
Chapter 6
Vision-Based Line Tracking Control
and Stability Analysis of Unicycle Mobile
Robots

Plamen Petrov and Veska Georgieva

Abstract This paper addresses the problem of vision-based line tracking control of
unicyclemobile robots. First, a robot-cameramodel suitable for path following appli-
cations is derived. Using a look-ahead approach, a feedback controller is proposed
for tracking curved paths on the ground using information from an onboard down-
looking camera using distance-onlymeasurements. Stability properties of the closed-
loop system are analyzed, and asymptotic stability of the resulting closed-loop
control system is proved using Lyapunov stability theory. Simulation and experi-
mental results are presented to illustrate the effectiveness of the proposed control
scheme.

6.1 Introduction

In the last decades, the wheeled mobile robots (WMRs) have been increasingly
used in wide range of applications, such as in factories [1], as service robots [2],
autonomous vehicles [3], exploration robots [4], for military operations [5], and
research [6]. At control level, important results have been established concerning
three fundamental motion control tasks, namely point stabilization (the parking
problem), trajectory tracking, and path following [7]. In what concerns the path
following problem, in contrast of trajectory tracking, the mobile robot has to follow
and to converge to a reference path, which is given without temporal specification.
The path following control of mobile robot has been intensively studied during the
years, and different solutions have been proposed in the literature, such as nonlinear
[8] and linear controllers [9]. When designing controllers for path tracking applica-
tions, often the curvature of the reference path is considered a priori known, which
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permits to introduce it directly in the control law, simplifying the design of the
controller [10]. In this case, it is also considered that both measurements for the
lateral and orientation errors are available for feedback control design [11]. However,
depending of the assigned mobile robot guiding point, using look-ahead approach
[12], it is possible to use only distance measurements for the lateral offset from
the reference line without using data for the orientation error, which considerably
simplify the controller design. The advantage of using such approach is considerable
in the case, when the mobile robot has to follow a path with unknown curvature and
avoids its direct calculation, which involves higher-order derivative computation.
In addition, calculation of the orientation error between the mobile robot and the
reference path avoided, which considerably simplifies the structure of the controller.

The use of visual information in the feedback loop has been an attractive solu-
tion for the motion control of mobile robots and different visual servo algorithms
have been developed over the last decades. The control based of visual measure-
ments is termed visual servoing or vision-based control and two main approaches
are distinguished, namely position-based visual servoing (PBVS) and image-based
visual servoing (IBVS) [13]. In the PBVS approach, three-dimensional scene infor-
mation is used and the feedback is based on the pose estimation of the observed object
with respect to the camera in order to regulate the motion of the onboard camera to
a desired pose [14–16]. For path following applications, a specific feature is that the
error coordinates with respect to the desired path to follow are computed in the task
space. In the IBVS approach, the pose estimation is omitted, image features are used
as the state in the control, such that the error coordinates are measured in the image,
and the control law is directly expressed in the image plane and mapped to actuator
commands [17–19].

In this paper, we deal with the problem of path tracking control for nonholo-
nomic unicycleWMRs, which use monocular vision guided system for line tracking.
The reference path is assumed to be a sequence of circular and/or straight-line
segments, where the curvatures of the circular segments are not known. The look-
ahead approach [12, 15] used in this paper consists of tracking a reference path with
a guiding reference point in front of robot at a given distance ahead from the wheel
axle. For this end, first, a robot-camera model of the robot using the look-ahead
reference point is derived. A linear controller is designed using lateral error-only
measurements without involving values of the path curvature (which is unknown) or
the orientation error with respect to the reference path. Based on Lyapunov stability
theory, the stability property of the synthesized system is analyzed. Some simula-
tion and experimental results are given, in order to demonstrate the validity of the
designed controller.
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6.2 Model Development

6.2.1 Robot Kinematic Model

Aplane view of a unicyclemobile robot, considered in this paper, which ismoving on
a horizontal plane, is shown in Fig. 6.1. A monocular camera is placed on the robot
pointing downward perpendicular to the ground. For simplicity of exposition, for
path following applications, we will use two-dimensional (2D) Cartesian coordinate
systems instead 3D systems,where it is possible.With reference to Fig. 6.1, in order to
describe the path tracking kinematics, the following coordinate systems are defined:
an inertial coordinate system Fxy; a robot coordinate system PxPyP located at the
mid-point of the wheel axle with xP axis directed along the longitudinal base of the
robot; a robot coordinate system RxRyR attached firmly to the robot at a distance h
from the ground and at a distance d ahead from point P, in such way that the xR-axis
is aligned with xP-axis of PxPyP; a camera frameCxCyC which center is placed in the
optical center of the camera and coincides with the center of the robot frame RxRyR;
and a moving virtual reference frame LxLyL associated with the reference line to
follow, with a center L assigned in the intersection between the yR-axis of RxRyR and
the reference path, such that the xL-axis is tangent to the path and oriented in the
direction of motion. The look-ahead point R is defined as a robot guided (reference)
point for the line tracking scenario.

Let us denote the coordinates of point P in the fixed frame Fxy as

F pP = [
xP yP

]T
(6.1)

where F pP ∈ R2, and the orientation of the robot in Fxy as ψ ∈ S1. The kinematic
equations ofmotion of the unicyclemobile robot under the nonholonomic constraints

Fig. 6.1 Geometry of the line tracking scenario



86 P. Petrov and V. Georgieva

of pure rolling and nonslipping can be written as follows [12]

�̇

pP = BPη, (6.2)

where
�̇

pP represents the time derivative of
�

pP ∈ R2 × S1, defined as

�

pP = [
xP yP ψ

]T
, (6.3)

which is a vector of the posture coordinates of the robot using the reference point P,
the transformation matrix BP ∈ R3×2 is given by

BP =
⎡

⎣
cosψ 0
sinψ 0
0 1

⎤

⎦,

and the vector η ∈ �2

η = [
vPx ω

]T
(6.4)

is composed of the robot linear and angular velocities denoted by vPx ∈ � and
ω ∈ �, respectively.

Denoting with F pR ∈ �2 a vector representing the coordinates of point R with
respect to Fxy

F pR = [
xR yR

]T
, (6.5)

and with Pd = [
Pdx 0

]T ∈ �2 a vector from point P to point R expressed in the
coordinate frame PxPyP, using (6.1) the coordinates of points R and P are related by

F pR = F pP + R(ψ)Pd, (6.6)

where R(ψ) ∈ SO(2) is an orthogonal rotation matrix of angle ψ, (ψ is the
orientation angle of the robot with respect to fixed frame Fxy), given by

R(ψ) =
[
cosψ − sinψ

sinψ cosψ

]
.

Differentiating (6.6) with respect to time, one obtains
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F ṗR = R(ψ)
(
P ṗP + ωS(π/2)Pd

)

= Gη, (6.7)

where G = R(ψ)D ∈ �2×2 with D ∈ �2×2 given by

D =
[
1 0
0 Pdx

]
,

S(π/2) ∈ SS(2) is a skew symmetric matrix and P ṗP = [
vPx , vPy

]T ∈ R2 is a
vector of the projections of the velocity of point P relative to the fixed coordinate
system Fxy on the axes of the moving robot coordinate system PxPyP.

In order to express the robot kinematicmodel using the coordinates (6.5) of pointR
in an inertial frameFxy, we define a vector of the posture coordinates F �

pR ∈ R2×S1,
as follows

F �

pR = [
xR yR ψ

]T
. (6.8)

Then, using (6.8), one can write

F �̇

pR = BRη, (6.9)

where BR is a block matrix of the form

BR =
⎡

⎣
G

−−
j

⎤

⎦ ∈ �3×2,

and the row vector j is given by j = [
0 1

] ∈ �1×2.
The path following geometry considered in this paper is illustrated in Fig. 6.1. It

is assumed that the path is a smooth planar curve. The coordinate systems RxRyR and
LxLyL are defined to describe the error kinematics during the path tracking process.
The moving reference system LxLyL is defined such that the xL-axis is tangent to the
path and oriented in the direction of robot motion. The yR-axis of the robot coordinate
systemRxRyR passes through the reference point L associated with the path to follow.

The coordinates and orientation of the frame LxLyL in the coordinate frame RxRyR
can be expressed in the form

epos = T (pL − pR), (6.10)
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where epos = [
xe ye ψe

]T ∈ �3 is the error posture, xe is the longitudinal error, ye
is the lateral error, and ψe is the orientation error; the posture vector pL ∈ �2 × S1

associated with the reference path is defined as

pL = [
xL yL ψL

]T
, (6.11)

where ψL is the orientation of the coordinate frame LxLyL with respect to the fixed
frame Fxy, the posture vector pR is given by (6.8) and the orthogonal matrix T ∈
SO(3) is given by

T =
⎡

⎣
cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎤

⎦.

Differentiating (6.10) with respect to time and taking into account the nonholo-
nomic constraints vPy= vLy=0, (vPy and vLy are the projections of the velocities
of points R and L on the yR and yL axes, respectively), and using the fact that
xe(t) = ẋe(t) = 0 after some work, the error kinematics for path following
applications is obtained in the form

ė = ς1(e) + ς2(e)ω, (6.12)

where ė ∈ �2 represents the time derivative of e ∈ �2 defined as

e = [ ye ψe ]T , (6.13)

ζ 1(e) and ζ 2(e) are C1 vector functions given by

ς1(e) = [
v tanψe vcr/ cosψe

]T
,

ς2(e) = [−(ye tanψe + Pdx ) −(1 + yecr/ cosψe)
]T

,

vPx is the velocity of mid-point P of the wheel axle, ω is the angular velocity of the
robot considered as control variable (input) of the system, and cr is the curvature of
the reference path.

6.2.2 Robot-Camera Model

A monocular camera is placed in front of the mobile robot, where the origin of the
camera frame CxCyCzC coincides with the center of the coordinate system RxRyRzR,
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Fig. 6.2 Robot-camera
geometry

at distance h from the ground. The optical axis of the camera is perpendicular to the
surface of motion, as shown in Fig. 6.2. The focal length of the camera is denoted
by f.

The geometric relationships between the onboard camera and a feature point from
the reference line are shown in Fig. 6.2. Let us denote the position of a feature point
L on the reference line with respect to the camera frame CxCyCzC by C pL ∈ �3, as
follows

C pL =
⎡

⎣
C xL
C yL
C zL

⎤

⎦. (6.14)

The corresponding pixel coordinates I pL in the pixel coordinate system Iuv fixed
to the image plane (Fig. 6.2) are obtained as follows

I pL =
⎡

⎣
uL

vL

1

⎤

⎦ = 1
C zL

Tint
C pL , (6.15)
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where C zL = h ∈ �, Tint ∈ �3×3 is the intrinsic camera calibration matrix given by

Tint =
⎡

⎣
f su 0 u0
0 f sv v0

0 0 1

⎤

⎦,

(su, sv) are the camera scaling factors and f is the focal length of the camera.
From (6.15), given the pixel coordinates (uL, vL), one can determine the

coordinates of point L in the camera frame CxCyCzC , as follows

C pL = C zLT
−1
int

I pL .. (6.16)

On the other hand, given the coordinates C pL of point L in the camera frame
CxCyCzC , the coordinates of point L in the robot coordinate frame RxRyRzR are
obtained as follows

R pL = C zL
C1R−1

zC1,π/2R
−1
xC ,πT

−1
int

I pL , (6.17)

where the two consecutive rotation matrices RxC ,π ∈ SO(3) and RzC ,π/2 ∈ SO(3)
are given by

RxC ,π =
⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦,

RzC ,π/2 =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦.

The lateral error ye is calculated from the image based on the pixel coordinates
in the image plane of the image feature point LI (Fig. 6.3), corresponding to the
feature point L from the reference line on the ground. Knowing the camera intrinsic
parameters and the height h of the camera from the ground, the coordinates of a
feature point L belonging to the reference line in the robot reference system RxRyRzR
can be recovered from its pixel coordinates in the image plane. This error distance is
obtained as a difference between the image plane coordinates of the principal point
C and the image point LI , respectively, and is a function of the intrinsic camera
parameters and the known distance h from the camera to the ground.
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Fig. 6.3 Extraction of a feature point from the line

6.3 Feedback Control Design and Stability Analysis

6.3.1 Circular Line Tracking

Assuming that the reference path is a sequence of circular segments or/and straight
lines, and robot velocity vPx is constant and positive (forward robot motion), the path
tracking problem consists of finding a feedback control law for the system (6.12)
with control input ω, such that the state vector e = [ye, ψe]T tends to es = [yes, ψes]T

as t → ∞, where yes and ψes have constant values.
The following feedback control law is proposed

ω = vPxkye, (6.18)

where k is a positive constant and vPx, (vPx= cte >0), is the robot speed.
Applying (6.18) to (6.12), the resulting nonlinear closed-loop system has the form

ė = vPxηc(e), (6.19)

where the vector function ηc given by

ηc =
[ − Pdxkye(1 − ky2e ) tanψe

−kye + ((1 − ky2e )/ cosψe)cr

]

is continuously differentiable.
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The equilibrium point es of system (6.19) is at

es =
[
yes
ψθs

]

=
[ (−sqrt (1 − Pd2

x c
2
r ) + sqrt (1 − Pd2

x c
2
r + 4cr/k)

)
/2cr

a sin(Pdxcr )

]
. (6.20)

The stability of the equilibrium point (6.20) for the nonlinear system (6.19) is
analyzed by investigating the stability of the linearized system using Lyapunov
stability theory [20].

The linearization of the nonlinear system (6.19) at the equilibrium point (6.20)
has the form


ė = vPxMc
e, (6.21)

where the vector 
e ∈ �2 is given by


e =
[


ye

ψe

]
=

[
ye − yes
ψe − ψes

]
,

Mc ∈ �2×2 is the Jacobian matrix of ηc, (vPx= cte >0) in the form

Mc = ∂ηc

∂e

∣∣∣∣
e=es

= vPx

[−k(Pdx + yes tanψθs) −k(1 + (cr yes/ cosψθs))

(1 − ky2es)/ cos
2 ψθs

(
(1 − ky2es)/ cos

2 ψθs
)
cr

]

= vPx

[
Pdxm21 m12

m21 m12
Pdxc2r

]
(6.22)

with

m12 = (1 − ky2es)/(1 − Pd2
x c

2
r )

m21 = −k
[
1 + (2yescr )/sqrt

(
1 − Pd2

x c
2
r

)]
(6.23)

To analyze the stability of linear system (6.21), we test the eigenvalues λi, (i =1,
2) of matrixMc. The characteristic equation of matrix Mc takes the form

λ2 − λTr(Mc) + det(Mc)

= λ2 − Pdx
(
m12c

2
r + m21

)
λ − m12m21

(
1 − Pd2

x c
2
r

)

= 0

. (6.24)
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In order that the squired Eq. (6.24) does not have any roots with positive real
part, it is necessary and sufficient that all its coefficients be of the same sign, which
implies that

Tr(Mc) < 0 (6.25)

and

det(Mc) > 0 (6.26)

To be more concrete, consider the case when the curvature of the reference path
cr = cte > 0 (analogous results can be obtained when cr = cte < 0), and also the
following inequality holds

yescr + sqrt
(
1 − Pd2

x c
2
r

)
> 0, (6.27)

irrespective of the sign of ye.
In order to prove that inequality (6.25) holds, the expression for yes from the first

equation of (6.20) is substituted into (6.25). Using (6.23), and taking into account
that

0 < s < 1, (6.28)

where

s := 1 − Pd2
x c

2
r > 0, (6.29)

after some work, the following inequality is obtained

(k/2)
{
s + sqrt(s)sqrt

[
s + (

4c2r /k
)]}

> 0, (6.30)

which means that the inequality (6.25) holds.
In order to prove that inequality (6.26) holds, using the expression for det(Mc)

from the last coefficient of (6.24), and taking into account that s >0, one has to prove
that

m12m21 < 0. (6.31)

Using the first equation from (6.20) for yes, and the expressions for m12 and m21

given in (6.23), after some work, the following inequality is obtained

(1/s)
[
1 + (

4c2r /k
)] − 1 > 0, (6.32)
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which means that the inequality (6.24) holds.
Based on (6.30) and (6.32), it follows that Reλi < 0, (i =1, 2). Application of the

Lyapunov’s indirect method [13] indicates that the equilibrium point [yes, ψes]T is
locally asymptotically stable point for the nonlinear system (6.19).

6.3.2 Straight-Line Tracking

In particular, in the case of straight line following (cr=0 in (6.12)), and applying the
feedback control law given by (6.18), the resulting time-invariant closed-loop system
(6.19), (vPx = cte > 0), has the form

ė =
[
ẏe
ψ̇e

]
= vPxηc(e), (6.33)

where the vector e is given by (6.13) and the vector function ηc is in the form

ηC =
[− Pdxkye(1 − ky2e ) tanψe

−kye

]
.

The origin (0, 0) becomes an equilibrium point for the nonlinear system (6.33).
After linearizing the system (6.33) around the origin, is obtained

ė = Mse, (6.34)

where the matrix Ms ∈ �2×2 has the form

MS =
[−k PdxvPx vPx

−kvPx 0

]
. (6.35)

A Lyapunov function for the linear system (6.34) is found by taking a positive
definite matrix Q ∈ R2×2 of the form (vPx= cte > 0)

Q =
[

vPx 0
0 vPx

]
(6.36)

and solving for P ∈ �2×2 the Lyapunov equation

PMs + MT
s P = −Q. (6.37)

The unique solution of the matrix Eq. (6.37) for P is obtained as follows
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P =
[

1+k
2k Pdx

− 1
2

− 1
2

1
2k2 Pdx

(
1 + k + k2 Pdx

)

]

. (6.38)

The symmetric matrix P is positive definite since its leading principal minors are
positive (k = cte >0; Pdx= cte >0)

det

(
1 + k

2k Pdx

)
> 0,

det

[
1+k
2k Pdx

− 1
2

− 1
2

1
2k2 Pdx

(
1 + k + k2 Pdx

)

]

= 1 + k

k

(
1

k2Pd2
x

+ 1

4kPd2
x

+ 1

4

)
− 1

4
> 0. (6.39)

Hence, Mc is stability matrix (i.e., Reλi < 0 for the eigenvalues of Mc) for the
system (6.34), [20]. Since the robot velocity is assumed to be constant and strictly
positive, it follows that using control (6.18) local asymptotic stability of the nonlinear
system (6.33) is achieved when the control (6.18) is applied.

6.4 Simulation and Experimental Results

Numerical simulation tests using MATLAB and experiments are carried out in order
to validate the proposed path tracking control. The look-ahead distance for the robot
reference pointR (Fig. 6.1) was chosen to be Pdx = 0.3m. The forward robot velocity
was chosen to be vPx=0.3 m/s and the controller gain in feedback control given by
(6.18) was ky=10.

For the first simulation, a circular reference path of radius 1 m was assigned.
In the first test in circular path following, the initial conditions were chosen to be
e = [ ye(0) ψe(0) ]T = [−0.3 −0.3 ]T . The path drown by the robot guide point
R and evolution in time of the path error coordinates are depicted, respectively, in
Fig. 6.4a, b.

For the second simulation test in circular path following, the initial conditionswere
e = [ ye(0) ψe(0) ]T = [ 0.3 0.3 ]T . The path drown by the robot guide point R and
evolution in time of the path error coordinates is depicted in Fig. 6.4c, d, respectively.
As seen from Fig. 6.4b, d, the error coordinates ye(t) and ψe(t) asymptotically tend
to the steady-state values given by (6.20), which is in conformity with the stability
analysis presented in Sect. 6.3. The steady-state lateral error yes in the both cases is
equal to 0.095 m.

For the straight-line path tracking simulation test, the initial conditions were
chosen to be e = [ ye(0) ψe(0) ]T = [ 0.25 0.1 ]T . The path drown by the robot guide
point R and evolution in time of the path error coordinates are depicted, respectively,
in Fig. 6.5a, b, respectively. The results from the simulation confirmed the analyt-
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Fig. 6.4 Following a circular path: a and c planar path drown by the reference point R of the robot
(blue dotted line) and reference circular path (cyan solid line); b and d evolution in time of the error
coordinates ye (green solid line) and ψe (magenta dotted line)

Fig. 6.5 Following a straight-line path: a Planar path drown by the reference point R of the robot
(blue dotted line) and reference circular path (cyan solid line); b Evolution in time of the error
coordinates ye (green solid line) and ψe (magenta dotted line)
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Fig. 6.6 Experiments in circular line tracking

Fig. 6.7 Experiments in straight-line tracking

ical result obtained in the previous section for straight-line tracking, that the error
coordinates ye and ψe(t) asymptotically tend to zero.

Experiments were carried out for tracking a circular and straight-line path using
a differential-drive mobile robot Pioneer-3DX equipped with an onboard low cost
camera (640 × 480 pixels). For the experiments, the velocity of the robot was set to
vPx=0.3 m/s. As seen from Fig. 6.6, the robot was able to follow a circular path with
small steady-state lateral error according to (6.20) and without error for straight-line
tracking (Fig. 6.7).

6.5 Conclusion

In this paper, a vision-based line following controller for unicycle mobile robots was
presented. Using a look-ahead approach, a simple and effective feedback control,
which achieves local asymptotic stability of the nonlinear closed-loop system for a
circular path with unknown curvature, as well and a straight-line path, was designed
and analyzed using Lyapunov stability theory. Simulation and experimental results
confirm the validity of the designed vision-based control scheme to perform curved
path following in clutter environments with a quite good accuracy.
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