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Abstract Analysis of punctuality of airport arrivals, as well as identification of
causes of the delays within transition airspace, is an important step in evaluating
performance of the Terminal Maneuvering Area (TMA) Air Navigation Services. In
this work we analyse how different weather events influence arrival punctuality and
vertical flight efficiency on example of Stockholm Arlanda airport. We quantify the
impact of the deviations from the flight plans influenced by different weather events,
by demonstrating that they result in significant arrival delays, vertical inefficiencies
and calculating how much extra fuel is wasted due to vertical flight inefficiency
within Stockholm TMA.
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1 Introduction

Aviation, probably more than any other mode of transportation, is greatly affected by
weather. Wind direction and speed can make a flight time quite different, for exactly
the same journey. Flight routes can be altered to avoid convective weather, such
as thunderstorms. Severe weather causes delays and cancellations. Airport capacity
can be reduced considerably by low visibility, strong winds, thunderstorms in the
terminal area and runway closures.
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There are several measures of convective weather. The most common is Con-
vective Available Potential Energy (CAPE), which is an indicator of atmospheric
instability that can predict severe weather. When the visibility at the airport drops
below Runway Visual Range (RVR), the airport enforces Low Visibility Procedures
(LVPs). LVPs mean procedures applied at an aerodrome for the purpose of ensuring
safe operations such as spacing planes apart to reduce the risk of collisions, so it
slows things down and decreases the airport capacity which in turn leads to delays
and cancellations.

Reducing fuel waste has a significant environmental benefit as it reduces fuel
emissions. One of the reasons for fuel waste is inefficient vertical profiles. During
the descent phase Vertical Flight Efficiency (VFE) means aircraft leaves its cruising
level at the optimum top of descent and avoids level-off segments after that.

In this paper, we study correlation between the punctuality of arrivals for the
major Swedish airport Arlanda in 2018, and the followingweather phenomena: wind,
visibility and CAPE within the terminal manoeuvring area (TMA). We calculate
delay statistics and additional fuel burn due to deviations from the flight plans.
Furthermore, we compute VFE within Arlanda TMA, together with the associated
fuel waste.

The rest of the paper is organized as follows. In Sect. 2 we review related work
on the topic and provide background information on the methods we use for analysis
of the performance of Stockholm Arlanda airport arrivals.

We present the results of data analysis in Sect. 3 and summarize our findings in
Sect. 4.

2 Background

This section reviews previous work and provides background information related to
analysis of the weather impact on the flight efficiency of airport arrivals.

2.1 Related Work

Classification and analysis of causes of airport delays was a topic of interest for
many years. In early works [1, 2] weather uncertainties are mentioned as the main
contributor to the deviations in airport schedules. According to [3] airport ATFM
delays (19,704min/daily) increased in May 2019 by 6.5% compared to May 2018
which had high delays due to weather and ATC industrial action.

Impact of deep convection and thunderstorms is also subject to ongoing research,
e.g. Steiner et al. [4, 5] and Song et al. [6] investigated its implication both on the
en-route flow management and for terminal area applications. Klein et al. [7] used
a high-level airport model to quantify the impact of weather forecast uncertainty on
delay costs.
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Recent works [8, 9] confirmed the relevance and emphasized the importance of
quantification and analysis of the weather impact on airport operation.

EUROCONTROL developed the methodology used by its Performance Review
Unit (PRU) for the analysis of VFE during climb and descent [10]. Performance
Review Commission of EUROCONTROL made an assessment of air traffic man-
agement in Europe for the year 2018, where among other indicators reviewed air
traffic punctuality and vertical flight inefficiency at the top 30 European airports,
including Stockholm airport Arlanda [11]. In addition, EUROCONTOL PRU con-
tinues working on the development and maintenance of the open access cloud based
data repositories to enable stakeholders to reproduce the performance review results
[12]. EUROCONTROL Experimental Center also develops new performance indi-
cators targeting to capture different aspects of flight inefficiencies in TMA [13, 14],
some of which we use in this work.

In [15] fuel consumption is evaluated for terminal areas with a Terminal Ineffi-
ciency metric based on the variation in terminal area fuel consumed across flights,
reported by a major U.S. airline. Using this metric they quantify the additional fuel
burn caused by Air Traffic Management (ATM) delay and terminal inefficiencies.

Estimation of the flight inefficiencies in terms of extra fuel burn calculated based
on the algorithm proposed in [16] was considered in the scope of APACHE project
(a SESAR 2020 exploratory research project) [17, 18], but mostly for en-route flight
phase. Later Prats et al. [19] proposed a family of performance indicators to measure
fuel inefficiencies. In this work, we apply similar techniques to fuel estimation during
the descent phase within TMA.

Furthermore, in [20] and [21], an analysis of fuel savings of the Continuous
Descent Operations (CDO) with respect to conventional procedures is analyzed. A
reduction in fuel consumption of around 25–40% by flying CDO was reported.

2.2 Weather Phenomena and Metrics

We consider three weather metrics: wind gust, visibility and CAPE.

2.2.1 Wind Gust, Visibility

We use surface level measurements of wind gust and visibility, expressed in meters
per second and meters respectively. Depending on cloud ceiling and runway visual
range the spacing of aircraft on final approach must be increased. Low visibility
reduces the runway capacity for landing aircraft. If this happens during a traffic peak
hour, it causes major disruptions.
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2.2.2 Convective Available Potential Energy (CAPE)

CAPE is the energy a parcel of air has for upward motion, measured in joules per
kilogram of air (J/kg). The higher the CAPE, the faster and higher the air parcel
can rise. Most thunderstorms form in moderately unstable conditions (CAPE up to
1000 J/kg) but any value greater than 0 J/kg indicates instability and an increasing
possibility of thunderstorms and severe straight line winds.

2.3 KPIs

Here we list all the performance indicators we used in this work to evaluate TMA
performance and explain how they are calculated.

2.3.1 Average Arrival Delay

First, we compute the average over the arrival delays for all flights delayed during the
day of consideration. The delay is calculated as a difference between the scheduled
arrival time and the actual time of arrival of the given flight.

2.3.2 ICAO KPIs

We use two KPIs proposed by the International Civil Aviation Organization
(ICAO) [22]: Arrival punctuality and Level-off during descent.

According to ICAO, arrival punctuality (KPI14.2b) is calculated as the percent
of the flights arriving at the gate on-time (delayed less than 15min according to the
schedule). We use the inverse version of this KPI, i.e. percent for flights delayed
more than 15min.

Vertical inefficiencies during the descent phase result from the inability of flights
to keep up CDO. This type of operations enables the execution of a flight pro-
file optimized to the operating capability of the aircraft, giving as a result optimal
continuous engine-idle descents (without using speed-breaks) that reduce fuel con-
sumption, gaseous emissions and noise nuisance. If the aircraft levels at intermediate
altitudes before landing, this descent is considered as vertical inefficient.

For evaluation of VFE we consider KPI19.2, the average time flown in level
flight inside TMA using the techniques proposed by EUROCONTROL in [10] with
small changes. We identify the point of the trajectory in which the aircraft enters
the TMA and use it as a starting point for the calculations (instead of the Top of
Descent (ToD), which may lie outside of TMA). A level segment is detected when
the aircraft is flying with the vertical speed below the certain threshold. We use the
value of 300 ft per minute for this threshold, the minimum time duration of the level
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flight is considered 30 s, and these 30 s are subtracted from each level duration as
suggested in [10].

2.3.3 Additional Time in TMA

The additional time is calculated as the difference between the actual transit time and
the time according to the flight plan. As stated in [14], it represents the extra time
generated by the arrival management and “is a proxy for the level of inefficiency
(holding, sequencing) of the inbound traffic flow during times when the airport is
congested.”

2.3.4 Fuel-Based PIs

Fuel-based PIs capture inefficiencies on tactical ATM layer in vertical domain as
explained in [19]. The objective is to compare the fuel consumption of CDO tra-
jectories with the actual flown trajectories. Fuel-based performance indicators are
calculated using the 4.2 version of the Base of a Aircraft Data (BADA) [23].

The first expression used, known as the Total-Energy Model, equates the rate of
work done by forces acting on the aircraft to the rate of increase in potential and
kinetic energy, that is:

(T − D)VTAS = mg
dh

dt
+ mVTAS

dVTAS

dt
(1)

HereT is the thrust acting parallel to the aircraft velocity vector,D is the aerodynamic
drag,m is the aircraftmass,h is the geodetic altitude, g is the gravitational acceleration
and VTAS is the true airspeed.

The drag force is computed as follows:

D = 1

2
· δ · p0 · κ · S · M 2 · CD (2)

Here δ is the pressure ratio, p0 is the standard atmospheric pressure at mean sea level
(MSL), κ is the adiabatic index of air, S is the wing reference area, M is the Mach
number and CD is the drag coefficient. BADA proposes equations for computing
CD depending on the aircraft configuration, and modelled as a polynomial of lift
coefficient CL.

Three separate thrust models are proposed in BADA, depending on the engine
type: turbofan, turboprop or piston. Each model includes the contribution from all
engines and provides the thrust as a function of airspeed, throttle setting and atmo-
spheric conditions. The general formula of the thrust force, T , is:

T = δ · Wmref · CT (3)
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Here δ is the pressure ratio, mref is the reference mass (obtained from the Propulsive
ForcesModel (PFM)),Wmref is theweight force atmref andCT is the thrust coefficient,
which is a function of Mach number.

For the three engine types, BADA proposes different equations to compute the
thrust coefficient CT depending on the engine rating: maximum climb, maximum
cruise, idle and no rating (direct throttle parameter input).

For estimation of the fuel consumption, BADA proposes once again a different
model depending on the engine type, and also depending on the engine rating. Each
model includes the contribution from all engines and provides the fuel consumption
as a function of airspeed, throttle parameter and atmospheric conditions. The general
formula for the fuel consumption, F , is:

F = δ · θ
1
2 · Wmref · a0 · L−1

HV · CF (4)

Here δ is the pressure ratio, θ is the temperature ratio, a0 is the speed of sound at
MSL in standard atmosphere, LHV is the fuel lower heating value (obtained from the
PFM) and CF is the fuel coefficient, which depends on thrust for non-idle ratings.
For each aircraft model, BADA provides an xml file with the corresponding aircraft
performance data. For instance, the coefficients used to compute the thrust coefficient
CT of the thrust equation (3) are in this file. With the equations stated above, and
the xml files for each aircraft, it is possible to compute the fuel consumption of a
trajectory. The process followed is detailed below:

• Thrust computation: if the aircraft is climbing, max climb rating is chosen and
the corresponding thrust formula (depending on the engine type) is applied. If
the aircraft is descending, an idle rating is assumed. In level-offs, the total-energy
model (Eq. (1)) is used in order to compute the corresponding aircraft thrust (drag
is computed previously with Eq. (2)).

• Fuel consumption computation: for non-idle ratings, the thrust computed in the
previous step is used to obtain the fuel coefficient CF used in Eq. (4). For descents,
idle rating is assumed.

Wind was considered when computing the fuel consumption, and it was obtained
from historical weather data (detailed in Sect. 3.1). Furthermore, a 90% of the max-
imum landing mass has been assumed at the destination airport for all aircraft.

In order to generate the CDO trajectories an optimal control problem has to be
solved as explained in details in [24]. First, a state vector with the initial conditions
is needed. In this paper, it has been chosen as x = [v, h, s], where v is the true
airspeed, h—the altitude of the aircraft, and s—the distance to go. In order to obtain
environmentally friendly trajectories, idle thrust is assumed and speed-brakes use is
not allowed throughout the descent. In such conditions, the flight path angle is the
only control variable in this problem, which is used to manage the energy of the
aircraft and achieve different times of arrival at the metering fix with minimum fuel
consumption and noise nuisance. Therefore, the control vector of the optimal control
problem will be u = [γ].
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The dynamics of x are expressed by the following set of ordinary differential equa-
tions, considering a point-mass representation of the aircraft reduced to a “gamma-
command” model, where vertical equilibrium is assumed (lift balances weight). In
addition, the cross and vertical components of the wind are neglected, and the aero-
dynamic flight path angle is assumed to be small (i.e., sin γ � γ and cos γ � 1):

f =
⎡
⎣
v̇

ḣ
ṡ

⎤
⎦ =

⎡
⎣

Tidle−D
m − gγ
vγ

v + w

⎤
⎦ (5)

where Tidle : Rnx → R is the idle thrust; D : Rnx×nu → R is the aerodynamic drag; g
is the gravity acceleration; w is the wind and m—the mass, which is assumed to be
constant because the fuel consumption during an idle descent is a small fraction of
the total m [25]. The longitudinal component of the wind w : R → R is modelled
by a smoothing spline [26]:

w(h) =
nc∑
i=1

ciBi(h) (6)

Bi, i = 1, . . . , nc, are theB-spline basis functions and c = [
c1, . . . , cnc

]
are control

points of the smoothing spline. It should be noted that the longitudinal wind has been
modelled as a function of the altitude only, as done in similar works [27]. The control
points of the spline approximating the longitudinalwind profile are obtained byfitting
historical weather data (detailed in Sect. 3.1).

In this paper, the trajectory is divided in two phases: the latter part of the cruise
phase prior the ToD, and the idle descent down to the metering fix. Assuming that
the original cruise speed will not be modified after the optimization process, the
two-phases optimal control problem can be converted into a single-phase optimal
control problem as follows:

J = f

vcruise
+

tf∫

t0

(fidle + CI) dt (7)

where f : Rnx×nu → R and fidle : Rnx → R are the nominal and idle fuel flow, respec-
tively; and CI is the cost index, which is a parameter chosen by the airspace user that
reflects the relative importance of the cost of time with respect to fuel costs [28]. The
CI is estimated by assuming that the aircraft was flying at the optimal speed in the
cruise phase, as shown in [29].

To generate the optimum trajectories, five input parameters are used: aircraft
model, cruise altitude, distance to go (i.e., the distance remaining to the metering fix
by following a given route), speed (i.e., the true airspeed of the aircraft in cruise),
and the cost index.
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3 Results

This section describes the data used in this work and presents the results of data
analysis for the Stockholm Arlanda airport in the year 2018.

3.1 Data

In this work we use multiple sources of historical data related to the performance of
Stockholm Arlanda airport in 2018. Flight plans are obtained from the Demand Data
Repository (DDR2, m1 file format) hosted by EUROCONTROL. For the historical
flight trajectories we use DDR2 (m3 file format) and the Historical Database of the
OpenSky Network [30, 31]. The historical weather data is provided by the National
Oceanic andAtmosphericAdministration (NOAA) through theNational Operational
Model Archive and Distribution System (NOMADS) [32].

Aircraft performance parameters for CDO trajectory generation are inputed from
BADA 4.2 [23]. In the case the aircraft model does not correspond to any of the
BADA models, a comparable aircraft in terms of performance and dimensions is
used.

3.2 Analysis of the Weather Impact on TMA Performance

We compare the punctuality statistics and additional time in Stockholm Arlanda
TMA based on DDR2 data with the weather statistics of wind speed, visibility and
CAPE values for the same dates. To calculate VFE KPI (time flown level) we use
OpenSky Network states data as it provides more accurate vertical profile.

First, we plot the data (metrics and KPIs) by days of the year. At some days we
observe strongdependencies of the chosenKPIs from the consideredweathermetrics,
while at other days the dependency is weak. This can be explained by the influence
of some other operational factors or weather phenomena not considered in this study.
For example, in February 2018 (Fig. 1) we can see that the changes in wind gust
enforce the increase of average additional time and average time flown level inside
TMA. Low visibility events can increase the TMA KPIs, which is clearly the case
on February 25. In July 2018 (Fig. 2) high values of the punctuality-related KPIs
(average delay and percent of delayed flights) coincide on some dates with increased
gust, for example on July 27. From July 10 to the end of the month punctuality KPIs
follow the changes of CAPE.

We continue with the deeper analysis of the dependencies between the KPI-metric
pairs by introducing the thresholds in the weather metrics. Because of the nature of
different weather events they can influence the flight performance differently. Strong
wind gust makes aircraft landing problematic or simply impossible especially when
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Fig. 1 Weather metrics (wind gust and visibility) and KPIs (average additional time in TMA and
average time flown level) for the month of February 2018

Fig. 2 Weather metrics (wind gust and CAPE) and KPIs (average delay and percent of delayed
flights) for the month of July 2018

it is above 12 m/s. This obviously results in higher values of all KPIs chosen in this
study, which is shown in Fig. 3.

We discovered, that with visibility lower 5km significantly more flights are
delayed, which indicates that there is an indirect dependency between the corre-
sponding KPI and visibility. Similarly, we observe direct dependencies between all
the KPIs and the other two weather metrics.

To examine the relationship between KPIs and weather metrics we apply regres-
sion analysis to the data for the whole year 2018. We clean the data by removing
the KPI outliers. To remove skewness in weather metrics distribution we filter out
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Fig. 3 Average KPIs over the year 2018 calculated with respect to the following thresholds in the
weather metrics: visibility—5km, CAPE—100 J/kg and gust—12 m/s

Fig. 4 Simple linear
regression for average delay
versus CAPE

data with the boundary values (more 24km for visibility and less than 100 J/kg for
CAPE).

Simple linear regression demonstrates moderate dependency between average
delay and CAPE (R2

adj = 0.5052), which is illustrated in Fig. 4. While the average
delay and visibility show weak dependency in simple regression (R2

adj = −0.0131),
joining these two metrics in multiple linear regression results in better fitted model
(R2

adj = 0.7524). Figures 5 and 6 illustrate the corresponding results.

3.3 Additional Fuel Burn

In order to assess fuel efficiency within Arlanda TMA during the year 2018, we
calculate the fuel waste associated with the vertical flight inefficiency for individual
descent profiles within TMA. For actual trajectories we use both DDR2 and Opensky
Network tracks and compare the results for additional fuel burn. The objective is to
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Fig. 5 Simple linear
regression for average delay
versus visibility

Fig. 6 Multiple linear
regression for average delay
versus visibility and CAPE

compare the fuel consumption of CDO trajectories with the actual flown trajectories.
The CDO were only optimized for the vertical plane, so the distance to go was
obtained from either DDR or Opensky.

First, we compare the fuel consumption of the actual trajectories obtained from
DDR2 m3 data with the CDO profiles obtained with the trajectory optimization
technique explained in Sect. 2.3.4.We calculate the additional fuel burn per day for all
Arlanda airport arrivals during the months of February and July 2018, where we have
discovered dependencies between the weather events and several KPIs. Figures 7 and
8 illustrate the results. We calculate that in both months CDO provide a reduction of
fuel consumption around 60–65%, which constitutes significant inefficiency of the
vertical profiles actually flown during these months.

It is important to recall that we calculate the fuel inside TMA only; if the whole
descent was compared, the difference would have been lower, as level-offs at lower
altitudes are more detrimental for efficiency than those at higher altitudes.
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Fig. 7 Additional fuel burn
(in percent per day) due to
inefficient vertical profiles,
calculated as the difference
between the actual flown
trajectories (DDR m3) and
the optimal trajectories,
in total fuel consumption per
day inside TMA for the
month of February 2018

Fig. 8 Additional fuel burn
(in percent per day) due to
inefficient vertical profiles,
calculated as the difference
between the actual flown
trajectories (DDR m3) and
the optimal trajectories,
in total fuel consumption per
day inside TMA for the
month of July 2018

Similar computations have been made by using Opensky data for the month of
February and July 2018 (Figs. 9 and 10). While the fuel consumption is higher than
with DDR (usually the difference is between 1 and 10%), the additional fuel burn
with respect to CDO remains almost the same.

Absolute values for the fuel consumption are shown in Figs. 11 and 12, repre-
senting the average fuel consumption over the flights per day during the months of
February and July 2018.

Fuel consumption suffers significant changes throughout the month. First of all,
the calculation took into account wind components, which demonstrated the impact
on the efficiency of vertical profiles. Hence, we observe the decrease of the fuel
consumption during the corresponding days with the lowest gust values reported
(e.g. on February 17, Fig. 1, gust-average time flown level plot), and increase of
the fuel consumption during the days with the highest gust values (e.g. February
25–26). Moreover, the increase of the fuel burn during the days with low visibility
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Fig. 9 Additional fuel burn
(in percent per day) inside
TMA due to inefficient
vertical profiles, calculated
as the difference between the
actual flown trajectories
(Opensky tracks) and the
optimal trajectories, for the
month of February 2018

Fig. 10 Additional fuel burn
(in percent per day) inside
TMA due to inefficient
vertical profiles, calculated
as the difference between the
actual flown trajectories
(Opensky tracks) and the
optimal trajectories, for the
month of July 2018

Fig. 11 Average fuel
consumption over the flights
per day (in kg) for actual
flown trajectories (DDR m3
and Opensky tracks) and
CDO within TMA for arrival
flights in Stockholm Arlanda
during the month of
February 2018
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Fig. 12 Average fuel
consumption over the flights
per day (in kg)for actual
flown trajectories (DDR m3
and Opensky tracks) and
CDO within TMA for arrival
flights in Stockholm Arlanda
during the month of July
2018

(e.g. the same days February 25–26, visibility-time flown level plot on Fig. 1) can
be a result of Low Visibility Procedures and the connected changes in the descent
profiles because of the difficult weather condition.

The extreme CAPE values on 28–29 of July (CAPE curves on plot Fig. 2) result in
the increased time flown level (the figure is not presented here), and correspondingly
increases the fuel burn at the same days that can be explained by changed landing
procedures during the days with high convective instabilities.

Finally, it is important to highlight the advantages (and some disadvantages) that
Opensky data represents over DDR data. First, the better data granularity of Opensky
data makes it a better option to estimate fuel consumption inside TMA. While DDR
usually provides only 3 or 4 segments inside TMA, in Opensky there are about 60–
80 waypoints (depending on the trajectory), which makes it more reliable. However,
there are also some errors in Opensky data, which tend to cause very high values
when computing the fuel consumption. Several data outliers were found in Opensky
tracks. For instance, in some trajectories there are some repeated waypoints, even
with the time advancing (which would mean the aircraft remains still, which is not
possible). There are other situations where the latitude and longitude do not seem
to correspond to the trajectory we are dealing with, and some of the speed values
that could be extracted from Opensky tracks are wrong too. Since all these problems
were found in less than 1% of flights, in this work we chose to remove these flights
in order to have proper fuel consumption values. However, in future work it would
be interesting to find an outlier removal method in order to efficiently solve this
problem.
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4 Conclusions and Future Work

In this paper we studied how different weather phenomena influence arrival punctu-
ality and VFE on example of StockholmArlanda airport. We analyzed the dependen-
cies between certain KPI-weather metric pairs. Performance degradation during the
days when such weather events as low visibility, strong gusts or high thunderstorm
probability were detected, result in significant amount of additional fuel burn. Our
calculations show that CDO provide a reduction of fuel consumption around 60–
65%, which constitutes significant inefficiency of the vertical profiles actually flown
during the observed months. In addition, we shared our experience working with
DDR and OpenSky data sources and discussed their applicability for calculations
inside TMA, outlining the advantages and disadvantages of both.

The results of this work create a base for future studies of the impact of different
factors such as ATM automation or different weather conditions on the arrival per-
formance. In future work we plan to explore other sources of historical weather in
order to add more weather metrics (snow, icing, cloud ceiling), as well as variations
in the traffic intensity into our analysis.
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