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Partial Contour Matching Based
on Affine Curvature Scale Space
Descriptors

Sinda Elghoul and Faouzi Ghorbel

Abstract In real applications, the same object may have been presented by different
shapes due to the moment and the angles of image acquisition, which does not guar-
antee a complete contour extraction without being disturbed by the noise or the
distortions. In this paper, we propose a newmethod tomatch partially occluded shape
based on affine curvature scale space. Firstly, an affine curve re-parameterization is
defined, inspired by the properties of affine curvature scale space (ACSS) shape
descriptor. Then, the different parts will be matched in order to minimize the L2

distance by the calculation of the pseudo-inverse matrix to estimate the translation
and the linear transformation based on the affine curve matching (ACM) algorithm.
Finally, a matching curve algorithm is obtained according to any planar affine trans-
formation and in any partial occluded case. Experiments are conducted onmulti-view
curve dataset.

5.1 Introduction

The shape matching of planar curves that are subjected to certain occlusion and
viewing transformations is motivated by a board of problems arising from different
applications in many fields such as robot navigation [1, 2], medical image matching
[3, 4], face recognition [5, 6], and object tracking [7, 8].

The research on the shape matching is recognized as a classical field and well-
studied in the literature. However, there are other challenges that still remain open
until now such as noise, distortion, and deformation. They are caused by two main
reasons: First, images taken at different moments and from different angles of the
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same object suffer from perspective distortions [9]. This transformation can be
approximated by a two-dimensional affine transformation [10] if the object is planar
and far enough from the image plane. The second reason, the curve sometimes can
present a little part of the shape [11].

However, it is not obvious to define an approach that satisfies these different
criteria, so an appropriate trade-off is necessary. In the last decades, various methods
for shape matching have been developed. The best-known researches include affine-
invariant Fourier descriptors (AIFD) method [12, 13], shape context (SC) methods
[14], the inner distance shape context (IDSC) [15], the height function (HF) descriptor
[16], and so on. However, they suppose that the complete shape can be extracted
from the images [17]. While in reality, the extracted shape may be occluded by many
distortions [18] like noise, articulations andmissed contour portions, as well as affine
transformation. In [19], Chen et al. introduce a partial shape matching method based
on the Smith–Waterman algorithm. Also, Latecki et al. [20] define an elastic partial
shape matching to model distortion and occlusion of shapes. In [21], the author
proposes a matching algorithm based on dynamic time warping. Therefore, only
some methods treat both affine and open curve matching [9, 22]. In [17], Mai and
al. define an affine-invariant partial shape matching approach where each contour
is segmented into affine-invariant segments by the application the local maxima of
curvature scale space (CSS). Then, the different parts are matched using the Smith–
Waterman algorithm. However, the Smith–Waterman (SW) algorithm is sensitive to
position jitter of a point sequence as indicated in [9]. Moreover, Huijing Fu and al [9]
present an affine planar shape matching and exploit it for partial object recognition
where an affine-invariant curve descriptor (AICD) using the affine-invariant signature
is defined. Then, a partial curvematching algorithm is developed by combiningAICD
with a curve segmentation strategy based on inflexion points. Yet, their method has
limited accuracy in the noise condition case caused by the high number of derivation
[23]. In this paper, we are interested in part-to-part affine shape matching. We can
present the partial shape matching problem by giving as an input two partial shape,
often called source and target, the goal is to recover the affine transformation that
optimized the pairing between the source and the target. So to achieve this pairing,
we should define the same parameterization for each curve. The underlying idea
here is to divide each shape into ordered affine-invariant segments inspired by the
expression of affine curvature scale space [24]. Then to handle thematching problem,
we estimate the affine transformation parameters using affine curvematching (ACM)
[25] algorithm. This algorithm minimizes the approximation of L2 distance between
pairs by the computation of the pseudo-inverse matrix. In experimentation, we will
evaluate the performance of proposed approach in the context of shape retrieval and
we will compare it with different affine curves matching methods presented in the
state of the art.

The remainder of the paper is organized as follows: In Sect. 5.2, the detailed
descriptions of suggested curve matching algorithm will be presented. Section 5.3
will investigate the effectiveness of the proposed approach through experiments and
analyses. Finally, the last section submits the conclusion.
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5.2 Affine Curvature Scale Space Curve Matching
Algorithm

Here, we define our new partial contour matching based on curvature scale space
matching algorithm. Therefore, this section will be devoted firstly to recall the affine
re-parametrization based on the affine curvature scale space (ACSS) [24]. After
that, we recall the newly developed affine curve matching (ACM) algorithm [25]
and apply the pseudo-inverse matrix to estimate the translation vector B and the
special linear transformation A existing between the two curves up to a special affine
transformation.

5.2.1 Affine Curvature Scale Space Descriptor (ACSS)

As given �1 and �2 two planar shapes represented by closed or open continuous
curves. We extract two contours of each shape which are represented by two param-
eterizations, respectively, as: �1 = [ f (t) = ( f x (t) f y(t))] (t = 1; 2; . . . ; N ) and
�2 = [h(t ′) = (hx (t ′)hy(t ′))] (t ′ = 1; 2; . . . ; N ), where their relation is defined by:

h
(
t ′
) = A f (t) + B (1)

With B is a translation vector and A is a special linear transformation. It is
obvious that each curve can be represented by different parameterizations. There-
fore, we cannot consider that the two contours have the same parameterization and
we compare the different viewpoints of planar shape. To handle this problem, we
must assure that the parameterization is independent from transformations and distor-
tions. As a result, we need to re-parameterize the points of the contour. In [24], it is
proved that the locations of the contour local maxima in the affine curvature scale
space (ACSS) image is invariant under an affine transformation. Moreover, they are
robust to noise as indicated in [17]. The underlying idea is to do an affine curves re-
parameterization by applying an ACSS descriptor. Then, we describe the following
main steps of the ACSS method as indicated in [24]. Firstly, we re-parameterize the
contour using the affine length function l(t) defined by

l = 1

L

t∫

0

∣
∣det( ḟ (u), f̈ (u))

∣
∣
1
3 (2)

where the total affine length L of the considered curve is presented by:

L =
T∫

0

∣∣det( ḟ (u), f̈ (u))
∣∣
1
3 du (3)
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With ḟ and f̈ denote, respectively, first and second derivatives of f and T are
a positive real. As a result of re-parameterization by this affine length, the relation
between the two curves becomes:

h∗(l) = A f ∗(l) + B (4)

With h∗ and f ∗ denotes a re-parameterization by this affine length. In the rest
of paper, we will replace f ∗ by f and h∗ by h to simplify the notation. Then, we
compute the curvature function k(l) expressed by:

k(l) = ḟ x (l) f̈ y(l) − f̈ x (l) ḟ y(l)
(
ḟ x2(l) + ḟ y2(l)

) 3
2

(5)

where ḟ x (l), ḟ y(l) and f̈ y(l), f̈ x (l) are the first and second derivatives. If g(l, σ ),
a 1-D Gaussian kernel of width σ, is convolved with each component of the curve,
then f xσ (l, σ ) and f yσ (l, σ ) represent the components of the resulting curve, fσ :

f xσ (l, σ ) = f x�g(l, σ ) f yσ (l, σ ) = f y�g(l, σ )

where � is a convolutional operator. The curvature of fσ is given by:

k(l, σ ) = ḟ x (l, σ ) f̈ y(l, σ ) − f̈ x (l, σ ) ḟ y(l, σ )
(
ḟ x2(l, σ ) + ḟ y2(l, σ )

) 3
2

5.2.2 Affine Curve Matching (ACM) Algorithm

To solve the matching problem, we must find A and B to estimate the relation and
motion between the different contours as indicated in [25]. The re-parametrization
of two curves by the ACSS gives the following rectangular system formed by 2*N
equations and 6 unknown variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hx
σ (l1) = f xσ (l1)a11 + f yσ (l1)a12 + Bx

hy
σ (l1) = f xσ (l1)a21 + f yσ (l1)a22 + By

.

.

.

hx
σ (lN ) = f xσ (lN )a11 + f yσ (lN )a12 + Bx

hy
σ (lN ) = f xσ (lN )a21 + f yσ (lN )a22 + By

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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with f (l) and h(l) as the re-parametrization, respectively, of two contours f (t) and
h
(
t ′
)
, B = (Bx ; By) and A = (

ai j
)
1=<(i, j)=<2. Our goal is to minimize the error e

between the two contours by the estimation of A and B which will be defined by:

min
(A,B)

||A fσ (l) + B − hσ (l)||2 ∼= e

This system can be written in matrix notation:

H = DU

WithU = [a11 a12 a21 a22 Bx By]t ; H = [
hx

σ (l1), h
y
σ (l1) . . . hx

σ (lN ), hy
σ (lN )

]
and

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f xσ (l1) f yσ (l1) 0 0 1 0
0 0 f xσ (l1) f yσ (l1) 0 1

f xσ (l2) f yσ (l2) 0 0 1 0
0 0 f xσ (l2) f yσ (l2) 0 1
. . . . . .

. . . . . .

f xσ (lN ) f yσ (lN ) 0 0 1 0
0 0 f xσ (lN ) f yσ (lN ) 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In [25], the author applies the least squares method to solve the over determined
system of linear equations when the numbers of equations are more than unknown
variables. Thus, the resolution of this rectangular system can be done by minimizing
the error via inverting the system by using pseudo-inverse of thematrixD as indicated
in [25].

U = (
Dt D

)−1
Dt H

Then, we calculate the normal matrix
(
Dt D

)
which has the following expression:

Dt D = N 6

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

X2 XY 0 0 X 0
XY Y 2 0 0 Y 0
0 0 X2 XY 0 X
0 0 XY Y 2 0 Y
X Y 0 0 1 0
0 0 X Y 0 1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

X = 1
N

∑N
k=1( f

x
σ (lk)) and Y = 1

N

∑N
k=1( f

y
σ (lk))

The reader can find more details in [24, 25].
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5.3 Experiments

In this section, we provide the recognition rates of the suggested approach and
compare it with the exiting shape matching methods. The experiments are carried on
multi-view curve dataset (MCD). First, we evaluate the performance of our approach
in the shape retrieval. Then, we prove the performance of the proposed algorithm on
shape registration. Finally, wewill analyze the algorithm complexity of our approach.

5.3.1 Retrieval Accuracy

To perform our algorithm in shape retrieval task, we calculate the bulls-eye score
as defined in [26, 27] on multi-view curve dataset (MCD) [28], since it contains
forms that undergo an affine transformation. So to calculate the bulls-eye score, we
compare each curve to the whole MCD dataset curve (including itself). Then, the
contour number of the same class that are midst the 2 * Nc most similar is recovered,
with Nc is the sample number per class. The bulls-eye score is the ratio of the number
of correct results and the highest possible number of correct results [9, 27].

The MCD contains 40 shape classes taken from MPEG-7 datasets. Each class
presents 14 curve samples that correspond to different perspective distortions of the
same shape. Samples of contours from MCD datasets are shown in Fig. 5.1.

Table 5.1 compares the retrieval bulls-eye score to the first 10 contours of theMCD
database using our approach with some existing methods. In terms of the average
rate performance, the proposed approach performs reasonably well as compared to
many other techniques such as affine curve matching (ACM) [25] algorithm with
94% of rate and especially the curvature scale space Smith–Waterman (CSS-SW)
[17] approachwhich prove that our algorithm ismore efficient in terms of registration
since we are based on ACSS in the re-parameterization step.

Fig. 5.1 Different contours images from the MCD database, two images from each class [28]
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Table 5.1 Retrieval results
on the entire MCD Dataset

Algorithm Bulls eye score (%)

Arbter [3] 41

Shape Context [14] 56.29

Huang [25] 71

Chaker’s invariant [30] 76

Rube [31] 79

CSS-SW [17] 89

ACM [25] 94

Proposed algorithm 95.98

5.3.2 Shape Registration

Shape registration is a crucial applications of the proposed algorithm [29]. Most
shapes ofMCDdatasets are represented by closed curves. So to evaluate the proposed
algorithm in partial occlusion and deformable registration, we take off some parts
of the contour to make it open as indicated in [17]. Figure 5.2 shows our method in
full-to-full and part-to-part registration case.

Fig. 5.2 Proposed method: a and b are the initial shape part; c and d show the original shape
overlaid with the registered shape
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5.3.3 Algorithm Complexity

Here, we compare our algorithm complexity with the CSS-SW. The calculation of
the shape descriptors and shape matching are two independent steps for the proposed
approach. Therefore, the complexity of the proposed method will be evaluated sepa-
rately here. We consider that N is the number of sample points of the contour. For
each curve, we should start by the re-parametrization step based on ACSS descriptor
which is a common step between the twomethods. In thematching step, the proposed
algorithm can do the matching with O(N) complexity which underlines the speed
of pseudo-inverse. However, Smith–Waterman complexity is O(N 3) [9], since it
requires SVD calculation.

5.4 Conclusion

In this paper, we propose a newmatchingmethod which can deal with both occlusion
andaffine transformations. Firstly, the contour is divided into affine-invariant segment
by applying the ACSS descriptor. Then, we estimate the affine transformation using
the ACM algorithm. As a result, an affine curve matching is achieved. Experiment
results show that the proposed algorithm is simple and can cope partially occlusion
and affine transformation. In our future work, wewill apply our algorithm in different
application domains as remote sensing and robotic recognition.
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