
Chapter 2
Video-Based Monitoring and Analytics
of Human Gait for Companion Robot

Xinyi Liu, Md Imran Sarker, Mariofanna Milanova,
and Lawrence O’Gorman

Abstract Human gait is essential for long-term healthmonitoring as it reflects phys-
ical and neurological aspects of a person’s health status. In this paper, we propose a
non-invasive video-based gait analysis system to detect abnormal gait, and record gait
and postural parameters framework on a day-to-day basis. It takes videos captured
from a single camera mounted on a robot as input. Open Pose, a deep learning-
based 2D pose estimator is used to localize skeleton and joints in each frame. Angles
of body parts form multivariate time series. Then, we employ time series analysis
for normal and abnormal gait classification. Dynamic time warping (DTW)-based
support vector machine (SVM)-based classification module is proposed and devel-
oped. We classify normal and abnormal gait by characterizing subjects’ gait pattern
andmeasuring deviation from their normal gait. In the experiment, we capture videos
of our volunteers showing normal gait as well as simulated abnormal gait to vali-
date the proposed methods. From the gait and postural parameters, we observe a
distinction between normal and abnormal gait groups. It shows that by recording and
tracking these parameters, we can quantitatively analyze body posture. People can
see on the display results of the evaluation after walking through a camera mounted
on a companion robot.
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2.1 Introduction

With the rise of aging populations, desire for independent living, high healthcare
costs, non-invasive health monitoring, and smart personal and home communica-
tions, the time for “healthy-living” companion robots are approaching. Every 11 s,
an older adult is treated in the emergency room for a fall; every 19 min, an older
adult die from a fall. Healthcare cost of falls in the USA, including hospitalization,
surgery, therapy, etc., is expected to increase as the population ages and may reach
$67.7 billion by 2020 [1, 2].

According to Selke [3], lifelogging is understood as different types of digital
self-tracking and recording of everyday life. Another feature of lifelogging is that
it is a continuous process that requires no user interaction. In the context of active-
assisted living (AAL), sensors used for lifelogging can also be ambient-installed
as opposed to wearable sensors, for instance, video surveillance or other cameras
installed in nursing or smart homes to monitor and support older and fragile people
[4–6]. Recently, there is a growing research on robots and their amplification in
AAL Healthcare humanoid robots are designed and used by individuals at home or
healthcare centers to analyze, treat and improve their medical conditions.

The quantitative gait analysis requires specific devices such as a 3D motion
capture system, accelerometer, or force plate, which are time-, labor-, space-, and
cost-consuming to use daily. Furthermore, monitoring gait in home using monoc-
ular camera without any annotations is interesting and not explored (practically
unavailable for gait analyses).

The goal of this study is to develop a video-based marker-less system for non-
invasive healthcare monitoring, using skeleton and joint location from pose estima-
tion to extract gait features and generate alerts for abnormal gait, indicating needs for
further medical attention. We propose use of Open Pose [7], a deep learning–based
2D keypoint framework that estimates the joint coordinates of persons in the image
or videos obtained using a monocular camera, as it does not require external scales
or markers. Using this estimator, we can automatically obtain the joint coordinates of
persons in each image/movie recorded, thus enabling the calculation of joint angles
or other spatial parameters useful for further gait analysis.

We first designed experiments to measure consistency of the system on a healthy
population, then monitoring gait of subjects walking caring the weight to replicate
gait decay. The second set of experiments is “nudge” human posture monitoring. The
system guides individuals in regular walking, freely assesses gait states and provides
real-time personalized feedback to evaluate correct body posture. The robot will
also connect individuals with family and friends through a virtual connection, and if
needed, it will set up alarms.

Hypothesis Can we evaluate gait and motion dynamic integrating deep learning-
based 2D skeleton estimator and time series analysis?

Research involves two complementary tasks:

1. Designing set of experiments and creating own dataset.
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2. Analyzing gait changes using lower body skeleton representation and calculate
falling risk.

Our contribution

1. We designed system to evaluate gait deviation and classification of normal and
abnormal gait non-invasively over time.

2. Perform experiments on subject walking normally and the same subject walking
caring the weight.

3. Feature extraction and machine learning evaluation of human pose changes.

In Sect. 2.2, we describe evidence primarily from the medical and health-related
literature on the correlation between gait and health. We also give an overview of
other video gait recognition systems. In Sect. 2.3, we describe the methodology,
which combines use of a deep learning gait and pose recognition engine, and classi-
fication module to determine significant health-related changes. Section 2.4 contains
description of the experiment which simulated an attempt to understand how the
system would work for people with changing gait or emotional state. Finally, in
Sect. 2.5, we discuss results and current and future utility of this approach.

2.2 Related Work

In terms of data modalities, there are mainly two categories of gait analysis
approaches: sensor based and vision based. Although sensor-based approach has
shown its ability to reflect human kinematics, the requirement of certain sensors or
devices and needs to be worn on human body for some approach has made it less
convenient to be applied. Vision-based approaches are more unobtrusive and only
requires cameras for data collection [8].

Recently, skeleton has been widely used [9–14]. Some researchers employed
Microsoft Kinect camera to generate 3D skeleton using its camera SDK. Gait abnor-
mality index is estimated using 3D skeleton in [11], joint coordinates are used as
input of auto-encoders. Then, reconstruction errors from auto-coders are used to
differentiate abnormal gaits. Jun et al. [12] proposed to extract features from 3D
skeleton data using a two recurrent neural network-based auto-encoder for abnormal
gait recognition and then evaluated the performance by feeding the features extracted
to discriminative models. While Kinect RGB-D camera provided additional depth
information, in our preliminary experiment of comparing skeleton output fromAzure
Kinect body tracking SDK and Open Pose, it is not as robust as Open Pose.

Similar to our work, Xue et al. [14] presented a system for senior care using
gait analysis. They accurately calculated gait parameters, including gait speed, stride
length, step length, step width, and swing time from 2D skeleton. Compare to their
work, besides gait parameters, we also employed time series analysis techniques to
characterize motion dynamics. In addition, our system gives classification result of
normal or abnormal gait.
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There are several gait-related public datasets. CASIA gait database [15] includes
video files of the subject walking with variations in view angle, clothing, whether or
not carrying a bag. However, it does not have samples of the subject walking with
abnormal gait patterns. And the resolution is quite low, 320 × 240, and captured at
25 fps. INIT Gait database [16] is designed for gait impairment research; it consists
of one normal gait pattern and seven simulated abnormal gait styles. But only bina-
ries silhouettes sequences were released. The walking gait dataset by Nguyen et al.
is designed for abnormal gait detection [11]. It includes point cloud, skeleton, and
frontal silhouette captured by Microsoft Kinect 2 camera. Nine subjects performed
nine different gaits on a treadmill. Aside from one normal gait, they simulated
abnormal gaits by padding a sole with three different levels of thickness and attaching
a weight to ankle. However, it is captured in front view, while our method is designed
on sagittal plane from the side view. Thus, we captured our own dataset for this
research.

2.3 Methodology

2.3.1 Pipeline Overview

Our system is set up to capture peoplewalking left-right or right-left through a camera
view, termed an event. A camera is placed to capture the movement in sagittal plane
of human body while walking (see Fig. 2.7).

The processing system contains the three modules as shown in Fig. 2.1. The
system continually monitors a camera view, and when a person walks through the
camera view, that event is detected and captured to a video clip. Pose estimation is
performed on the clip to obtain a sequence of skeleton which contains location of
body joints. In feature extraction and gait classification stage, we extracted gait and
postural parameters and employed time series analysis to classify if the gait is normal
or abnormal.

Fig. 2.1 Three processing modules of the system
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Fig. 2.2 Data processing flow

Event detection is performed in tripwire areas which located in both edges of the
frame. When motion is detected in one side of the tripwire area, it starts recording
an event; when motion is detected in another side, it ends the recording. We use a
motion edge method (akin to optical flow) described in [17, 18].

After we captured the video clip of the subject walking perpendicular to the
camera, we applied pose estimation on each frame of the video. The output of the
pose estimation is a sequence of 25 anatomical joint coordinates in each frame.
As shown in Fig. 2.2, in order to prepare the data for the binary classification, the
following steps are performed: Trim the sequence to ensure all videos start from
the same walking position. Keep a few samples of walking videos of normal gait
as the standard gait template. Split the rest of the dataset into training and test set.
We trained and evaluated two different algorithms of time series analysis to classify
whether the gait in a video is normal or abnormal.

If the gait is classified as abnormal, it means the gait has deviated from their
normal gait. To better analyze the gait, we also extract gait and posture features to
help understand how the gait has changed.

2.3.2 Pose Estimation and Skeleton Extraction

Open Pose is an open-source real-time human 2D pose estimation deep learning
model. It introduces a novel bottom-up approach to pose estimation using Part
Affinity Fields (PAFs) to learn to associate body parts of a person in images or
videos. Figure 2.3 shows Open Pose architecture (TensorFlow-based framework)
[7].
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Fig. 2.3 Architecture of the multi-stage CNN

2.3.2.1 The Architecture of Open Pose

1. The system takes a color image as input, then analyzes it with a convolutional
neural network (CNN) initialized and fine-tuned based on the first 10 layers of
Visual Geometry Group-19 model (VGG-19).

2. A set of feature maps generated from CNN are feed into another multi-stage
CNN.

3. The first set of stages predicts and refines PAFs, which is a set of 2D vector fields
that encode the degree of association between body parts.

4. The last set of stages generates confidence maps of body part locations.
5. Finally, the confidence maps and the PAFs are parsed by bipartite matching to

obtain 2D key points for each person in the image.

2.3.2.2 Part Affinity Fields for Part Association

PAFs contain location and orientation information across the region of support of
the limb. It is a set of flow fields that encodes the unstructured pairwise relationship
between body parts. Each pair of body parts have one PAF. PAFs are represented
as set L = (L1, L2, . . . , LC), where Lc ∈ R

w×h×2, c ∈ {1, . . . ,C}. C denotes the
number of pairs of body parts, w × h is the size of the input image. Each image
location in Lc encodes a 2D vector, if it lies on the limb c between body parts j1 and
j2, the value of PAF at that point is a unit vector that points from j1 to j2; otherwise,
the vector is zero-valued. The ground truth PAF L∗

c,k at a point p for person k as

L∗
c,k(p) =

{
x j2 ,k−x j1 ,k

||x j2 ,k−x j1 ,k ||2 if p on limb c

0 otherwise
(2.1)

where x j,k is the ground truth position of the body part j of person k.
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2.3.2.3 Confidence Map for Part Detection

Each confidencemap is a 2D representation of the belief that a particular bodypart can
be located in any given pixel. Each body part has one corresponding confidence map.
Confidence maps are represented as set S = (S1, S2, . . . , SJ ), where S j ∈ R

w×h ,
j ∈ {1, . . . , J } and J denotes the number of body parts. Individual confidence maps
S∗
j,k for each person k is defined as

S∗
j,k(p) = exp

(
−||p−x j,k ||22

σ 2

)
(2.2)

where x j,k is the ground truth position of the body part j of person k. The ground
truth confidence map is an aggregation of individual confidence maps:

S∗
j (p) = max

k
S∗
j,k(p) (2.3)

2.3.2.4 Multi-stage CNN

Stage t = 1: Given the feature maps F generated from VGG-19, the network
computes a set of part affinity fields, L1 = φ1(F), where φ1 refers to the CNN
at stage 1.

Stage 2 ≤ t ≤ TP : Original feature maps F and the PAF prediction from previous
stage are concatenated to refine the prediction,

Lt = φt
(
F, Lt−1

)
,∀2 ≤ t ≤ TP (2.4)

TP refer to the number of PAF stages, φt is the CNN at stage t.
Stage TP < t ≤ TP + TC : After TP iterations, starting from the most updated

PAF prediction LTP , the process is going to be repeated for TC iterations to refine
confidence map detection.

STP = ρ t
(
F, LTP

)
, ∀t = TP (2.5)

St = ρ t
(
F, LTP , St−1

)
, ∀TP < t ≤ TP + TC (2.6)

TC refer to the number of confidence map stages, ρ t is the CNN at stage t.
An L2 loss function is applied at the end of each stage; it is specially weighted

to tackle the case when people in some images are not completely labeled. Loss
function at PAF stages ti is

f tiL =
C∑
c=1

∑
p

W(p) · ||Lti
c (p) − L∗

c(p)||22 (2.7)
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Fig. 2.4 BODY_25 skeleton
output. Source [19]

where L∗
c is the ground truth PAF, W is a binary mask. If pixel p is not labeled,

W(p) = 0. Loss function at confidence map stages tk is

f tkS =
J∑

j=1

∑
p

W(p) · ||Stk
j (p) − S∗

j (p)||22 (2.8)

whereS∗
j is the ground truth part confidencemap. The overall objective is tominimize

the total loss.

f =
TP∑
t=1

f tL +
TP+TC∑
t=TP+1

f tS (2.9)

The output of the Open Pose is BODY-25 output format as Fig. 2.4 shows; it
consists of an (x, y) coordinate pair and confidence score for each of 25 joints [19].

2.3.3 Gait and Postural Feature Extraction

After getting pose estimation of each frame in the videos, we calculated angles of
back and each lower leg respect to the vertical axis in each frame. The vertical axis
in the coordinate system oriented downwards. Back angle is the angle of the vector
start from “Neck” (key point 1) to “Mid Hip” (key point 8) respect to vertical. The
angle of lower legs uses the vector point from knee to ankle, respect to vertical. Left
lower leg: “LKnee” (key point 13) and “LAnkle” (key point 14); Right lower leg:
“RKnee” (keypoint 10) and “RAnkle” (key point 11) (Table 2.1).
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Table 2.1 List of body parts
angles

Angle name Joints

Left lower leg angle Left knee (key point 13), left ankle
(key point 14)

Right lower leg angle Right knee (key point 10), right ankle
(key point 11)

Back angle Neck (key point 1), mid hip (key point
8)

Each video has three corresponding time series representing the angles mentioned
above. And preprocessing is performed to clean upmissing data, crop, and align time
series.

In Fig. 2.5, left and right lower leg (knee-ankle) angles are colored in blue and
orange, respectively. The first row (a–d) is a sample of normal gait, while the second
row (e–h) is for abnormal gait. First column shows the original frame, the skeleton
was extracted and displayed as shown in (b) and (f). (c) And (g) shows the vector,
point from knee to ankle. The lower leg angle is the angle between the vector and
vertical axis. (d) and (h) are the sequence of lower leg angle in the video, the horizontal
axis of the plot is the frame index, and the vertical axis is angle in degree.

From the pose estimation result of the video, we also extracted gait and postural
features listed below (see Figs. 2.6 and 2.7):

Fig. 2.5 Time series of lower leg angles
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Fig. 2.6 Gait and postural feature

Fig. 2.7 Phases of the gait cycle

Stance Phase: The period starts from the heel strike, the heel of the same foot
strike floor to toe-off, the foot is lifted from the floor. Swing Phase: The period that
foot left the floor and swung forward in the air until the heel strikes the floor again
[20].

Cadence: Cadence is the number of steps taken in a given period of time, expressed
in steps per minute.

Step length: Distance between the contact points of two heels.
Stride length: Distance between two consecutive heel contact points of the same

leg [21].
Lower leg angle extrema: The maximum and minimum of the lower leg angle

time series, which reflects knee flexion while walking.
Asymmetry measure: To represent feature’s asymmetry between left and right

leg, we calculate the asymmetry measure of each feature. Let f denote feature, fL
and fR denote feature extracted from left and right leg, respectively. Asymmetry
measure A f is defined as [22]:

A f = | fL− fR |
max( fL , fR)

(2.10)

Walking speed: Walking speed is calculated by dividing walking distance with
the time period taken.

Back Angle: Back angle is between the mid-hip (key point 8) and bottom of the
neck (key point 1)
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Neck Angle: Neck angle is between the bottom of the neck and the nose (key
point 0).

Falling risk: Body posture at left heel strike phase is used to calculate falling risk.
Similar to [22], falling risk Fr is defined as:

Fr =
∣∣∣Nosex− (LHeelx+RHeelx )

2

∣∣∣
|LHeelx−RToex |

2

(2.11)

where Nosex is the x-coordinate of Nose (key point 0), LHeelx , RHeelx and RToex
are x-coordinate of Left heel (keypoint 21), Right heel (keypoint 24), and Right big
toe (keypoint 22).

2.3.4 Time Series Analysis

In order to measure the similarity between time series derived from pose estimation,
we use fast dynamic time warping (DTW) [23] method to help calculate Euclidean
distance with optimal alignment (see Fig. 2.8). And, support vector machine (SVM)
is used for binary classification of normal and abnormal gait.

Due to the nature of the humanwalk, theremight have shifts and distortions in gait
data between eachwalk in the time axis, caused by subtle difference in walking speed
or cadence. It is hard to have sequences aligned perfectly. Even between multiple
samples of the normalwalk, the slight time shift causes the distance to be considerably

Fig. 2.8 Cost matrix with
the minimum-distance wrap
path traced through it.
Source [23]
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large, making it unable to differentiate with abnormal gait, as their distances are both
large. So directly calculating Euclidean distance is going to give poor results.

Dynamic time warping (DTW) [24] algorithms are commonly used to overcome
shifts in the time dimension. Assume we have two time series X and Y. The value
of a cell D(i, j) in cost matrix D is the minimum-distance warp path of sequence
X ′ = x1, . . . , xi and Y ′ = y1, . . . , y j , Dist (i, j) denote distance of two data points
xi and y j .

D(i, j) = Dist(i, j) + min[D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)] (2.12)

Fast DTW approximates DTW, using a multi-level approach to achieve linear
time and space complexity, in contrast to quadratic time and space complexity in
standard DTW algorithm. It first produces different lower resolutions of the time
series, by taking an average of adjacent pairs of points. Then, project the minimum
distance calculated from lower resolution to higher resolution as an initial guess.
Finally, refine the wrap path by local adjustments.

After calculation of DTW distance for each time series, we used support vector
machine (SVM) on a multidimensional DTW distance vector for classification.

2.4 Experiments and Results

2.4.1 Data Collection

In our experiment, we aim to simulate gait in different health states within the labo-
ratory. Because it is difficult to change health status of our volunteers, we propose to
use different levels of physical ankle weights in the experiment to help them demon-
strate abnormal gait. Intuitively, when additional weights added on human body, gait
will change accordingly as mobility and stability of walking are affected.

The adjustable ankle weights strap with removable sand packets were used
because it can easily adjust the weight by adding or removing sand packets on the
strap. Each strap has five slots to hold sand packets, and each packet weighs around
0.6 lbs.

We designed the experiment capturing the same person walking across the camera
normally for 10 times, walkingwith three different levels ofweights 10 times, respec-
tively, and walking with the 3rd level of weights plus carrying a heavy box for 10
times (see Fig. 2.9).
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Fig. 2.9 Sample frames in the dataset: a original frame in video of normal walk; b normal walk
frame with skeleton overlay; c original frame in video of walk with 3rd level of weights; d frame of
3rd level of weights experiment with skeleton overlay; e original frame in video of walk with 3rd
level of weights and carrying a heavy box; f frame of 3rd level of weights and a heavy box with
skeleton overlay

2.4.2 Experiment Setting

Videos we captured are with resolution of 1920 × 1080 and frame rate of 30 frames
per second. In pose estimation stage, Open Pose was also processed at 30 FPS. We
dropped frames with incomplete or low confidence joints to filter out the low-quality
frames. Failure of pose estimation in these frames usually caused by motion blur in
the frame, especially at lower leg and foot area where the amplitude of motion is
largest.

In the preprocessing stage, we first performed imputation using interpolation to
fill the missing data. Then, we cropped all the sequences to start from the first peak
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(maximum) point of the right lower leg angle’s time series, so that all of the sequences
should start from nearly the same gait phase which minimized the noise from data
misalignment.

In our experiment, for each person, we set aside three videos of normal gait as
standard template gait data to be compared with. The rest of the videos were split into
training and test set, and for each one of them, we calculate the distance with three
standard template gait data using fast DTW then take an average to measure how
close it is comparing to normal gait. Linear kernel is used in SVM for classification.

2.4.3 Results for Gait Classification

2.4.3.1 Evaluation Metrics

Gait classification is a binary classification task to predict if an unlabeled video
shows normal or abnormal gait. Detection of abnormal gait is defined as “positive.”
If the ground truth label of the data matches detection result, it is defined as “true,”
otherwise it is “false.”

We employed accuracy rate, precision rate, recall rate and F1 score in our
experiment.

2.4.3.2 Intra-subject Cross Validation

To evaluate the performance of our proposedmethods, leave-one-out cross validation
is performed within each subject. As Fig. 2.10 shows, for each subject’s data, we
reserve one as test set and use the rest of this subject’s data to train the algorithms.
The same process is performed on each of four subjects.

Results of leave-one-out cross validation are listed as below (Table 2.2).

Fig. 2.10 Leave-one-out cross validation
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Table 2.2 Results of leave-one-out cross validation

Subject Precision | DTW-SVM
| Recall

Accuracy F1 score

1 1.000 1.000 1.000 1.000

2 0.974 0.925 0.915 0.949

3 1.000 0.975 0.979 0.987

4 1.000 1.000 1.000 1.000

Average 0.993 0.975 0.973 0.984

2.4.3.3 Inter-subject Cross Validation

Wealso performed leave-one subject-out cross validation to validate the performance
when applied on a different subject that is not included in training set. As Fig. 2.11
shows, in each iteration, one subject’s data is used as test set. All other subjects’ data
is used for training.

From the result of leave-one-subject-out cross validation, we can see that both
methods successfully classified normal and abnormal gaits. The DTW-SVM-based
method achieved 0.982 in F1 score (Table 2.3).

Fig. 2.11 Leave-one-subject-out cross validation

Table 2.3 Results of leave-one subject-out cross validation

Subject Precision | DTW-SVM
| Recall

Accuracy F1 score

1 1.000 1.000 1.000 1.000

2 0.907 0.975 0.894 0.940

3 1.000 0.975 0.979 0.987

4 1.000 1.000 1.000 1.000

Average 0.977 0.988 0.968 0.982
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Fig. 2.12 DTW distance to standard gait template; data points of normal gait were marked with
blue dots; data points of abnormal gait were marked with red dots

2.4.4 Discussion

The proposed DTW-SVM-based method performed classification by measuring the
deviation from the standard gait template.AsFig. 2.12 shows, the x-, y-, z-axis denotes
the DTW distance of left and right lower leg angle, back angle compares to standard
gait template, respectively. Normal gait’s data is marked with blue while abnormal
gait’s data is marked with red. Intuitively, normal gait is closer to the standard gait
template, yet the distance should be small, so the data points are clustered near origin
of the coordinate system.

As DTW-SVM-based method measures deviation, so it has better performance
while applied on inter-subject prediction. It only requires a few samples as standard
gait template to be compared with.

2.4.5 Graphical User Interface and Companion Robot

The gaitmonitoring system based on body posture andwalking speed is implemented
as amodule in companion robot.On a robot’smonitor directly in linewith thewalking
trajectory (see Fig. 2.7), we displayed a graphical “reward” of the person’s gait with
respect to average values among the population (see Fig. 2.13). So, people can see
the results of the evaluation after they walked through the room.We have heard from
users that this system motivates them to improve body posture.
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Fig. 2.13 Graphical user interface (GUI) of the gait analysis system

2.5 Conclusions and Future Work

This paper proposed a video-based gait analysis system to detect abnormal gait and
capture gait features non-invasively over time. Gait analysis and gait abnormality
detection allows early intervention and treatment to prevent underlying conditions
develops and cause a fall. It can also evaluate the recovery progress of the physical
therapy.

The system consists of three stages; first, the event detection module records
the gait event video clip while a person walks through the camera. Second, pose
estimation is applied to extract sequence of skeleton and joints in the video. Then,
feature extraction and gait classification is performed to calculate gait and postural
parameters and to classify if the gait is normal or abnormal.
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In gait classification task, we proposed DTW-SVM-based method, using time
series of lower leg angle and back angle. Experiment results shows that DTW-
SVM-basedmethod achieved higher accuracy in inter-subject classification. Gait and
postural parameters extracted shows distinction between normal and abnormal gait.
With tracking the parameters on a day-to-day basis, we can quantitatively monitor
the gait changes in long term.

In the future, this work can be extended by adding another camera, located in front
view, to analyze the motion and gait asymmetry in the coronal plane or frontal plane
of the human body. The system can be integrated with a face recognition module
to fit the need of a multi-person household or facility so that it can automatically
recognize the identity of the person in the video and then add the extracted gait
features to their record. When the system detected gait abnormality of a person, an
alert will be generated for medical attention.
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