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Abstract TheAircraft Landing Problem consists in sequencing aircraft on the avail-
able runways and scheduling their landing times taking into consideration several
operational constraints, in order to increase the runway capacity and/or to reduce
delays. In this work we propose a new Mixed Integer Programming (MIP) model
for sequencing and scheduling aircraft landings on a single or multiple independent
runways incorporating safety constraints by means of separation between aircraft at
runways threshold. Due to the NP-hardness of the problem, solving directly the MIP
model for large realistic instances yields redhibitory computation times. Therefore,
we introduce a novel heuristic search methodology based on Optimistic Planning
that significantly improve the FCFS (First-Come First-Served) solution, and provides
good-quality solutions in reasonable computational time. The solution approach is
then tested on medium and large realistic instances generated from real-world traffic
on Paris-Orly airport to show the benefit of our approach.
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1 Introduction

The International Air Transport Association (IATA) expects 7.8 billion passengers to
travel in 2036, which represents nearly double the passengers recorded in 2016 [1];
this increasing demand on air transportation exposes the available infrastructure to a
risk of saturation. Constructing new infrastructures (runways, airports) is a solution
to increase the capacity, however, it may not always be feasible due to the huge cost
incurred. The alternative is to optimize the use of current infrastructure, especially the
runwaywhich is recognized to be the bottleneck of thewholeAir TrafficManagement
(ATM) system.

Since the runway sequence is one of the key factors that determines runway capac-
ity [2], several researchers were interested in the optimization of runway sequences,
which corresponds in the literature to the following problems:

• The Aircraft Landing Problem (ALP) aims at sequencing arriving aircraft on the
available runways and scheduling their landing times taking into consideration
several operational constraints.

• TheAircraft Take-off Problem (ATP) consists in scheduling take-off slots to depart-
ing aircraft

• The Aircraft Scheduling Problem (ASP) consists in sequencing and scheduling
simultaneously departing and arriving aircraft.

According to the survey [3] by Bennell et al., the ALP received much more
attention in the literature than the ATP or the ASP. Several approaches are proposed
in the literature for the three above-mentioned problems, and can be classified in two
main categories:

• Exact approaches, mainly MIP-based approaches [4–9] and Dynamic Program-
ming [6, 10, 11]

• Heuristic approaches [4, 9, 12] and Meta-heuristics, such as Simulated Annealing
[13–16], Tabu Search [8, 17], Genetic Algorithms [18, 19], Ant Colony Optimiza-
tion [20, 21], and Variable Neighborhood Search [13, 22].

Interested readers may refer to [3] for a comprehensive review of existing
approaches to the ALP.

In this work, we are interested in sequencing and scheduling aircraft landings
at the runway threshold. Each aircraft has a target landing time and an authorized
landing time window, expressed as an earliest and a latest acceptable landing time
based on fuel considerations. Deviations from the target times will cause a cost
that depends on each aircraft, and the aim is to minimize the total deviations from
target times, which is more general than minimizing only total schedule tardiness. To
model the problem,we propose a novelMIP formulation that takes into consideration
safety constraints by imposing separation between aircraft at the runway threshold
(Table 1). The proposed formulation is adapted to airports that involve multiple
independent runways. Due to theNP-hardness of the problem [4], solving directly the
MIPmodel for large realistic instances leads to redhibitory computation times, which
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Table 1 Final-approach separationmatrix (in seconds) according to ICAO’s basic wake-turbulence
categories (source [10])

Following aircraft

H M L

Leading aircraft H 96 157 196

M 60 69 131

L 60 69 82

is unsuited for the dynamic nature of the problem that requires air-traffic controllers
to make quick but good decisions. Therefore, we introduce a novel heuristic search
methodology based onOptimistic Planning [23], that provides good-quality solutions
in a negligible time.We then evaluate empirically our approach on realistic instances
generated from real-traffic data from Paris-Orly airport.

The remainder of this paper is organized as follows. In Sect. refsec:problem we
describe the ALP and highlight the operational constraints. Next, Sect. 3 presents our
proposed MIP formulation and the constraints taken into account. Then, in Sect. 4,
we explain our proposed solution approach. Section 5 presents computational results
that show the benefits of our approach, and finally in Sect. 6 we summarize the
contributions of this work and suggest some perspectives for future research work.

2 Problem Description

Given a set of aircraft near the terminal area of an airport, the ALP consists in
mapping each aircraft to a landing time such that a given criterion is optimized while
operational constraints are satisfied. When the airport has more than one runway,
a decision with respect to the landing runway has to be made by controllers; the
runway assignment depends on several factors such as the airport configuration and
the direction of arriving aircraft.

The most common approach used by controllers to sequence aircraft is the First-
Come First-Served (FCFS) rule, where aircraft land according to the order of the
scheduled times of arrival at the runway, and air-traffic controllers ensure only the
minimum separation requirements. This FCFS heuristic is easy to implement and
guarantees equity between aircraft. However, it is rarely optimal in terms of runway
throughput, especially in congested airports [10], simply consider the large sepa-
ration requirement in some scenarios where a heavy aircraft is followed by a light
aircraft (Figure 1). This motivates the development of efficient methods that compute
optimal sequences while satisfying several operational constraints such as minimum
separation, authorized time windows and constrained-position shifting.
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Fig. 1 Comparison of three landing sequences. Case 1 illustrates the FCFS sequence. In case 2,
the landing sequence is optimized with respect to wake turbulence separation, and in case 3 the
landing sequence is further optimized by runway assignment

• Theminimum separation constraint guarantees that no aircraft is affected by the
wake-vortex turbulence generated by a leading aircraft, especially during take-
offs and landings. The International Civil Aviation Organization (ICAO) classifies
aircraft in three main categories, namely Heavy (H), Medium (M) and Light (L),
and the separation requirements are defined depending on the category of both the
leading and the following aircraft. Separation requirements are given in Nautical
Miles (NM), but can be converted to seconds as explained in [2] and summarized
in Table 1.

• Time-windows constraints are defined by an earliest and a latest possible landing
times, based on fuel availability or on possible speed-ups. Indeed, once an aircraft
arrives at the boundary of airport control centers, decision-support tools compute
an Estimated-Time of Arrival (ETA) at the runway threshold. If the aircraft speeds
up, the Actual Landing Time (ALT) may be earlier than the ETA. On the other
hand, aircraft may be delayed after entering the radar range and, in this case, the
ALT will be later that the ETA and the latest possible landing time is limited by
the available fuel [24].

• The Constrained-Position Shifting (CPS) constraint limits the deviation from
the FCFS sequence for equity reasons. This constraint ensures that an aircraft is
not deviated from its initial position in the FCFS sequence by more than a given
number of positions called maximum position shifting and denoted m, which is



An Optimistic Planning Approach for the Aircraft Landing Problem 177

usually small;m = 3 or 4 [10]. This constraint does not only ensure equity between
aircraft, but it also reduces the complexity of the problem.

In the following section, we introduce a MIP formulation for the ALP involving
one or multiple runways, and we show how we can incorporate different operational
constraints in the model.

3 Mathematical Modeling

Runway assignment and scheduling aircraft at each runway is formulated as a MIP
model which decides the landing dates at each runway threshold, while respecting
safety requirements so as to optimize a given objective.We leave the control problem,
i.e. how aircraft can be controlled so as to implement the solution of our decision
problem, for future research work.

3.1 Input Data

Consider a set of arriving aircraft A = {1, 2, ..., N }, and a set of available runways
K = {1, 2, ..., R}. Without loss of generality, let us assume that each aircraft index
i ∈ A represents its position in the FCFS sequence. Then, for each flight i ∈ A, the
given input data are presented in Table 2.

For each aircraft i ∈ A, the earliest acceptable landing times Ei is chosen to be
60 seconds before the target time Ti , because it is the most economic for arriving
aircraft according to [25]. The latest landing time Li is set to 1800 s after the target
time due to the limited fuel on board [25].

3.2 Decision Variables

Our proposed model involves binary optimization variables for sequencing and run-
way assignment, and continuous optimization variables for assigning times at the
runway threshold. The binary variables are defined as follows:

Table 2 List of input data

Notation Parameter

Ti Target landing time

[Ei , Li ] Landing time window ( Li > Ei )

Si j Minimum separation time (≥ 0) between aircraft i and j , where i lands before j

c−
i Penalty cost (≥ 0) per time-unit for landing before the target time Ti
c+
i Penalty cost (≥ 0) per time-unit for landing after the target time Ti
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• aik =
{
1 if aircraft i is assigned to runway k,

0 otherwise,

• δi jk =
{
1 if aircraft i and j are assigned to runway k, and i lands before j,

0 otherwise,

• yi j =
{
1 if aircraft i lands before j,

0 otherwise,

For each aircraft i ∈ A, the continuous variables are:

• ti : landing time
• t−i , t+i : deviations from the target landing time Ti (before and after Ti , respectively).

3.3 MIP Model

Our objective minimizes the total deviation cost from target times (Ti ) which is more
general than minimizing only the total schedule delay. The complete model is given
by (1)–(12)

min
δ,y,a,t

∑
i∈A

c−
i

t−i︷ ︸︸ ︷
max(0, Ti − ti ) +c+

i

t+i︷ ︸︸ ︷
max(0, ti − Ti ) (1)

ti = Ti − t−i + t+i i ∈ A (2)

Ei ≤ ti ≤ Li i ∈ A (3)

yi j + y ji = 1 i, j ∈ A : i < j (4)∑
k∈K

aik = 1 i ∈ A (5)

∑
k∈K

δi jk + δ j ik ≤ 1 i, j ∈ A : i < j (6)

δi jk + δ j ik ≥ aik + a jk − 1 i, j ∈ A : i < j, k ∈ K (7)

2(δi jk + δ j ik) ≤ aik + a jk i, j ∈ A : i < j, k ∈ K (8)

t j ≥ ti − M1(1 − yi j ) i, j ∈ A : i �= j (9)

t j ≥ ti + Si j − M(1 − δi jk) i, j ∈ A : i �= j (10)

i − m ≤ N −
∑

j∈A, j �=i

yi j ≤ i + m i ∈ A (11)

δi jk, yi j , aik ∈ {0, 1} i, j ∈ A : i �= j, k ∈ K (12)

In the above formulation, constraints (2) are introduced to linearize the objec-
tive function; constraints (3) represent the time window restrictions; constraints (4)
enforce the order precedence relationship between flights i and j at landing; con-
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straints (5) ensure that an aircraft is assigned to exactly one runway; constraints
(6) enforce the order precedence relationship between flights landing on the same
runway; constraints (7) and (8) enforce the logical relationship between δi jk and
aik ; constraints (9) relates precedence relationships between landings to landing
times; constraints (10) ensure the separation requirements between aircraft landing
at the same runway; constraints (11) impose the CPS constraint, and constraints (12)
enforce the binary restrictions of our discrete variables.

Before reporting numerical results obtained with this formulation, we shall first
present a novel alternate methodology to solve the ALP, since solving directly the
MIP leads to redhibitory computation times, as we shall show in Section 5.

4 Optimistic Planning

The dynamic nature of theALP requires air-traffic controllers tomake quick but good
decisions; the computation time of any solution is thereby a critical issue. Given
the complexity of the problem, the computation time to find an optimal solution
either with our MIP model or with other exact approaches is unsuited for real-time
applications. Therefore, we introduce a novel heuristic search approach based on the
Optimistic Planning (OP) paradigm [23, 26], capable of computing solutions that do
not deviate too much from the FCFS solution sequence and that are relatively close
to optimal solutions, within an acceptable computational time.

Our approach models the ALP as an environment defined by states, transitions,
actions, and costs where:

• each state denoted x , is a partition (I, Ī ) of the set of aircraft, where Ī is the
(ordered) set of aircraft that have already landed, and I is the set of aircraft that
have not landed yet.

• each action denoted u is an aircraft index i ∈ I that we decide to land, while
satisfying the CPS constraints.

• each transition is defined as follows. If we execute action u = i ∈ I from a given
state x = (I, Ī ), then the system generates the unique next state x ′ = (I ′, Ī ′),
where I ′ = I \ {i}, and Ī ′ = Ī ∪ {i} (aircraft i landed).

• when the environment transits from the state x to the new state x ′ defined above,
the estimated value c (cost) of the the new state is defined by

c = f ( Ī ′) + g(I ′), (13)

where f ( Ī ′) is the delay cost of the (landed) sequence Ī ′. Indeed, aircraft in the
set Ī are already sequenced. Thus, computing the landing times for aircraft in this
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Fig. 2 An OP tree illustration for |A| = 4 and m = 1

sequence is straightforward, and f ( Ī ) is simply the weighted 1 sum of aircraft
delays. g(I ′) is a function that estimates the lowest cost among all sequences
obtained from I ′ that satisfy the CPS constraints. In our numerical experiments,
the FCFS rule is chosen as the estimation heuristic g, i.e. m = 0.

Optimistic Planning is the method that incrementally explores this search tree so
as to identify an optimal branch as quickly as possible. Figure 2 illustrates an example
of this tree for 4 aircraft (A = {1, 2, 3, 4}), and a maximum position shifting of 1
(m = 1). Nodes are labeled by states, arcs are labeled by actions and costs. Near
the nodes, the update process of the two sets Ī and I and the estimated costs are
highlighted. Remark that the values of the costs in this figure are randomly chosen
for the sake of this illustration.

The algorithm starts from the initial state where the set Ī is empty, and I = A (all
aircraft available to land). At each iteration, its main loop seeks to determine which
aircraft to land based on the optimistic evaluation c, and it updates Ī by adding this
aircraft, until a stopping criteria is met, i.e., all aircraft are landed or a time limit is
reached. Only actions that satisfy the operational constraints are available in a given
state.

1These individual weights are provided with the data (e.g., delay cost in Table 3).
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5 Results and Discussion

In this section we report the computational results of the MIP formulation (1)–(12)
andof ourOptimistic Planning approach. Experiments are run on a personal computer
under GNU/Linux operating system, processor Intel(R) Core(TM) i7-4700M with 8
GB of RAM. The MIP model was implemented in DoCplex, and solved using IBM
CPLEX (version 12.8). Before reporting the computational results, we first present
the test instances used in this paper.

5.1 Test Instances

Our test instances are generated from data sets from a benchmark test-problem set
under construction at ENAC, obtained from real traffic in Paris-Orly Airport, that
features two runways (06/24 and 08/26 as shown in Fig. 3), which are considered
independent (runway 02/20 is rarely used for commercial traffic).

The test-problem sets are constructed from two traffic days obtained from the
OpenSkyNetwork [27]: one in July 2018 containingmostly data about landed aircraft
on runway 06/24, and one in April 2019 containing data about landed aircraft on
runway 08/26. We merge these two traffic days and artificially add light aircraft to
obtain larger and also more congested data sets.

We construct four data sets of 40 flights, named alp_40_1.txt, alp_40_2.
txt, alp_40_3.txt, and alp_40_4.txt. They contain data about aircraft
whose scheduled time of arrival (sta) lies between 07:00–08:10, 11:00–12:30, 15:00–
16:10, and 19:00–20:00. These data sets are available at [28]. A test instance of size
|A| is obtained by considering the first |A| lines of data from one of these data sets.

Table 3 shows an example from [28], which is the most congested data set among
the four, named alp_40_4.txt. In Table 3, the fourth and fifth columns, denoted
“sta” and “sta_s”, indicate the scheduled time of arrival in HH:MM:SS format and
in seconds respectively. The sixth column displays the delay cost per time unit of
each aircraft, that we computed following a similar approach to that used in [8].

Fig. 3 A representation of
Orly runways
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Table 3 Example of a data-set features with |A| = 40 aircraft

Index mdl category sta sta_s Delay cost

1 B738 Medium 19:00:00 68,400 7

2 A320 Medium 19:00:00 68,400 5

3 B738 Medium 19:00:00 68,400 7

4 – Light 19:00:00 68,400 1

5 B744 Heavy 9:00:00 68,400 22

6 B737 Medium 19:05:00 68,700 6

7 A320 Medium 19:05:00 68,700 5

8 B738 Medium 19:05:00 68,700 7

9 B738 Medium 19:05:00 68,700 7

10 - Light 19:10:00 69,000 1

11 A319 Medium 19:10:00 69,000 4

12 AT43 Medium 19:10:00 69,000 1

13 A320 Medium 19:10:00 69,000 5

14 A320 Medium 19:10:00 69,000 5

15 B744 Heavy 19:10:00 69,000 22

16 A320 Medium 19:15:00 69,300 5

17 A321 Medium 19:15:00 69,300 7

18 B738 Medium 19:20:00 69,600 7

19 A320 Medium 19:20:00 69,600 5

20 A318 Medium 19:25:00 69,900 3

21 AT45 Medium 19:25:00 69,900 1

22 A320 Medium 19:25:00 69,900 5

23 CRJX Medium 19:25:00 69,900 2

24 E145 Medium 19:30:00 70,200 1

25 A319 Medium 19:35:00 70,500 4

26 AT45 Medium 19:35:00 70,500 1

27 A320 Medium 19:35:00 70,500 5

28 – Light 19:35:00 70,500 1

29 B744 Heavy 19:35:00 70,500 22

30 CRJ7 Medium 19:40:00 70,800 3

31 A320 Medium 19:40:00 70,800 5

32 CRJX Medium 19:40:00 70,800 2

33 B738 Medium 19:45:00 71,100 7

34 E145 Medium 19:45:00 71,100 1

35 B744 Heavy 19:50:00 71,400 22

36 – Light 19:50:00 71,400 1

37 A321 Medium 19:50:00 71,400 7

38 CRJX Medium 19:50:00 71,400 2

39 A319 Medium 19:50:00 71,400 4

40 A320 Medium 19:55:00 71,700 5
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In particular, the delay cost for each aircraft is obtained bymultiplying the aircraft
average pax number (in hundreds of seats) by its fuel consumption (in ton/hour),
then round the results to the nearest integer. These individual delay costs are used as
weights to compute the total cost of a given fixed sequence of aircraft. In particular,
they are used in the computation of c from Eq. (13), as well as in the computation of
%improv in Eq. (14).

5.2 Computational Results

We first report results obtained from implementing our MIP model involving a
single runway (|K| = 1), for different values of the maximum position shifting
m = 2, . . . , 6. Figure 4 illustrates the evolutionof the computation time in seconds for
each value ofm and for a set of 8 test instances of various sizes |A| = 16, 18, . . . , 30,
obtained by simply considering the first |A| lines of the data set alp_40_4.txt,
presented in Table 3. We impose a time limit of 1800 s (30 min) in CPLEX.

Figure 4 exhibits the expected exponential growth of the computing time with the
size of the instance, |A|, and with increasing values of m, (recall that the ALP is an
NP-hard problem). The saturation effect than can be observed is simply due to our
time limit.

Table 4 reports the performance of the MIP model on various test instances,
obtained this time from the four data sets of [28], by considering the first |A| lines
of each of the four data sets. Results for each instance size are averaged over the
four tests. Throughout Table 4, column “|A|” represents the size of the instance,
column “m” shows the value of the maximum position shift parameter, column “%
improv (MIP)” displays the percentage improvement of the MIP approach, and the

Fig. 4 Computational time of the MIP approach for different maximum position shifting values
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Table 4 MIP-approach performance on different instances from the four data sets [28]

|A| m %improv (MIP) cpu (s)

18 2 22 1.3

3 34 12

20 2 21 3

3 32 17

22 2 28 3

3 37 26

24 2 26 4

3 37 40

26 2 25 5

3 36 45

28 2 26 8

3 35 68

30 2 27 30

3 37 164

32 2 26 46

3 37 410

34 2 25 70

3 36 550

36 2 24 208

3 34 974

38 2 24 482

3 35 1110

40 2 24 1090

3 33 1400

last column reports the computing time in seconds. The percentage of improvement
obtained by a method M (here M = MIP) is computed with respect to the FCFS
solution as:

%improv (M) = CFCFS − CM

CFCFS
× 100, (14)

where CFCFS and CM are the cost of the FCFS sequence and that of the solution
provided by the method M, respectively.

It can be concluded from Table 4 that significant improvements can be obtained
with the MIP approach, starting from m = 3, but this requires large computation
times, which make it non-adapted to the dynamic nature of our problem, especially
since the complexity scales exponentially with the number of aircraft, and since
future ATM systems will have to deal with very large ALP instances.
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Table 5 Algorithm performance details (average improvement) for one runway

|A| %improv (OP) m = 2 %improv (OP) m = 3

2s 5s 15s 2s 5s 15s

18 12 12 12 2 15 15

20 18 18 19 10 23 24

22 23 22 21 19 32 33

24 19 25 26 22 26 31

26 14 19 20 11 24 31

28 15 16 24 9 23 29

30 14 18 24 8 21 36

32 14 18 26 2 22 37

34 14 12 25 6 23 28

36 13 13 25 7 24 24

38 12 13 26 8 23 26

40 12 13 25 7 22 26

min 12 12 12 2 15 15

max 23 25 26 22 32 37

avg 15 16 20 28 23 29

We report the results of the OP approach on different instance sizes |A| =
18, 20, . . . , 40 involving a single runway (Table 5), and imposing each time a lim-
ited computational time-budget of {2, 5, 15} s. For each instance size, we evaluate
the approach on different instances of the same size—generated from the four data
sets [28]—and report the average, minimum and maximum improvement over the
FCFS solution.

Table 5 shows the average percentage improvement of the total cost given by Eq.
(14) for two values of the maximum position shifting parameter, m = 2 and 3. It can
be observed that large instances of sizes greater than 30 can benefit from a significant
improvement (on averagemore than 21%) for amaximumposition shifting ofm = 3,
within only 5 seconds.

Finally, Table 6 reports an example of the solution provided by our OP approach
on the instance given in Table 3with |A| = 22 aircraft, and imposing a computational
budget of 2 s. The first column displays the aircraft position in the solution sequence.
The “index” columns corresponds to the aircraft index from Table 3 occupying each
position. The “landing” columns report the landing times. For this example, the
percentage improvement of the FCFS sequence is 35%. Moreover, remark that for
this scenario, the utilization of the runway in terms of the makespan i.e. length of the
sequence is also optimized. Indeed, the last landing in the sequence for the FCFS is
7:41:20 while the last landing with our approach is at 7:40:45.
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Table 6 Example of solutions provided by FCFS and by our optimistic approach

Position FCFS OP

Index Landing Index Landing

1 1 7:00:00 3 7:00:00

2 2 7:03:16 5 7:01:36

3 3 7:04:16 4 7:03:12

4 4 7:05:52 1 7:04:48

5 5 7:07:28 2 7:08:04

6 6 7:10:05 6 7:10:00

7 7 7:15:00 8 7:15:00

8 8 7:16:00 9 7:16:36

9 9 7:17:36 7 7:19:13

10 10 7:20:13 10 7:20:22

11 11 7:21:22 12 7:25:00

12 12 7:25:00 13 7:26:09

13 13 7:26:09 11 7:27:18

14 14 7:30:00 15 7:30:00

15 15 7:33:16 14 7:31:00

16 16 7:34:25 17 7:33:37

17 17 7:35:34 20 7:35:00

18 18 7:36:43 21 7:36:09

19 19 7:37:52 16 7:37:18

20 20 7:39:01 18 7:38:27

21 21 7:40:10 19 7:39:36

22 22 7:41:20 22 7:40:45

Our computational experiments on the MIP formulation and the heuristic search
approach show that the latter ismore suited andmore promising to solve theALPwith
large congested instances, since it can provide good solutions in short computation
time.

6 Conclusion

Runway sequence optimization is an ongoing challenge for researchers and con-
trollers due to the dynamic nature of the problem and to the various operational
constraints that must be taken into consideration. In this work, we proposed an exact
approach (MIP) to solve the deterministic case of the ALP as well as a novel method
based on Optimistic Planning to solve medium and large challenging instances.
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Our computational experiments show that computation times for our MIP model
(and other exact approaches) are very high for large congested instances, whichmake
them unsuited to the dynamic nature of ALP. With the constrained-position shifting
restrictions, the complexity of the problem can be reduced, but the problem remains
untractable for increasing values of the maximum position-shifting parameter and
the number of aircraft. On the other hand, our proposed heuristic search approach
based on optimistic planning is able to find good quality solutions that significantly
improve the FCFS sequence within a limited time budget, making it a promising
method for solving the ALP in real time.

In future studies, we plan to extend our heuristic search approach to the multiple-
runway case. Furthermore, instead of using the First-Come First-Served rule as the
estimation heuristic, we are planning to construct more accurate functions to help the
search to explore the most promising nodes first, so as to identify an optimal branch
faster. Taking into consideration uncertainty on the arrival times is also a future track
of research, since the solutions of our two deterministic approaches (MIP and the
heuristic search) cannot be straightforwardly applied in the presence of uncertainty.
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