev spaces we refer to [7] and [23].

The plan of the present survey follows the topics just mentioned. In Sect.2, we
state the idea and the formal definition of maximal regularity, mentioning the graph-
ical mean curvature flow as a prototype example. The connection to vector-valued
Fourier multipliers and R-boundedness is given in Sect. 3. In Sect. 4, we briefly sum-
marize the main definitions of the different types of (non-integer) Sobolev spaces
and give some key references. The application of the abstract concept to parabolic
partial differential equations in the whole space is given in Sect. 5, the application
to parabolic boundary value problems in Sect. 6. Finally, we return to nonlinear evo-
Iution equations in Sect. 7, where local well-posedness and higher regularity for the
solution are discussed.

There are, of course, many topics in the context of maximal L?-regularity which
are not covered here. First, we want to mention the application of maximal regularity
to stochastic partial differential equations, which leads to the notion of stochas-
tic maximal regularity. Here, the class of radonifying operators plays an important
role. A survey on stochastic maximal regularity can be found, e.g., in [33], for ran-
dom sums and radonifying operators see also [24]. Another development that could
be mentioned is the maximal L?”-regularity approach for boundary value problems
which are not parabolic in a classical sense (as defined in Sects. 5 and 6 below). Some
main applications are free boundary value problems from fluid mechanics or prob-
lems describing phase transitions like the Stefan problem. Here, the related symbols
are not quasi-homogeneous, and the theory described below cannot be applied. One
concept to show maximal L”-regularity for such problems uses the Newton polygon,
and we refer to [16] for more details.
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2 Maximal Regularity and L?-Sobolev Spaces

2.1 Linearization and Maximal Regularity

We start with an example of a quasilinear parabolic equation.

Example 2.1 (Graphical mean curvature flow) Let Ty € (0, oc], let M denote an
n-dimensional parameter space, and let X (¢, -): M — R™ ¢ € [0, Tp), be a family
of regular maps. Here, regular means that the Jacobian D, X (¢, x) with respect to
Xx € M is injective for all x € M and ¢t € [0, Tp). We set M, := X (t, M). Then the
vectors Oy, X (¢, x), ..., Ox, X (¢, x) form a basis for the tangent space T, M, at the
point X (¢, x). In particular, we are interested in the graphical situation where M =
R" (or some domain in R") and where X is given as the graph of some function
u: [0, Ty) x R" - R, sowe have X (t, x) = (x, u(¢, x)) forx € R"and ¢ € [0, Tp).

Letv: [0, To) x M — R"*! be one choice of the normal vector to M,, so v(z, x)
is a unit vector which is orthogonal to the tangent space 7, M. Foreach j = 1, ..., n,
the vector Oy, v(t, x) is an element of T, M,, and therefore we can write

O v(t,x) =Y Sij(t, x)0 X (1, x).

i=1

The matrix S(z, x) := (8;; (¢, x))i,j=1,....» is called the shape operator at the point
X (t, x), its eigenvalues are called the principal curvatures, and its trace H (¢, x) :=
tr S(¢, x) is called the mean curvature.

The family of hypersurfaces (M, )0, 7, 1is said to move according to the mean
curvature flow (see, e.g., [11] for a survey) if

O X(t,x) vit,x)=—H(t, x)v(t,x) ((t,x) €[0, Ty) x M™).

In the graphical situation, one choice of the normal vector is given by

(b x) = 1 (—Vu(t,x))
T 1+ [Va)? 1 '

From this, we obtain for the mean curvature

Ht. x) = —div | 249
T VI+Vul ]’

and the equation for the graphical mean curvature flow is given by
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" aiué)ju .
8,14 — Au — Z m ('9,8/14 = 0 mn (0, T()), (21)

i,j=1

u(0) = ug.

Here, uy is the initial value at time t = 0, so My is given as X (0, R") with X (0, x) =
(x, ug(x)). As the coefficients of the second derivatives of u depend on u itself, this
is an example of a quasilinear parabolic equation.

The above example can be written in the abstract form

Ou+ Fwu = G(u),
i (u) (u) 2.2)
u(0) = uo,
where F (u) is a linear operator depending on u and G (u#) (which equals zero in the
example) is, in general, some nonlinear function depending on u. For the linearization
of (2.2), we fix some function u and are looking for a solution of the Cauchy problem

ov+ Fu)v = G(u), 23)
v(0) = uo.
Note that (2.3) is a linear equation with respect to v, and therefore it can be treated
with methods from linear operator theory and semigroup theory. In general, (2.3) is a
non-autonomous problem, as u and therefore also F'(u) still depend on time. Setting
A(t) := F(u(t)) and f(¢) := G(u(t)), we obtain

ov(t) — A(v = f(1) (> 0),

v(0) = uyp. 24)
The idea of maximal regularity consists in showing “optimal” regularity for the
linearized equation. Roughly speaking, one should not loose any regularity when
solving the linear equation, as the solution will be inserted into the equation in the
next step of some iteration process. Considering (2.4) in an operator theoretic sense,
we want to have good mapping properties of the solution operator who maps the
right-hand side data f and u to the solution v. For this, we have to fix function
spaces for the right-hand side and the solution. So we have to choose the basic space
[F for the right-hand side f and a solution space [E for v. The choice of the space v, E
for the initial value uo will then be canonical, see below.
In case of maximal regularity, we expect a unique solution of (2.4) and a contin-
uous solution operator S, (depending on A(#) and therefore on u)

Sy Fx~vE—E, (fup) — v

of the linear equation (2.4). Then the nonlinear Cauchy problem is uniquely solvable
if and only if the fixed point equation
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u = 5,(G(u), uo)

has a unique solution u € E.

In many cases, one can show that the right-hand side of this fixed point equa-
tion defines a contraction, and therefore Banach’s fixed point theorem (contraction
mapping principle) gives a unique solution. To obtain the contraction property, one
usually has to choose a small time interval or small initial data u. Typical applica-
tions for this method are

e the graphical mean curvature flow or more general geometric equations,

e Stefan problems describing phase transitions with a free boundary,

e Cahn-Hilliard equations,

e variants of the Navier-Stokes equation.

For a survey on the idea of maximal regularity and on the above applications, we
mention the monographs [5, 29, 30].

The notion of maximal regularity depends on the function spaces in which the
equation is considered. Typical function spaces for partial differential equations are
Holder spaces and L”-Sobolev spaces. In the present survey, we restrict ourselves to
LP-Sobolev spaces, i.e., we are considering maximal L”-regularity. Here, the basic
function space for the right-hand side of (2.4) willbe f € L7 ((0, T); X), where X
is some Banach space. In the L7-setting, one will typically choose X = L?(G) for
some domain G C R”. The aim is to show that the operator A(¢) := F(u(t)) has,
for every fixed u, maximal regularity in the sense specified below.

2.2 Definition of Maximal L?-Regularity

We start with the notion of maximal L”-regularity in the autonomous setting, i.e. for
anoperator A independent of 7. Let X be aBanach space,andletA: X D D(A) - X
be a closed and densely defined linear operator. Let J = (0, T') with T € (0, oo].
We consider the initial value problem

Ou(t) — Au(t) = f(t) (e J), (2.5)

u(0) = uo. (2.6)

Here, the right-hand side of (2.5) belongs to F := L?(J; X). For optimal regular-
ity, we will expect d,u € L?(J; X) and (consequently) Au € L?(J; X). An even

stronger assumption would include u € L?(J; X), too, so that the “optimal” space
for the solution u is given by

E:=W,(J; X) N L"(J; D(A)). 2.7)
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Here, for k € Ny the vector-valued Sobolev space WS(J ; X) is defined as the space
of all X-valued distributions u for which 9®u € L?(J; X) forall || < k, see Sect.4
(cf. also [23], Sect.2.5).

For the initial value u(, we define the trace space:

Definition 2.2 (a) The trace space v,E is defined by 1,E := {v,u : u € E}, where
Yeu = ul;—¢ stands for the time trace of the function u at time ¢t = 0. We endow ;£
with its canonical norm

lxllye = inf{ljullg : u € E, vu = x}.

(b) We set oE := {u € E : y,u = 0} for the space of all functions in E with van-
ishing time trace at r = 0.

Remark 2.3 (a) Note in the above definition that, by Sobolev’s embedding theorem,
one has the continuous embedding

W,((0.T); X) € C([0. T1, X)

for every finite 7', where the right-hand side stands for the space of continuous X-
valued functions. Therefore, the value v,u = u(0) is well defined as an element of
X forevery u € E.

(b)Let T € (0, oo) again. By (a), we obtain for x € +,E and for every u € E with
T = X,

lxllx = llvullx < max lu@llx < Cllullwi:x) < Cllule.

Therefore, v,[£ C X with continuous embedding. On the other hand, if x € D(A),
then the function u(¢) := e¢~'x belongs to E with ||u|lg < C||x| x and satisfies v;u =
x. Therefore, also the continuous embedding D(A) C +,E holds.

The following result is a deep result in the theory of interpolation of Banach
spaces. Here, the real interpolation functor (-, -)g,, appears. We refer to [27, 32] for
an introduction and survey on interpolation spaces.

Lemma 2.4 Let A be a closed and densely defined operator, and let E be defined
by (2.7).

(a) The trace space v,IE coincides with the real interpolation space with param-
eters 1 — % and p, i.e., we have

YE = (X, D(A)1-1p,p

in the sense of equivalent norms.
(b) We have the continuous embedding & C C ([0, T1; v:[E). In particular, the time
trace vy E — v E, u +— u(0) is well defined, and ~,EE is independent of T .
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(c) The norm of the continuous embedding E C C ([0, T1; v[E) depends, in gen-
eral, on T and grows for decreasing T. On the subspace oE, however; this norm can
be chosen independently of T > 0, i.e., there exists a constant Cy independent of T
such that

lullcqo,rivm) < Cillulle (u € oR).

Definition 2.5 Let T € (0,00], J := (0, T), and p € [1, c0].

(a) We say that A has maximal L”-regularity (A € MR, (J; X))ifforeach f € I
and uy € ,E there exists a unique solution u € E of (2.5). Here, a function u € E is
called a solution of (2.5)—(2.6) if equality in (2.5) holds in the space L?(J; X) (i.e.,
for almost all ¢ € (0, T)), and equality (2.6) holds in X.

(b) We write A € ¢MR,(J; X) if for each f € F and ug € v,[E there exists a
function u: [0, T] — X satisfying O,u € L?(J; X) and Au € L?(J; X) such that
(2.5) holds for almost all ¢ € (0, T') and (2.6) holds as equality in X, and if for all
f € Fand uy € 1 E the inequality

10l Lrrix) + N AullLrrixy < C(Iflrix) + luollg) (2.8)

holds with a constant C = C(J) independent of f and uy.
(c) We set MR, (X) := MR, ((0, 00); X) and MR ,(X) := ¢MR,((0, 00); X).

Remark 2.6 (a) By the definition of the spaces, the map

o —A Ou— A
(Z ):E—)ny,ﬂi,ut—)(lu u)
Ve Vel

is continuous. If A € MR ,(J; X), then, due to the definition of maximal regularity,
this map is a bijection and therefore, by the open mapping theorem, an isomorphism.
In particular, we obtain the a priori estimate

lullocsxy + 10l Loix) + 1AullLrixy < C(Lf lvaix) + luollyg),  (2.9)

which is stronger than (2.8).

(b) If A € MR, (J; X), then (2.5)-(2.6) with uq := 0 is uniquely solvable for all
f € F. On the other hand, for a given ug € v, [E, there exists an extension u; € E
with y,u; = ug by the definition of the trace space. Setting u = u; + u,, then we see
that u, has to satisfy

Ouus (1) — Aux (1) = f(1) (1 > 0), (2.10)
u2(0) =0,
where f := f — Au, € F. Therefore, the operator A has maximal regularity if and
only if the Cauchy problem (2.10) is uniquely solvable for all f € F.
(c) Let the time interval J be finite, and assume A € ¢MR,(J; X). Then the
Cauchy problem (2.10) has a unique solution u for all f € Fwith Qu € L?(J; X).
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As u(0) =0, we can apply Poincaré’s inequality in the vector-valued Sobolev
space W;((O, T); X) (or the fundamental theorem of calculus, see [23], Propo-
sition 2.5.9, which yields absolute continuity of u) and obtain u € LP(J; X).
This yields u € E, and by part (b) of this remark, we see that A € MR, (J; X).
Therefore, MR, (J; X) = MR, (J; X) for finite time intervals. Similarly, if A €
oMR,((0,00); X) and if A is invertible, we can estimate ||ul|zr(0,00):x) < C
| Aull £r(0,00); x) and obtain u € I again, which implies A € MR, ((0, c0); X).

It turns out that the property of maximal L?-regularity is independent of p. For a
proof of the following result, we refer to [17], Theorem 4.2.

Lemma 2.7 If A € MR, (X) holds for some p € (1, 00), then A € MR ,(X) holds
forevery p € (1, 00).

Based on this, we write MR(X) instead of MR, (X). Note that the constant C in
(2.8) still depends on p.

By Definition 2.5 and Remark 2.6 (b), the operator A has maximal L”-regularity
in J = (0, 0o) if and only if the Cauchy problem

Ouu(t) — Au(t) = f(1) (1 € (0, 00)), @.11)
u() =0
has a unique solution u € W;(J ; X). We can extend f and u by zero to the whole
line ¢+ € R and obtain functions f € LP(R; X) and u € Wpl (R; X) (for this, we need
u(0) = 0). After this, we apply the Fourier transform in ¢, which is defined for smooth
functions by

(Fau)(r) = 2m)~'/? / u(t)e " dr.
R

For tempered distributions, we define %, by duality. Note that [.%,(O,u)](T) =
iT(Z,u)(7). Therefore, (2.11) is equivalent to

(iT = A(Fu)(1) = (F (1) (T E€R). (2.12)

Theorem 2.8 Let J = (0, 00) and A be a closed densely defined operator. Then
A € MR, (J; X) if and only if the operator

F it — A)7\Z,
defines a continuous operator in L? (R; X).

Proof By definition, A € gMR,(J; X) if and only if (2.11) has a unique solution u
with d,u € LP(R; X) (again extending the functions by zero to the whole line), and
if we have an estimate of J;u. This is equivalent to unique solvability of the Fourier
transformed problem (2.12), i.e., the existence of (iT — A)~! for almost all 7 € R
such that the solution u satisfies
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ou=Flit(it — A Z, f e LP(R; X),

t

and the estimate of O,u is equivalent to the condition 5{’11'7(1'7' —A)7Z e
L(L?P(R; X)). O

2.3 Maximal Regularity for Non-autonomous Problems

With respect to the nonlinear equation (2.3) and its linearization (2.4), it makes sense
to define maximal regularity also for non-autonomous problems. So we consider

Ou(t) — A@u(t) = f@) (€ (0,T)), (2.13)
u(0) = ug. (2.14)

Here we assume that all operators A(¢) are closed and densely defined operators
in some Banach space X and have the same domain D,. We also assume that we
have a norm || - ||4 on D(A) which is, for every t € (0, T'), equivalent to the graph
norm of A(¢), which is given by || - [|x + [|A(#) - ||x. In this way, we can identify
the unbounded operator A(z): X D Dy — X with the bounded operator A(¢) €
L(D4, X). Moreover, we assume that A € L>®°((0, T); L(D4, X)).

Analogously to the autonomous case, we consider the basic space for the right-
hand side F := L?(J; X) with J := (0, T') and the solution space

E:=W,(J; X)NLP(J; Dy). (2.15)
We identify A: (0, T) — L(Dj, X) with a function on E by setting
(Au)(t) ;= A(Wu(@t) (€ (0,T), u€kE).

The trace space ;£ is defined as in Definition 2.2 a).

Definition 2.9 (a)Let f € Fandug € E. Thenafunctionu: (0, T) — X iscalled
a strong (L7)-solution of (2.13)—(2.14) if u € E and if (2.13) holds for almost all
t € (0, T) and (2.14) holds in X.

(b) We say that A € L*°((0, T); L(D4, X)) has maximal L?-regularity on (0, T')
if for all f € F and u € ,E there exists a unique strong solution u € E of (2.13)-
(2.14).

Remark 2.10 Similarly to the autonomous case, the operator A € L*°((0, T);
L(D4, X)) has maximal regularity if and only if

O, —A,7):E—Fx~yE

is an isomorphism of Banach spaces. By trace results, this is equivalent to the con-
dition that (2.13)—(2.14) with uy = 0 has a unique solution u# € E for every f € F.



An Introduction to Maximal Regularity for Parabolic Evolution Equations 11

The following result shows that maximal regularity for the non-autonomous oper-
ator family (A(?));c(0,7) can be reduced to maximal regularity for each A(z) if the
operator depends continuously on time.

Theorem 2.11 LetT € (0,00)and A € C([0, T], L(Dy, X)). Then A has maximal
LP-regularity in the sense of Definition 2.9 if and only if for every t € [0, T] we have
A(t) e MR((0, T); X).

This is shown, using perturbation arguments, in [6], Theorem 7.1.

3 The Concept of R-Boundedness and the Theorem
of Mikhlin

In Theorem 2.8, we have seen that maximal regularity of the operator A is equivalent
to the boundedness of the operator

F ' mF LP(R; X) — LP(R; X),

where the operator-valued symbol m: R — L(X) is given by m(7) :=it(i1 —
A)~!. The classical theorem of Mikhlin gives sufficient conditions for a scalar-valued
symbol to induce a bounded operator in L”(R"). For the operator-valued analogue,
the concept of R-boundedness can be used. Therefore, we discuss in this section the
notion of an R-bounded family and vector-valued variants of Mikhlin’s theorem. As
references for this section, we mention [13], Sect. 3, and [25], Sect. 2.

3.1 ‘R-Bounded Operator Families

Let X and Y be Banach spaces.

Definition 3.1 A family 7 C L(X, Y) is called R-bounded if there exists a constant
C > Oandsome p € [1, co) suchthatforall N e N, T; e T,x; e X(j=1,...,N)
and all sequences (¢ ;) jen of independent and identically distributed {—1, 1}-valued
and symmetric random variables on a probability space (€2, <7, P) we have

N N
ZEJ'TJ'.X]' <C ZEJ‘.XJ' . (3.1)
j=1

LP(Q,Y) j=l LP(2,X)

In this case, R,(7) :=inf{C > 0 : (3.1) holds} is called the R-bound of 7.
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Remark 3.2 (a) For the sequence of random variables as above, we have P({¢; =
1) =P({e; =-1}) = % As the measure Po (¢q, ..., ey) ! is discrete, the inde-
pendence of the sequence is equivalent to the condition

P(e, = 21,...,en = 2y} =27V ((zl,...,zN) c{-1,1)V, N e N).

Therefore, R-boundedness is equivalent to the condition

IC>0VNeNVT,...,.TyeTVx,....,xy€ X

pN\ Up 1/p

N N P
Yo 12 T sc|l X | Xuw
j=1 j=1

Y X

(3.2)

However, the stochastic description is advantageous, in particular, one can choose
the probability space (2, o7, P) = ([0, 1], ([0, 1]), A), where Z([0, 1]) stands for
the Borel o-algebra, A for the Lebesgue measure, and the random variables ¢; are
given by the Rademacher functions (see below). It seems to be unclear if the notation
“R” stands for “randomized” or for “Rademacher”.

Definition 3.3 The Rademacher functions r,: [0, 1] — {—1, 1} are defined by
r,(t) := signsin(2"mt) (¢ € [0, 1]).

By definition, we have

)L e ),
rl(t)_{—l, red .

The function r, has value 1 on the intervals (O, %) and (%, %). An immediate calcu-

lation yields
1

/rn(t)rm(t)dt =0um (n,m e N).
0

Moreover, forall M € N, ny,...,npy € Nand (z1,...,2y) € {+l,—1}M we have

M
1
At € 10,112 () =21,y () = 2D = 537 = [ M € 10,1270 = 2.
j=1

Therefore, the sequence (r,),cn is independent and identically distributed on the
probability space ([0, 1], Z([0, 1]), A) as in Definition 3.1. As all properties of ()
which are needed in this definition only depend on the joint probability distribution,
we can always choose €, = r;,.
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Definition 3.4 Let X be a Banach space and 1 < p < oo. Then Rad,, (X) is defined
as the Banach space of all sequences (x,),eny C X for which the limit limy_ oo
2,11\;1 r,(t)x, =: f(t) exists for almost all ¢ € [0, 1] and defines a function f €

LP([0, 1]; X). For (x,)sen € Rad,,(X), we define

[e¢]

E 'nXn

n=1

I Cen)nenllirag, (x) ==

Lr([0,1]:X)

Remark 3.5 (a) It can be shown that for any sequence (x,),eny C X, the sequence
(|| Z,ILV:I FuXy || LP([O,I];X))NEN is increasing, and therefore Rad,, (X) is the space of all
sequences (x,),en such that

e}

E I'nXp

n=1

< Q.

LP([0,1];X)

(b) By definition, the map J: Rad,(X) — L7([0, 1]; X), (xp)n > fo:, FnXn
is well-defined. Assume that J ((x,),) = 0,1.e., Y, rax, = Oholdsin L” ([0, 1]; X).
Then ), r, f(x,) = Oforall f € X'. Taking the inner productin L? with Iy, for some
fixed ng, we get, using the orthogonality, f(x,,) =0 for all f € X’ and therefore
Xp, = 0. As ng was arbitrary, we obtain x, = O for all n € N, which shows that J is
injective. Therefore, Rad, (X) can be considered as a subspace of L?([0, 1]; X), and
the norm in Rad,, (X) is the restriction of the norm in L” ([0, 1]; X).

Theorem 3.6 (Kahane-Khintchine inequality) The spaces Rad,, (X) are isomorphic
forall 1 < p < o0, i.e., there exist constants C, > 0 with

oo
E I'nXn

n=1

oo

§ T'nXn
n=1

< <C,

00
E I'nXp
n=1

1
C
r L2([0,11:X)

Lr([0,1];X) L2([0,11; X)

In the scalar case X = C, the proof of this inequality is elementary, for arbitrary
Banach spaces, however, rather complicated. In the scalar case Theorem 3.6 is known
as Khintchine’s inequality, in the Banach space valued case as Kahane’s inequality.
‘We omit the proof which can be found, e.g., in [23], Theorem 3.2.23. We also remark
that the left inequality still holds for p = oo due to the embedding L*°([0, 1]; X) C
L?([0, 1]; X), but the right inequality does not hold for p = oo, as the constant C »
tends to infinity for p — oo (see [24], Theorem 6.2.4).

Lemma 3.7 (a) If condition (3.1) in Definition 3.1 holds for some p € [1, 00), then
it holds for all p € [1, 00). For the corresponding R-bounds R ,(T) the inequality

1
o R(T) = Ry(T) < CyR(T)
p

holds, where the constants C,, are from Theorem 3.6.
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(b) A family T C L(X,Y) is R-bounded with R,(T) < C if and only if for all
N eNandall Ty, ..., Ty € T, the map

Tyxy, n <N,
T((xn)neN) = (yn)neN’ Yn = {O n> N

defines a bounded linear operator T € L(Rad, (X)) with norm ||T| < C.

Proof Part (a) follows directly from Kahane’s inequality, and part (b) is a reformu-
lation of the definition of R-boundedness and an application of the p-independence
from (a). m]

Remark 3.8 (a) If 7 C L(X, Y) is R-bounded, then 7 is uniformly bounded with
suprc7 IT || < R(7T). This follows immediately if we set N = 1 in the definition of
‘R-boundedness.

(b) If X and Y are Hilbert spaces, then R-boundedness is equivalent to uniform
boundedness. In fact, in this situation also the spaces L?([0, 1]; X) and L%([0, 1]; Y)
are Hilbert spaces, and (rnxn)nEN - LZ([O’ 1]s X) and (rnTn-xn)nEN - Lz([o’ 1]1 Y)
are orthogonal sequences. If |T'|| < Cy forall T € T C L(X,Y), then

2 N N N
2 2 2 2
= Z ”rnTnxn”LZ([oJ];Y) = Z ”Tnxn”Y =< CT Z ”xn”X
12[0,11;Y) n=I n=I n=1
N 2

E FnXp

n=1

N
E raThx,
n=1

=C>

L2([0,11; X)

Remark 3.9 Let X, Y, Z be Banach spaces,and 7,S C L(X,Y)andUd C L(Y, Z)
be R-bounded. Then the families

T4+S:={T+S:TeT,SeS}

and
UT ={UT:Uecl, TeT)}

are R-bounded, too, with
RT+S) <RT)+RWS), RUT) < RUYR(T).

To see this, let S, € S, T, € 7 and U, € U forn = 1, ..., N. Then the statement
follows from

N

E rn SV! xl’[

n=1

N

D T+ S)xn

n=1

N

Z er Tn-xn

n=1

+
L1([0,11:Y)

=

LI([0,11;Y) L1([0,11:Y)
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and
N

N
ZrnUnTnxn = R(u) ZrnTnxn

n=1 L'([0,11;2) n=1 L'([0,11;Y)
The following result turns out to be useful for showing R-boundedness.

Lemma 3.10 (Kahane’s contraction principle) Let 1 < p < oo. Thenforall N € N,
forallx; € X andall a;, bj € Cwithlaj| < |b;|, j =1,..., N we have

N N
D airix; <23 birx; - (33)
j=1

LP([0,1;X) =1 LP([0,1];X)

Proof Considering X; := b;x;, we may assume without loss of generality that b; =
land |a;| < 1forall j =1,..., N. Treating Rea; and Ima; separately, we only
have to show that for real a; with |a;| < 1 the inequality

N

N
Zajrjxj < erxj (3.4)
=1

Leqoapxy = LP([0,11;X)

holds. For this, let {e®};,_; o~ be a numbering of all vertices of the cube [—1, 1]".
Because of a := (qy, ..., an)" € [—1, 11V, the vector a can be written as a convex
combination of all e®, i.e., there exist \; € [0, 1] with

2N N
Z)\k =1 and a= Z)\ke(k)
k=1 k=1

(k)

Therefore, for e® = (e} e we see that

N
E arix; <E Y E rje xj

J= Lronx) K=t LP([0,11:X)
N N
(k)
< max rje; x; = X
= l<k<oV Z i€ Z i
j=l L7([0,1];X) j=1 Lr([0,1]; X)
In the last equality we used the fact that {r;: j =1,..., N} and {rje; M=

1, ..., N} have the same joint probability distribution. O
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Theorem 3.11 Let T C L(X,Y) be R-bounded. Then also the convex hull

conv T := [Xn:Aka neN, T, eT, N €0, 1], Xn:Ak - 1}
k=1 k=1

and the absolute convex hull

n

aconVT::{Z)\ka neN, T, eT, \ €C, Z|)\k|—1}

k=1 k=1

are R-bounded. The same holds for the closures conv conv? of conv T and aconv T of
aconv 7 with respect to the strong operator topology. We have R (conv T') < R(T)
and ’R(aconVT ) < 2R(T).

Proof (a) Let Ty, ..., Ty € conv(7). Then there exist A ; € [0, 1] and Ty ; € T
with lenil >\k,j =land T} = lenil Ak,ka,j~

Define A ; :=0and T ; :=Ofor j € Nwith j > mgandk =1,..., N.For{ e
NV we define \; := ]_[,1:]:1 Mg, and Ty ¢ := Ty q, fork = 1,..., N.Then )\, € [0, 1]

as well as
DX=) ) A A, =1
LeNn £,eN IyeN

Forall k =1,..., N we obtain

Z ATy = Z AeTeo, = Z Nt T l_[ Z Ajt;

LeNN LeNN £eN Jj#L \L;eN

= E Meee Te,op = Ti.
ZkeN

Note that these sums are finite. We get

N

Zrkaxk

k=1

N
DD nAeTeex

k=1 ¢eNN

LP([0,1];Y)

< E Ae E i Tk o Xk
LeNN
§ Vi Xk

k=1

Lr([0,1]:Y)

<SRT Y N

Lr([0,11;Y) teNr

E Tk Xk

LP([0,1];X)

=R(T)

Lr([0,1];X)

Consequently, R(conv7) < R(7).
(b) By Kahane’s contraction principle, R(7y) < 2R(7), where we define
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To:={(\T:TeT, \eC, |\ <1}

Because of conv 7y = aconv 7, we get R(aconv7) < 2R(7) due to a).
(c) The closedness with respect to the strong operator topology follows directly
from the definition of R-boundedness. O

The above results are useful to prove R-boundedness in general Banach spaces.
In the special situation that X is some LZ-space, there is a helpful description of
‘R-boundedness:

Lemma 3.12 (Square function estimate) Let (G, <7, ) be a o-finite measure space,
X =L9(G),andlet 1 < g < 00. ThenT C L(X) is R-bounded if and only if there
exists an M > 0 with

1/2 N 1/2

N
HZM&F <M|| D IhHP
j=1

L4(G) j=l L4(G)
forall N e N, T, € T and f, € L1(G).

Proof We write f ~ g if there are constants Cy, C, > O with C;|f| < |g| < C,| f].
To show R-boundedness, by Kahane’s inequality, we can consider the R,-bound.
For this, we can calculate

N q 1 q

Zrnfn

n=1

N

Zrn(t)fn(')

n=1

dt
L4(G)

L([0,1EL9(G)) o

1 q

dp(w) dt

N
memm

0

!/
“(/f

0

q
(@) fu(w)| dtdp(w)
n=1

2 q/2

N
D () fuw)

n=1

dp(w)

q/2

/<§]ﬁwn> wwﬁ=(§]mﬁwq

n=1 L9(G)

Here, Fubini’s theorem and the inequality of Khintchine were used. Now the state-
ment follows by considering the above calculation for both sides of the definition of
‘R-boundedness. m|
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Example 3.13 Using the square function estimate, it is easy to construct an example
of a uniformly bounded operator family which is not /R-bounded. Let p € [1, 00) \
{2}. Then the family {7,, : n € No} C L(L?(R)), T,, f(-) := f(- — n) of translations
is not R-bounded, as for f, = xo,1; we have

N—1 1/2
(Z |T,1fn|2) = Ixiomllr@ = N7,
n=0

L7(R)

TR
(Z |fn|2) = N'2lxpollra = N2

n=0 LP(R)

For 1 < p < 2, we use the fact that &/2 — oo for N — o0. The proof for p > 2 is

N/
similar.

Lemma 3.14 (a) Let G C R" be open and 1 < p < oo. For ¢ € L*(G), define
my, € L(L?(G; X)) by (m,, f)(x) := @(x) f (x). Then for r > 0 one obtains

Ry((my ¢ € L¥G). gl = 1)) <2

(b) Let 1 < p <00, G CR" be open, and T C L(L?(G; X), LP(G;Y)) be R-
bounded. Then

Rp({mﬂmw T eT, o, e LG, |¢los <7 1¥lloo < s}) < 4rsR (7).

Proof (a) By the theorem of Fubini and Kahane’s contraction principle,

N N

> remg fi = > npnfi
k=1 LP([0,1];LP(G; X) k=1 LP(G;LP([0,11; X)
N N
<2r Zrkfk =2r Z”kfk
k=1 LP(G;LP([0,1];X) k=1 L7([0,1]:L?(G: X)
(b) follows from (a) and Remark 3.9. m]

In the following corollary, we consider strongly measurable function. Note that a
function N: G — L(X,Y) is called strongly measurable if there exists a u-zero set
A € o/ such that N|g\ 4 is measurable and N(G \ A) is separable.

Corollary 3.15 Let (G, o7, ) be a o-finite measure space and T C L(X,Y) be
R-bounded. Let

N :={N: G — L(X,Y)|N strongly measurable with N(G) C T}.
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Forh € LY(G, i) and N € N define

Ty px = /h(w)N(w)xd,u(w) (x € X).
G

Then
R({TN,h Nkl <1, N e N}) < 2R(T).

Proof Lete >0.For x,...,xy € X, h € LY(G, 1) and N € N we consider the
measurable map

M:G— YN, Mw):= (N(w)xj)j=1,...,1v'

Then M € L°°(G; YV) is strongly measurable, and therefore there exist a measurable
partition G = U;’il G;,GiNG;=0fori # j,andw; € G, with

IN(w)xy — N(wj)xilly <& foralmostallw € Gjandallk =1,..., N.

Define

Si=Y /h(w)du(w) N(w)).

=1
J G,

Then || Ty pxx — Sxilly < eforallk =1,..., N. Therefore, Ty j is a subset of the
neighbourhood of § given by xi, ..., xy and € with respect to the strong operator
topology. Because of S € aconv 7 *, we obtain Tn p € aconv T . Now the statement
follows from Theorem 3.11. O

Corollary 3.16 Let N: X9 — L(X,Y) be holomorphic and bounded, and let
N(0Zy \ {0}) be R-bounded for some 0 < 0. Then N (Zy) is R-bounded, and for
every 01 < 0 the family {A%N(A) i A € Xy, } is R-bounded.

Proof Considering M(\) := N(\??/™), we may assume 6 = 5. Now we use Pois-
son’s formula

1 o0
N(a+iB) =~ f mMis)ds (a > 0).

Because of || % ﬁ |1 r) = 1, the first assertion follows from Corollary 3.15.
By Cauchy’s integral formula, we have

0
AﬁN(A) = / hx(WN (Wdp (X € Xy,)

o))
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for h(\) := #ﬁ Because of SUP)csx,, 1Al o, < 0o, the second assertion

follows from Corollary 3.15, too. O

Lemma 3.17 Let G C C be open, K C G be compact, and H: G — L(X,Y) be
holomorphic. Then H(K) is R-bounded.

Proof Let zp € K. Then there exists an r > 0 with

[ee]

H) =Y _ H%(z)

k=0

IRY
% (Iz — 20l < 7).

Here the series converges in L(X, Y) and

rk

o0
._ (k) _
po = ;_0 | H™ (o)l Lx,v) o <o

As a set with one element, { H®) (z0)} is R-bounded with R-bound || H® (z0) || L (x.v)-
By Kahane’s contraction principle, the family {H® (z())(z_k—z!o)k 1z € B(zo, 1)} i1s R-

bounded, too, with R-bound not greater than 2% | H® (z0) || L(x.v). Therefore, we
obtain for all finite partial sums the R-bound 2py. Taking the closure with respect to
the strong operator topology, the same holds for the infinite sum. By a finite covering
of K, we obtain the statement of the lemma. 0O

Theorem 3.18 Let G C R" be open and 1 < p < oo. Let A be a set and {ky : X €
A} be a family of measurable kernels ky: G x G — L(X,Y) with

Ry({kaz.2) A e A}) Sko(z,2) (2.7 € G,

Assume that for the corresponding scalar integral operator

(Kof)(2) = / ko(z. 2) f()dZ (f € LP(G))

G

one has Ky € L(L?(G)). Define

(Krf)2) = /kA(Z,Z/)f(Z/)dZ/ (f € L?(G; X)).

G

Then K, € L(L?(G; X), LP(G; Y)) with
Ry({Kx: A € A}) < IKollLwron-

Proof We use the definition of R-boundedness and get
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N
> riKy f
i=1 LP([0,13;L7(G: )
Ly p 1/p
= / > ri / ky, ¢ 2) f3(2)dz dt
o [I7=1 G LP(G:Y)
. N p 1/p
= / /er(t)kAj(-,z’)fj(z’)dz’ dt
0o llg /= Lr(G:Y)
P 1/p

Setting (7, z,7) := Zj:I ri(t)ky, (2, 2') f;(z'), the integral with respect to # in the

/

N
/ /Zri(t)k/\j(z’Z/)fj(Z/)dZ’ dz dt
G G v
! N 4 1/p
/ fer(’)kkj(z’zl)fj(Z’)dz’ dt dz .
ol

Y

Q\

N

last term equals || fG (-, 2, z’)dz’lli,,([o’l]). Now we apply the inequality

/@(',Z,Z/)dz/ E/||<P(',Z,Z/)||L"([0,l])dz/

G

Leqo,1py G

for Bochner integrals and obtain, using the assumption of R-boundedness,

N

erK)‘jfj

j=1

IA

IA

LP([0,1];LP(G;Y))

B N P 1/p
/ > ik (2. 2) £(@) 7’| dz
G|l
LP([0,11;Y)

B N P 1/p
/ko(Z,Z/) er(')fj(z/) d7' | dz
LG i=l Lr([0,13;X)

N

erfj(')

j=1

Lr([0,1]:X) LP(G)

21
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N
< IKollzry) Z”jfj(')

=1 Lr0.11:%7 I 1oy
N

= 1KollLr oy erfj

Jj=1

LP([0,1];LP(G; X))

3.2 Fourier Multipliers and Mikhlin’s Theorem

We have already seen in Theorem 2.8 that maximal regularity is equivalent to the
L?(R; X)-boundedness of the operator ﬂ,‘l iT(iT — A)~\.%,. Thisis a typical exam-
ple of a (vector-valued) Fourier multiplier. In the analysis of partial differential equa-
tions and boundary value problems in L?-spaces, the question of Fourier multipliers
play a central role. The answer is given by the classical theorem of Mikhlin and by
its Banach space valued variants.

In the following, we use the standard notation D := —i(Jy,, ..., 0y,) as well as
the standard multi-index notation D* = (—i)*l921 ... 9", We start with a simple
example.

Example 3.19 Consider the Laplacian A in L? (R") with maximal domain D(A) :=
{u e LP(R") : Au € LP(R")}. Obviously we have D(A) D W,%(R"). To show that
we even have equality, we consider u € D(A) and f :=u — Au € LP(R"). Let
|a] < 2. Then :

1+ ¢P

Du=7""%¢"Fu=—-F"1

Ff

holds as equality in .’ (R"), where . stands for the n-dimensional Fourier transform
(see below). To obtain D“u € L”(R"), we have to show . 'm..Z f € LP(R"),
where m, (&) := IJEW So we have to prove that

e F ' 'mOFf

defines a bounded linear operator on L”(R"). This is in fact the case, as we will see
from the classical version of Mikhlin’s theorem, Theorem 3.22 below.

In contrast to the above example, we will also need vector-valued versions of
Mikhlin’s theorem. For this, we need some preparation, starting with the vector-
valued Fourier transform. Let X be a Banach space. Then the Schwartz space
< (R"; X) is defined as the space of all infinitely smooth functions ¢: R" — X
for which

p(p) = sup max (1 + )" [9"p(0)lx < oo

xeR?
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for all N € N. With the family of seminorms {py: N € N}, the Schwartz space
becomes a Fréchet space. The space of all X-valued tempered distributions is defined
by

S (R"; X) = L(Z(R"), X).

On &' (R"; X), we consider the family of seminorms
ot LR X) = [0,00), u> u(@)lx (¢ € LR").

Then the family {7, : ¢ € .7(R")} defines a locally convex topology on ./ (R"; X).
Note that in the scalar case X = C, this is the weak-*-topology. One can see as in
the scalar case that the Fourier transform, defined for ¢ € . (R"; X) by

(Zp)(©) = (2m)"/? / e px)dx (EeR", pe SR X)),
R/t

can be extended by duality to an isomorphism .# : ./ (R"; X) — .&'(R"; X).

Definition 3.20 Let X, Y be Banachspaces, 1 < p < oo,andletm: R" — L(X,Y)
be a bounded and strongly measurable function. Because of .# ! € L(L'(R"; X),
L>*(R"; Y)), the function m induces a map 7,,: . (R"; X) — L*([R"; Y) by

T.f =7 'mZf (f e SR";X)).

The function m is called a Fourier multiplier (more precisely, an L”-Fourier multi-
plier) if
1T fllLr@®eyy < Cllfllr@ex) (f € LR X)).

As Z(R"; X)isdensein L?(R"; X) for p € [1, 00), this implies that 7}, has a unique
extension to a bounded linear operator 7,, € L(L”(R"; X), L?(R"; Y)). In this case,
m is called the symbol of the operator 7,,, and we write

oplm] .= FmF =T, (3.5)

and symb([T,,] := m.
We start with the scalar case X =Y = C.

Remark 3.21 In the Hilbert space case p = 2, one can apply Plancherel’s theorem.
Therefore, we have op[m] € L(L*(R")) if and only if the multiplication operator
g+ mg is a bounded operator in L?(R"). This is equivalent to the condition m e
L>®(R").

In fact, if m € L*°(R"), then |mg|l2wn) < lImllLo@nllgll 2. On the other
hand, if m ¢ L>(R"), then there exists a sequence (A;)ren Of measurable subsets
of R” such that 0 < A(Ay) < oo and |m(x)| > k for x € Ay. For the characteristic
function g; := x4, we obtain g; € L*(R") and
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Therefore, op[m] cannot be a bounded operator in L2(RM).

The following classical theorem gives a sufficient condition for a function to
be a (scalar) Fourier multiplier and has many applications in the theory of partial
differential equations. In the following, [5] denotes the largest integer not greater
than 7. We state this result in two variants.

Theorem 3.22 (Mikhlin’s multiplier theorem) Let 1 < p < oo andm: R" \ {0} —
C. If one of the two conditions

(i) m e CLHI R\ {0}) and
1170 m©)] < Cy (€ € R*\ {0}, I8 < [51+ 1),
(ii) m € C"(R"\ {0}) and
£70°m(©)] < Cu (£ € R"\ {0}, B €{0,1}")
holds with a constant Cy; > 0, then m is an LP-Fourier multiplier with

loplm]llLLrryy < c(n, p)Cuy,

with a constant c(n, p) depending only on n and p.

A proof of this theorem (which is also called Mikhlin-Hérmander theorem) can
be found, e.g., in [19], Sect. 6.2.3. Condition (i) is sometimes called the Mikhlin con-
dition, whereas condition (ii) is called the Lizorkin condition. For the L”-continuity
of singular integral operators, we also refer to [31], Sect.6.5.

For the following result, note that a function m: R" \ {0} — C is called (posi-
tively) homogeneous with respect to & of degree d € R if

m(p) = p'm(€) (€ eR"\ {0}, p > 0).

Lemma 3.23 Let m € CI3H1(R" \ {0}) be homogeneous of degree 0. Then m sat-
isfies the Mikhlin condition.

Proof Ifafunctionm € C*(R" \ {0}) ishomogeneous of degree d, then its derivative
0°m(€) is homogeneous of degree d — || for all |3| < k. This follows from the
identities 9°[m(p€)] = pI?(87m)(p€) and °[p?m ()] = p*(D°m)(£).

Now letm € C'21(R" \ {0}) be homogeneous of degree 0, and let | 3] < [%] + 1.
Then mg(§) := [] ‘5'85111(5 ) is homogeneous of degree 0 and continuous. Therefore,

()] = \mﬂ(é—l)\ < max m()| <00 (€ €'\ (0],
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As a first application of Mikhlin’s theorem, we can now answer the question from
Example 3.19.

Corollary 3.24 Let 1 < p < co. Then {u € LP(R") : Au € L"(R")} = W2(R").

Proof As we have seen in Example 3.19, we have to show that the function m, (§) :=
IJSW satisfies the Mikhlin condition for all || < 2. For this, we write m,(§) =

Mo (€, 1) where the function 77, : R"*! \ {0} — C is defined by

N ga u2—|u|
ma(§, p) == ———.
: w2+ 1€

As the function 772, is smooth and homogeneous of degree 0, it satisfies the Mikhlin
condition by Lemma 3.23. Setting ;1 = 1, we see that also m,, satisfies the Mikhlin
condition. O

As mentioned above, we also need vector-valued variants of Mikhlin’s theorem.
The following results assume some geometric conditions on the Banach space X.
For a detailed discussion of these properties, see, e.g., [23], Chap. 4.

Definition 3.25 (a) A Banach space X is called a UMD space or a space of class HT if
the symbol m (§) := —i sgn(€) idyx yields abounded operator op[m] € L(L?(R; X)).
The operator op[m] is called the Hilbert transform.

(b) A Banach space X is said to have property (o) if there exists a constant
C > O such that for all N € N, all i.i.d. symmetric {—1, 1}-valued random variables
€1,...,eyon ande},..., ey on 2, all oy; € Cwith |oy| <1, and all x;; € X
we have

N N
Z aijiE;xi_/ <C Z E,’E}X,‘j
=1 LA(Q2x;X) ij=1 L2(2x;X)

Remark 3.26 (a) Every UMD space is reflexive, i.e., the canonical embedding into
its bidual space is surjective (cf. [23], Section B.1.c), as can be seen in [23], Theo-
rem 4.3.3. In particular, L'(G) and L>(G) are no UMD spaces. However, L' (G)
has property ().

(b) Every Hilbert space is a UMD space with property (o). If E is a UMD space
with property («) and if (S, o, p) is a o-finite measure space, then also L?(S; E) is
a UMD space with property (o) for all p € (1, co) (see [23], Proposition 4.2.15).

(c) More generally, if G C R" is a domain, E is a UMD space with property ()
and p, g € (1, 00), then the vector-valued Besov space B;q(G; E) and the vector-
valued Triebel-Lizorkin space F,, (G; E) are again UMD spaces with property (c),
see [23], Example 4.2.18. In particular, this holds in the scalar case E = C.

The following result is the vector-valued analog of Mikhlin’s theorem and was
central in the development of the theory and application of maximal L”-regularity.
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Theorem 3.27 Let X and Y be UMD Banach spaces, and let 1 < p < co. Assume
m € C*"(R"\ {0}; L(X,Y)) with

R({|§|‘“‘8”m(£) CE R\ {0}, a € {0, 1}”}) = Kk < 0.

Then m is a vector-valued Fourier multiplier, and for the norm of op[m] (see (3.5))
we have
I oplmllLLr @ x).Lr @ vy < CK,

where the constant C depends only on n, p, X, and Y.

The proof of Theorem 3.27 uses Paley-Littlewood decompositions, see [25], The-
orem 4.6, or [23], Theorem 5.3.18.

In the last result, we had one symbol m and the related operator op[m]. The
following theorem shows that for a family of symbols satisfying uniform Mikhlin
type estimates, also the related operator family is 7R-bounded.

Theorem 3.28 Let X and Y be UMD Banach spaces with property («). Let T C
L(X,Y) be R-bounded. Consider the set

M= {m € C"R"\ {0); L(X,Y)) : €9D%(&) € T (€ € R"\ {0}, a € {0, 1}”)}.

Then {op[m] :m € M} C L(LP(R"; X), LP(R"; Y)) is R-bounded with R ,({op
[m]:m e M}) < CR,(T), where the constant C depends only on p,m, X, and
Y.

For a proof of this result, we refer to [21], Theorem 3.2. Theorem 3.28 is also the
basis for an iteration process: R-bounded symbol families yield /R-bounded operator
families. For an application to pseudodifferential operators with R-bounded symbols,
we also refer to [15].

Note that Theorem 3.28 also gives a strong result in the scalar case X = C. AsCis
a Hilbert space, boundedness in C equals R-boundedness. Therefore, boundedness
of a family of scalar symbols implies R-boundedness of the corresponding operator
family. The same holds if X is a general Hilbert space. We give a simple but useful
example.

Corollary 3.29 Let {m) : A € A} be a family of matrix valued functions m) €
C"(R" \ {0}; CN*N) with

1€ D mA(©)lcvv = Co (£ € R"\{0}, v € {0, I}, A € A).

Then {op[m,]: A € A} C L(LP(R"; CY)) is R-bounded with R-bound C - Cy,
where C only depends on p and N.

Proof As a Hilbert space, X = CV is a UMD space with property («). By assump-
tion, we know that
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{€°DgmA(©) € € R"\ {0}, a € {0,1})", X e A} C L(X)

is norm bounded and consequently, as X is a Hilbert space, also R-bounded. Choos-
ing 7 := {A € CVN*V : |A| < Cp} in Theorem 3.28, we obtain the R-boundedness
of {op[my]: A € A} C L(L?(R"; CV)). ]

3.3 R-sectorial Operators

Now we come back to the question of maximal L”-regularity. As we have seen in
Theorem 2.11, maximal regularity holds if and only if the operator-valued symbol
m(\) := A(A — A)~! for A € iR induces a bounded operator in L”(R; X). So we
can apply the one-dimensional case of Theorem 3.27. We start with a notion from
operator theory.

In the following, let

%, = [e e C\ (0} Jarg@)] < o}
for ¢ € (0, m]. We denote the spectrum and the resolvent set of an operator A by
o(A) and p(A), respectively.

Definition 3.30 Let A: D(A) — X be a linear and densely defined operator. Then
A is called sectorial if there exists an angle ¢ > 0 such that p(A) D X, and

sup A\ — Al < 0.
AeX,

If this is the case, we call

@a =sup{p: p(A) D I, sup IAA = A) Ml < o0}
(S

the spectral angle of A.

The following theorem is an important result from the theory of semigroups of
operators (see, e.g., [18] , Theorem 11.4.6).

Theorem 3.31 Let A: D(A) — X belinear and densely defined. Then the following
statements are equivalent:

(i) A generates a bounded holomorphic Co-semigroup on X with angle 9 € (0, 3].
(ii) A is sectorial with spectral angle p4 > 0 + 7.

It turns out that a similar condition characterizes operators with maximal L”-
regularity. For the following result, cf. [13], Theorem 4.4, [34], Theorem 4.2, and
[25], Theorem 1.11.



28 R. Denk

Theorem 3.32 (Theorem of Weis) Let X be a UMD Banach space, 1 < p < 00, and
A be a sectorial operator with spectral angle o > 5. Then A € MR((0, 00); X) if
the family

Aa-4":x ez} cLX)

is R-bounded for some p > 7.

With respect to the last theorem, one defines R-sectorial operators:

Definition 3.33 Let A: D(A) — X be a linear and densely defined operator. Then
A is called R-sectorial if there exists an angle ¢ > 0 with p(A) D X, and

RAA—-A) "1 ez, ) < oo

The R-angle of A is defined as the supremum of all angles for which the above
R-bound is finite.

By Theorem 3.32, a sectorial operator has maximal regularity if it is /R-sectorial
with R-angle larger than 7. In fact, one has the following equivalences.

Theorem 3.34 Let A be the generator of a bounded holomorphic Cy-semigroup T.
Then the following statements are equivalent:

(i) There exists a § > 0 such that A is R-sectorial with R-angle pr = 5 + 0.
(ii) There exists an n € N such that {t" (it — A)™" : t € R\ {0}} is R-bounded.
(iii) There exists a 6 > O such that the family {T, : z € X5} is R-bounded.

(iv) The family {T;, t AT, : t > 0} is R-bounded.

Proof We only give a sketch of proof, for the full version see [25], Theorem 1.11.
(1)==(ii) is trivial.
(i1))=(i). We write

o0

(it—A)"'=m—1i /(is — A)7'ds

and obtain
o0

0"t — A = /h,(s)[(is)”(is — A)")ds

0

for the function /1, (s) := (n — l)t”’ls’"x[t,oo).We have fooo h;(s)ds = 1,and Corol-
lary 3.15 yields (ii) for n — 1 instead of n. Iteratively, we see that (ii) holds forn = 1.
Now we use Corollary 3.16 to show the R-boundedness of {A\(A — A)~! : A e =, 2.
By considering power series expansion, one can show that A\(A — A)~! is in fact R-
bounded on some larger sector.

(iii)==(i). This follows from Corollary 3.15, too, with help of the representation
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o]

\—A)7= /e”\’T,dt.
0

(i)==(iii) follows similarly by

1
T,=— [ e\ —A) ')
27

Iy

(ili))<=(iv) can be shown using Corollary 3.16. m|

4 LP-Sobolev Spaces

In the definition of maximal regularity, the vector-valued Sobolev space WII,(J 3 X)
appears. In many cases, X = L?(G) for some domain G C R”", and it would be
desirable to obtain a more explicit description of the space ,[E of time traces in this
situation. Note that Lemma 2.4 tells us that this is connected with real interpolation.
A similar question arises if the operator A is a differential operator in some domain
G C R". In this case, the domain D(A) is described by boundary operators, and
the spaces for the boundary traces will be non-integer Sobolev spaces. For p #
2, there are different scales of non-integer Sobolev spaces: Besov spaces, Triebel-
Lizorkin spaces, and Bessel potential spaces. A modern definition of these scales is
based on dyadic decomposition and on the Fourier transform. A classical reference
for this is the book by Triebel ([32], Sect.2.3), where the scalar case is discussed.
For a modern presentation, including the vector-valued situation, we mention the
monograph by Amann ([7], Chap. VII). Note that in the vector-valued situation, the
related integrals are Bochner integrals, and we refer to [23], Sect. 1, and [1], Sect. 1.1,
for an introduction to vector-valued integration.

Definition 4.1 A sequence (¢i)ren, of C*°-functions (@i )ren, is called a dyadic
decomposition if

(i) ¢r > 0,supp o C B(0,2)andsupp o; C {€ € R" : 251 < |¢] < 2%+1} forall
keN,

(i) D pen, pr(§) = 1forall § € R,
(iii) for all o € Njj there exists a ¢, > 0 with

€110k (©)] < ca (€ €R", k € Ny).

It is easy to define a dyadic decomposition by scaling a fixed function ¢, (see
[32], Sect.2.3.1). The definitions of the Sobolev spaces are based on the family
(oplwi])ken,- see (3.5). By the theorem of Paley-Wiener, for every u € .#’/(R") the
distribution op[¢y Ju is a regular distribution and even a smooth function. Therefore,
(opler]u) (x) is well defined. In the following, let X be a Banach space.
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Definition 4.2 (a)Fors € R, p, g € [1, 00), the Besov space B‘;q (R"; X) is defined

by By, (R"; X) := {u € /" (R"; X) : |lullps, rr;x) < 00}, where

q/p V4

g ey = | 30 2% { [ Hoptiahi s

Pq
kENo

(b)Fors € Rand p, g € [1, 0o) the Triebel-Lizorkin space F o (R"; X)is defined

by F;q(R”; X)={ue "R X): |ullp ®nx) < oo}, where

pq

pla Ip

| s, sy = f 3 2% opleli)()[§ | dx
RVI

kENo

(©) If p = coorg = oo, the above definitions hold with the standard modification.

By an application of Fubini’s theorem, we immediately see that for p = g the
definitions of Besov spaces and Triebel-Lizorkin spaces coincide, but in general
we have two different scales of Sobolev space type. For the third scale, the Bessel
potential spaces, we consider the function (-): R” — R, £ > (&) 1= (1 + |£[»)/2.
For the following definition, we refer to [23], Definition 5.6.2.

Definition 4.3 Lets € Rand p € [1, oo]. Then the Bessel potential space H 1§ (R"*; X)
is defined as the space of all u € ./ (R"; X) for which op[(-)*]u € L?(R"; X). The
corresponding norm is defined as

el g @ x) == 1 opl{ - )" Tuell Lo s x) -

Remark 4.4 (a) Many classical Sobolev spaces can be found as special cases of the
above definition.

e Let X be a UMD space, k € N, and p € (1, 00), and let W}’;(R”; X) denote the
classical Sobolev space,

Wr(R"; X) := {u € LP(R"; X) : V]a| <k: 0"u € L"(R"; X)}.
Then W§(R"; X) = H}(R"; X) with equivalent norms ([23], Theorem 5.6.11).

e Let p € (1, 00) and s € R. Then the equality H,(R"; X) = F;z(R”; X) holds if
and only if X is isomorphic to a Hilbert space ([22], Theorem 1.2).

elet pe[l,oo) and s € (0,00) \ N. Then the Sobolev-Slobodeckii space
W, (R"; X) is given as W;(R”; X) = BZP(R"; X) ([7], Remark 3.6.4).

e Let s € (0,00) \ N. Then the classical Holder space is given as C*(R"; X) =
B3, o R"; X) ([7], Remark 3.6.4).
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(b) Let G C R”" be a domain. Then the space B; ; (G; X) is defined by restriction,
i.e.
B, (G;X):={u € 2'(G; X): U e B, (R"; X):u= ilg)

with canonical norm
lull B, G:x) := inf {1@l| s, @oix) w0 = UG}

Note here that the restriction of a distribution is defined as u|g := ]9 (G). In the
same way, the other scales are defined on domains.

The following result can be shown with the theory of interpolation spaces and is
the basis for the description of the trace spaces. We refer to [7], Theorem 2.7.4, for a
proof (with G = R", the case of a domain can be handled by a retraction-coretraction
argument if the domain is smooth enough).

Theorem 4.5 Let G C R”" be a sufficiently smooth domain, and let p, q € (1, 00),
ke N, ands € (0, k). Then

B, (G: X) = (L”(G: X), Wi(G: X))g/kq-

From this theorem and the description of the trace spaces as real interpolation
space, one can easily obtain fyoWﬁ(G; X) = Bf,p_l/‘”(aG; X), where you := ulag
stands for the trace on the boundary of the domain. This typical loss of derivatives
of order 1/ p leads to non-integer Sobolev spaces for inhomogeneous boundary data.
For parabolic equations, we also have to consider time and boundary traces of the

solution space:

Corollary 4.6 Let G C R” be a sufficiently smooth domain, J = (0, T) with T €
0,00], k eN, and let X = W;(]; LP(G)NLP(J, W};(G)) (the typical parabolic
solution space).

(a) For the time trace ;. u > ul;—, we obtain the trace space

X = B, " (G).
(b) For the boundary trace 7y : u +— ulsg, we obtain the trace space
X = B, V(I LP(0G)) N LP(J; By, "7 (0G)).

Proof We only give the main ideas for a proof and refer to [14], Sect. 3, for a complete
version.

(a) By Lemma 2.4 a), we have v,X = (L?(G), W;(G))l_l/p,,, which equals
By,*'?(G) due to Theorem 4.5 with p = g.

(b) Locally, we can choose a coordinate system such that the inner normal vector
is the x,-variable. Then we have to take the trace with respect to x, instead of ¢
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which gives by Lemma 2.4 a real interpolation space again. Computing the real
interpolation space of the intersection then gives a Besov space both with respect to
time and with respect to the other space variables. O

Remark 4.7 In the above corollary, we have considered functions which are L? in
time and L” in space. If one considers functions which are L? in time and L4 in space
with p # g, a result similar to Corollary 4.6 holds, but now also Triebel-Lizorkin
spaces appear. More precisely, for X := W[l(]; Li1(G))NLP(J; W;‘ (G)) we obtain
(see [14], Sect. 6, and [28], Sect.4)

wX = By MG,
X = F) % (J; LP(9G)) N LY(J; B, 1 (9G)).

5 Parabolic PDE Systems in the Whole Space

As a first application of the previous results, we now consider parabolic systems of
partial differential equations in the whole space R". In the following, let 1 < p < 0o
and C, := {z € C: Rez > 0} = X, /,. We assume that we have a linear differential
operator A = A(x, D) of the form

A(x,D)= Y a.(x)D"

|la|<2m

withm € N and matrix-valued coefficients a,, : R” — CV*¥ Recall that D := —i0.
The definition of parabolicity below is based on the concept of parameter-ellipticity
which was developed by Agmon [4] and Agranovich-Vishik [9].

For the formal differential operator A = A(x, D), we define its symbol

a(x,§) = Y a,(x)¢"

la|<2m

and the principal symbol

ap(x,€) i= Y an(x)§".

|la|=2m

Both symbols map R" x R" into C¥*V. The LP-realization A, of A(x, D) is defined
as the unbounded linear operator A,: L”(R"; CV) > D(A,) — LP(R"; CV) with

D(A,) :=W"R"; C"), Apu:=A(x,D)u (u € W;"(R"; C")).

Definition 5.1 The operator A(x, D) is called parameter-elliptic with angle ¢ €
0, m] if
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| det(ag(x, &) = M| = Co(IEP" + M) (x €R", (€, 1) € R" x T,) \ {0}).
5.1
If this holds for ¢ = 7 (i.e., ¥, = C,), then 9, — A is called parabolic.

Remark 5.2 (a) For every fixed x € R”, the map (£, \) — p(x, &, ) 1= det(ap(x,
&) — M) is quasi-homogeneous in the sense that

pe,r&,r™N) =r""Vpx, &, 0 (r>0, (€&, N e R x T,)\{0}).

Therefore, it is sufficient to consider the compact set {(£, \) : |£]?" + |\| = 1}. The
operator A(x, D) is parameter-elliptic if and only if

inf{|det(a0(x,§) — N :xeR", (£ )N eR" x fw with [£]?" + |\ = 1} > 0.

(b) If a, € L*(R") for all |a| < 2m, then the lower-order terms of the symbol
can be estimated uniformly in x. Therefore, A(x, D) is parameter-elliptic if and only
if there exist constants C, R > 0 with

|det(a(x, &) = M| = CUEP" +ADY (x eR", A e Xy, [€] = R).

This is one possible definition of parameter-elliticity and parabolicity for pseudo-
differential operators. We remark that the principal symbol of a pseudodifferential
operator is defined only for so-called classical symbols.

Remark 5.3 If 9, — A(x, D) is parabolic in the sense of parameter-ellipticity in the
closed sector @Jr, then A(x, D) is also parameter-elliptic in some larger sector T
with 6 > 7. In fact, it is easily seen that the set of all angles of rays with respect to
A, in which condition (5.1) holds, is open.

Following a standard approach in elliptic theory, we first consider the so-called
model problem and then use perturbation results for variable coefficients. The remain-
der of this section is based on [13], Sects.5 and 6, and [25], Sects.6 and 7.

Theorem 5.4 Let A(D) = )", _,, @aD® with constant coefficients a, € CV*¥
(lal = 2m) and without lower-order terms. If 9, — A(D) is parabolic with parabol-
icity constant Cp in (5.1), then p(A,) D C,\ {0}, and the set

AA =4, X eCi\ (0}}

is R-bounded. Here, the R-bound only depends on p,n,m, N, Cp and

M:= " llaallcyer.

|a|=2m

In particular; A, is R-sectorial with R-angle larger than 5, and A, has maximal
Li-regularity for all g € (1, 00).
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Proof Note that because of (5.1), for A € C, \ {0} and & € R”" the symbol (\ —
ap(€))~! is well defined. We show that the family {m : \ € @+ \ {0}} withm (&) :=
A\ — ao(€))~! satisfies the assumptions of Corollary 3.29.

For any r > 0 we have r?"\ — ag(r&) = r*"(\ — ag(€)). Therefore, the map
& N — %()\ — ap(§)) is quasi-homogeneous in (¢, A) of degree 0, and the same
holds for its inverse (£, A) — A\ — ap(€))~!. By Lemma 3.23, m, satisfies the
Mikhlin condition uniformly with respect to \. Now we can apply Corollary 3.29
to obtain the R-boundedness of {op[my]: \ € @Jr \ {0}} € L(L?(R")). Because
of ﬁop[m)\]()\ —Ap) = idwgm(Rn) and %()\ — Ap)oplmy] =id»wr), we see that
oplmy] = A\ — Ap)’l. By Corollary 3.29, A, is R-sectorial with angle larger than
5, and Theorem 3.32 implies that A, has maximal L9-regularity for all ¢ € (1, 00).
To show the statement on the R-bound, we have to quantify the Mikhlin constant.

For this, we write

1
— -1 [
A—ap@) = detOn = ao(f))b(ﬁ, A

with the adjunct matrix (€, A). The coefficients of b(&, \) are determinants of (N —
1) x (N — 1)-matrices which are constructed by omitting one row and one column
of the matrix A — ay(§). Therefore, we obtain

15, Nllevy < C(m,n, M, N)(EP™ + ANV
Due to (5.1), we get

- Al
“A()\ - a()(g)) 1||(CNXN =< C(m7 n, M7 Na Cp)m = C(ma n, M7 Na Cp)

For the derivatives, we note that

0 0 0
—a = —_— a.&” < A ||cvxN —
&g 0(©) - S5 ||:Zz 3 N M;m” lover (656
<2mM|E".

Iteratively, we obtain ||§“8gao(§)||<cw < C(m,n, M, N)|£|*" for all a € {0, 1}".
In the same way, the derivative of b(&, \) can be estimated. This yields

IE*0ZB(E, Mllewen < Clm,n, M, N)(EP™ + AV
With the product rule (Leibniz rule) we have for the inverse matrix the inequality

I1€°DE X — ag(©)lewev < Cm,n, M, N, Cp)(IE" + IAD7",
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and therefore ||§”ngA(§)||chN <C(@m,n,M,N,Cp)foralla € {0, 1}", X € @Jr \

{O}and all ¢ € R”". By Corollary 3.29, the R-bound of {\(\ — Ap)’l :AeCy\ {0}
only depends on m, n, M, N, Cp, and p. O

To generalize the above result to operators with variable coefficients, we need per-
turbation results for R-boundedness. For this, we define for an R-sectorial operator
A with R-angle ¢ (A) and for 6 € (0, pr(A)):

My(A) := sup ({IAN — A) 7' 2 X € Zg}),
My(A) == sup ({IIAA — A) 7 2 X\ € B)),
Ry(A) := R(IAA — A)7" 1 X e X)),

Ro(A) :=R({AN— A" 1 X e Zy)).

Note that @9(A) is finite because of A\ — A)~! = A(A — A)~! — 1, and the same
holds for Ry(A).

Theorem 5.5 Let X be a Banach space and A be an 'R-sectorial operator in X with
angle o (A) > 0. Further, let 0 € (0, pr(A)), and let B be a linear operator in X
with D(B) D D(A) and

[ Bx|| < allAx]l (x € D(A)). (5.2)
Ifa < -E;—A), then A 4+ B is R-sectorial, too, with angle larger or equal to 0 and
Ry(A
Ro(A+ B) < — XD
1 —aRy(A)

Proof For A\ € X4 \ {0} one obtains
IBO = A)~'x|l < al AN — A)~'x|| < aMy(A)x]| (x € X).

Because of a < the operator 1 + B(A — A)~! is invertible, and we get

<L
Ry(A)’
A—@A+B) " =0 - [1+BO - )]

=\ =AY (=BA—A)H"

n=0

In particular, p(A + B) D Xy. By definition of R-boundedness and due to the
assumption, we get

RUBA— A" :de TpD) <aRUAN — A) ' : X e Tp)) = aRy(A).

Inserting this into the above series yields
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Ry(A)

Ry(A+ B i
9(A + )Sl—aRg(A)

This shows that also A 4+ B is R-sectorial with R-angle > 6. O

The second perturbation results deals with the case where we have an additional
term ||x|| on the right-hand side of (5.2). However, now the R-sectoriality of the
operator holds only with an additional shift in the operator.

Theorem 5.6 Let A be R-sectorial with angle pr(A) > 0, and let 0 € (0, pr (A)).
Let B be a linear operator satisfying D(B) D D(A) and

I Bx|| < al|Ax|| + bllx|| (x € D(A))

withconstantsb > 0and(0 < a < [M@(A)ﬁg(A)]_l. Then A + B — pisR-sectorial

for ~
bMy(A)Ry(A)

1 — aMy(A)Ry(A)

For the R-angle, we have pr(A + B — u) > 6.
Proof For i > 0, the following inequalities hold

IB(A — i)~ 'x]| < allAA — )~ x| +blI(A — )~ x|
< (aMy(A) + EMp(W)) x|l (x € X).

Therefore, B satisfies the assumption of Theorem 5.5 with A being replaced by
A — p. In Theorem 5.5, the condition for the constants is given by c(u) Rg(A) < 1,
where ¢ := aMy(A) + %M()(A). Because of aMy(A) < 1, this is the case if

y bMy(A)Ry(A)
1 —aMy(A)Ry(A)’

I

O

The above perturbation results allow us to treat small perturbations in the principal
part of the differential operator.

Lemma 5.7 Let A(x, D) =}, _p, aD* with a, € CV*N for |a| =2m, and
assume 0; — A(x, D) to be parabolic with constant C p. Then there exists some 0 > %

such that A(x, D) is parameter-elliptic in >y, and there existe > 0 and K > 0 such
that for all operators B(x, D) = Z\M:Zm bo(x)D® with b, € L*R"; CN*N) and

D Mballee <€

|a|=2m
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the inequality
R({A(A — (A, +B,)" A e Ty {0}}) <K

holds. Here, € and K only depend onn, p,m, N, Cp.

Proof Lete > 0and f € szm (R"; CV). Then the inequality

IBfllr@encyy < Y 1Ballool D fllir@ecyy < € max D fllogecy).
|a|=2m

la|=2m
holds if B satisfies the above condition. We write
D f = (F 'm,.F)AD)f
with

mu(g) = gn, Z aﬂgﬁ

|B1=2m
Then m, € C®R" \ {0}; CV*N), and m,, is homogeneous of degree 0 and therefore
satisfies the Mikhlin condition. Consequently, there exists some C; > 0 such that we
have
loplmalllLLr@gecry < Ci1 (la] = 2m).

Choose € < [C) (Ry(A) + l)]fl. Then

I1BflLr@r,cvy < eCrllAf lr@we.ovy < allAfllLr@rcny

witha = m. By Theorem 5.5, the operator A, + B, is R-sectorial with angle
> 0, and
RyA+B) = — 0D,
1 —aRy(A)

O

In the next step, we consider an operator A whose coefficients in the principal
part are bounded and uniformly continuous. We can reduce this situation to the small
perturbation from the last lemma by introducing an infinite partition of unity. This
is done in the following lemma.

Lemma 5.8 For every r > 0 there exists ¢ € Z(R") with 0 < ¢ <1, suppy C
(=r,r)" and

Z ?x)=1 (x eR"M.

LerZ!

Here, py(x) == p(x — ).
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Proof (a) We first consider the case r = 1 and n = 1. Choose some ¢; € Z(R) with
@1 >0in (=3, 2),suppy; = [—2, 3], and ¢ (x) = @1 (—x) for all x € R. We set

o1 (x) . 3
o) = |\ Fwraas  Txel0 gl

0, if x € (3, 00),
and p(x) := ¢(—x) for x < 0. Then supp¢ C (—1, 1), and for x € [0, 1] we obtain

o) =@M+ — 1) =@’ () + >0 —x)
Lel
_ 1) pid—x)
i) + 11 —x) @11 —x) + ¢i(x)

As Y5 7 is periodic with period 1, we have Y, ¢? = 1 in R.
(b) In the general case, define ™ (x) := [T}_; ¢(3£) with ¢ from part a). Then

n . _E n
PNEORCEIEDY H@z(x’ - ’) => [1¢6i -

terzn terzr j=1 ez j=1
n
2
=[1X¢0i-en=1
J=1¢;€Z
fory = =. O

We now come to the main result of this section. Here, BUC(R") stands for the
space of all bounded and uniformly continuous functions.

Theorem 5.9 Let A(x, D) = Z‘a‘ﬁm aq(x) DY with

an € BUCR™; CYVNY (ja| = 2m),
aq € L¥@R"; CV*NY (la] < 2m).

Let 1 < p < oo. If 0, — A(x, D) is parabolic, then there exist 0 > 7 and > 0
such that A, — i is R-sectorial with angle 0. In particular, A, — p has maximal

L9-regularity for all 1 < g < oo.

Proof As A(x, D) is parameter-elliptic in C_. by assumption, there exists a 6 > 5
such that A(x, D) is still parameter-elliptic in Xy (Remark 5.3). The proof of the

theorem uses localization and is done in several steps. We first explain the ideas.

(1) We fix the coefficients of A atsome point ¢ € I', where the grid ' C R” is chosen
fine enough such that in each cube the localized operator A is a small perturba-
tion of the model problem with frozen coefficient. Here, we apply Lemma 5.7
to see that A is still R-sectorial.
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(2) We consider the sequence A := (A%)cr of all localized operators and show that
this defines an R-sectorial operator in some suitably chosen sequence space Xj.

(3) The L?-realization A, and the operator A have the same properties up to lower-
order perturbations. More precisely, we have JA, = AJ and A, P = P A mod-
ulo lower order operators, where J and P are the localization and the patching
operator, respectively.

(4) With the help of the interpolation inequality for Sobolev spaces, the lower-order
operators can be seen as a small perturbation, and therefore the R-sectoriality
of A implies the R-sectoriality of A .

In detail, these steps can be done in the following way.

(1) Choosee = e(n, p, m, N, Cp) asin Lemma 5.7 for the operator Z|a|=2m a,(0)
D with £ € Z". As a, € BUC(R"; CN*N), there exists a 6 > 0 with

D Jaa(x) —aa(| <& (Ix =y <9).

la|=2m

Now chooser € (0, §) and p € Z(R") asin Lemma5.8. We write Q := (—r, r)" and
Q¢i:=0Q+Lforl e rZ" =:T. Choose v € Z(R") with suppy C Q0,0 < <1,
1) = 1 on supp ¢, and set Yy (x) := Y(x — £) (£ € Z). Define the coefficients

e,y Jaa(x), x € Qy, _
a,(x) = {aa(ﬁ), ¥ ¢ 0, € eTl, |a] =2m)

and the operator A(x, D) := Z|a|=2m af)y (x)D“. For the principal part, we obtain
Ao(x, D) = A%(x, D) (x € Q) and therefore Ay(x, D)u = A(x, D)u for all u €
W[%m (R"; CV) with suppu C Q.

(2) Define X; :=£,(T"; W}’;(R”; CM)) for k € Ny and the operator A: Xg D
D(A) - Xoby D(A) := X,,, and

Aue)eer = (A ug)eer.

By Lemma 5.7, the operator At is R-sectorial with Ry(A%) < K, where K does
not depend on £. We show that the same holds for A. For this, let 7; = A;(A — A;) 7!

with A\; € ¥pand x; = (f;j))ger € Xgfor j =1,...,J. Then we obtain
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J
§ riTix;
j=1

Lr([0,1];X0)

1 P 1/p
= / rj ([)Tj)(j dt
o |l/=1 Xo
1 J r 1/p
_ . A AZ —\; —1 () d
- rj (t) ]( j) fg t
0 tel' || j=1 LP(R";CN)
L )4 1/p
— / D o rox A = )T Y dt
tel' || Jj=1 LP(Rr:CN)
1
7 r /p
14 )
= oA =Tl
ter Jli=t LP (0,1 LP (R%5CV))
r 1/p
< | > [RoAH])" Zr £
ter LP([0,11;LP (R";CN))
J
<K zi:rij s
J=1 LP(10,11:Xo)
ie. Ry(A) < K.

Now we consider the localization operator J : L? (R"; CV) — X, f +— (0¢f)e.
As we have

p p N P
D e f I pgmemy < D X0 U wrseny = 2V A1 gosony

Lel tel

the operator J is continuous. In the same way, one sees that J € L(szm (R™; CV),

X 2m)-
Analogously, the patching operator P is defined by

P: Xo— LR CY), (feer = Y ¢efe.
tel’

Note here that the sum is locally finite. We obtain P € L(X,, L?(R"; CV)) and
PJ =idps@.cv) because of PIf =Y, i f = f.

(3)Nowlet A, be the L? (R"; CV)-realizationof A(x, D) and A, o the L (R"; CV)
-realization of A¢(x, D). Then foru e W;’” (R"; CV)and ¢ e T the following equal-
ity holds:
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SOKApu = Ap(@(“) + ((pZAp - Ap‘ﬂ()u

= A'pen) + (Ap — Apo)tepiu+ Y (peAp — Appr)giu.
k:QkNQe#0

Thus, JA, = AJ + BJ with

B(woeer) = | (Ap = Apo)eue+ D (peAp — Appr) prtii
k:QxNQ¢#P ter

Writing B((ug)e) = (Zker Byoug)rer, we see that By, is a differential operator
of order not greater than < 2m — 1, and the number of elements in each row
of the infinite matrix (Bj¢)i.¢ is bounded. As a, € L*®(R"; CV), this yields B €
L(Xom—1, Xo0).

Analogously, we obtain for (uy)¢er € Xo,, the equality

(ApP — PAYup)er = A, (Z ww) — D eAuy

el el
= oAy — Apue+ D (Appr — PrA i

Lel’ kel
=Y @A, —Apuc+Y Y GAppr — @A
Lel kel £:0,NQ £

=D 0| Ay —Apue+ Y pulAppr — @iAp)ux
Lel k:0xNQ#D

= PD(ug)ger
with
D(ug)eer == | (Ap — Apo)ue + Z (Apor — wrAp)ug
K0NQ. A rer

In the same way as before, we see that D € L(X2,—1, Xo)-
(4) We apply the interpolation inequality for Sobolev spaces and obtain for every
€ > 0 the inequality

| B(ue)eerllx, + 1D W@e)eerlix, < Cll(ue)eerllix,, .,
<ell@e)eerlx,, + Cell@e)eerllx, @ € Xop).

Due to Theorem 5.6, there exists a o > O such that A+ B — pand A4 D — 1 are
both R-sectorial with angle > 6.
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Letu € Wam(R"; CN) and f := (A +pu— Ap)u € LP(R"; CV). Then
Jf=JA+p—Apu=KA+pu—(A+ B))Ju,

and therefore
u=PJu=PA+pu—(A+B) Jf.

In particular, A 4+ ;1 — A, is injective.
On the other hand, for f € L?(R"; CV) we get

f=PIf=POA+p—(A+D)A+pu—(A+ D) 'Jf
=A+p—A)PA+p—(A+D)'Jf € RO+ pu—A4Ay),

i.e.,, A+ — A, is surjective, too. Therefore, A + 1 € p(A,) and
OA+p—A,)""'=PO+pu—(A+ D).
Because of P € L(Xy, LP?(R"; C)), J € L(L?(R"; C"), X»5,,), and Rg(A + D —

H) < oo, it follows that Ry(A, — i) < 0o, and A, — p is R-sectorial with angle
greater or equal to 6. O

6 Parabolic Boundary Value Problems

In the last section, we considered parabolic systems in the whole space. Now we want
to show that similar results also hold for boundary value problems in sufficiently
smooth domains. In addition to the parameter-ellipticity of the operator A, we now
have to impose a condition on the boundary operators called Shapiro-Lopatinskii
condition. For a reference for this condition, we mention, e.g., [35], Sect. 11.

6.1 The Shapiro-Lopatinksii Condition

In the following, let p € (1, 00), and let G C R” be a bounded domain. We consider
a linear partial differential operator A = A(x, D) of the form

A(x,D)= Y a.(x)D"

la|<2m

withm e N, a,: G — Cand boundary operators By, ..., B,, of the form
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Bi(x', D)= > bjs(x)yD’
|B1<m

with m; <2m, bjg: 0G — C. Here, -y stands for the boundary trace u — ulsg,
which is a bounded linear map

Yo: Wi(Q) — W,/ (0%),

k=1,...,2mif G is a C*"-domain. Note here that W;f_l/p 0Q) = Bf,;l/p(ﬁﬂ) is
the Sobolev-Slobodeckii space (see Sect.4).

The L”-realization Ap , of the boundary value problem (A, B) = (A, By, ..., B,)
is defined by

D(Ap,p) :={u € W;"(G) : Bi(x, D)u = --- = B, (x, D)u = 0}

and Ap pu = A(x, D)u (u € D(Ap ,)). We will assume the following smooth-
ness:

(i) The domain € is bounded and of class C>".
(ii) For the coefficients a,, of A(x, D) we have

e € C(G) (la] =2m),
aq € L¥(G) (la| < 2m).

(iii) For the coefficients bz of Bj(x’, D) we have
bjs € C*""(DG) (Bl <mj, j=1,...,m).
By trace results on Sobolev spaces, we immediately see the following continuity:
Lemma 6.1 The operator
(A, B): W2"(G) — L"(G) x [[w," ™™~ (0G)
j=1
is continuous.

As usual, we define the principal symbols ay(x, &) := Z\M:Zm a,(x)&" and
bjO(‘x/’ 6) = Z\ﬁl:mj bjﬂ(x/)gﬁ‘

Definition 6.2 The boundary value problem (A, B) is called parameter-elliptic in
the sector X, if:

(a) We have ag(x, &) — X\ #O0forallx € G and all (£, \) € (R" x fp) \ {0}
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(b) The following Shapiro-Lopatinskii condition is satisfied: for all x” € G and all
€, ) e R x ¥,) \ {0} the ordinary differential equation

(Cl()(x,, g/v D,) — Mv(x,) =0 (x, > 0),
bjo(x', &, Dv(x)|, =0 (j=1,...,m), (6.1)

v(x,) > 0 (x, > 00)

has only the trivial solution. Here, the boundary value problem is written in coor-
dinates corresponding to x’. These coordinates arise from the original ones by
translation and rotation in such a way that the x,,-direction in the new coordinates
is the direction of the inner normal at the point x’.

If this holds for the sector &, 2 ={X € C:Re A\ > 0}, the instationary problem
(0; — A, B) is called parabolic.

Note that (a) implies inequality (5.1) from Definition 5.1, as G is compact and aq
is continuous in x and homogeneous in €.

Definition 6.3 Assume that in the situation of Definition 6.2, (a) holds. Then
A(x, D) — \is called proper parameter-elliptic if for all (x’, £, \) € 9G x (R"~'\
{0}) x C, the polynomial ao(x’, £, -) — X has exactly m roots (including multi-
plicities) 7; = 7;(x", £, A), j = 1, ..., m with positive imaginary part. In this case,
define

ar(m)=a,(x &A1) =] -7 €. N) eClrl.

J=1

We consider the equivalence class Ej() = Ejo(x’, &, A, -) € Cl1]/(a4) of bjo modulo

a4, and write Ejo with respect to the canonical basis 7,...,m ¢ Clrl/(as),
ie. _ _
by 1
: =L with L = L(x', £, \) e C"™*™,
EmO =l

Then L is called the Lopatinskii matrix of (A, B) at the point x.

Lemma 6.4 Let A be properly parameter-elliptic in G. Then the Shapiro-Lopatinskii
holds if and only if

det L(x',&,\) #0 (x' €dG, (£, N e R xCy)\{0}.
Proof Letv; (j =1, ..., m) be the solution of

(ar(x', & D) — A v(x,) =0 (x, > 0),
Dy o), =0 (k=1,...,m).
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Then {vy, ..., v,} is a basis of the space .#, of all stable solutions of the ordinary
differential equation (a+(x’ €, Dy) — )\)v(xn) = 0. Therefore, for all v € .#Z, we
have the representation v = Z'};l Ajv; and

b10(Dn) b10(Dn) Ay
el o=t | @ )] |
bimo(Dn) bno(Dn) Am
bio(Dy) Ay
= i @G em@)], |
bumo(Dy) Am
DS Al
=L| : (vl(xn),...,vm(xn))|xnzo
D! Am
Al
Am

Note that by (D) v; (x,)| o= = bio(Dp)v; (xa) |, _oholds because a, (D,)v; (x,) =
0. Therefore, (6.1) has only the trivial solution if and only if det L # 0. O

Remark 6.5 (a) The condition of Lemma 6.4 can be formulated in the followmg
way: The boundary conditions are linearly independent modulo a.,i.e., by, . . . , byo
are linearly independent in C[7]/(ay).

(b) The boundary conditions By, .. ., B,, are called completely elliptic if for every
proper parameter-elliptic A the boundary value problem (A, B) is parameter-elliptic.
This is the case for

(i) B;(x’, D)= 70(%)1’1 (j =1,...,m) (general Dirichlet boundary condi-
tions),

(i) B;(x', D)= 70(3%)’”“‘1 (j =1, ..., m) (general Neumann boundary con-
ditions).

More general, this holds for all boundary conditions of the form

O \s+i—1
Bj(x/, D) = 'yo(a—) + lower order terms (j = 1,...,m),
Xn
where s € {0, ..., m} is fixed. To see this, we have to show that {75t/~1: j =
1,...,m} is linearly independent in C[7]/(a,). If this is not the case, there exist

cj € Cand p € C[7] with
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m

Z cj'r”F1 = p(m)a, (7).

j=1

Because of a; (0) # 0, it follows that 7* is a divisor of p(7). Therefore, Y7, ¢; 7/
= p(7)a, (7) with some polynomial p, in contradiction to dega, = m.

(c) If the domain and the coefficients of (A, B) are infinitely smooth, then for
every fixed A € C,., the coefficients of L(x’, &, \) are symbols of pseudodifferential
operators on the closed (n — 1)-dimensional manifold 0G.

6.2 The Main Result on Parameter-Elliptic Boundary Value
Problems

Under the condition of parameter-ellipticity, one can construct the solution operators
for boundary value problems. We follow the exposition in [2], Sect.2, and [13],
Sects. 6 and 7. We start with a remark on ordinary differential equations.

Theorem 6.6 Le_t (A, B) be parameter-elliptic in some sectorf@ andlet (x', &', \) €
0G x (R ! x %)\ {0}). Choose a closed curve v=~(x',§, ) in {zeC:
Im z > 0}, enclosing all roots Ty, ..., T,y of ay. We define p,; by

ay (<& 01 =) e, €, 0",

=0
and set Nk(T) = Nk(-x,, 6/7 )\’ 7—) = Z’;:_Ok p[(x/, 5” A),rmfkf(f and
(My(7), ..., My(7)) := (N1 (7), ..., Npy(T))L ™"

Let wy (x,) = wi (¥, &', A\, x) (x, > 0) be defined by

1 M .
wi(x,) == — ﬂe”‘"TdT k=1,...,m).
2mi a, (1)
5
Then {wq, ..., w,} is a basis of the stable solution space of ap(D,)w = 0, w(x,) —

0 (x, — o0) and satisfies the initial conditions
bjo(x/v E/a Av Dn)wk(xn)’)(“:o = 6]/( (,]7 k = 17 M} m)
Proof (i) We first show that

1 [ Ne(pyri™!
> &dTZCSkj Uok=1, ....m).
27 a4 (7)
0l
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For this, we replace v by a large ball {r € C:|7| = R}. For j <k we have
deg (Nk (T)Tf’l) =m —k+ j —1 <m — 2. Therefore, the integrand is of order
O(R7?) for R — oo which shows that the integral vanishes.

For j = k, the integrand equals %
gral has the value 1.

For j > k we consider

By the residue’s theorem, the inte-

0(r) = —ar (T + Ny(n)7/™!

m

m—k
— § :pﬂ_m7£+jfk71 + § :p[rmféwtjfkfl.
£=0 =0

We obtaindeg Q = j — 2 < m — 2, and therefore

LA / et om [ om
a(7) a(7) a4 (7)
B(0.R) B(O.R) B(0,R)
(i) We have modulo a, i.e., as equality in R[7]/(a4):
bio(T)
: Mi(7), ..., M, (7))
EmO(T)
b1o(T)
=l : |(M@,....Na(m)L™"
_mO(T)
1
=L| : |(Ni@),....,Nu(m)L™".
Tm—l
Therefore,
(llfbjo(T)Mk(T) dT) _ . (1./‘7le1<(7) dr) !
27i a4 (1) 27i a4 (1)
v J.k=1,...m v jk=1,...m
=L I L' =1,.
This yields

1 bio(T)My(7)

27 a.(7)
Y

dTZ(SJ'k (],k:l,,m)
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(iii) Define wy as in the theorem. Because of 7 C {z € C : Im z > 0}, we see that
wy (x,) — O for x, — oo. Further,

1 M,
ao(Dp)w(x,) = ol k((:))
+
e

a(r)e™dr =0,

as the integrand is holomorphic. Finally,

_ L[ bjo(r)My(7) i |
T 2mi ay (1) Fn=

v

bjO(Dn)w(xn)|xn=0 Odeéjk (],k: l,...,m),

which finishes the proof. O

Remark 6.7 (a) With the above notation, the following expressions are quasi-
homogeneous in (¢, \, 7), more precisely, positively homogeneous in (¢, \1/?", 7):

ay(x', &, N\, ) of degree m,

7;(€, \) of degree 1,

pe(x’, €, ) of degree £,

Ni(x', &', N\, 7) of degree m — k,

bjo(x', &, 1) of degreem; (j =1,...,m),
Lij(x', &, N of degree m; — j + 1,

Mi(x', &, \, 7) of degree m — my — 1,
v(x', €, N of degree 1,

My (1)

e) of degree —m; — 1.

(b) In the following, let

(€= 1€+ [NV
By (a), the length of v(x’, £, \) can be estimated by C(£’) . For 7 € +, one gets

Im7 > C(£),,
T—1i(x',E, N = CE),
le'™ | < exp(—C(£')x xp).

For v € Ngfl and o, € Ny, we obtain
| D DY wg (', €, 4, )| = €€ e €l

In the smooth situation, these estimates show that wy is the symbol of a Poisson
operator. Such operators belong to the pseudodifferential calculus of boundary value
problems which is also known as the Boutet de Monvel calculus (see, e.g., [20]).

To show maximal regularity for parabolic boundary value problems, we again
start with the model problem related to (A, B) acting in R’} := {x € R" : x,, > 0}
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with boundary OR’, = R"=!. For this, we fix x{, € OG and choose the coordinate
system corresponding to x;. We obtain the boundary value problem

(Ao(D) = Nu=f inR,

6.2
Bjo(Dyu=0 (j=1,....,m)onR""". (©2)

Here we have set

Ao(D) =Y an(x() D",
|a|=2m
Bjo(D) = ) bjs(xp)r0D’.

|Bl=m;
In the following result, we construct the solution operators for the model problem.

Theorem 6.8 Let the boundary value problem (A, B) be parameter-elliptic in the
sector fp, and let x;, € O be fixed. Then the model problem (6.2) has for every
feLPRY) and X € X, \ {0} a unique solution u € ng (RY). This solution is
given by

m

u=R.RONEof =Y Tij(N)Asmm, (N Bjo(D)R; RN Eo f

J=1

=Y Ti () Az, -1 (N Bjo(D)RL RO Eq f.
j=1

Here, the operators are defined in the following way:
(a) Eo: LP(RY) — LP(R"), f > Eof with

, forx, >0,
Eof = —
0, forx, <0

(trivial extension by 0).

(b) RO\ := (A, — \)~! € L(LP(R")), where A, is the LP(R")- realization of
Ao(D).

(c) Ry: LP(R") — LP(RY), u > ulgy, the restriction to R’}

(d) Bjo(D) := Zlﬂlzmj bjo(x(’))D’g, the boundary operators without taking the
trace vy on the boundary.

(e) AN = (F)'AFIE PP F e LIWSRY), LP(RY)) for s € Ny,
where F' denotes the Fourier transform in the tangential variables x' = (xi, ...,
xn—l)-

(f) Tj(N) is given by
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[e¢]

(T; (NP, xp) = /(3‘\’)*1(@%)(%, E A X+ ) F (A amim; N@)E, ya)dyn
0

for ¢ GNLP(R’i).
(g) T;(N) is given by

[e¢]

<imwww»:/@WMWW&XM+m9m4Mmm»w@MMW
0

for o € LP(RL).
The functions w;(xg, §', A, x,) are defined in Theorem 6.6.

Proof Here we only show the solution formula for u, as the property u € W;’” (RY)
will be included in the proof of the R-boundedness of the solution operators below.
Letu, € W,f’" (R?}) be the unique solution of

(Ao(D) — Nuy = Eof inR”,
which exists due to Theorem 5.4. So we have u; = R(\)Eq f. For u, we choose the

ansatz ¥ = u; + u,. Then u is a solution of (6.2) if and only if u; is a solution of the
boundary value problem

(Ag(D) = Mu, =0 inRY,
Bjo(Dus =g; (j=1,...,m)onR""!

with
gj = —Bjo(D)Ru.

Taking partial Fourier transform .#’ with respect to x’, we obtain

(Clo(x(/), g/a Dn) - A)U(xn) =0 (-xn > O),

I / . (6.3)
bj()(-xo’ 5 ) Dn)v(xn)|xn:0 = hj(g) (.] = 1’ ey m)

Here, v(x,) := v(§', x) := (F'uz(, x,))(§) and h;(§) := (F'g;)(£). By Theo-
rem 6.6, the unique solution of (6.3) is given by

v, x) = D wixg, €A 1) (E)

j=1

Note that g; is first defined only on the boundary R"~!. By
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gj = Z bj“g(x(/))Dﬂul = Ejo(D)ul
|ﬂ|=m,

we define an extension g; to R, . Then l~lj = Z"g;(-, x,) is an extension of /.
For j =1, ..., m we write (this is sometimes called the “Volevich trick™)

w; (x(/),f/, )\7 xn)hj (5/)

= - / 8n [wj(x(/)v 5/7 )\» Xn + yn)ﬁj (5/’ yn)]dyn
0

= - /(anwj)(x(/)v g/’ /\, Xn + yn)zj(f/v yn)dyn
0

o0

- / wj(x{)’ f/v )\, Xn + yn)(an;l])(gl’ yn)dyn'
0

For A € C4 \ {0} it holds that A_;(A\)A;(\) = idp» @) for all s € R. Therefore, we
can write Ej = A—2m+m,- ()\)AZm—m/- ()\)gj and angj = A—2m+m,-+l ()\)AZm—m/+l N
0ngj, respectively. This yields

ur(x', %) = ((FN7"0(, x0)) (x)

= > (TN Aamm, VT + TN Ao, 11(NDT; )

j=1
Inserting §; = Ejo(D)RJFu] and u = u + u, into this formula, the solution formula
of the theorem follows. As both the whole space problem as well as (6.3) is uniquely

solvable and as the Fourier transform is a bijection in .#’(R"~!), we obtain unique
solvability with the unique solution u = u; + u;. O

Lemma 6.9 The one-sided Hilbert transform
[ o
y
(Hf)(x) ;:/_ dy
J x+y

defines a bounded linear operator H € L(L?(R)).

Proof For ¢ € (0, 1], let m. :=sign(£)e ¢ (¢ € R). Then |[m.(£)| <1 and |¢]-
Im.(&)| = e|éle*1¥l < 1, where we used the inequality te~' <1 (¢t >0). By
Mikhlin’s theorem, ||ﬁ1_1m5351 lzerr,) < C with a constant C > 0 independent
of €. Here .7 stands for the one-dimensional Fourier transform.

For f € Z(R) we get
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(F ' m T f)(x) = ¢ sign(€)e () (€)de

7

ﬁ%
3

[ air© - e mpeo]
0

o0
L/f zx{ e§—iyl _ 7ix§75§+iy§)f(y)dyd§
27
0 —o0
o
1 PUCESULS oo e—iF=NE—e 0o .
ﬁ/ <l(x—y)—s -0 _i(x_y)_€‘£=0>f(y) y
o0
1 / ( + ) Fnd
27T l(x—y)—g —i(x—y)—¢ y)dy
—oc0
o0

—i/ =Y fyd
“r) oy Y
—00

Define for € € (0, 1]

xX+y

(H:f)(x) := J m

fdy (f € LP(RY)).

Then H. f(x) = (—?)(ﬁflmaﬁlEof)(—x) for x > 0, where Ey: L?(R,) —
L?(R) again stands for the trivial extension. We obtain

1
1H: fllrryy < 7lF meFEofllorw < ClEof e < CllfllLrmw,)-

The sequence Hi,, (] f]) is monotonously increasing and converges pointwise to
H (] f]). By monotone convergence, we see that

lHflrwyy < NHASfDIzr@s) = nlgglo | Hi/n (1 f DI ey
<ClIflllee®y) = Clifller@®y)-
Therefore, H € L(L?(Ry)). |
The following result shows that the solution operators are indeed R-bounded.

Theorem 6.10 Let 6 > 0 be fixed. In the situation of Theorem 6.8, the following
operator families in L(L?(R.)) are R-bounded:

(@) {Aom-m, (N Bjo(D)R. RN Eo: j=1,....m, Ae Ty, |\ =3},
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(B) {A2m ;-1 (N, Bjo(DIRL RN Eg < j = 1,....m, A€ Ty, [\ = ),
(©) ATV j=1,....m, AeCy, |\ =},
(d)ANT;(N) 1 j=1,....m, AeCy, [\ > 6}

Proof (a) Wehave Agy—m, () Ejo (D)Ry = Ry Agm—m;(N) Ejo (D). As the operators
Ry € L(LP(R"), LP(RY)) and Ey € L(LP(R%), L?(R")) are bounded, it suffices to
show the R-boundedness of

{Aom—m,(NBjo(MRN) 1 j =1,....m, AeCy, |\ = d}.

The corresponding family of symbols (with respect to the Fourier transform in R")
is given by

m(EN) = A+ €1 5 bjo (. €)(an(ry, €) — A) .

Asm(&, \) is quasi-homogeneous of degree 0in (£, \) and bounded on || + [£]*" =
1, it follows that

IDm(E M| < CIEIT (€ e R"\ {0}, A€ Ty, |Al = 9).

By Corollary 3.29, the operator family in a) is R-bounded.
(b) can be shown analogously.
(c) For ¢ € LP(R}), we write

o0

AT, (N = / Gl 3D 6 )y,
0

withy € LP(Ry; LP(R"1),4(y,) := ©(-, y,), and the operator valued integral ker-
nel

k(s o) 1= (F) 7 E LN, X0 + ) T
= (Z) T IAw; (5 € A Xy + YN+ (€M) T

By Remark 6.7 (b), the inequalities

|DEAE A + ) = CUE N+ N2 exp (= CAE T+ I e+ ym) €171

C i
< —— 17

Xn + Yn

hold, where in the last step we again used the elementary estimate te™" < 1 (r > 0).
Again by Corollary 3.29, it follows that k) (x,,, y,) € L(L?(R""!)) with
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C
Xn + Yn .

R{kx(xn, y) : A€ Cyy [N =6} <

The scalar integral operator with kernel ko (x,,, y,) 1= #, given by

[e ]

— [ 9Gn)
(Kog) (xn) = / I
0

dyn (g € Ll)(R+))

is the one-sided Hilbert transform in L”(R) and, due to Lemma 6.9, a bounded
linear operator Ky € L(L?(R,)). By Theorem 3.18 we get

R{NT; (V) : A € Cyy [N = 6} < ClKollwre,) < oo

(d) follows in the same way as (c). O

Now maximal regularity for the model problem is an immediate consequence of
the previous results.

Theorem 6.11 Let the boundary value problem (0, — A°, B®) be parabolic, and
let x{, € OG. Choose the coordinate system corresponding to x|, and consider the
E”-realization Ag)) of the model problem (Ay(xy, D), B(xy, D)). Then p(A(E?)) D)
C4 \ {0}, and for every § > 0 the operator family

MO =AY T A e Ty, [N =6} € LILP(RY))

is R-bounded. In particular, Ag)) — 0 has for every 0 > 0 maximal L9 -regularity for
all 1 < g < oo (and generates a bounded holomorphic Cy-semigroup).

Proof Replacing in the proof of Theorem 6.10 the operators AT (A) by DT (A) (and
analogously for 7; (\)) with || = 2m, we see that the solution operators in fact define
a solution u € Wg'” (R?). Therefore, the solution coincides with the resolvent. Now
the R-boundedness follows directly from the resolvent description in Theorem 6.8
and the statements on R-boundedness from Theorem 6.10. O

To deal with variable coefficients, we first study small perturbations in the principal
part.

Theorem 6.12 Let A%(x, D) = Y, _,,, a0 D” and B)(x, D) =}, Sim, bF;WOD/’
with ag € C and b(j).g € C. Assume the boundary value problem (0, — A% BY 1o
be parabolic in the domain R',. Then there exists an € > 0 such that the following
statement holds: Let A(x, D) = A°(x, D) + A(x, D) and B(x, D) = B%(x, D) +
B(x, D) with
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A(x.D)= ) @ (x)D",

|a|=2m

Bi,D)= 3 Bjs)D’ (j=1,....m).

|Bl=m

Here, a, € L*(R",) and ng e BUC?" i (R*~1). Assume further that

Gall L@y <€,
+

|a|=2m
Y Mbjsligny < (G=1,....m).

|Bl=m

Let A, be the L?-realization of the boundary value problem (A(x, D), B(x, D)).
Then there exists a pn > 0 such that the operator family

AAp, =N A€ Chy Nz pf C LILPRY)
is R-bounded. Here, € and the R-bound only depend on (A°(x, D), B®(x, D)), and
additionally depends on the norms ||b 3| gyyc2m—n, R Y for|8] = mj,j=1,...,m.

Proof We indicate the main steps of the proof, for a more elaborated version, see
[13], Subsection 7.3.

Without loss of generality, we may assume that the coefficients of B(x, D) are
defined on all of R’, . We write the boundary value problem

(A(x,D) = Nu=f inR",
Bi(x,D)u=0 (j=1,...,m) onR"™!

in the form

(A°(x, D) = Nu = f — A(x, D)u inR",
BY(x, Dyu=—B;(x,D)u (j=1,....m) onR""".
Let (A% , —A)~' be the resolvent of the LP-realization of (A%(x, D), B’(x, D)),

which exists due to Theorem 6.1 1. Applying the solution operators from Theorem 6.8,
we obtain

u= (A%, - N7 f— (A}, - N7Ax, Du
=Y Tj (N Agmm, N Bj(x, Dy — Y Tj(\) Agum,—1 (N3, B (x, Dyu

i=1 j=1

=: (A}, — N7 f =S



56 R. Denk

We estimate the norm of S(\)u. For the term (A%_p - /\)_lg(x, D)u, we use

||(A%,p -n"! L@y, wom@yy) < Ci
and obtain
1A, = N7 A, Dyullwanry < CLI A, Dyullprgny < Crellullwen -
For the other terms, we use the fact that the operator families
(A@m=labZmpar ) ¢ jal < 2m, A € Cy, A = Ao} € L(LP(RY))

are R-bounded and therefore bounded, which can be seen as in the proof of Theo-
rem 6.10. This yields

1T;(N) Az, (N B (x, Diullwanwyy < CllAzm—m, (N B;(x, Dyull o)
<C|Bj(x, D)u||Wimfmj(R,i).

The terms of the form 5j 3D%u can be estimated, using the Leibniz rule, by

boaDP oy &+
15D ullyonns gy <€ Y D D b)) e,
[VI<2m—m; 6+6'=~

< Coellullwzn @) + Callullyor e )-

Here, the constant C3 depends on the norm ||| gyc2n—n; Ri-1)- With the interpolation
inequality, we see that for some constants C;, C, we have

ISV ullwzn @y + IANSNull ey < Crellullwan ey + Callullr @)

Now we endow W;m (R) with the parameter-dependent norm [u | := [|u [l w2»@z) +
[Alllull L (ry)- Note that for every fixed A, this norm is equivalent to the standard norm.

For [A| > 2C; and Cye < 1, it follows that
NSull < Slull.

Therefore, (1 + S(\)) € L(W;m (R?)) is invertible (with respect to the new norm,
and therefore also with respect to the standard norm). Thus, we have seen that the
above boundary value problem is uniquely solvable and that the resolvent (Ap , —
A)~!exists for all A € C,. with [\| > 2C,.
To obtain an estimate on the R-bounds, we can argue similarly. Starting from the
identity
(App, =N =A%, =N =S4, - N,
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one can show for sufficiently large p > 0

R{A(x, D)(Ag, — N : A e Ty, [N = u}
< Y Naalix@pR{D (A5, =N~ : X e Ty, I = p}

|la|=2m

< CeR{D*(Ap, — N ': AeCy, Al = pu}.

Similarly, the other terms in S(A\)(Ag,, — A)~! can be estimated. Consider the oper-
ator family

T = N1V pe(Ag , — N7 el <2m, A€ Cy, A = p}
The above calculations show that for every finite subset 7 of 7', we get the inequality
R(To) < Ri + (Cie + C2 () R(To).
Here,
Cy = R{N"DCm DAY — N7 il <2m, A e Cy, A = p} < 00

and C, (1) — 0 for 4 — oo. Choosing € small enough and y: large enough, we have
Cie+Cr(p) < %, and therefore R(7p) < 2R; < oo. As this holds for every finite
subset 7, of 7, with R; being independent of 7, we get the same estimate for 7,
ie., R(T) <2R;. O

The last result deals with small perturbations of the top-order coefficients. As
before, lower-order terms of the operators can be handled by the interpolation inequal-
ity. For a proof of maximal regularity in the situation of a bounded domain and under
the above smoothness assumptions, the method of localization can be used. We men-
tion some main ideas in the following remark.

Remark 6.13 (Localization) Let (0, — A, B) be a parabolic boundary value prob-
lem in the bounded domain G, and assume the smoothness assumptions from the
beginning of this section to hold. To prove R-sectoriality of the L”-realization of
(A, B), one can use the following steps:

(a) For every fixed xo € 0G, by definition of a C?"-domain, there exists a
neighbourhood U (xy) C R" and a C*"-diffeomorphism D, Uxg) = Vixg) :=
®,,(U(xp)) C R" with

@, (U(xo) NG) = V(xo) NRY.
We denote by (A B ) the transformed boundary value problem in the domain V (xo).

The coefficients a,, of A are defined in Vxg) N R and satisfy the same smoothness
assumptions as a,. In the same way, this holds for the transformed coefficients 5 iB
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of E,-. Moreover, it is possible to show that the transformed problem is parabolic in
Vi(xo) NTRY.

The coefficients a, and 5]'/; can be extended to the half space Ei and R*1,
respectively, in such a way that both the smoothness and the parabolicity is preserved.
For a,,, we can choose an appropriate continuous extension. For the coefficients on
the boundary b5, we have to preserve higher smoothness. For this, one can, e.g.,
define
Yy—Xo

r

bjp(y) = 5,-ﬂ<yo+x( )(y —yo)) (y eR"D,
where y € C®°(R"!) satisfies xy(x) = 1 for |x| < 1and y(x) = O for |x| > 2. Here,
Yo := Py, (x0), and r > 0 is chosen sufficiently small.

For an eventually even smaller r = r(xy), the following inequalities hold true for
agivene > 0:

Z da () = dao)lLxw) < &,

|a|=2m
3 1B() = B0 sy <& (G =1,....m).
|Bl=m

Therefore, the localized boundary value problems satisfy the conditions of Theo-
rem 6.12.
For fixed € > 0, this construction yields an open cover of the form

9G c | @' (BGo, r(xo)).
XQE&G

By compactness of G, there exists a finite subcover 0G C U,Icvzl Uy, where we have
set Ug == @1 (B(yk. r(x0))).

(b) In the same way, in the interior of the domain, we obtain for every xo € G a
small neighbourhood U (xg) C R” and an extension d, of a4 |y (x,) such that

D d@a() = axo) L@ < &

|a|=2m
holds. In this way, we obtain an open cover
N
G\ J Ui c | Bxo, rxop.
k=1 x0€G

Note that no boundary operator and no diffeomorphism is involved. As G \ U11<V=1 Uy
is compact, there exists a finite subcover
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G\UUkC U Us

k=N+1

with U, = B(xy, r(xy))). Altogether, this yields a finite open cover G cC U —1 Ur.

(c) With this construction, one obtains finitely many operators (A(k) B (k)) for
k=1,...,N and A® for k = N + 1, ..., M, which satisfy the assumptions of
Theorem 6.12 and Lemma 5.7, respectively. Now we can use the resolvents of the
L?-realization of these operators to show R-sectoriality of Ap , — u for large p.
This can be done similarly as in the proof of Theorem 5.9, using a partition of unity
and estimating the commutators with help of the interpolation inequality.

With the above techniques, it is possible to show the following main theorem on
parabolic boundary value problems:

Theorem 6.14 Assume the boundary value problem (0, — A, B) to be parabolic
and to satisfy the smoothness assumptions above. Let 1 < p < 0o. Then there exist
0 > 5 and p > 0 such that p(Ap,, — ) O C, and the operator Ap , — p is R-
sectorial with angle 0. In particular, A , — pv has maximal L9-regularity for all
q € (1, 00).

7 Quasilinear Parabolic Evolution Equations

We have seen in the previous sections that, under appropriate parabolicity and
smoothness assumptions, the L”-realization of linear boundary value problems have
maximal regularity. This is the basis for the analysis of nonlinear problems, which
will be described in the present section.

7.1 Well-Posedness for Quasilinear Parabolic Evolution
Equations

We consider nonlinear evolution equations which can be written in the abstract form

Ou(t) — A, u()u(t) = F(t,u(r)) in (0, Tp),

7.1
u(0) = uy. .

Here, Ty € (0, 0o0). We fix the following situation: Let p € (1, 00), and let X; C X
be Banach spaces with X; being dense in X,. With T € (0, Tp], the spaces for the
right-hand side and the solution are

F:=Fr :=LP((0,T): Xo) and E:=E; := H)((0, T); Xo) N L7 ((0, T); X)),
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respectively. The time trace space, and therefore the space for the initial value
ug, is given by v, E = (Xo, X1)1-1/p,p (cf. Lemma 2.4). We again set o := {u €
E : vyu = 0}. Here and in the following, we consider the operator A as a map
A: (0, Tp) x E — L(Xy, Xo). For each r € (0, Tp) and v € ,E, the operator
A(t,v) € L(Xy, Xp) is identified with the unbounded operator A(z, v) acting in X
with domain X4, and A(¢, v) € MR(Xj) has to be understood in this sense.

Example 7.1 We recall the example of the graphical mean curvature flow
(Example 2.1), which has the form

Byu — (Au - Z Maiaju) =0 in (0, Tv),

14 |Vul? (7.2)

ij=1

u(0) = uy.
This quasilinear equation can be written in the form (7.1), where

"\ Qu(t)0;
Ay = 5= 37 PO 50,
i,j=1

and F = 0. Here we have Xo = L”(R"), X; = W2(R"), and vE = B,,”"(R") =
Wl%—z/[’ (Rn).
For the nonlinearities A and F in (7.1), we assume:

(A1) We have A € C([0, Ty] x 1,E, L(X1, Xo)), and for all R > 0 there exists a
Lipschitz constant L(R) > 0 with

A, w)v — A, wvllx, < L(R)|w —wlelvllx,

forallt € [0, Ty],v € X, and all w, w € ,E with |[w|l,g < R and [|[W]|,,g <
R.
(A2) For the mapping F': [0, Tp] x 1, E — X, we assume:

(i) F(-, w) is measurable for every w € v E,
(i) F(t,-) € C(vE, Xy) for almost all ¢ € [0, Tp],
(i) f() = F(,0) € LP((0, To); Xo),
(iv) for every R > 0, there exists a o € L?((0, Tp)) with

IF (1, w) — F(t, w)llx, < er@®lw —wlye

for almost all ¢t € [0, To] and all w, w € v E with |w|,z < R, [w|,& < R.

Apart from standard conditions on measurability and continuity, the above con-
ditions essentially mean that the functions A(z, -)v and F (¢, -) are locally Lipschitz,
i.e., they are Lipschitz on bounded subsets of ;IE. The following result is based on
[29], Sect. 3 (see also [10]).
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Theorem 7.2 Assume (Al) and (A2) as well as Ag := A(0, ug) € MR(Xy). Then
there existsa T € (0, Ty] such that (7.1) has a unique solutionu € Er in the interval
©, 7).

Proof (i) We use the maximal regularity of Ay := A (0, ug) in the time interval (0, T')
with T < T to obtain estimates for the solutions of the linearized equation. For this,
we first consider the equation with initial value 0,

dw(t) — Apw(r) = g@t) (t €(0,7)),

w(0) = 0. 73)

As Ay € MR(Xy), for every g € TF there exists a unique solution w € E, and we
obtain the estimate

lwlle < Collgllr

withaconstant Cy > 0which doesnotdependon T or w (Lemma4.7). By Lemma4.4
(b), there exists a constant C; (again independent of 7 > 0 and w) with

lwllcqo,rvm < Cillwle.

Note here that w(0) = 0 holds.
In the following, we consider the reference solution #* € E which is defined as
the unique solution of

dw(®) — Aow() = f(1) (t€(0,1)),

w(0) = uy. (74)
Here, f := F(-,0) € F due to condition (A2) (iii).
(ii) For r € (0, 1] set
B, ={veE:v—u*e(k, |v—u*lg <r).
For each v € B,, define ®(v) := u as the unique solution of
Ouu(t) — Aou(t) = F(1,v(1)) — (A0, up) — Az, v(®) v(®) (€ (0, 7)), (7.5)

u(0) = uy.

We will show that ®(B,) C B, holds and that ® is a contraction in B,, given that
both T and r are sufficiently small.

(iii) In this step, we show that ®(B,) C B, holds for sufficiently small 7" and r.
For this, we write

[®@) —u*|lg = llu —u*llg < Co(IF (-, v) — fFOlF + I(AQO, ug) — AC, V)v]F).
(7.6)
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Let mr = sup,(o.7) 1A(0, ug) — A(z, uo)|lL(x,.x,)- By condition (A1) with fixed
R := C\ + |lu*|lL=(0,T:7,E), We obtain

A0, ug)v — AC, v)vllr = A0, up)v — A, V)VllLr0,7): Xy)
< [JAQO, up) — AC, V)|l L. 7):Lx; xop IV | Lr (0.7 1)
< (IIAQ0, uo) — A, uo) |l L (0.7): L(x1.X0))
+ 1AC, ug) — AC, vl 0.1 x1.%0) [VIIE
< (mr + L(R)lv = uollz=(0.17,m) Iv]e
< (mr + L(R)Cillv —uollg) lv]g.

For r < 1, we can estimate
lv—uolle < llv—ullg + llu* —uolle <7+ u* — uolle

and
lvlle < llv—u*llg + llu*lg <7+ |lu*|E.

Therefore, we obtain
A0, ug)v — A(, v)vllg < (mr + LIR)C(r + lu* — uollg)) r + lu*|g).
In a similar way, using (A2), we see that
IFCG,v) = fllr < NFGv) = FGou") e+ |FCG,u™) — F(,0)|lr
< ||<PR||LP((0,T))(||U — u* || (0,17 + ||u*||L°°((0,T);'y,]E)>
< llgrllLro,1y) (C1 lv—u*llg + ”u*”L”O((O,T);'y,]E))
< lerllzeo.rnCi(r + =0, B)-

Inserting this into (7.6), we get

1) = w1z = Colerllrqom (Crr + 4 l10.r)7,5)
+ (mr + LIROCI 0 + " = wolle) 0 + lla” )

< Co(Cr + Nlu™ Lo, 7yED IPR Lo (0,7
+ Co(r + lu™lle) (mr + L(R)Cir + LR)Cillu* = uo|lz).
(7.7)
In the limit 7 — 0, we obtain the following convergences:

e myp — 0, as A(-, up) is continuous,

o llprllLro,ry — 0,as pr € LP((0, Tp)),
o |u* —upllg, = 0,asu™ —up € Eg,
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° ||Lt*||ET — 0, asu* e ETO-

First, choose » > 0 small enough such that
CoL(R)Cyr <
holds. Then, choose T > 0 small enough such that the following inequalities hold:

lu*lle <7,
Co(C1 + lu™ =01y ED IR Lr0.7)) < 55
Co(mr + L(R)Cy|lu* — uoll) < 3.

Inserting this into (7.7), we obtain
@) —u*le <5+ +r)G+3g) =r

which shows that ®(B,) C B,.
(iv) In the same way as in (iii), one sees that for sufficiently small » > 0 and
T > 0 the inequality
|®@) — D@ e < 5llv—Tle

holds forall v, v € B,. Therefore, ®: B, — B, is a contraction, and with the Banach
fixed point theorem (contraction mapping principle), there exists a unique fixed point
u of ®. By definition of @, its fixed points are exactly the solutions of the nonlinear
equation (7.1), which finishes the proof. O

Theorem 7.3 Assume (Al) and (A2) to hold, and assume A(t, v) € MR(X)) for all
t € [0, Ty) with Ty € (0, oo]. Then for every uy € v, [E there exists a unique maximal
solution of (7.1) with maximal existence interval [0, T (ug)) C [0, To). If Tt (ug) <
Ty (i.e., if there is no global solution), then T (ug) is characterized by each of the
following conditions.

(i) 1im+,/7+(uo) u(t) does not exist in v, E,
.. T (u
(ii) f, () (lu®N%, + 1@k, )dt = oo

Proof Assume u € [E7 to be a local solution on the interval (0, 7). Then u €
C([0, T]; v/E). Therefore, we can apply Theorem 7.2 in the interval (T, Tp) with
initial condition u; = u(T) € ~,E, and obtain an extension of u# to some interval
(0, T’) with T’ > T. Continuing in this way, we obtain a unique maximal solution
which exists in some time interval [0, T (ug)).

If lim; 7+, u(t) € K exists, this can be taken as initial value at time T (ug).
By the above arguments, we see that u can be extended to a small time interval
(T (uo), T (uo) + €), which is a contradiction to the maximality of T (u). There-
fore, T (u) is characterized by condition (i).

For each T < T (ug) we have, by definition of a solution, fOT(IIu(t)||§| +
||3,u(t)||1;(0)dt < oo. If this also holds for T = T (ug), then u € Eg+(,) (X1, Xo) C
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C([0, T" (ug)]; v, E). Therefore, lim; AT+(up) U(t) exists in 7, E in contradiction to
@). O

As an application of the above theorems, we obtain a result on lower-order per-
turbation (the map B in the following lemma) for linear non-autonomous problems.

Lemma 7.4 Let A € C([0, T], L(X;, X)) with A(t) € MR(Xy) (t € [0, T]), and
let B € LP((0,T); L(vE, Xo)). Then the initial value problem

Ou(t) — A@Wu(t) = B(yu@) + f(1) (¢ €I[0,T)),
u(0) = uyg

has for each f € Fr and each ugy € v E a unique solution u € Er.

Proof We set A(t,u(t)) = A(t) and F(¢,u(t)) = B(t)u(t) + f(t). Obviously, the
conditions (A1) and (A2) are satisfied with @g(?) := || B(¢)|l1(y,E, x,)- The proof
of Theorem 7.2 shows that the length of the existence interval only depends on
uo and the constants L(R), Cy, C and 7. Because of A € C([0, T'], L(X1, Xo))
and the continuity of A — [|(0; + A)~'||.#.x) = Co(A), all these constants can be
chosen globally in the time interval [0, T']. Therefore, we have global existence of
the solution. m|

7.2 Higher Regularity

We consider the same situation as in the last subsection and study the autonomous
quasilinear differential equation

Qu(t) — Au@)u(t) = Fu@) (€ (0,T)),

7.8
u(0) = uy. 78
Here, T € (0, 00), ug € v/E(X1, Xo), A: :,E — L(Xy, Xo) and F: v,E — F.
It is well known that parabolic equations are smoothing, and the solution is even
— in many applications — real analytic. We start with a definition.

Definition 7.5 Let X, Y be Banach spaces, U C X open,and 7: U — Y be a func-
tion. Then T is called real analytic if for all ug € U there exists an r > 0 with
B(ug,r) C U and

>, DT
T(u):Zk—'(uO) (U —ug,...,u—ug) e Blug,r)).
k=0 :

k—times

Here, D¥T (uy) € L(X x ... x X, F) denotes the k-th Fréchet derivative of T at u.
In this case, we write T € C¥(U, Y).
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The main step in the proof of smoothing properties for parabolic equations is the
implicit function theorem in Banach spaces.

Theorem 7.6 (Implicit function theorem) Let X, Y, Z be Banach spaces, U C
X x Y be open, and T € CY (U, Z). Further, let (x, yo) € U with T (xg, o) =0
and DT ((xo, ¥0)) € Lisom(Y, Z), where D, T stands for the Fréchet derivative with
respect to the second component. Then there exist neighbourhoods Uy of xg and Uy
of yo with Uy x Uy C U and a unique function 1) € C'(Ux, Uy) such that

T(x,9(x) =0 (x eUy)

and 1 (xo) = yo. Therefore, the equation T (x, y) = Ois locally solvable with respect
to y. The function ) has the same regularity as T, i.e., if T € CX(U, Z) for k €
N U {oo, w}, then also i € CK(Uy, Uy).

With the help of the implicit function theorem, one can prove smoothing properties
with respect to the time variable. As references, we mention [8], [29], Sect.5, and
[30], Sect.5.2.

Theorem 7.7 Let k € NU {co,w}, and let A € Ck(v,IE; L(Xy, Xg)) and F €
ck (E, Xo). Assume u € Ep (X, Xo) to be a solution of (7.8), and assume that
A(u(t)) € MR(Xy) forallt € [0, T]. Then

> 110/u(t) € Wh(J; Xo) N LP(J: X))
holds for all j € Ny with j < k. In particular,
u € Wyt (e, T): Xo) N Wy((e, T); X1)
for every e > 0 as well as
u € CH((0, T): 3E) N CHIIP (0, T): Xo) N C*1P((0, T): X).
Here, C*1=1/P aqnd C*=V/P stand for the Holder spaces of order k +1 — 1/p and

k — 1/p, respectively. If k = oo, then u € C*((0, T); X1), and if k = w, then u €
C¥((0, T); Xy).

Proof We fix ¢ € (0, 1) and set T (¢) := I—L For A € (1 — ¢, 1 + ¢€) we define the
function uy: [0, T(e)] = W E by u)(t) :=u(At) (t € [0, T(e)]). Then O,u)(t) =
A(O;u)(At), and therefore

Orup(t) = AA@uA@)ux(t) = AF(ur(@)) (t € (0, T(e))),
ux(0) = uy.

Now consider the function
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H: (1 — &, 1 +€) X ET(E) — IFT(S) X ’)/tE
defined by

HOVuy () = (PO 7O ZAWO) e 0,16

for A\e (1 —¢,14¢) and w € Er(,). As A and F are both of class C*, the same
holds for H. Moreover, H(1, u) = 0 and

DAHOL 1) — (_A(w)ué_ F(w>> ’

Dot = (alh ~ AW =M (whw — /\F’(w)h)

h(0)

for h € Er(.,. Here A’(u) stands for the Fréchet derivative of A at u. In particular,
we obtain for A\ = land w = u

Dy H(, w)h = (a,h + A(h +h/(10§u)hu —F (u)h) .

Fort € [0, T(¢)]and v € v, E, we define B(¢)v := — A’ (u(t))vu(t) — F'(u(t))v. As
A e C'(vE, L(Xy, Xo))and F € C'(,E, Xo),weget B € L?((0, T); L(vE, Xo)).
Therefore, we can apply Lemma 7.4 (replacing A(#) in this lemma by A(u(?))).
Note that t — A(u(t)) € C([0, T (¢)], L(X1, Xo)) holds because of ¢ +— u(t) €
C([0, T(e)]; v:E). By assumption, A(u(t)) € MR(Xy) for every ¢t € [0, T], and we
can apply Lemma 7.4. This yields

DyH(1,u) € Llsom(ET(a)s IE‘IT((E) x v/ E).

Now the implicit function theorem, Theorem 7.6, tells us that there exists ad > 0 and
a Ck-function ¢: (1 —6,14+6) — Er¢) with HO\L, (V) =0\ e (1—4,1+
6)) and Y (1) = u.

By definition of H and the uniqueness of the solution, we obtain ¥(\) = uy,
e, A uy e CK((1—6,140), Er)).Because of Er(.y C C([0, T (¢)], 1/ [E), we
obtain A u\(t) =u(\t) € CK(1 = 68,1+6),vE). But this means
u € CH(0, T (e)), vE).

Now we use %uk(t)h:] =10u(t) (t € (0, T(c)). As ¢ € C*((1 — 6,1+ 9),
Er (), we get t > tdu(t) € Er(). An iteration shows that ¢ — t*0fu(t) € Er(.),
and therefore

€ W, (6, T(©)): Xo) N W, ((6, T(€)): X1)

forevery § > 0 and ¢ > 0. Now we apply Sobolev’s embedding theorem which tells
us that W,’f((é, T(e)) C CKVr([8, T (¢)]). With this we obtain, as e > 0and 6 > 0
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can be chosen arbitrary,
u € C*FI7VP((0, T); Xo) N CE71P((0, T); X)).

In the case k = oo, we getu € C*°((0, T); X;). If k = w, then the function % is real
analytic. The above embeddings are linear and therefore real analytic, too, which
yields u € C¥((0,T), X,). O

Remark 7.8 This method of proof is known as parameter trick or method of
Angenent [8]. Note that the two main ingredients are the implicit function theo-
rem in Banach spaces and the fact that D,, H (1, u) is an isomorphism. The latter is
exactly the maximal regularity of the linearization, and it can also be seen as one of
the main ideas of the maximal regularity approach to show that the implicit function
theorem can be applied to the nonlinear equation.

As an example, we consider the quasilinear autonomous second order equation
in R”
Ou(t, x) —tr (a(u(t, x), Vu(t, x))Vzu(t, x)) = f(u(t,x), Vu(t, x))
((r,x) € (0, T) x R"),

u(0, x) = ug(x).
(7.9)
To solve the nonlinear problem, we need the following result from the linear
theory, which can be shown by the methods of Sect.5.

Lemma 7.9 Let b € BUC(R"; R?}fn”) with b(x) > cI, (x € R") for some constant
¢ > 0. Define the operator B by D(B) := Wg(R”) C LP(R"Y),

(Bu)(x) := tr (b(0)VZu(x)) = Y b;j(x)d:05u(x) (x € R", u € D(B)).

ij=1
Then B € MR(L?(R™)).
For the nonlinear equation, we obtain the following result (see [29], Theorem 5.1).

Theorem 7.10 Let p e (n+2,00) and k € NU{oo,w}. Assume that a €
Ck(]R”“,R?)j,f) and f € CKHR™!, R) with f(©) =0, and assume that for all
(r, p) € R x R" the matrix a(r, p) is positive definite. Then equation (7.9) has
for all uy € ngz/P(R”) a unique maximal solution u € L?((0, TY); WI%(R’j_)) N
W;((O, TT); LP(R™)) inthe existence interval J = (0, TH) withTT = T (ug) > 0.
Moreover,

ue C I Wy 2P@RM) N CHIYP (T LPRY) N CEYP (T W RY)).
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Proof For Xy := L’(R")and X, := W,%(R”),thetrace spaceis givenby v, E(Xy, X1)

= (Xo, XD1-1/p.p = W,%*z/p (R™). An application of Sobolev’s embedding theorem
yields

wE=W,P[R") € Cy(R") := {u € C'(R") : ‘ llim 10°u(x)| =0 (Jaf < D}.

Now define the mappings A: v, E — L(Xy, X;) and F: v,E — X by

(Aw)w)(x) :=tr (a(v(x), Vv(x))Vzw(x)),
(F(v)(x) := f(v(x), Vv(x))

forx € R", v € %,E, and w € W} (R").
Let v € 1,E. Because of v € Cé (R™), the set {(v(x), Vv(x)) : x € R"} ¢ R"*!
is bounded. As a is continuous by assumption, we see that

b, :=a(), Vv(-)) € BUCIR")

and b, (x) > ¢, I, (x € R") with ¢, > 0. By Lemma 7.9, we obtain A(v) € MR(X)
for all v € ,E.

To show that assumptions (A1) and (A2) are satisfied, we use the fact that a is
a C'-function and therefore Lipschitz on bounded sets. Therefore, we get for all
v,V € v Eand w € X; with |v]|,,g < R, ||[V]|,,g < R the inequality

[A@wW—A@ W@y = | tr(av, Vv)w — a(@, VD)w) ||U(R,,)

< Clla(v, Vv) — a(@, VO) || Lo oy rmen | VW] L (o ey
< CLR) v —="7lci@nllwlx,
< CL(R)llv = vll,ellwlx,-

This shows assumption (A1) and, in particular, the continuity of A: v, E — L (X,
X ). Similiary, assumption (A2) can be shown. Here, we have to show the continuity
of F: v,E — Xj. For this we use the fact that F is a variant of the so-called Nemyckii
operators, i.e.,

F: W, P@R") — LP(R"), F(v) := f(u(), Vo()) (v e W, /P[R").

For this, we also use f(0) = 0. By known results on the Nemyckii operator, one
obtains A € C¥(,EE, L(X, X)) and F € C*(,E, X,). Therefore, all assumptions
of Theorem 7.7 are satisfied, and we obtain higher regularity for the solution u as
stated in the theorem. O
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On Stability and Bifurcation in Parallel )
Flows of Compressible Navier-Stokes oo
Equations

Yoshiyuki Kagei

Abstract The stability analysis of parallel flows of the compressible Navier-Stokes
equations is overviewed. The asymptotic behaviour of solutions is firstly considered
for small Reynolds and Mach numbers. An instability result of the plane Poiseuille
flow is then given for a certain range of Reynolds and Mach numbers, together with
a result of the bifurcation of wave trains from the plane Poiseuille flow.

Keywords Compressible Navier-Stokes equations * Parallel flow - stability -
Asymptotic behaviour - Bifurcation

Mathematics Subject Classification 35Q30 - 76N06

1 Introduction

This article is concerned with the mathematical analysis of the stability and bifur-
cation problem for parallel flows of viscous compressible fluids. The governing
equations of such fluids are written in the form

Oip +div (pv) = 0, (1.1
p(Ov+v-Vv) — "Av — (" + 7)Vdivyv + VP(e) = g. ’
Here p = p(x,t) is the unknown density and v = " (v/(x,1),...,V"(x, 1)) is the

unknown velocity field at time # > 0 and position x € R* (n > 2); P = P(p) is
the pressure which is assumed to be smooth in p satisfying
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P/(P*) >0

for a given constant p, > 0; pand 4 are the viscosity coefficients which are assumed
to be constants satisfying

2 I
p >0, ;;Hru > 0;

and g is a given external force.
The system (1.1) is considered in an infinite layer

Q={x=0u"x)x" =0 ..., x1) e R 0<x, <2}
As for the external force g, we assume that g has the form
g="(g"().0,....0.8"(xn)
with smooth ¢'(x,) and ¢" (x,,).
Under Dirichlet type boundary condition on the velocity field v, one can see

that the system (1.1) has a stationary solution, called a parallel flow, in the form
i, = "(p,, V), where

_ 1 [
ps = ps(xn)s _/ ps(xn)dxn = p*’
€ Jo

Vs = (0} (x,),0,...,0).

Typical examples are the following plane Couette flow and the plane Poiseuille flow.
If g = 0 and the boundary condition is

1 1 2
v |x,,:€ =V, v |x,,:€ == Un|x,,:€ =0, V|x,l:0 =0,

then one has the plane Couette flow i, = T (p,, v;) with

Vl
ps:p*a V.Y:T<7~xnaov"'70);

andif g = T(g’,0,...,0) with g' satisfying g' # 0 and the boundary condition
Vl,=06 =0,

then one has the plane Poiseuille flow u; = T(ﬁs, V) with

1
Py =per V=" (g—xn(e —x,), 0, . ..,0) )
2p
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In this article we will survey the results in [13, 15, 16] on the stability and
bifurcation problem for parallel flows. In Sect. 2, we consider the stability of parallel
flows under spatially localized perturbations. In Sect. 3 we give an outline of the proof
of the stability result. In Sect.4 we focus on the Poiseuille flow; and we discuss the
instability of the plane Poiseuille flow and the bifurcation of wave trains from the
plane Poiseiulle flow.

2 Stability of Parallel Flows

We first introduce the following non-dimensional variables:

. £ .
x =£x, tzvt, v = V& az:ce*Q,Pzae*VZp

with V = [[v] | ¢ni1;9 ¢ for an integer m > [n/2] + 1. Here
m+1
1 kyak 1
i ez =D, sup €105 v} (x,)l.
k=0 0=<x,<¢t
Under this non-dimensionalization the domain €2, is transformed into 2 = Q:

Q={F=F, 5);x' =G, ....5_ )R 0<%, <1},

and the parallel flow u; is transformed into ity = ' (jy, vs) with

1
ﬁs = ﬁy(in) > 0, / ﬁv(in)din =1,

T~z 0 ~1
Vg = (Us ()Cn), 0, ey 0), ”Us ||Cm+][0’1] =1.

Hereafter we omit tildes. The perturbation u(t) = T(p(t), w®) = TC(e(t) —
@y), v(t) — vy) is then governed by the system of equations

¢ + vy - Vo + ¥Adiv (psw) = fO(w),

Ow — —Aw — §Vdivw+v(ﬁ2§T¢f>CE) @1
I/iz 1
+ ’(W)’;';)zx per +vs- Vw4 w- Ve =f(u).
Heree; = '(1,0,...,0) € R"; v, i and v are non-dimensional parameters defined
by
v opt VP (ps)
= . = . = / 1 = —,
vEov VT v 1V %

and £°(u) and f (1) denote the nonlinearities:
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o) = —div (¢w),

f(w) :_W.VW+ﬁ< Aw + & S(Ee])

WleVW
¢ (ps) ”
+ ({/g 6) = 545V (P (0)9?)
+p3(pm ¢» x¢)’
where
o I 3
p3 = m V(o) = 55,V (¢ p3(ps. #))
5229 (0008 + 267 p3(0. )
2
iV (P;z’%s + 5P () + 256 Py, 0))
with

p3(ps, ¢) = /01 (1=60)°p" (07 + py) db.
The boundary condition is transformed into
wleq = 0. 2.2)
We prescribe the initial condition

Ulimg = ttg = ' (G0, Wo)- (2.3)

We note that the Reynolds number Re and the Mach number Ma are given by

Re=—-, Ma=

1 1
v o

The following result [13] states that if the Reynolds and Mach numbers are suf-
ficiently small, the parallel flow is asymptotically stable under spatially localized
small perturbations and that the asymptotic leading part of perturbations behaves
purely diffusively.

Theorem 2.1 ([13]) Let m be an integer satisfying m > [n/2] + 1. Then there exist
constants vy > 0, v9 > 0, wy > 0 such that if

2

2
-~ >, W= — Ilenpo,n < wo,
o =0 los — Hllcmpo.

vV = 1,

then the following assertions hold:
If ug = (o, wo) is in H™(2) N LY(Q) with ||lug||gmrrr < 1 and satisfies suit-
able compatibility conditions, then there exists a unique global solution u(t) =
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(o(2), w(t)) € C([0, 00); H™(2)) of (2.1)—(2.3) and the solution u(t) has the fol-
lowing properties.
Ifn > 3, then
105 u(@)l2 = 0G5 ~2) (¢ > o0)

for £ =0,1and

lu@®) = (Cu@)@)| 2 = O™ "I, (1)) (t — o0).

Here u® = u©(x,); and o = o(x',t) is a solution of the following linear heat
equation
oo — /—108)%10 —K'A"0 +a,0y,0 =0,

Oli=0 = fol do(x’, xp) dxy,

where A" = 8%7 +. 4+ 8)%”71; ko > 0, K" > 0 and a, are constants; and n, (t) = 1
when n > 4 and 1, (t) = log(l + t) when n = 3.
Ifn =2, then
105u@®)l2 = OG™73) (1 — 00)

for £ =0,1and
©) _ -3+
u(@) — (u™)(O|2=0@"47), >0, (1 —> 00).
Hereu® = u© (x,); and o = o (x1, t) is a solution of the following Burgers equation

00 — k0% 0 + a10x,0 + az0,,(0%) = 0,
Oli=0 = fol Po(x1, x2) dx,

where kg > 0 and a; (j =1, 2) are constants.

Remark 2.2 (i) It is well known that solutions of the Burgers equation are approx-
imated by self-similar solutions if the initial data are sufficiently small. We thus see
that, when n = 2, in addition to the assumptions of Theorem 2.1, if fQ [x1]190] dx K

1, then [ju(t) — Gu@)(O)| 2 = 00—%4.5) (e >0) as t - oo. Here x(x;,t) =
z(x; — ayt, t),where z = z(x1, t) isaself-similar solution of 0,z — na)%lz + a0y, > =
0 with f]R z(x1, ) dx; = fQ Po dx.

(i1) Iooss and Padula [10] studied the stability of parallel flows of (1.1) in a
cylindrical domain Q = {x = (x, x); x; € R, x’ € D} under the boundary condi-
tion v|@p = v, satisfying v, - n = 0. Here D is a smooth bounded domain of R"~!
(n = 2, 3) and n denotes the unit outer vector normal to 9. In [10] the linearized
stability under perturbations periodic in x; was considered; and the following result
on the spectral distribution of the linearized operator around the parallel flow was
obtained. Let A, denote the linearized operator under perturbations periodic in x;.
Then there exists a constant A > 0 such that
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o(—Aper) N{N Re X > —A} = (A;}5,

where \; (j =0, 1,..., K) are eigenvalues of —L with finite multiplicities. Fur-
thermore, it was shown in [10] that if the Reynolds number is small in some sense,
then the parallel flow is linearly stable, i.e., Re A\; < Oforall j =0,1,..., K, and
therefore, the solution of the linearized problem decays exponentially as t — oo.

(iii) In the case of the cylindrical domain &2 = R x D with bounded smooth
domain D C R?, Aoyama and Kagei [5] proved the stability result similar to Theo-
rem 2.1 forn = 2, i.e., parallel flows are stable under spatially localized small pertur-
bations if the Reynolds and Mach numbers are sufficiently small, and the asymptotic
leading part is given by the Burgers equations.

(iv) Stability results similar to Theorem 2.1 also hold for the case of time-periodic
parallel flows. If the external force g takes the form g = T(gj (x4, 0),0,...,0,8"(x))
with ¢! being time-periodic as ¢g' (x,,, t + T) = g'(x,, t) for some T > 0, then (1.1)
has a time-periodic parallel flow u; = T (ps, vy), v, = " (v} (x/, 1), 0') with v! being
time-periodic as vs1 x,t+T) = vS' (x’, t). In this case the statements of Theorem
2.1 with u©@ = 4@ (x") replaced by u® = u @ (x/, t) satisfying u@ (', t +T) =
u@(x’, t) hold true. Here x’ = x, when n = 2. See [6, 7] for the stability of time-
periodic parallel flows. See also [9] for the stability of spatially periodic steady states.

(v) In [12], the stability of the plane Couette flow was studied as a special case
of parallel flows and similar results to Theorem 2.1 was obtained. Li and Zhang
([21]) considered the stability of the plane Couette flow of (1.1) for n = 3 under the
Navier-slip boundary condition on the bottom

v3|X3=0 = O, (_8X3vj + avj)|x3=0 =0 (] = 17 2)
and the non-homogeneous Dirichlet boundary condition on the top
v1|X3=£ = Vl’ v2|X3=e = v3|X3=Z = O

Here o > 0is the slip length constant. It was shown in [21] that if «v is getting smaller,
then the Reynolds number can be taken larger to guarantee the stability of the plane
Couette flow than that given in Theorem 2.1.

(vi) In [1, 2], the stability of the motionless state u; = T(p*, 0) of (1.1) with
g = 0 was studied under the complete slip boundary condition. In this case, the
asymptotic behavior of solutions are different to the one in the non-slip case (2.2)
given in Theorem 2.1. More precisely, we consider (1.1) with g = 0, written in the
form

d,p + div(pv) = 0,
p(Ov + v - Vo) — udivD(v) — 1/ Vdive + VP (p) = 0.

in a cylinder @ = R x D with D = {x’ = (x2, x3) : x5 + x3 < £?} under the com-
plete slip condition
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v-nlpe =0, D) -n— (D()n-n) 0.

n’asz =
3 i3

Here (D(”)jk)‘,;k:]: (00" + (’)xkv-’)j’k:];

isfy 4 > 0 and % pu+p' > 0.Letu = (¢, w) be the perturbation of the motionless

state " (p,, 0). If the initial perturbation 1y = T (¢, wy) is sufficiently small, then it
holds that

and the viscosity constants y and 1’ sat-

lut) — x4+ (Day — O_(a_ — Grg(Daggllizy < CU+1)72,

where a. = " (I, +1,0,0); x+ = x+(x1,1) = z+(x; £ 7¢, t) are nonlinear diffu-
sion waves with z; = z4 (x], t) denoting self-similar solutions of the Burgers equa-

tions
v+

2

Orz+ — 9%z Fcdy, (22) = 0;

and where Xig(?)ay is a diffusive rigid motion with ag, = 61—2\/%T 0,0, —x3, x2)

and Xyig = drig (4rvt) ™2™/ Here v = /P(py), v = p/ps and v/ = i/ ps.
In contrast to the case of the non-slip boundary condition (2.2), a hyperbolic
aspect (propagation of diffusion waves) appears in the asymptotic leading part of the
perturbation under the complete slip boundary condition. (Cf., [17, 22].) As for the
analysis of the problem under the slip boundary condition, see also [20, 24, 27].

3 Outline of Proof of Theorem 2.1

Theorem 2.1 is proved by decomposing the problem into the low and high frequency
parts. For the low frequency part, we make use of the spectral properties of the
linearized semigroup, while for the high frequency part, we employ the Matsumura-
Nishida energy method [23]. We here give an outline of the proof of Theorem 2.1
following the arguments in [5, 6, 13]. For simplicity we consider the case n = 2
only.

3.1 Notation

We first introduce notation which will be used in this section. For 1 < p < oo we
denote by L (E) the usual Lebesgue space on a domain E and its norm is denoted by
Il - lzr(£). Let m be a nonnegative integer. H™ (E) denotes the m th order L? Sobolev
space on E with norm | - || g (). In particular, we write L*>(E) for H(E).

We denote by Cj'(E) the set of all C"™ functions with compact support in E.
H{' (E) stands for the completion of C§'(E) in H™ (E).
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We simply denote by LP(E) (resp., H"(E)) the set of all vector fields w =
T(w!,w?) on E and its norm is denoted by | - |1z (resp., || - || an(g)). For u =
T(¢, w) with ¢ € H*(E) and w = T (w!, w?) € H"™(E), we define el g eyscmm (k)
by lullatgyxam ey = 1@l arE) + IWilHmE)-

When E = Q2 we abbreviate L? (2) as L?, and likewise, H™ (2) as H”. The norm
Il - lr(ey is written as || - || .», and likewise, || - ||gn () as || - || z». The inner product
of L*(Q) is denoted by

(frg) = fﬂ Fg@dx, fge LAQ).

Foru; = T((;Sj, w;) (j =1, 2), we also define a weighted inner product (u1, u,) by

(ur, uz) = 72/ 16 T2 dX+/ - Wace, dx,
Q Q

where p; = ps(x2) is the density of the parallel flow u;.

In the case E = (0, 1) we denote the norm of L?(0, 1) by | - |,. The norm of
H™(0, 1) is denoted by | - |gn, respectively. The inner product of L?%(0, 1) is also
denoted by

1
(frg) = /0 F)gGdn, f.ge L0, 1)

if no confusion occurs. Here g denotes the complex conjugate of g. For u; =
T(gbj, w;) (j =1, 2), we also denote the weighted inner product by (u1, us):

1
(uy, us) / ¢1¢2p(p\) dX2+/ - Woceg dx;.
For f € L'(0, 1) we denote the mean value of f over (0, 1) by (f):

1
f) :/o f(x2) dxs.

We finally define the Fourier transform of f in x| by

F&) = Fre = /R Fne i€ dx,

and its inverse transform is defined by

1 .
Flfen) = - /f(ﬁ)e’f"‘ dg.
™ JR
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3.2 Spectral Properties of the Linearized Semigroup

In this subsection we consider the spectral properties of the linearized semigroup.
We begin with the linearized resolvent problem associated with (2.1)—(2.3) forn = 2
which is written in the form

Au+ Lu=F. (3.1)

Here A € C is a resolvent parameter; F = T (f°,f) with f = T(f!,f?) is a given
function in L%() x L?(2); and L is the operator on L?(2) x L*(2) with domain

D(L) = {u="(¢,w) € L*(Q) x L*(Q); w € H)(Q), Lu € L*(Q) x L*(Q)},

[ v, O, VAdiv(ps-) 0 0
— V(5 —n A= V+V = Vdiv + vy, quv; er Dyv))e; e

V2 s

where e; = T(I,0) and e, = T (0, 1).

One can see that there existsa A >> 1 suchthat {\ € C; Re A > A} C p(—L) and
that — L generates a Cy-semigroup U (¢). See [10] for a generation of a Cp-semigroup.

We shall decompose U (¢) by a projection operator associated with the spectrum
of —L which is obtained through the Fourier transform in x;.

To investigate the spectrum of —L, let us consider the Fourier transform of (3.1)
inx; € R:

Ni+ Leii = f, (3.2)

with a parameter £ € R. Here 1:5 is the operator on H'(0, 1) x L?(0, 1) with domain
D(L¢) = H'(0, 1) x (H*(0,1) N Hy (0, 1)),

and

163‘); i'yszsf '728{2 (ps )
Le=| €55 —50L+UEIEP +igy] —i 7€,
0. (222 ~i €0, —UAPQR g LIEP gy]
0 0 O
2 1
+ ”d" £ 0 Oy, v!

X2 Vs

000

We also introduce the adjoint operator I:Z with domain D(lté‘) = D(ig),



80 Y. Kagei

_igvsl _i72psf _728& (ps )
~ F ¢ P'(ps) 2 +0 112 _ iel c D
fro| e —rgesepoiol o -ile,

P(ps) Y +7 92 2 sl
0., (2 ) ~i g0, —EEG 4 LIgP — ity
DAL
P'(ps)
+]l0 0 o
0 a,v 0

X2 ¥s

When £ = 0, one can see that 0 is a simple eigenvalue of —Ly and —i;; and
the remaining parts of spectra of —Loand —I:?‘) lie in a left-half plane strictly away
from the imaginary axis. As for the eigenspaces for the eigenvalue 0, we have the
following proposition.

Proposition 3.1 0 is a simple eigenvalue of —Lo and —f,(’; and
Ker (—Lo) = span {u®}, Ker (—=Ly) = span {u©*},
where the functions u® and u©* are given by
u® — '|'(¢(0)7 W(O)), w® — T(W(O)J’ 0)

and
w0 — T(d)(O)*, 0).

Here

1 -1
©) — o o) _ 7 ps (x2) )
() = Qo) @0 = (/0 p/(mx;))de) ’
and w O is the solution of the following problem

|
{ —0pw! = —maxz%s] ¢V,

0).1 _ 0
wO | o= 0;

and ,
¢V (x2) = L9 (x2).

Furthermore, it holds that
(o, ug) = 1.

By a perturbation argument, we have the following properties the spectrum of
—Lg for |€| < 1.

Proposition 3.2 (i) There exist positive constants cy, vy, Y1, wi and ry such that if

2
v >y, L= >~? and w < wy, then it holds that
v+ 1
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o(=L)N{A: A = 9 = o)
for each & with |£]| < ro, where \o(&) is a simple eigenvalue of—ig that has the form
M(©) = —iai§ — ko€ + O(I¢P)
as |€| = 0. Here a; € R and ko > 0 are the numbers given by

a1 == (v} +?p,w ) = o),

wo =2 Jaol 02 afi+ 0(5) + (& + ) x 0(2) |

v 2
Here (—8?2) is the operator on L2(0, 1) under the zero Dirichlet boundary condition
with domain D((—03)) = H*(0,1) N Hy (0, 1).

(i1) The eigenprojections f[({) and ﬁ*(f) for the eigenvalues \o(€) and Mo (€) of
—L¢ and —LZ‘ are given by

T = (u, uf)ue, T (u = (u, ue)uf,

respectively, where u¢ and uZ‘ are eigenfunctions for \o(€) and Xo(€), respectively,
that satisfy (uc, uz‘) =L
Furthermore, ug and ”Z are written in the form

ue(x2) = u® (x2) +i&u (x2) + 1€7u® (x2, ),
ui(x) = Q) + i ™ (o) + €17 (32, ©).

and the following estimate holds
el e+ Tl e+ | e+ 0D e+ 0@ e+ 10 e < Cro,

with a constant Cy ,, > 0.

See [4, Theorem 4.5, 4.7] and [3, Lemma 4.1] for a proof.
The asymptotic behavior of the semigroup e~'" generated by —L follows from
Proposition 3.2. Let us introduce the characteristic function 1y, </, (&) defined by

I, (0<[l <r,

for £ eR,
0, (€l > ro),

Lijpi<r} (§) = !

where r is the positive constant given in Proposition 3.2.
We define the projections Py and Pe, by

Py = F "<y OTLHEOF
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and
Po=1-P.

Then Py and P, satisfy
Po+ P =1, P*=P, P,LCLP;, Pie"=¢"tP;, (j=0,00).
Based on Proposition 3.2, the following decay estimates of e "% follow.

Proposition 3.3 Ifv > v, V"—j; > 'ylz and w < wy, then e 'L Py and e 'L P, satisfy
the following estimates.

(i) If uo = (g0, wo) € (L'(R) x L'(R)) N (L*(R) x L*(R)), then ™" Poug
satisfies the following estimates

1%, 8L e~ Pouglla < Crs(1+1)7572 fluolly (3.3)
uniformlyforNt >0andfork =0,1,..,andl =0,1,...

(i) Let HY(Q) ={w e LE(Q); @,,w e L*(Q)} with norm ||wl = w2 +
@, w2 If up € H'(Q) x H' (), then there exists a constant dy > 0 such that
e 'L Poouy satisfies

_ _ _1
le™" Pocutoll it < Ce™ " (luoll 1w i + 12 lwoll2) (3.4)

uniformly fort > 0.

To treat the nonlinear problem, we need more detailed information on the structure
of the Py part of e~'L.

We have the following factorization of e~'L Py. See [4, Sect.5] for the detailed
argument.

Here and in what follows we assume that

2
~ 5
>
V—i—ﬁ_%’

V=, w = Wi,

where vy, v, and w; are the constants given in Proposition 3.2.
We define the operators

T:L*R) - L*(Q), P:L*(Q) — L*(R), A:L*R)— L*(R)

To=F"[T6], 16 = Lz (©ued;
Pu = .7:_1[73@7], ﬁéﬁ = Lyjirg) () (it u);

Ao = F 1< (©)Xo(€)5]
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foru € L*(Q) and o € L%(R). It then follows that

Po=TP, ey =TP, RLCLP=AP.

We have the following factorization of e "% P.

Proposition 3.4 It holds that
e 'tpy=TeP.

As for 7, we have the following estimates.
Proposition 3.5 The operator T has the following properties:

(i) |Tollg < Cllollzg fork=0,1,... and o € L*(R).
(ii) T is decomposedasT =T® + 0, TV + 8?1 T where TWo=F - [TW5]

(j =0,1,2) with
T8 = Ly (O)5u?,
TNG = Ly (O5uV (),
TP6 = =121y (©6u? (-, ©).

Here TV (j =0, 1, 2) satisfy estimates (i) by replacing T with T/,
Similar estimates also hold for P.
Proposition 3.6 The operator P has the following properties:

(i) |Pullgr@ < Cllulafork =0,1,...,andu € L*(RQ). Furthermore, | Pu|| .2

< Cllully for u € L'(Q). A
(ii) P isdecomposedasP = P + 9, P + 97 PP, where PVu = F~'[PVi]

(j=0,1,2) with

Of = 1412y ) (@, u*®) = L1201 (©)( Qo)

Aol

POt = 1y () (i1, ™),
Dit = ~1y12r) ()1, P ().

Aol

Here PY) (j =0, 1,2) satisfy estimates (i) by replacing P.
It then follows that ¢’ satisfies the following estimates.

Proposition 3.7 The operator e'® satisfies the following estimates.

(i) 10,2 Pullm < CA+0)75 7 lully,
(i) 110L e PPDull 2y < CA+0)75 2 ull, j=0,1,2
(iii) 0L (T = TO)e' Pully < C(L+0)~% July,
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foru e L' (Q)andl=0,1,2...

By the properties of P and the definition of A, one can see that the asymptotic
behavior of e’ is described by H(¢):

H([)O' — f*l[ef(imvah:OgZ)[a_] (O' e LZ(R)),

where k; € Rand kg > 0 are given by Proposition 3.2. Indeed, we have the following
estimates.

Proposition 3.8 Foru € L*(2), we set o = (Qou). Ifu € L' (), then there holds
the estimate

18%, (e Pu — H@)o )l 2@ < C1~3 2 ully ¢ =0,1,...).

Since
e Py =T P =TOMP 4 (T — TO)! AP,

one could imagine that u©H(¢) (¢o) would appear in the asymptotic leading part of
the solution of the nonlinear problem (2.1)—(2.3). It is true if n > 3, but, in the case

n = 2, one needs to take into account the nonlinearities which leads to the nonlinear
term of the Burgers equation. See [5, 6, 13] for details.

3.3 Nonlinear Problem

The problem (2.1)—(2.3) is written as

du
I + Lu=F(u), wleao=20, uli—o = up. (3.5)
Here u = " (¢, w); and F(u) denotes the nonlinearity:

F) = "(fp, w), f(E, w)).

We decompose the solution u into its Py and Py, parts. Let us decompose the
solution u(z) of (3.5) as

u(t) = (@u ) (1) + uy (1) + uoo(t),
where
o1(t) = Pu(t), u1(t) = (T —TOYPu@t), us(t) = Psou(r).

Observe that Pou(t) = (ou@)(@) + u; (¢).
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From the estimates in Sect. 3.2, one could expect that o (¢) were the asymptotic
leading part of u(¢). In fact, since u; () is written as

u () = (T — TOYPu(t) = (0, TV + 92 TP®)o1 (1),

one can see from Propositions 3.5 and 3.6 that u; (#) is dominated by o (¢).

Proposition 3.9 Let u(t) be a solution of (3.5). Then

10%0L. 0 uy ()ll2 < C{lIOx a1 (D)2 + 10,01 (1)]2}

X3

forl <k+1+4+2m <3.

From Proposition 3.9, it thus suffices to consider o () and u(2).
We give an outline of the decay estimate of u(¢) in Theorem 2.1. By using the
factorization of e’ P, we see that o satisfies

T
o1(t) = e Puyg +/ eUIAPE(T)dT; (3.6)
0

We employ this formula to estimate o (¢).
On the other hand, u. () satisfies

azlftoo + Luoo = FOOa Weo |@Q= 07 Uoo |z:()= Uoco,0, (37)
where Foo = Poo F and us 0 = Poolto. To estimate uo,(¢) we use the estimate (3.4)

of 'L P, and the Matsumura-Nishida energy method.
We introduce the quantity M, (¢) defined by

M) = sup (1+7)3 o1 (D)l + sup (1 +7)% (105,01 (Dll2 + [10-01(7)12};

0<r<t 0<r<t

and we define the quantity M (¢) > 0 by

M@#)? = M(1)* + sup (1 4+ 7) Exe(r) (t €[0,T])

0o<r<t

with
Eoo(t) = lltoo(®) |72 + 10ittoc ()15

We also introduce a quantity Do (¢) for e = T (oo, Weo) defined by
Doo(t) = [0:boo ) 151 + 101000 D) 31 + 10w D172 + 1@ weo (D171
By using the estimates in Sect. 3.2, we can show thatif M (t) < 1 for¢ € [0, T], then

Mi(t) < C{lluoll + M (@)%} (3.8)
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Furthermore, using the estimate (3.4) of e ' P, and the Matsumura-Nishida energy
method, we can obtain the estimate

Es(t) + / ” e I D (TYdT
0 (3.9)

< Cle™E(0) + (1 + )2 M(r)* +/ e IR (YT
0

Here a = a(v, 7V, ) is a positive constant; and R(¢) is a function satisfying the
estimate \ ]
R() < C{L+D2M®) + (1 + 1) M(t) Doo (1)} (3.10)

Combining these estimates with the local existence of solutions, one can prove that
if |lugll g2npt 1s sufficiently small, then

M(t) < Clluoll g2nr

uniformly for ¢+ > 0, which proves the decay estimate of #(¢) in Theorem 2.1.

4 Instability and Bifurcation in Poiseuille Flows

We have seen that parallel flows are stable if the Reynolds and Mach numbers are
small enough. In this section we consider what happens if the Reynolds and Mach
numbers are not necessarily small. It is expected that parallel flows become unstable
when the Reynolds number increases. We shall see that, for a certain range of Mach
numbers, the plane Poiseuille flow becomes unstable for Reynolds numbers beyond
a critical value which is much smaller than that for the case of the incompressible
fluids. After the instability of the plane Poiseuille flow, a bifurcation of wave trains
(spatio-temporal traveling waves) occurs. These results were proved in [15, 16]. In
this section we review the instability and bifurcation results given in [15, 16]. See
also [14] where the proof of the bifurcation of the wave trains is outlined.

Bifurcation problems for equations in fluid mechanics have been paid much atten-
tion and, in fact, have been extensively studied. The mathematical analysis of such
problems were mainly done for the incompressible Navier-Stokes equations since
1960s; see, e.g., [11, 18, 19, 28], and so on. Since the incompressible Navier-Stokes
equations are classified in semilinear parabolic systems, classical bifurcation the-
ories for elliptic equations can be directly applied to bifurcation problems for the
incompressible Navier-Stokes equations. See e.g., Crandall and Rabinowitz [8].

On the other hand, the compressible Navier-Stokes equations are classified in
quasilinear hyperbolic-parabolic systems, and bifurcation theory applicable to the
incompressible problems does not work well for the compressible Navier-Stokes
equations.
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The first result for the multi-dimensional compressible bifurcation problems was
given by Nishida et al. [25] who proved the existence of bifurcating compressible
convection solutions for thermal convection problem. The main difficulty in the proof
of the bifurcation for the compressible system arises from the convection term v - Ve
in (1.1). This term causes the derivative-loss in a standard setting, and therefore, it is
not Frechét differentiable if one would try to handle by a classical bifurcation analysis.
In [25], the effective viscous flux is used to overcome this difficulty and close the
estimates for the proof of the bifurcation of stationary convective patterns. On the
other hand, the effective viscous flux is not used in the analysis of the bifurcation
of wave trains from the plane Poiseuille flow in [16]. Instead of it, the convection
term v - Ve in (1.1) is regarded as a part of the principal part as in the proof of the
local solvability of the time evolution problem and an iterative argument based on
the method of characteristics is employed. See [14].

4.1 Notation

We first formulate the problem in a non-dimensional form and then introduce notation
used for the functional setting in this section.

We transform the problem into the non-dimensional form under the following
variable transformations: x = £X,t = éf, v = Ve p = p«p, P = pu P’ (ps) p, Where
Vv = 2l

H . . . . .
In terms of these new non-dimensional variables, the system of equations (1.1) is
transformed into the one which takes the following form after omitting tildes:

O,p +div (pv) =0, 4.1)
POy +v-Vv) — Ay — (C+ 7)Vdivy 4+’ Vp(e) = “we;, 4.2)
where v, v/ and 7 are the non-dimensional parameters given by

V= M V/= MI fy:w
PV’ PV’ v

The assumption P’(p,) > 0 is reduced to the form p’(1) = 1. Here we also used the
relation % =v.

The system (4.1)—(4.2) is then considered on the two-dimensional infinite layer:
x =01,x); x1 eR, 0<x <1}

Under the above non-dimensionalization, the plane Poiseuille flow is transformed
into uy = " (py, vs), Where
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T, 1 1 1
ps =1, vi= "(v;(x2),0), vi(x2) = EXZ(] —x2).

Let u(t) = T(o(t), w(®)) = " C(a(t) — @), v(t) — v,) be the perturbation. Not-
ing that —Av; = e;, we have the system of equations for the perturbation u:

0 + 010y, ¢+ FAdivw = fO(u), (4.3)
ow — "Aw ~XNdivw + VE — ;Ee; + vi@,w+ (@ vhwle; =f(u). (4.4)
Here 7 = v+ v/; and f%(u) and f(u) = T (f!, f?) are the nonlinear terms:
fO ) = —div (¢w),

E .
fu) = —w-Vw— TG <°Aw + 5 &Ee, +9Vdiv w) + PD(E)EVE

with
PO (¢) =

1 1
1— "+ 0v24)do ) .
72+¢< /Op(+v¢))

The boundary conditions on {x, = 0, 1} is the non-slip one, and a periodic boundary
condition is imposed in x; direction:

2B
Wlyp=0,1 =0, &, w: —-periodic in x;, (4.5)

where « is a given positive number. We note that the Reynolds number Re and the
Mach number Ma are given by

We next introduce notation used in this section. Since we consider the system of
equations (4.3)—(4.4) under periodic boundary condition in x, we introduce the basic
period cell 2, = T, x (0, 1), where T, = R/ %Z and o > 0 is a given constant.

We denote by L*(Q,) the usual L? space on 2, withnorm || - ||, and likewise, by
H*(Q,) the k th order L? Sobolev space on 2, withnorm || - || z+. We also denote by
C3°(824) the space of functions in C*°(£2,) which vanish near x, = 0, 1. We define
H} (RQ,) by the H'(Q,)-closure of C°(Q,).

The inner product of f; € L*(R,) (j = 1, 2) is denoted by

(i fo) = /Q A B dx.
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Here 7 denotes the complex conjugate of z.
We define the average (¢) of ¢ over €2, by

1

0 = [ owar

We also define L2(£2,,) by
LA(Q0) = {¢ € L*(Qa); (¢) =0}

Furthermore, we set
HEQ,) = HNQ,) N LAQ,).

The inner product of u; = T(gi)j, w;) € L2() (j = 1,2) is defined by
1 - -
(uy, uz) = —2/ P1(x)2(x) dx +[ wi(x) - wz(x) dx.
7" J. Qo

In the following we omit €2, in L%*(Q.), H*(Q.), ..., and etc., and simply write
them as L2, H*, ..., and etc.

4.2 Instability of Plane Poiseuille Flow

In this section we state the instability result on the plane Poiseuille flow obtained in
[15].

We first introduce the linearized operator L. We define the operator L on L2 x
(L?)?* by

D(L) ={u="T(¢,w) € L x (L)’ w e (H))’, Lu € L; x (L*)*},

I vl o, yAdiv n 0 0
“\ VvV —vA—pVdiv —ze; V10, + (Oy,v)e;Ter )

The argument in [10] applies to see that — L generates a Co-semigroupin L2 x (L?)2.
The following result gives an instability criterion for the plane Poiseuille flow in
terms of the Reynolds and Mach numbers.

Theorem 4.1 ([15]) There exist positive constants ry and 1o such that if o < ro,
then
o(—=L)N{A e C: I\ < no} = s kI =1,....no}

for some ng € N, where A, are simple eigenvalues of —L that satisfy
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i
Aok = = ¢ (k) + o (ak)? + O (Jak )

as ak — 0. Here Ky is the number given by

1 1 v i),
"= T2, [\ 280 7 302 vy

As a consequence, if v* < 280 and v(3v + V') < 3072 (280
the plane Poiseuille flow uy = " (¢, vy) is linearly unstable.

2), then ko > 0 and

Remark 4.2 In terms of the Reynolds and Mach numbers, the instability condition
given in Theorem 4.1 is restated as

M \/ 35 2.09 ! ! Ma® (3 + ! (4.6)

a>,/—~209 ———s>—||=—+—], .
8 35 8Ma? 15Re \Re Re¢

where Re' = L . Therefore, Reynolds and Mach numbers are not small when (4.6)

is satlsﬁed For example ifMa =2.5,Re = ﬂ ~ 10.81 and l, = % (e,v =

), then instability condition (4.6) is satlsﬁed. In the case of the incompressible
ﬂows, Orszag [26] numerically obtained a critical value Re, ~ 5772 such that if
Re < Re,, then the plane Poiseuille flow is linearly stable, while if Re > Re,, then
the plane Poiseuille flow is linearly unstable. We thus see that in the case of the
compressible flows, the plane Poiseuille flow becomes linearly unstable for much

smaller values of Reynolds numbers.

The proof of Theorem 4.1 is given by an analytic perturbation method. See [15]
for details.

Remark 4.3 The eigenspace for A is spanned by a function of the form u (x)etkx
Wlth an eigenfunction u (x,) for the eigenvalue A, of — Lak, where L ok 18 the operator
Lg given in (3.2) with ¢ = ak. See [15, Sects.4-6].

4.3 Bifurcation of Wave Trains

We have seen that the plane Poiseuille flow becomes unstable beyond a certain
value of v if ¥> < 1/280. We shall see that after the instability occurs, a wave train
bifurcates from the plane Poiseuille flow.

We fix v in such a way that 280 —~% > 0; and we regard v as a bifurcation
parameter. We denote the eigenvalue A, by Ayx ():

)\ak = )\ak(V)’

and the linearized operator L by L,:



On Stability and Bifurcation in Parallel Flows ... 91
L=1L,.

Let 7y > 0 be taken in such a way that xy = 0, where « is the coefficient of (ok)?
of Ak (V) described in Theorem 4.1. A perturbation argument then applies to see that,
for each 0 < o < 1, there exists 1y > 0 such that Re A\, (v9) =0, Re AL, () <O
iff v > ypandRe A\, (v) > 0iff v < vy; if @ < 1, then AL, (v) cross the imaginary
axis from left to right at v = 1y when v is decreased. See [16, Sect. 6].

‘We make the following assumption:

o(=Ly) N{A; Re A =0} = {Aa(10), Aa(ro)} 4.7)

The bifurcation of wave trains is stated as follows.

Theorem 4.4 ([16]) Assume that Assumption 4.7 holds true. Then there is a solution
branch {v, u} = {v., u.} (le| K 1) such that

ve =19+ 0(g),

ue = u (x1 — c.t, x2), u(x1+ 2(_3’)52) = u.(x1, x2),
1

u(xy,x0) =€ #(—x% + x2) % cosax (1 + O(a)) + 0(£?),
0

c: =5+ 0().

To prove Theorem 4.4, we employ the Lyapunov-Schmidt reduction. We decom-
pose the problem into the finite dimensional part and its complementary (infinite
dimensional) part. In a standard bifurcation theory, the nonlinearity is regarded as a
perturbation of the linearized part. This does not work well for the problem under
consideration, since the term w - V(& on the right-hand side of (4.3) causes derivative
loss in a standard setting. We thus regard this term as a part of the principal part in
the equation of the infinite dimensional part, as in the proof of the local solvability
of the time quasilinear evolution problem. This is the main difference to the case of
the incompressible problem, where a standard bifurcation theory is applicable. See
[16] for details. See also [14] where an outline of the proof of Theorem 4.4 is given.
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Uniform Regularity for a Compressible m
Gross-Pitaevskii-Navier-Stokes System L

Jishan Fan and Tohru Ozawa

Abstract Uniform regularity estimates are proved for a compressible
Gross-Pitaevskii-Navier-Stokes system in T" with n > 3.

Keywords Gross-Pitaevskii - Navier-Stokes - Euler - Uniform regularity
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1 Introduction

In this paper we consider the following compressible Gross-Pitaevskii-Navier-Stokes
system in superfluidity of Bose-Einstein condensates [1]:

Bp + div (pu) =0, (1.1)
powu + pu - Vu +Vp — pAu — N+ p)Vdivu = 4>V, (1.2)
O+ Vb = el +i(1 = [V, (1.3)
(ps u, Y)(-, 0) = (po, uo, Yo)(-) in T" (n > 3). (1.4)

Here 1) is a complex-valued function, |1)|? := w@ is the mass density, p denotes the
density, u is the velocity, i := +/—1, p := ap” is the pressure with the constants
a>0and~ > 1, h := h(x) is a given real potential with sufficient smoothness, A
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and p are two viscosity constants satisfying
2
pw>0and N4+ —p >0,
n

and € > 0 is a constant.

When u = 0, (1.3) is the well-known Gross-Pitaevskii system. Lin and Zhang [2]
(see also [3]) considered the semiclassical limit. When u is not identically zero, (1.3)
takes the form of a general quasilinear Schrodinger equation, which was studied in
[4-7].

When h = 0, (1.1) and (1.2) reduce to the compressible Navier-Stokes equations.
Zajaczkowski [8] studied the well-posedness of strong solutions.

By the “artificial viscosity method” in [4, Chap. 10] and the method in [8], it is
straightforward to show the local well-posedness of smooth solutions to the problem,
and therefore we omit the details here. The aim of this paper is to show regularity
estimates which are uniform in (e, A, ). We will prove

Theorem 1.1 Let 0 <e,u <1 and let 0 <A+ p < 1. Let s > 1—}—% and let

1
po, Uo, Yo € H*(T") satisfy 0 < o < po < Cy. Let (p, u, 1)) be the unique local

0
smooth solutions to the problem (1.1)-(1.4) on the time interval [0, T]. Then the
estimate

1o, u, V)¢, Ol = C in [0, Tol (1.5)

holds for some positive constants C and Ty (< T) independent of €, A and p.

Remark 1.1 Here T > 0 is the local existence time of solution. We can prove a
similar result when 2 := R”.

To prove Theorem 1.1, we will rewrite (1.1) as follows:

1 1
—Op+ —u-Vp+divu = 0. (1.6)
P P

We define

M) =1+ sup {19 POl + 10 1) 12

0<t'<t

}. (1.7)

1 / 1 /
el e
p P

L L
We can prove

Theorem 1.2 There exist nondecreasing continuous functions Cy(-) and C(-) and
Ty € (0, 1] such that for any t € [0, Tj),
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M(t) = Co(M(0)) exp(tC(M(1))). (1.8)
It follows from (1.8) that [9-11]:

sup M(t) < 4o0. (1.9)
t€[0,To]

In the following proofs, we will use the bilinear commutator and product estimates
due to Kato-Ponce [12]:

IAS(fg) = FAgliLe < CAV FllLo 1A gliLar + lglLm 1A fllLe), (1.10)
IA*(flle < CAflLe 1A gl Lo + 1A fllLe2 ligliLaz) (1.11)

1 1 1 1 1
withs > 0, A := (=A)rand — = — + — = — + —.
p 191 P2 g2
We only need to show Theorem 1.2.

2 Proof of Theorem 1.2

First, testing (1.1) by p?~!, we see that

1d 1 1
—— | pldx = <—1 + —> /pqdivudx < (1 - —) ||divu||Loc/pqu,
q dt q q

and thus

d .
Ellplliq < (¢ — Dldivullz=llpll7,,

which gives

1 e
Ipllze < llpollze exp ((1 - 5)/ IIdIVMIILwdT> . 2.1)
0

Taking ¢ — 400, we get

pllze < llpollL= exp(rC(M())). 2.2

It follows from (1.1) that

1 1\ 1.
0, (-) +u-v (-) — ~divu = 0. 2.3)
p p) P
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Testing (2.3) by ( , we find that

1
p

)"
v ] G) o= (03) [ () avwec= () 5

q/1p

q

divuf L=,
L

and therefore

d q

dr

P

lldiv |z~

161
§(q+1)H—
p

La

which gives

1

Po

=

5
p

5
p

L4

1 t
exp ((1 + —> f ”diVM'lLoodT)
La q 0

=
Lo

and we have

Po |l 1,

exp(tC(M(1))) 2.4)

by sending g — +-00.
(2.2) and (2.4) give

1
Pl + | =
p

< Co(M(0)) exp(tC (M (1))). (2.5)

Lo®

It is easy to verify that

d 2
I lul*dx =2 | uGudx < 2|jull2[10ull2 = C(M(1)),

which implies
lull> < Co(M(0)) exp(rC(M(1))). (2.6)
Testing (1.3) by ¢ and taking the real parts, we derive

2dtfli/}lzd

1
-3 / [¢|*div udx

IA

Elldjlliz [divull.~ < C(M(1)),

which gives

llihll> = Co(M(0)) exp(rC(M(1))). 2.7)

Applying A* to (1.3), testing by A*%), taking the real parts, and using (1.10) and
(1.11), we compute
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r / |ASo[2dx = —Re/(Aé(u Vib) — u - VA* ) ASPdx — 7/|A3w\2d1vudx
—Rei/A’T(d) YY) ASpdx

. 1. ;
< ClIVulle | APl 7, + CIVY e | A ull 2 | A2 + 5 ldiv ]l oo A 117
< C(M(1)),

+CIPI T A P17

which leads to
A2 < Co(M(0)) exp(tC(M(2))). (2.8)

Applying A* to (1.6), testing by A®p, and using (1.6), (1.10) and (1.11), we
compute

1d 1
2dr

1 1 1
= /(Asp) [div <i> - —28;1)] dx — / (AS (—8,17) - —Asatp> A® pdx
2 P P TP P
—/ (A‘Y (i . Vp) L. VASp> A’ pdx
p P
1
div <i) — —0rp
vr/) p
+C 0 pllpoe HAé ( >
p
IA°pll 2 +C HV—

+CIVpliLe HAX ( )
P Plipee

SCM@®)+CMEN)NOpllLe + C(M(t))IIAsflarplle
< C(M@)) + CM@)|lu-Vp+~ypdivul g + CM@) A" @ - Vp +~pdiv w2
< C(M@)). (2.9)

(AA ) dx—|—/ASpASdivudx

IA

ClIIA pI7,

LOO

A pl2+C HV—

1AL 8, pll 2 1A% I 2
LOO

1A% plI3

Here we have used

= CM)IA plle = C(M(1)), (2.10)

L2

|
A —

which follows from the estimate [13, Proposition 2.1, p. 43]: Assume g(u) is a smooth
vector-valued function and u € L*° N H*. Then for s > 1,

0
IA* gl 2 = C H—g el A w2 2.11)

Ou

Hs—1

Applying A*~! to (1.2), testing by A*~'9,u, and using (1.10) and (1.11), we obtain
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d d
“ /|A° Pdx 4+ 22 H +” f(Aé 1d1vu)2dx+/p|A° 19 2dx
= fA‘Y_l(wJVh)AS_latudx—/A“_le‘AS_IZ),udx

- / A Nou - Vu) - A Oudx — /[Akl(patu) — pA T AUl AT B udx

CIA T WOV 2 I Dyl 12 + CIA® pll 2 1A Dyl 2

+Clpll s lulzgs 1A Druell 2 + CUVpllLoe | A 2 Dpull g2 + 19l oo 1A pll 2) A Dyl 2
CME) A Oull 2 + CM@O)A 20l 2 + [ Orull Loo) | AT Dy 2

< CM@)IA" Dyl 2

IA

IA

n
\17

+C(M<z>)(||6,u||Lz 1A Bl ST + 10l 2 + 10l T A ‘afuuz“ DINAT Sy 2

s

n
(withs 1> 7)
2

M)A Byl 2 + CM@)(IA " Dul) 55T +||Av 18tun"‘ DIA T ull 2

IA

IA

1
5 / P A B Pdx + CMQ)),

which gives

/ f IASLO,ulPdxdT < Co(M(0)) exp(tC(M(1))). (2.12)
0

Applying A® to (1.2), testing by A®u, and using (1.1), (1.10) and (1.11), we have

1d
2 .dt
= /As(wEVh) - Afudx — /(As(patu) — pA°Ou) A udx

plASudx + ;L/ A )Pdx + O\ + ) /(Asdiv u)?dx + / A°Vp - Audx

— [(As(pu - Vu) — pu - VA u) A*udx

< CIA @WOVhl 2 | A ull 2 + CUIVplle | AT Qpull 2 + 10ull Lo A pll ) IA u] 2
+C(IVull L | A (o) | 2 + 1V (u) [ oo [ A ull 2) | A | 2

< CM@) + CMO)(IA T Dyl g2 + 1Oru]| L)

< CM@®) + A Full?,. (2.13)

Summing up (2.9) and (2.13), we have
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1d 1 (As )2+ |As |2 d

- — u X

2dt Yp P P
—i—,u/|A“+]u|2dx—i—(A—i—u)/(A‘Ydivu)zdx

+ /(A‘pAsdiv u+ AVp - Au)dx

< CM@) + A Dull. (2.14)
Notice that the last term of the LHS in (2.14) is zero. Then using (2.12), we have
[A*(p, w)llz2 < Co(M(0)) exp(tC(M(1))). (2.15)

On the other hand, it follows from (1.2) that

1
10:ullr> = H; (1WPVh 4+ pAu+ A+ )Vdivu — Vp — pu - Vu)

L2

= Co(M(0)) exp(rC(M(1))). (2.16)
Using the following estimate [13]:

APl < CA NPl fllwesn IA” Pl 2.17)

with p = f(p) = (S) and

1
IC (m exp(—1C(M(1))), Co(M(0)) eXp(tC(M(t)))) ,

and o is an integer satisfying o > s, we have
[A°pliL2 < Co(M(0)) exp(tC(M(2))). (2.18)

Combining (2.4), (2.5), (2.6), (2.7), (2.8), (2.15), (2.16), and (2.18), we conclude
that (1.8) holds true.
This completes the proof.

Acknowledgements Fan is partially supported by NSFC (No. 11971234).



102 J. Fan and T. Ozawa

References

1. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. In: Fluid Mechanics, 2nd edn.,
vol. 6. Pergamon Press, Oxford (1987). Translated from the third Russian edition by J.B. Sykes
and W.H. Reid

2. Lin, F, Zhang, P.: Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain.
Arch. Ration. Mech. Anal. 179, 79-107 (2005)

3. Li, E, Lin, C., Wu, K.: Asymptotic limit of the Gross-Pitaevskii equation with general initial
data. Sci. China Math. 59, 1113-1126 (2016)

4. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Universitext,
Springer (2014)

5. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasi-linear Schrodinger equations.
Invent. Math. 158(2), 343-388 (2004)

6. Kenig, C.E., Ponce, G., Rolvung, C., Vega, L.: Variable coefficient Schrodinger flows for
ultrahyperbolic operators. Adv. Math. 196, 373-486 (2005)

7. Kenig, C.E., Ponce, G., Rolvung, C., Vega, L.: The general quasilinear ultrahyperbolic
Schrodinger equation. Adv. Math. 206, 402-433 (2006)

8. Zajaczkowski, W.M.: On nonstationary motion of a compressible barotropic viscous fluid with
boundary slip condition. J. Appl. Anal. 4, 167-204 (1998)

9. Alazard, T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech.
Anal. 180, 1-73 (2006)

10. Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier-Stokes equations in a 3D
bounded domain. J. Differ. Eq. 258, 379-398 (2015)

11. Metivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations.
Arch. Ration. Mech. Anal. 158, 61-90 (2001)

12. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm.
Pure Appl. Math. 41, 891-907 (1988)

13. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space
Variables. Applied Mathematical Sciences, vol. 53. Springer (1984)



Singular Limit Problem to the )
Keller-Segel System in Critical Spaces oo
and Related Medical Problems—An
Application of Maximal Regularity

Takayoshi Ogawa

Abstract We consider singular limit problems of the Cauchy problem for the Patlak-
Keller-Segel equation and related problems appeared in the theory of medical and bio-
chemical dynamics. It is shown that the solution to the Patlak-Keller-Segel equation in
a scaling critical function class converges strongly to a solution of the drift-diffusion
system of parabolic-elliptic equations as the relaxation time parameter 7 — 0. Anal-
ogous problem related to the Chaplain-Anderson model for cancer growth model is
also presented as well as Arzhimer’s model that involves the multi-component drift-
diffusion system. For the proof, we use generalized maximal regularity for the heat
equations and systematically apply embeddings between the interpolation spaces
shown in [40, 41]. The argument requires generalized version of maximal regularity
developed in [40, 61], for the Cauchy problem of the heat equation.

Keywords Keller-Segel equation - Drift-diffusion system - Singular limit
problem - Maximal regularity - Critical space + Global well-posedness + Scaling
invariance *+ Bounded mean oscillation

AMS Subject Classification Primary 35K45 - Secondary 35K58 - 35Q70 -
35Q81 - 35Q92 - 92C50

1 Introduction—The Singular Limit Problem

A mathematical model describing an interactive dynamics for behaviors of a
chemical-biology reaction is called as chemotaxis. One of a simplest model of chemo-
taxis was derived by Patlak [62] and Keller-Segel [32] is named as the Patlak-Keller-
Segel model that describes a spatial dynamics of the mucus mold and reaction with
the chemical substance that attract themselves. The model is involved the density of
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mucus molds and the density of a chemical substance. More the mucus attracted then
more the chemical substance is created by them and then, the total density increase
until they can produce their sprout.

In fact, such kind of dynamics appears in various fields of mathematical science.
For instance, the behavior of the interstellar material governed by the gravity shows
dissipative movements. Once the gravity exists then the gravity object starts to gather
each other. Such a model is a simplest case for the dynamics of gravity material in
astronomy. An analogous model does surprisingly appear in the model of semi-
conductor in the earlier work of the devise simulations (Mock [46]). Though this
model is too simple to work with the latest devises since they are involved with the
quantum mechanics approach that requires more delicate setting, the basic dissipative
nature stems from their original form. One important remark for those models is that
the electric forth works in an opposite direction so that the mathematical system for
the semiconductor has a repulsive nature.

Those models are typically given by a balance between a dissipative nature and
attractive driving force. Our main purpose of this survey is to make a mathematical
connection between such a two similar models and we make a bridge between them
by a method of mathematical analysis, namely singular limit problem.

Several mathematical problems arose from medical science that describes the
tumor growth or Arzheimer’s disease. Those models exhibit very similar nature and
the model shows how the disease grows under the very similar condition. Applying
the dimension analysis, the critical setting is beyond our realistic spacial dimension
3 and hence the uniform boundedness for the solution is the most important question
on that problems. The uniform boundedness of the solution ensure that the disease
can be control by a medical or natural treatment. We give two different but very
similar models which is unstable in the critical spacial dimension 4 but not in 3.

1.1 Keller-Segel System in the Scaling Invariant Spaces

We consider the Cauchy problem of the Patlak-Keller-Segel system in n-dimensional
Euclidian space R":

Qur — Aur + V- (u;Vipr) =0, t>0,xeR",
1
=01, — AV = u, t>0, x eR", (1.1)
-
ur(0,x) = uo(x), ¥(0,x) =1o(x), t=0, x eR",

where u, = u.(t, x) and ¥, (t) = ¥ (t, x) denotes the unknown density of mucus
molds and the distribution of the chemical substance and (ug, 1)) is given pair
of the initial data. The constant A > 0 is a parameter often chosen as A = 0. The
notation O; describes the partial derivative with respect to the time variable and
V = (Oy,, O, . .. Oy,) stands for the gradient, A = Y }_, ka denotes the Laplacian
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for the spatial variables. The problem (1.1) originally introduced as the chemical-
biological reaction by the chemotaxis, the chemical substance produced by mucus
molds attracts other mucus molds. Such a reaction often observe other situation. The
original model is considered in a bounded domain 2 C R” forn =1, 2, 3.

Oiu — Au+ kV - (uVy) =0, t>0,xeQ,
oY — AY+ A\ =u, t>0,xeQ,

ou O (1.2)
5_5_0’ t>0, x €02,

u(0,x) = uop(x), (0, x) = o(x), t=0,x€Q,

where v denotes the outer normal vector at the boundary point and x € R\ {0}
is a coupling constant. The system (1.2) is called the Patlak-Keller-Segel system
introduced by Patlak [62], Keller-Segel [32] for a model of chemotaxis dynamics.
Since the problem has a non-local property, it is interesting to consider the domain
as the whole space 2 = R” and consider it as the Cauchy problem in R”. In such a
case, the effect of the drift nonlinear term in the first equation is strengthened and
the non-local property is visible. To see the scaling invariant property, we focus on
the most unstable setting A = 0.

When the dynamics of the chemical substance is relatively slow, the dynamics of ¢
can be subordinate to the dynamics of mucus molds. Then introducing the relaxation
time parameter 7' > 0, the limiting process can be considered as 7 — oo. Then
the set of the limiting functions

lim u, (¢, x) = u(t, x),
T—>00

. (1.3)
lim o (t, x) = (z, x)
T— 00
formally solves the initial value problem of the drift-diffusion system:
ou—Au+V-uVy) =0, t>0, x e R",
—AY=u, t >0, x e RY, (1.4)
u(0, x) = up(x), t=0, x e R".

The system (1.4) is called the drift-diffusion equation and originally appeared in
the theory of semiconductor (Mock [46]) and the formation of stars in astronomy
(Chandrasekhar [11]). Such a simplified Patlak-Keller-Segel system was introduced
by Jager-Luckhaus [29] (see also [4-7, 13-15, 27-30, 36-39, 47-52, 6466, 69,
73] and one-dimensional case [9, 69]). For the role of the constant A > 0 see for
instance Bedrossian [2].

The singular limit problem has been considered by Biler-Brandolese [5],
Raczyriski [63] and Lemarié-Rieusset [44]. They considered the case of the van-
ishing initial condition ¥y = 0 and showed the strong convergence (1.3) of the small
global solutions in an elegant way in the scaling invariant spaces such as pseudo-
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measure or L' (R?) for small initial data. Lemarié-Rieusset [44] showed the singular
limit in the scaling invariant Morrey space. The existence and well-posedness of both
of two Cauchy problems (1.1) and (1.4) can be seen in the scaling critical function
spaces. Both of the systems (1.1) and (1.4) are invariant under the following scaling
transform: For y > 0,

(1, x) = pPu(p’t, px),

PYult, x) = (p’t, px),

and the invariant class of the sense of Fujita-Kato [24] is now identified in the
Bochner-Lebesgue class as

u e L"(Ry; LY(RY)), <q, 2<0,

NS

¥ e L7(Ry; L'(RM)), =0, co<gq, c0=o,

where L(’(I ; L9 (R”)) stands for the Bochner-Lebesgue space equipped with the
norm:

1/6
1ot = ( /I £, ->||f,dz) <00, 1=(0,T).

It is natural to choose § = ¢ = o0 in order to find a solution in the same Lebesgue
class as the initial data for all the time, then we find that p = %, r = 00. On the
other hand, in the view of the expecting limiting problem (1.4), it is difficult to
choose as r = co as the regularity theory of elliptic partial differential equation for
the critical external force u € L%(R”), unless the solution of the first component
has better regularity. Kurokiba-Ogawa [40, 41] considered the same problem in the
scaling critical function space and obtained the singular limit indeed converges to
the limiting problem in the strong sense, in both small global solution and large local
solution, in the unified way by applying the Fujita-Kato principle [24].

We should emphasize a remarkable property of the solution to both the system
(1.1) and (1.4) as t — oo. First, the solution is non-negative if the initial data is non-
negative which follows from weak maximum principle. Secondly under the positivity
setting, the solution preserves the total mass m = ||u(¢)||; and has the free energy
bound: For simplicity, we set 7 = 1 and omit the suffix 7.

H[u(t)]—i—/ / u(s)|V(logu(s) — 1(s))|*dxds < Hlupl, >0,
0 JR»

where H [u] denotes the Helmholtz free energy consisting of the entropy of the system
and the inner energy as follows:
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/ u(t) logu(t)dx + l||1/J(t)||i,, - l/ u(z)(—A)flu(t)dx for (1.1)

n 2 2 ]RIX

Hu@®)] = )

/ u(t)logu(t)dx — 7/ u(t)(—A)_lu(t)dx for (1.4).
Rn 2 ]Rn

Then using those quantities, one can show that a solution of (1.1) and (1.4) blows
up in a finite time under suitable assumptions on the data (see [4, 6, 37, 47, 48, 64,
65]). In particular for n = 2, the threshold for the global existence and finite time
blow up is clarified [2, 4, 47-49, 52, 71] namely for the solution with |jug||; < 87
then the corresponding solution exists globally in time and if |jug|[; > 8, then the
finite moment solution blows up in a finite time. This fact can be derived by the virial
identity: For the non-negative solution to (1.4), it holds that

/ Ix — xo|2u(t, x)dx =/ Ix — xo|uo(x)dx + 4l|uol <1 - ””0”1>t. (1.5)
R2 R2 8’/T

Besides the total mass ||u(z)||; preserves and hence if the initial data is non-negative
with |lug||; > 8 the positive solution can not exists globally in time since the right
hand side of (1.5) reaches negative value within a finite time. The corresponding
results were shown by Nagai-Ogawa [49], Mizoguchi [45] for (1.1) with 7 = 1. The
higher dimensional cases are more unstable, namely the L'-norm of the solution is
not the scaling critical quantity and hence it does not control a solution for whole
time. It is shown that if the initial critical quantity |lug|| is small enough then the
solution exists globally in time, while if the initial data is non-negative and large
enough so that

1+
lluoll
Cy [ |x — X|Puodx

Hlug] < —|lugll log

iy
b

for some b > 0 and C,, > 0, then the solution is unstable and blows up in a finite
time under the assumption either b > 2 or the data is radially symmetric (cf. Biler
[4], Calvez et al. [10], Ogawa-Wakui [60]). The proof of such an instability relies
on how to control the entropy part of the Helmholtz free energy H[u]. Namely the
Shannon inequality;

X — x0|2f(x)dx
1+2
ViR

2me [

- f F(x)log f(x)dx < gnfnl log (1.6)
Rn

and its generalization works well. Indeed, the inequality (1.6) plays as a role of the
Fourier dual of the well-known logarithmic Sobolev inequality due to Stam [67] and
Gross [25]:
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1
F@)log (f(0))dx <3 fllilog | ———— fR | Viog (f)[*f w)da

n 1- n
R 2nmel| f1,
(1.7)
It is remarkable that the inequalities (1.6) and (1.7) reproduce the Heisenberg uncer-

tainty inequality intermediated by the entropy functional: For any 1 < p < n,

1 e 1/p 1/p
Iflh = —(/ lx — x|” f(X)dX> (/ |V10gf(X)|"f(X)dX) ,
n R~ R"

See for the above generalization Ogawa-Seraku [56] and further inequality involving
the logarithmic weight, Kubo-Ogawa-Suguro [35].

1.2 The Chaplain-Anderson Model and the Fujie-Senba
Equation

The problem (1.1) is related to the tumor growth model considered by Chaplain-
Anderson [12] which consists of multi-component nonlinear ordinary differential
equations of various stage of the bio-chemical reactions. Then introducing the addi-
tional chemical stage Fujie-Ito-Yokota [21] proposed the following variant from the
Chaplain-Anderson model as a tumor invasion. We introduce the following simpli-
fied version of their system: Let 2 C R” be abounded domain with smooth boundary
ox.

Oty — Aur +V - (u:-Vip,) =0, t>0,x € Q,
atfr,a = —a¢; fra t>0,x €,
l@;qﬁT—AqﬁT:un t>0,x €,
71' (1.8)
—@% - A,(/JT = a(bea,‘ry t>0,xeQ,
-

ur(0,x) = up(x), fu(0,x) = fox),

¢7(0,x) = ¢o(x), (0, x) = p(x), t=0,x€Q

with suitable boundary conditions on JS2, where the unknown functions u, =
u-(t,x) Ry x Q > R, fra=frat,x): Ry x Q2 — R, ¢r = (1, x) :
Ry x Q = Randy, = ¥, (¢, x) : Ry x Q@ — R denote the density of mucus mold,
the density of chemical substance of the first stage and the one of chemical substance
of the second stage, respectively. 7 > 0 and o > 0 are constants. The system (1.8)
was introduced by Fujie-Ito-Yokota [21] observing that the drift-diffusion process
is taking into account on the original Chaplain-Anderson model [12] (cf. Fujie-Ito-
Winkler-Yokota [22]). If the third component of the system (1.8) is a given function,
then the solution of the second equation is given by the third component ¢, as
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afor(t, x) = afo(x)exp <—a/ ¢>T(s,x)dS> .
0

T. Senba considered the critical setting of the system (1.8) as the global behavior of
solution in the whole space €2 = R” and consider the case when

a fo(x) exp (—a/ ¢T(s,x)ds> — a4 (constant).
0

Then the system (1.8) is reduced into the following slightly simplified Cauchy prob-
lem:

Oy — Au; +V - (u; Vi) =0, t>0,x e R",
1
_8t¢7_A¢T:MTa t >0,x ER”,
-
1
SO — A, = ¢, i>0,xer, (€9
-
u-(0, x) = up(x),
¢-(0,x) = Ppo(x), (0, x) = 1P (x), t=0,x eR",

where o is chosen as 1 for simplicity. The mathematical structure of the simplified
Chaplain-Anderson equation is interesting since it has double staged potentials and
it makes the system critical when the spatial dimension n = 4 comparing with the
case of Patlak-Keller-Segel system (1.1). Passing to the limiting problem:

u-(t,x) — u(t, x),
¢T(t’x) - ¢)(t7x)7
e (1, x) = (2, x)

as T — oo, the limiting functions formally solve the following version of drift-
diffusion system studied by Fujie-Senba [23]:

Ou— Au+V-wVy) =0, t>0,xeR",

—Ap=u, t>0,x e R,
(1.10)

_sz(?, t>O,X€Rn,

u(0, x) = ug(x), t=0,xeR"

Then the system (1.9) is observed that the solution blows up in a finite time for the
four dimensional case in Fujie-Senba [23] analogously to the case of drift-diffusion
system (1.4) under the assumption ||ug||; > (8).

The setting in the four space dimension is a natural extension from the case to the
problem (1.1) and (1.4) in two space dimension. We consider such a large initial data
case, the solution of the full-parabolic system of Chaplain-Anderson type equation
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converges to the solution to Fujie-Senba equation (1.10) of the drift-diffusion type
in a critical function space.

In the medical science model, there is another problem closely related to the above
problem (1.10). For a positive constant 3 > 0 we consider the Cauchy problem of
the multi-component chemical attraction model:

ou—Au+V-uvVe — B¢) =0, t>0,x eR",
1
-0 — AP+ M\ =u, t>0,xeR",
-
1
=0 — AY 4+ Mp = u, t>0,xeR", (1.11)
-
u(0, x) = up(x), t=0,x e R",
#(0,x) = go(x), (0, x) = o(x), t=0,x e R".

The original system of the model was introduced for describing the aggregation of
microglia in Alzheimer’s disease and v and ¢ are the concentration of chemoattrac-
tant and chemo-repellent, respectively. By passing a limit 7 — o0, one can derive a
similar problem of drift-diffusion system;

Ou—Au+V-wuvVe — B¢)) =0, t>0,x € R",

—A Ao = u, t>0,x eR",
p+Mo=u >0,x (L12)

—AY+ XY =u, t>0,x e R,

u(0, x) = up(x), t=0,x e R".

Under the assumption A\; # A, > 0, the nature of the solution (u, ¥, ¢) to (1.12) is
related to the problem (1.4)if 0 < 3 < 1, namely instability and finite time blowing-
up happen for n = 2 while it is rather closer to (1.10) when 3 = 1. The solution
remains bounded for the lower space dimensions n = 2, 3 but may occur finite time
blow-up for n = 4 as the model (1.10). The global well-posedness for the non-
negative solution is obtained by Jin-Liu [29], Shi-Wang [66], Nagai-Yamada [53-55]
for 5 # 1.

Analogous theory for the Cauchy problems from (1.9) to (1.10) and (1.11) to
(1.12) can be available in the scaling critical function spaces (cf. Kurokiba-Ogawa
[40, 41]). Both of the systems (1.9) and (1.10) are invariant under the following
scaling transform:

w, (1, %) = ptu(lt, px),

Gu(t, x) = pPp(u’t, pux),
Pu(t, x) = P, px)

for ;o > 0, and the invariant class of the sense of Fujita-Kato is now identified in the
Lebesgue-Bochner class as
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2 n n
e L(Ry; LY(RM)), 4 =4, —<p<0,

u (Ry; LY(R™) 0+p 1=P=
2

¢ € L"(Ry; L*(RM), “+l=0 L<g<y,
poq 2
2 n

¢ e L7(Ry; L'(RM), —+-=0 oco=r=o.
g r

It is natural to choose § = o = oo in order to find a solution in the same Lebesgue
class as the initial data for all the time, then we find that p = 7, ¢ = 3, r = o0,
As is mentioned above, there is a difficulty associated with regularity of the third
component if n = 4. Namely under r = oo, it is generally difficult to obtain ) €
L>®(R") from u € L? in four spatial dimensions. In stead of that, it is natural to
choose the class for 1 in the class of bounded mean oscillation, BM O (R") [34].

Definition For a measurable function f = f(x) withx € R",
BMO®R") ={f € L}, (R"); || fllsmo < oo},

where

1 _ _
| fllamo = sup —— Lf () — feeldy,  fbg

= — S(dy
xeR" k>0 | BRI JBr(x) |Br| JB,x)

and Bg(x) denotes n-dimensional ball centered at x with radius R > 0. For s > 0,
let

BMO' = BMO'(R") = {f €L, (R"Y;|VIf e BMO(R")}.

Let Cy(R™) be a set of all continuous functions over R* with vanishing at |x| —
0o. We set VMO = VM O(R") (vanishing mean oscillation) by the completion of

Co(R") by BM O semi-norm, i.e., VM O(R") = Co(®") "¢,

The class BM O and VM O are quasi-Banach spaces and if we identify the ele-
ments of BM O up to constants, itis regarded as the Banach space. We also introduce
the space-time space L2(/; BM O) that is introduce by Koch-Tataru [33] for solving
the incompressible Navier-Stokes equation in the limiting scaling invariant class.

Definition For I = (0, T) with T < oo,

L1 BMO®M) = [ f = £, 01 xR = R I fl555. o) < )

with
sy = 0 [ ] |£t.x) = £, ) dxdydi
LX(I5BMO) — yoerr, k>0 J1n©0,R2) | BRI JJBrxg)x Br(xo)
1 _—2
~  sup / — | £, x) = fBrixo) ()] dxdydt,
xoeR", R=0J1n0,R?) | BRI J B (x0)
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where

— 1
IBe (1) = —— f(t, x)dx.

|Br| J g (xo)

The class 52?7; VM O (R")) is similarly introduced as above.

The equivalent norm in the above can be identify from this definition of mean
average immediately.

The class BM O, BM O’ and V M O are quasi-Banach spaces and if we identify
the elements of those spaces up to constants, they are regarded as Banach spaces.

Definition We call the set of the exponents (6, ¢g), (o, r) as the admissible for the
problem (1.1), if they satisfy

ueLe(R+;L‘1(R”)), + - =2, g <qg <2<,

(1.13)
Vi e L7(Rys L' (RY),

+-=1, n<r<o.

SEESESEN
R

Definition We call the set of the exponents (6, p), (p, ¢), (o, r) as the admissible
for the problem (1.9), if they satisfy 7 < p < 2,3 <g <n,n <r and

2 n n

e L’(R.; LP(R")), 4+ —=4, - 0,

u (Ry; LP(RM)) 9+p <P
2

¢ € L*(Ry: LI(R), il oo Loy (1.14)
P oq 2

o r n 2 n
V¢€L(R+;L(R)), ;—i—;:l, n<r<o.

We should note that the limiting case § = p=0c =00 and p=1, ¢ =2 and
r = oo is the class where we consider the solution of both the systems (1.9) and
(1.10).

2  Well-Posedness Issue in the Critical Setting

In what follows, we consider the solvability of the Cauchy problems (1.1), (1.4) and
(1.9), (1.10) in the scaling invariant class, namely the admissible class defined in the
above and consider the singular limit problem 7 — oo. To this end, we apply the
method of generalized maximal regularity for the heat equation developed in [61].

First we consider the well-posedness issue for the Cauchy problems (1.1) and
(1.4) (see [40, 41]).

Deﬁnition Let 7> 0 and 1 < p,r < oo. For initial data (ug, 19) € L?(R") x
WbLr(R"), (uy,1,) is a (mild) solution to (1.1) if the following integral equation
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is solved: .
u (1) = e®uy +/ e"TIAY - (ur(s) VP, (5))ds,
0

Grt) = €My + / Iy (s)ds
0
in C(I: LP(R")) x C(I; Wl (R"),

Definition Let 1 < p,r < oo. For initial data ug € L?(R"), (u, ¥) is a (mild) solu-
tion to (1.4) if the following integral equation is solved:

u(t) = eug +/ ARZES v (u(s)Vi/)(s))ds,

0

Y(t) = (—=A + N 'u(t) = lim / e Put)ds
—0o0 O

in C(I; LP(R")) x C(I; W' (R")).
Here we give the definition of the mild solution as follows:

Definition Let 7 > 0. For initial data (¢, ¢g, o) € L'(R*)xL*(R*)x VMO (R*),
(ur, ¢r, ;) is a (mild) solution to (1.9) if following integral equation is solved:

ur (1) = e®ug +/ eIV - (ur(s)Vipr(s))ds,
0

t
(1) = ey + / e"ITA Ty (s)ds,

0

(1) = 7By + / B (5)ds.
0

inC(; L'"R*) x CI; L*RY) x C(I; VMO RY)).

One can relax the condition on the initial data and solution into ¢y € BM O (R*)
and ¢, € C,,(I; BMO(R?")) in the above definition. For initial data uy € L'(R*),
(u, ¢, 1) is a (mild) solution to (1.10) if the following integral equation is solved:

u(t) = eug +/ ARV (u(s)Vip(s))ds,
0

o(t) = (—=A)'u(t) = lim / e o(t)ds,
11— 00 0

P(t) = (=A) " lu(r) = lim/ e2(t)ds
=00 0

in C(; L"(R%) x C(I; L*R*) x C(I; BMOR?)), where (—A) 'u= —ﬁ
log |x]| * u(x).



114 T. Ogawa

2.1 Well-Posedness of the Full System

We first state the existence and well-posedness in both time local and global with
small data as follows: One of the difficulty of the problem is regularity for the solution
¢, and ¢ since ¢ is involving the four-dimensional bi-Poisson equations. To avoid
such a difficulty, we introduce a class of functions with bounded mean oscillation
(BMO,).

We define a mild (strong) solution of system (1.1) and (1.4). Let ¢’ denote the
heat evolution operator given by

ePuy = / G,(x — Yuo(y)dy forug e Co(R"), (2.1
Rﬂ

x?

where G,(x) = W exp (_T> is the Gauss kernel for ¢ > 0.

We choose pair of exponents for the solution class as (6, ¢) and (6, r) defined in
(1.14). Then a natural class for the common initial data is indeed given by the sharp
trace estimate from the semi-group representation in the real interpolation theory
such as

lle"uoll o Lry < 00, .2 L2
Ve g — (0. %0) € B, j(R") x By (R").
€ YollLo;Lry < O0,

Definition The homogeneous Besov spaces. Let s € R, 1 < p, o < 0o. The homo-
geneous Besov space denoted by B), , = By, ,(R") is given by defined by

1fllg, = (Zz“’jllcﬁj * fll‘,’,)l/a,

Jez

where {¢;} stands for the Littlewood-Paley dyadic decomposition of unity in the
Fourier space £ € R”

S = BUED, € R,

(&) € C*(B2(0) \ Bi 2 (0)).

3;(©) = p2IE) with) dE) =1, £#0

JEL

(cf. Triebel [70]).
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2.2 Well-Posedness of the Keller-Segel System

We first state the existence and well-posedness of the problem (1.1) in both time
local and global with small data as follows: We assume x = 1 throughout the paper.

Proposition 2.1 Let n > 2, and (0, q), (o, r) be the admissible pairs defined in

(1.13). For % <p<n A>0and fix T > 0. For n =2, we further assume that

A > 0anduy € L'(R?) N BY ,(R?).

(1) For % < p <n, let (up, o) € LP(R") x WL%(R”). Then there exist T =
T (lluollp, IVYolln) > 0 and the unique strong solution (ur, ;) to (1.1) in

u; € C([0, T); LP(RM)) N L*(0, T; W"P(RM)),

b € C(10, T); Wi (R")) N L2(0, T; W=7 (R™)).

(2) Let (ug, vo) € LZ(R") x WL (R"). Then there exist T = T (uy, 1) > 0 and
the unique strong solution (u,, ;) to (1.1) in
u; € C([0, T); L= (RM) N LY(0, T; LY(RM),
Y, € C([0, T); W (RM) N L7(0, T3 W' (R")).

(3) There exists €y > 0 such that for any (ug, 1o) € L7 (R") x WL (R") with

luoll, 5 + IVipolln < €. (2.2)
there exists a unique global solution (u., ;) to (1.1) such that

u; € BUC(Ry; L2 (R") N LY (Ry; LY(RY)),
Y, € BUC(Ry; W (RM) N L7 (Ry; WH(RM)),

where (8, q) and (o, r) are admissible pairs and BUC (I; X) denotes the set
of bounded continuous functions on X. Furthermore, the solution satisfies the a
priori estimate: For admissible pairs (0, q) and (o, r),

sup [lu- (Ol 5 + lurllLow, Loy + sup VY- Ollr + IV e,y < o,
t>0 t>0

where € is independent of T > 0.

Our statement also assures that the existence and the a priori bound for the solution
is independent of 7 > 0. The extra assumption u( € B?, 4+(R™) on the initial data for
the two dimensional case is required for treating the solution in Bochner spaces.

On the other hand, the solvability of the initial value problem (1.4) is shown
in non-critical spaces (Kurokiba-Ogawa [37, 38]), and the critical space (Kozono-
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Sugiyama- Yahagi [34], Corrias-Escobedo-Matos [14]). Biler-Brandolese [5] con-
structed a strong solution in a weaker scaling invariant class and Lemarié-Rieusset
generalize it into the Morrey class [44]. Comparing with Proposition 2.1, we restrict

the choice of the critical exponent (0, g) and (o, r) with § = o (and naturally
L 1), since the system (1.4) is of parabolic-elliptic type and the function
,

class for the solution has to have a common time integrability.

Proposition 2.2 Let n > 2 and let (0, q) and (o, r) be admissible pairs defined in
(1.13) with restricting = o. For 7 < p < nand A > 0, assume that A > Qifn = 2.

(1) For%’ < p < nassume ug € L?(R"). Then there exists T = T (|lugll,) > 0and

the strong solution (u, V) to (1.4) uniquely exists and
ue C([0, T); LP(R™)) N L*(0, T; WP (RM)),
¥ e C([0, T); W7 (RM) N L2(0, T; W (R™)).

(2) Let A > 0 and uy € L3 (R"). Assume further ug € L' (R?) N B?A(]Rz) ifn=2.
Then there exists T = T (uo) > 0 such that the unique strong solution (u, V) to
(1.4) exists and

ue C([0,T); L2 (R") N LY (0, T; L1(R")),
Y e C([0,T); W (@RM) N LY(0, T; W' (RM).

(3) There exists €9 > 0 such that for any uy € L% (R") with

luoll, 5 < <o,
there exists a unique global solution (u., ;) to (1.4) such that

u € BUC(Ry; L2(R") N LY (Ry; LIR™Y)),
¥ € BUC(Ry; WH@®R™) N LY (Ry; W (RY)).

Furthermore, the solution satisfies the a priori estimate: For admissible pairs
0, q) and (o, 1),

sup lul, 3 + lulle, 2oy +sup VY@l + IVUILow, Ly < Eo.
t>0 t>0

The threshold constant € is known to be 87 for n = 2 but not known for higher
dimensional cases n > 3. The best known result states that £y = % and S, is the
b

best constant of the Sobolev inequality (see [15, 60]). One conjecture is that when
A=0,e9 = (%) C 1;1L ¢» Where Cp g is the best constant of the Hardy-Littlewood-
Sobolev inequality. One can find regularity of the solution %) in Proposition 2.2 as
1 € BMO(R") for all n > 2 (cf. [34]). On the other hand the solution to (1.1), it is
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not clear if the similar regularity can be obtained because of maximal regularity is
not clear for .

In both propositions, the limiting case n = 2 and A = 0 is excluded since the
limiting function ¢ does not belong to W'-2(R?). Biler-Brandolese [5] and Raczyriski
[63] treated this case with an elegant method of functional analysis with a choice
of a suitable class where one can treat the solution of the Poisson equation and the
limiting process with both solutions to (1.1) and (1.4) for small data case. We treat
this limiting case in the other place since we need more delicate treatment on the
regularity of the solutions (cf. [40]).

As in stated in Proposition 2.2, the existence and the uniqueness of the solution
to (1.1) for each 7 > 0 is known (Kozono-Sugiyama-Yahagi [34]).

2.3 Two-Dimensional Critical Case for Keller-Segel System

Let n = 2 and A = 0. In this case we need a slight modification of the statement of
the well-posedness in Propositions 2.1 and 2.2. We re-define the mild solution of
system (1.1) and (1.4). Let ¢’® denote the heat evolution operator given by (2.1).

Definition Let 7 > 0. For initial data (¢, 1) € L'(R?) x BMO(R?), (u,, 1,) is
a (mild) solution to (1.1) if the following integral equation is solved:

u-(t) = e®ug +/ "IV - (U, (s) Vi, (s))ds,
0
Pr(t) = e + / eI u(s)ds
0

in C(I; L"(R%)) x C(I; VM O(R?)).

For initial data ug € L'(R?), (u, 1)) is a (mild) solution to (1.4) if the following
integral equation is solved:

u(t) = eup +/ PAGRER v (u(s)Vw(s))ds,
0

D) = (A u(t) = lim / B utds
t—00 O

in C(I; L'(R%)) x C(I; BMO(R?)), where (—A) 'u = —% log |x| * u(x).

We choose pair of exponents for the solution class as (¢, §) and (6, r) defined in
(1.13). Then a natural class for the common initial data is indeed given by the sharp
trace estimate from the semi-group representation in the real interpolation theory
such as
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||€IAM0||L9 I;L1) < OO, .2 212
o = (up. %) € B, § R x B,," (R?).
Ve 2ollLo;ry < 00, ’ ’

By the embedding theorem, the limiting case ¢ — 2, r — 00 is realized by

. ._2 1 1

uo € B)y(R*) C B, j(R*), —=1-— 7
q

1

5

.12 . 1
o € B,," (R C BY, ,(R?), - =
Or one can restrict the class of )y itself by choosing at § = 2 and r = oo to have

ol ey = IV oll ;-

r.0

Hence we introduce a common class for the initial data and consider the equation in
the class

.2 .12
(1), 9, (1) € CU L' N B, §) x C(I: BMO N B, ).

One can find regularity of the solution v in Proposition 2.2 as ¢ € BM O (R") (cf.
[34]). On the other hand the solution to (1.1), it is not clear if the similar regularity
can be obtained. We first illustrate that such a common space is possible for both of
system (1.1) and (1.4).

Theorem 2.3 Letn =2 and \ = 0. For admlsszble pairs (6, q) and (9 r) defined
in (1.13), assume (ug, o) € (L'(R?) N B 4 (Rz)) (VMO®R?*) N Bre g(Rz))

(1) Then there exist T = T (ug, ¥) > 0 and the unique strong solution (u., ;) to
(1.1) in
ur € C([0, T); L'(R») N LY(0, T; L1(R?)),

Y, € C([0, T); VMO®R?)) N LY(0, T; L' (R?Y)).

Furthermore, the solution satisfies the regularity estimates: For any admissible
pairs (0, q) and (0, r),
sup |[u- (Dl + sup Nurllroo,7;L9)
1€[0,T) l<g=<2
+ sup [[Yrllvmo + sup [IVYrllpo@ 1oy < 00.

t€l0,7T) 2<r<oo

(2) Assume further that for some €y > 0,

luollLt + llvbollBmo =< o,

then there exists a unique global solution (u., ;) to (1.1) such that
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ur € BUC(Ry; L'(R?) N LY(Ry; LY(RY)) N L (Ry; LARY)),
Y, € L®(Ry: BMO(RY) N L (Ry: L' (R?) N L2(R.; BMO' (R?)).

Furthermore, the solution satisfies the a priori estimate: For any admissible
pairs (0, q) and (0, r),

supllu-(H)llzr + sup |urllogr,:ra)
t>0 1<g=<2

+ sup |- llsmo + sup [IVY-llow, oy + ||V1/}7||f(71?~8M0) < £o,
>0 2<r<0o0 +

where & is independent of T > 0.

Remark Our statement also assures that the existence and the a priori bound for
the solution is independent of 7 > 0. The extra assumption (ug, ¥o) € B?’ Q(Rz) X

2
Br{;g (IR?) on the initial data is required for estimate involving maximal regularity.
The possible weakest assumption is choosing § = 4 in our setting. Indeed, such an
extra assumption on the initial data can be removed if we employ the weaker topology
for constructing the solution: For instance

1
sup [lu-() [l +supt? flur (@)1 < o0,
t>0 t>0

sup (D lviro + IV 1757, <
1>

Then the assumption on the initial data can be relaxed into the simplest way (1, o) €
L'(R?) x VM O(R?). Such a function space is not suitable for proving the singular
limit problem as we see below (see Sect. 1.3). Then we modify the existence class
such as following: For any small 779 > 0

ur € C([0, T); L'(R*) N C(0, T; L*(R»)) N L (no, T; LY (R?)),
Y, € C(10, T); VMORY) N LA([0, T); VMO (RY) N L (no, T L' (RY)).

This is possible because the solution is getting smoother after ¢ > 0 and (u, 1) €

2
BY ,(R?) x B:q o (R?). We notice that the smallness assumption on the initial condi-
tion on (1o, 1) can be relaxed into ¢y = 4 if the both initial data are non-negative
(cf. [49]).
The corresponding solvability of the initial value problem (1.4) has already known
in non-critical space (Kurokiba-Ogawa [37, 38]), and the critical space (Nagai-
Ogawa [50]). Here we show the result as a summary:

Theorem 2.4 ([37, 50]) Let n =2, A\ =0 and assume that 0, q) and (0,r) be
admissible pairs defined in (1.13). Let ug € L'(R*) N B?,Q(Rz).
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(1) There exists T = T (ug) > O such that the unique strong solution (u, ) to (1.4)
exists and

u e C([0,T); L'(R»)) N LY(0, T; LY(R?)),
Y e C([0,T); VMO®?)) N LY([0, T); L' (R?)).

(2) There exists g > 0 such that for any ug € L' (R?) with
luollLr < M., (2.3)
there exists a unique global solution (u,, V;) to (1.4) such that
u € BUC(Ry; L'(R?) N LY (Ry; LY (R?)),
Y e L®(Ry: BMORY) N LO(R,: L' (RY)) N L2(R,: BMO' (RY)).
Furthermore, the solution satisfies the a priori estimate: If |ug||1 < o,

sup (1) .+ Nl ooy + 59 190 ssso + IVl o < o
t>0 t>0 +

Remark As is well-known, the threshold mass M., is known as 87 if the initial data
ug is non-negative function [4, 6, 50, 52]. The existence and the uniqueness of the
solution to (1.4) for ug € L'(R?) is considered in Kozono-Sugiyama-Yahagi [34],
where 1 € C(I; BMO(R?)).

The main difference from our previous result [40] is that v nor 1) never belongs
to W12(R?) in two spatial dimension. Therefore we avoid to choose function spaces
suchas LY(0, T; W' (R?)) since it naturally requires that ¢, € Br1 o (R?) which may
not be true for 7 = 0. ’

2.4 Singular Limit for the Keller-Segel System

One can find that the singular limit problem accompanies with the initial layer if we
consider the presence of the initial data v)y. Since the system (1.1) and (1.4) have a
common structure in the equation for u, and u, the main issue is how to formulate
for the equation of ¢/ and 7). Indeed, noticing

t
lim e 2u(t)ds =[A_1em]oo u(t)
0

T—>00 Jo s=

=(—A + N u@),

we compare the equations
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P, (1) = €™y —i—/ eIy (s)ds,
0
D) = (—A + ) "'u(r) = lim / e2u(r)ds.
11— 00 0

Then we show by employing analogous argument for proving the existence of solu-
tion via the contraction mapping theorem, we show the difference of those equation
converges to 0 as 7 — oo except the initial layer. We then consider the singular limit
problem as 7 — oo in the scaling invariant space.

Theorem 2.5 ([40]) Let n > 3 and 7 > 0 and assume that (ug, 1) € L7 (R") x
Win(@®R").! Let (u,, ;) be a unique strong solution to (1.1) in (C(I; L:(R"))N
LO(I; LY(R™)) x (C(I; Wh(R™M) N LY(I; W (R™))), where (0, q) and (6, 1)
are admissible pairs defined in (1.13) and I = (0, T) with T < oo. For T = oo,
the smallness of the data (2.2) is assumed.

(1) (Existence of the limit solution) Then for the same initial data u, there exists a
unique strong solution (u, ) to (1.4) as

u, ) € (CI; L2 R™) N LO(1; LAR™)) x (C(1; W ®R™) n LV (15 W ™).

(2) (Singular limit) For any admissible pairs (0, q) and (o, r) defined in (1.13) with
0 = o,

tim (lltr = ullzogro + 199, = Véllwgir)) =0.
(3) (Initial layer) For any ty > 0, setting I,, = (tp, 00) N I,

sup lu (1) — u@®)ll, 5 + sup [|Veh, (1) — V(@) l1n — 0. 7 — 00, (2.4)

tely, tely
On the other hand, for some small t; > 0, let

1 (1) = X10.0 7110 (b0 = (=)o)
and X[a,51(t) be the characteristic function on [a, b]. Then

sup lur (@) —u@®ll o+ sup  [[VYr () — V@) = Vs (0)llpn > 0. 7 — o0,
1 L2 1
tef0,n7 1) tef0,n7 1)

(2.5)
Namely 1, (t) shows the initial layer 1o — (—A) 'ug as T — oo.

Two dimensional case is stated in a different way. We consider the Cauchy problem
(1.1) with A = 0 in R?. We restrict ourselves in the case of the small data global
solution (for general setting see Kurokiba-Ogawa [41]).

Tt is also valid for n = 2. Assuming further A > 0 and ug € B?A(R").
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Theorem 2.6 ([41]) Let n = 2. For admzsszble pairs (0, q) and (6, r) deﬁned in

(1.13), assume that (ug, 1) € L'(R*) N B 0.0 (Rz) x VMO@R?* N Bre "(Rz) with

the smallness assumption (2.3). For T > 0, let (ur, ;) be a unique strong solution

to (1.1) in (C(I; L'®R>)NLI; Lq(]RZ))) X (C(I; BMO(]RZ)) N L2(I; BMO'

(R2))), where I = (0, 00).

(1) (Existence of the limit solution) Then for the same initial data u, there exists a
unique strong solution (u, ) to (1.4) as

(w, ¥) € (CU; L'®2) N LT LYR2))) x (C(; BMO(R?) N L2(I; BMO' (R2))).

IfT < oo, thentp € (BUC(I; VM OR?) N LI(I; W' (R?))).
(2) (Singular limit) For any admissible pairs (0, q) and (0, r) defined in (1.13),

dim (e = wl ooy + IV @ =)oy + IV = D55 00 ) =

(3) (Initial layer) For any ny > 0,

sup lur (1) —u(®)llpr +  sup  |lhr (1) =Y OllBmo - 0, T — oo.

te[no,00)N1 te[nog,00)NI

Besides, 1-(t) has the initial layer as T — 00. Namely it never converges to
P = (=A)"'u(0) = (=A)'ug for t < no.

We should like to emphasize that the solution to drift-diffusion equation (1.1) is
inC(I; L'(R?)) x C(I; VMO (R?)) and the solution for (1.4)isin C(I; L' (R?)) x
C(I; BMO(R?)).N amely the class of the solutions of two system are different for ¢
and ) each other (cf. [5]). Nevertheless, the convergence is shown in the topology in
Wider topology C(I;,; L'R?») x C (I;;; BM O (R?)) except the initial layer, where

= (fy, 00) N I.Itisinteresting to consider the limiting case § = ¢ = 2andr = oo.
In this case, (1, 1) € BZZ(RZ) x BY %2 (R).

Some generalization of the smgular limit observed above can be derived. For
instance, we may consider the Cauchy problem of the Keller-Segel type equation
with a fractional dissipative system [9]. Let 1| < o < 2.

oty + (=AN)u, +V - (u,Vip,) =0, t>0, xR,
1
=0 + (=AY, = u,, t>0, x€R",
=

ur (0, x) =up(x), ¥:(0,x) =1p(x), t=0, x e R,

Then the singular limit problem in a critical function class

u ELQ(RJF;Lq(R")), %—i— =2a — 2, a<@,

n <
2a—1n -7

Vi € L7 (Ry: L' (RY), S+i-a-l ——=zq q=o.
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and the limit function (u, 1) by 7 — 00 solves

o + (—AN)?u +V - (uVih) =0, t>0, x e R,
(=N = u, t>0, xeR",
u(0, x) = up(x), t =0, x e R".

We discuss such a problem in [42].

2.5 Formal Observation for the Singular Limit

Let us consider the formulation how to prove the singular limit problem (2.4). The
external term of the ¢,-equation in (1.9) can be regarded by changing variable 7¢ —
Ts:s’(s:t—%s’)

t
U (1) =e' g +/ eI Au (s)ds
0

B (2.6)
=e' ™o + / e Pu(t — 17 1s")ds’'
0
and thus
() — (1) =e™ Dy + / T8 (s)ds — (—A)u()
0
=e" My + /(;T e (uT(t — 1) —u(t — T_ls)>ds @

+ /T b (u(t — 77 ls) — u(t))ds — /DO e Pu(t)ds
0 T

1

=+ 5L+ L+ 15

Then by using the dissipative estimates for the heat equation of u, we show that
)‘u(r—T’II)—u(t)H -0 7—>00 aa.t.
1

Such a formal computation can be justified by employing the similar argument to
construct the solution. In particular, in order to justify the above procedure, one may
introduce a typical metric induced from the norm such as

lullg,g = sup e/ u@lip.  Wllg,r =supeOlwlg. IV, = supr /O vy,
t>0 t>0 t>0
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where (6, p), (0, q) and (0, r) are the admissible exponents given in (1.14). However
such a choice of metric does not work well for the critical cases since the integrability

conditions and the stability conditions are not consistent in the following estimate:
For the first term of the right hand side of (2.7),

Tt _<1_;)_% s P
are 50/0 s \4 Jur (1= =) = (1= =) | s

s~ (a)3) s ]_éd llur () = u )l
—_— —_— — S u . — ul-
t Tt ’ b

|
o) Gy, (l -(2-9) 1) llar () = 4 Olg.g,

-
r 0

where B(p, q) denotes the Beta function given by

1
B(p,q) =/ (1 —s)P~'s?7ds.
0

Now we notice that the condition on the convergence of the Beta function requires

IR

while the stable condition on the exponent 7 should be given by

-(G-D=s

to justify the singular limit 7 — oo. Unfortunately those conditions do not hold
simultaneously. To avoid such a difficulty, Biler-Brandolese [5] and Raczyfiski [63]
used a smoothing property of the solution. Kurokiba-Ogawa [41] used a generalized
version of maximal regularity, where the convergences are stated both in the large
data local case and small data global case.

3 The Singular Limit Problem for the Chaplain-Anderson
Systems

We developed the similar method for the simplified version of the Chaplain-Anderson
system (1.9) and the limit function solves the Fujie-Senba system (1.10). We sum-
marized the result in the following.
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3.1 The Well-Posedness

By the embedding theorem, the limiting case p, g, r — o0 is realized by

T L s N 1
up € B, (R C B, , "(RY, ;_1_%’
3 o2+ 111
$o € By ) (RYY € B,, ' (RY), =33
al-2 o4 11 1
Yo € By’ RY C BLy(RY), - =-— —.
r 4 20

Or one can restrict the class of ¢ itself by choosing at ¢ = 2 and r = oo to have

Ioll 2 = ol o .

B.,7 (R?)

where Bgo’z(R“) C BM O (R*). Hence we introduce a common class for the initial
data and consider the equation in the class

2 2 2
.2 . — L 1-2
(ur (1), dr(t), br(t)) € C(I; L' N B, §) x CU; L*n B, §)x CU;VMONB, 7).

It is known that regularity of the solution %) in Proposition 2.2 as 1) € BM O (R") (cf.
[34]). On the other hand the solution to (1.1), it is not clear if the similar regularity
can be obtained. We first illustrate that such a common space is available for treating
both of system (1.1) and (1.4).

Theorem 3.1 Letn =4, and (0, p), (p, q) and (o, r) are admissible pairs defined
.2 L2
in (1.14). Assume (ug, ¢o, Vo) € (Ll(R4) N prz(]R“)) X (LZ(R4) N Bq,,ﬂ(R“)) X
L2
(VMO®RY N B}, (RY).
(1) Then there exist T = T (ug, ¥o) > 0 and the unique strong solution (u,, ¢, V)
to (1.9) in
u; € C([0, T); L'®RY) N LY(0, T; L7 (RY)),
¢r € C(10, T); LA(RY) N L*(0, T; LU (RY),
Y, € C([0,T); VMO®RY) N L7 (0, T; W' (RY).

Furthermore, the solution satisfies the regularity estimates: For any admissible
pairs (0, q), (p, s) and (o, r), there exists M > 0 independent of T such that
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sup llur (@)1 + llurllzoo,7: L0

tel0,7)
+ sup llo-ll2 + P llLe, ;L9 3.1)
t€[0,T)
+ sup |[Y:llvio + IV oo,y < M.
tel0,T)

(2) Assume further that for some €y > 0,

leolly + lleoll -2 + lidollz + I doll -2 + IYollsmo + Itoll 12 = 20, 3:2)

p.0 q.p
then there exists a unique global solution (u,, ¢, ;) to (1.9) such that
u; € BUC(Ry; L'(RY) N LY (Ry; LP(RY)),
¢- € BUC(Ry; L*(RY)) N LP(Ry; LY(RY)),
¢, € BUC(Ry; BMORY) N L7 (Ry; W' (RY)).

Furthermore, the solution satisfies the a priori estimate: For any admissible
pairs (0, p), (p,q) and (o, 1),

supllu, (Ol + llurllpow, ;o

t>0

+sup oDz + o llLoy ;L0
>0

+sup 1Y (D llsmo + IVYr Lo,y < €o,
>0

where & is independent of T > 0.

Our statement also assures that the existence and the a priori bound for the solution
is independent of 7 > 0. The extra assumption

27 od e Sl=2 4 A a2t g NE o4
(uo, $o.%0) € B, g R™) x By g RY) x B.o" (R*) =B, , "(R") x By, *(R) x B/;(R")

on the initial data is required for estimates involving maximal regularity (p = 1,
q=2,r =00 and 6 = p =0 =2 is the best possible choice). One can relax this
condition by employing another kind of function space with satisfying

sup 17 [lur ()|, +suptvllg- () llg +supte [V, (@), < oo.
t>0

t>0 t>0

Within such a function class, one may construct a local or global solution to (1.1) for

2 _2 12
(o, 0. 10) €(L' R N B, LRY) x (L2R*Y N By LRY) x (VMORY) N Br‘,of (RY))
= (L'®* x LE®R* x VMO[RY)).
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However such a function space is not suitable for the singular limit problem with
the initial trace as we see below (see Sect. 1.3). Indeed, such an extra-assumption
in the initial data can be removed by using the fact that the solution of Keller-Segel
equation has a higher regularity after # > 0 and such a smoothing effect gives a better
regularity assumption as in Theorem 3.1.

We notice that the smallness assumption on the initial condition on (u, 1) can
be relaxed into €y = 4 if the both initial data are non-negative (cf. [49]).

The corresponding solvability of the initial value problem (1.4) has already known
in non-critical space (Kurokiba-Ogawa [38]), and the critical space (Nagai-Ogawa
[50]). Here we show the result for the system (1.10).

Proposition 3.2 ([23], cf. [50]) Let (0, p), (p,q) and (o, r) be admissible pair
defined in (1.14) and let ug € L'(R*) N B;E (RH.
(1) There exists T = T (ug) > 0 such that the unique strong solution (u, ¢, 1) to
(1.10) satisfying —A¢ = 1 exists and
ue C([0,T); L'(RY) N LP(0, T; LP(RY)),
¢ € C([0, T); L*(R") N LP([0, T); LI (RY),
¥ e C([0,T); BMO[RY) N L([0, T); W (RY)).

Besides the solution satisfies the bound similar to (3.1).
(2) There exists g > 0 such that for any uy € L' (R?) with

luolls < M,
there exists a unique global solution (u, ¢, ) to (1.10) such that
u € BUC(Ry; L'(RY) N LY (Ry; LP(RY)),
¢ € BUC(Ry; L*(RY) N L7(Ry; LY(RY)),
¢ € BUC(Ry; BMORY) N L7 (Ry; W (RY)).

Furthermore, the solution satisfies the a priori estimate: If ||ug|l1 < €o,

sup lu@) i +lullzog, ;o) + sup 1Ol + 1Yl @, ;L9
>0

t>0 t

+sup o) llsmo + IVOllLo®,;ry < Eo.
t>0

As is observed in [23], the threshold mass M, is given by (8)? if the initial data
ug is non-negative function (cf. [4, 6, 50, 52] for two dimensional case of (1.4)). The
existence and the uniqueness of the solution to (1.4) for uy € L'(R?) is considered
in Kozono-Sugiyama-Yahagi [34], where ¢ (t) € C(I; BMO).
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3.2 Singular Limit Problem

The solution to (1.9) is formulated by the Duhamel formula as follows:

ur (1) =e’Auo+f eIV - (ur () VY, (5))ds,
0

o-(t) = ™2 dy ~|—/ eITA Ty (s)ds, (3.3)
0

(1) = 7B + f B (5)ds.
0

One can find that the singular limit problem accompanies with the initial layer because
of the presence of the initial data vy. Since the system (1.9) and (1.10) have the
common structure in the equation for u, and u, the main issue is how to formulate for
the equation of (¢, 1-) and (¢, ¥). By employing analogous argument for proving
the singular limit problem from (1.1) to (1.4) in Kurokiba-Ogawa [40, 41], we show
the singular limit of the simplified Chaplain-Anderson system to the Fujie-Senba
system

u(t) = e®uy —l—/ AR v (M(S)V’(/J(S))ds,
0

o) = (=A)Y(@t) = lim/ e u(t)ds, (3.4)
1—00 0

V(1) = (=A)u@r) = lim/ eLo(t)ds
=00 0
as follows:

Theorem 3.3 Let n =4 and let (0, p), (0,q) and (0,r) be admissible pairs
L2

defined in (1.14) and assume that (ug, ¢, ¥oy) € (Ll(R4) N Bp,g, (R4)) X (LZ(R4) N

._2 L2

B,; (R“)) X (VMO(]R“) N Brl,e "(R“)). For 7 > 0, let (u,, ¢-,,) be a unique

strong solution to (1.9) in (C(I; L'®RY) N LI, LP(R4))) X (C(I; L>*R*) N

L(I; LY R*)) x (C(I; VMO®RY) N LY(I; W (RY))), where I = (0,T) with

T < o0. For the global interval T = o0, the smallness of the initial data (3.2) with
0 = p = o is assumed.

(1) (Existence of the limit solution) Then for the same initial data u, there exists a
unique strong solution (u, ¢, ) to (1.10) as

u, ¢, ¥) €(CI; LY®*) N L1 LP®Y)) x (15 L2®Y) 0 L0 (15 LI (RY)))
x (L®°(; BMO®RY) N LI (1; Wh (RY)).

IfT < oo, thentp € (BUC(I; VMO®RY) N LI(I; W' (R*))).
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(2) (Singular limit) For any admissible pairs (0, p), (0, q) and (0, r) defined in
(1.14),

tim (Nt = ullzoiin + 167 = Ollsis + IV 0W; = B)llsreny) = 0.
(3) (Initial layer) For any ty > O,
Sp [l () = u®ll + sup o (6) = ()12

t€ty,00)NI t€[ty,00)NI

+ sup  [[¢-(1) = o(Dllsmo — 0,

telty,00)NI

(3.5)

as T — 00. Besides, (¢-(t), Y, (t)) has the initial layer as T — 00. Namely it
never converges to neither = (—A)'u(0) = (=A) lugnory = (—A)~2u(0)
= (—A)‘2u0f0rt < No.

We should like to emphasize that the solution to the Chaplain-Anderson type
equation (1.9)isin C(I; L' (R*)) x C(I; L2(R*)) x C(I; V M O(R*)) and the solu-
tion for the Fujie-Senba equation (1.10) is in C(I; L'(R*) x C(I; L*(R*)) x
C(I; BM O(R*)). Namely the class of the solutions of two systems are different from
each other (cf. [5, 41]). Nevertheless, the convergence is shown in the weaker topol-
ogy C(I; L'(RY) x C(I,; L*(R%)) x C(L,; BMO®R?Y)) except the initial layer,
where I;, = (fp, 00) N 1.

Remark We should also mention that the very similar result for the multi-component
parabolic equation of Keller-Segel type (1.11) holds. In such a case, the global behav-
ior of solutions for 3; # (3, is very close to the simpler model (1.1) and one for (1.12)
is close to (1.4). However the global behavior for the equi-coefficient case 3; = (3,
the behavior is closer to the case of simplified Chaplain-Anderson model and Fujie-
Senba model and the global behavior of solutions are stable in two dimension but
not the case in four dimension that was observed for the solution for (1.10) in [23].
One can derive very similar setting of the function class as the above theorem.

In what follows, for 1 < p,r, 6 < oo, let L?(R") be the Lebesgue space in the
variable x, let L?(I; X) be a Bochner class on the Banach space X over the time
interval 7 = (0, T) (T < o0), W' (R") denotes the homogeneous Sobolev space
with [V f||, < co. For s € R and 1 < ¢ < o0, let B, = B} ((R") and F =
F ».o(R") the homogeneous Besov and Lizorkin-Triebel spaces, respectively and the
norms of those spaces are given by the following: For 1 < p,o <ooands € R,

170, = (2710 115) .

Jez

171, = [ (21655 517) ] .

JeZ
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where {¢;} denotes the Littlewood-Paley dyadic decomposition of unity. In particu-
lar, we notice that F;qz ~ WSP(R") fors € Rand 1 < p < oo by the well-known
Littlewood-Paley theorem. We should notice that the inclusion of the sequence space
€y C €,directly gives that B, ,(R") C Bj ,(R") and F$ ,(R") C F3 (R")if 6 < 0.

4 Preliminary Estimates

4.1 Inequalities and Embeddings in Four Space Dimensions

In general, the function inequality in two dimensional Euclidian space is different
from higher dimensions. Here we summarized the Sobolev type inequalities in two
dimensions.

Lemma 4.1 Let n =2 and let f = f(x) be a measurable function on R?. There
exists a constant C > 0 such that the following inequality hold:

I flla <CIV £l 4.1)

Ifllg <Clifllge . 1<o <o 4.2)
IVgllz1 <ClIVgli, (4.3)
IVI~'Vgll. <ClI Vgl 4.4)

1 IBso <CIV £ll2. (4.5)
VI~ fllso <Cli fll2. (4.6)
VI~ Fllgs , <Cllfll2. 4.7)

Proof of Lemma 4.1 The inequality (4.1) is due to Gagliardo and Nash, and is
obtained by a straightforward computation (see for instance [8]). Indeed, by inte-
grating the both sides of the following inequality in x-y € R?,

X )’
| f G, »IF = ( / o f(z, y)dz) ( oy f(x, w)dw>,

we obtain (4.1). The embedding (4.2) and (4.7) are direct consequences of the Bern-
stein type lemma and Hausdorf-Young’s inequality. Equations (4.2), (4.3) and (4.4)
follow from (4.1) and the boundedness of the singular integral operator in L?(R").
The inequality (4.5) follows from the Poincaré inequality in two dimensions. The
inequality (4.6) is a consequence from (4.5) and the boundedness of the singular
integral operators in BM O. ]

We notice that the following inequalities generally fail to hold in n = 2.
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[ flloo =CIIV fll2.
I -0 <CILf N2

Lemma 4.2 Let (6, q) and (0, r) be admissible pairs defined in (1.14) with1 < g <
2 <0 < ooand?2 < 0. Then the following continuous embeddings hold:

or . L qy2 L qy2 . qg2
¥R € W R = £, R € F RS C By TR, (48)
Proof of Lemma 4.2 Noticing the relations

1 1 1 1

3
20 p ’ 2_p q 4 2a+r 4’

the first embedding is due to the Sobolev inequality

12 < SpllfIl2z

P

with

The second relation is due to the well-known theorem by Littlewood-Paley: F q072 ®R")
~ L9(R") for any 1 < g < oo (see Stein [68]). The third embedding is due to the
property of the sequence spaces £, C £y under 2 < 6. The last embedding is given
by the Minkowski inequality such as

a2y 1/6 ITY 1/6
10,z = (227200, 715) < [ (022 10 1) 7| =071z

P JjeZ JjeZ P

under the restriction g < 6 < oo. |

Here we recall the embedding results between the function spaces involving the
real interpolation spaces:

Lemma 4.3 Let (0, q) and (o, r) be admissible pairs defined in (1.13) with1 < g <
2 <0 <ooand?2 <n < o. Then the following continuous embeddings hold:

qr . e 142 142 142
LR c W@y ~ F L, "R C F L, R C B, T RY. (4.9)

Proof of Lemma 4.3 Noticing the relations
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the first embedding is due to the Sobolev inequality

1A -re20 < Sollfll 2o

11 2y 1 1
——— -1+ ) ==+
q n g r q

The second relation is due to the well-known theorem by Littlewood-Paley: F ;”2 ®R"
~ LI9(R") for any 1 < g < oo (see Stein [68]). The third embedding is due to the
property of the sequence spaces ¢, C £y under 2 < 6. The last embedding is given
by the Minkowski inequality such as

with

a2y 1/6 a2y 1/60
10,z = (227200, 115) 7 < | (227970655 1) 7] =00
q.0

9.0 JjeZ JjeZ

under the restriction g < 6 < oo. O

4.2 Heat Evolution on VMO

It is well-known that the heat kernel has a dissipative estimate of L”-L9 type:

_nel_1
le2uoll, < Cr= 2~ uoll, (4.10)

forany 1 < g < p < oco. Here is a dissipative estimate for the heat kernel on BM O
and VM O. Besides by the density, the heat evolution {€’%},>¢ generates a Cy-
semigroup over V.M O but not over BM O.

Lemma 4.4 The heat evolution operator e'® is a bounded operator from BM O (R")
to BMOR"). Ifup € VM OR"), then

le®uollymo — 0 ast — oo. @.11)

Proof of Lemma 4.4 Let Ay = Biy1 \ By be annulus with By = By g(xp). Since '4
is a bounded operator on L>(R"), we see that for ug € BM O (R")

lle"uollppo

1 12
<C sup (—2 f f \E'A‘MO(X)—em"uo(y)\zdxdy>
x0,R>0 \ | BRI Br (x0)x Br (x0)

12

<C 1 tAy tAy ) 2d d /

<C sup | ——— le' v e 2V x BrxBg (X, ) (uo(x) — uo(y))|~dxdy
|BR| " xRN

x0,R>0
172

1
+C sup Z(—2 / f |e’A*e’A«"xAkxAk(x,y)(uo(x)—uo(y))\zdxdy)
20,850 ;1 NBRIZ JJ Brro)x Br(xo)
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1 12
<C sup (—2 f / \Mo(x)—uo(y)ldedy>
x0,R>0 \ |BR| Br(x0) % B (x0)
1
+ C sup (7 //
xU.R>0]§ |Br1> JJg,x8,
/12 /12 , 2 12
X ug(x1) —uo(y)|“dx1dy dxd
(//;A (725 = T Q72 5 [y — gy et 1100 — 00| ‘“) y)

1 1/2
<Cluollsmo +CY_27* sup (—2 // \uo<x1>—uo(y1)|2dx1dy1)
k>1 x0,R>0 | Bk | By x By

<Clluollzmo- 4.12)

See for the details Stein [68, p.159]. Besides for any uy € VM O(R") there exists a
sequence {ug )2 C Co(R") such that for any € > 0 there exists n >> 1 such that

o, — uollvmo < e.

Then from the dissipative estimate (4.10) and (4.12),

A A A
le"uollvmo <lle"“uonllvmo + lle'> (o — uo)llvmo
A
<2lle"*ugnlloc + 2llu0.n — uollvao

<Ct™ 2 ||ug,lli +e.

By passing t — 0o, we obtain (4.11). (Il

5 Generalized Maximal Regularity

Let X be a proper Banach space, and we regard A = (—A)®/? as a closed linear
operator in X with a dense domain D(A). Givenug € X and f € L”(0,T; X) (1 <
p < 00), we consider the abstract Cauchy problem

d
Zu—i—Au:f, t >0,

u(0) = uop.

Then it is called that A has maximal L”-regularity if there exists a unique solution

d
u € C([0, T); X) such that Eu, Au € LP(0, T; X) and it satisfies the estimate

d
—u + ||Au x) < C( u + . ),
” o ’U(O,T;X) lAullLe,7:x) luollx.peay,_y, + 1fllr.r:x)
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under the restriction ug € (X, D(A)),_%,p, where (X, D(A)),_%’p denotes the real
interpolation space between X and D(A) and C is a positive constant independent
of up and f. Maximal regularity for parabolic equations is well established within
the general framework on Banach spaces X that satisfy the unconditional martingale
differences (called as UMD). For details, see [1, 3, 16-20, 31, 43, 72]. On the other
hand, maximal regularity on Banach spaces which is not UMD, for instance non-
reflexive Banach space such as L' or L™ requires a different treatment. For example,
we explicitly proved maximal regularity on the homogenous Banach spaces in [57].
We consider the Cauchy problem of the heat equation: For v > 0,

v —vAv = f, t>0,x eR",

5.1
v(0, x) = vo(x), t>0,x eR". -1y

Then maximal regularity is given by the following way:
(1) ([57]) For any 1 < p, p < o0, there exists a constant C > 0 independent of u
and T such that

2
10l Lorsry + VIV oairy < Cllvoll 2 4 I fllLecrLe)-
BI

A}

7
o

(2) ([17, 58]) Forany 1 < p < oo,
10 vllra:p ) + V”vzv”uu;éﬁ,, < Cllvollgo, + I f o)) (5:2)

The first estimate is well-known result from the general framework [3, 18, 20,
26] and the case 0 = oo is generally excluded since such spaces are not UMD
(unconditional martingale difference) and it is not covered by the general theory of
UMD. The remarkable feature of the latter estimates is that the estimate (5.2) allows
the case o0 = oo and it is useful to estimate for applying the integral equation. On
the other hand the latter estimate involves the homogeneous Besov spaces and it is
not easy to make clear the relation between the Legesgue spaces since

B),(R") C Fp,(®") ~ LP®") C B)
if 2 < p < o0, and
B) |(R") C F),(R") = L"(R") C By,
ifl<p<2.
We state the following general version is useful to apply the semi-linear parabolic
equations [39-42, 61].

Theorem 5.1 (Generalized maximal regularity [40]) Let1l <v <p<oo,1 <p <
0o, s € R, u>0andlet I = (0, T) C Ry be an interval (possibly I = R..). Given
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initial data vy € BYJr2 PR and the external force f € L¥(I; BHZ/” e (Rmy),
the solution of the Cauchy problem of the heat equation (5.1)fulﬁllsfollowing esti-
mates:

(1) Suppose that f = 0. Then for any 1 < o < oo, there exists a constant C > 0
independent of T such that

||3, +1/||V2v|

Le(I:Bs,) = < Cllvoll b (5.3)

I’ P

v ” Lp([;Blsw)

where V? = 0, Oy
(2) Suppose that ug = 0, then for any v < o < p, there exists a constant C > (0
independent of T > 0 such that

o

+ V20 g, = CISI (5.4)

v ’ 2
”Lﬂ([;B;ﬂ) Lo BH,ﬁﬁ)

We notice that the above estimates remain valid for the problem:

v — VAV + du = f, t>0, x e R",
v(0, x) = vo(x), x e R",

where A > 0. Indeed, the case A > 0 can be reduced into the case A = 0 by the
estimate

A A
le'®p; xuoll, < lle'd; *uoll,

forall 1 < p < oo, where {¢,}; is the Littlewood-Paley partition of unity.

The proof of Theorem 5.1 is separated into a homogeneous estimate and an inho-
mogeneous estimate (cf. [57]): For the homogeneous term, the following propo-
sition directly shows the result (5.3). For simplicity, we assume that v = 1. The
general case can be obtained by using the scaling transformation ¢’ = /vt and

fl@&,x)y=v7lft, x).

Proposition 5.2 For 0 < T < oo, weset I =[0,T). Let 1 < p,oc <00, 1 <p<
oo and s € R. For vy € B;;,z/ P the solution of the heat equation e'® vy satisfies the
following estimate: we have for any 0 < T < oo and s € R, that

T I/p
lleSvoll%, dr) < Clivoll .2 (5.5)
0 Bp.n p/}

2
55D

Ls—2 — B
Forvy € By = C§° ? thenforany0) < T <oocand1 <o <00, 1 < p < o0,

T 1/p
( / le"2 o1 dt) < Cllwoll 3. (5.6)
0 0,0

B
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where C is independent of T.

Those estimates (5.5), (5.6) are known as a characteristic definition of the Besov
space by the heat semi-group. Indeed the reversed inequalities also hold if T = oo.
For the proof, see for instance [40, 58, 61].

Remark It is known by the evolutional Besov formulation that forany 1 < p < oo
with 1/p + v > 0. The above estimate (5.6) is an extension of such an expression.
We next consider the solution of the inhomogeneous heat equation with O-initial
data:
ov — Av = f, t>0, xeR",

v(0,x) =0, x € R".

The following proposition is the key to proving Theorem 5.1 (cf. Ogawa-Shimizu
[57]).

Proposition 5.3 ([40]) Let {€'*},>¢ be a heat semigroup in R" and I = (0, T) for
any0 < T <oo.Thenforl < p,yv<oocandl <v,0 <ocowithl <v <o <p<
00, we have

Proof of Proposition 5.3 Since we show the result by using the duality argument, we
show only the case for | < p < oo and 1 < p < oo. For the case p = 1, the proof
requires a similar treatment involving the Hardy space 7! (R"). This is because the
base space L' (IR") is not the dual of L>(R") (see for the detail [57]). The end-point
case p = 1 required another treatment, too (see [58]). We also show the inequality
for the case T = oo. The other case is obtained by letting f(¢) by x(o,7)(¢) f(¢). Let

/ "I £ (s)ds (5.7)

0

=< C||f||Lv(1;(B“‘*2,Bl"

L. po By we)”
Lo(1:(BYS By )1 -1/0.0)

1, 2/ <r <2/t

0, otherwise

Xj(r) = {
and g(t) € C*(I; S(R™)). We consider the dual coupling: For j € Z,

/ ” ( / 98 £(s)ds, g(t)) dt
0 0 L?

=< Z ~/:/t>s>0 Xt —s) |(e(f—x)Af(S), g(t))Lz|det.

JEZ

Introducing

Ti(f. 9) E// OXj(t —5) [V f(s), g(1))| dsdt,
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we claim that T : (f x g) = {T;(f, g)}; is a bilinear bounded form:

LY(I; (B2, BY Dijwp) x LY (I (B2 32 B, Dic1yp) = i

where 1 < p,v<o00,1 <p <00, 1<v < oo with v < p. From the dissipative
estimate for the heat evolution operator,

_nfl_1)_s=s
||e’AM0||B;A, <Ct 2(4 ,,) 2 HMOHBQQJ

we have for/ = 0, 2 and m = 0, 2 that
Ti(f.9) < / / Xt —$)e" V2 f (o) Bl gl g-srdsdt
t>s>0 P

Py

= C// Xt = )|t = 5|72 f () o gl gdsdt (5.8)
t>s5>0

Py

< c2—+mij/2 // Xt =N ps- m||g(t)||B —s— lde[
t>5>0

We decompose that f = fo + f1 with fy € BS 2and f € B; 4»and g = go+ g1
with gy € B , Zand g € B ., and taking the 1nﬁmum over all representations of
ge B’ i B;fv,,
|T;(fo, 9| < inf (IT;(fo, g0)| +|T;(fo, gD,
9=90+9g1

1T (f1. 9 Sg:igf(}gg]ﬂTj(fl’gON +1T;(fr, gDD-

Adding both sides and taking the infimum over all representations f € B° 2 + B;, oy

(Lol = b | inf (TG0l + 1T (o )
=fot+fi Lg=g0tagi

il (T5(f g0l + 1T gD .

Adding in j and applying the estimates (5.8), we have
Y ITif. 9)l
jeN

<022?"’// X;(t =s) inf (_{7||f0(S)||B;;,2+2j(l_%)||f1(s)||3);,)
t>5>0 E

JEZ

x nf (27 Plgollg 2 +20 g1 (Ol )dsdr.
9=90+91
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We then let
= f(s = i STy j(1-1) :
Fi(s) =IO g2.85 1,1, = Lt Qo gy + 2NN ).
Gi(0) =gl s s = it Dol e + 27 g Ol )
S (B 7B, -1/, g=g0+g1 : By : By

It follows by letting Ilt + % + % = 2 and using the Hausdorff-Young inequality
(including the case v = 1) that

D ITi(f 9l

J€EZ
L oo 1/p o0 /v o0 ) 1/p
<C 221'(;*;*1) (/ Xj(r)“dr) </ F,(s)"ds) (/ G;@)” dt)
ez 0 0 0
<c) (/ F,(s)”ds) (/ G,(r)f”d;)” .
‘oz o 0

Here we used the fact that i =2- I% — pi =1- }/ + ﬁ. By using the fact that
Joicreai Q= fR+ xj(N% =log2, we apply the Holder inequality for j in 1 +

(% = 1 and noting ¢’ > p’ and the Minkowski inequality, ¥ < o, we obtain

M ITi(f 9l <C Y| Fits)

Lv(I) IG; o] L7 (D)

JEL JjeZ
1/o 1/0’
=C| X [Fi) Zum) (Z 1G5
Jj€Z jez

(Minkowski’s inequality byr < candp’ < o)
1/v 1/0

<c /oo (> Fj(s)(T)%ds /oo (> Gj(t)”/)p//a/dt
0 JEL 0 JEL

1/v

© dM\v/o
<C < %.son - —) ds
- /0 ng‘/z\j<)‘<2/+l ”f( )”{Bp_yz,Bfm}l/n,j A
1/0
© / dX\r'/o
<[ ( / A
(/0 JXGZ:Z 2J <A<2/+! {Bp/_wrzprr.,)r}]—l/v.j A

= O N a2 8y 1 VI i 280 1o

Py

We conclude that
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LT (fs @)} jlle, SC||f||Lu([;(]é»,,;z,é}rm)l/m)||g||Ln/(1;(B;,‘:,Z,B;jy_’,)H/M/)-
Noting for 1 < v < 00,1 <4 <oocand 1 < p' < o0,
(B2 B i) = (BS2 BY )isijvo

we obtain the desired estimate (5.7) by a duality argument. O

Proof of Theorem 5.1 For simplicity we show the proof for the case ¢+ = 1. The other
cases are shown by a simple scaling argument of time-variable t — ¢’/ . Since the
homogeneous estimate (5.3) can be obtained from Proposition 5.2, we only show the
estimate (5.4). For | < v <o < p < 0o, we have shown that

from the interpolation result. Then the estimate (5.4) follows from (5.9), since O,u =
Au+ f.

Finally we treat the case p = oo. In this case, we modify the above argument in
the different interpolation parameter. Namely, we have from (5.8) that

[ "I £ (s)ds

0

L2 =CIFI 242 (5.9)

LB LY(I:Bys ")

SUT(f gl <€ Y2k // XSt = $)F; ()G (D)dsdr,

jez jez >s>0
where

S| 1 sl 1
Fi(s) =1 £, ps=2 po = inf  (277CF ) fo) -2 + 27N A g )
b I/ ”{B,,,, B, f=f0+fl( Il fo( )IIBN llf1( )IIBM)

1 1.
Gi(t) =gl p-s—2 p-s = inf (2727 ) p-s—2 +227 OHlla-s ).
j( ) =llg( )II(BII’,'V’z’Bp’.v’}%.j g=go+a1 ( llgo( )”Bp’:«’Q llgi( )HBI7'-7")

It follows by letting ﬁ + % + 1 = 2 and using the Hausdorff-Young inequality with

Lo _1-1_-1-1
o v v

ST (f 9l < €3 2V IGOIME Ol G Ol

JEZ JEZ
=CY NF OGOl
JEZ
1/o 1/0'
<D IFO IGO0,
JEZ JEZ

By using the fact that [, , . % = f]R+ X;j(N% = log2, we apply the Hélder and
the Minkowski inequalities for j to obtain
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2T D= Clf livascisz by, NIy 27 oy 0
JEZ

‘We conclude that
T, )l SCU ez gy, NN 0,
Noting for2 < v <p=o00,1 <9 <oocand 1 < p’ < o0,

n,,BY iy

P
((Bp’fw’ ’ Bp’fw’)%*%,a’) (Bs
we obtain the desired estimate (5.7) by letting p = oo and the duality argument. [

Theorem 5.4 (Maximal regularity in BMO [33, 59]) There exists Cy > 0 such
that for all f € L*(Ry: BMO(R") and Vuy € BMOR"), then the solution of
the Cauchy problem (5.1) admits a unique solution v € Wl 2(Ry; BMO@RY) N
L? (R+, BMO’ (R™)) which satisfies the following estimate:

0:v]l +vllAv]l o Cu(IVuollzmo + I £l

12(R,:BMO) R.BMO) = Lz(R+;BMO))'

The proof of Theorem 5.4 can be seen in [59].

6 Proof of Well-Posedness for Keller-Segel System

In this section we show the local and global well-posedness of the solution to (1.1)
stated in Proposition 2.1. The proof of Proposition 2.2 for the limiting equation (1.4)
is very similar to the case for (1.1) and it is indeed simpler than Proposition 2.1 and
we do not show the case for (1.4) (cf. [34, 38]).

Proof of Proposition 2.1 Since the case p > 3 is not the end-point case, the proof

is easier and the result is more or less known. Hence we only show the critical case:
p = 5. We show first the local existence of solution for I = (0, 7). Consider the
mild solution to the corresponding integral equation:

ur (1) = e *uo + f e"IAY - (ur (5) Vi (9))ds
0 6.1)

Tt
P (1) = e ™Y —l—/ ¢TI0y (771 s)ds.
0

(Step 1) (The local wellposedness): Letn > 3, A > Oand 7 > 0. We show the local in
time existenge and well-posedness of the solutions for the large initial data (ug, 1)) €
L2 (R") x W (R™). Let (¢, 6) and (r, 6) satisfy the Serrin admissible conditions:
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6.2)

and set I = (0, T) for some 0 < T < oo chosen later and let

Xu = {(u, Y) € (C(I; L%) N LH(]; L‘I)) X (C(I; Wl,n) NLo(I; Wl’r));
”u”L”“(I;L%) + IVl < M,

lllzs oy + 19 liesery < N .

where
M = 4Co(lluollz + Vo l12)

and N > 0 is chosen small later. Introducing the metric on Xj; by

I, ) — @ Dllr = llu— dill ogr oy + IV @ — D)l peros

one can show that X, is a complete metric space.
We then introduce a pair of the solution maps (E[u, ¥;], ¥[u,, 1¥;]) as follows:
For (1o, 19) € L? x W' and (u-, 1,) € Xy, let

Elur, (1) = ePug + / eIV - (ur(5)Vpr () ds,
0 (6.3)

Wiy, 3 1(0) = ey + / "I, 17 s)ds
0

and claim that the map (&, W) is contraction in the critical space X ;.
Then by maximal regularity (5.3) in Theorem 5.1 with s = =2, 0 =1 with

. . .2 .2
the embeddings BS’I(R") C L1(R™) and W‘%*’?(R") ~ Fq,z" R" C Fqﬁ”(R”) -

._2
Bq,g (R™) (note that we assume g < # and 2 < 6) to see

A A
lle' uollzor: Lo <|le ’40”1‘9(1;3,‘;,[)

SCIIMOHB%’ = Clluoll . 2

2 =

4.0 Fl/«/) (64)
<Cliusl 4 = Cliwoll, 4.

q.2
=CoSplluollz,

where we used the Sobolev type inequality with the relation of the critical exponents
(6.2);
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A1

. 1 2
W94—Sb||f|| Wlth 5—}—”—:—
Also it follows similarly for V), that

A
IVe™ ol ;1) =ClIVdoll 2z = ClIVYoll .2

<CoSplIVibolla,

(6.5)

where we used the Sobolev type inequality with (6.2);

1 2
IA -2, = Sell flla with =+ — = —.
r  no

n

Hence from (6.4) and (6.5), we can choose the time interval |/| < T sufﬁciently2
small such that for some small ¢y > 0,

A
le"uoll Locr;10y < €0,

(6.6)
||€TtAV?/Jo||La(1;L") = ”etAV'l/)O”L”(I;L') < €&o
for any 7 > 1 and the choice of T is independent of 7 > 1.
Noticing 5 < ¢ < 6 < 0o, we apply (6.6), maximal regularity (5.4) and the
embedding (4.9) to have

t
| Elur, wT]”LQ(I;Lq) <lle"®uollpo(s.1a) + H / "IV - (ur () Vipr (5))ds

LB,
<to+C uT(S)VwT(S)‘ L% B, -l ") (6.7)
0 .
<eo+C MT(S)VwT(S)‘ T
hto)) + C””T(')”]ﬂ([;]j{) vaT()| Lo(I;LT)"
Meanwhile by the embedding
. i 1 1 1
L‘Z(Rn) c W—ﬂ(i—;),r(Rn)’ ; — ; _ ; <g _ ;) (68)
and noting the relations
2 2
___:1_E+z, <o, 2<n<r<o
0 o q r

2The choice of T is independent of 7 > 1.
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Tt
A —5)A —1
[99r, 0l gy 1™ Vol + |V /O et (s
<eo + C‘ ur(7""s) 1422
LB, 7 7)
—1
<eo + C‘ ur(T78) s=rs 1422
LUIL3F, , )
=&+ C ”uT(t) ”LH(I;W’"(ql’%)v")
=&+ C”“T() “L”(I;Lq)'
(6.9)

From (6.7) and (6.9),

2
Lo(I:Lr) <2g0 + Cl(”“T”Lﬂ(l;Lq)) :
(6.10)
Choosing €y > 0 small enough in (6.10) and we conclude that by choosing (¢, q)
and (o, r)

| E0tr, | oy oy + [ VW Lr, 7]

” E[MT’ wT]HLG([;Lq) + HV"IJ[M‘H ,(/}T]

i <40 =N. (6.11)

Similarly by Lemma 4.3, we proceed the estimate similar to (6.9) to see that

t
[8tr vl ey, 8, <N w0l 5+ H/O TRV (ur (Vi (5))ds Hp@(pirz )
27
=Colluolly + C|ur()Vipr(s) Lo LT
1 1 1
<M+ Cltr Ol g3 IV0r O] gy = 7M+CooM = SM
6.12)
and
Tt .
|99, 61 e gy <N A Vb0l aiam + |V f R s
; 0 ;
<CollViol + Clurr s g
1
sgM+Clur @, 2,
(smeey =53 (=3))
since— = — ——(1——
n g n 0
1 1
SZM"'CH”T(')”LH(I;M) = EM‘
(6.13)

The estimates (6.12) and (6.13) implies

| &lur. -] ”Lw(l;L%) + || VWi, wT]”L“(l;L") =M. (6.14)
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Combining (6.11) and (6.14), we obtain that (®[u, Y, ], V[u,, ¥.]) € Xp. Analo-
gously from (6.7) for the difference of solutions

Elu,, 1, 1—Eli,, ;]

LO(I;L49)

< / 19T - (4, () V1 (5) — it (5) Vb, (5))ds
0 LI B
<Cllur )V () = G OVEO| g s
<Cllur) VW) =B 0| o (6.15)

+C

(ur(s) = it7(5)) Vibr (s)

<Cllur )| g |V @r () = D ()
+ Cllur(s) = it () | o1:0 | Vo ()

<CNIl(ur, 7)) = (i, ) -

Oo

L0+ﬁ(1;L%)

Lo(I;L7)

Lo(I;L")

Analogously from (6.9) and (6.15), we have

v (s, vr1-wiar, 3,1)

Lo(I;L")

=

Tt
/ Vemfsm(qnu,, b 1(rLs) — Bl %](T"S))ds
0

Lo(I;L")

=C| @lutr ¥ s = Blitr, D1 )l

2_2
A 1
LULE,, P 7)

<C||@lur. 1-1(t) — liir, V7 1(0) Lo,
<C|®@lur, 1) = Oliir, V1D | 1oy, 10

<CNW(ur, ¥7) = Gir, Yo)llu-
(6.16)
Choosing N smaller as

CN < -, 6.17)

FN

if necessary, (6.15) and (6.16) with (6.17) yield that

I(Elutr, 1, ¥ lur, 1) = (Elitr, ¥r1, $lir, O Dllr
1 o~
§§||| (urs w‘r) - (MT, ¢7)|||T
under the smallness assumption (6.6) on the interval. Thus the map (®, V) is con-

traction onto X ), and the Banach fixed point theorem implies that there exists a
unique fixed point (u., ¥;) € X, that solves the Eq. (1.1) in the critical space. In
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particular, from (6.12) and (6.14), the a priori estimate
Nt ll g 8y F NuerlliLoq; o) + IV Lo.my + IVYrlloqoy <M
does not depend on the parameter 7 > 0.
(Step 2) (Global existence for small data). We show the case of global existence with

the critical small data. Letn >3, A>0and 7 >0Qorn=2,A\>0and 7 > 0, and
let (8, q), (o, r) be Serrin-admissible as is given by

<g<n, n<0<oo,

oS

=1, n<r<o<oo.

Also we call

0.9)=(00.5). (@) =(oc.m)

the end-point admissible pairs. Fixing the admissible pair for I = R, as (6, q),
(o, 1), we introduce the complete metric space:

Xy = {(u,q/)) c (C(I; LHntlu; Lq)) x (C(I; Winyn Lo, W“‘));

WG ) = Null

earh T Nullpor; ey + WVQlLo;ny + IVllLo sy < M},

where
M = 4Co(lluollz + IVeolI2)

is chosen small later. For any admissible exponents (6, g) and (o, r) (not the end-
point exponents), we define the metric on X, by

WG, ) — @ D)l = lu — il ooy + IV@ = Dlnro-

By this metric, X, is a complete metric space. For (ug, ¢g) € L% x W' and
(ur, ;) € Xpy, we define a pair of the solution maps (®[u, 1], V[u,, ¥;]) by
(6.3) and claim that the map (P, V) is contraction in the critical space X,,. Let
n > 3. Noticing 5 < g < ¢ < oo and the embedding (4.9), we apply maximal reg-
ularity and the embedding (6.4) to have

t
|8 01 o gy <Ne w0l oo ) + | fo Y (7 () Vibr () ds |

LO(I;BY )
<Collu "—I—CusVJsH - .2
oll Ollz'aqﬁ 7(5)VYr(s) Lﬁu;%:ﬁg)
<Colluolls + CllurOll oo | Vr O o g1y
(6.18)

Meanwhile by the embedding
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. 1 1 1
LIRY) C WD R, - = - = (E - E)
rq n\q r

and noting the relations

n n
=l——+4+—, 0<o0, 2<n<r<o,
r

SRS
SHES

we have from maximal regularity and the embeddings (6.5) and (6.8) to obtain

Tt
[V Olr ool o ropry <Colle”™ Vibollinaiin + HV/O e Bur (s Lo(r:Lr)
=ColVooll 3 +Clarclo)|  as
B.S LB, * %)
§C0||V¢0||n + C””T(’)HLH(I;Lq)-
(6.19)

From (6.18) and (6.19),

2
[8tr el g0y + [V WTr 01 oy, 1ry <Comol s + 199002 ) + €1 (e o, 0
(6.20)

Choosing ¢y > 0 small enough and

M 1
Co(lluollz 4+ IVbolla) = 7 =<0 M < 3 (6.21)
in (6.20), we conclude that by choosing (6, ¢) and (o, r)
_ 1
| &z, 1 ooy + V9T, ) oy, < 5 M- (6.22)
Similar estimates of (6.12) and (6.13) imply that
_ 1
| €, o1 ity + 1V T 0] g1y = 3 M (6.23)

Combining (6.22) and (6.23), we obtain that (E[u, ], Y[u,, ¥;]) € X). Analo-
gously from (6.18) for the difference of solutions
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|Eur, Yo 1=Blitr, Y1 1oy 10,

<[ [ e a0V 6) )9 )
0

.p-2
LO(I:B; )

<C |, () Vi, (5) — il (5) Vb, (s)

o L1+ 2
L7 (138, 7)

<C

we VW) = D) e

L% (I: L7 )

+ | (1r5) = 5 5)) V- (5)

<Cllur ()| oz 1o | V@ (5) = P (5)

+ Cllur(s) = it () o0 | VP (5)
<CM|l(ur, tor) = Gir, o)l

’ _bo_ g
L+o (I;L7F7)

Lo(I;L")

Lo(I;L")

Analogously from (6.16) and using (6.24), we have

[V (wiur, vr1-wliir, 3:1)

Lo(I;L")

EH /Or, ve(Tt—s)A(E[uﬂ ¢T](Tfls) — Eliir, &T](qu))cls

<C| Elur, 1~ ) lre — Eliir, 177 19) |

2_2
P
LU F,, 7 7)

<C

Bluer, 4 1(6) — Eliiy, 100

ol 1
Lo W a T
<C|Elur, 41t = Eliir, $1O| 1o ;. 1)
<CM||(ur. 7)) — Gir, ¥l m-

Choosing M smaller as

CM <

3

S

if necessary, we have from (6.24), (6.25), that

N(Elutr, 71, % ur, ¥r]) — (Eliir, ¥r1, liir, ¥rDllm

1 ~
Silll(um 7/}7') — (-, ¢7)|||M

147

(6.24)

Lo(I;L")

(6.25)

under the smallness assumption (6.21) on the initial data. Thus the map (P, V) is
contraction onto X, and the Banach fixed point theorem implies that there exists a
unique fixed point (u., ;) € X that solves the Eq. (1.1) in the critical space. In

particular, from (6.22) and (6.23), the a priori estimate

Neerll oo gty + Ntrllizoq; Loy + IV-lleoa.ny + IVl Loy <M

(6.26)
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does not depend on the parameter 7 > 0. ([
For two dimensional case, we need to involve the class of bounded mean oscillations
(BM O (R?)) for the small data global existence and the vanishing mean oscillation
(VM O (R?)) for the local existence for large data. The proof is entirely close to the
higher dimensional case but the role of those limiting function class is subtle. See
for the detailed proof of Theorem 2.3, Kurokiba-Ogawa [41].

7 Proof for the Singular Limit

In this section, we recall the proof of the convergence of the singular limit prob-
lem for the higher dimensional Patlak-Keller-Segel equation (1.1). The key part is
to introduce the critical Bochner- Lebesgue spaces with the admissible exponents
defined in (1.13). We only show the proof for Theorem 2.5. See for the proof of
Theorem 2.6 [41].

The following lemma is useful for proving the strong convergence in the critical
Bochner spaces (cf. [40]).

Lemma7.1 Ler 1<6,p<oo and f e Wh(I; LP(R") N LIT; W2P(RY)),
wheret € I = (0, T) with T < co. Then for any T > 0,

H /On AeSA<f(t - ;) - f(t))dS”Ly(l;Lf’) 5” fon erA%f(t _ g)der(z;Lp)

+ e 2O ooy + 1A SOl o0y

Proof of Lemma 7.1 Since f is absolute continuous in L”(R"), by the mean value
theorem and change of order of integration, we see

[
| [ s ([ gt Daar)as
) /OT, (/rrt AefAdS> %f(t - ;)dr
= /(;Tl erA%f(t - 7r_-)dr - eTZA[f(t - E)]ﬂ

T dr=0
Tt o r
rA = _
)/0 e 8rf(t 7_)a’r

LO(I;LP)

LO(I;LP)

LO(I;LP)

IA

+ e f(0) ”LW;U) + e f (o) ”L"(I;LP)'

LO(I;LP)

O
Proof of Theorem 2.5 We first show Theorem 2.5 for the small data case: For the large
data case, the proof is simply changed by T < oco. Note that we restrict ourselves
as 6 = o. For the small initial data, one can obtain the a priori estimate for u, in
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BUC(R,4; L?)N L*(R,; L7) and the bound is independent of 7 > 0 since it is
determined by the initial data. Namely by (6.26),

Jar Ol ey + 1V Ollw@, i < Clluolly + 1V20]12).

(Step 1): Let I = (0, oo) and we consider the difference of solutions between (6.1)
and the following:

u(t) = e®ug +/ PGS v (u(s)Vw(s))ds,
0

Tt 00 (7.1)
P(t) = / e Pu(t7s)ds +/ e 2u(r)ds,
0 Tt
as
t
(1) = u(t) = f eIV - ((ur(s) — u(5)) Vbr (s))ds
0
t
+f eIV - (u(s)(Vip-(s) — Vip(s)))ds, tel,
0
Tt
(1) = (1) = e P hy + / e ur(t —77s) —u(t —77's))ds
0
Tt o0
+/ b (u(t — 71y = u(t))ds —/ eLu(t)ds, tel.
0 T
t (12)
Choose admissible exponents (0, g), (o, r) with § = o such as
§+Z=2, g<q§9, 2<0,
2 n
—+—-=1, 2<n<r<o=46.
0 r

Let the time interval I = (0, co). We apply the similar estimate in (6.24), it follows
from Lemma 4.3 that

||“r*”||L€ I;L4 <Cll(ur — uw)Vior|| 0 .—1+2 +C||M(t);(wr*w)“ 0 .—1+2
( )
L2(B , 7) L2(B , 7)

*Pq.0 *Pq.0

<C| @, - u)va”L%a;L%) + Cluv@, —@”&Ui%)

<Cllur — MHM([;U/) va‘r

‘L"([:L’) + Cllullpow, 10y ”VWT - w)HLH(l;U)

<CM (llur = wlgoqrizey + | Ver = V6] o) )-
(7.3)
Similarly for the difference for w,,



150 T. Ogawa

A
IVr — Vbl oy =I1VE™ Yol Locr

Tt
+ / Vem(uf(t — 7)) —u(r — Tﬁls))ds
0 LO(I:LY)
Tt
+ ‘ f Vem(u(t — 77 ls) — u(t))ds
0 LO(I;L")
o0
+ ‘ / Vel u(t)ds
T LO(I:LT)
=+ 5L+ L+ 6.
(7.4)
We see from 6 < oo that
. P 1/6
Iy = (/ eTmVi/Jo” dt)
0 Lr
(7.5)

P 1/0
S H ds)
LI

o0
— 18 (f
0

-0 as T — 00.

Since (0, r) is the admissible, i.e., 2 < n < r < 6, we have from (2.6) and the gen-
eralized maximal regularity (5.4) in Theorem 5.1 that

Tt
L :H / VeJA(uT(t — 7)) —u@ - T’ls))ds
0 LO(I; L)

=H /T Ve(T’ﬂ)A(uT(Tfls) - u(Tﬁls))ds
0

Ocr-1r
. B FAED (7.6)
<Cllur () = ™ ) o=t | o g,
SC”“T - ””LG(I;W%»‘)
<Cllu, - ””LH(I;M)
for all 7 > 2, where C > 0 is independent of 7 > 0 and
n y—Ll.r mn 1 1 1
LI(R") c W' (RY), —=—-4 -
g Fr n

The third term of (7.4), we apply the Sobolev inequality and Lemma 7.1 to see
that
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L <S, /OTI Aem( (r— i) - “(I))

nr

LO(I;Ln+7)

=S, / AesA / —Uu l‘— - r)ds L0 L)
’ 7.7)
)'Ai _ 1 (
=5 /0 ¢ 3ru(t T)dr LO(I;LY)
+ S, ”eﬂA”O “L”(I;L‘l) + S ”eﬂA”(t) Hu’u;u)

=L+ Lo+ 3.

For treating the first term of the right hand side of (7.7), we proceed by changing the
variable r = s

121—”/ t—s)ds

/ ”AAu(t — s)ds

0

LY(I;L9)

< +

LO(I;L9)

t
/ €AV - (ut — )Vip(t — 5))ds
0

LY(I;L9)
=J1 + />
(7.8)
Then applying (5.4) in Theorem 5.1 and the remark after the statement to the equation;

O;v — 7(Av — \v) = u, t>0, x e R",
v(0,x) =0, x e R",

we see by regarding v — T, that

t
/ eT([_’)AAu(r)dr

n=|
0

1
< Ct7 lullpoq; oy- (7.9)
LO(I; L)

Similarly analogous estimate (6.18), it follows that

t
S = ” / e TIAY - (uVY) (r)dr
LO(I;L9)

=Cr vy, (7.10)

Iq_
L2(1L+)

<Cr 7 ull Lo IV Ly

On the other hand, since u( and u(¢) € L? for almost everywhere,
lim Jle™*{ug — u(t)}lly =0

TtA

and e™'© is a bounded operator from L7 to itself. Since
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A
le"uoll Loqr.ray < Cliuoll .3 = Clluolly.
9.0

A
e’ u@lrocrirey < Cllullpor; oy,
we see for all 7 > 1 that

A 0 A 0 1
le uolly < Clle'uolly € L'(1),

le™u®|) < Clle"*u@)|l] € L'(1).

Hence by the Lebesgue dominated convergence theorem, for any ¢ > 0, we may
choose sufficiently large 7 > 0 such that

bho+bhiz<e (7.11)

Combining the estimates (7.7)—(7.10) and (7.11), we obtain that for any € > 0, there

exists a large 7 > 0 such that
I <e. (7.12)

Lastly for the forth term, setting I = (17!, 00), employing the Sobolev embed-
ding:
Il < SplIVfllee, r<oo,
we see
I = HV(—A)’IeT’A u()

LO(I; L")

<5, H V2(=A) "™ u(r)

LO(I;L7)

%0 1/6 (7.13)
=5, (f e ue) ||(’,”dt>
0 rn

00 ; 1/6
=35 </ Hu(s)| ,,,ds) .
O r+n

For the admissible (6, ¢), the limiting solution u is integrable in L%(0, co; L9) and
especially, by

2 + 2
Zonrdm 2y
0 rn o r
we find that (o, 2~) = (0, ¢) and is also the admissible exponent for u and

r+n

e ¢} 1/o [ele] 1/9
(/ ucs) ",”ds> = (/ ||u(s)||€ds> < 0. (7.14)
0 rHn 0 q

Hence from the fourth line of (7.13), the integrant




Singular Limit Problem to the Keller-Segel System in Critical ... 153

”e‘rtA u(t)| 97

r+n

is L'(R,) and it is dominated by the integrable function ”u(s)

0
ar_ aS
r+n

[ u®)| = Cluw]

0
Besides for almost all # > 0,
lim [e™ u(r)|%. = 0. (7.15)
T— 00 r+n

Applying the Lebesgue dominated convergence theorem, it follows from (7.13),
(7.14) and (7.15) that for any € > 0

o0
Iz =H f Ve'ds u(t)
- LO(I;LT)

00 0 1/60
=Sp (/ e u(r) Hdt) <e,
0 =

as 7 — oo. Combining all the estimates (7.4), (7.5), (7.6), (7.12) and (7.16), we
obtain

(7.16)

IV () — VO@ oy <Cllur — ullpog ey + €. (7.17)

Gathering (7.3) and (7.17), we see that for any € > 0, choosing 7 sufficiently large
such that
lutr = wllzoqizoy < CM (s = wllognn +<). (7.18)

In particular, from (7.17) and (7.18), for small M, we see by choosing 7 > 0 small
that

lur —ullzor; ey + IVOr — VOl oy < €. (7.19)

(Step 2): From maximal regularity (5.4) in Theorem 5.1, we estimate the first com-
ponent of the integral equation (7.2) as follows:
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IIMT*MIILM(I:L%)
t
< f Vel (17 (5) Vb7 (5) — () Vi(s) )ds \
0 LOO(I:L2)
<Cllur®)Vir(s) —u@VY®)| , e
L21:8, %
1,
(H(uT(s)—u(s))wT(s)|| oredn +||u(s)(VwT(s) Vw(s))ll PREIY 7))
<C(J(ur) = u@)Ver@| 4 0 +Hu(s)(vwr(s>fvw(s>)ll g i)
L2(I;L7F0) L2(I;L7F0)
=C (“”T - ””L9(1;L4)HV’/’T”LM;U) +IVipr — Vd’”ﬁ(];y)H”HN(/;M))v
(7.20)

where

2 1 4 1 1
1Al regs < CUSN 22 i —1+§ =;+a-

For any to > O set [,, = 1 N (fp, o0) with [ = (0, T). Let n.(t) = X[qufl](t)(e”A
o — (—A + N)"'ug). From (7.2),

Tt
e Ao + / e ur (t — sy —u@ — Tfls))ds
0

Tt oS
+/ eSA(u(t —r o= u(t))ds _/ eDultyds, rely,
Vr(t) — () —ne(t) = 0 N t
E”Awo—1/’0+(_A+/\)_1M0—f emu(t)ds

0

Tt
+/ =98y (7 5)ds. te .7 'n).

0
(7.21)

For any € > 0, choose ¢y > 0 small enough such that applying the similar estimate
from (7.5), (7.6), (7.12), (7.13) and (7.16) we see for large 7 > O that

IV4pr = Vi) = Viirll oo (g ny = IV — Vbl Loo gy Lmy

Tt
’V/ eSA(uT(t — g = u(t — T_ls))ds
0

TtA
=|ve™ o] oo gy my + L9 (I L")

Tt
+ Hv/ Bt — 77 vs) —u))ds
0

o0
+ ”v/ e Pu(t)ds
) Tt

LOO(lyy; L LOO(lyy; L)

<[ vem0 %], + €

uT(t—Tflt)—u(t—Tflt)H —1+Z
L9y Broo ¥)

+ Hu(z—Tflt)—u(t)H +Sb”e”0Au(t)||

LO(:L9) L0l L 757
SHVeTtoA"/fO”n + CHuT — ”HLe(I,O;L’i) + 2¢ < 4e.
(7.22)
Hence V() converges to V() locally uniformly in L" (R") over /. On the other
hand, from the second expression for ¢, — ¥ — 7, in (7.21), we choose #; > 0 small
enough so that
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IVipr = Vip — V"/T”L”U(O,T"t] IL")

[o¢]
<[ Ve 20 — Vg HLx(O 1, HV( A+N"lug — v/ SPu(r)ds
& 0 L0, 711 L7)
Tt
+ ”Vf Ty (7 s)ds
0 Lo°(0,7- 11y L1)
< sup  |[(€™A = 1)Vl + C|V(=A+ N ug — V(A + X u(r) (7.23)
n L°°(0 -1 S
1<[0,7711] T LY
+ Cllur(t = 77'8) o=rs e
LY. 77 113Byoo 7)

=" = 1) Vool + Clu = o g 1.8+ Clur®@ 0 1000,

<3¢

&,

because of the strong continuity of solution u,(¢) in L2 (R") and uniform bound for
u, € LU(I; L9).

Hence by passing 7 — oo in (7.20), (7.22) and (7.23) we conclude from (7.19)
that the convergence (2.4) and (2.5) hold. This completes the proof. U

8 Proof for the Well-Posedness of Chaplain-Anderson and
Fujie-Senba System

The proof for the well-posedness of the simplified Chaplain-Anderson system (1.9)
is very much similar to the case of the Keller-Segel system (1.1). The only minor
difference is how to treat the second component ¢, .

Proof of Theorem 3.1 (Step 1) (The local wellposedness): Let 7 > 0. We show
the local in time existence and well-posedness of the solutions for the large initial

data (o, ¢o, 10) € (L'(R*) N BY ,(RH)) x (L*(R*) N B v ) (RY) x (VMO®RY) N
Bm” (]R“)). Let (0, p), (p, q) and (o, r) satisfy adm1551ble conditions:

%-l—% 1, I<p=<0, 2<6,
Lyl 1, 2<q=p, 0=p
20 g 2 - -
I (T 1) PT S U P
200 r 4 - p+q 2 0 0 r gq 89

(8.1)

and set I = (0, T) for some 0 < T < oo chosen later and let
u eL?(I; LY(RY)),
¢ €C(I; L*(RY) N LA(1; W (RY)
Xr =14 eCU; BMOR?) N L (I; W' (R*); :
ol L~z + ¥ lL~avmoy < M,
max (||u||L"(1;LI’(R4))a Al Locr;arey> ||V1/J||L"(1;L"(R4))) =N
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where
M = 4Co(lluolly + lgoll2 + 1Yol Fa0)

and N > 0 will be determined later. Introducing the metric on X, by
NG, 6, 9) = Gy &, DT =l = @l ooy + 16 = PllLocriray + IV@ = Doy,
we can show that X, is a complete metric space. Indeed, since
C([0,T]; VM OR*) C L™(0, T; BMO(R*)),

the pre-dual of L= (0, T; BM O (R*)) coincides L' (0, T; H'(R*)), where H' denotes
the Hardy space with absolute integrable, which is separable. Hence the Banach-
Alaoglu theorem implies that the weak-* sequence compactness holds in L*°(0, T';
BM O(R*)) (cf. Brezis [8, Cor. I11.26.]). By this fact, any Cauchy sequence con-
verges a limit (u, ¢, ¥) in LO(I: LP(R*) x L°(I; L4(R*) x Lo(I; W“(R“)) and
weak-*x compactness ensures that the limit indeed belongs to Xr.

We then introduce a pair of solution map (E[uT, ], ®lur, .1, Yu,, wT]) as

follows: ~ For  (uo, ¢, ¥;) € (L'®RY) N B;Z(R‘*)) x (L*®R* N B, ) (RY) x
(BMOR*) N B, " (RY) and (i, ¢, ;) € X, let

Elur, ¢r1(0) = e"®uo + / "IV - (ur () Vi (9))ds,
0

Bl b, 1(1) = Ao + / SB[, ) ds. (82)
0

Wiy, b 1(0) = €724 + / " I, 1 )
0

and claim that the map (E W, CD) is contraction in the critical space Xr.
First we claim that (E, W, ®) is onto X 7. By maximal regularity (5.3) in Theorem
5.1 with s = —2, 0 = 1 to see by the Littlewood-Paley theorem that

A A
lle’ uollzoq; e <C|e MOHLG(];F'BZ)

(8.3)
=Clluoll 2.2 = Clluoll . 2,
Bp.(-) .o
A A
lle™ 2 dollLor;zay <lle™ ¢0||Lﬂ(1;332) = C||¢o||37§ (8.4)

q.p

and
A A
IVe™ ollLou:ry <IVeE™ ol oo,y < Cllvol oz (8.5)
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Hence from (8.3)—(8.5), we can choose the time interval |/| < T sufficiently small
such that for some small gy > 0,

A
llef uollzecr;Lry < €o,
A
lle™ 2 @ollLor:Le) < €0, (8.6)

A
IVe™ Yol Loy < €0

for any 7 > 1 and the choice of T is independent of 7 > 1. Since (¢, p), (p, ¢) and
(o, r) are admissible pairs, it follows from (8.1) that

1 1 1 1 1

20  p ’ 20 r 4

we apply (8.6), maximal regularity (5.4), the bound for the initial data (8.3) and the
embedding (4.8) in Lemma 4.3 to have

t
= 1A (t=9)Ay . /
[T u0||Lr/(,;L,»)+"L =98y (uT(S)VuT(s))ds”Lo(hégl)

<ep+C

ur(s)Vipr (s)

ta_ 142
L#+a (1B, ')

<eg+C

)V (s H o
ur(s)Vipr (s) LP%(I:FI;;Jr%)

ince L7E ~ FO c F71+% c F71+l b 1 I+ 2 1 n 1
sice ptr r 7 7 —_—_ - — )= — —
A2 C 2 DSl T 7Y o)~ »

<eg+C

ur()Vipr(s)

o _pr
L+ (I;LPF7)

=eo + CH”T(')HLU(I;L») ” V- () ” Lo(I;L7)
<eg+CN* <N
(8.7)
forany2 < 6 <4 and 1 < g < 2, and for some small &, CN? < %N.
From (8.1) in particular, 1/20 + 1/p =1, 1/2p + 1/q = 1/2, we see that

and from (5.4) in Theorem 5.1 and (6.6), it follows

3The choice of T is independent of 7 > 1.
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Tt
||<I>[u7,1/h]”mu;u) <lle™ Aol Lor:La) + H/O TN E Uy, (7 s)ds

LP(I;L9)

<e+C

— —1
Elur, wr](T $)|s=rt
LY

2.2
L2452
(3B, U ")

<eo + CH Elur, lpr](Tils)ls:ﬂ‘

2_2
2422
LOsE, T

se0+ C|8lur. vr O, 2320,

<e0 + C|[8lur, o1 | o,
<e0+C(e0+CN?) < N.

(8.8)
Similarly by
2 4
-+-= 27 - - = 17
g r
we see that
1 1 < 2 2> 1
—— -1 -1 + =) =-
r 4 p O q
and it follows that
Tt
[V, 61 o gepry <N Vibolliouian + |9 fo I v s |
§€0+CH<I)[M7'7 wT](T_ls)lssz 142
LB, ")
<eo+C|@lur, 01 i 2
Lo E,, 77
seo+Cl[@lur, 1O, Loz
<eo + C||@lur. 710 LP(I;L9)
<eo+ (1+C)eg+CNH <N (8.9)

under the conditions (2 + C)gy < %N and CN < %
From (8.9), and choosing N > 0 small enough so that for some small g > 0,

L“(I;L’)) SN
(8.10)

V[u., ]|

max (” Elu-, wT]“L"([;Ll’)’ Plu-, 7v[}T]”Lp(I;Lt/)’ |
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On the other hand, since the heat kernel is a bounded operator in VM O (R?),
we again use generalized maximal regularity (5.4) and the embeddings Bgo,z(R“) C

. 342 .
BMO@®R*) and B,," RY ¢ BS,Z(R4) to see that
Tt
[t 0l rvaroy <hebollmavmor + | [ e 0t v oas] L

Tt
(Tt—=s5)A -1
<Cololvio + | [ e 0tur, vrlcr 945,

1
< M+ c|l@tur, v 19z

.2+3
LotEg, )

1
= M+ c|@tur, v 1 )l=r

Lo(I3ED )
. . 242
(sinceq < 2, LY([RY) ~ F),(RY) C F ., " (RY)

1 1
§§M + CHCD[MT’ Yrl® H Lo(I:L9) = 4

8.11)
under the assumption

0| ==

and (8.10).
Combining (8.10) and (8.11), we obtain (E[ur, ¥-1, W[u,, ¥-], Plu,, ¢-]) €
X . Analogously from (6.15), we have for the difference of solutions that

E[”T? ’(/)T]_E[ﬁ'ra /172;’7']

LO(I;LP)

/ NG (u, ()T (5) — it (5) VD (5))ds
0

=<

LO(I;:BY )

sC\

1V (S) = T (5) VD 6)|

e g2
L7 (1B, 7)

SC\

1V W) = 5,())|

o rq_
LO+o (I;L7F40)

o

‘L9+0 (I;L%)

+C| () = 5:5)) Vil (5)

<Cllur()] oy |V W () = 12 (5))
+ Cllur(s) = itr ) ow:n | V9O | o irr,

<C NI, §r) = Gir, )l (8.12)

Lo(I;L7)
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| @l 1= Dlitr, 1]
<[ [ et i 01,501 - s 01, 55|
0

<C

Lt (5). 7 (5)] = Eliir (5), B (9)]]

L2422
NI:B, ")

<C

Elur (5), ¥ (5)] = Bl (), 6, )]

<CC\NI(ttr, 7)) — Girs )l

LO(I;LP)

Again from (8.7) and (8.13), we have

v (Wi 1w, 301)

Lo(I;L")

=] / C VeI @y, 1) — Bl § 17 5))ds
0

<C|@lutr, U)ot = DLy, D)

<CV®lur, o)) = VOl U@ |, oae3-20
<C|[V®lur, - 1(t) = VOLitr, 1D || 1710,
<C’C\N (s 1) = (iir, V)l

Choosing epy and hence N small enough

(14 C+ C»HC\N <

’

R =

if necessary, (8.12) and (8.13) with (8.15) yield that

T. Ogawa

Le(I;BY )

(8.13)

Lo(I;L")

142

_ip2.2
Le(LE, 77

(8.14)

(8.15)

I(Elur, ¥, 1, @lutr, 1,1, Wlutr, ;1) — (Elitr, .1, ®lity, Prl, Wlity, Pr Dl

1 - -
= §||| (u7'7 (br’ wr) - (ﬁ‘rv (br’ wr)mT

under the smallness assumption (8.6) on the interval. Thus the map

(8, ®, V) is

contraction onto X, and the Banach fixed point theorem implies that there exists a
unique fixed point (u., ¢, ;) € X that solves the Eq. (1.1) in the critical space.

In particular by (8.11), it follows that for ug € L'(R*) N B;g R, ¢ € LXRH N

L2 L1_2
B, ) (R*) and iy € BMOR*) N B, * (R*),

lur 22y + N0 llLea.Bmoy < 2M
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does not depend on the parameter 7 > 0. Next, we show the continuous dependence of
the initial data in L(I; L?) x L°(I; W) x (L°°(I; BMO)NL°(I; W“)). Let
ur, ¢, ;) and (i, 5;37, EZJT) be a solution of (1.9) corresponding to the initial data
(uo, -, o) and (g, ¢o, o), respectively. Then very much similar estimate of (6.15)
and (6.16), we obtain from

n 4 _4 1 1
6 p 7 20 r 4
we see that
1 1 2 _q 1 11
p 4 6) 200 r 4
and hence

||”7'_"~‘7'”L0([;LP)

t ~
<lle"2ug — e Xiiol o s, o) + | /0 SO (ur (IViir (5) — i (5)Vr (5))ds |

L"(I;Bg’l)
<Colluo = iioll _3 +C|ur®)Vor ) =iV 40 22
Bl Lo @B, , ° 0
ps p,
<Collug — iig | -2 + Clur &) Lo ay IV @r ) = Vx| o . 1)
B
p.0

+ C”MT(S) - IZT(S)”LG(I;Lq) HV'JJT(S)”LU(I;L(])
<Collup ~dipll__3 + C1NWur. ér. ¥r) = Gir. e Bl

B,
(8.16)
On the other hand, since

L2 4y_1 112y 1

4\p ¢q) 2 qg 4 p) 2
L2 4\_1 172 4y 1 1 102 2y 1
4\9 p) 4 4\p gq) 2 g 4\ p 6) »p

. 2 L2422 .
the embedding W' 4R c LE2(R*) and Bq,éoﬂ RY c Bg,oo(R“) hold and Along
the similar way to (8.8) and (8.9), we see that

and
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”¢T*¢T HLP(I;L!I)
Tt
<lle™® ¢ — e AdollLer:Lay + H / TR (o (r7hs) — i (77 s))ds
0

<Coligo — doll 2 +Clur(®) = ir®)] 1oy,

Byp

Lr(1;L9)

<Collvo — Yol _z + Cillwr., ér. ¥r) = Gir, 6r. Uo7

(8.17)
and

||V(¢T_1ZJT) HL”(I;L’)

Tt
Ellv(eﬂAwO _ eTtAl/JO)”L”(I;L") + H / Ve(Tt_s)A(qﬁT(T_lS) _ (]ﬁT(’T‘_lS))dS
0

LO(I;L")
=Collvo = Yol 13 +Clér ) = or ] Loy, 1)
=CollYo = Yoll 13 + Cilltur, dr, ¥r) = G, 6r, V)l
’ (8.18)
Finally likewise in (8.11), and
|7 — - | oo rivaroy Sle™ 4o — e Pollvao
Tt
(Tt—s)A -1\ _ % -1, .
+| /0 T (pr () = Srtr s |
~ Tt ~
<Collto — Yollvmo + H / T (g (77 1s) — o (r 7)) ds ku» 8
1 P00,2

<Collvo = dollvaro +C[ (6 719) = de )iz | i
LA Boo.os”)

<Collto — Yollvao + C|pr — b7

LP(I3BY o)

<Collto — Yollvmo + CllGur, ¢, ¥r) — Gir, b7, V)7
(8.19)

Those estimates (8.16)—(8.19) yield that the solution (u., ¢, ;) converges to
(itr, ¢rytpy) in LO(I; LP) x L”(I W‘ 1) x (C(I VMO)NLI(I; W) as
(0, b0, o) = (iio, }, Po) in Bpf) X Bq,ﬁ X (Br,a” NVMO).

Finally we show that the solution (u,, ¢, 1) obtained above is in

L®(I; L'(RY) x L™(I; L*(RY) x L®(I; VMO®RY),
where I = (0, T'). Choosing § = o = 4, the choice (4, 8y and 4, 8) corresponds the
admissible for (6, p) and (o, r) with

2 4 2 4
_+_:47 _+_:17
0 p o r

we use generalized maximal regularity (5.4) in Theorem 5.1 and the embedding
L'R") C B?YOO(R”) to have
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t
Jte gz <Collllig + [ [ €29 (90 5)as|

L(13B) )

=Colluoll +C|

uT(S)W/}T(S)‘

0 L_1+4
L2(I;B ")

(8.20)
<Colluoll +C|

uT(S)VwT(S)‘

4
LI(I;LY)

1
§ZM + C||MT(S)||L4(,;L%)||V1/’T(S)”L4(1;L4) =M.

Besides let (u;, ¢-, ¢,) and (i, (;BT,N @Tl are two solutions of (1.9) corresponding
the initial data (uq, ¢o, o) and (g, ¢o, Yo), respectively. Then,

”uT—ﬁTHLOO([;LI)

t
<Colluo —iiollzy_+ H/ UIAY - (1 (5)Vibr (5) — llT(s)VwT(s))dsH .
PO A LB )

<Collug — dioll1 + C|lur(s) — u(s)|l

Lt [ve-o| L*(I;L8)
+ Clur@l 5 [Ver ) - VOr ()| g,

<Collug — dioll1 + CllGur, br, ) — (iir, ¢r. Ur)lIT-
(8.21)
From (8.20) and (8.21), the continuous dependence of the solution u, in L>(I; L") is
also shown. Choosing 6 = 2, the choice (2, 4yand (4, 8) corresponds the admissible
for (0, p) and (o, r) with

2 4 2 4

-+ — = 4’ -+ -= 1’

0 p o r

we use generalized maximal regularity (5.4) in Theorem 5.1 and the embedding
L'(R") C B} ,(R") to have

Tt
167 ] 12y <Collbolls_ + H /O 98y (1) ds”

L(13BY)

wr(T7'8) smrs (8.22)

<Colléoll> + C|

L 242
LB, )

1
SZM + C””T”LZ([;L%) =
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For the convergence of ¢, in L>(I; L?) is also shown in a similar way.

|6 = &rl sz <Colldo = doll2 + Cllur(s) = i 5) 2y, 4,

L (8.23)
<Colluo — tioll2 + Cll(ur, 7y Ur) — (i, Ors V7.

Those estimates (8.20)—(8.23) and (8.19) conclude the continuous dependence of the
solution on the initial data in (8). This show the local well-posedness of (1.1).

(Step 2) (Global existence for small data). Since our function space in the previous
step is scaling invariant, the global existence for (1.1) also follows almost similar
(but somewhat simpler) way to the case for local well-posedness. Let (8, p), (p, ),
(o, r) be admissible pairs given by (6.2). Fixing the admissible pair for / = R as
@, p), (p, q), (o, r), we introduce the complete metric space:

Xy = { ue BUCU; L'®*YH) N LI LI ®R?Y),
¢ € BUC(I; L*RY) N LP(I; LY(RY)),
Y e BUC(I; BMORY) N L7 (I; W (R);

Nl oo,y Nl por: Loys W@l oo (r,2ys IV @l Lo Lay, 1l Lo s Bmoy, IVYIlLos0ry < M},

where

r.o

M = 4Co(lluolly + lluoll o, + ligoll2 + @0l .12 + Itollsmo + IIV%IIBP%)
q.p s

is chosen small later. For any admissible exponents (6, p), (p, ¢) and (o, r) (note
that they are not the end-point exponents), we define the metric on X, by

e, p, ) = G b Dl = N = iill ooy + 16 = Bllorzray + 1V @ = D)o :rr).-

By this metric, Xy is a complete metric space. For (uo, %o, ¢o) € (L'(R*) N
Bp‘é(R“)) x (LAR* N B;j(R‘*)) x (BMOR* N B’ij(R“)) and (i, , ,, ¢,) €
X 11, we define a pair of the solution map (E[uT, -1, Ylus, ¥, Olu,, sz]) by (8.2)
and claim that the map (E, &, W) is contraction in the critical space X ;. Noticing
1 <p<2<gq=<r,2 <6 < ooand the embedding (4.8), we apply maximal regu-
larity and the embedding
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t
|2t Y1 gy <Colluollay., + | /O Y - (4 (5) V1 (5)) s |

LB

=Colluoll +C|

uT(S)VwT(S)‘

_bp_ L1422
LT (B 7 1)

<Colluoll +C|

uT(S)VwT(S)‘

S
LU+ (I;B g OO)
AT

<Colluoll +C|

1)V (5)|

Op_
L0+p (I;Ll)

1
EZM + Cllur () o0

Vi (s) “LP(I;L‘I)

1
=M+ CM> <M (8.24)

under CM < % For any admissible exponents (6, p) (p, ¢) and (o, r),

t
A —s)A
|| CD[MT, ’(/}T] “Lﬂ([;Lq) S”et uO”L’”(l;L") + H /(; e(t ) M-,—(S)ds

Lo BY) )

=Colluoll 3 + Cllur(5)]

L2422
. - p
0.0 LUI:B,, )

<Colluoll . + Cllu-(5)| i,

=Colluoll 3 + Cllur® 1os:1r,
q.p

1
§ZM +CM* <M (8.25)
forCM <

1
3

|V¥lu,, ]

t
vty SIVESbolliein + |V /0 =92, (s)ds
=Collvoll ;-2 + Clo-)| 22
o Lr(I;B,,

=CollYoll -3 + Cll6r®) | 1oy,
<Colloll ;-3 +C|Vor(s)|

Lo(I;BY))

)

Le(I;L49)

1
= M+ CM*> <M
(8.26)
forCM < %
It follows from (8.24), (8.25) and (8.26) that

Dlu,, Y] ”Lp(];Lq)’ Wlus, ¢7]”L9(1;L’)} =M.

(8.27)

max { | 8lur, e g
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Meanwhile by embedding BSOYZ(R”) C BM O(R") and maximal regularity

Tt
|Wlr. )| o 1. paroy <N Yollamo + H /0 TN Lup, 1 s)ds

L®(I;BMO)
Tt ( A .
< =92 (T s)ds H
_co||z/)o||BMo+H/0 e e el s
1 _
= M+ C|0lur v o] g
LBy
1 _
<M+ 0|0l b1 e |
4 LAIBY)
1
< M+ |l v .
g +Clotvao] ,
3
(sinceq < 2. L3 (R?) = F | (R?) C BY ,(R?)
3 3
1
=M+ Cl ol 0] o
1 1
SZM+(Z+CM)M§ M
(8.28)

for small CM < %.

Tt
0t 0l <N ollsian + | [ €20l b1 s
0

LO(I; L")

=Collval, 3 +C||@lur, v 1)
r.0

.24+ 2
LB, )

1
= M+ c\ Dlutr, Y1 (7'8) gmrs

o2
Losb,
1

<M+ C||®lu-, 10| s
4 LY F,, 7)

1
SZM + C” CD[MTa wT] ”LG(I;L‘])

1 1
§ZM+C<Z+CM>M§ M. (8.29)

From (8.28) and (8.29),

max { | Wtr, Vo o pagoy 1V €Tn 1] 1oy} <M. (8.30)

Combining (8.27) and (8.30), we obtain that (®[u,, -], V[P[u,, ¥ ]]) € Xy.
Analogously from (8.12)—(8.14) for the difference of solutions
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| Elutr, 1 = Eliir, o1 1o .0y < CMIGr, 1, 007) = Gty bry Pl
| ®lur, o] = @l || g0y < CMNGUr, b7, 07) = (i, Gy )l

HV(\IJ[MT, ¢T] - lIJ[ﬁT’ 1;7']) Lo(I;L") = CM'”(”T: ¢T’ 1#7) - (ﬁ‘rs (57" /17;7')”|M
(8.31)

Choosing M smaller as

3

Bl—=

CM <
if necessary, we have from (8.31) that

. . . 1 -
I1(Elur, 7], Dlur, ¥rl, Ylur, rl) — (Blir, Y7l Olir, ¥rl, iz, vr Dy < Em(um ¥r) = (7, ¥r)llm

under the smallness assumption on the initial data. Thus the map (€, ®, W) is con-
traction onto X ), and the Banach fixed point theorem implies that there exists a
unique fixed point (u., 1,;) € X, that solves the Eq. (1.9) in the critical space. In
particular, from (8.27) and (8.30), the a priori estimate

max (er oo 11y 107161y 1971 oo 1220 190r I Loqrszay: 167 100 (128t 0) 197 gy ) < M

does not depend on the parameter 7 > 0. ]

9 Proof for the Singular Limit for Chaplain-Anderson
Model

Proof of Theorem 3.3 We first show Theorem 3.3 for the small data case:
(Step 1): For any 19 > 0, let I = (0, co) and we consider the difference of solutions
between (3.3) and (3.4) as the following:

(1) = u(t) = / OG- (1) — () Vi ()
0
+ /t eIV - (u(s) (V- (s) — Vip(s)))ds, tel,
0

b7 (1) — $(1) = "B o + f B unlt = 715) — e — 7 15))ds
0

Tt
+/ e (u(t —77's) —u(r))ds +/ e*ru(t)ds, tel,
O T

t

1) = (1) = ey + /0 Mt — 715) — Bt — 7)) ds

+ f e (ot —771s) — o(1))ds + /Oo eSLp(t)ds, tel.
0 Tt
9.1)
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As we have seen in (1.14), we choose the admissible exponents (6, p), (8, q) (0, r)
forn =4 as

1 1

— 4+ —=1, 1 <2<,
29+p <p=<12<
1+1 1 5 <0
~N - =, < =V,
2074 2 a

1 1 1

—4+-=-, 4<r<46.
20 r 4

Let the time interval I = (7', oo) for any 19 > 0. We apply the similar estimate
in (6.15), it follows from Lemma 4.3 that

”u‘r_u”L"(l;Ll’)

/ PIUSZES v (MT(S) — u(s))va(S)dS
0

<C

LO(I;LP)

+C

/ "INV - u(s) (Ve (1) — Viby(s))ds

0

<Clur =)Vl g, o + Clu (v = )]

LO(I;LP)

0, o1t
L2(1:B,, ")

<C|(ur —u)Vep-| 4 2 ) +C||”V(¢T_¢)||L%<I;L%)

LI(;L7F
<Cllur —ullroq:Lr) ”va ”LB(I;L') + Cllull o, Lry HV(¢7 - ¢) ”LG(I;L")

SCM<||MT —ullpoq;ry + || Vb, — Vw(t)“ua;m)'

9.2)
For the second equation of (9.1),
lor — ¢||L9(1;Lv) :”eﬂA(bO”L"(I;L‘I)
Tt
+ ‘ / eSA(uT(t — 7)) —u(r — T_lS))dS
0 LO(I;L1)
Tt
+ / e (u(t —77's) —u(t))ds
0 LO(I;L9)
oo
+ ‘ / e Lu(t)ds
Tt LO(I;L9)
=h+ 5L+ 5L+ 15 9.3)

._2
Lett € (0, 00), we see under the assumption ¢y € B q,g (R*) that
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00 0 1/6
Iy = </ L dt)
0 q
1/0
27,71/6 </ SAQSO” ds) (9.4)
0 4
<7110 </°° ‘
0

We note that (6, ¢g) is the admissible, i.e., 2 < g < 0 that

eTZA¢0

P 1/0
emqboH ds) -0 a 77— o0
L4

2 4 2 4 111
St —=4, ZH-=2,m-=——

-2 (9.5)
o p 0 gq g p 4

and hence from (5.4) in Theorem 5.1, the second term of the right hand side of (9.3)
is estimated as follows:

I —H / uT(t —7 ) —u@ — T’ls))ds

§C||u7(t -7 1l‘) —u(t — 1

LO(I;L9)

t)”L”(I;B;z)

SC””T((I - T_l)t) - “((1 - T_l)t) ”LH(I‘F’Z)

<CU =7 ur (1) = u@®] o, i S < Cllur@) —u@)| oy, 109

SC””LT - ””U([;Lz)) (9.6)

forall 7 > 2, where C > 0isindependent of 7 > 0. The third term of (9.3), we apply
the relation (9.5) and the Sobolev inequality

1flly < CIAFI L_1 2
q = P P = 4
and Lemma 7.1 to see that
Tt s
I :Hf e (ult = 2) = u)ds
0 T LY(I;L9)

<S8, H /ﬂ Ae* (u(t — j—_) — u(t))ds
0

s [ (- Dy

+ S ”enA”O ||L9(I;Ll’ + S ”enA“(I) ”L9

=L+ bLy+ 3.

LO(I;LP)
9.7

LO(I;LP)

(I;LP)

For treating the first term of the right hand side of (9.7), we proceed by changing the
variable r = 75
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! 0
TSA _
‘/0 e EP u(t s)ds

t
/ e”AAu(z — s)ds
0

=J1 + ).

b=
LOI;LP)

(9.8)

LO(I;LP)

=

+ /t €AV - (ut — $)VY(t —5))ds
0

LO(I;LP)

Then applying (5.4) in Theorem 5.1, we see by regarding ;1 — 7, that

Ji = < CT_1||U||L9(I;L1’)' 9.9

LO(I;LP)

t
/ eTTIAAY (r)dr
0

Similarly by an analogous estimate of (6.7), it follows that

Js =’ / e UTIAY - (uVY) (r)dr

0

-1
=CTuVYl gy 2

-1
<Ct  Nullocr:em IVl Lo, 1y

HED (9.10)

On the other hand, since u( and u(¢) € L? for almost everywhere,
lim [le”*{ug — u(®)}, =0
T— 00

TtA

and e™"* is a bounded operator from L7 to itself. Since

A
lle S uoll or;em < Cliuoll .3,
p.0

A
lle’ u@llrocrry < Cllullzocr, iy,
we see for all 7 > 1 that

A 0 A 0 1
e uoll, < Clleuoll, € L' (1),

le™*u@®l’ < Clle“u®|’ € L' (D).

Hence by the Lebesgue dominated convergence theorem, for any € > 0, we may
choose sufficiently large 7 > 0 such that

12’2 + 12,3 <€ (911)
Combining the estimates (9.7)—(9.11), we obtain that for any € > 0, there exists a

large 7 > O such that
L <e. (9.12)



Singular Limit Problem to the Keller-Segel System in Critical ... 171

Lastly for the forth term, setting I = (197", 00), employing the Sobolev embedding,

we see o
13 :” f BSAdS M(t)
Tt LO(I;L7)
2”(_A)716TIA M(t)
LO(I:L9)
< v2 —A —1 _T1tA t
_SbH ( ) e u() Lo L) (913)
0 0 1/0
=S ( / le™® u@)|| dt)
0 p
00 0 1/60
=S} (/ Hu(s)”pds) :
0
Since

o0 , 1/6
</(; ||u(s)”pds> < 00.

Hence from the fourth line of (9.13), the integrant
TtA ¢
le"*u],
is L'(R;) and it is dominated by the integrable function | u(s) ||f) as;

[ u];, < Ju];.
Besides for almost all ¢ > 0,

lim [le™® u()]|% = 0. 9.14)
T—00

Applying the Lebesgue dominated convergence theorem, it follows from (9.14) that
forany ¢ > 0

oo
LI :H / Ve'ds u(t)
- LO(I;L9)

00 1/0
<S, (/ |2 u(t)”idt) <e,
0

as 7 — oo. Combining all the estimates (9.3), (9.4), (9.6), (9.12) and (9.15), we
obtain

(9.15)

IV (6-(t) = dO)| o).y <Clltr = wll ooy + €. (9.16)
(I;L")

For the third component of the system, we proceed in a similar way to the case of
second component:
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Vb, — Vw”L“(I;L’) =||V€Tm1/)0||u’(1:u>
Tt
+ f Vem(qST(t —77 ) — ot — Tﬁls))ds
0 LO(I;L")
Tt
+ ‘ / Ve (poo(t — 77's) — B(1))ds
0 LO(I;L")
oo
+ ‘ / Ve o(1)ds
T LO(I;L")
=Ko+ K| + K, + K3.
9.17)
L1-2
Let ¢ € (0, 00), we see under the assumption 1)y € B: 0! (R?) that
0o 0 1/6
Ko = (/ e AV H dt)
0 Lr
, 00 P 1/6
([ el
i (/0 e Vo] ds (9.18)

00 P 16
<71/ (/ esAvwo H ds)
0 Lr

-0 as 71— o0.

We have from the second equation of (9.1), (5.4) in Theorem 5.1 and (0, r) is the
admissible, i.e., 2 < r < 0 that

Ki=| / Vet (6, = 77's) = 6t — 7' 5)ds
0
<Cllért =77'1) = 66 = 77D | oy
<C| - (1 =77H) = (1 = 77"1) HLG(I;F;;)

=CA =D 0) = 6O oy 1y = Clor @) = 6O oy i
SCHQI)T - ¢||L”(1;L4)

LO(I;L7)

(9.19)
for all 7 > 2, where C > 0 is independent of 7 > 0.

The third term of (9.17), we apply the Sobolev inequality and Lemma 7.1 to see
that
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K2 :H /OTt Verd (¢(t _ ;) _ ¢(t))ds i
<5 /0 : ae (9(t = =) = 6 )ds

<5 foﬂ e’qub(t ~Dyar

-
+ Sp ”eﬂAd)O ”L”(I;Lq) + S ||eTZA¢(t) ||L”(1;Lq)
=Ly1+Los+ Lys.

LO(I;L9)
(9.20)

LO(I;L9)

For treating the first term of the right hand side of (9.20), we proceed by changing
the variable r = s

! sA 8
Ly = H/o e a¢(l —s5)ds

—1
<CT7 Pl o1 19)-

LO(I;L4) (9.21)

On the other hand, since ¢ and ¢(¢) € L? for almost everywhere,
Tim [l (g0 — ¢y =0

TtA

and e™"* is a bounded operator from L7 to itself. Since

A

le"®@ollrecrzay < Cligoll .2,
B [
4.0

A
llef dO N roriLey < ClPll Lo Lays

we see for all 7 > 1 that

lle™®olly < Clle* ol € L' (D),
le o)1) < Clle ) € L' (D).

Hence by the Lebesgue dominated convergence theorem, for any € > 0, we may
choose sufficiently large 7 > 0 such that

Lor+Lrz <e (9.22)
Combining the estimates (9.20), (9.21) and (9.22), we obtain that for any € > 0, there
exists a large 7 > 0 such that

Ky, <e. (9.23)

For the forth term, setting I = (197!, 00), employing the Sobolev embedding:
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Bl

1
LAl = SellV £llg =

Q| =

and boundedness of the semi-group e’ : LY — L9, we see

K3 =|V(=2)"e™ 6(1)

LOI;LT)
=s|vieaterton)
o N (9.24)
=S} (/ Hemqﬁ(z‘)”qdr)
0

o) 1/60
§CSb(/O H¢<s>||jds) .
00 0 1/6
(/ ||¢(s)||qu) < o,

0

the integrant in the fourth line of (9.24);

Since

le™® o))

is L' (R, ) and it is dominated by the integrable function ||u(s) || 947,, as;
q+4

le2um]] < Ju];.
Besides for almost all r > 0,

lim [le™® u(t)]|) = 0. (9.25)
T—>00

Applying the Lebesgue dominated convergence theorem, it follows from (9.25) that
forany e > 0

o0
K3 :H / Ve'ds u(t)
- LO(I;LT)

) 0 1/60
<5, ( [ 1w ||th) e
0

as 7 — 00. Combining all the estimates (9.17), (9.18), (9.19), (9.23) and (9.26), we
obtain

(9.26)

IV (e = )| oy <Clr — Dlliosre + e (9.27)
(I;L")

Gathering (9.2), (9.16) and (9.27), we see that for any € > 0, choosing 7 sufficiently
large such that
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oty = wllzogizoy < CM (s = wllogn +<). 9.28)

In particular, from (9.16), (9.27) and choosing M > 0 small enough in (9.28), for
small ¢ > 0,

lur —ullogrey + IVOr = Vollroa.Loy + IVYr = Vllogny <& (9.29)

(Step 2): For any 19 > 0, let I = (0, T') N (19, 00). From maximal regularity (5.4)
in Theorem 5.1, we estimate the first component of the integral equation (9.1) as

follows: Recalling
2 4

we proceed in very similar way in (8.21) by the Holder inequality with for 6 = 4,
— 8 . _
p =3, r = 8that

lleer—ullpoer;nry

/ Ve(r—s)A(,/tT(s)VwT(s) — u(s)V¢(S)>dS
0

=

L>(I:B) )

<C|lur()Vpr(s) — u(s)w(s)”ﬁ(l'iwg)

0

=C([[ () = W) Ver ) aggpsy + 116 (T (6) = VEO) | yps))

<C(lr =l 5 |V |y + 1990 = Vibllisars ful oy 5))-
(9.30)
Then the limiting process (9.29) implies the convergence for this case, too.
On the other hand, for the second component, we choose § =2 p = %, that

67 — DllLoo(r: L2y

t
SHeT’Ad)o ”LOO(I;LZ) + H /0 em(ur(t —r ) —u@ - T_ls))ds

L®(13L2)

oo
/ L ut)ds

t

Tt
+ H/ A ult — 1) —u))ds
0

+|
L(I;L2) L®(I;L?)

SHET,/OA% Hz + C”“T(t — ') —u( - T_IZ)HLZ(I;Bgéo)

Tt
/ A ult — 1) —u)ds
0

<[em™2 4y

+CS, +Clle™ 2 u@®|

Lo°(I;L2)

o+ CSollur = ul ) 5+ 2+ B

I:B5 L)

(9.31)
As in a similar manner, the last two terms in the right hand side of (9.31) can be
treated as follows: For the third term, we apply Lemma 7.1 to obtain
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fz =H /-Ort PRI (u(t — %) — u(t))ds Hm(/;m)
<S8, H /ﬂ Aem(u(t - ;) — u(t))ds H
0

§SbH /OTI e’Agu(t — i)dr”

T

Lo(I; LY
(9.32)

Lo(I;LY)
+ S, ”enAuo “L”C(I;L‘) + Sp ”eﬂA”(t) ||L°°(1;L')

=El + 1;2 + 1;3-

For treating the first term of the right hand side of (9.32), we proceed by changing
the variable r = 7s

! 7]
b = / ™A —u(t —s)ds

0 ds Lo (1LY

t t
< / e”AAu(t - s)ds + / AV . (u(t — )Vt — s))ds

0 LB ) 0 LB )
=J1+ Jh.

(9.33)

Then applying (5.4) in Theorem 5.1, we see by regarding p — 7, that

-1 -1
o =Cm Nl = Tl
L=(I;B) ) ’

n=|

t
/ eT(’_’)AAu(r)dr
0

(9.34)
Similarly by the analogous estimate of (8.24), choosing § = 4, p = % andr =8, it
follows that

A =‘ / e"'TIAY - (uVY) (r)dr

0

Le(I;BY )

-1
<CTNVYN g gt 9.35)

5C771||MV1/)||L2(1;L1)

—1
<Cr Ml 3, IV L.

TtA

On the other hand, since uy and u(¢) € L? for almost everywhere, "' is a bounded

operator from L7 to itself. Since

A
lle"®uoll oor:ty < Clluolli,

A
le" 2wy < Cllully,

we see for all 7 > 1 that
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lle™®uolly < Clle"uolly € L'(I),
le™®u@)lly < Clle"u®)|; € L' (D).

Hence by the Lebesgue dominated convergence theorem, for any ¢ > 0, we may
choose sufficiently large 7 > 0 such that

o+ bhis<e (9.36)

Combining the estimates (9.32)—(9.36), we obtain that for any € > 0, there exists a

large 7 > O such that ~
L <e. (9.37)

The last term in (9.39),

T <e™ u)| iy <€ (9.38)

since
”emUA u(t) ”2,1 — 0, T — 00,
2,00

[ u® i1, <l u®] 2

(I;B5 ) (B3

and the Lebesgue dominated convergence theorem. From (9.31), (9.37) and (9.38),
we conclude that
¢ — Pllre:zy > 0 7 — oo. (9.39)

For the third component, we see in a similar way that

ltbr — Pl vmoy

Tt
S”eTtAI/}O ||L°°(1;VMO) + H /0 eSA((bT([ - T_ls) - (¢(t - T_I‘Y))ds

L(I;VMO)
Tt o
+ H / Aot —7"s) = d(0)ds +' f eBo(1)ds
0 L>®(I;VMO) Tt L>®(I;VMO)
<lle™2 4o,y + Clért =770 — bt — 77') v
172,00

+CSp +CHem0A ¢(t)”L”(I;VMO)

LY(I;VMO)

/ﬂ e‘m(czﬁ(t —r Iy = #(1))ds
0

r

Tt 8
=l ollyao +Clor - ¢HL4(1;L%) R H /o erquﬁ(t - ;)drHLC’C(I;VMO)

+ Sple™ 20| Loty T Sb ‘|ETIA¢(I)HL°°(1;L1) +Cle™ o) LO(I,VMO)*
(9.40)
The first, second and the last three terms in the right hand side of (9.40) are converging
to 0 as 7 — oo as before. The remaining third term treated as follows:
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H _/oﬂ erA%qb (t a ;) dr HLOO(I;VMO) :” fot e”A%(b(t B s)ds”LOO(I;VMO)

SCT“H(Z)(I —5)ls=t

-0 7— o0.
L®(I;VMO)
9.41)

Combining (9.40) and (9.41), we conclude the convergence
TILH(}O l1Yr = YllL=avmo) =0 (9.42)

and hence (3.5) in Theorem 3.3 has proven by gathering (9.30), (9.39) and (9.42).

(Step 3) For the interval near t = 0, we treat the initial layer for the second
and third equations. Since the argument are very similar, we only treat the second
equation: Let 7(¢) = x10,,,1(t) (¢ — (—A) " 'ug). From (9.1),

G (1) — D(t) — n(t) =e™Po — o + (—A) " 'ug

Tt (o9}
+ f T8y (77 s)ds — / S2u(t)ds t e (0, 1y).
0 0

(9.43)
Then for any € > 0, choose 7y > 0 small enough so that applying the Sobolev

embedding

. . .94 2
LY(R?) =~ F2,(RY) C BY  (R?) C Boo (R?),

we estimate (9.43) to obtain

”(;57 —¢— 77||L°°(0,t0;L2)

o0
<[e™ o]l L o.002) + H(—A)luo - / e Su(t)ds
' 0

L>(0,10;L?)

Tt
+ H/ T8y (77 s)ds
0

L>(0,10;L?)

<sup e 4en]l, + C|[ (=) up — (—8) )| 2
1<ty L>°(0,t9;L?) (944)

+ C‘ ur(t - T_ls)|s:‘rt

. —2+2
LYOt0; Fy o 1)
= §1<ltp ”eﬂAQSO ”2 + C”“(t) — Uo ||L°°(0,t0;L1) + C””T(TASNS:TZ ||L9(O,to;Lﬂ)
=l
<sup le™ o, + Clu@) = uol| g ey T €l O oo 110

<sup [[e” 2 ol|, + 2,

t<to

I

for small 7y > 0 because of the uniform bound for u, € LY(I; L?). Since Po €
L%(R*), we have for any 79 > 0 that
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lle™oll2 — O (9.45)

as 7 — oo for and by passing 7 — 00, we conclude from (9.44) and (9.45) that the
locally uniform convergence (3.5) holds. This completes the proof. (]
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Abstract The paper is an extended version of lecture notes from a mini-course
given by the author in the workshop Optimal Control and PDE in Tohoku University
in 2017. The main objective of the lecture notes is to give a short but rigorous
introduction to the dynamic programming approach to stochastic optimal control
problems. The manuscript discusses, among other things, the classical necessary and
sufficient conditions for optimality, properties of the value function, and it contains
a proof of the dynamic programming principle, and a proof that the value function
is a unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
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1 Introduction

This expository paper is an extended version of lecture notes from a mini-course lec-
tures given by the author in the workshop Optimal Control and PDE in the Thematic
Program ‘Nonlinear Partial Differential Equations for Future Applications’, Tohoku
University, July 17-21, 2017. The main objective of the lecture notes is to give a
short but rigorous introduction to the dynamic programming approach to stochastic
optimal control problems with a proof of the dynamic programming principle (DPP)
and the derivation of the associated Hamilton-Jacobi-Bellman equation.

The central theme of the manuscript is the DPP which links the stochastic optimal
control problem to a Hamilton-Jacobi-Bellman partial differential equation. Contrary
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to the deterministic case where its proof is rather elementary, the proof of the DPP in
the stochastic case is very difficult and technical and cannot be taken for granted. Thus
its good understanding is essential and very important. The setup of the stochastic
optimal control problem presented in this paper and the proof of the DPP follows
the more abstract presentation in [9], which was based on the approach of [24]. The
reader should consult [9] for more details on various concepts used here and missing
proofs of some results used in the manuscripts. Other proofs of the DPP for various
setups and control problems can be found in [3-5, 8, 11-13, 16-19, 22, 23, 25].
The reader can read Sect.2.7 (Bibliographical Notes) of [9] for more information
about these proofs and different approaches. Also, there are many books available
[2, 3, 7, 10, 11, 13-16, 18, 19, 21, 24], where the reader can learn more about
various aspects of stochastic optimal control and dynamic programming. Regarding
viscosity solutions, their basic theory can be found for instance in [1, 6, 11], also [9]
can be useful even though it deals with infinite dimensional problems.

2 Stochastic Optimal Control Problem

Throughout the paper, for x, y € R", we will write |x| for the Euclidean norm of x
and (x, y) for the inner product of x and y. If r € R, |r| will also mean the absolute
value of r. For a matrix X, we will write || X|| to denote the operator norm of X.
Let T > 0 be a fixed constant. For any initial time ¢ € [0, T] and x € R", the state
equation of the problem is given by a stochastic differential equation (SDE)

dX(s) =b(s, X(s),a(s))ds +o(s, X(s),a(s)dW(s), se(t,T]

X(0) = x. (2.1

where W is a standar m-dimensional Brownian motion, and a(-) : [0, T] —> Aisa
control process. We make the following assumptions throughout this paper.

e The control space A is a Polish space (a complete separable metric space).

e Thefunctionsb : [0, T] xR" x A — R",0 : [0, T] x R" x A — R" ™ are con-
tinuous, b(-, -, a), o(:,-,a) are uniformly continuous on bounded subsets of
[0, T] x R", uniformly fora € A.

e There exists C > 0 such that

|b(s, x,a) — b(s,y,a)] < Clx —y|
lo(s,x,a) —a(s,y,a)| < Clx —y]
1b(s, x,a)| + llo(s, x,a)|| < C( + |x]),

foralls € [0, T], x,y e R*,a € A.
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The goal is to minimize, over all a(-) which will be specified later, the cost
functional

T
J(t, x;a() = ]E|:/ el XM p s X (s), a(s))ds

t

+el “““’”d’g(X(T))},

where L : [t, T] x R" x A - R, ¢, g : R" — R are continuous functions and c is
nonnegative. Here, ¢ is a function responsible for discounting, L is the so-called
running cost, and g is the terminal cost.

We assume the following throughout the paper.

e ThefunctionsL : [0, T] x R*" x A—>R, g : R* — Rarecontinuous,and L(, -, a)
is uniformly continuous on bounded subsets of [0, 7] x R”, uniformly fora € A.
e There exist C, N > 0 such that

IL(t,x,a)| + |g(x)| < C(1 + |x|V)

forall (f,x,a) € [0, T] x R" x A.

We do not give precise assumptions on the function c since later we will assume that
c=0.

Definition 2.1 (generalized reference probability space) Lett € [0, T). The 5-tuple
w=(Q,.F,Z!, P, W)is called a generalized reference probability space if

e (2, %, P)is a complete probability space;
o {F!}<s<r is a right-continuous complete filtration in .#, i.e. it is a family of
o -fields such that 7| C 93?2 fort <s; <s <T,

Fl = m F! forevery s,

r>s

and .Z/ contains all P-null sets of .7 for every s;

e W isastandard .#/-Brownian motion in R™, i.e. it is a process adapted to .#/ such
that W (r,) — W(¢)) is independent of ﬂ\t’l fort <t <t <T,W(t) —W(t) ~
N, (t —t))I) fort <t; < t, < T,and W has continuous trajectories P-almost
surely.

Definition 2.2 (reference probability space) We say that a generalized reference
probability space w is a reference probability space (RPS) if .Z! = o (F!9, N),
where Z!'0 = o(W(r) : t <r <s) is the filtration generated by W, and N is the
collection of all the P-null sets in .%, and moreover if W (¢) = 0, P-almost surely.
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2.1 Strong Formulation of Optimal Control Problem

For a generalized reference probability space u = (2, .%, #!, P, W), we consider
the set of admissible controls

U ={a(): [t,T] x Q — A :a(-) is F!-progressively measurable}.

A process a(-) is progressively measurable if forevery s € (¢, T],a(-) : [t, 5] x 2 —
Ais B([t, s]) @ #!/B(A) measurable.

The goal in the strong formulation of optimal control problem is to minimize
J(t,x;a()) over all a(-) € U". In this formulation the generalized reference prob-
ability space p is fixed.

2.2 Weak Formulation of Optimal Control Problem

In the weak formulation of optimal control problem, we set
u, = Ju,
0

where the union is taken over all generalized reference probability spaces p. The
goal then is to minimize J (¢, x; a(-)) over all a(-) € U;.

We will consider here a special weak formulation of our optimal control problem,
where

U = UL[,“ : u is a reference probability space} . 2.2)

n

In the rest of the paper, unless stated otherwise, U/; will always be defined by (2.2).

2.3 State Equation

We say that X (-) is a solution of the state equation (2.1) if X (-) is progressively
measurable and for every s > ¢

X(s)=x+ /5 b(r, X(r),a(r))dr + /S o(r, X(s),a(r)dW (), P-as.

The theorem below collects basic properties of the solutions of (2.1) (see e.g. [13],
Chap. 2, Sect. 5, also [9], Theorem 1.130).
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Theorem 2.3 Lett € [0, T], let u = (Q, &, F., P, W) be a generalized reference
probability space, and a(-) € L{,”". Then forany R"-valued& € L? (2, #!,P), p > 2,
the SDE (2.1) has unique solution X (s; t, &, a(-)) such that:

e X (-) has continuous trajectories;
[ ]

E [ngfgiT | X (s3 t,é“,a())lp] = C,(A+E[I"D,

E |:maxT | X (s) — Y(S)|2] < Clx —yl%,
1<s=<

where X (s) = X(s;t,x,a(")), Y(s) = Y(s;t,y,a(-)) are solutions of (2.1) with
initial conditions X(t) = x e R, Y(t) =y e R";

E [ggag 1 X (r) — )ﬂ < Cr(s — 1),

if x € R", |x| < R, where X(s) = X(s;t,x,a(-)).
The solution of (2.1) can be obtained as the fixed point of the map

\

K[Yl(s) =&+ / b(r,Y(r),a(r)dr + / o(r,Y(r),a(r)dW(r)

t

in the space of continuous, progressively measurable processes such that ||V :=

(IE |:lr<naixr |Y(s)|”]>p < +00.

3 Dynamic Programming Principle and HJB Equation

The value function for (2.1) in the weak formulation with initial time ¢ is defined as

V(t,x)= inf J(t, x;a(")),
a()el;

where U; is defined by (2.2).
The central part of the theory is the dynamic programming principle, which states
thatif 0 <t < n < T, then

V(t, x) =

n s n
T U e H XL X (1), a(r))dr + e H XDy, xmﬁ} ,
a()el, ¢
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where X (r) = X(r; t, x,a(-)).

The dynamic programming principle is a functional equation for the value func-
tion. It connects the stochastic optimal control problem with a partial differential
equation (PDE) called the Hamilton-Jacobi-Bellman (HJB) equation which can be
used to prove verification theorems, obtain conditions for optimality, construct opti-
mal feedback controls, etc. We remark that the statement of the DPP implies that the
functions V (1, X (n)) are measurable, i.e. it requires some apriori knowledge about
V. Obviously V (n, X (n)) is measurable if V (5, -) is Borel measurable, in particular
if V(n, -) is continuous. We will prove the DPP in Sect. 4.6 assuming for simplicity
that ¢ = 0. The proof contains all essential difficulties and the proof in the general
case can be easily deduced from it.

We define

Tt,r(w) =

Y E[/ e XML (5 X (5), a(s))ds + eI "<X<’>>"fw(X<r)>]'
a(-)el; ‘

If the DPP holds, then we have T; r () = T; . (T,.r (¥)) for t <r < T. Thus the
DPP defines a two parameter evolution system and the HJB equation is the PDE
associated to this evolution system, the generator equation. The HIB equation has
the form

1
u; + inf\ {zTr[a(t, x,a)o*(t, x,a)D*ul + (b(t, x, a) Du)
ae

—c(x)u+ L(t, x, a)} =0, (,x)e€ (0, T)xR", @.1)

u(T,x) =g(x), xeR".

For (t,x,r, p,S,a) € [0, T] x R" x R x R" x §(n) x A, where S(n) is the set
of all symmetric n X n matrices, we denote

1
Fey(t,x,r, p,S,a) = ETr [o(t,x, a)o*(t, x, a)S] + (b(t, x, a), p)

—c(x)r+ L(t, x,a),

and call it the current value Hamiltonian of the system. Its infimum over a € A,
1
F(t,x,r,p,S) = in[f\ {zTr [o(t, x,a)o*(t, x, a)S] + (b(t, x,a), p) (3.2)
ae

—c(x)r + L(t, x, a)}
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is called the Hamiltonian. Using this notation, the HIB equation (3.1) can be rewritten
as

:u,-l—F(t,x,u,Du, D*u) =0, (t,x) € (0,T)xR", 53

u(T,x) =gx), xeR"

In the rest of the paper we will always assume that

e c=0.

3.1 Verification Theorem, Necessary and Sufficient
Conditions for Optimality

The HJB equation can be used to characterize optimal controls. We call (X (-; 7, x,
a(-)), a(-)) an admissible pair if X (-; ¢, x, a(-)) : [t, T] — R" is the unique solution
of the state equation (2.1).

Theorem 3.1 (Verification Theorem, Sufficient Condition for Optimality) Let u :
[0, T] x R* — R be a classical solution of (2.1) such that there exist C, p > 0 such
that

lu(t, )|, |u (2, x)], [Du(t, x)|, | D*u(t, x)|| < C(1 + |x|?) (34

forall (t,x) € [0,T] x R™. Let (X*(-), a*(-)) be an admissible pair at (t, x) such
that

a*(s) € arg mi[r\l Fev (s, X*(s), Du(s, X*(s)), D*u(s, X*(s)), a) (3.5)

for almost every s € [t, T] and P-a.s. Then the pair (X*(-), a*(-)) is optimal at (¢, x)
andu(t,x) = V(t, x).

Proof 1f a(-) € U,, then by Ito’s formula,

T
u(t,x) =E|u(T, X(T)) — / {ut(s, X (s)) + (b(s, X(5),a(s)), Du(s, X(s)))

+ %Tr(o (s, X (), a(s))o*(s, X(s), a(s))Dzu(s, X (5))) }dsi|

T
=E g(X(T))—/ [:(s, X (5)) = L(s, X(5), a(s))

+ Fey (s, X(s), Du(s, X (5)), D*u(s, X(s), a(s)))]
< J( x;a()), (3.6)
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where the last inequality follows since Fcy — F > 0. The equality above holds if and
only if Fcy = F. Therefore, we have u < V by taking the infimum over a(-) € U;
in the right hand side of (3.6).

Now, let (X*(-), a*(-)) be an admissible pair at (¢, x) satisfying (3.5). If a(-) =
a*(-), then the above gives u(t,x) = J(t,x;a*(-)) > V(t,x). Thus, we have
u(t,x) =V, x) = J(, x;a*(-)), which implies that a*(-) is optimal. O

If we know from the beginning that the solution u# in Theorem 3.1 is the value
function V, then (3.5) also becomes a necessary condition for optimality.

Corollary 3.2 (Verification Theorem, Necessary Condition for Optimality) Let u =
V in Theorem 3.1 (i.e. the value function V is a smooth solution of (3.1) satisfying
(3.4)). If (X*(-), a*(+)) is an optimal pair at (t, x), then we must have

a*(s) € argmi/t\'n Fev (s, X*(s), Du(s, X*(s)), D*u(s, X*(s)), a)

for almost every s € [t, T] and P-a.s.

Proof Since (X*(-), a*(-)) is an optimal pair at (¢, x), we have V (¢, x) = J(¢, x;
a*(+)). Thus inequality (3.6) for a(-) = a*(-) becomes equality and thus we must
have

Fev(s, X*(s),Du(s, X*(s)), D*u(s, X*(s)), a*(s))
= F(s, X*(s), Du(s, X*(s)), D%u(s, X*(s)))

for almost every s € [#, T] and P-a.s. Hence the claim follows. O

3.2 Construction of Optimal Feedback Controls

‘We define the multivalued function

¢:(0,T) x R" = P(A)
{d) c(t,x) —> argrréi[r\l Fey(t,x, DV (t, x), D2V(t,x), a) 3.7
and consider the Closed Loop Equation
! dX(s) € b(s, X(s), p(s, X(5)))ds + (s, X(s), (s, X(5))dW(s) 3.8)
X(t) =x. '

Corollary 3.3 Suppose that ¢ admits a measurable selectiony, : (t, T) x R* — A
such that the Closed Loop Equation
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dX(s) =b(s, X(s), ¥ (s, X(s)))ds + o (s, X(s), Y (s, X(5))dW (s) (3.9)
X(@) = x. '

has a solution Xy, () in some generalized reference probability space 1. Then the
pair (Xy, (-), ay, (-)) is optimal at (t, x), where ay, (-) = (-, Xy, ().

3.3 Uniqueness in Law

Definition 3.4 Let X;(s) : (R;, %, P;) — (R, %) be two processes for i = 1, 2.
X1(+) and X;(-) have the same finite-dimensional distributions on [#, 7] if there is a
set D of full measure on [#, T] such thatforanyn > 1,1 <ty <th <--- <t, <T,
tieD(I<j<nadAdeFQRIQ...0F

n—times
Pr(wy : (X1 (1), - .., Xi(@))(w1) € A) = Pa(wa @ (Xa(n1), ..., Xo(ta))(@2) € A).
In this case we write Lp, (X1(-)) = Lp, (X2(-)).

Let (R, Z1, F, Py, W) and (Q, Fa, F)', Py, Wy) be two generalized ref-
erence probablhty spaces. Let (Q, J) be a measurable space and ®; : Q; — Q,
i =1, 2, be two random variables. Let f; : [f, T] x Q; — R",i = 1, 2, be two pro-
cesses satisfying

T
E{/ |ﬁ(s)|ds} <400, i=1,2,

and let ¢; : [1, T] x ; — R™™ i = 1,2, be two .Z!"!-progressively measurable
processes satisfying

T
E {f ||¢i(5)||2ds} <400, i=1,2.
t
The following facts can be proved (see [20], Theorems 8.3 and 8.6, where they were

proved for more general Banach space-valued processes).

o If Lp, (f1(1), ©®1) = Lp,(f2(-), O2) on [t, T, then

Lp, (/'ﬂ(s)ds, @1) = Lp, </'f2(S)ds, ®2> on [, T].

o If Lp (¢1(), Wi (), ©1) = Lp,(d2()), Wa(-), ©2), then

Lp, </'¢1(S)dW1(S)7 @1) = Lp, </'¢2(s)dW2(S), @2) on[t, T].
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Theorem 3.5 Ler u; = (Q;, %, & 9‘” P, W), i = 1,2, be two generalized refer-
ence probability spaces, a;(-) € L{,’",i =1,2,andlet; € L2, ﬂ,’ P, i=1,2
be two R"-valued random variables. Let X;(-) be the unique solution of the state
equation with control a;(-) and such that X;(t) = &. If Lp,(a1(-), Wi(-), &) =
Lp,(az(), W2(), &) on [, T), then Lp, (X1(-), a1(")) = Lp,(X2(-), a2(-)) on [, T].

Proof The solutions X; (-) are obtained as the limits of maps
KilZ;(H1(s) =& +f b(r, Zi(r), a;(r))dr +/ o(r, Zi(r), a;(r))dW;(r),
t t

ie. Zl.' (s) =§&, Z?‘H (s) = K[[Zl’.‘](s). Using previous result we have
Lr(Z{ (), Wi(), a1()) = L, (Z5 (), Wa (), aa(-))

so passing to the limit as k — o0 gives the result. We refer to the proofs of Lemma
1.136 and Proposition 1.137 of [9] for the full details of the proof. (]

4 Value Function and Proof of Dynamic Programming
Principle

We first need to introduce and develop more technical tools. From now on we will
always assume without loss of generality that W has everywhere continuous trajec-
tories.

4.1 Predictable Processes

Definition 4.1 Let = (22, .#, %], P, W) be a reference probability space. The
o-field of F#! ‘O_predictable sets P[?T] is the o -field generated by all sets of the form
(s,r]x A, t<s<r<T,Ace€ 9’0 and {t} x A, A € 33[’0. The process a(-) with
values in A is .%#/-predictable if it is 77[, r1/B(A) measurable.

Lemma 4.2 Assume a(-) € U/*. Then there exists F! 0

such thatd(-) = a(-), dt @ P-a.e.

-predictable process d(-)

The proof of Lemma 4.2 is in [9], Lemma 1.99. The idea is to approximate a(-) by
simple processes.

It is easy to see that X (-; ¢, x, a(-)) is indistinguishable with X (-; 7, x, d(-)), i.e.,
there is a set 1 C €, P(22;) = 1 such that X (; 7, x, a(-))(w) = X (:; ¢, x, d(-))(w)
on [¢, T] for any w € 2;. Therefore, without loss of generality, we can assume that
all controls in U/ are .Z!*-predictable.
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4.2 Canonical Reference Probability Space

Set W:={w e C([t, T], R™) : w(t) = 0}, equipped with the usual sup-norm. Let

B(W) be the Borel o-field and P, be the Wiener measure on (W, B(W)), i.e.

the unique probability measure on W that makes the mapping W : [¢, T] x W —

R™, W(s, w) = w(s), a Wiener process on W with values in R”. Denote by .7, the

completion of B(W), set B0 = s (W(z);t <1 <), B. = 0(B.%, \,), where N,

are the IP,-null sets, and let 73, i+ 7] be the o-field of B O_predictable sets. The 5-tuple
= (W, #,, B, P,, W) is called the canonical reference probability space.

4.3 Independence of Value Function of Reference
Probability Spaces

The following lemma gives a representation of control processes and its proof can
be found in [9], Lemma 2.20.

Lemma 4.3 Let i be areference probability space and a(-) €U} be F!-°-predictable.
Then there exists a P[‘,’YT] /B(A)-measurable function f : [t, T] x W — A such that
a(s,w) = f(s, W(-,w)) forwe Q,s €[t,T].

Letnow a(-) € U/ and f be from Lemma4.3. Suppose that 4| = (Q, F1, F,
P, W) is another reference probability space. Then a;(s, w) = f (s, Wi(:, w)) is
9}1*’*0-predictable and Lp(a(:), W(-)) = Lp,(a;(-), Wi(-)). Thus it follows that
VHi(t, x) < VH(t,x), and by the same argument we can also obtain the reverse
inequality. Thus the value function is independent of the choice of a reference prob-
ability space and we have the following theorem.

Theorem 4.4 For every reference probability space |1, we have

VR, x) = inf J(t,x;a()) = V(, x).
a(')EMIM

4.4 Standard Reference Probability Spaces

Definition 4.5 A measurable space (', %) is standard if it is Borel isomorphic
to one of the following: ({1,...,n}, B({1,...,n})), (N,B®N)) or ({0, I}N,
B0, 1}")).

If S is a Polish space, then (S, B(S)) is standard. Also if (', .%") is standard then
it is Borel isomorphic to [0, 1] with the Borel o -field.

Definition 4.6 A reference probability space u is standard if there exists o -field .F
such that ﬁ}‘o C F' c F,.F is the completion of .%’, and (€2, .%") is standard.
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The canonical reference probability space pw is standard.

The following is very important. If (', %', P) is a probability space such that
(', F') is standard, then for any o-field G C %' there exists a regular conditional
probability p : Q' x #' — [0, 1] given G (see e.g. [9], Sect. 1.1.5 for definitions and
details). So if p is a standard reference probability space then there exists regular
conditional probability given .Z!:*. We will write P,,, := p(wy, -) or, with abuse of
notation, when we want to emphasize the o-field, we will write IP’(-L@S’ Y (wp). We
will write [E,,, to denote the expectation with respect to the measure P,,,.

We have that for every .7/ 0 /B(R") measurable random variable Y, for P-a.s. wy,
P, (Y(w) = Y(wp)) =1 (see [9], Theorem 1.45, and references there). Also (see
e.g. [9], page 102),if Y € LY, .Z,P), then E,, (as a function of wy) belongs to
LYQ, .Z,P) and

E[Y] = E[E[Y|F!]] = E[E,,[Y]I.

4.5 “Conditioned” Reference Probability Spaces

Suppose that 0 <7 <n < T, and u = (Q, #, F!,P, W) is a standard reference
probability space. We set W, (s) = W(s) — W (). We will use conditional expecta-
tions in the proof of the dynamic programming principle so we need to make sure
that we stay within the framework of the reference probability spaces. The following
two lemmas guarantee this. They correspond to Lemmas 2.25 and 2.26 of [9] and
their proofs can be found there.

Lemma 4.7 For P-a.s. wy, ™ = (R, FZuyr Fa.s» Puy) is a reference probability
space on [n, T, where #,, is the completion of F' by P, = IF’(-L?S”O) (wo) null
sets, and F ., s is the augmented filtration generated by W,).

Lemma 4.8 Let (1, u™ be as above, and let a(-) € U} be F}*-predictable. Then
an.ri(-) € UL for P-a.e. w.

We just remark here that Lemma 4.8 follows easily after we show that /-0 C
Fa sforn<s<T.

Finally we need to ensure that the solution of (2.1) in the reference probability
space u is also the solution in the reference probability spaces ™.

Lemma 4.9 Let 1, u® and a(-) be as in Lemma 4.8, and let X" (-; t, x, a(-)) be the
solution of (2.1) in the reference probability space ji. Then,up to an indistinguishable
modification, for P-a.e. wy, X" (-; t, x, a(-)) is the solution of (2.1) on [n, T], with
initial condition X" (n), in the reference probability space u“°, i.e. for P-a.e. wy,
XE(it,x,a() = XP (5, X* (), a().

Proof We first observe that, using the continuity of trajectories of X* (-):=X*(-; ¢, x,
a(-)), one can show that, up to an indistinguishable modification, X*(-) can be
considered to be fwno,s-progressively measurable on [n, T] for P-a.e. wy (see [9],
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the proof of Proposition 2.26, page 103, for a precise argument). In fact one obtains
that X#(-) is indistinguishable with a process which is o (Z#!°, SNZ)-progressively
measurable for some  such that IP’(S~2) =1.

It is easy to see that P a.s. we have

XH(s) = X*(n) + fs b(s, X*(s), a(s))ds + /s a(s, X*(s),a(s))dW,(s) on[n, T].
" "

Since for every set €2; such that P(2;) = 1, we have P, (22;) = 1 for P-a.e. wy,
the above identity is satisfied [P, -a.s. for IP a.e. wy. Thus to prove that X*(-) is the
solution in the reference probability spaces u®, it is enough to show that for P-a.e.
wy, the stochastic integral

L,(s) = /Sa(s, X" (s), a(s))dW,(s)
n

in the reference probability space u is P, -a.e. equal on [, T'] to the same stochastic
integral in the reference probability space u*°. We denote this integral by [0 (s).
Since the stochastic integrals have continuous paths it is enough to show it for a single
s. We note that [, (s) is well defined since o (s, X" (s), a(s)) is Fa, s-progressively
measurable on [n, T] for P-a.e. wy. We also note that since

E [/ |X“(r)|2dr} —E [Em [/ |X“(r)|2drﬂ ,
n n

we have E,, [f; |X"(r)|2dr] < oo for P-a.e. wy.
Denote ®(s) = o (s, X*(s), a(s)). There exist a sequence of elementary and
Z!10-progressively measurable processes ®,, such that

E/S |®(r) — @, (r)>dr — 0.
n

The processes @, are also .Z,, ,-progressively measurable. Since E| f;[CD(r) -
®,(r)]1dw, (r)|> — 0, passing to a subsequence if necessary, we can assume that

/S ®,(r)dW,(r) — I,(s), on 2, 4.1)
n

where €2, is a set such that P(€2;) = 1 and hence P, (2,) = 1 for P-a.e. wy. Since

E [Ewo [/ |®(r) — <I>n(r)|2drﬂ =E U |®(r) — CI>,,(r)|2dr:| -0
n n

as n — 00, up to a subsequence, for P-a.e. wy, we have
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Ew, [/ |D(r) — q>,,(r)|2dr] -0
1
as n — 00. So, for P-a.e. wy, there exists a subsequence of @, such that
/S D, (r)dW,(r) = L (s), Py -ae. 4.2)
n

Thus (4.1) and (4.2) imply that, for P-a.e. wy, 1,,(s) = 1,2 (s), Py,-a.e.

4.6 Proof of the Dynamic Programming Principle

We first show the uniform continuity in x of the cost functionals.

Lemma 4.10 For every R > 0, there is a modulus pg such that
[J(@ x;a() —J(@, y;a()+ |V, x) = Ve, )| < pr(lx — yD)
forallt € [0,T],x,y € R", |x|, |y| < R, a(:) € U;. Moreover,
[J(t, x5 a()| + |V (E,0)| < C(1+ |x|™)

forall (t,x) € [0,T] x R", a(:) € U,.

Proof The result follows easily from the assumptions about L and g, and the esti-
mates of Theorem 2.3. O

We can now prove the DPP. We remind that we assume that ¢ = 0.

Theorem 4.11 (Dynamic Programming Principle) Let 0 <t <n <T,x € R".
Then

Vit x) = (i?fu E |:/n L(r, X(r),a(r))dr + V(n, X(n))] ,
where X (r) = X(r; t,x,a(-)).
Proof Denote

U = [UU,“ : w is a standard RPS} .
m

It is enough to show DPP with U, replaced by U, since V" is the same for every
reference probability space u and we have joint uniqueness in law. Of course it is
enough to assume t < 1 < T. Thus we will show



HJB Equation, Dynamic Programming Principle, and Stochastic Optimal Control 197

V(t,x)= inf_E |:/n L(s, X(s),a(s))ds + V(n, X(n))i| 4.3)

a()el,

for t < n < T. In fact it would be enough to replace U; by U,"", where vy is the
canonical RPS.

Part 1. (Inequality > in (4.3)) Let u be standard reference probability space and
a(-) € U}'. We can assume that a(-) is F! ‘O_predictable and hence, by Lemma 4.8,
ap.ri(-) € UM for P-ae. wy. By Lemma 4.9, for P-a.e. wy, X"(-) = X" (-1 1,
X*(n), a(-)) on [, T], where u = (Q, Zoy, Fap.ss Puy» Wy). We also recall that
for P-a.e. wy, Py, ({w : X (1, @) = X (n, wp)}) = 1. Therefore,

J(t,x,a()) =E |:/n L(s, X(s), a(s))ds:|

t

T
+E [/ L(s, X(s),a(s))ds + g(X(T)):|
"

T
=K /” L(s, X(s), a(s))ds:| +E I:]Ew0 [/ L(s, X(s),a(s))ds + g(X(T)):|i|
' n

n
=E / L(S,X(S),a(S))dS}+E[J“w°(n,X(n,wo);a(-))]

n
>E [ L(s, X(s),a(s))ds + V(n, X(n)):| .

Taking infimum over all a(-) € U, above implies

V(t,x)> inf_E [fn L(s, X(s),a(s))ds + V(n, X(n))] .

a(-)el,

Part 2. (Inequality < in (4.3)) Let & > 0 and let a(-) € 4" for some standard
reference probability space u = (2, .#, .F!, P, W). Using continuity of J and V in
x from Lemma 4.10, we can find a partition {D,} of R" into disjoint Borel sets D,
j=1,2,--- suchthatif x, y € D; and @(-) € U; then

[T, x;d(:) = I, y;a()|+1V(n,x) =V, y)| <e.

For each j, we choose x; € D;anda;(-) € U/’ for some reference probability space
wi = (Q;, F;, F!,,P;, W;) such that

J:s?

J(, xj;a;(-) < V(n, x;)+e.

We can assume that a;(-) are & ﬂf—predictable.
Now let f; : [, T] x C([n, T], R") — A be functions such that
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aj(s,w) = fi(s, W;(-, o).

Then the processes
aj(s, w) = fi(s, Wy (-, ))

are .Z!0-progressively measurable and for P-a.e. w are %, ;-progressively measur-
able in the reference probability spaces u° = (2, ., ﬁa',lw, P.,, W,). Moreover,

Lp, @;(), Wy) = Lp,(a;(-), W)).

g

‘We define new control

aﬂ(s’ w) = af(s, w)l{t§s<n} + llszn}zaj (s, w)l{X(n;t,x,a(-))eD/]-
jeN
Denote O; = {w : X(n; ¢, x,a(-)) € D;}. Wenoticethata”(-) € U!" . Denote X (s) =
X(s;t,x,a"’(-)). Then X (s) = X (s; ¢, x,a(-)) on [t, n], P a.s. Since for P-a.e. wy,

X(n, w) =X, wo), Pyy-as.,if wp € O thena(-) = a;(-) on[n, T'], Py, -a.s., and
thus for P-a.s. wo, ayf, 71 € U, and

Ly, @' (), Wy()) = Lp,(a; (), W; ().

Moreover, by Lemma 4.9, we can assume that for P-a.e. wg, X (-) = X0 n, X(n),
a’(-)) on[n, T], P,, a.s. Thus, by Theorem 3.5,

Lp, (X(),a"()) = Lp, (X" (), a;()), 4.4

2

where X%/ = X (s;n, X(n; t, x, a(-))(wo), a;(-)). Therefore,
T
E [/ L(s, X(s),a"(s))ds + g(X(T)):|
n
T
=F |:Ew0 |:/ L(s, X(s),a’(s))ds + g(X(T))]:|
1

& T
= Z/ Eup [/ L(s, X(s),a"(s))ds +g(X(T))} dP(wo)
j=170; n

= fo Je,, (1, X (3 1, %, a() (@0): a” ())dP(wo)
=179

> f Jo, (0, X (13 1, x, a(-)) (@o); a;(-))dP(wo),
j=179i

where we used (4.4) to get the last equality. Now, for wy € O},
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Je,(n, X(n; 1, x, a(:))(wo); a; () < Jp,(n, xj;a;(:) +¢
<V, xj)+2
<V, X(; t,x,a())(wo)) + 3e.

Therefore,

T
E [/ L(s, X(s), a"(s))ds + g(X(T))} < E[V(n, X(m)] + 3e,
n

SO we obtain

J(@,x;a’()) <E /n L(s, X(s),a(s))ds + V(n, X(n)) | + 3¢.

Since a(-) was arbitrary, the above inequality implies

1
V(t,x) < inf_ E / L(s, X(s),a(s))ds +V(n, X(n)) | + 3e¢.
a(hel,  LJt J

It now remains to send ¢ — 0. ([

4.7 Continuity of the Value Function in t

Having the dynamic programming principle we can now easily prove the continuity
of the value function in 7.

Corollary 4.12 For every R > 0 there exists a modulus pr such that
[V(t,x) = V(s,x)| < pr(t —s|) forall t,s €[0,T],x € R", |x|] < R.

Proof Suppose s > ¢, and |x| < R, R > 1. Using the dynamic programming prin-
ciple, and estimates of Theorem 2.3 and Lemma 4.10, we have
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[V(t,x) = V(s,x)| < sup E
a(-)el,

/‘S L(r,X(r),a(r))dr +V(s, X(s)) — V(s, x)

< sup E/S C(l1+ |X(r)|N)dr + sup E|V(s, X(s5)) — V(s, X)|

a(-)el, a(-)el,
<CUA+|xI")(s—1t)+ sup E [o2r (1X (s) = X1 x0)12r)) ]
a(-)el,
+ sup E[C+ XY + [xI")1x)-2]
a(-)el,
< Cr(s — 1)+ sup por (E[X(s) — x|) + sup Cr (P ({|X(s)| > 2R}))?
a(-)el, a(-)el,

< Cg(s — 1)+ par (Crv/s —1) + Cr/s — 1.

Above we also used Jensen’s inequality and the fact that we can assume that the
moduli p,z are concave. O

4.8 Dynamic Programming Principle with Stopping Times

The knowledge that V is continuous allows us to formulate the dynamic programming
principle in a stopping time version.

Foreverya(-) € U]" for some reference probability space u = (R, .F, Z!, P, W),
we choose an .%!-stopping time 7, with values in [z, T']. We define V, to be the set
of such pairs (a(-), t4(,), over all a(-) € U;. The set of all .#!-stopping times with
values in [¢, T'] will be denoted by A*.

We recall that 7 is an .#!-stopping time if for all s > ¢, {t <s}={w e Q:
T(w) < s} € Z!. For instance if A is an open or a closed subset of R”, then the exit
time of X (-) from A is a stopping time.

Theorem 4.13 (DPP-Stopping Time Formulation 1)) Let 0 <t < T, x € R". Then

Ta()
V(t,x)= inf E [/ L(s, X(s),a(s))ds + V(ta(, X(Ta(')))} :
(@), ta))EVr '

The proof of Theorem 4.13 in its Hilbert space version can be found in [9], page 241
(Theorem 3.70 there). Theorem 4.13 in turn easily implies another formulation of
the dynamic programming principle with stopping times, given below in Theorem
4.14. In a slightly different formulation such a version of the dynamic programming
principle can be found for instance in [11], page 176.

Theorem 4.14 (DPP-Stopping Time Formulation IT) Let 0 <t < T, x € R". Then
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Vi(t,x)= inf inf £ |:/I L(s, X(s),a(s))ds + V(z, X(r))]

neR,a(-)el! te A

= inf sup E |:/I L(s, X(s),a(s))ds + V(z, X(r))] ,

neR,a(-)el! reA!

where R is the set of all reference probability spaces.

5 Value Function Solves the HJB Equation

We can now prove that the value function V is the viscosity solution of the HIB
equation (3.3). The stopping time formulation of the dynamic programming principle
is very useful for this purpose.

Definition 5.1 An upper-semicontinuous function u : (0, T] x R" — R is a vis-
cosity subsolution of the terminal value problem (3.3) if u(7, x) < g(x) for all
x € R”, and whenever u — ¢ has a local maximum at (¢, x) € (0, T) x R” for some
¢ € C12((0, T) x R™), then

&(t,x) + F(t,x, Dp(t, x), D*¢(t, x)) > 0.

A lower-semicontinuous function u : (0, 7] x R" — R is a viscosity supersolution
of the terminal value problem (3.3) if u(7T, x) > g(x) for all x € R”, and whenever
u — ¢ has alocal minimum at (¢, x) € (0, T) x R” forsome ¢ € C2((0, T) x R"),
then

&(t,x) + F(t,x, Dp(t, x), D*¢(t, x)) <O0.

A function u is a viscosity solution of (3.3) if it is a viscosity subsolution and a
viscosity supersolution of (3.3).

Theorem 5.2 Value function V is the unique viscosity solution of the HIB equation
(3.1). The uniqueness holds within the class of continuous functions u : (0, T] X
R" — R such that there exist C,a > 0 such that

lu(t, x)| < Ce®MsUHD? gor gl (£, x) € (0, T] x R,

Proof We will only prove the existence part. The proof of uniqueness can be found
for instance in [9], Theorem 3.50, pages 206-212.

V is aviscosity supersolution: Suppose that V — ¢ has alocal minimum at (¢, x) €
(0, T) x R" for some ¢ € C12((0, T) x R"). Let 0 < ¢ < 1. For a(-) € U, we take
Ty = min(t + &, rj(,)), where r;(.) is the exit time of X (s) = X (s; ¢, x, a(-)) from
BS;{ (x). Recall that we have
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E[ sup |X(r)—x|2i| < Csg,

1<r<t+e

which implies
Pty <t+e) < Cy/e. (5.1)

Now, for (s, y) in a neighborhood of (¢, x),
Vis,y) = V(t,x) = ¢(s, y) — oz, x). (5.2)

By Theorem 4.13, there exists a. (-) € U, such that, denoting 7, := 7,,()and X, (s) :=
X(Sv 1, x, aa(‘));

Vit,x)+&> >E [/t L(s, X.(5), ac(s))ds + V (., X,;(‘l:g))jl .
Therefore, by (5.2) and It&’s formula,
&> E [ / "L X, as<s>>ds} +E[p (e, Xe () — (1, 1)] (5.3)
= E[ / ’ [L(s, Xe(s), a:(5)) + i (s, X (5))
+STHO (s, X, a0 (5, Xe(5), ae(5) D (s, Xe()
+ (D) (5, X (), b(s, Xo(s), ag(s)»}ds}
> E[ / C[#0.0) + TG x4, (5)0" . . 0:(6) D (1, 1)
+ (D (1, %), b(t, x, a(s)) + L{t, %, ag<s>>]ds} —efe), (54

where p(¢) — 0 as ¢ — 0. Therefore, taking the infimum inside the integral and
using (5.1), we obtain

t+e
&2 > ]E[/ in£[¢t(t, x) + %Tr(a(t,x, a)o*(t,x,a)D*¢(t, x))

+ (b(t, x,a), Do (t, x)) + L(t, x, a)]ds] —ep(e) — Cenfe
=¢[¢(t,x) + F(t,x, D(t,x), D*¢(t,x))] — £p(e) — Ce/e.

We now divide both sides of the above inequality by ¢ and send ¢ — 0 to obtain
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¢i(t,x) + F(t,x, D (1, x), D*¢ (1, x)) < 0.

V is a viscosity subsolution: We fix a € A and take the constant control a(s) = a.
Let now V — ¢ have a local maximum at (¢,x) € (0,7) x R" for some ¢ €
C'2((0, T) x R").Let 0<e < 1.ByTheorem4.13, denoting X (s):=X (s; ¢, x, a(-)),

Vi, x) <E |:-/TS L(s, X(s),a)ds + V(z,, X(rg))i| ,

where 7, = min(¢ + ¢, 77), where as before 7/ is the exit time of X (s) from Bs% (x).
The rest of the proof follows the proof of the supersolution property and the arguments
are even easier as neither the process X () nor the control changes with €. We obtain
in place of (5.3),

E[/ [¢ (2, %) + %Tr(a(t, x,a)o*(t, x,a)D*¢(t, x))
+ (Do (t, x),b(t, x,a)) + L(t,x,a)]dsi| > —gp(e)
which, using (5.1), produces

¢ (t, x) + %Tr(a(t, x,a)o*(t, x, a)D2¢(t, X))
+ (b(t,x,a), DP(t, x)) + L(t,x,a) > —p(e) — CA/e.

We then send ¢ — 0 and take the infimum over all a € A.
We remark that, alternatively, one can also argue using the dominated convergence
theorem here. O
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Abstract Twokinds of machinery to show regularity of solutions of bilateral/unilateral
obstacle problems are presented. Some generalizations of known results in the lit-
erature are included. Several important open problems in the topics are given.
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Bernstein method + Bellman-Isaacs equation + Penalization + Fully nonlinear
elliptic equation - Weak Harnack inequality + L? viscosity solution
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1 Introduction

In this survey, we overview regularity of solutions of obstacle problems associ-
ated with second-order uniformly elliptic partial differential equations (PDE for
short). Particularly, we show two different arguments to obtain estimates on solu-
tions of obstacle problems due to maximum principles. On the other hand, there have
appeared a huge amount of results concerning on regularity of solutions of variational
inequalities, whose typical example is the obstacle problem. However, our methods
here do not rely on integration by parts.

One of techniques here is the so-called Bernstein method, which is relatively
old, while the other is quite a new one. Inspired by an idea in [20], we have found
an interesting argument in [42], which can be applied to fully nonlinear PDE with
unbounded coefficients and inhomogeneous terms.

Accordingto [52], it seems that Fichera [24, 25] first studied the Signorini problem
as a variational inequality, where a free boundary arises on the boundary of domains.
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Stampacchia in [54] announced variational inequalities in Hilbert spaces as a modifi-
cation of Lax-Milgram theorem. Later, Lions-Stampacchia in [46] introduced unilat-
eral obstacle problems in the whole domain as an example of minimization problems
associated with energy functionals over closed convex sets.

Afterwards, several regularity results on solutions of variational inequalities
appeared in [6, 7, 27, 44].

We shall first consider a minimizing problem of given energies under restrictions.
Fix a bounded domain  C R” with smooth boundary 9. For a given ¢ € C(Q),
which is called an upper obstacle, we set a closed convex set

KY:={ue Hy(Q) |u<ae. in Q},

where HO1 (£2) is the closure of C3°(2) with respect to H 1(©) norm.
For any fixed f € L?(2), by setting our energy

1 2
Elu] :=/ <—|Du| —fu)dx
a\2

for u € K, it is known that there is a unique u € K¥ such that

E[u] = min E[v].
vekK?

Formally, we observe that

—Au < finQ,
u <1 in 2,
—Au= fin{x € Q|ulx) <yPx)}.

Hence, we may write down this problem as a Bellman equation
max{—Au — f,u — ¥} =0 in Q (1.1)

under the Dirichlet condition # = 0 on 0%2.

Obstacle problems arise in various settings both from purely mathematical inter-
ests and from their rich applications. For later topics, we only refer to some text
books [3, 26, 34, 45, 53, 56] because it is too wide for this article to mention these
issues. We will concentrate on regularity of solutions of obstacle problems but not
on regularity of the free boundary, which may be more interesting subject. See [11,
14, 28] and references therein for this topics.

It is worth mentioning that for (1.1), we can only expect solutions to belong to
W?2°°(Q) in general even if 1) and f are smooth enough. The first example is a simple
one.
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Example 1.1 Let Q := (=32, 3) forn = 1, and 1)(x) = x> — 1. We easily see that

401
x| =3 G <IxI<3).
ux) ;=
) {x2—1 (xl < 1),
satisfies )
d
max{—ﬁ,u—w} =0 ae. inQ

under the Dirichlet condition u(:l:fT) = 0. We notice that this u is not twice differen-
tiable at x = :I:%.

We next show the other example when there is a Oth order term of unknown
functions.

Example 1.2 Let €2 and ¢ be the same ones as in Example 1.1. For the inhomoge-
neous term f € C2(S2), we choose

5 1 5
x| — 3 - (7 < |x1| <,
—8x* +3x% — 3L (Ix| < ).

f(x):{

It is easy to verify that the same function u in Example 1.1 satisfies
2u
max{———i—u— ,M—’(/J} =0 a.e.in Q.
X

‘We next consider a minimizing problem under the other kind of restriction. Given
two obstacles ¢, ¥ € C(L2) satisfying the compatibility condition

p<1y inQ, and ¢ <0<y onIQ, 1.2)
we introduce the closed convex set

KY :={ueHj(Q)|p<u<ipae inQ}
Again, it is known that there is a unique u € K ;’ such that

E[u] = min E[v].

vek)
We observe that u satisfies at least formally
min{max{—Au — f,u —¢¥},u —p} =0 in Q. (1.3)

This is a bilateral obstacle problem, which is an Isaacs equation while (1.1) is called
a Bellman equation for unilateral obstacle problems.
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Because of (1.2), itis easy to see formally that (1.3) is equivalent to the following
PDE:
max{min{—Au — f,u — ¢}, u — ¢} =0 in Q.

Using the standard Euclidean inner product (-, -), we consider the energy

Elu] .= / <1(ADu, Du) + lcuz — fu) dx,
o \2 2

where A := (a;;) : @ — §" is positively definite; 30 > 0 such that
(A(X)E, &) > 0|€)* forany € € R" and x € Q. (1.4)
Here and later S” denotes the set of real-valued symmetric matrices of order .

When q;; € C'(Q) for simplicity, the minimizer of E[-] over HO1 (2) formally
satisfies

Lu=f in<,
where
Lu := —Tr(AD*u) + (b, Du) + cu.
Here, we set
" day; " day,;
b:=(by,...,b) =— o, -
( ! ) N 8)6]' Z 8xj
j=1 j=1

Hence, as before, we derive the Bellman equation associated with the minimization
of E[-] over K¥:
max{Lu — f,u — ¢} =0 in Q.

Throughout this paper, we shall suppose that there is M, > 0 such that
0<c(x) <M, forxeQ. (1.5)

If we suppose that ¢ is positive in €, then particularly, L™ estimates become easier to
prove. In fact, under (1.5), we need a perturbation function such as w in Proposition
2.1. We choose Ry > 0 such that

Q C Bg,. (1.6)

Here and later, we set B, := {y € R" | |[x| < r}, and B,(x) := x + B, for x € R".
In this survey, we are concerned with regularity of solutions for obstacle problems,
where the PDE part is given by the above linear second-order uniformly elliptic
operator L or Bellman-Isaacs ones. We will always assume that the existence of
(approximate) solutions of each obstacle problem. In Sects. 2 and 3, using Bernstein
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method, we obtain (local) W>°° () estimates on solutions of approximate equations
via penalization. We consider the case when the PDE part is linear with bilateral
obstacles in Sect.2 while we deal with Bellman equations with bi- and unilateral
obstacles in Sect. 3. In Sect.4, to show the Holder continuity of the first derivative,
we apply the weak Harnack inequality to solutions of bilateral obstacle problems,
where the main PDE part can be of Isaacs type, and moreover, coefficients and
inhomogeneous terms can be unbounded. Since fully nonlinear PDE contain Oth
order terms in Sect.4, we need to modify basic tools such as the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, weak Harnack inequality and
local maximum principle to PDE with Oth order terms. In Appendix, we present
those for the reader’s convenience.

2 A Linear Operator Case

Although some results in this section will be generalized in Sect. 3, we will present
those to clarify our basic argument.

In this section, for coefficients in the linear operator L, and obstacles, we impose
that

aij, bi, f.c, 0,1 € CH(Q). (2.1)
To introduce penalty equations, we need 3 € C2(R) such that
(i) pB@)=0forr <0,
(ii) ((t) grows linearly r >> 1, 2.2)
(fii) ' >0and 8" > 0inR.
For instance, it is easy to verify that 3 € C?(R) defined by
0 forr <0,
B(t) =1 —t*+413 fort € (0,2),
16(t — 1) fort =2

satisfies all the properties in (2.2).
For € € (0, 1), we will use 3.(¢z) := [(t/¢) for t € R. Furthermore, we easily
observe that
there is C > 0 such that — C < f3.(r) — t8.(t) < 0. (2.3)
We shall consider approximate equations with penalized terms:

Lu+ fe(u—1) = fe(p—u)=f inQ (2.4)

under the Dirichlet condition
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u=0 onodR. (2.5)
Hereafter, we will use the notations: for ¢, s € R,
tVvs:=max{t,s} and t A s := min{zt, s}.
For simplicity, we will write

ou 0%u

Uy, Uy, etc. for —, —— ¢
o e 8x,~’ 3xi8xj’

tc., respectively.

We also use the summation convention for repeated indices, e.g..

n
AijUxix; = z :aijux,x‘,'-

i,j=1

Pr(ﬂ)osition 2.1 (L estimates) Assume (1.2), (1.4), (1.5) and (2'1); Let u® €
C(Q) NCXH) be solutions of (2.4) satisfying (2.5). Then, there is C > 0 such
that

—émgxf_ —maxy~ <u < m3x<p++émgxf+ inQ foree(0,1).
Q Q Q Q

Proof We shall only prove the second inequality since the first one can be shown
similarly. We shall write u for u° for simplicity.
Setting Cy := maxg ' > 0 and C; := maxg f T, we shall suppose

® = max{u — Cy — u(C, + Hw} > 0.
Q
Here it > 0,6 € (0, 1) and w(x) := e*Ro — 7™k ~ Oforx = (x1,...,x,) € R,
where v > 1, and 50 > 0 is from (1.6).
By letting X € Q satisfy ® = u(x) — Co — u(Cy + d)w(x), (2.5) yields x € Q.

Hence, at x = (X1, ..., X,) € 2, the weak maximum principle implies

0 < —ajjltyx, + bitty, + p(Cy + 6)ye? TR (—ay 1y + by)

. . 2.6
< f —cu— B+ P + p(Cy + 6y TR (—fy + |y ]). 20

Here and later, to distinguish composite functions 3. (« — 1) and .(¢ — u), we use
the following notation:

B-() :=Bo() =) and B.() == Bo(p() — u(-)).

Thus, for a fixed v := (maxg |b1| + 6)/6, (2.6) together with (1.5) implies
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Ou(Cr + 8y < f —c{Co+ (Cr + Hwh + - < f + B atx.
Since p —u < p — Cop — p(Cy + d)w < p — Cyp < 0 at &, this inequality yields
Opu(Cr + )y = f(5),

which is a contradiction for ¢ > 1/(6). Therefore, for fixed p, v > 0 in the above,
we have ® < 0, which concludes the proof. O

We notice that in the above proof, we do not need the whole of (2.1) but we do
not present “minimal” hypotheses on regularity of given functions for the sake of
presentations.

Proposition 2.2 (W?P estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let u® €
C*(Q) be solutions of (2.4) satisfying (2.5). Then, there is C > 0 such that for
ee€ (0, 1),

184" = )|z = max T+ M, max )" + ClIDY w1~

_ ~ (2.7
18-(p — u) | L=@) < mﬁax ST+ M. mﬁax ¢ + CIDpllwi(e)-
In particular, for each p € (1, 00), there is CN‘p > 0 such that
lufllw2riy < Cp fore € (0, 1). (2.8)

Proof We shall only show the bound for 3. since we can prove the other one similarly.
We shall simply write u for u° again.

Suppose that ® := max§E > (. In view of the second inequality of (1.2), we
can choose % €  such that ® = 3.(u(%) — ¥(%)). Since 3. is nondecreasing, we
see that u — 1) attains its maximum at X € . Hence, we have at x,

0 = _aij(u - @xlx/ + bi(u - 71[}))(;
= f —Ccu — ﬂ_g""&—i_aiiji)q - biwx,'
< f—cp— B+ B + ClIDYlwr~)-

Here and later, C denotes the various positive constant depending only on known

quantities.
Note that the first inequality of (1.2) yields

(p—u)(X) < @W—u)(x) <0.

Therefore, we have 0 < B < f-(X) < maxg fT 4+ M. maxg ™ + C||DY|lwr=(q
in , where M, > 0 is the constant in (1.5) (Il
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Remark 2.3 When we consider Bellman operators in Sect. 3, the L*° estimate on
the penalty terms for obstacles does not imply (2.8) because we will have one more
penalty term, which cannot be evaluated by the above argument.

Now, we show local W estimates on solutions of (2.4). Our argument is more or
less standard though we do not know if the next proposition has appeared somewhere
to our knowledge.

Proposition 2.4 (Local W2 estimates) Assume (1.2), (1.4), (1.5) and (2.1). Let
us € CH(Q) N CY(Q) be solutions of (2.4). Then, for each compact set K € , there
is Cx > 0 independent of € € (0, 1) such that

max|D2u5| < C‘K
K
Proof Choose ¢ € Ci°(2) such that
0<¢<1 inQ, and (=1 onKk.

Putting M := maxg, (| Du®|, we may suppose M > 1.
Writing u and 3 for u® and (3., respectively, we set

V = C|D*ul* + yM{Bu — ) + B(p — u)} + yM|Dul*.

We shall write 3 := 3(u — 1) and 3 := B(p — u) again for simplicity. In the pro-
ceeding calculations, we shall moregimply WIIte U, Ujk, Qijk €1C. TOT Uy s Uiy s
(aij)x, etc., respectively.

We may suppose that maxg V = V(&) > 0 for some x € Q. By setting L& :=
—a;;&; + bi&;, since LoV (X) > 0 by the weak maximum principle, at X, we have

2¢G; I D*ul? + 2¢:¢; 1 D%ul* + 8¢ ukeurej + 2C urettpeij
+2¢ P ugeittre + YMB (u — )i (u — V) + YMB (u — V)i
M B"(p —w)i(p —u); +YMPB'(p — u)ij + 2yMuguyi;
+2yMuy;u;
+b; { 2¢GID%ul? + 2Cugeuge; +YMB (u — P); + YMB'(p — u);
+2yMuyuyi
< —20(ID*ul? +yM|D*u?) — yMOB' D — »)> + 5'|D( — w)?)
+C (Dl + | D*u|| D*ul) + yMB Lo(u — ) + MG Lo(p — u)
+2¢%uge Louge + 2yMuy Louy. B

0< —ajj

By Young’s inequality, at X, we have

Ip := 0 D*ul + 9yM{|D*ul? + B 1D — )1 + 8'|1D(p — w) )}
v ,
< YM{B Lo(u — ) + ' Lo( — w)} 4 2¢Puge Loure + 2yMug Loug
=L+L+1

for large v > 1.
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Since (2.8) for p > n implies the W'> estimates on u, we will not mention
the dependence on ||u || 1. () in the calculations below. In order to estimate I3, we
differentiate (2.4) with respect to x; to obtain

- :
Loux = fi +aijuij — bigui — cug — cxu — B (u — )i + B (0 — u).
Thus, we have

I < C’VM(l + |D2M|) + L+ 1

_, 2.9
+yM{B (—|Dul + DY) + B'(—1Dul + | DeP)). 29

To estimate I, we differentiate (2.4) with respect to x; and x; to obtain

Loure = fre + aijrettij + aijrttije + aijottijxe — bixett; — by gutie — b gutjx
— —/ /
=B —=Pe =B (u—P)(u =)+ (0 — Wi
+8"(o = w)i(p — u)s.

Hence, we have

L < 0CID*uP + C(1 + |D*u?) +2M{B D — ) > + 5| D(p — w)*}
+C{B (—|D2ul? + |D*)?) + B (—|D*u® + | D).

Thus, inserting this in (2.9) with v > 2/6, we have

OyM|D?ul> < CyM(1 + |D?ul) + C(1 + |D*ul?)
+F { ~*(D*ul® — |D*Y|*) — M(IDul* — |DY|?) }
+YM(f —u— 3+ 53— Loy)
45 { —C(D*ul? —|D*¢?) — M(IDul* — |Dg|*) }
= FYM(=f +u+ 3 — B+ Lop)
=1+ L+

Case 1 : J, < 0and J3 < 0: In this case, for a largely fixed v >> 2/6, we imme-
diately have

|D*ul*(3) < C.
which together with Propositions 2.1 and 2.2 implies

M? <V(R)<C(+ M).
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Case2: J, > Oor J; > 0: We shall only consider the case of J, > 0 since the
other one can be shown similarly. In view of (2.7), we see that

CID*ul*(R) < C(1+ M),

which yields
M? < V@) < C(1+ M).

Therefore, M is bounded independently from ¢ € (0, 1). O

Remark 2.5 We note that our choice of auxiliary functions V does not work for
Bellman operators in Sect.3. Instead, we will barrow a different one from [23],
which can be applied only to unilateral obstacle problems.

As mentioned in Sect. 1, Jensen in [32] showed W2 () estimates under addi-
tional assumptions on the coefficients. Here, in order to simplify the argument, we
shall obtain the W bound near the flat boundary under additional assumptions.
Setting x’ = (x1, ..., x,—1) € R*"!, we suppose that Q satisfies

{QmBl={x=('x/axn)||x|<lv'xﬂ>0}a (210)

0QN B ={(x,0) ] |x'| <1}.

To show W2 estimates near OS2 for bilateral obstacle problems, we follow the
argument in [31].

Theorem 2.6 Assume (1.2), (1.4), (1.5), (2.1) and (2.10). Assume also that
a;, =0 on 0N By. (2.11)
Let u® € C*(Q) be solutions of (2.4). Then, there is C > 0 such that
D>’ < C in QN By.
Remark 2.7 Under hypothesis (2.11), we note that
— apit,,, +byu;, = f on9QN By (2.12)
since u; = ufj =0forl <i,j <n-—10n9dQN By by (2.5).

Proof As before, we shall write u for u°, and use other simplified notations.
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We choose 7 € C3°(By) such that

0<n<1linBy,
n=1 inB,. (2.13)
Ny, =0 ondQN B;.

Setting
S L for (i, j) # (n.n),
v unn_l;nun+ff0r (lvj) =(n,n),

where l;,, = b, /a,, and f = f/au,, we define

n

2.2 2 2 I N2

|D Ul = E Vi = E uij+(unn_bnun+f) .
i,j=1 (@i, j)#n,n)

Consider W defined by
W = e’ |D*v]> + yM (B + B) + yM|Dul*,

where M := maxgn|D?u|, and A, v > 1 will be fixed. We may suppose M > 1.
LetX = (%1, %2, ..., X,) € QN B; beapoint such that maxgz W = W (%) > 0.
Because of W(X) > 0, we may also assume that £ € Q N B;.
Since the argument in the proof of Proposition 2.4 can be applied to the case when

X € QN By with some minor changes, we may suppose X € 9Q N By, and we will
obtain a contradiction. Since |D?*v|* = 2 Z;:ll u?, at £, (2.5) implies

n—1
Wn = zeAi,l,'f Z(Aulzn + 2uinuinn) + ZFYMun(Bnun - f)

i=1

By noting u;,, = (l;nun — f ); at x, this equality implies
n—1
W, > 2eng? {(A -0 uj, - C} - CM
i=1

n—1
> 2eM L2 (A= C) Y uf, — CM}
i=1
> 2% (| D*v|? — CM)
for a fixed A > 1. If the right hand side of the above is non-positive, then we have

|1 D*|* (%) < CM,
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which implies the uniform bound of M independent of € € (0, 1). Therefore, we
have W,(x) > O but this implies that X is not the maximum of W, which is a
contradiction. O

Following [31], we give a sufficient condition to derive (2.11). We use the fol-
lowing notation:

Br+ ={x=(,...,x,) € B | x, > 0}.

Although BlJr is not a smooth domain, considering an appropriate smooth
domain € D B, we may assume OB; is smooth. The next proposition
yields (2.11).

Proposition 2.8 Suppose that there is o € (0, 1) such that
3a, 51 ..
ajj € C7(B,) forl <i,j <n.

There is a C*-diffeomorphism T = (Ty, ..., T,) :§;r — T(ET) such that T €
c*e (ET) such that

. . B oT, 0T,
) = (T () = (x) =—(x)

ij=1

and .
Gn(y,00=0 (1<k<n-—1), forT7'(y,0) € B,.

Proof. We begin with considering the following PDE

—aij ()i, + bi(Duy, + c)u + e — ) — fe(p —u) = f(x) in Bf

such that u(x) = 0forx = (x1,...,x,-1,0) € §1+- Consider the change of variable
T = (fl, e, f"") :El+ — R”" defined by

X+ TF(x) — T*(x',0) forx = (x', x,) € By . 1 <k <n—1,
X forx = (x/, x,) € ET, k =n.

n=f%m={
Here, T = (T',...,T") € C*“’(ET; R"™) is the solution of

(2.14)

{—AT"—}—T" =0 inB,

(DT, vy = & on 0B,
ann

where v is the outward unit normal of 9B .
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Itis easy torewrite the equation for v(y) := u(x) with this new variable y = T (x):
—ai; (M)y,y, + bi(uy, + @+ B-(v — ) = B(p —v) = (),

where ¢(y) = ¢(x), f(y) = f(x), () = $(x), () = p(x),
aij(y) = Y aw@TL )T (x),
k=1

and

bi(y) =) bi0)T} (x) = Y an@)T., ().

k=1 k.t=1

In view of the boundary condition of (2.5), it is immediate to verify that for
1<i<n-1,

n

ain(y,0) = Y an(x', 0T} (x', 0T} (x', 0)
k=1
n
=Y ' 0T} (', 0)
k=1
= a,-n(x’, 0) +ann(x,7 O)T;n(x’, 0)=0. U

Open question 1: Is it possible to obtain W>>° () estimates with no extra assump-
tion (2.11) on g;;?

3 A Bellman Type Operator Case

In this section, we obtain W1 bounds for solutions of bilateral obstacle problems
when the PDE part is of Bellman type. However, we do not know if we can show
further estimates on the second derivative of solutions of penalized systems below
for bilateral obstacle problems. Thus, following [43], we will discuss local W20
estimates on solutions of unilateral obstacle problems for Bellman equations.

3.1 Bilateral Obstacles

We first consider the following bilateral obstacle problems

min{max{F (x, u, Du, Dzu),u—w},u—go} =0 in L, 3.1
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where F : Q@ x R x R" x §" — R is defined by

F(x,r, &, X) = g%c{—Tr(Ak(x)X) + (b (), &) + For — fF). (3.2)

Here by letting N > 2 be a fixed integer for k_e N :={1,2,..., N}, functions
= () Q— ", b" = (b)) : Q- R",¢*: Q- Rand f* : @ — Raregiven.
We will use linear operators

L*u := —Tr(A*(x) D*u) 4+ (b* (x), Du) + c*(x)u.
As in Sect.2, we suppose that there is # > 0 such that
(Ak(x)g, &) > 9|§|2 forany ¢ € R" and (x,k) € Q x N, (3.3)
and there is M, > 0 such that
0<cf <M. inQ forkeN. (3.4)

Following [22], we introduce a system of PDE via penalization: for k € NV,

{ Db Bld =) 4 B =) = fulp —uy = i@,

u* =0 onds,

where uV*! := u! and 3. is given in Sect. 2. In order to distinguish three j3. in (3.5),

we will simply write

g’;(x) = g;IZ(x) = B-(u* (x) — uf+ (x)),
B (x) == B.(x) = B-(uF(x) — P(x)),
B (x) = B (x) = B(p(x) — Uk (x)).

For given functions, we suppose that
”,l,f e C*(Q) forl <i,j<n, andk e N. (3.6)

Setting

K+ . k—
= max , and (=max [,
f keN f i keN f

we have the L™ estimates on «*¢ independent of (¢, k) € (0, 1) x N.

Proposition 3.1 (L estimates) Assume (1.2), (3 3) and (3.6). Let u® = (u**°)
C%(Q2; RY) be solutions of (3.5). Then, there is C > 0 such that

—émgxf—mgxzb’§uk'5§mgxcp++émgxf inQ for (e, k) € (0,1) x N.
a - g Q Q
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Proof Setting Cp := maxg ¢~ and C; := maxg f, we suppose

min 1% (x) 4+ Co 4+ p(Cy + Hw(x) < 0.
keN ,xeQ

Here, § > 0 will be sent to 0 in the end, and w is the function in the proof of
Proposition 2.1; w(x) := €270 — Y&+ R) 5 0 in Q C Bpg,, where v > 0 will be
fixed later. Dropping ¢ > 0 from «*¢ and (3., we may assume that there is X € Q
such that

u' () + Co+ p(Cr + Hw(%) = min {u"(x) + Co + 1(C1 + Hw(x)} < 0.
keN ,xeQ

By setting v := (maxke N reg DX+ 0) /6, the weak maximum principle implies that
atx € Q,
0> —alul; + blu} + p(Cy + ) TR (yaf, — b))
> f'=clu—pBu' —u?) = B’ =) +0u(Ci + )y
> —f +cHCo+ w(Cr + Hw) — B’ —u?) — B’ — ) + p(Cy + 8)y.

\%

1

Since u! < u? and u' — 1 < 0 at x, these observation yield

F&) = 0u(Cy + 6y,

which gives a contradiction when p > 1/(6). Therefore, we conclude the proof of
the first inequality.

The second inequality can be shown more easily since we may avoid the penalty
term (3. (u* — u**1) in the opposite inequalities. O

Next, we show L estimates on 3.(u* — ) and B.(¢ — u*) independent of

(e, k) € (0,1) x N.

Proposition 3.2 (L_°o estimates on penalty terms) Assume (1.2), (3.3) and (3.6). Let
u® = Wh%) e C2(Q; RY) be solutions of (3.5). Then, there exists C, > 0 such that
fore € (0,1)andk € N,

118 ("5 — )l 1) < mgx? + Mo max )~ + C1l DY |lwi~e).
18- — u*) |l e (@) < max f + M. max ¢t + CilDllwiq)-

Proof We shall write u* for u*° as before. By the same reason in the proof of
Proposition 3.1, we shall only show the estimates on (.(¢ — ub).

Suppose maxg [_3" = ﬁ'(xo) > 0 for some xy € . Thus, we may assume
maxg (¢ — u¥) = (¢ — u")(x9) > 0. Hence, at xg € , we have

—=l1
0<—alj(o—uij+bl(e—u')i <—f'+c'u' +8' +5 ="+ ClIDgllyix(g)-
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Since u' — u? < 0,and o — u' > 0 at xy, we have

B' = —f'+c'o+ ClIDgllwi~).
which concludes the assertion as in the proof of Proposition 2.2. (]

Remark 3.3 Notice that we cannot apply the above argument to obtain L°°-
estimates on 3. (u%¢ — u¥+1-%). Therefore, unlike Proposition 2.2, we cannot obtain
W2P estimates on u*c.

For further regularity, we first obtain the estimate of first derivatives on 02 in
Proposition 3.4 below. To this end, we shall use W' estimates on approximate
solutions of the associated unilateral obstacle problems via penalization.

Proposmon 3.4 (Gradient estimates on 92) Assume (1.2), (3.3) and (3.6). Let u®
k) e C'(2: R") N C*(2; R") be solutions of (3.5). Then, there exists C2 > O
such that for e € (0, 1) and k € N,

I DU || o0y < Co.

Proof Because u*° = 0 on 02, we only need the estimate

(2)

aks
‘ <C foranyz e Q,

where n = n(z) € 62 | denotes the outward unit vector at z € 9.
Let v° = (v5) : @ — RY be the unique solution of the penalized system of the
following unilateral obstacle problem.

{ LAv* + B — vt + B.(0F — ) = fFin Q, (3.7)

v =0 onoS.

Due to Lf:mmas 2.1, 2.2 and 3.1 in [43], we find 6‘1 > (, and for each compact
K € 2, C;(K) > 0 such that

I llwine) < €1, and [ D05l pxx) < Ci(K). (3.8)
We claim that
Vo <uhF inQ for (e,k) € (0, 1) x V.
Indeed, if we suppose © := maxg , (v*° — u** — §w) > 0, where § > 0 will be

sent to 0 and w is the function in Proposition 2.1, then we may suppose © =
(v —ul® — fw)(X) for some £ € Q. Hence, at X, we have
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0< —ai]j(vl*s —ub9);; + bl (" — ule); + 5y (=0 + |bl))
< —c' @ —u'F) = B (01— v2E) — B (0" — ) + Lol — ue)
+8:(u"* — ) — Be(p — u"®) — 00y

provided v > (max,, g |bX| + 6)/6. Since v!¢ > u' and v!€ — V3¢ > u'e —y?e
at x, we immediately obtain a contradiction. Therefore, we have

vof < ubf 4 Sw in @,

which concludes the claim by sending 6 — 0. Therefore, we have

auk*g( ) < ke
on 9= on

(z) < €, foranyz € 9. (3.9)

On the other hand, for each k € A/, we next let w*¢ be solutions of

Lfu — B.(p—u) = fFinQ,
u=0 onof.

We claim that for (e, k) € (0, 1) x N,

uke < whe in Q.
Indeed, assuming maxg - (u*< — whe — dw) = (' — w! — w)(£) > 0 for
some x € 2, at x, we have

0 = —al (" — 0!y &bl —wh); 5777 (=07 + [b])
< =l = u2%) = Bl = ) + Bulp —u') = Bl — w') — 03y
<0

for large v > 1 as before. Hence, the same argument to obtain (3.9) implies

duk-= owk=

on (z) > on

(z) foranyz € 0%. (3.10)

By the same argument as in the proof of Proposition 2.2, we find C > 0 such that
0 < B-(p—w") < C inQandfor (e, k) € (0,1) x N,

which implies
max ||Dwk’5||Lm(Q) < C foranye € (0, 1).
keN
This together with (3.9) and (3.10) concludes the assertion. O

Now, we shall use Bernstein method to derive W1 (2) estimates on u*<.
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Proposition 3.5 Assume (1.2), (3.3) and (3.6). Let u® = = Wk e C'( RY)N
C3(Q2; RY) be solutions of (3.5). There exists C3 > 0 such that

max [|u*c | wie@) < C3 fore € (0, 1).
keN

Proof We shall drop ¢ from u*<. Set
VEG) o= DUt P+ ).
In view of Proposition 3.4, we may suppose that

max VE = VvI(%) > 0
N.Q

for some x € 2. We shall write u and v for u' and u?, respectively. Furthermore, we

shall write 3, 8 and ﬁ for 3!, ﬁ and 3, ! respectively.
We then have at X € Q,

0 < —2a} Writtkj + ugtgij + yuiuj + yuuij) + 2b} (upur; + uu;)
26(| D%l +7Dul®) + 2yu(f' = c'u — 3= B+ B)
fi+ alj i _f;,k“i — e — cluy
—0'(u =) — B =P+ G (0 —uk
< —0|Du|* + C + B (—|Du|* + |Dv|*> — yu® + yv?)
+8 (=1 Dul? + | DY> — yu® +49?)
+6'(=|Dul* + |Do* — yu* +v¢?)

=
=-

+2uy

for large v > 1. We use (2.3) to obtain the last inequality in the above.
Since we may suppose the last two terms are non-positive and V! > V2 at £, we
have 70| Du(%)|*> < C, which concludes the assertion. (Il

Since we do not know L estimates on 3. (u* — u*t!), it seems difficult to find
a weak (or viscosity) solution of (3.1) only with W estimates. Thus, we shall
switch to unilateral obstacle problems.

3.2 Upnilateral Obstacles

In order to show local W% estimates on solutions of obstacle problems, we shall
restrict ourselves to consider unilateral obstacle ones;

o
{max{F(x,u,Du,Du),u Y} =0inQ, 3.11)

u =0 on 0%,



Regularity of Solutions of Obstacle Problems —Old & New— 223

where F is of Bellman type defined in (3.2).

Lenhart in [43] showed the Wlicoo (€2) estimates on solutions of (3.11). We will
recall the argument here.

We notice that proceeding arguments for W estimates can not be applied to
the following unilateral obstacle problem with the same F because the PDE below
is of Isaacs type:

min{F(x,u,Du,DZM),u—cp} =0 in Q. (3.12)

Open question 2: Is it possible to obtain (local) W estimates on solutions of
(3.12)?

In place of (1.2), we only need to suppose
1 >0 on 0. (3.13)

The penalized system of (3.11) is as follows: for u® = ko),

(3.14)

Lkuk,s + ﬂg(uk’g _ Mk+1,€) + ﬁg(l/lk’s _ w) — fk in Q,
uk¢ =0 onoQ,

N+1,e l,e

where u =u

It is easy to establish the next lemma by following the proofs of Propositions 3.1,
3.2 and 3.5. We note that the Bernstein method with the standard barrier argument
can also work for the Bellman equation with unilateral obstacles. We refer to Lemma
2.1 in [43] for the details.

Lemma 3.6 There exists C > 0 such that
b= oy + 118: " — )~ < € for (e, k) € (0,1) x N.

Following the argument in [43] with a bit simpler auxilialy function V below than
that there, we establish WZ‘OO(Q) estimates.

loc

Theorem 3.7 (Local W>* estimates) Assume (3.3), (3.6) and (3.13). Let u® =
Wk®) e CH2: RYYNCH(Q : RY) be solutions of (3.14). Then, for each compact
K € Q, there is Cx > 0 such that

D>y <C 0, 1).
xJ}é‘i’éN' u “(x)| < Cg foree(0,1)

Proof We shall simply write u* for u** again.

Let ¢ € C3°(2) be the same function as in the proof of Proposition 2.4. Putting
M* = maxg ¢|D*u¥|, we may suppose M = maxy M* = ((3)|D*u'(3)| = 1 for
some Z € . By change of variables using the orthogonal matrix B such that
BA'(2)'B = (a0¢), we may suppose that
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L'u' ) = —oqug ) + by Qup(2) + ' @u' (2)
for some «;, > 6. For eachi € NV, setting
Vii= D )P + yMPogul, +yM|Du' |,

we may suppose that max, g V' = V(%) > 0 for some £ € Q and iy € V.
We note that
M? = GID*u'P(2) < VO R) — yM Py (2)

VO®E) +yME(f! = bjuj —c'u')(@).

IAIA

Thus, for a fixed v > 1, once we obtain
|D*u"*(%) < CM, (3.15)

then we have .
M? < VO@R)+CM < CM( + M),

which concludes the assertion.
We shall write a;;, b;, ¢, V, u and v for a;;?, b, o, Vi, u and u™*!, respectively,

for simplicity. The weak maximum principle yields, at x,

0<—a;Vij +b;Vi
2CC;1D*ul? + 2G| D*ul* + 8CCiureune; + 2C uretiei
= —a;j { +2Cureiuge; + 2yMCG ot + 2yM G o
+Ay MG + YM P onupgij + 2y Mugugi; + 2y Muy;ug;
2CG | D*ul* + 2P ugeurei + 2yMCGonury + Mot
+b; :
+2yMuguyi

Hence, setting Lov := —a;;v;; + b;v;, at X, we have

20(C*| D*ul* +~yM|D?ul?)

< C(|D*ul* 4+ {|D*u||D*u| + yM|D*u| + yM{|D3u))
+yM oy Lourk + 2Cuke Louge + 2y Muy Loug

=L+ L+5L+ 1.

By the definition of I; and I3, we have
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Sik + aij iy + 20 g ijie — by gee; — 2b; xuik
L+ I3 = yMCay  —crtt — 2cuy — Cllg — B (u - )}
—B'(u— vk — B (u— ) — B (u— )

Sie + aijrei; + 2a; xuije — bigent; — 2b; guje

+2C%u 3 —Crelt — Crlig = Celtie — Cltgy — B"(u — U_)/k(” — V)¢
=B =) =B (u—V)(w—1P)— U —1YP)e
2{C(l+|D2M|+|D3M|)—95”|D(u—v)|2 }
< ’yMC , —/ 2 —/
—ag (U — v — 08 |DW —P)° — arff (u — )i

CID?ul(1 + |D?ul + |D*ul) + 26"|D(u — v)|*| Dul
+¢ +§:(—|D2u|2 + D) +23 | D(u — ) *| D?ul
+B (=1D*ul* +|D*v]?)

Moreover, I is estimated by

Iy < 2yMud{ fi + aijguij — bigu; — cxu — cuy —g:(u — o) — B — )}
< AM{C(1 + |D*ul) + ' (—=|Dul* + |Dv|*) 4+ B (—=|Dul* + | DY|*)}.

Hence, these inequalities together with Young’s inequality give

0G| D3 ul® +yM|Du?)

< Iy + CYM(yM + | D*ul) + M2 — 49)C*3"|D(u — v)|*
+MQ2 =0 CF D@ — ) + F(=Vio + Vioth)
+B (=V + D) + yMCopthu +yMIDY ).

Note V¥ > Viotl at . Furthermore, we may suppose 0 > —V + (2| D?y)|> 4+
YMC*apbg + yM|Dap|? at X. Thus, taking v > 2/6, we have

0(C?|D3ul* + yM|D*u|?) < I + CyM(yM + | D?ul)
< C(1 + |D*ul® +v*M?) + 6% | Dul?.

Remembering M, v > 1, we have
(OyM — O)|D*ul*(®) < C(1 +~*M?),

which implies
OyM|D*u|*(X) < C*M?

provided §yM > 2C. This yields (3.15). O

Open question 3: Is it possible to obtain W (Q) or W7 (R2) estimates for Bellman
equations with unilateral obstacles under additional conditions if necessary?

Open question 4: s it possible to obtain local W,icoo (£2) estimates for Bellman equa-
tions with bilateral obstacles?
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4 A Fully Nonlinear Operator Case

In Sects.2 and 3, thanks to Bernstein method, we establish estimates on solutions
of approximate PDE (or systems of PDE), which present the existence of (strong)
solutions belonging to the associated function spaces (i.e. W2%(Q) or W,i’coo (2)).
See [43, 47] for the details. We also refer to [2] for a modern version of Bernstein
method.

We note that there is a fully nonlinear uniformly elliptic equation which does
not have classical solutions. See [48]. Furthermore, in [49], it is shown that there
exists a viscosity solution of a fully nonlinear uniformly elliptic PDE whose second
derivative is not bounded. On the other hand, we also know there is a classical solution
of a special Isaacs equation consisting of three linear operators in [9].

In this section, we study more general PDE such as Isaacs equations with bilateral
obstacles, and with unbounded, possibly discontinuous coefficients and inhomoge-
neous terms. In fact, to our knowledge, we do not know any regularity results for
obstacle problems of Isaacs equations via penalization. In order to see a difficulty
in the study of Isaacs equations via penalization, let us consider approximate Isaacs
equations with no obstacles via penalization:

Lk,luk,l + Bg(uk,f _ uk-ﬁ-l,l) _ ﬂs(uk,l-'H _ uk,@) — fk,l in Q, (41)

where u™ 1t = u'* for £ € N'andu*N+' = y*! fork € M.Here, by setting M :=
{1,...,MYand NV :={1,..., N}, uPt : Q@ — R for (k, £) € M x N are unknown
functions, and linear operators are defined by

LA = —Tr(AR (x) D*¢) + (b4 (x), DC) + FH(x)¢,

where given functions ARt Q — §" bt QO — R"and ¢kt Q — [0, 00) satisfy
enough regularity.

If we obtain L estimates on (3. (u** — u**1:¢) and B. (k1 — ukt), then it is
easy to verify that u’g@ converge to a single limit # as ¢ — 0 (along a subsequence if

necessary), which is a solution of

i L:y — fF29Y =0 in Q. 42
i‘é}\r}?el%{ u— 4} in 4.2)

However, it is difficult to show L*° estimates on the first and second penalty terms. In
fact, in a pioneering work [47], we first derive W2 estimates on solutions of penal-
ized problems for Bellman equations (i.e. N = 1), and then this gives L bounds
for the penalty term. Moreover, Bernstein method does not work to obtain W2
estimates on solutions of (4.1). Furthermore, even if we establish W estimates on
approximate solutions, since we have two penalty terms with opposite signs in (4.1),
we still do not know if solutions of the system (4.1) converge to a single solution of
4.2).
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Open question 5: Is it possible to obtain a weak/viscosity solution of (4.2) satisfying
(2.5) via penalization?

If we restrict ourselves to try to establish C!*7 estimates on solutions of bilateral
obstacle problems for v € (0, 1), then we can accomplish such estimates even when
F is of Isaacs type;

N _ kL k.0 k.t
Gx,r & X) _?e%?éi"i{ Tr(A®"(x)X) + (b™"(x), &) + ¢ (x)r}.

Moreover, since we do not need systems of PDE via penalization, we may deal
with compact sets M, N in R™ for some m € N. Furthermore, since we will not
differentiate PDE (because it is impossible!), it is possible to treat discontinuous
coefficients and inhomogeneous terms. In this procedure, we need to show the exis-
tence of weak/viscosity solutions of Isaacs equations with obstacles by a different
method. We only refer to [16] and [42] for the existence issue.

This section is based on a recent work by the author and Tateyama in [42].

4.1 Equi-Continuity

Modifying arguments by Duque in [20], we present an idea to apply the weak Har-
nack inequality to obtain estimates on solutions of obstacle problems when the PDE
part may be fully nonlinear. Here, the terminology fully nonlinear means that the
mapping (£, X) € R" x §" — G(x,r, &, X) € R is neither convex nor concave for
each (x,r) € 2 x R.

In what follows, we suppose that

@) Gx,0,0,0)=0forx e,
i) PX-Y)<Gx,rn&,X)—Gx,r,&,Y) <P (X-Y)
forx e Q,reR,eR", X, Y € §",
(iii) there is u € L9(S2) such thatg > n, and
G, r, €. X) — G, 1o X)| < p()|€ — 1)
forx e Q,reR,&nelR, X eS”,
(iv) thereis ¢y € C() such that ¢y > 0in 2, and
Gx,rn & X)—G(x,s,& X) = co(x)(r —s)
forx e Q,r,s eR, e R", X € §7,
(v) felLP(Q)forg > p > po.

(4.3)

Here, py € [%, n) is the so-called Escauriaza’s constant in [21], and for a fixed 6 €
(0, 1], Pucci operators PE 8" — R are defined as follows:

PH(X) := max{—Tr(AX) | A € S;} and P~ (X) := min{-Tr(AX) | A € S}},
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where Sj :={X e S§" |0l <X < 6~'1}. Under hypotheses (i)—(iv) in (4.3), we
easily verify that

P7(X) — p(@)El + co()r = Gx, 1, £, X) = PT(X) + p(x)|€] + co(x)r

forx e Q,r e R, £ e R"and X € §".
In a celebrated paper [10] by Caffarelli, it has turned out that to establish the
regularity of viscosity solutions of fully nonlinear uniformly elliptic PDE

G(x,u, Du, D*u) = f(x) in€,
instead of this equation, it is essential to study extremal inequalities:
G~ (x,u, Du, D*u) < fT(x) and G*(x,u, Du, D*u) > —f~(x),
where G*(x, r, &, X) 1= PH(X) &+ pu(x)|€] & co(x)rt.
Furthermore, according to [10] again, the key for the regularity theory is the weak

Harnack inequality for supersolutions.
We recall the definition of L”-viscosity solutions of

H(x,u,Du, D’u) =0 inQ, (4.4)

where H : Q@ x R x R" x §" — R is given (not necessarily continuous).

Definition 4.1 We say that u € C(2) is an L” viscosity subsolution (resp.,
supersolution) of (4.4) if it follows that

lin})ess. gn(f) H(y,u(y), DC(y), D*¢(y)) <0

(resp-, lim ess. sup H(y, u(y), D{(y), D*((y)) = 0)

whenever for any ( € leof (2), u — ( attains its local maximum (resp., minimum)
at x € Q. Finally, we say that u € C(2) is an L? viscosity solution of (4.4) if it is
both of an L? viscosity subsolution and an L? viscosity supersolution of (4.4).

Throughout this section, we at least suppose that
P, P € C(Q) (4.5)
satisfy (1.2). Under hypotheses (4.3), (4.5) and (1.2), we consider

min{max{G (x, u, Du, D*u) — f(x), u — (x)}, u — px)}=0 inQ (4.6
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under the Dirichlet condition (2.5). It is immediate to see that if u € C(£2) is an
L? viscosity subsolution (resp., supersolution) of (4.6) with this G, then itis an L?
viscosity subsolution (resp., supersolution) of

min{max{G~ (x, u, Du, Dzu) — ), u— X))}, u— px)}=0
(resp., min{max{G* (x, u, Du, Dzu) + ), u—v@)lhu—pk)}= 0)

in Q. We will only use these information in the argument below.
We recall a reasonable result without proof.

Proposition 4.2 (Proposition 2.9 in [42]) Under the same hypotheses as in Theorem
4.3, if u € C(R2) is an L? viscosity subsolution (resp., supersolution) of (4.6), then
it follows that

u <1 (resp.,u> ) inQ.

In what follows, we call w a modulus of continuity of functions if
w € C([0, 00)) is nondecreasing, and w(0) = 0.

We also use the notation A’ for the set of interior points of A C R”.

Theorem 4.3 (Theorem 2.10 in [42]) Assume (4.3), (4.5) and (1.2). Then, there
exists a modulus of continuity w such that for any L? viscosity solution of (4.6)
satisfying (2.5), it follows that

lu(x) —u(y)| <w(lx —y|) foranyx,y € Q.

Moreover, if we suppose @, 1) € C*(Q) for some o € (0, 1), then there are C>0
and & € (0, ] such that for any LP viscosity solution of (4.6) satisfying (2.5), it
follows that

lu(x) —u(y)| < é|x — y|& foranyx,y € Q.

For r > 0 and x € R", we define closed cubes as follows:

0 =[-2%]" ew=x+0

r o= 2 ’ 2 ’ r X) =X re

Proof We shall only give a proof for local estimates since we can modify the argu-
ment below by using the weak Harnack inequality near 0S2. See [29] for its usage.

Fix any K € 2. We shall divide K by
K ={xeK|ux) =9y}, K ={xek|ux) =px)}

and Kg:= K\ (KtUK"™).
It is standard to show the assertion when x, y € K. See [42] for the details.
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Let wy be the modulus of continuity of obstacles;

[(x) =PIV 1p(x) = (] < wollx — y|) forx,y € Q.

Fix any X € K. We may suppose X = 0 by translation. For r € (0, dy/(2+/n)),
where d := dist(9€2, K), we set

i=uV (p0) 4+ wy(2y/nr)) and u :=u A (Y(0) — wy(2/nr)).
Notice that ¢(0) + wo(24/nr) > ¢ and ¥ > P(0) — wo(2+/nr) in Q4 C Q. It is
standard to see that u and u are, respectively, an L? viscosity subsolution and super-
solution of
G~ (x,u,Du, D*u) — fT(x) =0 and G*(x,u, Du, D*u) + f~(x) =0 inQy,.
For s € (0, dy), set

M; :=supu and m, :=infu.
[oR Qs

We then define
U:=M; —u and U :=u—my forr e (0,dy/(2/n)).
It is immediate to see that U and U are nonnegative L” viscosity supersolutions of
PH(D*u) + p|Dul + cou+ f£ =0 in Q4.

Since ||l e 0.y < 11l Lac0y) (Zﬁr)l_;l , we can apply Proposition 5.7 in Appendix
with the standard scaling to have

1
</ U“dx) ’ <Cra <i3fﬁ+r“°||f+||LW<Q4,))a

1
( / mdx) C<crh (iIQIfQ+ra°||f_||LW(Q4r)>=

where ag :=2 — - € (0, 1]. By noting My, —my = U + (4 — u) + (u — u) +

pAR

U < U + 4wo(24/nr) + U, the above inequalities imply
My —my < C <11Qlfﬁ + igf U+ r® + wo(zﬁr)) ,

which gives a decay estimate of oscillations:

Mr —my = 00(M4r - m4r) + re + WO(z\/Er)
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Since u(x) —u(y) <u(x) —u(y), it is standard (e.g. in [29]) to obtain equi-
continuity of u.

If ¢ and 1) are Holder continuous, then the above estimate implies the Holder
continuity with some exponent. (]

4.2 CY7 Estimates

Now, assuming that there is 4 € (0, 1) such that
p.1h e CM(Q), 4.7)

we will suppose (4.3) but ¢ > p > n in (v). Under this assumption, we will use the
Holder exponent

~o 1= min {1 — ﬁ,&} € (0, ).
p
For simplicity, we will also suppose
p <1 in Q. (4.8)

For G in (4.3), we use the notation:

G (x.0,0, X) — G(5,0,0, X)|
O(x,y) := su forx,y € Q.
sk I+ [X] Y

Theorem 4.4 Assume (4.3) replaced by g > p > n in (v), (4.7) and (4.8). For any
K € Q, there exist Cx > 0,y € (0, 01, ro € (0, dist(K, OR2)), and &y > 0 such that
ifu € C(R) is an L? viscosity solution of (4.6), and if

! N0y, s oy < b0 forr € (0,r9) and y € Nk, 4.9)

where by setting Cxlu] :=={x € K | u(x) = ¢(x) or u(x) = 1p(x)}, we define the
non-coincidence set by Nk [u] := {x € K | dist(x, Cg[u]) > 0}, then it follows that

|Du(x) — Du(y)| < Cglx — y|" forx,y € K.

Proof Following the argument in the proof of Proposition 5.1 in [42], we can find
71 € (0, 1) such that

|Du(x) — Du(y)| < C|lx — y|" B,(x) C Ng[u] for some r > 0. (4.10)
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In fact, we need some modification of the standard argument in [10] since our PDE
contains unbounded ingredients. See Sect.5.1 in [42] for the details. We only need
(4.9) to prove this fact.

We shall show the assertion near the coincidence set. Thus, we shall fix z € K
such that u(z) = ¢(z). Again, we may suppose z = 0 by translation. We will show
that

Ju(x) = u(0) = (Dp(0). x)| < Cr'*™ x € Q:,

which implies that u is differentiable at 0, Du(0) = D(0), and moreover,
[Du(x) — Du(0)| < Clx|™ forx € Q:.
We refer to [1] for its readable proof.

Setting v := u — ©(0) — (Dp(0), x) + Ar't? for large A > 0, we claim that v is
a nonnegative L? viscosity supersolution of

PH(D*u) + p|Dul +cov+g~ =0 in Qu,

where g~ (x) := f7(x) + | Dp(0)|(x) + co{p(0) + (Dp(0), x)}. Considering v :=
v (ianr u+ 50_1 llg~ ”L]mn(QM))_l , we note that we may apply Proposition 5.7 to find
go > 0 such that

r 0 vll o, < C <i3fv +r77 ||g||L"(Q4,))
< CO) +r7)

< Cr'tmn,

@.11)

For large v > 1, it is easy to verify that w := v vV (vAr'*7) is an L? viscosity
subsolution of
P~ (D*u) — p|Dul —g* =0 in Qy,
where g7 = f* + |Do0)|p — co{p(0) + (Dp(0), x) — Ar'*7}. In view of

Proposition 5.8, we have

1
~ _n <0 _n
supvsc{r “0 (/ wEde> + 7 P+ pllros) f
Qﬁ r

where C = C‘(eo) > 0. Hence, by (4.11), we have
v < Cr'*t in 0:.

The opposite inequality is trivial because Proposition 4.2 yields
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u(x) — p(0) — (Dp(0), x) > @(x) — p(0) — (Dp(0), x) = —Cr'*T > —Cr'*0
for |x| <r.
Now, we shall combine two cases to establish the estimate. For x, y € Ng, we
may assume 0 < dist(y, Cg[u]) < dist(x, Cg[u]). Choose %, § € Ck[u] such that

|x — %] = dist(x, Cg[ul) > [y — | = dist(y, Cx[ul).

Casel:|x —y| < %lx — x|. In this case, by (4.10), we have

|Du(x) — Du(y)l = Clx — y|".

Case?2:|x —y| > %|x — x| > %Iy — y|. We may suppose that (u — p)(x) =
(u —@)() (or (u —Y)(X) = (u —¥)(3)) because Y(x) — p(y) = 79 > 0 for y €
B,.(x) N K with small » > 0.

Thus, due to the above observation, we have

|Du(x) — Du(y)|
< |Du(x) — Du(®)| + [Du(£) — Du($)| + |Du(3) — Du(y)|
< Clx =X + [Dp(X) — Dp(M] + Cly = JI™
=Clx =y +Clx =3I
=Clx -y

because |£ — 517 < % —x[7 + x — y[ + |y — $[7 and o < 4. O

Open question 6: What is a sufficient condition to obtain Wli’fo (£2) or W,%;C” (2)
estimates on solutions of Isaacs equations with obstacles?

5 Appendix

In[38, 39], we established the ABP maximum principle and weak Harnack inequality
for L? viscosity solutions only when the PDE does not contain Oth order terms for
the sake of simplicity. Since in Sect.4 we obtain the results assuming (4.3), which
allows the PDE to admit Oth order terms, we shall give the ABP maximum principle
and weak Harnack inequality for those.

The ABP maximum principle can be proved immediately due to known results.

Proposition 5.1 Assume p € L1(2), f € LP(Q2 for g >n and q > p > po.
Assume also that ¢y € C(Q) is nonnegative in Q. Then, there exists a universal
constant Co > 0 (depending on || 1|l 14()) such that if u € C(Q)isan L? Viscosity
subsolution (resp., supersolution) of

P_(Dzu) — 1(x)|Du| — co@)u” — fT(x) =0 inQ (5.1
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(’P+(D2u) + 1(x)|Du| + co@)ut + f~(x) =0 in Q) ,

then it follows that

o1
maxu < max ut + Codg, "I fF Lot (5.2)
C

. _ 2=
<resp., ms%nu > —n(%gxu —Codg, "IIf ||LW(Q|M|)) ,

where QF[u] := {x € Q| £ u(x) > maxgo u™} and dg = sup{lx — y| | x,y € Q}.

Proof We shall only show the first assertion. It is immediate to verify that u is an
L? viscosity subsolution of

P~(D*u) — pu(x)|Du| — fH(x) =0 in Q [ul.

Hence, we can apply Proposition 2.8 and Theorem 2.9 in [38] to conclude our
proof. O

We next show the weak Harnack inequality. We first present a decay of distribution
functions of L? viscosity supersolutions.

Lemma 5.2 (cf. Theorem 2.3 in [41]) Assume the same hypotheses in Proposition
5.1. There are 1o, dp > 0 and A > 1 such that for any nonnegative L viscosity
supersolution of

PH(D*u) + p(x)|Dul + co(x)u — f(x) =0 in Qu,

ifinfo u < 1and ||pllprroy vV I f 7 IlLenoy) < 0o, then we have

Hx € Q1 ulx) >t} < t% fort > 1.

Remark 5.3 It is trivial that the conclusion holds true for any ¢ > 0 since A > 1.

Remark 5.4 The assertion is known in [39] when ¢y = 0. In fact, in our case, we
do not know if the strong maximum principle holds when the coefficient to the first
derivative (i.e. u) is unbounded. Therefore, we will use an auxiliary function ¢y,
which is a strong solution of PDE with no first derivative terms. We notice that if we
add p| Dol in the left hand side of (5.3), then we cannot show (5.4) below. We will
then have p in the inhomogeneous term which is small in L" norm.

Proof In view of Proposition 2.4 in [40] with some modifications as in the proof of
Lemma 4.2 in [39], there exists ¢ € W>P (Q4\ Q1) N C(Q4 \ Q}) forany p’ > n
such that
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P (D*u) + co(x)u =0 in Q4 \ O,
u=0 ondQy, (5.3)
u=-—1ond0Q;.

Since ¢ is also an L” viscosity solution of the PDE in the above, if we suppose
Supp,\ o, Po > 0 orinfg, g, ¢o < —1, then this contradicts to the definition of L?
viscosity solution. Thus, we have —1 < g < 0in Q4 \ Q).

Furthermore, we claim that there is 6y > 0 such that

wo < —bp in O3\ Q. 5.4

Although the proof of (5.4) is known in [33] for instance, we will give a proof of
this claim for the reader’s convenience in the end.

Extending ¢ appropriately in Q, for large A > 1, we may suppose that ¢ :=
Xpo € W2P'(Qy) is an L? strong solution of

P~ (D*u) +cou =& in Qy4

such that ¢ < —2in Q3, where £ € L9(Q) satisfies ¢ =01in Q4 \ Q).
We observe that w := u + ¢ is an L? viscosity supersolution of

PH(D*w) + p|Dw| + cow™ = —p|Dp| — f~ +& in Q.
Hence, setting 2 := {x € Qi | w(x) < 0}, by Proposition 5.1, we have

—1 > infw > inf w = inf w
0 Q4 Q

—CllplDol + [~ =&l
—C (50 Flxe 0 |wk) < 0}|W).

IV v

Therefore, for a fixed o > 0, we can find 8; € (0, 1) such that
01 < l{x € Q1 |u(x) < M},

where M := maxg,(—¢) > 1. It is now standard by an induction argument to see
that
lx € Qi lu) > MY <1 -0)" keN,

which implies the decay of distribution function of u. Therefore, we conclude the
assertion by the standard argument. See [39] for the details.

Proof of claim (5.4) (cf. Theorem 1 in [33]) It is enough to show that ¢, (x) < 0O for

x € 04\ Q1. Setting Ko := {x € Q) \ Q1 | po(x) = 0}, we may suppose Ko # 0.
We can choose R > 0,z € Kp and Z € Q¢ := (Q} \ 01) N K§ such that
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Br(2)\{z} € Qo, and 9Br(%) N Ko = {z}.

Setting an open annulus Ag := {x € R" | R/2 < |x — z| < R}, weintroduce {(x) :=
e(e PR/2 _ =BIx=i/2) < (0 where 3 > 1 and € € (0, 1) will be chosen later. Fur-
thermore, we have

M, :=max(po — {)(x) = (po — () (2) = 0.

XEA()

We also note that (pg —¢)(x) <0 if x € 9Br(2) \ {z}. Now, setting 6y :=
Min,eyBy, ) (—Po(x)) > 0 and e := 6y/2, we observe that

BR2 fo

max (po—Q(x) < —Oy+ee” 3 <—— <0.

xE@BR/z (Z) 2

Next, assume that ¢y — ¢ attains its maximum at X € Ag. Since @ is a viscosity
subsolution of
P~ (D*u) +cou =0 in Q4 \ Q1.

we have

BiE—312

0>e 2 {BP (U -BE=-2®E -]+ co@)po).

Following an argument in p. 20 of [12], since P~(I — (x —2) ® (x — 7)) >

—% + (# — 1) 0 > 1 provided 8 > [, for some Gy > 1, we have

BlE=312

0>e 7 (B—co®)),

which yields a contradiction when 3 > () + max, g co. Therefore, because (¢ —
O)(z — he) < (o — ()(z) = Oforsmall i > 0, where e := (z — 2)/|z — Z|, we have

_ Blz—he=32 _ Blz=2?
2

wo(z — he) — po(2) e 2 e
€
—h - h

Sending & — 0+, we have (Dyy(z),e) =0 > 667%,813 > 0, which is a contra-
diction. Hence, we have Ky = . O

Remark 5.5 It is possible to give precise functions ¢ by considering larger ball
By sz O Q4. See [30] for such a function.

Remark 5.6 Concerning the strong maximum principle for PDE of divergence type
with Oth order terms, we refer to [51] and references therein.

Now, we present our weak Harnack inequality.
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Proposition 5.7 (cf. Theorem 3.1 in [39]) AAssume the same hypotheses in
Proposition 5.1. There are g9 > 0, 69 > 0 and C > 0 such that for any nonnega-
tive L? viscosity supersolution of

PH(D*u) + p|Dul + cou — f =0 in Qu,

if | pll Lo,y < o, then we have

s
<f u&)dx> 0 < é <1IQlfI/£ + ”f”LW\”(QAl)) :
1 1

Proof In place of u, considering

u

Vi=- — — ,
13fu + 85 N lLrmngon) + €

where £ > 0 will be sent to O in the end, and dy > 0 will be fixed later, we may
suppose || f || oo, < do and infp, u < 1.

In view of Lemma 5.2, we easily verify that for any ¢y € (0, rp), there is C =
c (g9) > 0 such that

which implies the conclusion by sending € — 0. (]

In order to establish the Harnack inequality, we combine the weak Harnack
inequality with the next local maximum principle.

Proposition 5.8 (Theorem 3.1 in [41]) Assume the same hypotheses in Proposition
5.1. For any € > O, there is C. > 0 such that for any L? viscosity subsolution of

P~ (D*u) — p|Du| — cou™ — f =0 in Qy, (5.5)

we have

1
supu < C. {( (M+)de> + ||f+||Ll’(Q4)} .
[

Q1
I

Since we have unbounded coefficient u, we cannot use the standard argument as in
[29]. We follow the idea of the proof of Lemma 4.4 in [12] with some modifications.
We first prepare the following lemma:

Lemma 5.9 (c¢f Theorem 2.3 in [41]) Forqg > p > poand q > n, let f € L?(Qy4)
and p € L1(Qy4) be nonnegative. Assume that u € C(Qy) is an L? viscosity subso-
lution of (5.5) satisfying
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A
ltx € Qufu@) =1} = == forVe > 1, (5.6)

where the constants A > 1 and ry > 0 are from Lemma 5.2. Then, there are an
integer J, v > land £; > 0 (j > J) such that Z;’ij ¢; < 00, and if u(xg) > vi=1
for j > J and xy € Q1 then SUPQ, (o)t = vl

Proof We will fixv > 1,J e Nand £; € (0, 1) for j > J. Suppose

sup u < v/,
Q¢; (x0)

then we will obtain a contradiction.
Setting x = xo + %y for y € Q4, we define

1
v(y) = a (1 — —u(xo + 4—'zjy)> :
2

where a := v(v — 1)~ (orv = a(a — 1)~"). Thus, we immediately verify that v >
0in Q4, and infp, v < v(0) < a(l —v1) =1.
We next set

a=202A)0 > 1 (i.e. v =20QA) 0 2QA)0 — 1) > 1),

22n+2r0+1A %
vJro

and

Choose Jy € N such that
a < (22n+2r0+lA)% < VJO.

Notice that £; < 1 for j > Jy. We next choose J; > Jy such that

a (€\
— (2 <1 forj=>J.
v\ 4

We then see that v is a nonnegative L” viscosity supersolution of
PT(D*u) + fil Du| + éou+ f =0 in Q.

where

. ¢ G\ .48 2 olf ¢
w(y) = aH <xo + Zy) » G0 = 1pvco and f(y) = 16ij Xo + 27
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Because of our choice of o > 1, £; and J; € N, we verify that for j > Ji,

] 1— pAn

R ej pAn ej q
lallran oy = Z ”,UIHLI’A”(Q(/(xO)) = Z 112l 2a(Q4)s

and

N o l “nap
j + +
1 g = 75 (Z) 1Lf Lo o = N ILrmcor, o

Finally, we choose J, > J; such that |||l Lo (g,) < 0o, Where dp > 0 is the constant

in Lemma 5.2.
In view of Lemma 5.2, we have

2\
Hx € Q1 lv(x) >a/2} <A (a) ,

which yields
coio luem <2 W a(2) (G) <L (LY
; < — — — = .
reRgto il =y =a) (o) =2\1
However, (5.6) implies
vl v 2\"
x€ Q) ulx) = - | =yxe @ |ux) = 5 | <Al =) -
Ey 2 2 v/
Hence, we have
] 2\
22n+1 =4 <;> ’
which implies a contradiction to the definition of £;. O

Proof of Proposition 5.8. We first consider the case of ¢ = ry, where ry > 0 is the
constant from Lemma 5.2.
Choose 7z € Q% such that u(z) = maxp, u. Setting v(y) := u(z + sy) fors > 0,
I

we observe that v is an L? viscosity subsolution of
P~ (D*u) = il Du| = cou™ = f =0 in Q.
where fi(y) = spu(z +5y) and f(y) := 5> f* (2 + 5).

Since we may suppose (vH)dy > 0, by setting
01
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1 —1
_1 0 _ A
w(y) == v(y) {A "0 < (U+)r°d)’> ) 1||f||L1W1(Q4)} ,
0
it is immediate to see that
> < ! < A
Hy € Qi |w(y)—’}|—t70 Qlw =
Furthermore, we verify that w is an L? viscosity subsolution of
P~ (D*u) = plDul — g =0 in Qs

where g(y) := 8o.f DIl 3w g,-
Letv > 1,J e Nand £; € (0, 1) be from Lemma 5.9. There is J > J such that

o0
U=

j=J

0| =

We claim that sup,, w < v/~!. Indeed, if w(xo) > v/~! for some x, € Q. then
q

thanks to Lemma 5.9, we can choose x; € Qy, (xo) (for j > J ) such that
w(x;) > vl

Since x; € Q% for j > J, this contradicts to the continuity of w € C(Q4). Hence,

we have l

) A
supu < supv < C {( (v+)r°dx) + ||f||LW(Q4)}
01

0, 01
r r .
T o
<C @M)dx ) + N fllLrmgy ¢ -
0

In case when € > ry, instead of the above w, consider

% —1
w(y) == v(y) {A_c1 </ (v+)5dy>‘ + 601||f||mn<Q4>]
01

Thus, we have
A

<
e

A
— fort > 1.
tro

{y e Q1 1w(y) >1}| <

Therefore, Lemma 5.9 implies the conclusion.
On the other hand, if 0 < € < r, then considering
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1 -1
w(y) :=v(y) (A ( (v+)5dy> + 05 M lomcon t
0

we have
~ A 7 +\e e A
{ye Q1lwy) =t} <— | )"y (wHdy < — fort > 1.
1 0 0 tro
Hence, Lemma 5.9 concludes the proof in this case. O
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High-Energy Eigenfunctions of the )
Laplacian on the Torus and the Sphere glectie
with Nodal Sets of Complicated Topology

A. Enciso, D. Peralta-Salas, and F. Torres de Lizaur

Abstract Let X be an oriented compact hypersurface in the round sphere S" or
in the flat torus T", n > 3. In the case of the torus, X is further assumed to be
contained in a contractible subset of T". We show that for any sufficiently large
enough odd integer N there exists an eigenfunctions 1) of the Laplacian on S" or T"
satisfying Ay = —\ip (with A = N(N +n — 1) or N> on S" or T", respectively),
and with a connected component of the nodal set of ¢ given by X, up to an ambient
diffeomorphism.

Keywords Eigenfunctions of the Laplacian - Nodal sets - Isotopy type * Inverse
localization

Mathematics Subject Classification 58J50

1 Introduction

Let M be a closed manifold of dimension n > 3 endowed with a smooth Riemannian
metric g. The Laplace eigenfunctions of M satisfy the equation

Auy = —Muy,

where 0 = \g < A\; < Ay <... are the eigenvalues of the Laplacian. The zero set
uk_l (0) is called the nodal set of the eigenfunction.
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The study of the nodal sets of the eigenfunctions of the Laplacian in a compact
Riemannian manifold is a classical topic in geometric analysis with a number of
important open problems [18, 19]. When the Riemannian metric is not fixed, the nodal
set is quite flexible. Indeed, it has been recently shown that [9], given a separating
hypersurface ¥ in M, there is a metric g on the manifold for which the nodal set
ul’l(O) of the first eigenfunction is precisely X. This result has been extended to
the class of metrics conformal to a metric gy prescribed a priori [10], and to higher
codimension submanifolds arising as the joint nodal set of several eigenfunctions
corresponding to a degenerate eigenvalue [5].

For a fixed Riemannian metric, the problem is much more rigid than when one
can freely choose a metric adapted to the geometry of the hypersurface that one
aims to recover from the nodal set of the eigenfunctions. In this case, the techniques
developed in [5, 9, 10] do not work. Nevertheless, since the Hausdorff measure of
the nodal sets of the eigenfunctions grows as the eigenvalue tends to infinity [13, 14],
one expects that the nodal set may become topologically complicated for high-energy
eigenfunctions.

Our goal in this paper is to establish the existence of high-energy eigenfunctions
of the Laplacian on the round sphere S” and the flat torus T" with nodal sets diffeo-
morphic to a given submanifold. All along this paper, S" denotes the unit sphere in
R and T” is the standard flat n-torus, (R/27Z)".

More precisely, our main theorem shows that for a sequence of high enough eigen-
values, there exist m eigenfunctions of the Laplacian on S” or T" with a joint nodal
set diffeomorphic to a given codimension m submanifold X. For the construction
we need to assume that the normal bundle of ¥ is trivial. This means that a small
tubular neighborhood of the submanifold ¥ must be diffeomorphic to ¥ x R™. In
the statement, structural stability means that any small enough perturbation of the
corresponding eigenfunction (in the C¥ norm with k > 1) still has a union of con-
nected components of the nodal set that is diffeomorphic to the submanifold X under
consideration. Throughout, diffeomorphisms are of class C* and submanifolds are
C*° and without boundary.

Theorem 1.1 Let X be a finite union of (disjoint, possibly knotted or linked) codi-
mension m > 1 compact submanifolds of S* or T", n > 3, with trivial normal
bundle. In the case of the torus, we further assume that X is contained in a con-
tractible subset. If m = 1, we also assume that ¥ is connected. Then for any large
enough odd integer N there are m eigenfunctions 11, . .., ¥, of the Laplacian with
eigenvalue A= N(N +n —1) (in S") or A = N? (in T"), and a diffeomorphism
D such that ®(X) is the union of connected components of the joint nodal set
wl_l On---N z/;,;l (0). Furthermore, ®(X) is structurally stable.

An important observation is that the proof of this theorem yields a reasonably
complete understanding of the behavior of the diffeomorphism &, which is, in par-
ticular, connected with the identity. Oversimplifying a little, the effect of @ is to
uniformly rescale a contractible subset of the manifold that contains ¥ to have a
diameter of order 1/N. In particular, the control that we have over the diffeomor-
phism @ allows us to prove an analog of this result for quotients of the sphere by finite
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groups of isometries (lens spaces). Notice that @ (X) is not guaranteed to contain all
the components of the nodal set of the eigenfunction.

The proof of the main theorem involves an interplay between rigid and flexible
properties of high-energy eigenfunctions of the Laplacian. Indeed, rigidity appears
because high-energy eigenfunctions in any Riemannian n-manifold behave, locally
in sets of diameter 1/+/X, as monochromatic waves in R” do in balls of diameter 1.
We recall that a monochromatic wave is any solution to the Helmholtz equation
A¢ + ¢ = 0. The catch here is that, in general, one cannot check whether a given
monochromatic wave in R” actually corresponds to a high-energy eigenfunction on
the compact manifold.

To prove the converse implication, what we call an inverse localization theorem
(see Sects. 2 and 3), it is key to exploit some flexibility that arises in the problem as a
consequence of the fact that large eigenvalues of the Laplacian in the torus or in the
sphere have increasingly high multiplicities (for this reason the proof does not work
in a general Riemannian manifold). The inverse localization is a powerful tool to
ensure that any monochromatic wave in a compact set of R” can be reproduced in a
small ball of the manifold by a high-energy eigenfunction. This allows us to transfer
any structurally stable nodal set that can be realized in Euclidean space to high-
energy eigenfunctions on S” and T". The inverse localization was first introduced
in [11] to construct high-energy Beltrami fields on the torus and the sphere with
topologically complicated vortex structures, and was also exploited in [6, 7] to solve
a problem of Berry [2] on knotted nodal lines of high-energy eigenfunctions of the
harmonic oscillator and the hydrogen atom, and in [17] to analyze the nodal sets of
the eigenfunctions of the Dirac operator.

One should notice that the techniques introduced in [8] to prove the existence of
solutions to second-order elliptic PDEs in R” (including the monochromatic waves)
with a prescribed nodal set ¥ do not work for compact manifolds. The reason is
that the proof is based on the construction of a local solution in a neighborhood
of X, which is then approximated by a global solution in R” using a Runge-type
global approximation theorem. For compact manifolds the complement of the set
¥ is precompact, so we cannot apply the global approximation theorem obtained
in [8]. In fact, as is well known, this is not just a technical issue, but a fundamental
obstruction in any approximation theorem of this sort. This invalidates the whole
strategy followed in [8] and makes it apparent that new tools are needed to prove
the existence of Laplace eigenfunctions with geometrically complex nodal sets in
compact manifolds.

We finish this introduction with two corollaries. It is known that an oriented
codimension one or two submanifold in S” or T” has trivial normal bundle [15],
therefore the main theorem implies the following:

Corollary 1.2 Let X be an oriented, compact, connected hypersurface in S" or T",
n > 3. Inthe case of the torus, we further assume that X is contained in a contractible
subset. Then for any large enough odd integer N there is an eigenfunction v of the
Laplacian with eigenvalue X = N(N +n —1) (in S") or A = N? (in T"), and a
diffeomorphism ® such that ®(X) is a structurally stable connected component of
the nodal set 1~ (0).
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Corollary 1.3 Let X be a finite union of (disjoint, possibly knotted or linked) codi-
mension two compact submanifolds in S" or T", n > 3. In the case of the torus,
we further assume that X is contained in a contractible subset. Then for any large
enough odd integer N there is a complex-valued eigenfunction 1 of the Laplacian
with eigenvalue A = N(N +n —1) (in ") or A = N? (in T"), and a diffeomor-
phism © such that ®(X) is a union of structurally stable connected components of
the nodal set 1)~1(0).

The paper is organized as follows. In Sects. 2 and 3 we prove an inverse local-
ization theorem for the eigenfunctions of the Laplacian on S" and T", respectively.
Theorem 1.1 is then proved in Sect. 4. Finally, in Sect. 5, we prove a refinement of
the inverse localization Theorem on S” that allows us to approximate several given
monochromatic waves by a single eigenfunction of the Laplacian in different small
regions of S".

2 An Inverse Localization Theorem on the Sphere

In this section we prove an inverse localization theorem for eigenfunctions of the
Laplacian on S" for n > 2. We recall that the eigenvalues of the Laplacian on the
n-sphere are of the form N(N 4+ n — 1), where N is a nonnegative integer, and the
corresponding multiplicity is given by
A(N. 1) = (N—i—n— 1>2N+n— 1 .
N N+n-1

For the precise statement of the theorem, let us fix an arbitrary point py € S”
and take a patch of normal geodesic coordinates ¥ : B — B centered at py. Here
and in what follows, B, (resp. B,) denotes the ball in R" (resp. the geodesic ball
in S") centered at the origin (resp. at pgy) and of radius p, and we shall drop the
subscript when p = 1. For the ease of notation, we will use the R -valued functions
¢ :=(p1,...,Pm) and ¥ := (Y, ..., 1¥,), and the action of the Laplacian on such
functions is understood componentwise.

Theorem 2.1 Let ¢ be an R™-valued monochromatic wave in R", satisfying A¢p +
¢ = 0. Fix a positive integer r and a positive constant §'. For any large enough integer
N, there is an R"-valued eigenfunction 1) of the Laplacian on S" with eigenvalue
N(N +n — 1) such that

<d.
cr(B)

fp=vev(3)

To prove Theorem 2.1, we will proceed in two successive approximation steps.
First, we will approximate the function ¢ in B by an R”-valued function ¢ that can
be written as a finite sum of terms of the form
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¢
mlﬂ—lﬂx —x;])

with ¢; e R” and x; e R", j =1,..., N', for N’ large enough (Proposition 2.2

below). Here J:_; denotes the Bessel function of the first kind of order 5=

Notice that any function of this form is a monochromatic wave. In the second step,

we show that there is a collection of m eigenfunctions (1, ..., ¥,) =: ¥ in " with
eigenvalue N(N + n — 1) such that, when considered in a ball of radius N -1 they
approximate ¢ := (yy, .. ., () in the unit ball, provided that N is large enough.

Proposition 2.2 Given any § > 0, there is a constant R > 0 and finitely many con-
stant vectors {c j}li\’: 1 C R™ and points {x j}?’: \ C Bg such that the function

N’

c:
@ = Z# ,_1(|x—x]|)

j=1

approximates the function ¢ in the unit ball as

lo — el <.

Proof It is more convenient to work with complex-valued functions, so we set 5 =
¢ + i ¢. First, we notice that, since ¢ is also a solution of the Helmholtz equation, it
can be written in the ball B, as an expansion

(I,n—1

Z Z bk ji(r) Y (), .1)

=0 k=1

where r := |x| € R and w := x/r € $"~! are spherical coordinates in R", Yy is a
basis of spherical harmonics of eigenvalue [(/ + n — 2), j; are n-dimensional hyper-
spherical Bessel functions and by, € C™ are constant coefficients.

The series in (2.1) is convergent in the L? sense, so for any &’ > 0, we can truncate
the sum at some integer L

L d(n—1)
=3 ) by ji(r) Yu(w) 2.2)

so that it approximates (E as
o1 = Gllimy <6 (2.3)

The C"-valued function ¢, decays as |¢;(x)| < C/ |x|% for large enough |x|
(because of the decay properties of the spherical Bessel functions). Hence, Herglotz’s
theorem (see e.g. [12, Theorem 7.1.27]) ensures that we can write
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00 = / FO e doe) (2.4)

where do is the area measure on 8" 1= {¢ e R" : |£| = 1} and f; is a C"-valued
function in L%(S" ).
We now choose a smooth C”-valued function f, approximating f; as

Ifi — ol <0,

which is always possible since smooth functions are dense in L?(S"~"). The function
defined as the inverse Fourier transform of f,

P2 (x) == ; / H© e da(), (2.5)

@m?

approximates ¢ uniformly: by the Cauchy—Schwarz inequality, we get

1 .
[f2(x) — P1(x)| = '7&/ () = f1(€) et do(§)
(27()2 sn—1

= C||f2 - fl ||L2(§/x—l) < C(S/
(2.6)
for any x € R".
Our next objective is to approximate the function f, by a trigonometric poly-

nomial for any given &', we Will find a constant R > 0, finitely many points
{x j} _, C Bg and constants {c ]} "_, C €™ such that the smooth function in R"

v
[ =) cje v,

J=l
when restricted to the unit sphere, approximates f; in the C° norm,

I f — fallcog1y < ¢ (2.7)

In order to do so, we begin by extending f> to a smooth function g : R* — C™
with compact support,

9(&) == x(I&D) f2(|§|>

where x(s) is a real-valued smooth bump function, being 1 when, for example,
s — 1| < 1 and vanishing for |s — 1| > % The inverse Fourier transform g of g is
Schwartz, so it is easy to see that, outside some ball Bg, the L' norm of 7 is very

small,
/ [g(x)|dx <&,
R"\ Bg



High-Energy Eigenfunctions of the Laplacian on the Torus ... 251

and therefore we get a very good approximation of g by just considering its Fourier
representation with frequencies within the ball B, that is,

1 R o
g — — | gx)e ™ tdx

"2 2.
m? Js, =0/ @9

sup
£eRn

Next, let us show that we can approximate the integral

/ ) e ™ dx
Bg

by the sum

.
F© =) cjer* (2.9)

j=1

with constants ¢; € C" and points x; € Bg, so that we have the bound

sup ‘ / Gy e ™idx — f(©)] < d'/2. (2.10)
Br

cesr-1

Indeed, consider a covering of the ball By by closed sets {U }?]:'1, with piecewise
smooth boundaries, pairwise disjoint interiors, and diameters not exceeding ¢”. Since

the function e ~**¢ §(x) is smooth, we have that for each x, y € U i

sup [gx) e ™t —G(y) e ¢ < €8,
feS”’l

with the constant C depending on g (and therefore on ¢’) but not on ¢”. If x; is any

point in U; and we set ¢; := g(x;) |U;| in (2.9), we get

sup ‘ /B Gy e dx — f(&)

568”71

U; £eSn-1

N/

< Z/ sup [G(x) e ™t —G(x;) e V| dx
Jj=1

= Cy”,

with C depending on ¢’ and R but not on §” nor N'. By taking ¢” so that C§” < §'/2,

the estimate (2.10) follows.
Now, in view of (2.8) and (2.10), one has

If—gllcog1) <6,

so the estimate (2.7) follows upon noticing that the function f, is the restriction
to S"~! of the function g.
To conclude, set
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1 : N ,
~ . ix-€ — J i(x—x;)-& —
ﬂm,_ag?l;_NOe do(©) Z zmzéﬂe do(©)

N’
Xj Ty (1x = x;0)

|x—x]

then from Eq. (2.7) we infer that

16 = d2llcogmny < / |f(©) = f2(O)Ido(§) < CF,

Sn—1

and from Egs. (2.3) and (2.6) we get the L? estimate

6 — Olle2sy < Cl — dallcomny + Cllgz — d1llcomny+ (2.11)
+ llp1 — D2, < CO'.

Furthermore, both ¢ and 5 are C"-valued functions satisfying the Helmholtz equation
in R" (note that the Fourier transform of & is supported on S"~!), so by standard
elliptic regularity estimates we have

16 = Bllers) < Clid — Bllaay < €O
This in particular implies that
¢ —Re @llcrp) < CY',

and taking ¢’ small enough so that Cd’ < 4, resetting ¢; := Re ¢;, and defining
0 := Re {, the proposition follows. (I

The second step consists in showing that, for any large enough integer N, we
can find an R™-valued eigenfunction ¢ of the Laplacian on S" with eigenvalue
N(N +n — 1) that approximates, in the ball B;,5, when appropriately rescaled,
the function ¢ in the unit ball. The proof is based on asymptotic expansions of
ultraspherical polynomials, and uses the representation of ¢ as a sum of shifted
Bessel functions which we obtained in the previous proposition as a key ingredient.
It is then straightforward that Theorem 2.1 follows from Propositions 2.2 and 2.3,
provided that N is large enough and § is chosen so that 26 < ¢'.

Proposition 2.3 Given a constant 6 > 0, for any large enough positive integer N
there is an R™ -valued eigenfunction v of the Laplacian on S" with eigenvalue N (N +

n — 1) satisfying
—1 :

C"(B)




High-Energy Eigenfunctions of the Laplacian on the Torus ... 253

Proof Consider the ultraspherical polynomial of dimension n + 1 and degree N,
Cj (¢), which is defined as

CIN+DIG)  @o1,2o

Ch(t) = F T D py ), (2.12)

where I'(¢) is the gamma function and P,f,”’ A (t) are the Jacobi polynomials (see
e.g. [16, Chap. IV, Sect.4.7]). We have included a normalizing factor so that
Cy(1) =1forall N.

Let p, ¢ be two points in S”, considered as vectors in R"*! with |p| = |g| = 1.
The addition theorem for ultraspherical polynomials ensures that Cy, (p - g) (where
p - q denotes the scalar product in R"*! of the vectors p and ¢) can be written as

st AW
ch . = Y Y , 2.13
NP q) RO a0V ) ; vk (P) Yo (q) (2.13)

with {YNk}Z(:AII’") being an arbitrary orthonormal basis of eigenfunctions of the Lapla-
cian on S" (spherical harmonics) with eigenvalue N(N +n — 1).
The function ¢ is written as the finite sum

N’

p) =3 — LT (x = x,),

n_
o |x — x;|2

with coefficients ¢; € R™ and points x; € Bg. With these c¢; and x; we define, for
any point p € S", the function

N’

Jj=1

where p; := vl (%’). Aslongas N > R, p; is well defined. In view of Eq. (2.13) it
is clear that v is an R™-valued eigenfunction of the Laplacian on S" with eigenvalue
N(N +n—1).

Our aim is to study the asymptotic properties of the eigenfunction 7). To begin
with, note that if we consider points p := ¥~! (%) with N > R and x € Bg, we have

¥ -1
[x —x;] + ON )>, (2.14)

D Dj = cos (distgn (p, pj)) = cos < N
as N — oo. The last equality comes from ¥ : B — B being a patch of normal
geodesic coordinates (by dists:(p, p;) we mean the distance between p and p;
considered on the sphere S"). From now on we set
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D) = how! (%) . (2.15)
When N is large, one has

I'(N+1)

=N""24+0(N?),
T(N+12) (N°2)

so from Eq. (2.14) we infer
n n p— . 71
Cr(p-pp) = (F(%)Nl—% + O(N—%)) Py j_”(cos (—lx 2 ;O(N ))>
(2.16)

By virtue of Darboux’s formula for the Jacobi polynomials [16, Theorem 8.1.1], we
have the estimate

| S C S ) t oy Jro1(0) .
T hY (cosﬁ>:2- oW,

uniformly in compact sets (e.g., for |f| < 2R). Hence, in view of Eq. (2.16), the
function 1 can be written as

N’

L oyl oW
Yx) = 12:1: 2%*1r(§)c"’(cos( N ))
N
— €j -1
= ————Ji(x —x; D+ OWNT),
o lx — x;]2

for N big enough and x, x; € Bg. From this we get the uniform bound

le — Pllcosy < & 2.17)

for any ¢’ > 0 and all N large enough.

It remains to promote this bound to a C” estimate. For this, note thgt, since the
eigenfunction v has eigenvalue N (N + n — 1), the rescaled function ) verifies on
B the equation

~ ~ 1 ~

A+ = —A,

T+ =547
with

A = —(n — D + G, 00 + G2 9,

where 9% 7:27 is a matrix whose entries are k-th order derivatives of @Z and G (x, N)
are smooth matrix-valued functions with uniformly bounded derivatives, i.e.,
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sup [08Gr(x, N)| < Cy, (2.18)

xeB

with constants C,, independent of N. -
Since ¢ satisfies the Helmholtz equation Ay + ¢ = 0, the difference ¢ — 1 sat-
isfies

~ ~ 1 ~
Alp =) +(p =) = S AY,

and, considering the estimates (2.17) and (2.18), by standard elliptic estimates
(applied to the uniformly elliptic operator A + 1 — N~ A) we get

~ ~ C
le — Yllcreiy < Clle — Yllcos,) + N”ASD”C’-L“(BZ)
C
< Co'+ NH@HCM(BQ),

so we conclude that, for N big enough and 6" small enough,

Cligllcre
—_— <

le — Dlicrm < C8' + .

The proposition then follows. O

3 An Inverse Localization Theorem on the Torus

In this section we prove an inverse localization theorem for eigenfunctions of the
Laplacian on T” for n > 3. We recall that the eigenvalues of the Laplacian on the
n-torus are the integers of the form

A= |k|?

for some k € Z". In particular, the spectrum of the Laplacian in T" contains the set
of the squares of integers.

As in the previous section, we fix an arbitrary point py € T" and take a patch of
normal geodesic coordinates W : B — B centered at py.

Theorem 3.1 Let ¢ be an R™-valued function in R", satisfying A¢ + ¢ = 0. Fixa
positive integer r and a positive constant §'. For any large enough odd integer N,
there is an R™-valued eigenfunction 1) of the Laplacian on T" with eigenvalue N*

such that
o-vou(3)

<¥d.
cr(B)
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Proof Arguing as in the proof of Proposition 2.2 we can readily show that for any
0 > 0, there exists an R™-valued function ¢; on R” that approximates the function
¢ in the ball B as

l¢1 — Pllcos,y <9, 3.1

and that can be represented as the inverse Fourier transform of a distribution supported
on the unit sphere of the form

1

P1(x) = W

AHﬂQ#Wd&

Again S"~! denotes the unit sphere {¢ € R" : |¢| = 1} and f is a smooth C"-valued
function on "~ satisfying f(£) = f(—£).

Let us now cover the sphere S"~! by finitely many closed sets {Uk},lc":/l with
piecewise smooth boundaries and pairwise disjoint interiors such that the diameter
of each set is at most e. We can then repeat the argument used in the proof of
Proposition 2.2 to infer that, if & is any point in U, and we set

e = (&) |Ukl,
the function
v -— 1 < i&x
P(x) == W ]Z:l: cre
approximates the function ¢; uniformly with an error proportional to e:

I — d1llcos,y < Ce.

The constant C depends on § but not on € nor N’, so one can choose the maximal
diameter € small enough so that

1% = dllcosy < 3. (3.2)
In turn, the uniform estimate
19 = dllcowy < 16 = drllcos, + 16— dillcos,) < 26
can be readily promoted to the C" bound
19 = @llers) < €. (3.3)

This follows from standard elliptic estimates as both {Z (whose Fourier transform is
supported on S"~!) and ¢ satisfy the Helmholtz equation:
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A+ =0, Ap+¢=0.

Furthermore, replacing 1% by its real part if necessary, we can safely assume that
the function 1) is R"-valued.

Let us now observe that for any large enough odd integer N one can choose the
points & € Uy C S"~! so that they have rational components (i.e., & € Q") and the
rescalings N ¢ are integer vectors (i.e., N € Z"). This is because forn > 3, rational
points ¢ € S"~! N Q" of height N (and so with N¢ € Z") are uniformly distributed
on the unit sphere as N — oo through odd values [4] (in fact, the requirement for N
to be odd can be dropped for n > 4 [4]).

Choosing & as above, we are now ready to prove the inverse localization theorem
in the torus. Without loss of generality, we will take the origin as the base point
Do, so that we can identify the ball B with B through the canonical 27-periodic
coordinates on the torus. In particular, the diffeomorphism W : B — B that appears
in the statement of the theorem can be understood to be the identity.

Since N¢&; € Z", it follows that the function

R

k=1

P(x) =

is 2m-periodic (that is, invariant under the translation x — x 4 27 a for any vector
a € 7). Therefore it defines a well-defined function on the torus, which we will still
denote by 1.

Since the Fourier transform of 1 is now supported on the sphere of radius N, 1
is an eigenfunction of the Laplacian on the torus T" with eigenvalue N2,

AP+ N*)p=0.

The theorem then follows provided that § is chosen small enough for C§ < §’. O

We conclude this section noticing that the statement of Theorem 3.1 does not
hold for T2. The reason is that rational points £ € S! N Q? with N¢ € Z? are no
longer uniformly distributed on the unit circle (not even dense) as N — oo through
any sequence of odd values, counterexamples can be found in [3]. Nevertheless, a
slightly different statement can be proved using [3]:

Theorem 3.2 Let ¢ be an R™-valued function in R?, satisfying A¢ + ¢ = 0. Fix a
positive integer r and a positive constant §'. Then there exists a sequence of inte-
gers {N;}2, /' oo, and R"-valued eigenfunctions 1, of the Laplacian on T? with
eigenvalues N 12 such that

< ¢

cm

fo=uev ()

forl large enough.
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4 Proof of the Main Theorem

For the ease of notation, we shall write M" to denote either T" or S”. Let &' be
a diffeomorphism of M" mapping the codimension m submanifold X into the ball
By, C M", and the ball B, ; into itself. In S", the existence of such a diffeomorphism
is trivial, while in the case of T” it follows from the assumption that ¥ is contained
in a contractible set.

Consider the submanifold X in By » C R” defined as ®'(X) in the patch of normal
geodesic coordinates:

Yi=WWod)(X).

Itis shownin [8, Theorem 1.3]if m > 2 and [8, Remark A.2]if m = 1, that there is an
R™-valued monochromatic wave ¢ = (¢4, ..., ¢p), satisfying A¢ + ¢ = 0 in R",
and a diffeomorphism @, (close to the identity, and different from the identity only on
B> when m > 1) such that ®;(X’) C By, is a union of connected components of
the joint nodal set ¢1_] onN---N gb,;l (0). In addition, the construction in [8] ensures
that the regularity condition rk(Véy, ..., V¢, ) = m holds at any point of ®;(X’),
so it is a structurally stable nodal set of ¢ by Thom’s isotopy theorem [1].

Now, the inverse localization theorem (Theorem 2.1 in the case of S” and Theorem
3.1 for T") allows us to find, for any large enough odd integer N, an R™-valued
function ¢ = (¢4, ..., ¥,) in M" satisfying Ay = —Ay (with A ;== N(N +n —
1) or A := N? in the sphere or the torus, respectively) and such that ¢ o \D’l(ﬁ)
approximates ¢ in the C" (B) norm as much as we want.

The structural stability property ensures the existence of a second diffeomorphism
®, : R" — R” close to the identity, and different from the identity only on B >, such
that ®,(d (X)) is a union of connected components of the joint nodal set of the
R”-valued function ) o W~! (%) Therefore, the corresponding submanifold

] /
(D) = 07 (2P (W o D))

is a union of connected components of the nodal set of ¢. The map ® : M" — IEB%
thus defined is easily extended to a diffeomorphism of the whole manifold M".
Finally, we have by the construction that ®(X) is structurally stable, and hence
Theorem 1.1 follows.

5 Final Remark: Inverse Localization on the Sphere in
Multiple Regions

Theorem 2.1 in Sect. 2 can be refined to include inverse localization at different points
of the sphere. This way, we get an eigenfunction of the Laplacian that approximates
several given solutions of the Helmholtz equation in different regions. The fast decay
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of ultraspherical polynomials of high degree outside the domains where they behave
as shifted Bessel functions is behind this multiple localization. Notice that, in contrast,
trigonometric polynomials do not exhibit this decay, hence the lack of an analog of
the following result in the case of the torus. All along this section we assume that
n=>2.

Let { pu}g’/=1 be a set of points in §”, with N’ an arbitrarily large (but fixed through-
out) integer. We denote by ¥, : B,(p.) — B, the corresponding geodesic patches
on balls of radius p centered at the points p,. We fix a radius p such that no two balls
intersect, for example by setting

|
pi= 5 I({l;gdlstgrl(p(y, P;S) .

We further choose the points { pa}f:":] so that no pair of points are antipodal in
S" ¢ R"™!,ie. p, # —pg for all o, B. The reason is that the eigenfunctions of the
Laplacian on the sphere with eigenvalue N (N + n — 1) have parity (—1)":

P(pa) = (=DNp(=pa)

(they are the restriction to the sphere of homogenous harmonic polynomials of degree
N); so that prescribing the behavior of an eigenfunction in a ball around the point
Do automatically determines its behavior in the antipodal ball.

Proposition 5.1 Let {(ba}g"z1 be a set of N’ R™-valued monochromatic waves in
R”", 1 <m < n, satisfying Ap, + ¢o = 0. Fix a positive integer r and a positive
constant 0. For any large enough integer N, there is an R™-valued eigenfunction 1)
of the Laplacian on S" with eigenvalue N(N + n — 1) such that

Proof We use the notation introduced in the proof of Proposition 2.3 without further
mention. Applying Theorem 2.1 to each ¢, we obtain, for high enough N, R™-valued

eigenfunctions of the Laplacian {wa}g’:l satisfying the bound

<0
C"(B)

omven (3)

foralll <a < N'.

<.
C"(B)

ba = a0 07 (5)

For each a, the R™-valued eigenfunction v, (p) is a linear combination (with coef-
ficients in R™) of ultraspherical polynomials C% (p - q;), where {g;} is a finite set
of points such that dists (pa, ;) is proportional to N~!, for all j. Recall that the
ultraspherical polynomials satisfy the asymptotic formula
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n L3 @1 zo , u
Cy(p-q) = pYE Py’ (cos(dists(p, q))) + O(N™2),

so considering the fact that the Jacobi polynomials behave as (see [16, Theorem
7.32.2])

ON'T")
ﬂ 9

12

(515~

N'=2 Py 1)(cost) =

uniformly for N~! < ¢ < m — N~!, we can conclude that the functions C v -q;)
are uniformly bounded as

2

C
ICx (P-4 < N—L
for any point p satisfying
min;dists:(p,q;) > p and min;dists:(p, —q;) > p,

and where C, is a constant depending only on p. The same decay is thus also exhibited
by the eigenfunction ¢,

C

1%allcos\@(pa,p)UB(—parp)) < —o7
N2

since it is just a normalized linear combination of ultraspherical polynomials (here
the constant C depends on p and on the particular coefficients in the expansion of
1q, that is, on ¢, and d").

Now, if we define the R”-valued eigenfunction

N
Pi= Z (o
a=1

and we choose N large enough, the statement of the proposition follows for r = 0.
By standard elliptic estimates, the C° bound can be easily promoted to a C" bound,
so we are done. O
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