
RRT*-Based Algorithm for Trajectory
Planning Considering Probabilistic
Weather Forecasts

E. Andrés, M. Kamgarpour, M. Soler, M. Sanjurjo-Rivo,
and D. González-Arribas

Abstract Convectiveweather and its inherent uncertainty constitute oneof themajor
challenges in the air trafficmanagement (ATM) system, entailing both safety hazards
and economic losses. In the present work, we propose a stochastic algorithm for
trajectory planning that ensures feasibility and safety of the path between two points
while avoiding unsafe stormy regions. The uncertain zone to be flown is described
by an ensemble of equally likely forecasts. We design a scenario-based optimal
rapidly exploring random tree (SB-RRT*), and we able to dynamically allocate risk
during its expansion so that a safety margin is not violated. The solution is a safe
continuous trajectory that minimizes the distance covered. We present preliminary
results assuming weather to be the only source of uncertainty.We consider an aircraft
point-mass model at constant altitude and airspeed with manoeuvres being limited
by a minimum turning radius.

1 Introduction

Weather uncertainties represent a major issue that the air traffic management (ATM)
system needs to account for. In particular, areas of convective weather (also known
as thunderstorms) constitute a potential safety hazard, being responsible of a quarter

E. Andrés (B) · M. Soler · M. Sanjurjo-Rivo · D. González-Arribas
Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid,
Leganés, Spain
e-mail: eandres@ing.uc3m.es

M. Soler
e-mail: masolera@ing.uc3m.es

M. Sanjurjo-Rivo
e-mail: msanjurj@ing.uc3m.es

D. González-Arribas
e-mail: dangonza@ing.uc3m.es

M. Kamgarpour
Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: mkamgar@control.ee.ethz.ch

© Springer Nature Singapore Pte Ltd. 2021
Air Traffic Management and Systems IV, Lecture Notes in Electrical Engineering 731,
https://doi.org/10.1007/978-981-33-4669-7_14

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4669-7_14&domain=pdf
mailto:eandres@ing.uc3m.es
mailto:masolera@ing.uc3m.es
mailto:msanjurj@ing.uc3m.es
mailto:dangonza@ing.uc3m.es
mailto:mkamgar@control.ee.ethz.ch
https://doi.org/10.1007/978-981-33-4669-7_14

246 E. Andrés et al.

of the en-route delays in Europe [1]. In order to enhance ATM’s safety, efficiency
and capacity, path planning techniques must take into consideration the inherent
stochasticity of these phenomena. The aim of this work is to develop a methodology
for safe aircraft trajectory planning considering the intrinsic uncertainties of the
stormy environment.

The design of avoidance paths that prevent flying through risky areas is a problem
of interest that has been covered in the literature using a wide spectrum of approaches
with different applications. A first approach is based on geometric procedures, see
e.g., [2]. They benefit from fast computing times at the cost of usually ignoring storm
evolution and their uncertainty, aircraft dynamics or trajectory optimality. A second
class of methods relies on robust optimal control [3]. The optimization problem
considering aircraft dynamics and uncertain thunderstormdevelopment can be solved
using nonlinear programming. However, the solution of the robust optimal control
problem is quite sensitive to the choice of the required initial guess. To this end, in
[3], a randomized initialization is proposed, obtaining a wide range of local optima
and identifying the best solution. A third possible approach is the so-called stochastic
reach-avoid [4, 5], which is based on dynamic programming. These techniques are
able to find optimal trajectories in uncertain and time-varying scenarios. Nonetheless,
they are often computationally prohibitive, because there is a need to discretize and
explore an entire state space. Therefore, the affordable dimension of the problem is
limited due to the so-coined by Bellman “Curse of Dimensionality".

In this work, we opt for an incremental sampling-based algorithm, the rapidly
exploring random tree (RRT) [6]. RRT-based algorithms are able to find feasible
trajectories in high dimensional problems, including system kinematics, dynamics
and constraints [7]. In addition, if the vehicle is moving in a constantly changing
environment, they admit online planning, meaning that once a vehicle is following
the planned trajectory they can incorporate new data and replan the route in almost
real-time [8]. In the literature, there are different versions of RRT that have been
applied to trajectory planning of autonomous driving cars [9–11] or UAV flights
[12–14].

With regard to the stochasticity of the unsafe regions, previous works on RRT
were built on chance constraint approaches with both linear [15] and nonlinear [16]
dynamics. Chance constraints provide the probability of being above or below a
safety margin for a particular state-space configuration [17], hence, these works only
checked the safety of discrete points along the trajectory. To the best of authors’
knowledge, RRT-based algorithms have not considered the safety of a continuous
path. Moreover, RRT techniques have not been used for aircraft flight planning in
areas of uncertain weather.

To assess safety during theflight, there is a need to developmodels of thunderstorm
evolution. Modelling thunderstorms for flight planning purposes are a challenging
task, because it is difficult to forecast their birth and evolution in timescales close
to flight departure. The main reason is that the atmospheric evolution is chaotic and
extremely sensitive to perturbations, so any change might lead to huge errors in a
prediction. In the numerical weather prediction (NWP) framework, the main trend is
to characterize weather uncertainties with an ensemble forecast [18]. An ensemble

RRT*-Based Algorithm for Trajectory Planning Considering … 247

provides a number of realizations, typically between 10 and 50, that represent the
atmosphere assuming slight variations during its evolution. By analysing the ratio of
realizations that predict a storm, we can estimate how risky an area is.

Our main contribution and the purpose of this work are the design of a RRT-
based algorithm for aircraft flight planning in stochastic weather regions ensuring
the safety of a continuous trajectory. We propose a scenario-based rapidly exploring
random tree (SB-RRT*) for general nonlinear systems able to grow in an uncertain
environment which is described by an ensemble of discrete realizations. Unlike
previous techniques that only considered the safety of a discrete set of points, our
algorithm ensures that a whole continuous trajectory is safe. As the tree is expanding,
it is able to dynamically allocate risk wherever is needed in order to never exceed a
global safety margin.

The paper is structured as follows: we introduce RRT algorithms in Sect. 2. In
Sect. 3, we propose the SB-RRT*, an optimal RRT able to expand in stochastic and
hazardous regions.A case study and simulation results are included in Sect. 4. Finally,
some conclusions are drawn in Sect. 5.

2 RRT: Rapidly Exploring Random Trees

RRT algorithms are path planning tools that look for a feasible trajectory between
an initial and a final state configuration. From an initial state, RRTs are expanded,
iteration by iteration, driving the system towards randomly selected targets. RRTs
can deal with a static or dynamic environment made up of unsafe zones to be avoided.
RRT planners are able to handle several degrees of freedom with constraints [6].

2.1 RRT Algorithm

Let X ⊂ R
dx be the planning space inwhich the aircraftwillmanoeuvre. The constant

dx represents the dimension of the coordinate system, generally equal to 2 or 3. Let
Xstorm ⊂ X be the unsafe zones that must be avoided, which in this case represent
thunderstorms. The complementary set Xsafe = X \ Xstorm represents the safe areas.

The RRT algorithm defines an iterative process that grows a tree T = (A, E),
where A is the set of randomly selected nodes (also known as vertices) and E rep-
resents the collection of edges connecting pairs of nodes in A. Individual nodes and
edges are denoted by ai and ei , respectively, with the subscript i bounded by the
maximum number of iterations. A fixed position xi ∈ X obtained randomly defines
a node ai . An edge ei represents a continuous trajectory between two nodes ai and
a′
i . Note that not every node or edge created by the algorithm is included in A or E ,
some of them are rejected if there is an intersection with Xstorm. Let xstart, xgoal ∈ X
be the initial and goal state configurations, the nodes astart and agoal represent these
positions respectively in T .

248 E. Andrés et al.

Let S ⊂ R
ds , with ds ≥ dx , be the state space and let U ⊂ R

du be the control
space. In general, the dynamics of our system will be represented by a state vector
s ∈ S that evolves according to a transition equation,

ṡ = f (s,u),

with u ∈ U the control input. Assuming the described setting, the RRT grows by
following the set of procedures detailed hereafter:

• RandomSample: this function takes a random sample xrnd ∈ X from the planning
domain and creates its associated node arnd .

• NearestNode: it returns the closest node to arnd , anearest , according to a predefined
metric, e.g. Euclidean distance, Dubins path length.

• Steer: this function drives the system from anearest to arnd minimizing the distance
covered or any other cost function, i.e. time and fuel consumption. The trajectory
between both nodes is represented by an edge ei .

• Safe: it checks if an edge goes through not allowed areas.
• AddNode, AddEdge: these functions include a node ai or an edge ei in the sets A
and E , respectively.

By using the procedures here listed, the RRT pseudocode is summarized in
Algorithm 1.

Algorithm 1 T = (A, E) ← RRT(astart)
1: T ← InitializeRRT ();
2: T ← AddNode(astart , T);
3: while i < Max I ter do
4: arnd ← RandomSample();
5: anearest ← NearestNode(arnd , T);
6: ei ← Steer(anearest , arnd);
7: if Safe(ei) then
8: T ← AddNode(arnd);
9: T ← AddEdge(ei);
10: end if
11: end while
12: return T

In order to growa tree T , theRRTalgorithm is initializedwith the initial node astart.
For a predefined maximum number of iterations Max I ter , a random sample arnd is
taken from X and there is an attempt to grow an edge and connect it to the closest
node anearest in A. If the connection is successful and the edge does not go through
Xstorm, the sample and the edge are included in A and E , respectively. An example
of RRT expansion is shown in Fig. 1. If the number of iterations is sufficiently large,
almost every region in X can be connected with the initial position by a sequence
of tree edges [19]. In trajectory planning problems, the main goal is to add the node
agoal to A so that it is connected to astart.

RRT*-Based Algorithm for Trajectory Planning Considering … 249

Fig. 1 Example of RRT expansion with 200, 500 and 1000 iterations (from left to right)

2.2 RRT* Algorithm

Despite being able to obtain a feasible trajectory between two state configurations,
the RRT does not ensure trajectory optimality. That means the solution will cover
almost surely more distance than required, leading to a higher and unnecessary cost.
An update for the RRT was introduced in [20], the optimal RRT, denoted RRT*. The
RRT* is a path planning technique that ensures feasibility and asymptotic optimality
of a trajectory between two given state configurations. The RRT* algorithm inherits
the main core from the RRT including three additional features:

• Near: it obtains the set of nodes Anear ⊆ A within a ball B(arnd; k log n
n), with k a

constant that depends on the RRT and n the number of nodes in T .
• Parent: among the set Anear, this function finds the node amin that involves the
smallest cost from astart to arnd passing by amin. The node amin is selected as the
parent of arnd.

• Rewire: the rewiring process checks if the cost from the initial node to each of
the elements in Anear can be reduced going through arnd. It changes parent–child
relations, establishing new edges.

These functions are included after line 7 in Algorithm 1. Once the safety of a possible
edge has been ensured, the set of nodes Anear in the vicinity of arnd is obtained using
the Near function. Given anear,i ∈ Anear, the cost ci of the trajectory between astart
and arnd through anear,i is calculated for each i . The node with the smallest value of
ci is chosen as the parent of arnd and denoted by amin. The rewiring process takes
place afterwards, removing non-optimal connections, so that each node is connected
to the root of the tree with the smallest possible cost.

Parent–child relations are an important part of the algorithm, as one node can
have many children, but each node only has one parent. Consequently, if we select
an arbitrary node in A, we will be able to reach astart just by following the sequence
of parents. The aim of the RRT is then to find a parent for agoal so that we can connect
it to astart. The RRT*, which is based on the RRT, goes further and removes redundant
relations that involve longer trajectories between nodes.

250 E. Andrés et al.

3 Scenario Based RRT*

SB-RRT* is an extension of the RRT* algorithm in which the uncertain unsafe areas
are provided as a set of possible scenarios. The tree growth is constrained in such a
way that the solution is a safe continuous curve.

3.1 SB-RRT* Expansion

The SB-RRT* presented in this work is an update of the RRT* considering that Xstorm

is uncertain and described by a finite number of possible scenarios, all ofwhich can be
treated as deterministic. We assume, without loss of generality, that all the scenarios
are equally weighted. However, the formulation can be extended to forecast members
of different weights, if such information is available (see, e.g. [21]). In addition, we
assume that, in each scenario, thunderstorms are objects described by closed curves.

Let the unsafe set Xstorm be uncertain. In [15], the authors proposed a chance
constrained RRT (CC-RRT), in which the probability of being inside Xstorm was
determined for each state configuration. In contrast toCC-RRT,we choose a scenario-
based approach in which the environment is characterized by an ensemble forecast.
The ensemble consists of different realizations, or scenarios, all of them possible.
The set Xstorm is composed of No different thunderstorms:

Xstorm = {C1(p1), . . . ,CNo(pNo
)}, (1)

(p j) denotes a closed curve that describes the j-th thunderstorm and depends on an

uncertain vector of parameters p j ⊂ R
dp j , with dpj ≥ 1.We assume that Nsc discrete

realizations of Xstorm are available, being all of them equally likely:

Xl
storm = {C1(pl1), . . . ,C

l
No

(plNo
)}, with l = 1, . . . , Nsc, (2)

where Cl
j (p

l
j) is a realization of the j-th thunderstorm obtained by sampling the

uncertain vector p j . As each curve C
l
j can be treated as deterministic, we can deter-

mine whether a point lies inside it or a curve goes through it. In consequence, the
SB-RRT* is able to work with a trajectory defined by a sequence of continuous
curves (or edges) or by a sequence of discrete states (or nodes).

Once the environment is defined, the SB-RRT* expands according to the pseu-
docode in Algorithm 2. The proposed algorithm is essentially a RRT* as described in
Sect. 2.2 that computes the safety of a sequence of edges and the following procedures
that will be covered hereafter in Sect. ssec:safety (Fig. 2).

RRT*-Based Algorithm for Trajectory Planning Considering … 251

Algorithm 2 T = (A, E) ← SB-RRT* (astart)
T ← InitializeRRT ();

2: T ← AddNode(astart , T);
while i < Max I ter do

4: arnd ← RandomSample();
anearest ← NearestNode(arnd , T);

6: ei ← Steer(anearest , arnd);
if Safe(arnd) and Safe(ei) then

8: Anear ← Near(arnd , A);
amin ← Parent(arnd , anearest , Anear);

10: T ← AddNode(arnd);
T ← AddEdge(ei);

12: T ← Rewire(arnd , amin , Anear);
end if

14: end while
return T

Fig. 2 Schematic
representation of the
different possible
realizations of an unsafe
region

3.2 Safety of a Trajectory

Algorithm 2 includes the function Safe that determines the safety of either nodes or
edges. One of the key contributions of this work is the way the safety is computed
so that the solution of the SB-RRT* can be considered safe as a whole continuous
trajectory. In a planning in which the unsafe objects are described by deterministic
parameters, a node is safe if it lies outside Xstorm and an edge is safe if there is
no intersection with any thunderstorm. If the environment is uncertain, we can only
know that a node or an edge is safe up to a certain probability. In the present paper,
given an event Z , the probability of Z being safe or not safe is represented by (Z)s

and (Z)ns , respectively. If No > 1, (Z)ns, j denotes the event of Z being not safe in
the presence of the j-th thunderstorm. The different definitions of safety that are
used in our work are listed down below.
Safety of a node: We say that a node ai is safe if it is outside all the thunderstorms
in Xstorm with a probability of at least 1 − εa . In other words, it can only be inside
at most �εaNsc	 deterministic realizations of unsafe object Cl

j . That is,

252 E. Andrés et al.

Pr((ai)
ns) = Pr

(No∨
j=1

(ai)
ns, j

)
≤ εa (3)

Safety of an edge: In a similar way, we say that an edge ei is safe if the probability that
it intersects with any of the thunderstorms in Xstorm is less than a safety margin εe.
It means that ei only can interact with at most �εeNsc	 realizations of unsafe object
Cl

j . That is,

Pr((ei)
ns) = Pr

(No∨
j=1

(ei)
ns, j

)
≤ εe (4)

Safety of a trajectory: Let E∗ = {e∗
1, . . . , e

∗
N ∗ } be the solution of the SB-RRT*,

formed as a concatenation of safe edges e∗
i . Let N

∗ be the number of edges in E∗.
The solution of the SB-RRT* will be safe, with a safety margin ε, if all the edges
from E∗ are safe at the same time [22]. That is,

Pr((E∗)s) = Pr

(N ∗∧
i=1

(e∗
i)

s

)
≥ 1 − ε. (5)

By using De Morgan’s law, which states that the negation of a conjunction is equal
to the disjunction of negations, (5) can be rewritten as,

Pr((E∗)ns) = Pr

(N ∗∨
i=1

(e∗
i)

ns

)
≤ ε. (6)

With Boole’s inequality, which states that for a finite number of events Zi , we have
Pr(

∨
i Zi) ≤ ∑

i Pr(Zi), and we can conservatively satisfy (6),

Pr((E∗)ns) ≤
N ∗∑
i=1

Pr((e∗
i)

ns) ≤ ε. (7)

Using (4) and Boole’s inequality, (7) is replaced by,

Pr((E∗)ns) ≤
N ∗∑
i=1

No∑
j=1

Pr((e∗
i)

ns, j) ≤ ε. (8)

Combining equations (5) and (8), the safety constraint for the solution E∗ is,

Pr((e∗
i)

ns, j) ≤ εi j , (9)

which must be satisfied for i = 1, . . . , N ∗ and j = 1, . . . , No. The elements εi j are
individual safety margins for the i-th edge in the presence of the j-th thunderstorm.

RRT*-Based Algorithm for Trajectory Planning Considering … 253

Fig. 3 Example of dynamic
risk allocation

They must verify 0 ≤ εi j ≤ 1 and
∑N ∗

i=1

∑No
j=1 εi j ≤ ε. In addition, the safety margin

for the i-th edge considering the No thunderstorms is denoted by εi and verifies∑No
j=1 εi j ≤ εi . In order to allocate the risks εi j , it can be done in a uniform manner,

so that εi j = ε/(N ∗No). This kind of allocation is overly conservative. Moreover,
the value of N ∗ in any RRT is not known a priori as it is part of the solution and
should be estimated. In reality, some parts of the trajectory will go through areas of
no risk and as we get closer to the unsafe set the actual risk will increase.

This work proposes a dynamic risk allocation in which the risk is non-uniformly
assigned to the different edges as the SB-RRT* is growing. This non-uniform risk
allocation leads to a less conservative andmore optimal solution in terms of distance.
During the expansion, the probability of interaction with Xstorm of any trajectory
starting at astart ∈ A can be of, at most, ε. An example of the risk allocation with
ε = 0.1 is illustrated in Fig. 3. An arbitrary trajectory starts with an edge e1, which
is unsafe with probability 0. Then, the tree is able to grow in directions in which,
according to (7), the total sum of probabilities of being unsafe is bounded by 0.1.
Consequently, the edge e2, which is unsafe with probability 0.1 is accepted:

Pr

(2∨
i=1

(ei)
ns

)
≤ Pr((e1)

ns) + Pr((e2)
ns) ≤ 0.1.

On the contrary, e′
2 is rejected, as the resulting sum of probabilities is higher than

0.1:

Pr

(2∨
i=1

(ei)
ns

)
≤ Pr((e1)

ns) + Pr((e′
2)

ns) > 0.1.

The tree could continue growing from e2 provided that (7) is verified. The definitive
mathematical formulation of the dynamic risk allocation is in progress and will be
presented in future work

254 E. Andrés et al.

4 Case Study

In this section, the SB-RRT* is tested considering a simplified point-mass model of
aircraft. We solve the problem in a simple environment formed by circular uncertain
unsafe areas that represent possible stormy regions.

4.1 Aircraft Dynamics

We assume that it is flying at constant velocity V and constant altitude. Let
s = (x, y, λ) be the state vector. The vector x = (x, y) ⊂ R

2 represents the air-
craft position and λ ∈ [−π, π] its heading angle. The manoeuvres are limited by
the aircraft minimum turning radius Rmin or equivalently, its maximum yaw rate
umax = V/Rmin. For simplicity, only three control inputs are considered: no turn,
right turn or left turn (with umax or Rmin). The system dynamics is given by,

ṡ =
⎧⎨
⎩
ẋ
ẏ
λ̇

⎫⎬
⎭ =

⎧⎨
⎩
V cos λ

V sin λ

u

⎫⎬
⎭ , (10)

with controls, u ∈ {−umax, 0, umax}. Each time we want to expand the SB-RRT*
between two nodes and we must solve the system in (10) minimizing the distance
covered. Given two states s0 = (x0, y0, λ0) and s f = (x f , y f , λ f), there exist an
analytical solution for this optimization problem, the Dubins path [23]. Dubins paths
are continuous and differentiable curves formed by one of the following:

• Three arcs of circle of radius Rmin.
• Two arcs of circle of radius Rmin with one straight line in between.

Dubins paths are included in two functions from the SB-RRT* algorithm:

• NearestNode: they are used as themetric.When looking for the closest node to arnd
from the tree T , it is appropriate to use the shortest Dubins path, as it considers the
heading of the nodes and the minimum turning radius Rmin . Using another metric,
such as the Euclidean distance, could lead to manoeuvres that violate the turning
constraint [10].

• Steer: this function drives the system from anearest to arnd with a Dubins path.

4.2 Problem Setting

As a case study, the SB-RRT* is tested in a domain X = [0, 200] × [0, 160] (in km),
with an aircraft flying between (0, 70) and (200, 80), andmanoeuvering with Rmin =
2 km. The unsafe set Xstorm is formed by No = 3 circular and static thunderstorms

RRT*-Based Algorithm for Trajectory Planning Considering … 255

of known radii and uncertain centre positions sampled from a Gaussian distribution.
Mean positions of the centres are (60, 60), (150, 70) and (110, 115), with radii of
20, 15 and 12 km, respectively. In this example, circles are used because they admit
an analytical intersection with Dubins paths. The number of scenarios considered is
Nsc = 20. A maximum risk of 10%, or ε = 0.1, is allowed. In consequence, only
�εNsc	 = 2 intersections with the unsafe set are permitted. They can occur with the
same thunderstorm or be distributed between two. The algorithm is implemented
in Python (basic Python and Numpy library). The computations are performed in a
workstation equipped with an Intel Core i7-8550U CPU running at 1.8 GHz.

4.3 Results and Discussion

Figure4 displays the SB-RRT* evolution and solution in two stages of its expansion,
at the 500th and 1000th iterations. It can be seen that a higher number of iterations
involve less distance covered by the solution trajectory. This fact results from the
appropriate parent choice and the rewiring process, both of which keep optimizing
the tree structure as it grows, removing redundant connections and ensuring that
each point is connected to the root with the shortest possible trajectory. In addition,
it can be observed that the tree is successfully avoiding the discrete realizations of
uncertain thunderstorms. Each node, including the target, is connected to the starting
point with a trajectory that involves at most two interactions with the unsafe regions.
This fact guarantees that the flight would be safe in a 90% of the possible scenarios.

Figure5 shows the solution after the 2000th iteration. As the number of iterations
increase, the algorithm is able to find solutions through the corridor between the
thunderstorms reducing the total distance that is required. In Table1, the reduction
in the distance covered with the number of iterations is shown. As a lower bound,
the straight trajectory connecting the initial and target positions involved 200 km,
but it is not valid as it assumes a high risk. With 2000 iterations, a 207 km trajectory

Fig. 4 SB-RRT* expansion and solution (in red) for different maximum number of iterations

256 E. Andrés et al.

Fig. 5 SB-RRT* solution after 2000 iterations

Table 1 Length of the solution trajectory and execution time for the SB-RRT* with the number of
iterations

Iterations Solution length (km) Execution time (s)

500 355 76

1000 291 283

2000 207 1160

was obtained, meeting the safety requirement. That is, a 3.5% increase in the total
distance meant a 90% rise in the safety of the solution.

However, the main drawback of the SB-RRT* is the asymptotic convergence.
That means there is no guarantee of optimality unless the number of iterations tends
to infinity. In this example, increasing the number of iterations above 2000 was
of little benefit, as it required an excessive computational time with no important
shortening of the solution trajectory. As can be seen in Table1, doubling the number
of iterations means that the execution time grows by a factor of approximately 4.
The main bottleneck in the SB-RRT* algorithm is Safe function, which checks if an
edge is safe before being added to the tree or during the rewiring step. It must check
if there is an interaction with any object in any scenario. The function is called in
line 7 from Algorithm 2 and recursively inside Parent and Rewire. In particular, the
safety checks from these two functions are what cause the exponential increase in
CPU time. Both evaluate multiple connections during each iteration, one per node in
the set Anear. As the iterations increase, the total number of nodes in A grows, and so
does the possible nodes in Anear. Adding, for the total number of iterations, the CPU
time associated with Safe function times the number of calls of the function leads to
an exponential trend. Further research will be required to reduce the execution time
of the algorithm, being able to work in timescales compatible with near-real-time
modification of trajectories.

RRT*-Based Algorithm for Trajectory Planning Considering … 257

5 Conclusions and Future Work

We presented an incremental sampling-based algorithm for flight planning, the SB-
RRT* able to obtain safe trajectories in an environment formed by stochastic unsafe
regions. Provided that the uncertainties are characterizedwith an ensemble of discrete
realizations, the algorithm ensures that the trajectory between two state configura-
tions and never violates a predefined safety margin. The ability of the tree to grow,
constrained by a maximum number of interactions with the unsafe set, is demon-
strated. A RRT-based algorithm was chosen due to its versatility, and it can be easily
modified and updated. For the moment, the algorithm has been tested assuming con-
stant flight level, however, the extension to variable altitude considering 3D Dubins
paths is immediate, e.g. in [24]. Moreover, no operational constraints have been con-
sidered, but RRT algorithms are compatible with speed or spatial limitations (see
kinodynamic RRT algorithms, e.g. [25]). The main disadvantage of a RRT* is that
theoretically, an infinite number of iterations are required for optimality. Nonethe-
less, the RRT*-smart extension presented in [26] can be incorporated, leading to an
increase in the rate of convergence and significantly reducing the number of itera-
tions required to approach the optimal trajectory. In future, data from real weather
forecasts must be integrated in the algorithm. The thunderstorms to be avoided will
not be described by analytical expressions, requiring a strategy to obtain intersections
between tree edges and more general curves.

References

1. Eurocontrol, in Performance Review Report. An Assessment of Air Traffic Management in
Europe During the Calendar Year 2017. Technical Report (2017)

2. H. Erzberger, T. Nikoleris, R.A. Paielli, Y.C. Chu, Algorithms for control of arrival and depar-
ture traffic in terminal airspace. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 230(9),
1762–1779 (2016)

3. D. González-Arribas, M. Soler, M. Sanjurjo-Rivo, M-Kamgarpour, J. Simarro, Robust aircraft
trajectory planning under uncertain convective environments with optimal control and rapidly
developing thunderstorms. Aerospace Sci. Technol. 89, 445–459 (2019)

4. S. Summers, M. Kamgarpour, J. Lygeros, C. Tomlin, A stochastic reach-avoid problem with
random obstacles, in Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control (HSCC’11) (ACM, New York, NY, USA, 2011), pp. 251–260

5. D. Hentzen,M. Kamgarpour,M. Soler, D. González-Arribas, Onmaximizing safety in stochas-
tic aircraft trajectory planning with uncertain thunderstorm development. Aersopace Sci. Tech-
nol. 79, 543–553 (2018)

6. S.M. LaValle, Rapidly-Exploring Random Trees: A New Tool for Path Planning (Iowa State
University, Tech. Rep., 1998)

7. S.M. LaValle, J.J. Kuffner, Randomized kinodynamic planning, in Proceedings 1999 IEEE
International Conference on Robotics and Automation, vol 1 (1999), pp. 473–479

8. S.R. Martin, S.E. Wright, J.W. Sheppard, Offline and online evolutionary bi-directional RRT
algorithms for efficient re-planning in dynamic environments, in IEEE International Confer-
ence on Automation Science and Engineering (2007), pp. 1131–1136

9. P. Cheng, Z. Shen, S.M. LaValle, RRT-based trajectory design for autonomous automobiles
and spacecraft. Arch. Control Sci. 11(4), 167–194 (2001)

258 E. Andrés et al.

10. Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, J.P. How, Real-time motion planning
with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17(5),
1105–1118 (2009)

11. C.E. Tuncali, G. Fainekos, Rapidly-Exploring Random Trees-Based Test Generation for
Autonomous Vehicles. Arizona State University, Technical Report (2019)

12. J. Kim, J.P. Ostrowski, Motion planning a aerial robot using rapidly-exploring random trees
with dynamic constraints, in IEEE International Conference on Robotics and Automation, vol 2
(2003), pp. 2200–2205

13. K. Yang, S. Sukkarieh, 3D smooth path planning for a UAV in cluttered natural environments,
in IEEE/RSJ. International Conference on Intelligent Robots and Systems (2008), pp. 794–800
(2008)

14. Y. Bouzid, Y. Bestaoui, H. Siguerdidjane, Quadrotor-UAV optimal coverage path planning in
cluttered environment with a limited onboard energy, in IEEE 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2017)

15. B.D. Luders, M. Kothari, J.P. How, Chance constrained RRT for probabilistic robustness to
environmental uncertainty, in AIAA Guidance, Navigation and Control Conference (2010)

16. B.D. Luders, J.P. How, Probabilistic feasibility for nonlinear systems with non-gaussian uncer-
tainty using RRT, in AIAA Infotech@Aerospace Conference, St. Louis, MO (2011)

17. L. Blackmore, A probabilistic particle control approach to optimal, robust predictive control,
in AIAA Guidance, Navigation, and Control Conference and Exhibit (2006)

18. Guidelines on Ensemble Prediction Systems and Forecasting. World Meteorological Organi-
zation (2012)

19. S.M. LaValle (ed.), Planning Algorithms (Cambridge University Press, New York, NY, USA,
2006)

20. S. Karaman, E. Frazzoli, Sampling-based algorithms for optimalmotion planning. Int. J. Robot.
Res. 30, 846–894 (2011)

21. Y. Matsuno, R. Kikuchi, N. Matayoshi, Robust optimal guidance algorithm for required time
of arrival operations using probabilistic weather forecasts, in AIAA SciTech Forum (2019)

22. V. Lefkopoulos, M. Kamgarpour, Using Uncertainty Data in Chance-Constrained Trajectory
Planning (2019). [Online]. Available: http://arxiv.org/abs/1904.12825

23. A.M. Shkel, V. Lumelsky, Classification of the Dubins set. Robot. Autonom. Syst. 34, 179–202
(2001)

24. P. Pharpatara, B. Hérissé, Y. Bestaoui, 3-D trajectory planning of aerial vehicles using RRT*.
IEEE Trans. Control Syst. Technol. 25, 1116–1123 (2017)

25. S. Karaman, E. Frazzoli, Optimal kinodynamic motion planning using incremental sampling-
based methods, in 49th IEEE Conference on Decision and Control (CDC) (2010)

26. F. Islam, J. Nasir, U. Malik, Y. Ayaz, O. Hasan, "RRT*-smart: Rapid convergence implemen-
tation of RRT* towards optimal solution," in. IEEE International Conference on Mechatronics
and Automation 2012, 1651–1656 (2012)

http://arxiv.org/abs/1904.12825

	 RRT*-Based Algorithm for Trajectory Planning Considering Probabilistic Weather Forecasts
	1 Introduction
	2 RRT: Rapidly Exploring Random Trees
	2.1 RRT Algorithm
	2.2 RRT* Algorithm

	3 Scenario Based RRT*
	3.1 SB-RRT* Expansion
	3.2 Safety of a Trajectory

	4 Case Study
	4.1 Aircraft Dynamics
	4.2 Problem Setting
	4.3 Results and Discussion

	5 Conclusions and Future Work
	References

