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Abstract The future Air TrafficManagement (ATM) systemwill depend on Trajec-
toryBasedOperations (TBO) to accommodate the growing demand in air traffic. This
system will expect aircraft to follow an assigned 4D-trajectory with high precision,
meeting arrival times over established checkpoints with great accuracy. These time-
constraints are called Target Windows (TWs). Wind is one of the greatest sources
of uncertainty and, consequently, a key point for the improvement of predictability
and, ultimately, the implementation of 4D-trajectories. The main aim of this paper
is to develop a methodology to characterize these TWs and to assess the uncertainty
on the evolution of 4D-trajectories due to the effect of wind. For such purpose,
4D-trajectories are modelled deterministically, using a point mass model and the
BADA(BaseofAircraftData)methodologyofEUROCONTROL. Inparallel,wind is
modelled with a hybrid approach, where the stochastic component captures the error
associated with weather forecasts. Through Monte Carlo Simulation, the variability
of the trajectory´s parameters is evaluated under different atmospheric scenarios.
Using these results, TWs are defined along the different stages of flight, quantifying
the uncertainty associated with the aircraft´s position under the effect of wind.

Keywords ATM · Predictability · Uncertainty · 4D-trajectories · Time constraint ·
Target windows · Monte carlo simulation

1 Introduction and Justification

The recent rise in demand for air traffic poses challenging operational conditions for
the existing Air Traffic Management (ATM) system [1]. While air traffic continues
to grow, achieving reliable trajectory predictions is a critical prerequisite for the
accurate identification and resolution of potential conflicts [2]. To ensure sustainable
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support of airspace usage, SESAR (Single European Sky Air Traffic Management
Research), CARATS (Collaborative Actions for Renovation of Air Traffic Systems)
and NextGen (Next Generation Air Transportation System) are changing the ATM
framework [3–5]. Enhanced predictability and reliability is one of the 11 objectives
for the Global ATMOperational Concept as established in ICAO (International Civil
Aviation Organization) Doc 9854 [6]. The optimization of trajectory synchronization
and conflict detection/resolution is also one of the requirements of SESAR, NextGen
and CARATS.

In this context, the upcoming ATM system is based on the Trajectory Based Oper-
ations (TBO) concept. TBO requires separating aircraft by defining a strategic (long-
term) trajectory, instead of the tactical (short-term) conflict resolution traditionally
practiced [6]. Under the TBO framework, airspace users (AUs)will negotiate a trajec-
tory with Air Navigation Service Providers (ANSPs) and airport operators (AOs) [7].
Aircraft systems will exchange information with ground systems, revising the evolu-
tion of the trajectory and the planned airspace capacity to ensure that flights meet
the assigned Controlled Time of Arrival (CTA) [4, 7, 8]. While this approach allows
operators to choose a practically unrestricted, optimal trajectory (with the associ-
ated benefits in efficiency, reliability, sustainability and cost-effectiveness of aircraft
operations [3, 9]), it also requires that aircraft do not deviate significantly from their
agreed reference trajectory and therefore are kept within very small volumes around
this trajectory [10]. The goal behind this condition is to ensure that safety separation
standards are met. Consequently, a fundamental requirement to TBO operations is
to achieve a greater precision on the real-time position of aircraft. To this purpose,
SESAR, NextGen and CARATS support the 4D-trajectory operational concept. 4D-
trajectories integrate time into the 3D aircraft trajectory, meaning that each point on
the flight track is defined by position (latitude, longitude and flight level) and time.
In exchange for a more optimal 3D flight path, the aircraft would be obliged to fulfil
with great precision an arrival time or position over a specified four-dimensional
checkpoint. Such time constraints or spatial constraints are called target windows
(TWs) and require the ability to produce accurate and reliable predictions of trajec-
tories [11]. Nevertheless, uncertainties such as the actual aircraft performance or
atmospheric/weather conditions affecting the flight, have a great influence in this
process [12, 13]. If not corrected, these uncertainties and its associated disruptions
can result in the deterioration of the intended trajectory, a degradation that increases
over time [14], directly impacting on the reliability and safety of operations. Thus,
uncertainty management becomes a keypoint in the future air traffic operations, as
adjustments in the trajectory need to be coordinated to ensure reliability.Meteorolog-
ical circumstances (wind, temperature), aircraft performance (phase of flight, weight,
speed), navigational constraints (holdings) and initial conditions are the factors with
the largest impact on the evolution of trajectories [15]. Nonetheless, the effect of
wind shear on optimum performance [16] has been identified as one of the most
important uncertainties in path deviation [17, 18]. For this reason, the quantification
of the uncertainty brought by wind constitutes the main focus of this paper.

Several studies have addressed the prediction of trajectories in different phases of
flight [19–22]. Most of the methods used in the trajectory prediction (TP) problem
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can be categorized as either deterministic or probabilistic [23, 24]. The traditional
approach is deterministic and deals with TP as a mathematical problem that explains
aircraft motion. This approach is heavily and fundamentally constrained by the accu-
racy of the models that describe the actual behavior of the aircraft and by the quality
and consistency of the inputs [25]. In addition, the assumptions and hypotheses of the
modelmight introducepotential inaccuracies or errors in the prediction, i.e. sources of
uncertainty that are not considered explicitly by such deterministic methods. Where
external factors or parameters (like aircraft performance, environmental conditions,
accuracy of navigation systems or traffic regulations) are uncertain or cannot be
reliably measured, the probabilistic approach turns the deterministic problem into a
stochastic one [12, 13].

The CATS (Contract-Based Air Transportation) project developed the idea of 4D
Target Windows (TWs), which the aircraft needs to reach during the flight execution
phase, as a way of managing uncertainty [10]. The multiple stakeholders involved in
the operation of a flight agree on the target windows definition and location, usually
in the areas of transfer of responsibility [26]. Han et al. [27] confirmed that, by
incorporating TWs at intermediate locations along a 4D-trajectory rather than just
at sector boundaries, these TWs can help in the management of en-route punctuality
and uncertainty. Additionally, TWs provide a useful balance between predictability
and maneuverability of air traffic [12]. In terms of the TWs geometry, while some
studies consider TWs to be circular cross-sections labelled with the expected times
of arrival [27], others model them as rectangles with time or space characteristics
[2, 28]. When considering the safety requirements associated to the 4D-trajectory
operational framework, it is more reasonable and more practical to predict space
intervals than exact aircraft positions [22]. This study focuses on TWs with a time
control: times of arrival at certain points are fixed, stating the space intervalswhere the
aircraft should be found when reaching these times (scheduled milestones). The idea
for reducing uncertainty about the future evolution of a flight is therefore associated
to the imposition of spatial constraints at various sections of the trajectory, i.e. TWs
that each aircraft will have to meet. Therefore, these constraints or TWs will help to
increase punctuality and safety during the flight [28]. Instead of precise and concrete
4D points, a TW is defined as a spatial window or interval, where the times of
checkpoints are given as a series of constant values. Hence, uncertainty management
is discussed in terms of spatial variability, and the analysis is approached as a spatial
reachability problem.

When associated to TBO and RBTs (Reference Business Trajectories), TWs
should be large enough to allow AUs and ANSPs to react flexibly to a variety of
flight conditions but small enough to improve certainty and increase capacity [2, 7].
An experiment with an Airbus A320 test aircraft flying from Toulouse to Stockholm
was performed by EUROCONTROL in 2012 and defined an achievable tolerance
window of between -2 min and +3 min over the route and ±30 s for CTA [29].
Moreover, pilots were subjected to conditions where the aircraft deviated from the
expected course. Results showed that compliance with 4D-trajectories (adherence
to planned paths) in the cruise phase was feasible, whereas the TW for CTA was
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more difficult to accomplish and needed additional cooperation between pilots and
controllers [29].

Themain goal of this paper is to design amethodology for characterizing TWs and
for managing the uncertainty associated with the evolution of 4D-trajectories due to
wind impact. The study uses a simplified flight path, which includes all phases (take
off, climb, cruise, descent, final approach and landing). In this study, it is proposed to
manage time-related uncertainty by setting multiple intermediate locations (check-
points) along a trajectory, where TWs can constrain space variability. 4D-trajectories
are modelled using a point mass approach and the Base of Aircraft Data (BADA)
methodology of EUROCONTROL [30, 31]. The BADA aircraft model relies on a
mass-varying, kinetic and kinematic view to aircraft performancemodelling. Despite
knowing the physics of the wind and its condition as one of the most influen-
tial agents in the degradation of the trajectory of an aircraft, many studies do not
include it in the equations of motion. However, they do include other atmospheric
variables such as temperature, pressure or density. This is due to the difficulty of
modeling this phenomenon of changing nature. For this reason, it was decided to
focus on the predictability implications of this less explored phenomenon, which is
modelled as a stochastic variable while the rest of agents are modelled deterministi-
cally. Several wind models were developed with increasing complexity, culminating
in a hybrid model in which the deterministic component is wind forecast data and
the stochastic component captures the error associated with those weather fore-
casts. Through Monte Carlo simulation, the variability of the trajectory parameters
in different atmospheric scenarios is evaluated. Based on the results of the simula-
tion, TWs are defined for several checkpoints (time-milestones) along the trajectory
to estimate and quantify the uncertainty associated with the position of an aircraft
under the effect of the wind. Consequently, this will enable us to provide the prob-
ability of an aircraft achieving the TW constraint as a function of a space interval.
Results are analyzed to draw lessons regarding 4D-trajectories predictability and
uncertainty management.

The key contribution of this study is the provision of a model to address uncer-
tainty in TP and improve predictability of flights, whilst offering a methodology
to evaluate the robustness and reliability of 4D-trajectories, by quantifying one of
its main perturbations (the impact of wind). The proposed methods may be applied
in a predictive manner, hence being able to foresee and anticipate the degradation
of the expected trajectory, in order to plan appropriate corrective actions. These
models improve traffic synchronization and potentially ease conflict resolution in
4D-trajectories, which are cornerstones in future airspace operational environments.

This section presented the problem and its characteristics and reviewed how
previous studies have approached this issue. The remainder of the paper is orga-
nized as follows. First, we develop a 4D-trajectory model for the specific scenario of
study (problem statement). This model is validated using actual flight data, obtained
from EUROCONTROL. Subsequently, we propose a model for the wind, as the
objective of the study is to understand its impact on 4D-trajectory prediction. The
wind model is calibrated with data obtained from the NOAA (National Oceanic
and Atmospheric Administration). We then use a stochastic approach to simulate
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4D-trajectories that allows us to evaluate variability in the control parameters (input
variables that affect the model outputs). This conceptual framework is the basis
for identifying TWs (space intervals) along different checkpoints (time constraints).
It represents a methodology to characterize uncertainty in 4D-trajectories due to
wind. Finally, results are reviewed, and novel insights related to 4D-trajectories
predictability and management are proposed. Please see Annex I for the meaning of
the acronyms presented throughout the paper.

2 Methodology

2.1 Scenario Characterization

The first assumption of this study is that the aircraft is flying a 4D-trajectory under the
new SESAR operational concept and its associated systems and functionalities [2,
32]. This implies that the aircraft follows an optimized path, avoiding the complexity
of traditional trajectories, which must use predefined airways, holding patterns and
structured operational procedures for take-off and landing. In this framework, the
trajectory consists on the following phases: take off, climb, cruise, descent and final
approach, and landing. The take-off phase (1) is initiated with the aircraft cleared for
take-off by the control tower, and the landing phase (11) finalizes after the aircraft
has fully decelerated at the end of the runway. This is justified by the fact that, during
the taxi phase, wind has little influence over uncertainty compared to other variables
such as traffic congestion. As the climb and descent phases have 3 distinct sections
(before passing the transition altitude and when changing to clean or non-clean
configuration), they have been modelled taking into account the different perfor-
mance equations under each of these conditions. The climb flight phase (2) starts at
35 ft and finishes when the aircraft reaches FL360. The cruise flight phase includes
4 stabilized horizontal flight sections (3, 5, 7, 9), an en-route climb section (4) and
a descent section (6) that represent a flight level change between FL360 and FL380,
and a levelled heading change at FL360 (8). The descent flight phase (10) starts at
FL360 and initiates the landing phase (11) at a height of 50ft.

Sections 3, 7 and 9 have a length of 50km. Section 5 length is 100km. The length
of the other sections is determined by the aircraft performance. Figure 1 and Table
1 schematize the described trajectory. Please note that the term “phase” refers to the
5 flight phases (take off, ascent, cruise, descent and landing), while the term “section”
is used to describe the different segments of the trajectory model.

The aircraft selected to model and simulate the flight was the Boeing 737-900ER,
as it is one of the most frequent aircraft used in short- medium range flights in Europe
[33] (similar routes to the one modelled in the study).

The atmospheric variables are modelled in accordance to the International Stan-
dard Atmosphere (ISA) model [34]. Pressure and density are calculated as a function
of the temperature, which is estimated from the flight altitude.
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Fig. 1 Simulated flight profile

Table 1 Scenario of study

Flight phase Section Description

Take-off 1 Take-off run

Climb 2 35 ft → FL360

Cruise 3 Stabilized horizontal flight section

4 En-route climb section (FL360 → FL380)

5 Stabilized horizontal flight section

6 En-route descent section (FL380 → FL360)

7 Stabilized horizontal flight section

8 Heading change

9 Stabilized horizontal flight section

Descent and final approach 10 FL360 → 50 ft height (threshold)

Landing 11 Landing run

2.2 The 4D-Trajectory Model

The 4D-trajectory is modelled using EUROCONTROL’s BADA 4.0 methodology
[30], which is developed based on the aircraft´s kinetic and kinematic parameters.
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BADA4.0 employs the so-called Total EnergyModel (TEM) to determine the perfor-
mance of the aircraft. It applies the equations of classic flight mechanics with some
coefficients which are specific to the aircraft type and to the flight envelope at each
phase of the flight [2].

The BADA aircraft model is structured on a mass-varying, kinetic approach to
aircraft performance modelling [35]. It can be considered as being a reduced point-
mass model. TEM equates the rate of work done by forces acting on the aircraft to the
rate of increase in potential and kinetic energy [30]. It is organized in three parts or
blocks: (a) Aircraft Performance Model (APM), that provides complete information
on the theoretical aircraft performance parameters for a number of different aircraft
types; (b) Airline Procedure Model (ARPM), that provides nominal speeds for the
climb, cruise and descent phases, assuming normal aircraft operations as provided
in the aircraft manufacturers’ documentation; and (c) Aircraft Characteristics Model
(ACM), that provides a set of coefficients which represent characteristics that are
intrinsic to the aircraft. These three elements, together with the Atmosphere model
(AM), represent the Aircraft Dynamic Model (ADM), which determines the inter-
dependencies between the modelling parameters. Therefore, each aircraft type in
BADA 4.0 is characterized by a group of coefficients, called Aircraft Characteristics
(included in ACM), which are used by the APM and ARPM [30]. These blocks allow
us to estimate aerodynamic and propulsive variables from the input/control param-
eters (including mass) with the functional relationships shown in Table 2 (based on
[2, 24, 30]).

The functional relationships and structural interdependencies between the param-
eters that shape the trajectory are directly obtained from the BADA manual [30]. A
series of simplifications are performed to adapt the generic trajectory model to our
scenario characteristics:

• The aircraft is considered as a point mass with three-degrees-of-freedom (3DoF)
[12, 23, 36, 37]. Variation in mass is due to fuel consumption only. The flight
is assumed to be symmetrical with all forces acting on the center of mass and
included in the plane of symmetry, except during the heading change. The rota-
tional equations are decoupled, the angular speeds are small, and the lifting
surfaces do not affect the forces [24].

• We estimate that the aircraft’s initial mass is 10% lower than the aircraft’s MTOW
(Maximum Take-Off Weight), following operational data and past studies [2].

• Themaneuver in section (8) (levelled heading change) consists of two consecutive
heading changes of 90° at a constant bank angle, μ, which is easily derived from
the equations of motion of the aircraft:

μ = tan−1

(
V 2
TAS

Rg

)
(1)

R = VT AS

χ̇ π
180

(2)
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Table 2 Modelling parameter

Block Parameter Dependencies Description

Atmosphere Model
(AM)

Pressure p = f [T (h), ρ(h)] T (temperature), ρ
(density) and h
(altitude)

Speed of sound a0 = f [k, R, T,M] M (flight Mach), R
(universal gas constant)
and k (adiabatic air
coefficient)

Wind w = f [ϕ, λ, h] ϕ (latitude) and λ

(longitude)

Aerodynamic forces
model (AFM)

Lift coefficient CL = f [δ, p0, k, S, M,
m, ϕ, g0]

δ (pressure ratio), p0
(pressure at mean sea
level), S (wing surface
area), m (aircraft mass)
and g0 (acceleration of
gravity at mean sea
level)

Lift L = f [δ, p0, k, S,M, CL] –

Drag coefficient CD = f [CL, δ, d1 …
d15, Mmax, p0, k, S, M,
m, ϕ, g0]

d1 … d15 (characteristic
parameters of aircraft)

Drag D = f [δ, p0, k, S, M,
CD]

–

Propulsive forces
model (PFM)

Thrust coefficient CT = f [ti1 … ti12, a1 …
a36, M, δ, δT]

ti1 … ti12 and a1 … a36
(characteristic
parameters of aircraft)
and δT (throttle ratio)

Thrust Th = f [δ, mref, Wmref,
CT]

mref,Wmref (aircraft
reference mass and
weight)

Fuel consumption
coefficient

CF = f [δ, θ, M, f i1 …
f i9, CT]

f i1 … f i9 (characteristic
parameters of aircraft)
and θ (temperature
ratio)

Fuel consumption F = f [δ, θ, mref,Wmref,
a0, Lhv, CF]

f i1 … f i9 (characteristic
parameters of aircraft)

where VTAS is the aircraft’s true airspeed at the moment of calculation, R is the
turn radius, g = 9.81 m/s2 is the acceleration of gravity and χ̇ = 1.5 º/s is the turn
rate.

• The selected aircraft type (Boeing B737-900ER) uses a turbofan engine, with idle
rating configuration for descent phase and non-idle rating for the rest of the flight.
During climb phases, thrust is estimated with the maximum available thrust in
climb (MCMB) while for the rest of the phases, thrust for maximum cruise is used
(MCRZ).
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• To determine the aerodynamic configuration of the aircraft at each stage of flight,
as well as the speed regime in each of the phases, the Airline Procedure Model
(ARPM) is used.

• The algorithm for trajectory prediction uses the ground speed of the aircraft (V gs),
which is the aircraft’s horizontal speed relative to the ground. V gs can be calcu-
lated, using vector addition, from wind speed (w), wind direction, heading angle
ψ and the aircraft’s true airspeed (VTAS).

The model considers deviation control measures along the transversal axis. The
automatic control will correct the lateral speed with the last measurement available
of transversal wind. Similarly, during cruise phases, the vertical component of wind
is compensated by the automatic pilot.

Considering these simplifications and operational adjustments, the 4D-trajectory
model was generated using the MATLAB software [38], allowing us to compute
theoretical 4D-trajectories. Themodel’s accuracy, was checked by performing a vali-
dation test which compares the MATLAB simulated trajectory with real data flights
extracted from the EUROCONTROL’s database and scenario-based modelling tool
DDR2–NEST (Demand Data Repository–Network Strategic Tool) [39, 40]. The
convergence between the modelled trajectory and real flights is evaluated using
different intra-European routes; particularly, the flights chosen for comparison were
those that present similar characteristics to the studied scenario (flight level changes
and rectilinear sections). The test error regarding time and position achieves an
average value of 7%, reaching less than 5% during the stabilized flight level sections,
which is in line with past studies [2, 24, 41]. As an example of the validation proce-
dure, Fig. 2 presents a real trajectory that was flown by a Boeing B737-900ER
between Madrid and Cologne; this trajectory is used to test and validate the model
[39, 40]. The vertical profile of the trajectory and the section selected for valida-
tion are given in Fig. 3 [39, 40]. The vertical axis shows the altitude (FL) and the
horizontal axis depicts the range (NM).

Fig. 2 Real flight between Madrid and Cologne by a Boeing B737-900ER used to validate the
model
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Fig. 3 Real trajectory (vertical profile) of a B737-900ER flight betweenMadrid and Cologne (left)
and section of the trajectory used to validate the model (right)

2.3 The Wind Model

In this study, the wind has also been modelled in 4D. Space has been discretized
in N layers of height, defining in each of these layers a grid in the horizontal plane
composed of Cx × Cy cells. Time has also been discretized in order to capture the
temporal variations of the wind in magnitude and direction. At any given time and
position in space not corresponding to a grid note, the model linearly interpolates
between the cells, layers and closest times to obtain the best wind approximation
at the desired point. The result of this interpolation is a wind vector specific to the
4D-position of the aircraft in its trajectory.

To define the components of the wind vector, the model implements a hybrid
approach, meaning that each vector component is the result of summing a determin-
istic and a stochastic wind value. The deterministic wind value is the weather forecast
for the negotiated 4D-trajectory. Then, the intrinsic uncertainty associated with the
wind is introduced by adding a stochastic variable that quantifies the expected error
in the weather forecast.

The deterministic wind component is, as mentioned, the weather forecast for the
negotiated 4D-trajectory. It is assumed that in the context of 4D-trajectory operation,
weather forecast detailing the predicted en-route wind by region will be available
during the trajectory planning phase, and it is reasonable to assume that this informa-
tion will be used to choose the optimal flight path. Therefore, the model developed
in this study uses real weather forecast data. In particular, wind data is obtained from
the RAP (Rapid Refresh), the NOAA (National Oceanic and Atmospheric Adminis-
tration) wind prediction tool for North America. This tool is selected because it stores
wind data in a convenient format: it is updated every hour and generates a weather
forecast stored in a 3D grid, with a resolution of 13 km and a vertical resolution of
50 mb. As the purpose of this study is exemplifying the potential methodology, the
specific magnitude of the wind is not relevant and data for a random region and date
is used.

In the wind model generated, the size of the grid and the cells adapts to that of the
RAP, as well as the temporal variability, which adjusts to the frequency of updating
of the aforementioned wind data tool. The code developed for this model loads the
RAP results for 3 consecutive hours and stores the wind speeds corresponding to the
heights of interest, between sea level and 14,000 m altitude, in a network formed
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by grids at various heights. As the first layer of height available in RAP is at 12 m
altitude, the hypothesis that this layer contains data at sea level has to be made. In
addition, as the RAP does not consider vertical speeds, since it focuses on levelled
flights, it has been decided to also take this approach and consider the vertical wind,
ωz , void [42].

The stochastic wind component is modelled as a random field, ω : �×�3 → �2,
where each value is calculated considering the correlation in space and in time of
the forecast data [42]. If ω(t, P) is the wind at a point P ∈ �3 at the time t ∈ �, we
assume that ω(t, P) ∈ �2 is gaussian, with void mean and with covariance matrix
defined by (3).

R
(
t, P, t ′, P ′) ∈ �2x2 (3)

The fact that the mean is zero reflects the hypothesis that all deterministic wind
information is contained in the weather forecast. In addition, it is assumed that the
wind field is isotropic (invariant to rotations) and that the north-south and east-west
components of the wind are not correlated. Under these hypotheses, the covariance
matrix R can be expressed by (4), with correlation given by (5).

R
(
t, P, t ′, P ′) = E

[
ω(t, P)ωT

(
t ′, P ′)] =

[
r
(
t, P, t ′, P ′) 0

0 r
(
t, P, t ′, P ′)

]
(4)

r
(
t, P, t ′, P ′) = σ(Z)σ

(
Z ′)rt(∣∣t − t ′

∣∣)rXY
(∣∣∣∣

∣∣∣∣ X − X ′

Y − Y ′

∣∣∣∣
∣∣∣∣
)

· rZ
(∣∣p(Z) − p

(
Z ′)∣∣)

(5)

p(Z) is the atmospheric pressure at a height Z and σ(Z) is the standard deviation
of the wind in m/s at height Z. The functions rt (s), rXY (s) and rZ (s) can be obtained
from the analysis developed by Cole et al. [43]. If s ≥ 0, then:

rt (s) = ct + (1 − ct − dt )e
− s

Gt + dt cos

(
2π

(s − et )

gt

)
(6)

rXY (s) = cXY + (1 − cXY )e− s
GXY (7)

rZ(s) = cZ + (1 − cZ )e− s
GZ (8)

According to these equations, the correlation between points (t, P, t′, P′)
decreases exponentially with the horizontal distance and with the difference in
height and time of the points. Cole et al. [43] defined the correlation parameters
(ct , dt ,Gt , gt , et , cXY ,GXY , bXY , cZ ,GZ ) on Eqs. (6–8) as given by Tables 3, 4 and
5, where a distinction is made between the correlation on the longitudinal component
of the wind (ωx ) and the transversal component of the wind (ωy). The parameters of
correlation in the horizontal plane are given in Table 3.
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Table 3 Parameters of
horizontal correlation

rXY ωx ωy

cXY 0.05 −0.06

GXY [km] 311 363

Table 4 Parameters of
vertical correlation

rZ ωx ωy

cZ −0.016 −0.041

GZ [mb] 153 273

Table 5 Parameters of
temporal correlation

rt ωx ωy

ct 0.14 0.10

Gt [min] 141 254

gt [min] 1275 935

et [min] 97 447

dt 0.06 0.05

The parameters of correlation in the vertical plane are defined in Table 4.
The parameters of correlation for the time domain are defined in Table 5.
These parameters allowed us to adjust the RUC (Rapid Update Cycle) prediction

tool properties to different functions: correlation data in horizontal and vertical planes
is best fitted by an exponential curve (Eqs. 7 and 8with parameters in Tables 3 and 4),
while time correlation is best fitted by a sinusoidal function (Eq. 4 with parameters
in Table 5).

Even though the parameters were calculated for RUC data (the predecessor to
RAP), this resulted in an acceptable approximation given the nominal variations used
in the simulation (of the order of seconds and less than 1km) versus the variations
used in the correlation (of the order of thousands of seconds and hundreds of km).
The value of the parameters suggests a strong correlation between the wind forecast
error for points in the same horizontal plane, a very strong correlation in time and
a weaker correlation between points at different heights. For variations in time of
between 30 s and 1 h, it is acceptable to simplify the temporal correlation (6) as
described by (9) [43].

rt (s) = e− s
Gt (9)

With this approximation, the covariance matrix becomes constant over time, and
then the wind matrices (Wx ,Wy) can be expressed with a linear Gaussian model with
the structure given by (10)–(11).

Wx (0) = Q̂vX(0) WX (k + 1) = a · Wx (k) + Q · vx (k) (10)
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Wy(0) = Q̂vY (0) WY (k + 1) = a · WY (k) + Q · vY (k) (11)

In these equations, vx (k) and vy(k) are random, independent and standard Gaus-
sian variables, meaning that they follow a normal distribution with zero mean and
identity covariance matrix. These two random variables will be different in every
simulation, making the variable stochastic. k is the current time step and a is a
parameter given by (12). Q and Q̂ are derived from Cholesky decomposition from
the covariance matrix R̂ [44].

a = e− dt
Gt (12)

The stochastic component of the wind can now be calculated by implementing
the previous equations in MATLAB. Figure 4 shows the evolution of the wind error
between two samples.

Then, when this stochastic component is added to the meteorological forecast
data (the deterministic component), the total wind that the model assumes is acting
at each point is obtained. Figure 5 illustrates the calculated error of the wind in a
given simulation -the stochastic component—(right) and the total corrected wind
when this error is added to the forecast data -hybrid approach—(left).

The wind model here presented acts as an input for the remainder of the study.
As the study deals with a prediction problem, weather forecasted data is used, since
projected data is what would be available in the pre-tactical time horizon. The more
accurate this weather forecast is, the more precise the model results will be. To
validate the wind model, the forecasted wind values were compared with actual data
and it was found that the maximum error is less than 10% inmagnitude and direction.
Therefore, the wind data used is accurate enough for the model to provide useful
scenarios.
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Fig. 4 Wind forecast error at the beginning (left) and at the end (right) of a one-hour period
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Fig. 5 Modeled error of the wind (left) and total corrected wind (right)

2.4 Monte Carlo Simulation

Monte Carlo simulation is a statistical technique tomodel the probability of a specific
result, in non-deterministic processes where randomness intervenes [45]. This tech-
nique is based on the generation of a set of runs (simulations) which rely on the vari-
ability of probabilistic inputs. These inputs are randomly produced from a probability
distribution that shapes the uncertainty associated with the defining parameters of the
process (control variables) [2, 24]. For each set of inputs, the deterministic problem
is solved, obtaining a bunch of outputs that are aggregated to obtain the stochastic
solution [2]. This methodology can handle many random variables in a single model
structure, several types of statistical distributions and non-linear dynamic models [2,
12]. Monte Carlo simulation completes a random sampling and eases the achieve-
ment of a large number of numerical experiments, which is essential in problems
where extensive physical experimentation is not feasible [46]. The Monte Carlo
technique has been widely used and proved effective in air traffic control for 4D-
trajectories management [2, 24, 41], conflict resolution [47], safety verification [48],
and to estimate the impact of wind uncertainty [49, 50].

In this specific study, we apply the Monte Carlo simulation technique to obtain a
set of possible trajectories byvarying thewind input in 1,000 consecutive simulations.

The first step of the Monte Carlo simulation consists on the determination of
the statistical distribution of the input variable (the wind, in this case). In previous
studies [13, 14, 25], a detailed analysis of the variables with the largest impact on
4D-trajectories (mass, temperature, pressure, wind and navigation systems precision)
was carried out. Results indicated that wind is one of the parameters with the greatest
influence. Therefore, in this study, to isolate the effect of the wind on the degradation
of the negotiated trajectory, we consider a deterministic approach for all the other
variables andmodify thewind values. Therefore, aircraft positions are the parameters
resulting in the use of different sets of weather forecast. As indicated previously, our
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intention is to capture the wind disturbance on the motion of the aircraft with a
stochastic dynamic model (aircraft positions are the output parameters resulting in
the use of different sets of weather forecast). Specifically, the wind has been modeled
as the sum of a nominal component that contains theweather forecast and a stochastic
component that quantifies errors in the weather forecast. As described in Sect. 2.3
‘The wind model’, the stochastic part of the wind is modeled as the correlation
between two 4D-points derived from the covariance matrix, multiplied by a random
variable that follows a normal distribution of null mean and standard deviation 1; i.e.
N(0, 1). By means of this random variable, the wind input will take a different value
in each simulation.

Figure 6 shows thewind acting along the entire trajectory for the 1000 simulations.
Then, themean of thewind acting on each simulation is calculated, and then thismean
is approximated to a normal distribution, which expresses the mean wind parameters
for the set of experiments. With this, it is obtained that the input variable of the
model follows a normal distribution of mean μ = 9.34 m/s and standard deviation
σ = 1.02 m/s. This distribution is represented in Fig. 7.

The stochastic approach used to forecast the impact ofwind on the trajectory intro-
duces variability in the deterministic model. Figure 8 represents the set of trajectories
resulting from the 1000 simulations. Because of the different wind scenario on each
of the simulations, a dispersion is observed in the trajectory followed by the aircraft.
In the following section, trajectory degradation is quantified through the estimation
of TWs.

The variance of the variables estimated by the Monte Carlo technique converges
to the inverse square root of the number of runs (N) [45]. Consequently, this method
has an absolute error for the estimation that decreases like 1/

√
N.

Fig. 6 Wind speed for the N simulations
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Fig. 7 Normal distribution
of the mean wind speed for
the N simulations
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Fig. 8 Representation in 3D of the trajectories for N simulations

2.5 The Estimation of Target-Windows

The4D-trajectory notion aims to ensure a practically unrestricted, optimum trajectory
for a flight (if possible), in exchange for enforcing the aircraft to meet with great
accuracy an arrival time over a designated control position (milestone) or checkpoint
(CP). These time constraints are evaluated in this section by defining TWs or spatial
limitations, where the aircraft is required to be found at specific flight times. The
Monte Carlomethodology is applied, having as input variable the error in theweather
forecast and as output variable the arrival position at each CP. Results reflect the
stochastic and time-changing nature of the progress of the flight. Moreover, the
variability in the output variable adds a more realistic approach to the deterministic
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model by including actual uncertainties in trajectory prediction [2, 24]. The required
TWs can be defined at all CPs of the agreed trajectory once the simulations are
performed and the width of the spatial constraints is established; thereby, providing
AUs, ANSPs and AOs with a framework for traffic synchronization and conflict
detection and resolution. For the practical application of the TW concept, the size
of these constraints on a RBT should at least represent the spatial interval within
which any aircraft arriving at the checkpoint can avoid conflicts with other aircraft
[27]. The first step to estimating the TW is setting the time (t) of the checkpoints
(CP) which represent the CTAs. Each aircraft must hit them while holding a position
versus the negotiated trajectory within the required precision [12]. Figure 9 shows
the position of these CPs over the modelled trajectory.

Checkpoint 1 determines the deviation at the end of the take-off phase (t = 41 s).
Similarly, Checkpoint 7 controls the deviation at the beginning of the landing phase
(t = 4441 s). Checkpoints 2 and 6 aim to determine the deviation on the phases of
climb (t = 750 s) and descent (t = 3350 s) respectively. Finally, checkpoints 3 (t =
1640 s), 4 (t = 2240 s) and 5 (t = 2800 s) will help us study the deviation from the
negotiated trajectory during the course of the cruise phase.

After several simulations, these arrival intervals conform a histogram that can
be fitted on a normal distribution for each checkpoint, given by the probability
density function (13) which provides the probability of an aircraft achieving the

Fig. 9 Checkpoints over the vertical plane of a simulated trajectory
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TW constraint as a function of a space interval centered at μ and the level of accu-
racy σ. Then, different TWs or intervals can be defined depending on the precision
requirements established. The width of the TW is an indication of how predictable a
flight is and how its progress can bemanaged. Setting longer space intervals increases
predictability and reduces uncertainty, although this can lead to a less efficient time
management. For this study, a sigma level of ±2σ is used.

fNORMAL(x, μ, σ ) = 1√
2π · σ

· e−( x−μ

2σ )
2

(13)

3 Results and Conclusions

The fitted probability curve for the longitudinal arrival position at checkpoints 2 and
6 is shown in Fig. 10.

The results for CP2 imply that there is a 95.44% (±2σ ) probability that an aircraft
will be found at Checkpoint 2 (750s) within a TW of ±6km centered at 97km.
Similarly, the arrival positions at Checkpoint 6 (3,350s) can be fitted to a normal
distribution with mean μ = 729 km and a standard deviation of σ = 4.5 km. There is
a 95.44% (±2σ ) probability that an aircraft will reach CP6 within a TW of ±9 km.
The values of σ and the Interquartile Range (IQR) are higher for CP6 than for CP2.
This first result implies that, as the flight advances, the uncertainty and data dispersion
are greater. The TWs calculated for the rest of these CPs can be found in Table 6.

The integration of time into the 3D trajectory becomes tangible by setting an
instant of time and estimating the 3D position of the aircraft (Fig. 11 shows the
aircraft’s potential positions around the different control points, represented along
the path followed in one of the simulations). However, it is necessary to note that, in
each simulation, the aircraft will follow a unique trajectory, as shown in Fig. 8. In this
context, the results of thework show that, for a time of 750 s, the aircraftwill be found,
with a 95.44% probability, within an ellipsoid defined by a longitudinal deviation of
±6000 m, a lateral deviation of ±4 m and a height range of ±276 m. Ultimately, the
windows on the three axes define some ellipsoids around the aircraft. The volume of
those ellipsoids may be used by ATM service providers to define security minimums,
improve synchronization and anticipate the resolution of conflicts to the pre-tactical
phase, increasing the predictability of the aircraft in its monitoring of the contracted
trajectory.

In general, the trajectory will experience gradual nonlinear degradation over time.
Results show a greater dispersion during the turn maneuver and the descent phase.
On the other hand, the dispersion is very low at the end of the take-off stage, and at
the beginning of the landing phase the dispersion is also reduced with respect to that
presented in descent maneuver. Extending the estimation of TWs (space intervals) to
several points of the trajectory shows that the relationship of the longitudinal position
window with the flight time is monotonously increasing, implying that the aircraft



Impact of Wind on the Predictability and Uncertainty Management … 277

Fig. 10 Statistical
distribution of the aircraft´s
longitudinal position in m at
CP2 (upper) and CP6 (lower)

Longitudinal position (m)

Pr
ob

ab
ili
ty

de
ns
ity

x104

Longitudinal position (m)

Pr
ob

ab
ili
ty

de
ns
ity

7,2
0

7,2
2

7,2
4

7,2
6

7,2
8

7,3
1

7,3
3

7,3
5

7,3
7

7,3
9 x105

suffers a gradual degradation of its ability to follow the contracted trajectory. Thiswill
have direct consequences on the operational procedures of the SESAR concept and a
maximum amplitude of the position window will have to be specified in accordance
with the requirements of the airspace. The dimension of the time window will then
determine the maximum flight time before updating the flight data.

Other conclusions can be extracted by evaluating the sensitivity of the results
to changes in the parameters that shape the case study (the modelled scenario). On
the one hand, the lateral deviations are small in relation to the longitudinal devia-
tion, since a simple control system that simulated the autopilot of the aircraft was
applied in this dimension; this system compensated in each instant of time the wind
measured in the immediately previous interval. However, even with this measure,
the aircraft experiences lateral deviations of up to 50 m. Therefore, it is necessary
to study the degradation of the trajectory, with the purpose of proposing the correc-
tive measures that guarantee that the aircraft does not deviate excessively from the
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Fig. 11 3D Position of the aircraft in the time-constraint control points

planned trajectory. Finally, the deviations in altitude are smaller than those suffered in
the longitudinal direction, although of similar relative magnitude when considering
the distances travelled in the respective axes. From this observation, future works
will conduct a sensitivity and causal relationships analysis, for example, through the
application of Bayesian Networks [24], in order to quantify the dependence of the
results obtained from the parameters defined in the model.

The presence of substantial uncertainties in the systems and models required
for trajectory prediction represents a major challenge for the future TBO concept.
Weather, and particularly wind, can be considered as one of the most relevant sources
of trajectory degradation. Understanding and managing the impact of wind is hence
necessary to increase the predictability of the ATM system. This study has presented
preliminary results on trajectory prediction inwhichwind is assumed to be the unique
source of uncertainty.

The main contribution of this paper regarding uncertainty management is the
provision of a methodology to generate TWs (ellipsoids around the aircraft) at

Table 6 Results summary Window-x (km) Window-y (km) Window-z (km)

CP1 0.514 0.010 0.004

CP2 5.966 0.004 0.276

CP3 7.240 0.002 0.000

CP4 7.700 0.002 0.000

CP5 8.006 0.050 0.000

CP6 8.982 0.034 0.438

CP7 6.500 0.030 0.072
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different checkpoints (time constraints) of the 4D-trajectory. These TWs are defined
considering wind variations and allow us to determine, with a 95.44% probability,
the position of the aircraft. Therefore, it increases the predictability of the aircraft
flight and enhances the trajectory robustness when assessing its evolution.

Key findings of the paper are concrete values (Table 6) for space variability due
to wind impact, which covers a gap in current literature and provides a rule of thumb
for airspace users and network planners when evaluating 4D-trajectory potential
deviations. The method also allowed us to appraise 4D-trajectories sensitivity to
wind variations.

In the future TBO concept, the RBT is the trajectory which the AUs agree to
fly and ANSPs and airports agree to facilitate (subject to separation provision) [3].
Therefore, an RBT is the representation of an AU’s intention with respect to a given
flight. This trajectory may be modified during the execution phase when constraints
are to be changed due to separation of traffic or weather hazards, i.e. if the airspace’s
requirements regarding safety, regularity and efficiency are not achieved. The provi-
sion of TWs eases the definition of trajectory requirements when significant wind
impacts are projected. The method can be practically applied in a predictive way to
anticipate the trajectory degradation and determine potential corrective actions. This
represents a move from reactionary (tactical) interventions to preventive (strategic)
interventions.

Moreover, in a pre-tactical phase, this methodology could be used as an input for
synchronization measures, and conflict detection and resolution algorithms. TWs
offer pilots and air traffic controllers a better awareness of the positions that aircraft
are projected to reach during the flight. It also provides intermediate objectives for
a flight execution, while TWs were traditionally understood as boundary objects for
coordinating timing between adjacent sectors in order to handle punctuality of aircraft
as they transit between these sectors, we have extended this operational concept and
presented a more flexible approach. We propose TWs distributed across the entire
4D-trajectory of an aircraft’s flight, and not just at sector boundaries. However, this
will demand additional procedures and tools to share the necessary information
and enable smooth coordination between pilots and controllers, as a higher number
of checkpoints and TWs will likely increase the amount of coordination required
between them.

Our results suggest that the definition of TWs associated to 4D-trajectorymanage-
ment will offer a promising balance between predictability and maneuverability. It is
concluded that uncertainty (in this case due to wind) can not only be quantified, but
also managed and reduced by establishing TWs. The proposed methodology could
prove useful for both airspace users and networks managers for the design of a more
resilient and robust ATM system.
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ANNEX I: List of Acronyms, Abbreviations and Parameters
for Calculations and Equations

Acronym Meaning

ACM Aircraft characteristics model

ADM Aircraft dynamic model

AFM Aerodynamic forces model

AM Atmosphere model

ANSPs Air navigation service providers

AOs Airport operators

APM Aircraft performance model

ARPM Airline procedure model

ATM Air traffic management

AUs Airspeed users

BADA Base of aircraft data

C Cells in the wind model

CARATS Collaborative actions for renovation of air traffic systems

CATS Contract-based air transportation

CP Checkpoint

CTA Controlled time of arrival

EUROCONTROL European organisation for the safety of air navigation

FL Flight level

g Acceleration of gravity

ICAO International Civil Aviation Organization

MCMB Maximum thrust in climb available

MCRZ Thrust for maximum cruise

MTOW Maximum take-off weight

NextGen Next generation air transportation system

NOAA National Oceanic and Atmospheric Administration

P Position

PFM Propulsive forces model

R Turn radius

RAP Rapid refresh

RBTs Reference business trajectories

RUC Rapid update cycle

SESAR Single European Sky Air Traffic Management Research

t Time

TBO Trajectory based operations

(continued)
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(continued)

Acronym Meaning

TEM Total energy model

TP Trajectory prediction

TWs Target windows

Vgs Aircraft’s ground speed

w Wind speed

VTAS Aircraft’s true airspeed

χ̇ Turn rate

ψ Heading angle

μ Bank angle
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