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Abstract Aircraft approach flight path safety management provides procedures that
guide the aircraft to intercept the final approach axis and runway slope before land-
ing. In order to detect atypical behavior, this paper explores the use of data generative
models to learn real approach flight path probability distributions and identify flights
that do not follow these distributions. Through the use of Generative Adversarial
Networks (GAN), a GAN is first trained to learn real flight paths, generating new
flights from learned distributions. Experiments show that the new generated flights
follow realistic patterns. Unlike trajectories generated by physical models, the pro-
posed technique, only based on past flight data, is able to account for external factors
such as Air Traffic Control (ATC) orders, pilot behavior or meteorological phenom-
ena. Next, the trained GAN is used to identify abnormal trajectories and compare the
results with a clustering technique combined with a functional principal component
analysis. The results show that reported non compliant trajectories are relevant.
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1 Introduction

Accidents that occur during initial, intermediate and final approach until landing
represent every year 47% of the total accidents, and 40% of fatalities [1]. In nominal
operations, approach flight path safety management consists in procedures which
guide the aircraft to intercept the final approach axis, and the runway slope with an
expected configuration in order to land. Some abnormal flights are observed with
deviations from procedures and operational documentation.

The International Air Transportation Association (IATA) forecasts a growth of
air passengers worldwide from around 4 billion today, up to 8.2 billion in 2037 [2].
Consequently, the number of non-standard procedures will also increase if nothing is
done to mitigate them. This kind of trajectory generates difficulties for both crew and
Air TrafficControl (ATC) andmay induce undesirable events such asNon-Compliant
Approach and Non-Stabilized Approaches that can drive to ultimate events like Run-
way Excursion, Control Flight Into Terrain, and Loss of Control In Flight. Analyzing
and gaining a better understanding of these procedure deviations would be profitable
for both air traffic managers and flight operators. Besides, generating realistic trajec-
tories while data are not available can greatly benefit noise prediction simulation in
the context of air traffic growth, and in many other applications.

Anomaly Detection is a well-known problem, which has been investigated for
a long time. It consists in finding samples from a data set that do not comply with
the overall behavior. Among the various methods available, the Multiple Kernel
Anomaly Detection (MKAD) [3] technique is one of the most efficient algorithms.
It was developed to detect anomalies in aircraft flight data records during approach.

It was developed to detect anomalies in heterogeneous data (i.e. discrete and con-
tinuous data), and has been used to detect anomalies in aircraft approach parameters
from aircraft data.

Another kernel-based approach to study on-board aircraft parameters was detailed
in [4]. Neural network auto-encoder reconstruction error can also be used to detect
abnormal behavior [5, 6]. Other anomaly detection techniques using information
geometry and functional representation have also proven to be efficient. In her thesis
[7], the author presents different Outlier Detection in Space Telemetries. In [8, 9],
functional principal component analysis is used to develop a local anomaly detection
algorithm in aircraft landing trajectories.

This paper details the work conducted around the generation of trajectory and
the detection of atypical trajectories using a novel machine learning technique called
GenerativeAdversarial Networks (GAN).GANare recent neural network techniques
that have already provided successful results in various fields such as image or video
generation [10, 11], image resolution enhancement [12], drug discovery [13], text-
to-image synthesis [14] and many others. They enable learning the data distribution
by solving a min-max optimization problem between a data generator and a data
classifier. The data generator tries to generate realistic data while fooling the data
classifier. The classifier tries to distinguish real data from generated data. Recently,
GAN have also been applied to detect anomalies in imaging data [15].
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In the specific field of trajectory generation with GAN, some work has already
been conducted on learning and reproducing human motion behavior [16], on robot
navigation [17], or on vehicle-to-vehicle-encounters [18]. GAN do not require prior
knowledge on data to learn their distribution and are therefore well suited to applica-
tions where only physical model representation is available and little is known about
responses to uncertainties or external factors such as aircraft approach trajectories
analysis. Furthermore, to the best of the authors’ knowledge, no investigation has
been carried out on applying these techniques to aircraft trajectory generation or
anomaly detection, which motivates the use of GAN. This article aims at conduct-
ing experiments with GAN to generate realistic aircraft trajectories based on airport
approach and landing data. Classical trajectory generation is based on the physical
aircraft model whereas here, the generation is data driven and does not use aircraft
and flights physics. It can, therefore, account for external factors that impact real tra-
jectories such as Air Traffic Control (ATC) orders, pilot behavior or meteorological
phenomena. Further investigations on the use of the GAN to detect abnormal trajec-
tory patterns were carried out and compared with the results of a prior information
geometry based approach.

This paper only presents the first results of trajectory generation. Regarding the
generation process, the comparison with other techniques is visual and focuses on
obtaining a realistic aspect of the trajectories. In future works, more accurate metrics
could be developed to compare two generated data sets. Regarding, the anomaly
detection, the results of two different methods will be compared.

After introducing the principles of GAN, the application of GAN to generate
approach trajectories is shown and results are compared with other methods such as
geometric information techniques. The second part of the paper is dedicated to the
detection of abnormal or atypical trajectories using the distribution of data learned
by the network. The relevance of the results is discussed with operational criteria
and the performance of our algorithm in real operations is detailed.

2 Generative Adversarial Networks (GAN)

GAN have recently attracted much interest in the machine learning community [10,
19]. These models have the ability to learn the distribution pd of input data and
generate new data according to the learned distribution. This is achieved through the
use of a network that combines a generator G (usually a type of neural network)
and a discriminator D (a classifier function). The generator G takes input noise
vectors z from a low dimensional space so-called latent space, and generates new
sample vectors in the data representation space. The discriminator D is trained on a
given input data x to compute the probability of a sample being an input data rather
than being generated by G. The process, that can be seen as a two player game is
simultaneously repeated so that G minimizes log(1 − D(G(z)) (generated data that
could not fool the discriminator), and D maximizes log(D(x)) (real data correctly
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Fig. 1 GAN. It is composed of a generator G, that takes as input a noise vector from the latent
space to compute a trajectory, and a discriminator D, that classifies trajectories between real and
generated

classified). The process is initiated by drawing random noise vectors z. The two
player game can be summarized in the following optimization problem:

min
G

max
D

Ex∼pd

[
log(D(x))

] + Ez∼pz

[
log(1 − D(G(z))

]
(1)

Figure 1 illustrates this principle in the specific case where x belongs to a space of
trajectories. Initial vectors z are randomly generated in the latent space and mapped
into the trajectory space via the Generator G. The discriminant function D returns
a score value close to 1 if the generated trajectory belongs to the real trajectory
data distribution or close to 0 otherwise. Next, the training phase of G receives the
score feedback in order to generate a more realistic trajectory if the score is low.
The process is repeated several times until an equilibrium of the minmax game is
found. The next section gives more details on the architecture of the generator and
discriminator neural network maps used.

3 Trajectory Generation

The problem of trajectory generation is usually divided into two paradigms, model-
driven generation, and data-driven generation. The approach with GAN is a data-
driven generation. Since in model-driven generation, trajectories are generated with
physical and dynamical models, they cannot take into consideration real-time con-
straints such as Air Traffic Control or even pilot behavior. Data-driven generation is
supposed to provide more realistic generation considering all the parameters from
real data.Model-driven generation can use real aircraft models directly, or the BADA
(Base of Aircraft Data) model [20, 21] developed by Eurocontrol.
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3.1 Aircraft Landing Trajectories

This section illustrates howGAN can be used to generate aircraft landing trajectories
at Paris Orly (LFPO) airport. The dataset used is composed of 4401 A320 landing
trajectories on runway 26 from Flight Data Monitoring Records. The parameters
selected are the longitude, the latitude, the altitude and the ground speed for the last
25NM. The initial trajectory rate is one point every 4 seconds, but each trajectory
is resampled to obtain 256 uniformly distributed points which fit a neural network
structure. These parameters have been selected because they correspond to the basic
parameters available in ADS-B or radar data. Thus, the results obtained can be
reproduced with other data sources. Further experiments are in progress for models
taking into account more parameters.

3.2 Neural Network Structures and Learning Process

In order to generate aircraft trajectories, specific neural network structures were
built using 1D convolutional and transpose convolutional neural networks. The neu-
ral network of the discriminant consists of four convolution layers and one fully
connected layer. The neural network of the generator is built by symmetry: one fully
connected layer and four convolution transpose layers with upsampling. Additional
details about the dimension of each layer are given on Fig. 2

A uniform distribution of the noise z was arbitrarily chosen in a 4-dimensional
space since the output space considers 4 dimensions (longitude, latitude, altitude,
ground speed). In addition to convolutional structure, each layer is followed by a
batch normalization, max pooling, and dropout layers in order to regularize the
network.

The learning taskwasmade usingAdam optimizer [22] with a decay. The learning
rate starts from 10−3 and decreases to 10−7. Networks were trained during 30 000
steps on a multi-GPU cluster. The cluster is composed of a dual ship Intel Xeon
E5-2640 v4 - Deca-core (10 Core) 2.40GHz—Socket LGA 2011-v3 with 8 GPU GF
GTX 1080 Ti 11 Go GDDR5X PCIe 3.0.

3.3 Generated Trajectories

After the learning phase, the generator was able to compute new trajectories from
samplednoise distribution.However, the obtained trajectorieswere noisywithmainly
high-frequency noise. Therefore, a smoothing filter was applied. In particular, a cubic
smoothing spline interpolation was computed to remove the noise from the generated
trajectories. Figure 3 illustrates filtered generated trajectories for all the parameters.
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Fig. 2 Two network architectures; on the left a the discriminator structure, and on the right b the
generator structure. Both structures use convolution or convolution transpose layers

The overall shape anddistribution of the generated trajectorieswas satisfying since
they followed the original distribution. Nevertheless, one can see that the generator
was not able to capture some types of patterns. For the altitude profile, it is known that
aircraft follow levelled-off path before descending on the glide path, but this was not
captured by the generator. The same behavior was observed for the extended runway
centre line which should be followed from 10NM to the threshold, but the generated
trajectories barely followed the localizer path for the last nautical miles. This may be
linked to the difficulty of convergence in GANmodels. As a reminder, GAN models
solve a min-max problem, which implies a very unstable optimal saddle point. The
optimal solution in Eq. (1) may not be achieved, meaning that some information such
as the levelled-off pattern might not be learned during the training phase.
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Fig. 3 1000 generated trajectories at Paris Orly Airport. In blue are represented the original tra-
jectories and in green the generated trajectories. At the top, the longitudinal path is represented, in
the center, the altitude profile, and at the bottom the ground speed profile
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This effect is not problematic for anomaly detection. Even if the generator cannot
reconstruct data with high levels of accuracy, it has still learned the general distribu-
tion of the data. Thus data that does not have characteristics similar to the learned data
will have a large reconstruction error and will be detected as anomaly. Furthermore,
anomaly detection using the discriminator is not affected at all.

3.4 Comparison with Information Geometry

Information geometry also enables the generation of new trajectories by estimating
the Karhunen-Loève expansion [23] through the Functional Principal Component
Analysis process [24]. It consists in considering each curve � as the weighted sum
of a mean curve γ plus the principal components φ j by defining the orthogonal
basis that maximizes the explained variance in the first dimensions, as shown in the
following equation:

�(t) = γ (t) +
+∞∑

j=1

b jφ j (t)

Usually, the decomposition is truncated to retain a certain variance, which also
enables dimensionality reduction. To generate new trajectories, one must first esti-
mate the distribution of the principal coefficients b j . Then, one is able to generate new
trajectories using the decomposition basis. It is interesting to highlight that results
from FPCA generation with dimensionality reduction are similar to those obtained
with our GAN model. Indeed, applying dimensionality reduction in FPCA only pre-
serves the largest variation mode around the mean curve. Therefore, the levelled-off
flights are not captured with the truncated FPCA decomposition either.

4 Anomaly Detection

This section, illustrates how GAN provide solutions to the anomaly detection prob-
lem. As explained in Sect. 2, GAN combine a generator G, and a discriminator D.
After the learning task, the discriminator has been trained to recognize real data
from generated data. Consequently, the first approach to anomaly detection consists
in using the score of D. Indeed, the closer the score is to 0 , the less realistic the
data is supposed to be, or in other words, the less likely it is to belong to the original
distribution.

Another way to perform anomaly detection with GAN is to build an encoder E
(usually another neural network). The encoder embeds samples from the trajectory
space to the latent space. The encoder is illustrated in Fig. 4. It can be automati-
cally tuned during the GAN training (this setup is known as BIGAN), or after the
training (Encoder). The anomaly detection can be applied to a dataset with the fol-
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Fig. 4 This figure completes Fig. 1 with the encoder E. The encoder selects a trajectory and builds
the corresponding noise vector in the latent space

lowing process : first, encode each trajectory in the latent space with the encoder E,
next, rebuild the trajectories through the generator, and finally compute a distance
between the original and reconstructed trajectories. The most distant trajectories can
be considered as anomalies since the generator was not able to rebuild the trajectory
properly. Indeed, if a trajectory does not belong to the trajectory distribution learned
by the generator, the reconstruction error will be high. This approach is very similar
to auto-encoder anomaly detection [5, 6]. Nevertheless, GAN are richer since they
also provide trajectory generation. The encoder network structure is similar to the
discriminant network detailed in Fig. 2. However, the last layer is sized to correspond
to the latent space dimension.

4.1 Anomaly Detection Using the Discriminator

A first approach to performing anomaly detection is to use the discriminator. It is
trained to distinguish real samples from the original data set and generates samples
from the generator. Therefore, its natural behavior tends to give a score next to 1 for
trajectories that are similar to the original data set and a score close to 0 for atypical
trajectories.

This method of anomaly detection was applied to the original dataset of the Paris
Orly Airport trajectories and the results are shown on Fig. 5. Red lines correspond
to trajectories with the minimum discriminator score for the dataset, green lines to
the maximum discriminant score, and orange lines to intermediate values.

The anomaly detection with the discriminator shows interesting results for the
longitudinal trajectories and for the altitude profiles. The typical altitude profile
(in green) follows a levelled-off path before descending on the glide path, which
corresponds to the published procedure. On the other hand, the atypical profiles
present high altitude or even Glide Interception From Above. 2D trajectories are
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Fig. 5 Score given by the discriminator to the original dataset. The red lines correspond to the
minimumdiscriminator score obtained for the dataset, and green lines to themaximumdiscriminator
score (orange corresponds to intermediate scores). The longitudinal trajectories are illustrated at
the top, the altitude profiles in the centre, and the speed profiles at the bottom
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illustrated at the top of Fig. 5. It seems that typical 2D paths are approaches from
the south and east, while less typical come from the west and very atypical from the
north with holding patterns. The ground speed profiles, at the bottom of Figure 5, do
not show any specific results.

4.2 Anomaly Detection Using the Encoder

This section illustrates the use of the encoder to detect anomalies. The encoder
was tuned automatically after the GAN training phase. The encoder embedded the
trajectory samples to the latent space. The anomaly detection was performed in
three steps. First, each trajectory was embedded to the latent space with the encoder.
Second, all trajectories were rebuilt through the generator. Third, the reconstruction
error (L2 Norm) was computed between the original trajectories and the rebuilt
trajectories. Finally, trajectory with high reconstruction errors were considered as
atypical.

In order to be able to compare results with the functional principal component
analysis method explained in [8], the anomaly detection was applied to specific total
energy trajectories. The specific total energy is the sum of the potential energy and
the specific kinetic energy per unit of mass. Since the mass is not available in radar
data, the method developed in [8] considers an approximation of the total energy
considering a mass constant over the last nautical miles. Considering specific total
energy can be explained by the fact that safe approaches and landings are closely
linked to good energy management. Therefore, one may assume that atypical energy
management may induce safety events or incidents.

In this purpose, another network was trained to generate and encode specific total
energy trajectories extracted from Paris Orly landing trajectories. Figure 6 illustrates
the normalized distribution of reconstruction errors. The color variation is from green
for small errors to red for large reconstruction errors. This corresponding color (and
reconstruction error) is also used to represent the specific total energy trajectories in
Fig. 7.

Two groups of anomalies can be found. The first group is composed of low energy
profile trajectories, the second of high energy profile trajectories.However, the largest
reconstruction errors correspond to high energy profiles (in red at the top of the
figure). The flight with the highest reconstruction error was selected. The comparison
with the atypical coefficient algorithm using FPCA [8, 9] is detailed below. Figure
8 illustrates the altitude profile and the speed profile of this flight. The colored dots
correspond to atypical coefficients between 0 for typical and 1 for atypical. Between,
25 and 15NM, one can observe a large atypical area due to high energy (high altitude
and high speed). FPCA algorithm andGAN anomaly detection seem to be correlated.
This result is also observed for the 10 highest reconstruction error flights from the
GAN anomaly detection experiments.
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Fig. 6 Normalized distribution of the encoder-generator reconstruction errors for the specific total
energy trajectories at Paris Orly Airport. The color green is attributed to small errors and goes from
orange to red for larger errors. Trajectories corresponding to important reconstruction errors on the
right of the plot are considered as atypical

Fig. 7 Specific total energy trajectories at Paris Orly Airport. The color corresponds to the recon-
struction error. Trajectories with a small reconstruction error are represented in green, and large
errors in red

4.3 Latent Space Representation

The encoder enables the trajectories to be embedded in latent space. Each trajectory is
then represented as a single point in a low dimensional space. Therefore, this enables
a simpler representation of a group of samples with a dimensionality reduction. The
embedding of the original trajectories in latent space is represented at the top of
Fig. 9. The corresponding total energy trajectories are illustrated at the bottom. The
embedded data of the two groups were clustered around the line x + y = 0. The first
group in blue is above the line, and the second group in green is below the line.
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Fig. 8 Highest reconstruction score flight altitude profile (at the top), and speed profile (at the
bottom). The flight presents a glide interception from above with high ground speed, and a little late
power reduction. The colored dots correspond to the atypical FPCA coefficients of the total energy
defined in [8]. The dashed colored lines correspond to operational limits: nominal (green), warning
(orange), and critical (red). For more details see [8]
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Fig. 9 At the top, the embedding of the original total specific energy trajectories into the latent
space, and at the bottom the corresponding trajectories. Trajectories were clustered into two groups
(green and blue) around the line x + y = 0

This representation enables different applications such as clustering, data analysis,
or linear interpolation. For example, one may use this representation for approach
procedure detection. Suppose we focus on a QFU approach with separate published
procedures, a GNSS RNAV, a visual approach and a VOR/DME approach. These
three types of procedures have a characteristic footprint. Approaches of the same
type will be grouped together and will be easily discernible in the latent space.
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By linear interpolation,wemean continuous deformation between two trajectories
or objects of infinite dimension. It is a very complicated mathematical problem. The
use of GAN makes it possible as the latent space is a low-dimensional normalized
space. It would therefore consists in interpolating by a straight line the two points
representing the trajectories in the latent space

4.4 Discussion

In this section, operational and scientific insights are provided for this research.
There are several possible methodologies to detect anomalies on large dimensions
elements. The GAN had not been used for the moment in this aeronautical safety
framework. The operational objective is the analysis and identification of precursors
to potential safety incidents or events. Atypical energy managements have shown a
strong correlation with flight safety events [9], therefore GAN could be used post-
operationally to analyse trajectories.

In addition, it is easy to understand the use of the total energy. Flying an aircraft
consists in managing an altitude and a speed, and therefore its total energy. The final
approach phase is a phase of decreasing energy. The plane goes from high speed
at high altitude to landing where its potential energy and speed must cancel each
other out. Energy transfers generally imply that a decrease in potential energy results
in an increase in kinetic energy. On a standard 3◦ glide path, aircraft are facing
the constraint of simultaneously reducing kinetic energy and potential energy. This
constraint implies good energy management upstream, generally by configuring the
flaps and landing gear to increase the drag and decrease the total energy, or by using
a level-off deceleration flight to reduce the speed before descending on the glide
path. Some aircraft have aerodynamic characteristics such that deceleration on final
approach can be very difficult, especially in poorweather conditions such as tailwind.
Therefore, there is a real operational interest in detecting atypical energymanagement
that could lead to incidents or accidents such as the crash of Asiana flight 214 in San
Fransisco (high energy then low energy) or more recently the Pegasus flight 2193 in
Istanbul (high energy).

There are many similarities between GAN, auto-encoders and the FPCAmethod-
ology. The ultimate goal is to estimate a large dimension data distribution. GAN
bring the generative aspect and the possibility to use both the discriminator and the
generator for anomaly detection. However, like auto-encoders, they are subject to
the convergence of the learning phase (even stronger for GAN). The FPCA method-
ology has the advantage of being deterministic. The use of GAN model on a sliding
window as proposed in the FPCA methodology [8], seems much more complex and
involves ensuring the convergence of each model resulting from a sliding window.



242 G. Jarry et al.

5 Conclusion

Generative adversarial networks have proven to be very effective in generating realis-
tic scenes and objects in computer vision. This article investigates their use in the field
of aircraft trajectory generation and abnormal or non-compliant trajectory detection.
Preliminary experiments show that the generated trajectories follow realistic pat-
terns. This confirms that GAN are promising alternatives to model-based trajectory
simulators. The resulting generated trajectories are based on past historical data and
therefore account for external factors that are often difficult to embed in physical
models. Further experiments were also provided with GAN to detect non-compliant
or atypical trajectories. A comparison with a technique based on functional princi-
pal component analysis also confirms that reported anomalies are relevant. To the
best of our knowledge, this work is the first attempt to generate aircraft trajectories
with such generative machine learning tools. There remains, therefore, much more
to investigate in this domain. Further work should include the analysis of tailored
network architectures and learning, or extensions to Wasserstein GAN [25] that can
learn data from multimodal distributions.
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