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Preface

This is the fourth book compiled by the Electronic Navigation Research Institute
(ENRI) after one of its workshops. ENRI is a national laboratory in Japan that
specializes in air traffic management (ATM) and communication, navigation, and
surveillance (CNS) for aviation. Since 2009, it has organized biannual international
workshops under the title “ENRI International Workshop on ATM/CNS
(EIWAC).” The aim of the EIWACs is to contribute to the development of civil
aviation by facilitating the exchange and sharing of up-to-date information about
ATM and CNS. The sixth workshop, EIWAC2019, was held in October 2019 in
Tokyo. The main theme of EIWAC2019 was “Exploring Ideas for World Aviation
Challenges.” It has been a great honor for ENRI to provide opportunities to discuss
future aviation in the presence of key players from international organizations, civil
aviation authorities, aviation industries, and academic institutions from all over the
world.

This book has been published to share the essence of EIWAC2019 with people
all over the world involved in ATM/CNS R&D. It comprises five parts. Part One
gives an overview of EIWAC2019 and summaries of the keynote and special
speeches. Parts Two, Three, Four, and Five consist of selected academic papers
presented at EIWAC2019. Parts Two, Three, and Four discuss research related to
ATM, and Part Five discusses research related to CNS.

Each chapter consists of papers that have passed through two stages of selection.
First, the technical program committee (TPC) conducted on-site evaluations with
the help of professionals and experts who participated in EIWAC2019. They
objectively evaluated the quality of the presentations and manuscripts. The ones
that received high scores were nominated as candidate papers. Then in the second
stage, the candidate papers went through a process of review by professionals and
experts. Multiple anonymous reviewers reviewed and judged the quality of each
one.

I believe that the book offers readers novel ideas and wonderful discoveries and
that it will further encourage R&D activities in the field of ATM/CNS.

vii



Finally, I would like to express my deep gratitude to all the EIWAC2019 TPC
members, editors, and reviewers who voluntarily gave us their support during the
selection, review, and compilation processes. The TPC members have been listed
separately in the book, and special gratitude has been expressed to them.

Tokyo, Japan T. Koga
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Introduction to the Sixth ENRI
International Workshop on ATM/CNS
(EIWAC2019)

S. Ozeki, Y. Fukuda, S. Fukushima, T. Koga, T. Sakai, E. Itoh,
and N. K. Wickramasinghe

Abstract This chapter provides an overview of the sixth ENRI International Work-
shop on ATM/CNS (EIWAC2019), together with summaries of presentations in
keynote sessions and special speeches. It also explains the Electronic Naviga-
tion Research Institute’s approach to organizing EIWAC. EIWAC2019 was held
in Nakano, Tokyo, from October 29 to 31, 2019. In the workshop, various aspects
of air traffic management (ATM) and its enablers in the fields of communication,
navigation, and surveillance (CNS) were discussed.

Keywords Global Air Safety Plan · Global Air Navigation Plan · ATM · CNS ·
UTM · Standardization

1 Introduction

The Electronic Navigation Research Institute (ENRI) is part of the National Institute
of Maritime, Port, and Aviation Technology (MPAT). MPATwas established in 2016
by uniting research institutes affiliated with Japan’s Ministry of Land Infrastructure,
Transport, and Tourism (MLIT). ENRI has been conducting research and developing
and testing electronic navigation systems for almost half a century. It is now the only
institute in Japan specializing in air traffic management (ATM) and communication,
navigation, and surveillance (CNS) for aviation.

Air traffic is increasing steadily all around the world.Mitigation of congestion and
reduction of environmental impact whilemaintaining safety and efficiency have been
common interests for the whole world for the last decade. Demand for increased air
traffic capacity, efficiency, and safety has been particularly strong in the Asia-Pacific
region because Asia has the fastest-growing rate of air traffic. ENRI is therefore
conducting R&D in order to respond to this demand, and provides timely solutions
through improved national, regional, and global aviation systems.

S. Ozeki · Y. Fukuda · S. Fukushima · T. Koga (B) · T. Sakai · E. Itoh · N. K. Wickramasinghe
Electronic Navigation Research Institute (ENRI), 7-42-23, Jindaiji-Higashi-Machi, Chofu, Tokyo
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In addition to itsR&Dactivities, ENRI is nowexpected to contribute to harmoniza-
tion and standardization regarding the current and emerging ATM/CNS technologies
and operations, which will lead to fully harmonized global aviation systems with
modern performance-based technologies and procedures. However, it is not neces-
sarily easy for the aviation community in the Asia-Pacific region to share compre-
hensive information on the latest ATM/CNS technologies and operations. This is
because there are different local traffic policies and ATM/CNS capabilities.

In view of this, ENRI decided to organize an international workshop to discuss
ATM/CNS technologies and operations, mainly for the Asia-Pacific region, but also
for the rest of the world as well. This workshop was named “ENRI International
Workshop on ATM/CNS (EIWAC).” The first workshop was held in 2009. Since
then, EIWAC has been held biannually, and the latest one (EIWAC2019) was held in
October 2019 in Tokyo.

The purpose of publishing this book is to share selected topics presented and
discussed in EIWAC2019. This chapter first gives an overview of the EIWACs,
presenting the speaker, title, and a summary of each speech in the plenary session.
Selected papers from the technical sessions are provided in Chaps. 2, 3, 4 and 5.

2 Overview of the EIWACs

ENRIwould like to thank themembers of the EIWACTechnical ProgramCommittee
(EIWAC-TPC) for their tremendous contributions to making the workshop more
attractive to potential participants. Members from other organizations offered
comments to help improve EIWAC by including viewpoints from outside ENRI.

EIWAC has sessions for keynote speakers, and other sessions for technical discus-
sions on operations and R&D as well. The keynote sessions of EIWAC are held to
share strategic updates among participants and are scheduled to take place on the first
day in most cases. The technical sessions offer participants opportunities to review
operational facts and the progress of R&Dwith reference to updates from the keynote
sessions.

Table 1 presents a brief summary of the 1st to 3rd EIWACs, and Table 2 summa-
rizes the 4th to 6th. The workshop started in 2009 as a two-day event and was
later expanded to include one more day for technical sessions, to accommodate
more presentations. It continues to grow as international participants offer more
presentations and side meetings [1–6].

One of the advisors to ENRI suggested that outstanding papers for EIWAC should
be made more visible to more researchers and students in the aviation community,
in order to encourage the next generation. ENRI responded to this comment in 2012
by engaging an editorial team to compose the first book, “Air Traffic Management
Systems,” collecting selected papers from EIWAC2013 [7]. This was followed up
with “Air Traffic Management Systems—II” from EIWAC2015 [8], and “Air Traffic
Management Systems—III” from EIWAC2017 [9]. These books were published by
Springer Japan in 2014, 2017, and 2019, respectively.
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Table 1 Summary of the EIWAC series (2009, 2010, 2013)

Meeting # 1st 2nd 3rd

Name EIWAC2009 EIWAC2010 EIWAC2013

Dates March 5–6, 2009 November 10–12, 2010 February 19–21, 2013

Venue Ohtemachi Sankei
Plaza, Ohtemachi,
Tokyo

Akihabara
Convention Hall,
Akihabara, Tokyo

Odaiba Miraikan Hall,
Odaiba, Tokyo

Theme Towards future
ATM/CNS

Safety, efficiency and
environment

Drafting future sky

Keynote speakers 4 7 9

Panel session N/A “Future of automation in
ATM,” six panelists

“Future ATM:
centralized,
de-centralized or best
mixed,” four panelists

Other sessions Poster, tutorial

Technical sessions 6 19 17

Presentations 22, incl. 9 from
Japan

45, incl. 12 from Japan 46, incl. 13 from Japan

Participants 480 550 539

On 1st day N/A N/A 238

Non-Japanese 20 60 80

Countries 7 14 13

3 Keynote Speeches

This section gives a summary of the keynote speeches in EIWAC2019. EIWAC2019
had seven keynote speeches on day one.

3.1 Stephen P. Creamer, “Exploring Ideas for World Aviation
Challenges”

Mr. Creamer is the director of the Air Navigation Bureau (ANB) of the International
Civil Aviation Organization (ICAO). His presentation was about the latest activities
of the ANB and digital transformation perspectives. ICAO works toward the vision
of achieving sustainable growth of the global civil aviation system. The ANB’s areas
of focus are two of ICAO’s five strategic objectives: Aviation Safety and Capacity
and Efficiency.

The 40th ICAO Assembly in 2019 endorsed the Global Aviation Safety Plan
(GASP) and the Global Air Navigation Plan (GANP) updates. The vision of the
GASP is to achieve and maintain the aspirational safety goal of zero fatalities in
commercial operations by 2030 and maintain it thereafter. The GASP promotes the
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Table 2. Summary of the EIWAC series (2015, 2017, 2019)

Meeting # 4th 5th 6th

Name EIWAC2015 EIWAC2017 EIWAC2019

Dates November 17–19, 2015 November 14–16,
2017

October 29–31,
2019

Venue Ryogoku KFC hall and
rooms, Ryogoku, Tokyo

Congres Square
Nakano, Nakano,
Tokyo

Nakano Central
Park conference,
Nakano, Tokyo

Theme Global harmonization for
future sky

Drafting future skies Exploring ideas for
world aviation
challenges

Keynote speakers 13 5 7

Panel session N/A N/A Digitalization in
aviation: a
standardization
perspective

Other sessions Poster Poster, tutorial Poster, special
speech

Technical sessions 18 17 18

Presentations 70, incl. 30 from Japan 71, incl. 25 from
Japan

72, incl. 19 from
Japan

Participants 744 630 861

On 1st day 259 205 268

Non-Japanese 174 180 257

Countries 17 13 19

implementation of safety management and a risk-based approach. A series of six
goals in the GASP support the overall aspirational safety goal. These goals call for
states to implement effective safety oversight systems and state safety programs.
The GANP requested ICAO to take action to evolve toward a performance-driven,
strategic planning environment that interacts with regional development and imple-
mentation programs. The sixth edition of the GANP is organized into a multilayer
structure. The four-layer structure facilitates decision-making by providing stable
strategic direction for the evolution of the air navigation system.

Frontier technologies provide innovative solutions and tools to the air transport
system, such as automation and unmanned systems, transport electrification, big data,
artificial intelligence, machine learning, and digitalization of processes. New tech-
nologies incur relatively low development costs, allowing small and medium-sized
“start-up” enterprises to be at the forefront of transformation in air transport. New
entrants are drones that fly below 400 feet and above high altitudes, and spacecraft
under autonomous control. There are challenges in the wake of these technological
developments, which calls for an unprecedented design of a balanced environment
capable of fostering innovation. Regulatory and policy transparency and enforce-
ment, legal certainty for businesses, cybersecurity, consumer and data protection,
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and a fair, environmentally, economically, and socially sustainable development on
a global scale will be ensured.

Global traffic density is increasing. The only way to meet this demand is going to
be a transformative reliance on exchange of information in the air trafficmanagement
(ATM) system. A large number of digital parts are migrating into airplanes. Every-
thing is becoming fundamentally based on digital technology, as seen for example in
the evolution of manufacturing technologies, remote towers, the way people move
through airports, and the way freight moves through the system. All the parts of the
aviation ecosystem are always interacting, so digital transformation is a big deal.

When youmake things digital, youmake them vulnerable to cyberthreats. If every
state puts in place a different infrastructure or a different architecture to respond to
these threats, it’s going to be really hard to maintain interoperability. We need to
find a way to create a system architecture that takes cybersecurity into consideration
as a foundational element. The 13th Air Navigation Conference recommended that
ICAO establishs a formal project for the urgent and transparent development of a
globally harmonized aviation trust framework.

The first ICAO trust framework was set up in 1944 with the establishment of
the Chicago Convention. ICAO establishes international standards. Those standards
are used by civil aviation authorities to issue certificates. Because they’re issued in
relation to these standards, other authorities recognize these certificates and trust is
established. It’s old fashioned and it isn’t digital, but it’s worked well ever since
it started. There are volumes of standards used to regulate licenses, certificates,
authorizations, and approvals. We need to develop solutions to accommodate new
entrants. Therefore, we need to talk about how to move this out of the paper world
and into the digital world.

Within a trust framework, it’s a foundational fact that you need to know who
is in your network so you know how to secure your network. Digital certificates
are extremely efficient and are used all over the world in a form referred to as a
public key infrastructure (PKI) system. You could use those commercial parties’
mechanisms to distribute digital certificates. All we do is put some other governance
on top of it. You need a digital certificate so you can secure your organization, drone,
or airplane’s communications with the rest of the network. So, whenever your aircraft
or air navigation service provider sends or receives a message request, the sender and
receiver identify each other and integrity can be validated back with the trust bridge.

For decades, we’ve been trying to isolate ourselves from the rest of the world with
physical isolation. This is just really hard to do now, because no matter how hard
you try, your data is going to cross paths with the rest of the world. ICAO can figure
out how many addresses we need and how big an address block we we’d have to
get. Therefore, ICAO needs to work with the Internet’s governing bodies to obtain
top-level domain and private address space capacity. These assets could be made
“private” and could provide a first layer of logical isolation from the public Internet.

ICAO can facilitate a globally trusted identity, but each stakeholder will have to
decide how it should be used in its own system. As threats evolve, new controls will
be needed to ensure trust framework entities continue to operate within their roles.
ICAO is best positioned to develop a protected and globally harmonized architecture.
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In conclusion, Mr. Creamer summarized four points: (1) Focus on staying safe as
we introduce change; (2) the pace of change is accelerating because of new entrants;
(3) the underlying connectivity challenge has to be handled first; and (4) bringing
along regulators and other safety workers to stay abreast of the changes is just as
important as the underlying technology.

3.2 Florian Guillermet, “The Digital Transformation of Air
Traffic Management: Why and How”

Mr. Guillermet is the executive director of the SESAR Joint Undertaking. Two years
ago, at EIWAC2017, he gave a presentation entitled, “Toward a digital aviation
infrastructure.” At EIWAC2019, his speech started with why the digital transforma-
tion of air traffic management is necessary. Then, he discussed how SESAR intends
to introduce the digital transformation, some of the solutions for this that SESAR
has developed in Europe, and some of the remaining challenges.

He started with why. The world around us is changing very fast. He mentioned
three emerging changes. First, environmental protection is becoming an important
topic. In Europe, there are strong demands to mitigate the impact of aviation on
the environment. Second, air traffic in Europe is expanding year on year. This is
bringing with it ever larger numbers of delayed, canceled, rerouted, and rescheduled
flights. Third, new technologies such as robotics, data analytics, artificial intelligence,
communication, and connectivity are emerging and changing not only our daily lives
but also aviation technologies and air traffic management. To accommodate these
changes, Europe needs a bold vision that embraces the digital transformation of
aviation.

He discussed how digital transformation will be achieved. He introduced many
of SESAR’s challenges in the presentation, but two key issues here are ATM archi-
tecture and automation. The SESAR master plan proposes a new architecture. The
new architecture includes not only current airspace but also new airspace operations,
such as higher airspace operations and U-space operations. The new architecture
has the characteristics of a fully scalable system with strong air-ground integration.
Also, the architecture should rely on a digital ecosystem, the elimination of environ-
mental inefficiencies caused by the aviation infrastructure, and ensuring that it offers
solutions that will fully exploit the potential offered by next-generation aircraft for
cleaner and quieter flight. The second key technology for digital transformation is
automation.

The master plan has developed an automation model and roadmap. The automa-
tion will mainly come from robotics, not ATM. Automation in ground and airborne
locations will have to be applied in a highly safety-critical environment like ATM
and aviation. In addition to automation, visualization, connectivity, and data sharing
will be key technologies in the aviation and ATM of the future.
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In conclusion, Mr. Guillermet highlighted three essential points for succeeding
in the digital transformation of air traffic management. First, environmental impact
is a huge threat to the full aviation system in Europe. This means the significant
challenge of achieving a system where not a single drop of kerosene is wasted in the
entire flight, and in the entire system, be it in the air or on the ground. The second
point was that adapting the current system that uses old technologies or extending
the current technologies will not be sufficient for digital transformation.

People can already see the behavior and performance that the aviation systems
need. To continue the aviation success story, it will be necessary to consider not
only traffic growth but also other factors like new threats (cyberthreats) and societal
challenges. The third point was that we acknowledge somehow that this is something
that combines not just innovation and industrial action, but also governmental action.
He talked about sovereignty. The things that control the skies of the future will not
be the same as the systems we have today. All governments need to invest in those
technologies if they want to remain in control of what’s flying in the future, because
a lot will of it will be done through information management. If they don’t control
the information, they won’t control what’s flying in the future.

In addition to these three points, he also gave the audience some vital messages at
the end of his presentation. Digital transformation can proceed through bilateral or
multilateral cooperation between the various regions. The standardization body plays
a key role in this respect, because technology is growing fast and accelerating. The
only way we can keep up the pace in terms of the regulatory environment is to link it
with industry standards that are performance-based and not focused on technology.

3.3 Christopher Loring, “Moving Innovation
to Implementation”

Mr. Loring is themanager of the International Division in the FAA’sNextGenCollab-
oration and Messaging Office. In his presentation, he spoke about the situation and
perspectives regarding the FAA’sNextGen programon behalf ofMs. PamelaWhitley,
theAssistantAdministrator forNextGen at the FAA.TheNext-GenerationAir Trans-
portation System, or NextGen, is the FAA-ledmodernization of the air transportation
system in the United States. The aim is to make flying even safer, more efficient, and
more predictable.

Mr. Loring began by reported that they were now at the stage of taking NextGen
beyond the R&D and incremental development phase, and moving it into full imple-
mentation. Many lessons were learned along the way. For example, there were
mismatches between the plans and reality—some of the plans were too aggressive.
They also learned that politics played amuch larger role than they had thought.While
it made sense to develop a plan to close or consolidate certain facilities and equipment
based on efficiencies gained through the modernization plans, the political realities
did not align with this, and they had to change the plans. The people side is just
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as important as technology. This was an important lesson learned—to gain the trust
and garner the commitment of multiple partners to work together to develop a global
approach to modernization and of stakeholders to achieve everyone’s common goals.

At ICAO’s 40th assembly, he saw that many countries understand the need to
participate in andbe interoperablewith a global air trafficmanagementmodernization
plan, and many are just beginning the planning phase for doing so. Some countries
have begun their modernization programs, and some are looking to move toward
more advanced concepts, like broader PBN implementation, ADS-B or system-wide
information management. It is clear that we in the ATM R&D community need to
help countries understand where we have been, what lessons we have learned, and
where we are going.

Speaking of goals, the culmination of the NextGen programs, processes, and
procedures will be the holistic implementation of trajectory-based operations as
proposed in the FAATBOvision for 2025 and beyond, aswell as the ICAOGlobalAir
Navigation Plan. Holistic implementation here means giving strategic consideration
to the entire airspace system. It does not mean implementing TBO everywhere. TBO
will be implemented where it is required based on the strategic needs of the entire
national airspace system, not on the tactical needs of individual airports. For TBO to
deliver its anticipated performance benefits, all the capabilities and processes integral
to it will need to be developed and deployed in a globally harmonized manner.

As TBO is a comprehensive and holistic concept that incorporates almost every
aspect of the global aviation ecosystem, a significant amount of research and develop-
ment still needs to be done. The FAA is working with the user communities through
the NextGen advisory committee to determine the best combination of capabilities
to use in a given operational environment. Researchers are evaluating whether the
application could increase airspace capacity by delegating spacing and sequencing
to the flight deck. Airframe and engine improvements, as well as alternative jet fuels
currently in operation or in the research phase, may lead to additional emission and
energy benefits in the future. Noise reductions will come from airframe and engine
improvements, as well as from changes in aircraft operations.

Mr. Loring pointed out that since information management and communications
are significant enablers with regard to all of these considerations, cybersecurity is
another important area of research.While the threats are many, new areas of research
are producing technologies such as resilient self-adaptation and big data analytics
that promise solutions to some of the cyberchallenges. Research will also be done
into methods for securing the NAS in an environment where the trustworthiness of
some systems is unknown.

The FAA is currently working with NASA on a construct for urban air mobility,
or UAM. This includes examining the technological, operational, and regulatory
issues that need to be amended or developed in order for UAM to grow. The FAA is
developing performance-based rules—including definitions and certifications for the
aircraft—to ensure safe integration into a very complex airspace and environment.
Also, many of the aircraft are involved in long-duration flights, in addition to existing
aircraft, several other supersonic and hypersonic aircraft, and balloons. The FAA is
working both internally and with ICAO to develop a global framework for these
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operations that utilizes autonomy, automation, and the current regulatory construct
to assure safety, while maintaining efficiency.

Finally, Mr. Loring again noted that TBO is an evolutionary realization of ICAO’s
global air trafficmanagement concept. It is clear that theATMR&Dcommunity needs
to understand where it has been and where it is going if it is to help with the global
implementation of ATMmodernization. According to Mr. Loring’s presentation, the
biggest lesson when it comes to innovation, R&D, and implementation is to work
together to gain the trust and garner the commitment of global stakeholders. “We are
no longer individual countries implementing our own programs. We are all in this
together,” he concluded.

3.4 Tohru Kawaharabata, “CARATS Long-Term Vision
for Air Traffic Systems—The Challenge
for Implementation of Future Technology”

Mr. Kawaharabata is the director general of the air navigation services department
of JCAB. He spoke about four topics related to Japan’s long-term vision for future
air traffic systems, the Collaborative Actions for Renovation of Air Traffic Systems
(CARATS).

The first topic was the future trend of air traffic demand. According to a statistical
survey by ICAO, the number of departures will rise to approximately 38 million
globally, and world passenger traffic, expressed in terms of total scheduled revenue
passenger kilometers (RPKs), will grow by 6.7% to reach approximately 8.2 trillion
RPKs. International scheduled passenger traffic expressed in terms of RPKs grew
by 6.4% in 2018. In particular, the Asia-Pacific is the fastest-growing region, with
an increase of 7.3%. How JCAB is going to deal with this traffic growth is the
most urgent and crucial issue. Meanwhile, the number of aircraft flying over the
Japanese flight information region is also expected to increase by a factor of 1.5 in
the next two decades. In order to achieve continued economic growth in Japan and
its neighboring countries, a sufficient air traffic control capacity will be required to
support the growing demand, as a kind of aviation infrastructure for such a level
of economic activity. In addition, Japan is going to host the upcoming Olympic
and Paralympic Games Tokyo 2020. Since the Japanese flight information region
covers a large part of the Pacific Ocean, JCAB, as a member of the community of air
navigation service providers, is in a good position to take various proactive measures
to cope with the surge in air traffic demand in this rapidly growing region. JCAB
has been providing the air navigation service with high levels of safety, punctuality,
and efficiency for many years by keeping itself up-to-date on the most recent ATC
services through appropriate budgetary and staffing measures, in order to meet the
demand. On the other hand, since this demand will continue to increase, we will have
to improve our current air traffic control system so that it can respond correctly to the
changing environment, especially future limitations on airspace and the workload of
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air traffic controllers. In addition, various new needs have arisen for air traffic control
systems, such as the need for improved user convenience and operational efficiency,
and for more economical operations.

The second topic was the future of air navigation. Since aircraft fly across national
borders, the global approach is an important concept in the aeronautical transport
field. Therefore, an aviation infrastructure that supports air navigation services must
provide seamless services to international flights. With this background, and consid-
ering the necessity of meeting the growing air traffic demand, ICAO has set the basic
direction for internationally harmonized ATM for the year 2025 and beyond in the
form of the Global Air Navigation Plan (GANP), a long-term vision for modernizing
global ATM operations. Based on this vision, a lot of countries have made their
own air navigation plans. It is important to take global harmonization into consid-
eration when making such plans. The new GANP also aims to bring the aviation
community together to achieve an agile, safe, secure, sustainable, high-performing,
and interoperable global air navigation system.

The third topic was the CARATS. For the national level, JCAB, as the Japanese
air navigation service provider, created its long-term vision for the CARATS concept
in 2010, with the cooperation of all parties concerned. It aims to renovate air traffic
systems tomeet the growing demand and needs. In order to improve air traffic systems
so they meet the growing demand and a variety of other needs, it will be necessary to
have collaboration with stakeholders in air navigation. For the CARATS, all stake-
holders, including industry, academia, and the government, have joined together and
discussed important issues on a collaborative decision-making basis. Meanwhile,
they always keep in mind that in order to ensure international interoperability, it is
necessary to cooperate closely with the states concerned. Regarding the content of
the CARATS, they have set several goals to be achieved in the framework of the
CARATS. Also, each measure for achieving these goals has been implemented step
by step. In addition, to clarify the outcome of each item contained in the CARATS,
more specific measurable targets have been set for each goal, and the degree of
progress is checked on a yearly basis to ensure effective implementation of the
CARATS measures. In order to achieve those goals, they will have to carry out
drastic reforms regarding the conventional concepts of ATM and basic CNS tech-
nologies. The CARATS framework provides eight directions for the reforms, with
a focus on the transition to trajectory-based operation as one of the major final
targets. The measures for these eight reform directions have been developed within
the framework of the CARATS, and are categorized into two groups: one is defined
as operational improvements, and the other as enablers of technical factors that will
help achieve the reforms. Corresponding to these measures, JCAB has developed
roadmaps for the implementation of the operational improvements and the enablers.
Before putting eachmeasure into practice, they will verify that it is cost-effective and
feasible from various points of view. At the implementation stage, they will review
the roadmaps and, if necessary, modify them in response to further changes after the
decision to implement. In his speech, Mr. Kawaharabata introduced two CARATS
measures: RNP-AR (authorization required) procedures and controller–pilot data
link communication (CPDLC).
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For his final topic, he spoke about the harmonization of standards. The realization
of new technology is indispensable for R&D. Besides this, to ensure interoperability
at a global level, an integral requirement is to harmonize the standardization activi-
ties. JCAB has participated in experimental programs for system-wide information
management (SWIM), such as a Mini-Global Demonstration trial undertaken with
the cooperation of countries including the US, Canada, Australia, and Singapore, in
cooperation with ENRI.

3.5 Naoki Tanaka, “Challenge, Leading
to Growth—Corporate Strategy of Japan Airlines”

Japan Airlines (JAL), one of the representative airlines in Japan, serves about
1000 flights per day to more than 44, 000 million customers, using 235 aircraft.
A total of 34, 000 employees welcome international passengers at 95 airports world-
wide, taking them to more than 400 destinations all over the world in cooperation
with code share partners. To meet the growing demand for passenger transport, espe-
cially resulting from the strategic targeting of tourism in Japan, JAL is planning to
add a further 100 flights in 2020 in the Tokyometroplex area—which includes Tokyo
International (Haneda) and Narita International airports—while achieving ecologi-
cally friendly operations. They have drawn up future visions for sustainable growth
in aviation: a mid-term management plan for three to five years and long-term goals
for ten years. The year 2020 will be a landmark year because of the Olympic Games
and the expansion of the Tokyo metroplex airports. Therefore, JAL has set a target
phase called “Challenge, Leading to Growth” for preparing for the Olympic year
2020 and contributing to successful growth beyond it.

They have extended their business domain, the full-service carrier business (in
which they have 70 years’ of continuous history), to provide their worldwide business
services more widely in order to achieve sustainable growth. They began introducing
the A350 aircraft (which will replace the B777 as their new flagship) in September
2019.Other projects include creating smart airports,whichwillminimize passengers’
waiting times in the airport area. Self-check-in and baggage drops will be increased
at airports in the near future. Moving toward further customer convenience, the key
is to increase the networks of routes operated in partnership with other airlines in the
OneWorld alliance. Furthermore, joint business with American Airlines, Finnair, and
Iberia will improve timetables, fares, and airport connections. Beyond the alliance
group, collaboration with Hawaiian, China Eastern, China Southern, Alaska, etc.
will aim to connect more than 500 destinations all over the world. JAL has created a
new LCC airline, ZIPAIR, which flies B787 wide-body aircraft on long andmedium-
length flight routes to accommodate rapidly growing demand.

Creating new forms of social value is another important key in JAL’s future struc-
ture. To promote their innovation process, JAL established “Innovation Lab” in 2018.
The Labmembers actively work to develop their ideas into social value. For example,
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they investigate ways to apply artificial intelligence (AI) to increase the value of
precious human resources. Developing AI and robotics to assist with checking coun-
terswill enable evenbetter customer service.Recordingmaintenance logswith smart-
phone applications will support engineers and enhance the safety and efficiency of
their work procedures. Virtual reality (VR) will enable crews and mechanics to raise
the precision of their training processes. These technologies will bring about inno-
vation that will add an enormous amount of extra quality to customers’ journeys and
operational matters in the future. JAL continues to pursue sustainable development
of the aviation society all around the world.

3.6 Yoshiaki Tsuda, Akira Fukabori, and Kevin Kajitani,
“ANA’s Endeavor to Connect All 7.5 Billion People
on Earth”

All Nippon Airlines (ANA) started their aviation business as a small startup: their
original company was “Nippon Helicopter (NH),” which was a small private heli-
copter company that started operating with only two helicopters. Currently, 43,000
employees work at ANA, and they offer 1200 flights per day using around 300
aircraft. Behind the company’s dramatic growth lies a pioneering spirit that has been
passed on to younger generations. In 2016, ANA established “Digital Design Lab
(DDL)” as an innovation engine for their entire airline group. Their first approach
was to create disruptive business models for airlines. One of their ideas is “avatar”
technology, which will enable people to travel all over the world virtually.

The DDL has started to work on pioneering the new avatar technology. What this
means is physical avatars: physical robotic systems that will enable us to essentially
teleport our presence, senses, and consciousness to a remote location, essentially
existing in a place that our bodies are not currently in. Why, then, would ANA,
an airline that physically transports passengers, pursue robotic avatar technology—
and why now? The reason is that people around the world are still not connected
physically by long-distance transfer provided by airline transport. According to an
estimate by the DDL’s Avatar Division, the impact of airline industry transport on
the global economy is a mere 6%. They say that, as the industry that has connected
the world over the last 100 years, airlines should be at the forefront of this endeavor
again.

“ANA is not simply an airplane operator,” they say. Airplanes are not what their
main core business is about, but simply the tools that they currently use to provide
their services. Their ultimate goal as a company is not to operate airplanes, but to
bridge the gaps of distance, time, and culture that exist in our world.

Imagine that youworkweekdays in Tokyo and get to go home, three hours north of
Tokyo, only on the weekends, but can interact with and go home via avatar whenever
you like. And when you log in to your avatar, your wife says “Welcome home” and,
“Now you’re home, I’m going to watch TV or do a hobby.” Then your son says,
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“Papa, let’s run around the house and play together.” And when you log out from the
avatar, he hugs you before you leave the robot. Your son is two years old, and as you
can imagine, a two-year-old cannot sit in front of a video chat for more than 30 s.
But because you are physically present, your son is able to recognize that it is Papa,
and you are able to interact with and essentially take time to care for him—and that
frees up time for your wife.

Just this year, the World Economic Forum announced their top ten emerging
technologies for 2019, and ranked at number six was collaborative telepresence, in
which ANA’s Avatar initiative was listed. So, this avatar movement is real, and they
believe that it is just around the corner and is what the future of avatars will be.

3.7 Shigeru Ozeki, “Innovations for Future Aircraft
Operation and Standardization”

After introducing ENRI, Mr. Ozeki, the director general of ENRI, presented the
reasonwhy digitalization is under discussion forATM/CNS,with reference to collec-
tive intelligence, or intelligence that grows out of a group. Then, innovation and stan-
dardization were discussed, including how collective intelligence works for them.
This presentation was based on the fact that operation of an aircraft is supported by
the collective intelligence that is formed from the pilot, air traffic controllers, airport
operators, dispatchers, weather specialists, engineers, inspectors, lawyers, and many
others who work on each aspect of aircraft operation.

The first point in the presentation was that digitalization of ATM/CNSwill furnish
an environment for having better collective intelligence for aircraft operation. Digi-
talization will make exchanging knowledge easier, even when the contributors to the
collective intelligence for flying are distant in space or time. For example, digitaliza-
tion will provide automated tools to extract information from data, to communicate
or share the information, and to manage it and operations on it. Sharing information
among experts in various areas will support finding new knowledge or new combina-
tions of knowledge. We need better collective intelligence to achieve innovation and
standardization with new knowledge or new combinations of knowledge in order to
overcome the restrictions of conventional air traffic management.

The second point in the presentation was that innovation and standardization may
help each other regarding exchanging knowledge among the teams working on inno-
vation. The teams working on standardization may become focal points for various
kinds of knowledge to build up the collective intelligence for aircraft operation to
be standardized. The teams working on innovation may provide knowledge that is
new to the standardization teams. Conversely, the innovation teams may be inspired
by the discussions in the standardization teams, because the standardization teams
will have a broader range of knowledge than the innovation teams in most cases.
This is why the presenter invited representatives from the innovation teams to join
the standardization teams.
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At the end of the presentation, conformity of strategic direction in each layer of
activities was discussed, in order to think about a better environment for collective
intelligence to fly in. Strategies have a layered structure. For example, there are
ICAO strategies, national strategies, project strategies, and so on. A layer may be
an environment or resource plan for other layers. If there is no conformity between
the directions of each layer, their perspectives will not be focused on a common
future. This will mean the directions for collective intelligence in each layer will not
fit in with the others and will be hard to import into the other layers. This kind of
environment will be hard to work in.

Conformity of strategic directions among the layers will be necessary for
a compatible perspective. To achieve this, coordination within each layer and
among layers will be important. One recommended method is participation in
multi-disciplinary meetings like EIWAC.

4 Panel Discussion

The panel discussion of EIWAC2019 was held on October 29, 2019, on the theme of
“Digitalization in Aviation—A Standardization Perspective.” Digital transformation
was a key spotlight topic in EIWAC2019, and the objective of the panel discussion
was to bring together leaders involved in regulatory and standardization activities
to share their expertise in facing challenges and developing strategies to consolidate
different approaches to achieving this global objective.

Panelists:

• Mr. Stephen P. Creamer (Director of Air Navigation Bureau, ICAO)
• Mr. Christian Schleifer-Heingärtner (Secretary General, EUROCAE)
• Mr. Terry McVenes (President and CEO, RTCA)

Moderators:

• Mr. William C. Johnson (Senior Aircraft Engineer, NASA Langley Research
Center)

• Mr. Hajime Yoshimura (Senior Air Talks Officer at JCAB, MLIT)

Mr. Johnson commenced the panel discussion with an overview of its theme and
objective. The event included two presentations byMr. Schleifer-Heingärtner andMr.
McVenes, followed by a discussion that included a Q&A session with the audience.

Mr. Schleifer-Heingärtner’s presentation focused on EUROCAE activities on
standardization methodologies and its strategies for keeping up the pace of stan-
dardizing the new technologies and innovations being introduced into the aviation
community. He discussed the workflow for deployment of such technologies and
how a regulatory framework is supported and complemented by standards during the
process. He emphasized the challenges regarding addressing new-entrant technolo-
gies in a timely manner while maintaining the core values of being open, transparent,
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and census-driven, without compromising safety. He stressed the fact that a regula-
tory framework is not always the basis for developing standards. He suggested that
the best kind of driven approach is an industry-driven initiative, where the standards-
developing organizations can support it with their knowledge and experience in
order to move it forward and achieve its objectives in an efficient and effective
manner. He also implied that his organization is risk-based, operation-centric and
has a performance-based regulatory framework, but doesn’t draw any conclusions
about whether the standards it defines provide any technical solutions, because the
products possess minimum operational performance standards.

Mr. McVenes commenced his presentation with an introduction to RTCA and
its role in the world of standardization. RTCA has developed about one-hundred
MOPS and more than thirty MASPS since its inception, and these have been refer-
enced by over 100 FAA regulations advisory circulars or technical standard orders
and more than fifty ICAO SARPS. He mentioned the commitment of RTCA to
bringing industry and government together and working with international part-
ners to develop and increase the efficiency of the air traffic system. He clarified
Mr. Schleifer-Heingärtner’s remarks by pointing out the importance of collaboration
between standards-developing organizations for achieving harmonization as an avia-
tion community.Mr.McVenes noted that using a consensus-based process to develop
standards that are not only technically complete but also operationally effective is
crucial to ensuring that the new technologies can be integrated into the system through
those standards in a much quicker time. RTCA is currently working with FAA to
develop MOPS that are scalable in terms of meeting the safety criteria based upon
the operation. He stressed the fact that standards-developing organizations must be
very adaptable, need to increase their pace, and have to expand their ways of thinking
in terms of looking at different aspects of aviation, without compromising on safety
in any way. He concluded his presentation by saying that working together with
EUROCAE and ICAO is so vital for the industry because the harmonization and
interoperability that these organizations must have through its standards is vitally
important.

The discussion sessionwas commenced byMr. Johnson by raising the issue of how
the standards-developing organizations are working to close the gap between vehicle
manufacturers and standards, given that new entrants in aviation have short lifespans
with rapidly evolving technology, while standards might take years to introduce. Mr.
Schleifer-Heingärtner noted that these organizations are well aware of the current
trend in the aviation markets and the needs of the industry, and supported the strategy
of scalable standards mentioned by Mr. McVenes. He also emphasized however that
standards must be consensus-driven and ensuring safety is paramount, and that these
will require time. Mr. Terry suggested that early engagement with the industry will
be important to help bring new technology to the market swiftly. He also said that
collaboration between standards-developing organizations will be vital to shortening
the cycle time of the standardization process and avoiding unnecessary waste of
resources due to lack of communication between these entities.

Mr. Creamer joined the discussion by talking about the safety of air transport and
how the standards have helped to create such confidence in users. He said that risks
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related to air transport have not been completely eliminated, but are being managed
and the management process is built on over a hundred years of experience. He
compared examples to show the difficulty of leaping toward a customer-based stan-
dardization process and emphasized the potential benefits approving new technolo-
gies could bring to users in need, for example, providing the capability to deliver
blood to a clinic located 100 km awaywithin a fewminutes’ time. Hewas alsowilling
to share the idea that the aviation world is going to see a steady evolution rather than a
revolution through digitalization, and the possibility of creating a parallel set of regu-
latory provisions and mastering its evolution so that new industries can co-exist and
operate within traditional air transport. Mr. Creamer confirmed the position of ICAO
on the process of regulating standards in a purpose-specific and efficient manner.

Regarding the question raised byMr. Yoshimura on the possibility of shortcutting
any process to speed up the regulatory framework, Mr. McVenes commented that
getting a new entrant certified in a timely fashion without compromising safety is
quite challenging, and stressed how these organizations have achieved the safety
criteria deliberately, step by step and sometimes by using lessons learned through
tombstonementality. Mr. Schleifer-Heingärtner added that regulatory procedures are
streamlined and in good order to deliver on time. He also noted a new suggestion
developed with the SESAR Joint Undertaking to have a direct link when R&D
activities are conducted. He stressed however that these procedures will need lot
of coordination and verification before being certified. Mr. Creamer added that if an
industry understands how to identify and manage risk, the outcomes will potentially
be approved in a regulatory sense in a local environment, but the products must be
demonstrated at a local level before being certified for the global market.

One question raised during the Q&A session was the challenges faced by the
aviation community due to a performance-based regulatory framework.Mr. Creamer
showed how crucial it is to implement a solid functional hazard analysis and risk
assessment followed by cataloging and implementingmitigationmeasures by a regu-
lator, in order to ensure that the right decisions are made for safety management.
Another question was from the airline operational domain and concerned the trust
framework of ICAO and what it expected from the standards-developing organiza-
tions to ensure that users are operating within that framework. The panelists agreed
that trust is the key to ensuring interaction between different bodies that could eventu-
ally lead to achieving greater heights and overcomingmore challenges in the aviation
world.

Mr. Johnson concluded the panel discussion by stating that it had demonstrated
that there was an important need for aviation operators, users, and manufacturers
to work closely with standards-developing organizations to fulfill the demands of
both traditional and emerging aviation markets, and that it had also had shown how
those operations and markets could evolve together into a common ecosystem while
ensuring the safety and efficiency of their systems. The digitalization of aviation
holds challenges for everyone, so everyone must work together to enable aviation to
undergo its next evolutionary change.
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5 Special Speeches

This section summarizes the special speeches given in EIWAC2019. EIWAC2019
included a one-hour speech from EUROCAE on day two, and a speech from DSNA
on day three.

5.1 Christian Schleifer-Heingärtner, “Current and Future
Aviation Standards—Shaping Global Standards Through
Collaboration”

Mr. Schleifer-Heingärtner is the secretary-general of EUROCAE. In his presentation,
he introduced the EUROCAE association’s current situation, then spoke about its
current domains of activity and new activities.

First, he introduced the current situation regarding EUROCAE, which is a stan-
dardization body based in the EU: as of 2019, it has 300 members, 40 active working
groups, and 2500 experts. EUROCAE has seen a minimum of 10% growth per year
for the last six years. Its members are from industry, manufacturers, parts manu-
facturers, equipment manufacturers, engine manufacturers, aircraft manufacturers,
and ground infrastructure manufacturers for ATM sites. Coordination and collab-
oration with many stakeholders in aviation are important to developing standards.
EUROCAE does 50% of its activities jointly with RTCA and 10%with SAE. It is one
of the standards-developing organizations recognized by the international standards-
developing organization at ICAO. Mr. Schleifer-Heingärtner explained the standard-
developing process adopted by EUROCAE. They believe that the development
process should be transparent and open to the public.

Second, he introduced EUROCAE’s current domains of activity. These are
Avionics, Communication, Navigation, Surveillance, ATM Systems, Airports,
SWIM, Electric (lightning protection/high-voltage), Security, AIS/MET,
RPAS/VTOL&GA, and Miscellaneous (fuel cells, hybrid propulsion, space,
ice detection, C-UAS, N-GAP).

Then, he went into detail about some of the working groups. For example,
EUROCAE developed the Flight Tracking and Return Link Service in WG-98
Aircraft Emergency Locator Transmitters. An initiative by ICAO called Global
Aeronautical Distress and Safety System (GADSS) arose from the disappearance
of Malaysian Aircraft 370. GADSS is about tracking or having a position when
an aircraft is in distress. One of the GADSS solutions is EUROCAE ED-62.
EUROCAE updated the emergency locator transmitter standard, so it is now ED-
62B. WG-98 is a good example of a joint activity EUROCAE conducted with
RTCA. Mr. Schleifer-Heingärtner also went into detail about the following: WG,
WG-100 Remote/Virtual Tower, WG-109 RWIS (Runway Weather Information
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Systems),WG-111 A-CDM,WG-105UAS,WG-115 C-UAS,WG-112 VTOL,WG-
113HybridElectric Propulsion,WG-72Aeronautical SystemsSecurity, andWG-114
Artificial Intelligence.

Third, he talked about the following new activities conducted by the technical
working program in 2020:

• Digitalization, digital transformation and big data
• AI and blockchains
• Automation and autonomous flying
• Virtualization: virtual centers, virtual towers and augmented reality
• Drones, UAS, RPAS, and UTM
• Counter drone technology
• Urban air mobility and flight taxis (VTOL pilot project)
• Urban CNS and GNSS/ GSM performance in urban areas
• ATFM and civil/military applications
• Health monitoring and predictive maintenance
• Single pilot operations
• Computer vision
• Quantum computing
• Air-to-air connectivity
• Higher airspace operations
• Electronic conspicuity
• ATM data service providers
• Ground-handling
• Environmental activities
• Hybrid electric technologies
• Space travel
• Space-based solutions.

In conclusion, he emphasized the importance of shaping global standards through
collaboration. In order to achieve global interoperability, EUROCAEwill needpartic-
ipation from all over the world. That contribution will lead to globally applicable
standards.

5.2 Patrick Souchu, “Sharing Trajectory Views: The Key
Enabler for Trajectory-Based Operations”

Mr. Souchu is the SESAR program director at DSNA (the French Air Navigation
Service Provider). The title of his presentation was, “Sharing trajectory views: the
key enabler for trajectory-based operations.” Current ATM operations have different
views of the same trajectory. This is because each stakeholder has different needs,
and these views often differ for various reasons. This will not be acceptable if ATM
users are to use these trajectories formore advanced capabilities. Stakeholders should
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share a common trajectory. Mr. Souchu discussed three steps toward overcoming this
problem in Europe.

The first step is flight plan adherence recommendation. In Europe, many flight
plans differ from the actual trajectories. In 2017–2018, the EUROCONTROL
network manager and service providers issued a recommendation calling for
improved flight adherence to flight plans, to not only on the part of the airlines
but also of the controllers. This is because if a controller give a direct route, then
it will affect many other sectors. The controller may not be aware of the impact on
other sectors, especially in terms of congestion. This recommendation was therefore
issued and has been implemented through collaboration between airlines and CFSPs,
and between airlines and ATCs.

The second step is sharing information on the ground bymeans of FF-ICE and IOP
of flight objects. The ICAO FF-ICE initiative will facilitate the sharing of enhanced
flight information in the planning and execution phase. As an instance of this FF-
ICE concept in the execution phase in particular, SESAR is currently addressing
this sharing of flight information with the notion of flight object interoperability,
something that was initially defined in EUROCAE document ED-133. At the ATC
level, IOP will improve safety and capacity. It will ensure a constant and consistent
view of all traffic flows, even those processed by other flight data processing systems.
It will reduce the ATCO workload because of better traffic anticipation. It will allow
more enhanced and efficient coordination compared with all the current standards in
Europe. It will enablemore enhanced and efficient negotiationwith downstreamunits
compared to current voice negotiation and will improve the performance of conflict
detection and resolution tools. At theATFM level, it will also contribute to significant
improvements in trajectory consistency and trajectory accuracy, and thereby allow
us to reduce the uncertainty buffer. It will therefore improve the predictability and
performance of the demand and capacity balancing.

The third step is sharing information between the air and ground. One of the
first examples of air-ground coordination is the use of a selected flight level, which
is transmitted by Mode S enhanced surveillance and already provides large safety
benefits. Another example is the downlinking of aircraft’s extended projected profiles
(called EPPs). EPPs are computed and updated onboard, and transmitted by Auto-
matic Dependency Surveillance Contract (ADSC) using a standard called ATN B2.
There are plenty of potential uses for these onboard trajectories, but large safety
gains can be expected if they are used to highlight possible discrepancies between
the airborne trajectory computed by the FMS and downlinked and ground-based
trajectories computed by the flight data processing system.

In conclusion, he pointed out that for various reasons, trajectory views are not
always consistent today.This could result in safety issues and inefficiency, and impose
serious limitations onmoving to trajectory-based operation.However, three stepswill
lead to sharing of views. The enhanced ground-ground sharing of information via FF-
ICE and flight object interoperability and the new air-ground data link capabilities for
sharing air and ground trajectories using ATN B2 are almost there. Finally, sharing
views will enable trajectory-based operation.
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6 Conclusions

The sixth ENRI International Workshop on ATM/CNS (EIWAC2019) was held in
October 2019 with the aim of comprehensively sharing information on the latest
ATM/CNS technologies and operations among the participants, and seeking potential
partners for R&D, standardization and global harmonization activities.

This chapter began with a history and overview of the EIWAC series. It then
summarized the topics and opinions presented by the keynote and special speakers,
who were from various organizations, among them regulators, standardization
bodies,ANSPs, operators, andR&Dorganizations. The keynote and special speeches
showed that the speakers had a common awareness regarding the problems facing
current aviation systems. Digitalization and emerging technologies will be key
solutions to these problems.
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Volatility in Air Traffic
Management—How Changes in Traffic
Patterns Affect Efficiency in Service
Provision

T. Standfuss, M. Whittome, and I. Ruiz-Gauna

Abstract Air trafficdemandanddistributionfluctuates in long-,medium-, and short-
term perspective. In order to ensure safe and efficient flight operations, air navigation
service providers need to ensure that enough capacity is available for airspace users.
For this purpose, reliable traffic forecasts are necessary to avoid capacity shortages
or excesses and subsequently costs. However, the provision of air navigation services
is hampered by several effects, i.e., unpredictable traffic patterns and trends. Despite
awareness of such problem, there is not a common definition or metric yet to measure
the so-called ‘volatility.’ The aim of this paper is twofold: to set out an approach
addressing volatility measures for different spatial and periodical scopes, and to
show the effects of demand fluctuations on the ATM system from a holistic point of
view.

Keywords ATM · ANSP · Performance · Volatility · Fuzzy cognitive mapping

1 Motivation

Due to the growing number of flights and the high cost pressure on airlines, the provi-
sion of air navigation services (ANS) has recently drawn increasing attention from
both the academic and the policy decision-makers perspectives. A major challenge
regarding ANS provision is ‘planning under uncertainties’ as a result, for example,
of a volatile traffic demand in terms of movement numbers and flow patterns, which
significantly influence resource planning and allocation. Several factors could cause
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or amplify volatility (i.e., weather phenomena, strikes, geopolitics, airline decisions
or unexpected economic downturn [1]).

Volatile traffic affects ANS planning atmultiple time-scales and operational levels
[2]. Changes in traffic demand andflowpatterns have a direct influence on pre-tactical
and strategical capacity planning. Since airspace users tend to act more and more on
a short-term basis, it seems reasonable to think that volatility has increased over the
past years.

Against this backdrop, the paper focuses on two issues. Firstly, it provides a
specific definition and derived metrics in order to evaluate volatility in air traffic
management (ATM). Secondly, the influence of volatile traffic on ATM performance
is analyzed, discussing two potential approaches.

For this purpose, the paper is structured as follows: Sect. 2 deals with the state
of the art regarding volatility measurement as well as the underlying approaches
published by authors with an operational or academic background. Section 3 intro-
duces volatility definition and metrics, the latter also being applied to several data
sets. In Chap. 4, we present the results for volatility on ANSP level and discuss
potential effects on costs and resources. We also compare different volatility metrics
and check applicability and meaningfulness.

Since there are several operational subdivisions of one ANSP, we calculate
volatility scores for sector families in Chap. 5. The influence of volatility on
performance is determined in Sect. 6. Key mechanisms within the ATM systems
are analyzed by applying fuzzy cognitive mapping. Section 7 finishes with some
conclusions and determines a way forward.

2 Current Situation and Literature Review

Volatility is a rather new field of research in theATMcontext. The impact of volatility
on performance has still neither been investigated by academic studies nor included in
official EUROCONTROLbenchmarking reports. As a result, volatility of air traffic is
not considered in the policy decision-making process (e.g., the performance scheme
of the SES Regulations). This may lead to insufficient collection and/or distribution
of route charges in terms of an efficient demand-capacity-balancing.

In May 2018, FABEC and the Baltic Functional Airspace Block (Baltic FAB,
composed of the countries of Poland and Lithuania) conducted the workshop
‘Volatility inAir Traffic and its impact onATMPerformance.’ The conference papers
dealt primarily with unpredictability and capacity planning under uncertainties from
an operational or an academic point of view (e.g., [3, 4]).

EUROCONTROL uses ‘traffic variability’ as a metric for demand fluctuations,
by comparing the peak value with the corresponding average over a given time (e.g.,
annually) and operational level, e.g., area control center (ACC) [5]. However, the
measure proposed by EUROCONTROL has shortcomings: as only the highest and
the average numbers are taken into account, volatility during all other 10 months or
50 weeks is neglected. In addition, variability can be called ‘seasonality,’ since only
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the whole year is considered. Trends for 5–10 years for investment cycles or during
a week for shift planning purposes are not contemplated.

In summary, the currently available and applied metrics provide a first approach
to describe traffic demand fluctuations. Furthermore, spatial and temporal aspects
were considered. However, even though it is commonly agreed that volatility has
a high impact on performance [2], there is neither a clear definition of the word
itself within the ATM context nor are formulas available to quantify traffic demand
volatility and its influence on delay and other performance indicators. For all these
reasons, a holistic approach is missing which includes interdependencies between
factors which cause or are influenced by volatility (cause and effect chain).

The current study aims to close this research gap by defining and comparing
valid volatility metrics. The approaches used are applicable tomultiple time horizons
(long-, medium-, and short-term), and operational levels (ANSP, area control centers,
sector families, etc.). Thus, this paper contributes significantly to the understanding
of the extent and effects of traffic fluctuations.

3 Volatility Metrics

Volatility is a measure often used in finance, which enables a risk assessment.
Approach, applications, and formulas are described comprehensively in [6–9]. In
the context of air traffic and ANS provision, we define volatility as the variability of
traffic flow along a specific unit within a given time period. In accordance with the
financial metrics, traffic volatility σ denotes the (short-term) fluctuation of a time
series by its mean or trend [10]. It is measured by the sum of standard deviation of
change rates Ri (e.g., of flights) between two or more periods (1). The arithmetic
mean is indicated as μ, and n represents the number of observations.

σ =
√
1

n
×

∑n

i=1
(Ri − μ)2 (1)

This metric measure ‘historic volatility’ and is time-invariant. It summarizes the
probability of observing extreme values of traffic demand. The changes might be
defined as absolute, relative, or logarithmic terms. Formula (2) represents another
alternative to approach volatility, by calculating the standard deviation based on the

observed values h (e.g., for flights) in period t (instead of the change rates,
−
h stands

for the arithmetic mean of h). It is used when samples are considered rather than the
whole population.

σ =
√∑T

t=1

(ht − h)2

T − 1
(2)
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Noting that the standard deviation is scale-dependent, it might be also worth
computing the percentage coefficient of variation (CV), as shown in (3).

CV = 100

h

√∑T

t=1

(ht − h)2

T − 1
(3)

The formulas (1)–(3) represent measures of variation. A second possibility to
approach volatility, especially seasonal fluctuations, is represented by measures of
uneven distribution. In scientific research, the most common economic metrics are
GINI coefficient or Herfindahl-Hirschman-Index (HHI), see e.g., [11, 12]. GINI
measures the relative concentration, e.g., of traffic demand over the year, based on the
number of observations n, the observation index (e.g., month) i and the corresponding
demand xi as shown in (4).

GINI = 2
∑n

i=1 i • xi
n

∑n
i=1 xi

− n + 1

n
(4)

HHI is often used to calculate market shares of firms; however, it might be also
transformed to shares of different time periods. The index represents the sum of the
squared market shares of individual observations (5).

HHI =
n∑

i=1

(
xi∑n
i=1 xi

)2

(5)

The index is often normalized in a second step, fitting to an interval [0, 1]. The
HHI is invariant regarding the number of observations. However, in our study, the
number of observations is constant.

Considering that the paper primarily focuses on finding a valid metric for ATM
purposes, we apply formula (1) on different spatial and periodical scopes first. There-
fore, we use relative changes due to the heterogeneous size of the units, as well as
absolute traffic figures in order to consider limitations in resource planning. In a
second step, we will apply formulas (3)–(5) as well, compare the results, and discuss
applicability and meaningfulness.

4 Application on Macro-level

4.1 Database

As stated in Sect. 2, volatility may be computed over various time periods and
operational levels. Since environment and objectives differ between these levels, we
follow amacroscopic and amicroscopic approach.At ‘macro-level’ (ANSPs), we use
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Fig. 1 Development of flight movements worldwide, 1971–2016 (Worldbank)

the Worldbank database for long-term investigations and data from the performance
review unit (PRU) formedium- and short-term analysis [13–15].We focus onANSPs
coordinated by EUROCONTROL.

Figure 1 shows the annual traffic movements between 1970 and 2016, based on
Worldbank data. It emphasizes the need to consider multiple time periods: the overall
(linear) trend is represented by the dotted line. Considering other time periods will
result in another trend and, according to the definition in the previous section, in
other volatility scores.

4.2 Long- and Medium-Term Analysis

As a first example, (1) was applied to the number of annual flights in European
countries. The data was provided by Worldbank. Ri thus represents the change rate
of flights in relation to the year before. A calculation example for Belgium is provided
in Fig. 2. The red line shows the arithmetic mean μ, the green lines delimit the 66%
confidence interval.

Since the calculation is based on growth rates, the relative differences Ri are
available between 1971 and 2016. Applying formula (1) leads to a volatility score
of σ = 17.5% for Belgium.

Figure 3 shows the long-term volatility scores for a selection of European coun-
tries. Bulgaria has the highest volatility score (33.9%) in traffic demand, while the
United Kingdom has the lowest (4.1%). In general, (worldwide) volatility scores
are characterized by a high level of scattering. However, high volatility scores are
not common: The worldwide median is 16.8% in a long-term perspective. Since
formula (1) is scale-dependent, countries with a relatively high traffic demand show
low volatility scores. In contrast, countries such as Bulgaria and Hungary benefit
from higher demands (and subsequently positive growth rates) due to the end of
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Fig. 2 Calculation example for long-termvolatility for Belgium, 1971–2016, based on yearly traffic
movements (Worldbank data)
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Fig. 3 Long-term volatility for a selection of European countries, 1971–2016, based on annual
traffic movements (Worldbank data)

the political conflicts after 1990. Furthermore, growing traffic between the Arabic
countries and Europe and/or America contributes to changes in growth rates.

High volatility scores may inhibit the resource planning of ANSPs. Fluctuations
with high amplitudes, which is expressed by the volatility score, lead to high contin-
gency costs. This is due to the necessity to provide staff and infrastructure for the
case of maximum demand. However, the implementation of systems usually takes
between 8 and 12 years.

It might be even more important to consider medium- and short-term fluctuation.
Amain cost driver of ANSPs is represented by human resources. The training of new
controllers requires approximately five years and contingency costs might be higher
than for infrastructure (hard and software) due to the annual costs per Air Traffic
Control Officer (ATCO) or ATCO-hour. The medium-term analysis is based on PRU
data, which is available for the years 2008–2017. It is beneficial to use time-based
measures due to the possibility of subsumption.
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Fig. 4 Medium-term volatility, 2008–2014, flight hours (PRU data)

The medium-term perspective also enables the possibility to consider ANSPs
instead of countries. Formula (1) was applied on EUROCONTROL ANSPs for a
seven-year period (2008–2014). Figure 4 shows the medium-term volatility scores
based on the change rates of ‘IFR flight hours’ (Ri). Scores are similar to those based
on ‘flights,’ except for Malta Air Traffic Services (MATS) which is characterized
by a deviation of about 6 percentage points. Volatility scores are lower than in the
long-term perspective for majority of ANSPs.

4.3 Seasonality

As a further aspect, we consider seasonal demand shifts. The key underlying rationale
is the same as for the long- and medium-term perspective: high fluctuations lead to
high contingency costs. In order to calculate seasonal volatility, we used 2018 data
provided by PRU dashboard (monthly flights). The data is available on daily basis.
Formula (1) was applied on ‘flights,’ since ‘flight hours’ were not provided by the
database [16].

Figure 5 shows the volatility according to the corresponding ANSPs, differenti-
ated by summer and winter season. Since the scores differ between both seasons,
classification is also different. The thresholds are shown in Table 1.

The applied volatility score is still based on growth rates. The figures show that
volatility is higher in winter for the majority of ANSPs. There are some extreme
values, represented by Norway for both periods, and the whole of Scandinavia for
the winter season. The same effect is visible for FABEC-ANSPs: volatility decreases
in summer and increases inwinter.ANALUX is confrontedwith the highest volatility
in demand. This might be due to the overall smaller demand figures in winter (and
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Fig. 5 Volatility score for summer (left) and winter (right), 2018

for ANA Lux). Subsequently, there is a higher (relative) change rate for a similar
(total) shift in summer. For December, the high volatility can be explained by a
demand fluctuation during Christmas time and New Year’s Eve, given that demand
figures are significantly lower onDecember 24th, 25th, and 31st. Due to illustrational
reasons, the ANSPs are represented by the corresponding countries and MUAC is
not included in the figures.

The results show some expected and some rather unexpected results. Especially
the higher fluctuation of large-scale ANSPs might not be comprehensively covered
by the relative measure of formula (1). Since ATCOs are licensed for a predefined
number of sectors only, it is not possible to shift resources arbitrarily. Subsequently, it
might be doubtful whether a metric based on formula (1) leads to meaningful results
for seasonal volatility.

There are two possibilities to adjust the calculation of the score in order to improve
the metrics. First, it is possible to use actual traffic figures instead of growth rates,
but still apply formula (1). Second, as discussed in Chap. 3, there are potential
alternatives, e.g., formulas (3)–(5).

These formulas were applied to PRU data [14]. The volatility scores are based on
actual monthly flights in 2019. Furthermore, we calculated a peak load share (PLS).
The metric divides the number of flights during the three most frequented months
by the total number of flights in the whole year. Table 2 shows the results of all five
indicators.

Table 1 Classification for
seasonality

Class Winter (%) Summer (%)

Very high >6 >15

High 10–16 10–15

Medium 7–10 5–10

Low 6–7 4–5

Very low <6 <4
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Table 2 Seasonal volatility metrics for a selection of ANSPs, 2019

ANSP σ CV (%) HHI (%) GINI (%) PLS (%)

ANA LUX 596 9.0 8.4 4.7 27.1

Avinor 3.856 7.8 8.4 4.2 27.1

BULATSA 16.830 23.0 8.7 12.4 32.5

DFS 33.153 12.8 8.5 6.8 28.3

DSNA 48.413 17.6 8.6 9.5 30.0

ENAIRE 31.069 17.3 8.6 9.4 30.0

ENAV 36.114 23.7 8.8 12.9 32.6

IAA 7.869 14.6 8.5 7.9 29.0

LVNL 5.130 9.7 8.4 5.1 27.3

MUAC 16.045 10.3 8.4 5.6 27.8

NATS 28.649 13.6 8.5 7.3 28.8

Skeyes 6.670 12.5 8.5 6.7 28.3

Skyguide 18.067 16.5 8.5 8.9 29.6

The volatility score based on formula (1), σ . is scale-dependent and subsequently
grows with the size of the corresponding unit. However, this might reflect the chal-
lenges of volatility more precisely. GINI and CV are highly correlated. These relative
measures might be multiplied by the actual demand ore resource figures to calculate
effects on the input- and output side. HHI seems to be unsuitable to compare volatility
between single ANSPs. The peak load share might be of special interest for some
ANSPs, e.g., if airspaces are primarily used in the summer orwinter season.However,
it gives no holistic description of the trend during a whole year. Subsequently, we
suggest to use the CV or GINI coefficient.

Worldbank and PRU data allow only a very high aggregation level. Changing
the perspective on lower operational levels will probably increase volatility since
demand is expected to fluctuate more than in higher operational levels (law of large
numbers). The application on a disaggregated level is discussed in section 0.

5 Application on Micro-level

Chapter 4 dealt with potential metrics to calculate volatility on the ANSP level.
Most of the European ANSPs operate multiple area control centers (ACCs), dividing
the corresponding national airspaces horizontally and/or vertically. The smallest
structural unit is formed by the sectors, which can be combined or divided (‘split’)
according to traffic demand. The possibility of combination, however, depends on
the licensing of the air traffic controllers. Therefore, the sectors are allocated to sector
families (SF). This operational level is defined as ‘micro-level.’ For volatility calcu-
lation, we use data provided by Deutsche Flugsicherung GmbH (DFS), containing
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figures on sector family level for ‘flights’ and ‘flight hours’ (as demand), as well as
‘ATCO-hours’ (representing resources). The data is available for theACCsKarlsruhe
(ACC1), Bremen (ACC2), Langen (ACC3), and Munich (ACC4).

Figure 6 shows the number of IFR flight hours per year, differentiated by sector
families. Due to the sensitivity of the data, the corresponding units are anonymized.
Even though all sector families belong to the same ANSP, scattering is high: ACC1
SF1 flight hours are approximately seven times higher than the ones of ACC3 SF2.
This divergence is caused by the different airspace characteristics: while some sector
families are only responsible for upper airspaces, others supervise lower airspaces.
The sector family ACC3 SF2 covers the southwestern area of Frankfurt airport,
thereby controlling flights in the lower airspace, mostly with Frankfurt as their
destination. As traffic composition in the lower airspace is more heterogeneous,
capacity is lower due to the complexity and therefore comparatively less traffic is
being controlled.

Traffic figures may vary significantly over time. As an example, most airspace
units experience traffic peaks in summer. Table 3 shows the number of flights for each
ACC for the years 2016 and 2017, as well as the mean, minimum, and maximum.
The underlying annual shape of the demand curve is similar for all 4 ACCs.

Fig. 6 Annual flight hours
per sector family, 2017
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Table 3 Descriptive statistics of traffic movements (based on monthly counts)

Year Sum Min Mean Max

ACC1 2016 1,778,658 119,283 148,222 174,421

2017 1,844,836 120,163 153,736 181,295

ACC2 2016 661,491 44,827 55,124 62,201

2017 660,808 43,052 55,067 62,541

ACC3 2016 1,230,219 85,401 102,518 115,281

2017 1,268,034 85,458 105,670 119,054

ACC4 2016 1,082,839 75,277 90,237 102,265

2017 1,120,980 77,239 93,415 106,325
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The largest number of flights occurs in summer, with the counter-peak in January
or February.Karlsruhe controls about three timesmoreflights thanBremen.However,
the relative average is similar between all ACCs and all years (69–75%). Generally,
higher volatility scores could be expected at the micro-level, as sectors control less
flights compared to sector families, ACCs or ANSPs. The higher the amount of traffic
the less volatility could be assumed, as one additional flight has a higher impact on
lower operational levels.

The analysis on ANSP level demonstrated that fluctuations in traffic demand
occur differently. In addition, pure demand figures on this operational level might
not reflect changes in traffic flows appropriately. Therefore, it is useful to disaggregate
the analysis by sectors, since capacity is basically providedwithin this smallest entity
of the airspace.

Airspace structure is characterized by dynamic subdivisions. According to
demand, sectors can be splitted or merged. Volatile traffic hampers efficient planning
of these capacity enhancing measures significantly. However, sector data were not
available for this research, so we applied the methodology on sector family data in
order to calculate volatility. In this way we use ‘flight hours’ for demand.

Traffic demand fluctuates considerably over the year. The upper peak represents
three timesmore flight hours than the lower peak, depending on the considered sector
family. Furthermore, the data also reveal weekly and seasonal effects are also visible
in the data.

According to Fig. 7, volatility metrics differ quite substantially between the sector
families. On the one hand, the highest scores are shown for ACC2 sector families 1
and 3. On the other side, all three sector families with the lowest score are assigned
to ACC1.

Comparing Fig. 6 with Fig. 7, there is no clear dependence between total overall
demand and the volatility score. As a tendency, small units are characterized by a
higher volatility (such as ACC 2). Further reasons might be the amount of military
aircraft being controlled in different areas, which seems to lead to less volatility. In
addition, the upper airspace (e.g., ACC 1 handling only traffic in the upper airspace)

Fig. 7 Volatility of German
sector families, monthly
basis, 2017
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and areas with a higher share of homogenous traffic (such as Approach Units of large
Hubs like ACC3_SF9 and ACC4_SF1) seem to have a lower volatility, whereas the
areas of responsibility that control flows to smaller airports, which tend to service
low-cost carriers, are characterized by higher volatility.

In order to test the influence of volatility on performance, there are several analyt-
ical tools, such as regression analysis. This methodology enables the consideration
of the interaction of several effects. Regression analysis is purely quantitative and
thus does not require a priori assumptions. However, within this paper, we focus
on the semi-quantitative approach of fuzzy cognitive mapping (FCM, Chap. 6).
Furthermore, besides the analytical approaches, there is also the possibility of fast-
or real-time traffic simulations (Chap. 7).

6 Fuzzy Cognitive Mapping

6.1 Approach and Methodology

Humans commonly tend to think that only direct causal relations exist between two
concepts.Nevertheless, thanks to the understandingof complex systemsweknow that
changes in one variable may influence variables which were not initially identified,
or that one variable may generate an unexpected chain of events (commonly referred
to as cascading effects). With this idea in mind, this paper is intended to better
understand what and how volatility may affect or be affected by ATM. A fuzzy
cognitive map is developed to this end.

Cognitive maps consist of a set of concepts and linkages which express cause-
effect networks [17, 18]. However, causes are often uncertain, usually fuzzy. The
notion of fuzziness was introduced into cognitivemaps, giving rise to fuzzy cognitive
maps [19].

FCM is a participatory, semi-quantitative method in which the experience, knowl-
edge, and perceptions of the system of different experts on the topic (in our case,
three air traffic controllers, two engineers specialized in performance management,
one engineer with a focus on operational performance and two economists with
specific knowledge of the European aviation sector) give rise to the construction of
a graph structure that can be later used to simulate scenarios according to which
policymakers may analyze how the system may behave under certain impacts [20].
In this way, these maps encourage systematic causal propagation (forward and back-
ward chaining), helping to identify cascading effects and interdependencies across
elements (including unexpected trade-offs and synergies) that otherwise would be
difficult to analyze.

The approach is illustrated in Fig. 8. First, every concept (C) is defined at a discrete
time, so its state may change over time. In a second step, all concepts are related to
each other through directed arrows that indicate both the direction of the causality
and the degree of influence one concept (C2) can have on another (C6) (positively or
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Fig. 8 Concept of a fuzzy
cognitive map

negatively). Linkages are later labeled by weights (W26), reflecting the strengths of
the relationships between two concepts (C2 and C6). The weights are represented by
a numerical scale from 0 to 1. Finally, once the map has been built-up, we can, on the
one hand, perform scenario analysis to identify the cascading effects (in our case, the
effects occurring in the whole system when there is a volatility problem in one part
of it) and, on the other hand, estimate the following three indicators: Out-degree of a
concept (a measure of the strength of the influence of one concept on other concepts
in the network), In-degree of a concept (a measure of the dependency of a concept on
other concepts in the network), and centrality (it denotes the individual importance
of a concept).

6.2 Results

The eight experts found 39 concepts, such as ticket prices, wars/conflicts/crises, oil
cost or airspace charges, among others. A complex map with these 39 concepts was
built (Fig. 9), enabling us to show the relationships between them and to determine
causes and effects of volatility that are usually not discernible at first sight.

According to our FCM, the concepts with the highest capacity to influence other
variables or concepts (Out-degree) are ‘predictability,’ ‘airspace complexity,’ and
‘economic activity.’ By contrast, the concepts with the highest capacity for being
influenced by the remainder (in-degree) are ‘air traffic flow,’ ‘demand from airlines,’
‘airspace complexity,’ ‘demand from passengers,’ and ‘predictability.’ Centrality
allows us to conclude that ‘predictability’ and ‘airspace complexity’ are the key vari-
ables to be considered when deciding certain policies or actions to reduce volatility
by airlines and air navigation service providers.

When it comes to the scenario analysis, it involves examining what would happen
in the whole system if there were a change in one of the concepts (e.g., a pandemic,
like the COVID-19, or an increase of staff costs, among others). With this idea in
mind, and after estimating a weight function and conducting the analysis with the
software FCmapper [21], a common trend can be observed: the system reacts in a
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Fig. 9 Fuzzy cognitive map

similar way, irrespective of the fact in which concept a change (or shock) occurs.
In other words, whether there is a change in one or another concept, the same
variables are almost always the most affected by these changes. This means that
these variables (in our case, ‘airport charges,’ ‘airspace charges,’ ‘ATFM regulation
needs,’ ‘demand from passengers,’ ‘demand from airlines,’ ‘flight ticket price,’ ‘air
traffic flow,’ ‘quality of services,’ ‘overload (controller),’ ‘airspace complexity,’ and
‘complexity of flight composition’) are the most sensitive in the case of external
shocks, whatever they may be, so they should be taken into consideration by policy-
makers and air traffic managers when facing volatility in the performance and oper-
ation of the air system. This will help them to act accordingly, since they may decide
whether or not to current buffers are appropriate or not or whether it is necessary to
add some new buffers (see, for example, the case of overload for controllers).

In short, FCM is a very useful tool for understanding volatility, as it implies a high
degree of complexity. It not only depends on certain obvious variables affecting it
directly, but also on other variables that are indirectly relevant and that had not been
identified if were not for the construction of this complex systems. Thus, the whole
map should be seen in the context to prevent global consequences, as the impact of
one variable may influence others in unexpected ways.

Moreover, despite being constructed by experts, the fact that it is easily to under-
stand for the general public is what makes FCMs a very interesting alternative to be
considered in policymaking.

7 Conclusion and Way Forward

The present paper develops a general definition to describe volatility of air traffic
demand for a wide span of reference time periods, as well as for geographical scopes.
Based on macro- and micro-level data, the method was applied on various examples
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ranging from a 1 year to a >50-year period along the time axis and from sector family
level to European airspace on the scope axis. The paper shows that volatility scores
are sensitive to both factors. In addition, the highest volatility can be observed in
December. By contrast, the low volatility scores for summer are rather unexpected.
However, this picture changes when using a scale-dependent calculation basis, which
might be more useful due to the nature of ANSP staff planning.

In addition, an FCM is applied to enable a holistic consideration of the whole
system. In this way, it is possible to show which elements are sensitive to volatility,
e.g., caused by external shocks. A quantification, e.g., by regression analysis, might
be a subject for further research. Furthermore, the approach to simulate different
traffic scenarios and their influence on sector configurations will lead to further
insights with regards to resource planning.

The applied calculation methods represent one potential approach. Standard devi-
ation and GINI coefficient are expected to match ATM requirements most. In further
studies, it should be checked whether the formula must be adapted or substituted
in order to calculate volatility based other time periods (e.g., day and night time
differences).

Quantifying the impact on the performance of ANSPs (e.g., regarding cost effec-
tiveness) might be another research focus. The simulation, which is currently work in
progress, will represent a fundamental contribution. In addition, it might be beneficial
to include sectors, sector families, and ACCs of other ANSPs. This would enable the
consideration of particularly strong, unforeseen traffic fluctuations into regulatory
measures, respectively, policy decision making.
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Coordinated Sequencing of Traffic on
Multiple En-Route Constraint Points

S. Abba Rapaya, P. Notry, and D. Delahaye

Abstract Air transportation traffic is progressively increasing over the years and
dealing with it is an essential task to guarantee fluid flights in the future. Several
works already indexed multiple aspects of aviation, among them, the E-MAN sys-
tem. It introduced the sequencing of arriving traffic, starting from early stages of
the En-route phase. This change facilitated the work for the approach controllers but
also increased the workload of the En-route controllers. To handle that workload,
controllers are now assisted by tools that consider the new constraints introduced by
the arrival management system and propose advisories. From that same perspective,
our project focuses on an algorithm for a helper tool that will combine both aspects
of traffic sequencing in the En-route phase and conflict resolution. With this novel
approach, we automatically generate near-to- optimal flight decisions, given that we
can modify the speed and the flight level to respect the sequencing constraints and
cut down potential conflicts. We categorize the problem as a mathematical optimiza-
tion case. Thus, we describe a detailed mathematical model which covers all the
aspects of the problem. This model gives a basis for the implementation of the flight
optimizer. Later, we propose a solution based on a sliding window simulated anneal-
ing algorithm which reduces the complexity and takes into account uncertainties.
Finally, we successfully test an implementation of the solution with real-life traffic
data. It corresponds to flights within France going towards Paris CDG airport over
a period of 24 h. The results demonstrate a total conflicts resolution with satisfying
compliance with sequencing constraints.
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1 Introduction

The air traffic has been increasing lately. In its Global Market Forecast (GMF) [1],
Airbus has predicted that the global air traffic will encounter an annual growth of
4.4% for the next coming 20years. With that increase of traffic, some major airports
will now rely on arrival management systems such as the Extended-Arrival MAN-
ager (E-AMAN [6]) system to help them manage their flow of traffic and generate
efficient flights sequencing. However, most of the workload is now transferred to the
En-route controllers since they will have to deal with occurring conflicts and also
try to respect new constraints imposed by the E-AMAN to flights. In En-route, the
airspace is characterized by several route flows crossing into potential conflict points.
To avoid those conflicts, some separation constraints are defined for the flights and
controllers need tomake sure they are respected by using classic methods like vector-
ing, speed controlling or flight level changes. Each decision applied to an aircraft can
have an impact on surrounding flights. This research aims to develop an algorithm
that will assist the controllers. Based on the traffic flows analysis, this algorithm will
provide near optimum flight decisions in order to remove conflicts at the crossing
points. From the controller’s side, the main objective is to reduce the workload and
minimize the frequency occupation. This will be done by automatically eliminating
conflicts due to lack of separation at crossing points and route links. It also implies
reducing the number of flight level changes and simplifying the instructions given to
pilots. Another objective is to integrate our tool with an E-AMAN system by generat-
ing decisions compatible with E-AMAN constraints. Finally, from the airlines point
of view, we will need to take into consideration the preferred flight profile by gener-
ating decisions not far from that profile. The first part of the paper introduces some
previous related works linked to arrival manager optimization in a wide sense. The
second part presents the associated mathematical model. The meta-heuristic (simu-
lated annealing) used for solving the underlying optimization problem is presented
in the third part. Finally, the fourth part presents the results given by the algorithm
on a real case at Paris Chales De Gaulle (CDG, airport code: LFPG).

2 State of the Art

This section presents the concepts and previous works related to our problem. It
focuses on points around air traffic sequencing, conflict resolution and mathematical
optimization methods. It is concluded by a synthesis which serves as baselines for
our modeling and solution approach.
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2.1 Extended AMAN

The Cross-border SESAR Trials for Enhanced Arrival Management (X-STREAM)
project main objective is to extend the current horizon of the Arrival Management
Systembeyond200NMtowards the upstreamAreaControlCenter (ACC).Extended-
AMAN (E-AMAN) [6] allows for the sequencing of arrival traffic much earlier than
is currently the case, by extending the AMAN horizon from the airspace close to
the airport to further upstream and so allowing more smooth traffic management.
Controllers in the upstream sectors, whichmay be in a different control center or even
a different Functional Airspace Block (FAB), obtain system advisories to support
an earlier pre-sequencing of aircraft. Controllers implement those advisories by, for
example, instructing pilots to adjust the aircraft speed along the descent or even before
top-of-descent, thus reducing the need for holding and decreasing fuel consumption.

2.1.1 Features

The traffic begins to be processed at the Eligibility Horizon (EH) and controllers
are provided with AMAN advisories from the Active Advisory Horizon (AAH)
onward [5]. EH is the spatial horizon where aircraft start to be considered by the
AMAN and AAH is the spatial horizon where actions computed by the AMAN are
executed by the aircraft. With the extension of the horizon of the AMAN to the
En-route phase, as illustrated on Fig. 1, the EH goes further to around 180–200
NM which supports the controllers in applying more efficient arrival management
techniques. The typical optimum top of descent is approximately 100–120 NM from
touchdown which implies that up to 100NM of flight within the extended AAH will
be in En-route airspace.

2.1.2 Decisions on Flights

AMANadvicemay be in the formof a Target Time at the InitialMetering Point (IMP)
or Time To Lose (TTL)/Time To Gain (TTG) advisories to controllers calculated by
AMANworking back from the runway time [5]. Upstream ACC controllers can then
provide instructions to pilots to make adjustment of speed to meet TTL/TTG need,
by executing advisories for speed coming from tools like Speed And Route Advisory
(SARA)1 or to delegate responsibility for adherence to a Controlled Time of Arrival
(CTA) to flight crew.

1Speed and Route flight Advisory.
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Fig. 1 Simple horizon extension

2.2 Previous Works

Optimization problems involve the minimization (or maximization) of a function by
choosing input values from a given set of data and computing the value of the func-
tion. Nowadays, many studies have been conducted on the resolution of air traffic
conflicts and the sequencing using various mathematical optimization techniques.
This section will present a few of those works. Vela et al. in [10] presented a new
approach based on concepts of speed control and flight-level assignment for conflict
resolution over predefined routes. The resolution of this model was based on aMixed
Integer Linear Programming approach (MILP). The way it was formulated helped to
reduce fuel burn over time horizons between 15 and 45 min. Qing et al. [7] proposed
a flight scheduler for En-route air traffic. It was based on the application of delays
or route changes to flights to produce an ordered merged sequence of flights at the
exit nodes. They didn’t tackle the conflict resolution aspect in that paper. During
the 2017 SESAR Innovation Days, Couchelle et al. [3] presented a method to per-
form small changes on aircraft speed in order to resolve conflicts. In their model,
they considered that the True Air Speed (TAS) was constant for each aircraft in the
airspace and the uncertainties appeared due to wind components, with wind data
collected from MétéoFrance PEARP (Prévision d’Ensemble ARPège). A protection
area, as illustrated in Fig. 2, is defined around each aircraft to represent its potential
positions. Thus, two overlapping protection areas imply a potential conflict between

Fig. 2 Protected area
around the aircraft. If two
areas overlap, there is a
potential conflict
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the two aircraft that must be dealt with. The solution was implemented in Python
using a simulated annealing algorithm. As a result, the algorithm was able to solve at
least 70% of virtual conflicts with a computing time of 30min to 2 h for a 4 h traffic
data depending on the refinement of the parameters. On the other hand, Barragan et
al. [2] presented their work at the 29th Congress of the International Council of the
Aeronautical Sciences (ICAS). It was done on a study for a collaborative tool that
aimed at helping controllers with the integration of the Extended Arrival Manager.
They studied the aircraft sequencing problem as an optimization problem under dif-
ferent resolution methods (Linear programming, non-linear programming, heuristic
methods). The objective function took into consideration the runway capacity, the
delays and the fuel consumption. They also didn’t consider the conflict resolution
aspect.

2.3 Synthesis

As seen in this section, the Extended Arrival Management tool gives advisory direc-
tives to controllers to help create an efficient sequence of flights starting from a
distant En-route point. However, it is still up to the controller to decide how he
will implement those directives taking into account the potential occurring conflicts.
A tool like SARA, in combination with E-AMAN, can help controllers by giving
speed directives but no global conflict resolution is provided. Thus, it will be an added
value for our solution to provide both sequencing and conflict resolution capabilities.
Moreover, most of the previous works done on the optimization of the traffic focused
on changes made on aircraft speed or route to delay or advance a flight. Therefore,
not many alternatives were given for conflict resolution when there is a dense traf-
fic. In that case, we can introduce changes on flight levels to broaden the solutions
possibilities as suggested by Courchelle et al. [3]. As for the optimization method
to apply, the nature of our problem makes it more appropriate for a meta-heuristic
method, given the dimension of the problem. Also, the simulated annealing appears
as a good choice regarding its stability, its memory consumption profile and its speed.
Ji et al. [8] introduced an implementation of the simulated annealing algorithm cou-
pled with the sliding window concept, the base of our implementation will be that
algorithm. Another added value we can integrate in our solution is the collaboration
with multiple E-AMAN tools at the same time. The state of the art review enabled
us to define basis for our study case. In the next section, we will define a detailed
mathematical model for the problem. This will highlight abstract concepts useful for
the design of our solution.
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3 Mathematical Model

This section focuses on an abstract mathematical modeling of our problem. Each
aspect of the problem is represented using mathematical notations that can be inter-
preted into any optimization algorithm later. It presents the global network repre-
sentation, how uncertainties are modeled, equations related to conflict detection, the
optimization objective function definition and an evaluation of the complexity of
the problem. To simplify our model, we made some assumptions. The TAS of each
flight will be considered as constant all along its route in the airspace of interest.
Each plane will be flying a constant flight level all along its route in the airspace.
For that, we suppose that the application of any decision to change the flight level is
performed before entering the airspace of interest. We assume that the time for the
aircraft to perform a climb or descend operation is negligible. In other words, we will
not consider the time for flight level changes. The wind direction will be considered
as constant in all the airspace. Only its intensity will be randomly varying (a more
realistic wind may be included in the future). We will not consider uncertainties on
the time of entry of a flight in the airspace. Regardless of any action done on a flight
prior to its entry in the airspace, we will always use the planned entry time as time
of arrival at the entry point.

3.1 Constraints

We have identified some constraints for our model. They are elements that will
influence the way the tool will handle the optimization process.

Sequencing constraints: those constraints are coming from the sequencing system.
The E-AMAN generates a TTL or TTG for flights. It must be considered during the
optimization process.

Aircraft performances: those correspond to the physical performances of the air-
craft. It consists of the minimum (maximum) speed and the minimum (maximum)
flight level the aircraft can fly. Basically, our tool should not advise a flight to perform
outside of its physical limits.

Flight preferred profile: It is a constraint that can be proposed by the airline. In our
case, we will consider the preferred cruising flight level. It is a flight level which if
cleared to the flight, will help the airline to better achieve their business objective.

Separation constraints: we have three types of separation: the distance separation
which is a minimum defined distance should be maintained between two aircraft
when crossing a specific point, the time separation for which two consecutive aircraft
should reach a given location with a minimum defined time interval and the wake
turbulence separation which is the separation distance between two consecutive
aircraft flying on the same link at the same flight level and which depends on their
wake turbulence categorization as defined by ICAO.
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3.2 Network Modeling

The network of routes is modeled as an oriented graph with nodes and oriented links.

Nodes A node represents any point of interest on a route. Most of the time, it will
be where two routes are crossing. We can define a separation constraint on them
(distance or time separation). A node n is characterized by its cartesian coordinates
(x, y), x, y ∈ R, a minimum separation distance dsep, in case of distance separation
constraint and a minimum separation time tsep, in case of time separation constraint.
The set of nodes will be notedN:N = {ni / i ∈ N, i ≤ nbnodes} where nbnodes is the
total number of nodes in the network.

Links A link is a portion of route between two nodes. It is oriented from an origin
node to a destination node. Each link is characterized by an entry node nori, an
exit node ndest and a length dl = dist(nori, ndest). The set of links will be noted L:
L = {li / i ∈ N, i ≤ nblinks}. ∀li ∈ L, li = (nori , ndest) / nori ,ndest ∈ N, nori �= ndest
where nblinks is the total number of links in the network.

Routes A route is an ordered list of adjacent links and is characterized by a parity
p which can be odd or even: p ∈ {ODD, EVEN} and a list of available flight levels
f ls = { f l / f l ∈ N}. We will use the semi-circular rule to determine those flight
levels depending on the parity of the route. The set of routes will be noted R: R =
{ri / i ∈ N, i ≤ nbroutes}, ∀r ∈ R, r = {li / li ∈ L}where nbroutes is the total number
of routes in the network.

3.3 Flights Modeling

A flight f is characterized by a speed V f , a flight level FL f , the time of arrival at
the first node (entry in the airspace) t finit , a wake turbulence category wtCat f and a
defined route r f ∈ R. Apart from those characteristics, a flight is also subject to some
constraints: amaximumspeed Vmax

f , amaximumflight level FLmax
f , a preferred flight

level FLpref
f given by the airline and a time constraint t tl f given by the sequencing

system (a positive value means a time to gain and a negative value refers to a time
to lose both before reaching the final exit node). The set of flights will be noted F.
F = { fi / i ∈ N, i ≤ nbflights} where nbflights is the total number of flights in the
network.

3.4 Decision Variables

During the optimization process, two features of the flights are modified: the speed
and the flight level. For that, we are using two decision variables which are the speed
delta and the flight level delta.
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Speed delta As in the model used by Courchelle et al. [3], we propose to use small
speed changes to control flights speed. Each speed delta�V is an integer in the range
of −6 to +3, expressed in percentage. ∀ fi ∈ F, �Vi ∈ Z ∩ [−6,+3]. The new TAS
Vi of flight fi can be expressed as follow: Vi = �Vi

100 × V0i where V0i is the initial
TAS.

Flight level delta The second decision variable we are using is the flight level delta.
It represents the number of levels an aircraft should climb or descend. It is expressed
as an integer varying from −2 to 2. A positive value represents a climb whereas a
negative value represents a descend.

∀ fi ∈ F, �FLi ∈ Z ∩ [−2,+2]

3.5 Uncertainties

In our assumptions, we supposed that the TAS of flights is constant all along its route.
However, in the real world, each flight is subject to wind influence in the air which
can affect the ground speed. This section presents how we model the wind and how
it generates uncertainties in our model.

Wind modeling: we use a simplified model for the wind. The wind vector is char-
acterized by a constant direction all over the airspace (it is represented as an angle
αw relative to the geographical north) and an intensity Ws randomly varying within
a range of values, with Ws ∈ [Wsmin,Wsmax].
Flight uncertainty: the ground speedGs of the aircraft is the resultant from both the
TAS component and the Wind Speed component (

−→
Gs = −−→

T AS + −→
Ws). Let’s assume

a flight arriving at the entry node nori of a link l at tori , its time interval of arrival at
the exit node ndest will be: [tdestmin , tdestmax ],= [tori + dl

V fmax
, tori + dl

V fmin
]. This interval

is built with the earliest time of arrival at the exit node tmin which depends on V fmax

which is the maximum ground speed of the aircraft and the latest time of arrival at
the exit node tdestmax which depends on V fmin which is the minimum ground speed of
the aircraft.

3.6 Conflicts Identification

We will consider two types of conflicts: node conflicts and link conflicts.

Node conflicts They are detected using the separation constraints. Depending on the
type of separation constraint at the node (time or distance separation), the equations
to detect node conflicts will differ. To detect a distance separation conflict, a circular
protection area with a diameter of dsep is defined around the node. Each flight arriving
at the node will be monitored using four different times: an early time of entry in the
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protection area t inmin, a late time of entry in the protection area t inmax, an early time of
exit from the protection area toutmin and a late time of exit from the protection area toutmax.
Two consecutive flights are considered to be in conflict at the nodewhen they are both
present within the protection area at the same time. In other words, the trailing flight
enters the protection area before the leading flight exits it. Let’s consider two flights f
and g with f leading. ∀ f, g ∈ F, c f lt ( f, g) = 1 if t f,outmax − t g,inmin < 0 ; (0 otherwise).
To detect a time separation conflict, a separation time tsep is defined on the node. Each
flight arriving at the node will be monitored using two different times: an early time
of arrival at the node tmin and a late time of arrival at the node tmax. Two consecutive
flights are considered to be in conflict at the node when the time interval between the
two of them crossing the node is less than the separation time. Let’s consider two
flights f and g with f leading. ∀ f, g ∈ F, c f lt ( f, g) = 1 if |t fmax − t gmin| < tsep; (=
0 otherwise).

Link conflictsLink conflicts are essentially detected using wake turbulence category
separation. Three situations are analyzed to detect those conflicts: at the entry node
of the link, at the exit node of the link and catch-ups along the link itself. To detect
entry conflicts, two different times are monitored at the entry of the link: an early
time of arrival at the entry node t inmin and a late time of arrival at the entry node
t inmax. Two consecutive flights are considered to be in conflict at the entry of a link
when the distance between them is less than the required wake turbulence separation
distance. Let’s consider two flights f and g with f leading. ∀ f, g ∈ F, c f lt ( f, g) =
1; if distori( f, g) < wTCatsep( f, g); (0 otherwise).

distori( f, g) = V f
min × (t f,inmax − t g,inmin )

With wTCatsep( f, g) the wake turbulence separation distance between f and g. To
detect exit conflicts, two different times are monitored at the exit of the link: an
early time of arrival at the exit node toutmin and a late time of arrival at the exit node
toutmax. Conflicts at the exit of the link are detected the same way as at the entry of
the link. The distance between two consecutive flights is computed by using the exit
times: distdest ( f, g) = V g

max × (t g,outmin − t f,outmax ). Conflict detection at entry and exit
only checks if the aircraft are properly separated when entering or exiting the link.
However, within the link, faster aircraft can catch-up slower ones and cross them,
thus implicating a loss of separation during the crossing. To detect catch-up conflicts,
a comparison ismade between the entry and the exit sequence of flights. Let’s assume
Slentry and S

l
exit respectively the sequences of flights at the entry and at the exit of the

link l, pos : (F,S) → N the function that gives the position of a flight in a sequence.
There is a catch-up conflict if: ∃ f ∈ F/ pos( f,Slentr y) �= pos( f,Slexit).
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3.7 Objective Function

The mathematical modeling of the problem leads to a multi-objective optimization
problem which aims at minimizing parameters linked to conflict occurrences, flight
level modification, speed modification and also flights timing. The main objective is
to reduce the global conflict count both on nodes and links. Let’s consider cobj the
total conflict objective value.

cobj =
∑

n∈N
cn +

∑

l∈L
cl

Twovalues related to flight levelmodifications are evaluated in the objective function:

f lobj = f lchanges + f lgap

where f lchanges represents the total number of aircraft which decision implies FL
change and f lgap is the summation of the difference between the final flight level
and the preferred flight level of each flight. As for the flight level gap objective, we
also want to minimize the gap between the initial speed and the final speed for each
flight. For that, the speed objective sobj is expressed as follows.

sobj =
∑

f ∈F
|�V f |

Finally, we also want to make sure that the flights will arrive at their last node at the
requested time with a reasonable (minimal) error margin. Thus, the time objective is
expressed as follows.

tobj =
∑

f ∈F
|t f,last_nodemax − t f,last_nodeplanned, max |

The global objective function f is the sum of all the objectives listed above.

f = cobj + f lobj + sobj + tobj

The complexity of our model mainly depends on the dimension of the problem
(number of flights involved) and the range of the decision variables. If we consider
ns options for the speed changes and n f l options for the FL changes, then for N f flight
the size of the solution space is given by (ns × n f l)

N f . In our model,�V ∈ [−6,+3]
and�FL ∈ [−2,+2], the size of the solution space can be expressed by (10 × 5)N f .
To address such combinatorial complexity, we have developed ameta-heuristic based
on a sliding-window simulated annealing.



Coordinated Sequencing of Traffic on Multiple En-Route … 51

4 Simulated Annealing

This method, as described by Soliman et al. [9], is based on the annealing process
which is a physical process consisting of heating up a solid until it melts, then
cooling it down in order to obtain a perfect crystallized form. During this process,
the resulting structural properties depend on the residual energy in thematerial which
is influenced by the rate of cooling. Thus, the cooling phase must be controlled in
order not to get trapped in a locally optimal structure with high energy crystals,
resulting in imperfections. In combinatorial optimization, the equivalent process is
the simulated annealing which aims at finding a solution with minimal cost.

4.1 Principle

Let’s consider themodel presented byHenderson et al. [4]. Let�be the solution space
(the set of all possible solutions). Let f : � → R be an objective function defined
on the solution space. The goal is to find a global minimum, ω∗ (ω∗ ∈ � such that
f (ω) ≥ f (ω∗) for all ω ∈ �). The objective function must be bounded to ensure
that ω∗ exists. Define N (ω) to be the neighborhood function for ω ∈ �. Therefore,
associated with every solution, ω ∈ �, are neighboring solutions, N (ω), that can be
reached in a single iteration of a local search algorithm. Simulated annealing starts
with an initial solution ω ∈ �. A neighboring solution ω

′ ∈ N (ω) is then generated.
The candidate neighboring solution is accepted as the current solution based on the
acceptance probability.

P{Acceptω′
as next solution} =

{
exp[−( f (ω

′
) − f (ω))/Tk)] if f (ω

′
) > f (ω)

1 if f (ω
′
) ≤ − f (ω).

where Tk is a parameter which control the probability of accepting a degraded solu-
tion.As illustrated in Fig. 3, each solution vectorXwhich gather together the decision
variables of aircraft is evaluated in a simulator process. This simulation is very pow-
erful in the sense it can take into account many realistic aspects of the operational
system. The result of the simulation generates the objective function which will be
used by the optimizer (simulated annealing). The initial temperature is essential to
define the behavior of the algorithm when it comes to the acceptance of solutions.
We have set the initial temperature in order to get 80% of solutions to be initially
accepted. We have used a geometric cooling law (Tk+1 = α · Tk with α in the range
[0.8, 0.99]. Efficient stopping criterion can prevent the simulated annealing algorithm
from performing unnecessary computations [4], thus reducing its global execution
time. In our case, three criteria are used to stop the cooling procedure: when the final
temperature Tfinal reaches a defined fraction of the initial temperature Tinit, when the
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Fig. 3 Simulated annealing
principle

evaluated criteria reach the value zero, or when the evaluated criteria remain constant
over a defined number of iterations.

4.2 Neighborhood Function

Small changes on a local solution are performed using a neighborhood function.
The efficiency of simulated annealing is highly influenced by the neighborhood
function used. In our case, each solution is a set of flight decisions and determining
a neighbor solution consists only on randomly modifying a flight decision in our
set. The method used to choose the random flight is similar to the roulette wheel
selection presented by Ji et al. [8]. On each flight decision, a performance criterion
is evaluated, it corresponds to the sum of the total number of conflicts on the flight
and the resulting delay. All the decision performances are added up together then
a target value is randomly chosen between zero (0) and the total performance sum.
Then, the cumulative sum of decision performances is calculated starting from the
first decision until the cumulative sum reaches the previously chosen target value.
The index at which it stops marks the flight decision on which a change will be done
to generate a neighbor solution. Choosing the decision to change with this method
guarantees that the selected flight is the one which is most likely to generate more
conflicts and a large absolute delay. Given a flight decision, generating a neighbor
solution consists in modifying the flight level delta �FL and the speed delta �V .
Bothmodifications are donewithin their respective discrete range of values [−2,+2]
and [−6,+3], with the same probability of occurrence p = 0.5.

4.3 Sliding Window

The sliding window approach as proposed by Ji et al. [8] is a technique based on
the receding horizon control. It consists into dividing the entire time horizon into
smaller equal intervals and thus evaluating the state of the network within the small
time intervals. The evaluation interval starts from the earliest time and progressively



Coordinated Sequencing of Traffic on Multiple En-Route … 53

Fig. 4 Sliding window principle [8], W : the length of the sliding window, S: time shift of the
sliding window

moves forward in time with a defined step until reaching the latest times. With this
approach, it is not necessary to evaluate all the flights at once during the optimization
since not all flights are involved in each sliding window interval. This method is
more convenient in a dynamic environment with uncertainties and improves the
computational time of the optimization process. Figure 4 illustrate how the sliding
windows are generated all along the global optimization time interval.

5 Results

This section presents the results of our algorithmon real-life traffic data at Paris CDG.
Paris CDG TMA is accessible through four entry points: OKIPA, MOPAR, LORNI
and BANOX. Our experimentation airspace is focused on the En-route portion of
traffic arriving at CDG airport which corresponds to four areas each having a TMA
entry point as last node as we can see in Fig. 5.

All nodes (waypoints) except the four entry points are constrained with a 5NM
separationminimum. As for the TMA entry points, the minimum separation between
aircraft is 8NM. Concerning the wind data, we considered wind components with
an angle of 30◦ relative to the geographical north. The wind intensity has been set
within the range 25–35 kts all over the test airspace. A simple analysis of the network
structure shows 742 different nodes with 817 links. This will contribute to increase
the complexity and so the resolution time. In our scenario, we will consider a 24-h
traffic data of 690 flights corresponding to the filed flight plans arriving at LFPG on
July 28th, 2016. The arrivals are distributed among the four entry points of CDG
Terminal Area (TMA) with the majority of flights arriving at LORNI and OKIPA
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Fig. 5 Routes towards Paris CDG airport

Table 1 Flights distribution by TMA entry point

BANOX LORNI MOPAR OKIPA

Medium 85 163 75 167

Heavy 13 57 72 58

Total 98 220 147 225

nodes (Table 1). There is also a distribution of medium and heavy wake turbulence
category aircraft with a majority of medium aircraft.

5.1 Statistics

Our algorithm written in Java 8 has been executed on an Ubuntu 18.04 operating
systemPC equippedwith an Intel Core i5-3230Mprocessor (4× 2.60GHz) and 8GB
of memory. The simulated annealing algorithm has been tested with the parameters
in Table 2. Given the length of the sliding window (2 hours) and the distribution of
flights, each resolution step on a sliding window will handle around 100 flights on
average. A first analysis of the flight data detected 407 conflicts.
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Table 2 Simulated annealing/sliding window test parameters

Parameter Value

Temperature reduction coefficient (α) 0.95

Number of iterations at each temperature step 200

Cooling stopping temperature 10−4.Tinit
Maximum repetitions 35

Sliding window time shift (S) 30min

Sliding window time length (W ) 2 h

Probability of speed change 0.5

Probability of flight level change 0.5

Table 3 Optimization results on LFPG data

Criteria Value

Initial conflict count 407

Solved conflicts 407

Solved conflicts ratio 100%

Climbed flights 61

Descended flights 66

Total FL changes 127

FL changes ratio 18.41%

Accelerated flights 4

Slowed down flights 4

Speed changes 8

Speed change ratio 1.16%

Total speed variation 35.029 kts

Average speed variation 4.38 kts

Total absolute delays 611 s

Average absolute delays 76 s

Execution time 11min 23 s

The optimization algorithm analyzed the 690flights and has solved the sequencing
and the conflicts within a computation time of 11min and 23 s. It solved all the 407
initially identified potential conflicts, which gives an efficiency rate of 100%. It
changed flight levels on a total of 127 flights: 67 climbs and 66 descents. As for
the speed, 4 flights have been accelerated and 4 slowed down which make a total
of 8 speed changes. At the end, a total absolute delays value of approximately 611
s has been generated for the flights with speed changes which gives an average
of approximately 1min per modified flight (the 8 flights with speed modification).
Very few flights have been affected by speed variations, also, the generated absolute
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delays, an average of 76 s per modified flight is still acceptable. Table 3 summarizes
all those changes.

6 Conclusion

This paper introduced the work done on the sequencing of the air traffic in En-
route segments influenced by constraint points. We saw that En-route controllers
are getting more involved in the pre-sequencing of arriving flows when they are
still in the cruising phase which causes an increase of their workload. On the other
hand, airlines wish to have efficient flights with few flight level changes around a
certain preferred vertical profile and also lessmaneuverings due to conflict avoidance.
To solve those issues, we have developed a decision support tool which can assist
controllers in their tasks for sequencing traffic and solving conflicts in En-route
airspace. After reviewing the concepts and previous works related to our subject,
we based our study on a mathematical modeling of the problem followed by an
optimization algorithm in order to extract traffic sequences. Using the simulated
annealing algorithm for optimizing flights decisions appeared to be a good choice
given its efficiency and adaptability properties. A first trial of our solution on real
traffic data over Paris airspace displayed a resolution ratio of 100%for conflict solving
and an acceptable level of speed and flight level changes. Also, the generated delays
due to the compliance with sequencing constraints and conflict resolution appeared
within an acceptable range. Moreover, a preliminary version of the algorithm was
able to generate flights instructions that can be directly applicable by controllers.
Apart from this first test scenario, the solution as it has been designed is able to
simultaneously provide En-route sequencing for several airports arrival flows. Even
if it has not been used in the Paris CDG case, the algorithm can also manage time
constraints for some points in the airspace (points connecting countries with letter
of agreement). On the other hand, it can also be helpful for airports not yet equipped
with an arrival management system as long as the constraints at TMA entry points
are well defined. As another advantage, our solution will facilitate novel arrival
techniques and procedures such as Continuous Descent Operation (CDO) and Point
Merge System (PMS).
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Macroscopic Analysis to Identify Stage
Boundaries in Multi-stage Arrival
Management

E. Itoh, Y. Miyazawa, M. Finke, and J. Rataj

Abstract Accommodating the air traffic growth, reducing arrival delay is one of the
most important functions of designing theATMsystem.Oneof the newest concepts to
further optimize arrival flows is multi-stage arrival management, proposed by DLR,
in which different guidance principles to manage the arriving traffic are implemented
in different stages. These stages are optimized to the core management task to be
done in a certain area of the arrival stream and the conditions of the surrounding
environment. This paper discusses this concept through a macroscopic analysis on
the overall arrival traffic flows. Further, this paper analyzes parts of the multi-stage
arrival management concept applied to Tokyo International Airport as a case study.
A stochastic characteristic of arrival trajectories will be discussed as a counterpart of
conventional deterministic trajectory-based operation based on data-driven analysis
and arrival procedures at the airport. The best strategies of shifting arrival flow
control to time-basedmanagement are analyzed based on the stochastic data analysis.
Impacts of pop-up aircraft are discussed as one of the causes to increase uncertainties
in aircraft trajectory management.
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1 Introduction

Highly frequented airports are the critical elements in air traffic. In the most cases,
they are directly or implicitly the origin of delays in the air traffic system. There-
fore, arrival management is an essential part in air traffic management. To clarify the
meaning of arrival management, the following definition from EUROCONTROL
[1] is used: “Arrival management is a general term given to the process of safely
and effectively arranging arrivals into a smooth efficient flow for landing at a desti-
nation airport.” To improve the arrival management process, controllers (ATCo) are
supported by a family of decision support systems called arrivalmanagers (AMANs).
According to [1], an AMAN is defined as a software specifically designed to provide
assistance in metering and sequencing arrival streams and that delivers informa-
tion needed to implement an efficient arrival management. Following this definition,
the first AMANs were built already more than 20 years ago. The tasks, where the
controller is usually supported by an AMAN, are:

• Build an arrival sequence.
• Assign an arrival time at the runway threshold and other significant waypoints for

each aircraft in the sequence.
• Predict a trajectory for each aircraft which implements the assigned landing time.
• Transform the trajectory into appropriate guidance instructions which are trans-

mitted to the pilot.

2 Drawbacks of Modern Arrival Management Systems

One drawback of current AMAN designs is the effect of model uncertainties in
the trajectory calculation and the probability of disturbances. As a consequence,
the individual trajectory reliability decreases considerably with increasing distance
of the aircraft to the airport. Hence, the drawback of the extension of the current
planning horizon from 80 NM by a factor of 5 is the decreasing predictability and
accuracy of the calculated trajectory. Furthermore, horizons of 500 nautical miles
and more causes that some aircraft in the approach flow are still on the ground, as
they are departing from airports that are less than 500 nautical miles away from the
destination. Because the uncertainties as well as the probability of disturbances for a
flight on ground aremuch higher as it is the case for airborne flights, the predictability
and the quality of the trajectory are even worse. Hence, without additional effort
concerning the concept of operation and the used methods as well as the existing
planning mechanisms, the new approach results in decreased prediction quality of
arrival time, and increased number of arrival sequence changes with negative effects
on the aircraft, ATC, and airport operation. Moreover, corrective measures for an
individual aircraft far away from the airport may become useless due to unexpected
new disturbances that again reduce efficiency.
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The trajectory-based operational concept recently described by SESAR provides
a 4D trajectory for each aircraft, the so-called business trajectory [5]. This trajectory
is designed so that the flight can be managed as closely as possible to the airspace
user’s ideal profile. Besides the three spatial dimensions, the trajectory also contains
the dimension "time." 4D trajectories for the arrival phase can be planned by arrival
management systems with long lead times which are conflict free, with an optimized
landing sequence [1]. Nevertheless, in a pure trajectory-based ATM, this logically
requires that all flights follow exactly these planned trajectories also in reality to guar-
antee that they stay free of conflicts and to avoid any corrective actions by ATC. The
constraint to stay on a preplanned trajectory results in an increased number of control
actions for the aircraft due to uncertainties and disturbances, like wind effects. Nega-
tive consequences of increased control actions are again an increased fuel consump-
tion and, more important, an increased maintenance effort for the engines as well as
a low acceptance by the pilots due to their increased workload. Additionally, some
disturbances might have such an impact that increased control actions alone cannot
maintain the optimized and conflict-free trajectory situation, like suddenly occurring
emergency flights treated with absolute priority.

The described drawbacks require the development of new concepts of operation,
methods, and planning algorithms for AMANs, taking the drawbacks into account,
which stem from uncertainties and disturbances. Different solutions for airborne
arrivals and arrivals that are still on ground at their departure aerodrome are needed
as the different status has a significant influence on the uncertainties as well as the
probability of disturbances impacting a flight. Hence, using todays planning and
guidance functionalities for arrival management is disadvantageous.

The future arrival management will further be strongly influenced by the intro-
duction of new wake turbulence categories. In the past, a 3 * 3 matrix was used to
define the separation distances between the subsequent aircraft. These aircraft cate-
gories are heavy, medium, and light, and the number of different separations in the 3
* 3 matrix is 3 (4, 5, 6 NM) [5]. In this case, the controllers are able to remember this
low amount of numbers of different separation minima for the aircraft pairs; hence,
no further support was required to apply them to the aircraft on final approach. With
the introduction of RECAT-EU, as an example, the number of aircraft categories
increases to 6 and the number of different separation values to 8 in a 6 * 6 matrix
[6]. The new wake turbulence categories increase the complexity for the controller
considerably. To deal with that the controller needs additional support tools to create
an efficient arrival sequence. Further considerations go in the direction to assign
every individual aircraft pair an individual separation [7]. To guide such a separation
scheme, it is indispensable to intensively support the controller with technical means.

3 Concept of Multi-stage Arrival Management

Following the description in the previous chapters, it becomes apparent that more and
more tasks of the arrival management are collected under an AMAN, which makes
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these systems more and more complex. By extending the planning horizon consid-
erably, arrival management starts much earlier than in the past. The implementation
of new separation values requires new support elements in the AMAN close to the
runway.

It can be concluded that the driving requirements rules to be followed and
constraints to be considered in future arrival management will at least depend on

• the distance of the airplane to the destination aerodrome,
• the characteristics and local constraints of main arrival flows,
• the diversity of involved aircraft type performance and equipment,
• the flight phase,
• predictability of traffic as well as accuracy and uncertainty of planning systems.

Although the list of dependencies can surely be further extended, state-of-the-art
AMANs are still using the same algorithms for the whole traffic up to the planning
horizon while not or not sufficiently considering the items contained in the list above.
In addition, especially trajectory-based deterministic calculations seem to be unsuit-
able without a minimum level of predictability and only tolerate minor uncertainties.
A better solution could be to adapt and optimize the working principles of AMAN
systems according to these dependencies taking into account system architecture
considerations.

This would result in a “clustering” of coherent tasks, methods or procedures,
following the “separation of concerns” software architecture principle [8]. Supple-
mentary to “separation of concerns” is the “single responsibility principle” in the soft-
ware engineering domain. Taking these software architecture principles into account,
it is necessary to divide future AMANs with their various “concerns” in different
modules.

This approach can be realized with a multi-stage AMAN design defined by DLR,
where several different sub-systems can use different working principles on different
flight phases, arrival flows, or distances from the destination aerodrome. This design
allows using the working principle which fits best to the single stages and offers also
a lot of optimization potential for the whole AMAN architecture at the individual
airports (see Fig. 1).

At its current stage of development, the multi-stage AMAN concept includes the
following types of stages already:

• classical 4D trajectory-based, fully deterministic stages,
• time-based stages
• flow-based stages
• stages using stochastic methods.

Further types of AMAN stages may be available in future.
In addition, inspired by electric circuit or space launcher construction principles,

two different types of stage arrangements can be identified:

• serial arrangement, where one stage directly feeds the traffic into another stage,
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Fig. 1 Fictional example of a possible multi-stage AMAN design

• parallel arrangement, where separate airspaces, arrival flows, or otherwise,
clustered arrivals are planned and handled by two stages in parallel.

Based on the description of the preceding chapters, a first stage/concern could
be defined for the final approach area of an airport, where the main task is to create
a tight sequence of aircraft on the center line by minimizing the used buffers on
top of the minimum wake turbulence separation. At hub airports, this task is done
by the so-called Director controller position which is very much specialized and
focused just on this single task of creating the safe and effective sequence of aircraft
on final track. Furthermore, the increasing task complexity by new wake turbulence
categories and the focus on a time dependent separation between subsequent aircraft
increases the distance of concerns to a trajectory-based approach.

A second stage/concern could be driven by trajectory-based operation with the
goal to create an optimized aircraft sequence and feeding of the first stage defined
above. Optimized aircraft sequencemeans that the order of the arriving aircraft corre-
sponds to a previously defined optimization criterion. Furthermore, a high quality
of the trajectory calculation is necessary to enable continuous descent approaches
with engines in idle which are especially environment friendly. Here, it is important
to start the calculation of the aircraft trajectory at least before the top of descent. In
additional to sequencing, the trajectory-based approach enables a collision detection
and avoidance in the TMAwhich is of utmost importance to ensure a safe and orderly
traffic flow.

A third stage could be allocated to the arrival management of distant flights still in
the en route phase of flight. Following the draw backs in chapter 2, another approach
to guide the traffic should be taken into account here. This approach is based on
statistical information which enables a continuous flow of aircraft to the airport
without a high amount of corrective action. In contrast to this approach, precise
trajectory-based operations would require a high amount of corrective actions of the
aircraft as they have to follow their precisely planned but uncertain trajectories. More
details concerning the statistical arrival management approach will be presented in
a separate paper in the near future.
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In order to build an AMAN system according to the multi-stage design, several
decisions have to be made:

• type of the stage used for a defined part of the whole arrival management,
• serial or parallel arrangement of the individual stages,
• data exchange and transition conditions between the different stages,
• definite borders between the different stages/concerns.

A first scientific study has already been made by the Japanese research Electronic
Navigation Research Institute (ENRI) on the definition of a possible border between
flow-based and trajectory-based arrival management for Tokyo-Haneda International
Airport, which is described in the following chapters.

4 Data-Driven Analysis

4.1 Case Study Data Description—Tokyo International
Airport

Prior to discuss stage boundaries in the arrival management, this section introduces
aircraft arrival operations at Tokyo International Airport, which this paper focuses
on as a case study airport.

In total, maximum number of 447,000 departures and arrivals are accepted per
year, with a maximum 80 operations in one hour. The airport makes use of four
runways on daily basis, while the choice of the runway configuration depends on
wind direction.

Over 60% of the domestic flights in Japan are concentrated at this airport. Figure 2
shows the distribution of departure airports with average number of departure aircraft
arriving at Tokyo International Airport in Japan.

4.2 Stochastic Analysis on Air Traffic Arrival Flow

In order to characterize arrival traffic flow in each stage (see Fig. 1), a data-driven
analysis is conducted using two years of radar tracks and flight plans in 2016 and
2017. Figure 3 shows definitions of aircraft flight time and inter-arrival time using
concentric circles centered at Tokyo International Airport. In total, 29 datasets of
aircraft flight time and inter-arrival time are defined when using a maximum radius
of 300 NM with an increment of 10 NM. Aircraft inter-arrival time is defined as
aircraft time-spacing between preceding and succeeding aircraft at each concentric
circle. For example, the first dataset is difference of aircraft’s crossing time after its
proceeding aircraft crossed at the circle with 20 NM radius, the second dataset is the
time difference at the circle with 30 NM radius, and so on.
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Fig. 2 Distributions of departure airports with average number of departures arriving at Tokyo
International Airport in a day

Authors’ past works indicated that the empirical distributions of the aircraft flight
time could be numerically approximated using Gaussian distribution [9, 10]. The
significant features of arrival traffic control appeared in the variances of the aircraft
flight time distributions. Figure 4 compares flight time distributions corresponding to
the arrival traffic flows from southwest direction. One of the most significant arrival
strategies is illustrated in Fig. 4 for airspace between concentric circles 30 and 40NM,
40 and 50 NM radii, where the variances grow dramatically in the arrival traffic flows
from southwest direction. This explained by the fact that the arrival time-spacing was
actively conducted by the air traffic controllers in the airspace between 30 and 50NM
away from the airport, just before the aircraft enter the terminal area. The increase in
both the mean flight time and the flight time variance in the direction of the airport
is due to the airspeed reduction that arriving aircraft undertakes prior to landing. For
flight time, themean and variance converge close to the circle of radius 200NM. This
circle captures current arrival strategies, since this is the airspace within which the
traffic control capacity is met, and the spacing at merging points is filled. Between
circles of radii 200 and 300 NM, air traffic controllers make an effort to maintain
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Fig. 3 Definitions of flight time and aircraft inter-arrival time in this paper. Map of Japan is drawn
with flight tracks during an entire day in November 2016 [9]. The red tracks show the southwest
traffic flow. The blue tracks show the north traffic flow.

Fig. 4 Comparing flight time distributions every 10 NM radius, 10–300 NM

safe and efficient traffic flows by prioritizing airlines’ own procedures. In summary,
there are three main strategies illustrated in Fig. 4: (1) arrival time-spacing within
the circle around 50 NM, especially between the 30 and 40 NM radii circles; (2)
arrival metering for traffic capacity control and spacing at merging points between
the 50 and 200 NM circles; and (3) maintaining efficient traffic flow by prioritizing
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airlines’ own procedures beyond the 200 NM circle. Minimizing arrival delays and
operational costs requires great consideration in combining these different strategies.

Figure 5 compares exponential fittings and empirical probability densities of the
aircraft inter-arrival time from the southwest direction at concentric circles with
50, 100, 150, and 300 NM radii [10]. The empirical distribution of the inter-arrival
time is well approximated by an exponential distribution, where the arriving aircraft
flies further than the circle around 150 NM radius. However, the inter-arrival times
converge to a nearly Gaussian distribution toward the arrival airports.

The empirical coefficient is defined as Ce = √
σA/E[A], where E[A] and σA are

the mean inter-arrival time and variance of the inter-arrival time. When Ce → 1, the
empirical distribution of the inter-arrival time is well approximated by an exponential
distribution. If Ce is much larger or smaller than 1, then the empirical distribution is
deviating from the exponential distribution. According to the empirical data, Ce =
0.4688, 0.6467, 0.8089, 0.8125 corresponding to 50, 100, 150, and 300 NM radii of
concentric circles.

(1) 50NM, = 0.4688

(3) 150NM, = 0.8089

(2) 100NM, = 0.6467

(4) 300NM, = 0.8125
Fig. 5 Empirical distribution of the aircraft inter-arrival time and exponential fittings [10, 11]
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5 Exploring Control Strategies in Future Arrival
Management

5.1 Shifting Air Traffic Control Flow to Time-Based Traffic
Management

One of the important arrival strategies to determine is where and how the aircraft
arrival flow shifts to time management toward the arrival airport while minimizing
arrival delay time. The first author’s study clarified the best arrival strategy based
on the analysis applying data-driven queuing models [10–12]. The proposed queue-
based approach demonstrated that there are five parameters, which impact on arrival
delay time as follows: (1) arrival traffic rate (2) airspace capacity (3) mean of aircraft
flight time (4) variance of aircraft flight time (5) variance of aircraft inter-arrival time.
All five parameters were estimated through data-driven analysis using the two years
radar tracks and flight plans. Mean and variance of aircraft flight time, and variance
of aircraft inter-arrival time were analyzed in Sect. 4.2 as shown in Figs. 4 and 5.

Figure 6 summarizes current arrival traffic rate in an hour at each concentric circle
with 10–300 NM radii every 10 NM, focusing on arrival traffic from the north and
southwest direction during the most congested time period 17:00 to 22:00 based on
the data statistics. Arrival rate is well controlled at each airspace during the most
congested time period; approximately, 10 aircraft from the north (see Fig. 6a) and
30 aircraft (see Fig. 6b) from the southwest arrives within 150 NM radius concentric
circle in an hour [12].

Table 1 counted the number of aircraft from the southwest direction, which flew
in the defined airspace, every 10 min during 17:00 to 22:00 time period in the two
years. The values are relevant from operational point of views; 7 NM separation was
given to arrival aircraft at 30–40 NM away from the airport before entering terminal
area; thus, the number of aircraft between 30 and 40 NM radii concentric circles was
1 (see median value at 30–40 NM in Table 1.)

Approximately, 5 NM separation was given to initial approach fix, so the median
took two aircraft in 10–20 NM and 20–30 NM airspace (see Table 1). In the queuing
model, these values directory define the capacity at the assigned airspace. Based on
the proposed queue-based approaches [10–12], the best arrival strategy to minimize
arrival time delay is increasing airspace capacity within around 50 NM radius range.
Extending aircraft flight time (with delay time) is more effective, where the variances
of inter-arrival time are smaller, thus absorbing aircraft arrival delay closer to the
airport is relevant operation for mitigating arrival delay time in the current arrival
operation.According to the results of stochastic analysis using real data, the boundary
to a fully deterministic time-based stage lay at around 30 NM away from the Tokyo
International Airport. Transition area between the flow-based and time-based stage
lay in-between 30 and 150 NM from the airport. Airspace further than 150 NM away
from the airport could be assumed as the flow-based stage. However, the proposed
queue-based approaches [10–13] showed that the best arrival strategy was shift these
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(1) Arrival traffic from the north direction, 17:00-22:00

(2) Arrival traffic from the south-west direction, 17:00-22:00

Fig. 6 Arrival rate in an hour [12]. aArrival traffic from the north direction, 17:00–22:00. bArrival
traffic from the southwest direction, 17:00–22:00

boundaries and transition area backwards: the boundary to a fully deterministic time-
based stage at around 70 NM and the transition from the flow-based stage at further
than 150 NM way from the airport.
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5.2 Uncertainties in Time Management Due to Pop-Up
Aircraft

Although smaller variances of aircraft flight time and inter-arrival time mitigate
arrival delay time under limited airspace capacities, uncertainties in aircraft time
management increases in further airspace fromarrival airport.Oneof the causes antic-
ipated is the impact of pop-up aircraft departing within the considered horizon from
the arrival airport, which merges into air traffic flow. As shown in Fig. 7, Osaka Inter-
national Airport (RJOO) and Kansai International Airport (RJBB) locate between
Fukuoka International Airport (RJFF) and Tokyo International Airport. Figure 3
also indicates that arrivals from these airports take a large amount in total amount of
arrivals at Tokyo International Airport.

In order to analyze the impact of pop-up aircraft departing from RJOO and RJBB,
Fig. 8 compares growth of standard deviation (STD) in flight time since the aircraft
departing from RJFF, RJOO, RJBB, Naha International Airport (ROAH), and Asian
countries crossed the 200NM radius circle centered at Tokyo International Airport.
Figure 9 compares the horizontal and vertical track records in a day. Although vari-
ances of flight time impacted by the total amount of flight, Fig. 8 shows that the
STD corresponding to arrivals from RJFF grows between 130 and 160 NM, where
departing flights from RJOO and RJBB merge into traffic departing from RJFF. As

Fig. 7 Distributions of
airports in Japan
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Fig. 8. Comparing growth of the flight time STD from these at 200NM

shown in Fig. 9, flight tracks of RJFF, RJOO, and RJBBmerge not only horizontally,
but also vertically below 30,000 ft airspace.

6 Discussion

This section discusses efficient arrival management strategies which can be applied
in the stages of a multi-stage AMAN architecture (see Fig. 1) proposed in Sect. 3
based on the data-driven analysis in Sects. 4 and 5, and the first authors’ work in
[10–12].

Firstly, the best arrival strategy in the stage 1 is increasing airspace capacity,
especially 30–50 NM distance from Tokyo International Airport for minimizing
arrival delay time. This control would be done by achieving time management of
aircraft inter-arrival time at around 70 NM from the arrival airport in the stage 2,
suggested in [10]. Freeze horizon, where the AMAN calculates the optimal arrival
schedules, is required to lie in the stage 3 prior to achieve arrival scheduling. Aircraft
trajectories would be controlled between the freeze horizon and horizon, where time
management is required to achieve.

Secondly, total aircraft arrival delay time is reduced if the flight time is extended
in the airspace area, where the variance of aircraft inter-arrival time is smaller. As
shown in Fig. 5, the variance of the inter-aircraft time grows in the farther airspace
area from the arrival airport, and the distribution is near exponential at the airspaces
farther than 150 NM. One of our future challenges is to propose the best way to draw
horizons, which tailor arrival aircraft traffic prior to the conventional freeze horizon,
in stage 3 and/or stage 4.

Thirdly, again it is repeated but controlling aircraft flight time, which increases the
variance of aircraft flight time in arrival traffic flow, is allowed, where the variances
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(1) Horizontal records

(2) Vertical records

Fig. 9. Flight tracks of arrival aircraft from RJFF, RJOO, RJBB, ROAH, and Asian countries in a
day. a Horizontal records, b vertical records
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of the inter-aircraft time is smaller. Otherwise, arrival delay time of the total arrival
traffic increases. This also means that trajectory optimization targeting individual
aircraft is not the solution to achieve minimum aircraft arrival delay because of
the interference with surrounding traffic. Trajectory-based operation needs to be
designed in order to reduce the variance of inter-arrival times in the arrival traffic.

Fourthly, pop-up aircraft also impacts on increasing the variances of aircraft flight
time. Further, study will analyze the impacts on the arrival traffic delay and solutions
to mitigate the impacts.

Lastly, applying new wake turbulence minima, so-called RECAT (Wake Turbu-
lence Re-categorization), and point merge operation influences in the stage 1. Point
merge operation is introduced in arrival traffic at Tokyo International Airport since
July 2019. Figure 10 shows an example of point merge routes applying to arrivals
from southwest direction, with flight tracks of arrivals in a day in 2017 and concentric
circles drawn every 10 NM radius. There were two transition points named ADDUM
and STONE previously; however, six transition points are newly prepared according
to the expansion of terminal area. As shown in Fig. 10, the arcs of point merge routes
locate within 50 NM radii concentric circle. Authors’ future work will also analyze
the impacts of the RECAT and point merge operations on the arrival aircraft traffic.

Fig. 10 One of the
representative point merge
operation at Tokyo
International Airport
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7 Conclusions

This paper introduced a multi-stage arrival management concept and discussed stage
boundaries based on a data-driven analysis. Two years of data consisting of radar
tracks and flight plans of air traffic arriving at Tokyo International Airport were
analyzed as a case study. The analytical results characterized arrival traffic flow at
each stage in the proposed concept. The best arrival strategy was discussed to shift
air traffic flow control to time management. Authors’ future works further discuss
the efficient design of arrival management in each stage.

Design requirements of arrival management system depend on the characteristics
of a given arrival air traffic flow and its surrounding environment, e.g., runway and
airspace capacity, weather conditions, air routes, and other geographical constraints.
This study further designs the multi-stage arrival management not only at Tokyo
International Airport, but also different airports, e.g., German airports and conduct
interoperability analysis in future.
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Analysis of Weather Impact on Flight
Efficiency for Stockholm Arlanda
Airport Arrivals

A. Lemetti, T. Polishchuk, R. Sáez, and X. Prats

Abstract Analysis of punctuality of airport arrivals, as well as identification of
causes of the delays within transition airspace, is an important step in evaluating
performance of the Terminal Maneuvering Area (TMA) Air Navigation Services. In
this work we analyse how different weather events influence arrival punctuality and
vertical flight efficiency on example of Stockholm Arlanda airport. We quantify the
impact of the deviations from the flight plans influenced by different weather events,
by demonstrating that they result in significant arrival delays, vertical inefficiencies
and calculating how much extra fuel is wasted due to vertical flight inefficiency
within Stockholm TMA.

Keywords Vertical flight efficiency · Punctuality · Weather impact

1 Introduction

Aviation, probably more than any other mode of transportation, is greatly affected by
weather. Wind direction and speed can make a flight time quite different, for exactly
the same journey. Flight routes can be altered to avoid convective weather, such
as thunderstorms. Severe weather causes delays and cancellations. Airport capacity
can be reduced considerably by low visibility, strong winds, thunderstorms in the
terminal area and runway closures.
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There are several measures of convective weather. The most common is Con-
vective Available Potential Energy (CAPE), which is an indicator of atmospheric
instability that can predict severe weather. When the visibility at the airport drops
below Runway Visual Range (RVR), the airport enforces Low Visibility Procedures
(LVPs). LVPs mean procedures applied at an aerodrome for the purpose of ensuring
safe operations such as spacing planes apart to reduce the risk of collisions, so it
slows things down and decreases the airport capacity which in turn leads to delays
and cancellations.

Reducing fuel waste has a significant environmental benefit as it reduces fuel
emissions. One of the reasons for fuel waste is inefficient vertical profiles. During
the descent phase Vertical Flight Efficiency (VFE) means aircraft leaves its cruising
level at the optimum top of descent and avoids level-off segments after that.

In this paper, we study correlation between the punctuality of arrivals for the
major Swedish airport Arlanda in 2018, and the followingweather phenomena: wind,
visibility and CAPE within the terminal manoeuvring area (TMA). We calculate
delay statistics and additional fuel burn due to deviations from the flight plans.
Furthermore, we compute VFE within Arlanda TMA, together with the associated
fuel waste.

The rest of the paper is organized as follows. In Sect. 2 we review related work
on the topic and provide background information on the methods we use for analysis
of the performance of Stockholm Arlanda airport arrivals.

We present the results of data analysis in Sect. 3 and summarize our findings in
Sect. 4.

2 Background

This section reviews previous work and provides background information related to
analysis of the weather impact on the flight efficiency of airport arrivals.

2.1 Related Work

Classification and analysis of causes of airport delays was a topic of interest for
many years. In early works [1, 2] weather uncertainties are mentioned as the main
contributor to the deviations in airport schedules. According to [3] airport ATFM
delays (19,704min/daily) increased in May 2019 by 6.5% compared to May 2018
which had high delays due to weather and ATC industrial action.

Impact of deep convection and thunderstorms is also subject to ongoing research,
e.g. Steiner et al. [4, 5] and Song et al. [6] investigated its implication both on the
en-route flow management and for terminal area applications. Klein et al. [7] used
a high-level airport model to quantify the impact of weather forecast uncertainty on
delay costs.
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Recent works [8, 9] confirmed the relevance and emphasized the importance of
quantification and analysis of the weather impact on airport operation.

EUROCONTROL developed the methodology used by its Performance Review
Unit (PRU) for the analysis of VFE during climb and descent [10]. Performance
Review Commission of EUROCONTROL made an assessment of air traffic man-
agement in Europe for the year 2018, where among other indicators reviewed air
traffic punctuality and vertical flight inefficiency at the top 30 European airports,
including Stockholm airport Arlanda [11]. In addition, EUROCONTOL PRU con-
tinues working on the development and maintenance of the open access cloud based
data repositories to enable stakeholders to reproduce the performance review results
[12]. EUROCONTROL Experimental Center also develops new performance indi-
cators targeting to capture different aspects of flight inefficiencies in TMA [13, 14],
some of which we use in this work.

In [15] fuel consumption is evaluated for terminal areas with a Terminal Ineffi-
ciency metric based on the variation in terminal area fuel consumed across flights,
reported by a major U.S. airline. Using this metric they quantify the additional fuel
burn caused by Air Traffic Management (ATM) delay and terminal inefficiencies.

Estimation of the flight inefficiencies in terms of extra fuel burn calculated based
on the algorithm proposed in [16] was considered in the scope of APACHE project
(a SESAR 2020 exploratory research project) [17, 18], but mostly for en-route flight
phase. Later Prats et al. [19] proposed a family of performance indicators to measure
fuel inefficiencies. In this work, we apply similar techniques to fuel estimation during
the descent phase within TMA.

Furthermore, in [20] and [21], an analysis of fuel savings of the Continuous
Descent Operations (CDO) with respect to conventional procedures is analyzed. A
reduction in fuel consumption of around 25–40% by flying CDO was reported.

2.2 Weather Phenomena and Metrics

We consider three weather metrics: wind gust, visibility and CAPE.

2.2.1 Wind Gust, Visibility

We use surface level measurements of wind gust and visibility, expressed in meters
per second and meters respectively. Depending on cloud ceiling and runway visual
range the spacing of aircraft on final approach must be increased. Low visibility
reduces the runway capacity for landing aircraft. If this happens during a traffic peak
hour, it causes major disruptions.
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2.2.2 Convective Available Potential Energy (CAPE)

CAPE is the energy a parcel of air has for upward motion, measured in joules per
kilogram of air (J/kg). The higher the CAPE, the faster and higher the air parcel
can rise. Most thunderstorms form in moderately unstable conditions (CAPE up to
1000 J/kg) but any value greater than 0 J/kg indicates instability and an increasing
possibility of thunderstorms and severe straight line winds.

2.3 KPIs

Here we list all the performance indicators we used in this work to evaluate TMA
performance and explain how they are calculated.

2.3.1 Average Arrival Delay

First, we compute the average over the arrival delays for all flights delayed during the
day of consideration. The delay is calculated as a difference between the scheduled
arrival time and the actual time of arrival of the given flight.

2.3.2 ICAO KPIs

We use two KPIs proposed by the International Civil Aviation Organization
(ICAO) [22]: Arrival punctuality and Level-off during descent.

According to ICAO, arrival punctuality (KPI14.2b) is calculated as the percent
of the flights arriving at the gate on-time (delayed less than 15min according to the
schedule). We use the inverse version of this KPI, i.e. percent for flights delayed
more than 15min.

Vertical inefficiencies during the descent phase result from the inability of flights
to keep up CDO. This type of operations enables the execution of a flight pro-
file optimized to the operating capability of the aircraft, giving as a result optimal
continuous engine-idle descents (without using speed-breaks) that reduce fuel con-
sumption, gaseous emissions and noise nuisance. If the aircraft levels at intermediate
altitudes before landing, this descent is considered as vertical inefficient.

For evaluation of VFE we consider KPI19.2, the average time flown in level
flight inside TMA using the techniques proposed by EUROCONTROL in [10] with
small changes. We identify the point of the trajectory in which the aircraft enters
the TMA and use it as a starting point for the calculations (instead of the Top of
Descent (ToD), which may lie outside of TMA). A level segment is detected when
the aircraft is flying with the vertical speed below the certain threshold. We use the
value of 300 ft per minute for this threshold, the minimum time duration of the level
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flight is considered 30 s, and these 30 s are subtracted from each level duration as
suggested in [10].

2.3.3 Additional Time in TMA

The additional time is calculated as the difference between the actual transit time and
the time according to the flight plan. As stated in [14], it represents the extra time
generated by the arrival management and “is a proxy for the level of inefficiency
(holding, sequencing) of the inbound traffic flow during times when the airport is
congested.”

2.3.4 Fuel-Based PIs

Fuel-based PIs capture inefficiencies on tactical ATM layer in vertical domain as
explained in [19]. The objective is to compare the fuel consumption of CDO tra-
jectories with the actual flown trajectories. Fuel-based performance indicators are
calculated using the 4.2 version of the Base of a Aircraft Data (BADA) [23].

The first expression used, known as the Total-Energy Model, equates the rate of
work done by forces acting on the aircraft to the rate of increase in potential and
kinetic energy, that is:

(T − D)VTAS = mg
dh

dt
+ mVTAS

dVTAS

dt
(1)

HereT is the thrust acting parallel to the aircraft velocity vector,D is the aerodynamic
drag,m is the aircraftmass,h is the geodetic altitude, g is the gravitational acceleration
and VTAS is the true airspeed.

The drag force is computed as follows:

D = 1

2
· δ · p0 · κ · S · M 2 · CD (2)

Here δ is the pressure ratio, p0 is the standard atmospheric pressure at mean sea level
(MSL), κ is the adiabatic index of air, S is the wing reference area, M is the Mach
number and CD is the drag coefficient. BADA proposes equations for computing
CD depending on the aircraft configuration, and modelled as a polynomial of lift
coefficient CL.

Three separate thrust models are proposed in BADA, depending on the engine
type: turbofan, turboprop or piston. Each model includes the contribution from all
engines and provides the thrust as a function of airspeed, throttle setting and atmo-
spheric conditions. The general formula of the thrust force, T , is:

T = δ · Wmref · CT (3)
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Here δ is the pressure ratio, mref is the reference mass (obtained from the Propulsive
ForcesModel (PFM)),Wmref is theweight force atmref andCT is the thrust coefficient,
which is a function of Mach number.

For the three engine types, BADA proposes different equations to compute the
thrust coefficient CT depending on the engine rating: maximum climb, maximum
cruise, idle and no rating (direct throttle parameter input).

For estimation of the fuel consumption, BADA proposes once again a different
model depending on the engine type, and also depending on the engine rating. Each
model includes the contribution from all engines and provides the fuel consumption
as a function of airspeed, throttle parameter and atmospheric conditions. The general
formula for the fuel consumption, F , is:

F = δ · θ
1
2 · Wmref · a0 · L−1

HV · CF (4)

Here δ is the pressure ratio, θ is the temperature ratio, a0 is the speed of sound at
MSL in standard atmosphere, LHV is the fuel lower heating value (obtained from the
PFM) and CF is the fuel coefficient, which depends on thrust for non-idle ratings.
For each aircraft model, BADA provides an xml file with the corresponding aircraft
performance data. For instance, the coefficients used to compute the thrust coefficient
CT of the thrust equation (3) are in this file. With the equations stated above, and
the xml files for each aircraft, it is possible to compute the fuel consumption of a
trajectory. The process followed is detailed below:

• Thrust computation: if the aircraft is climbing, max climb rating is chosen and
the corresponding thrust formula (depending on the engine type) is applied. If
the aircraft is descending, an idle rating is assumed. In level-offs, the total-energy
model (Eq. (1)) is used in order to compute the corresponding aircraft thrust (drag
is computed previously with Eq. (2)).

• Fuel consumption computation: for non-idle ratings, the thrust computed in the
previous step is used to obtain the fuel coefficient CF used in Eq. (4). For descents,
idle rating is assumed.

Wind was considered when computing the fuel consumption, and it was obtained
from historical weather data (detailed in Sect. 3.1). Furthermore, a 90% of the max-
imum landing mass has been assumed at the destination airport for all aircraft.

In order to generate the CDO trajectories an optimal control problem has to be
solved as explained in details in [24]. First, a state vector with the initial conditions
is needed. In this paper, it has been chosen as x = [v, h, s], where v is the true
airspeed, h—the altitude of the aircraft, and s—the distance to go. In order to obtain
environmentally friendly trajectories, idle thrust is assumed and speed-brakes use is
not allowed throughout the descent. In such conditions, the flight path angle is the
only control variable in this problem, which is used to manage the energy of the
aircraft and achieve different times of arrival at the metering fix with minimum fuel
consumption and noise nuisance. Therefore, the control vector of the optimal control
problem will be u = [γ].
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The dynamics of x are expressed by the following set of ordinary differential equa-
tions, considering a point-mass representation of the aircraft reduced to a “gamma-
command” model, where vertical equilibrium is assumed (lift balances weight). In
addition, the cross and vertical components of the wind are neglected, and the aero-
dynamic flight path angle is assumed to be small (i.e., sin γ � γ and cos γ � 1):

f =
⎡
⎣
v̇

ḣ
ṡ

⎤
⎦ =

⎡
⎣

Tidle−D
m − gγ
vγ

v + w

⎤
⎦ (5)

where Tidle : Rnx → R is the idle thrust; D : Rnx×nu → R is the aerodynamic drag; g
is the gravity acceleration; w is the wind and m—the mass, which is assumed to be
constant because the fuel consumption during an idle descent is a small fraction of
the total m [25]. The longitudinal component of the wind w : R → R is modelled
by a smoothing spline [26]:

w(h) =
nc∑
i=1

ciBi(h) (6)

Bi, i = 1, . . . , nc, are theB-spline basis functions and c = [
c1, . . . , cnc

]
are control

points of the smoothing spline. It should be noted that the longitudinal wind has been
modelled as a function of the altitude only, as done in similar works [27]. The control
points of the spline approximating the longitudinalwind profile are obtained byfitting
historical weather data (detailed in Sect. 3.1).

In this paper, the trajectory is divided in two phases: the latter part of the cruise
phase prior the ToD, and the idle descent down to the metering fix. Assuming that
the original cruise speed will not be modified after the optimization process, the
two-phases optimal control problem can be converted into a single-phase optimal
control problem as follows:

J = f

vcruise
+

tf∫

t0

(fidle + CI) dt (7)

where f : Rnx×nu → R and fidle : Rnx → R are the nominal and idle fuel flow, respec-
tively; and CI is the cost index, which is a parameter chosen by the airspace user that
reflects the relative importance of the cost of time with respect to fuel costs [28]. The
CI is estimated by assuming that the aircraft was flying at the optimal speed in the
cruise phase, as shown in [29].

To generate the optimum trajectories, five input parameters are used: aircraft
model, cruise altitude, distance to go (i.e., the distance remaining to the metering fix
by following a given route), speed (i.e., the true airspeed of the aircraft in cruise),
and the cost index.
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3 Results

This section describes the data used in this work and presents the results of data
analysis for the Stockholm Arlanda airport in the year 2018.

3.1 Data

In this work we use multiple sources of historical data related to the performance of
Stockholm Arlanda airport in 2018. Flight plans are obtained from the Demand Data
Repository (DDR2, m1 file format) hosted by EUROCONTROL. For the historical
flight trajectories we use DDR2 (m3 file format) and the Historical Database of the
OpenSky Network [30, 31]. The historical weather data is provided by the National
Oceanic andAtmosphericAdministration (NOAA) through theNational Operational
Model Archive and Distribution System (NOMADS) [32].

Aircraft performance parameters for CDO trajectory generation are inputed from
BADA 4.2 [23]. In the case the aircraft model does not correspond to any of the
BADA models, a comparable aircraft in terms of performance and dimensions is
used.

3.2 Analysis of the Weather Impact on TMA Performance

We compare the punctuality statistics and additional time in Stockholm Arlanda
TMA based on DDR2 data with the weather statistics of wind speed, visibility and
CAPE values for the same dates. To calculate VFE KPI (time flown level) we use
OpenSky Network states data as it provides more accurate vertical profile.

First, we plot the data (metrics and KPIs) by days of the year. At some days we
observe strongdependencies of the chosenKPIs from the consideredweathermetrics,
while at other days the dependency is weak. This can be explained by the influence
of some other operational factors or weather phenomena not considered in this study.
For example, in February 2018 (Fig. 1) we can see that the changes in wind gust
enforce the increase of average additional time and average time flown level inside
TMA. Low visibility events can increase the TMA KPIs, which is clearly the case
on February 25. In July 2018 (Fig. 2) high values of the punctuality-related KPIs
(average delay and percent of delayed flights) coincide on some dates with increased
gust, for example on July 27. From July 10 to the end of the month punctuality KPIs
follow the changes of CAPE.

We continue with the deeper analysis of the dependencies between the KPI-metric
pairs by introducing the thresholds in the weather metrics. Because of the nature of
different weather events they can influence the flight performance differently. Strong
wind gust makes aircraft landing problematic or simply impossible especially when
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Fig. 1 Weather metrics (wind gust and visibility) and KPIs (average additional time in TMA and
average time flown level) for the month of February 2018

Fig. 2 Weather metrics (wind gust and CAPE) and KPIs (average delay and percent of delayed
flights) for the month of July 2018

it is above 12 m/s. This obviously results in higher values of all KPIs chosen in this
study, which is shown in Fig. 3.

We discovered, that with visibility lower 5km significantly more flights are
delayed, which indicates that there is an indirect dependency between the corre-
sponding KPI and visibility. Similarly, we observe direct dependencies between all
the KPIs and the other two weather metrics.

To examine the relationship between KPIs and weather metrics we apply regres-
sion analysis to the data for the whole year 2018. We clean the data by removing
the KPI outliers. To remove skewness in weather metrics distribution we filter out



86 A. Lemetti et al.

Fig. 3 Average KPIs over the year 2018 calculated with respect to the following thresholds in the
weather metrics: visibility—5km, CAPE—100 J/kg and gust—12 m/s

Fig. 4 Simple linear
regression for average delay
versus CAPE

data with the boundary values (more 24km for visibility and less than 100 J/kg for
CAPE).

Simple linear regression demonstrates moderate dependency between average
delay and CAPE (R2

adj = 0.5052), which is illustrated in Fig. 4. While the average
delay and visibility show weak dependency in simple regression (R2

adj = −0.0131),
joining these two metrics in multiple linear regression results in better fitted model
(R2

adj = 0.7524). Figures 5 and 6 illustrate the corresponding results.

3.3 Additional Fuel Burn

In order to assess fuel efficiency within Arlanda TMA during the year 2018, we
calculate the fuel waste associated with the vertical flight inefficiency for individual
descent profiles within TMA. For actual trajectories we use both DDR2 and Opensky
Network tracks and compare the results for additional fuel burn. The objective is to
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Fig. 5 Simple linear
regression for average delay
versus visibility

Fig. 6 Multiple linear
regression for average delay
versus visibility and CAPE

compare the fuel consumption of CDO trajectories with the actual flown trajectories.
The CDO were only optimized for the vertical plane, so the distance to go was
obtained from either DDR or Opensky.

First, we compare the fuel consumption of the actual trajectories obtained from
DDR2 m3 data with the CDO profiles obtained with the trajectory optimization
technique explained in Sect. 2.3.4.We calculate the additional fuel burn per day for all
Arlanda airport arrivals during the months of February and July 2018, where we have
discovered dependencies between the weather events and several KPIs. Figures 7 and
8 illustrate the results. We calculate that in both months CDO provide a reduction of
fuel consumption around 60–65%, which constitutes significant inefficiency of the
vertical profiles actually flown during these months.

It is important to recall that we calculate the fuel inside TMA only; if the whole
descent was compared, the difference would have been lower, as level-offs at lower
altitudes are more detrimental for efficiency than those at higher altitudes.
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Fig. 7 Additional fuel burn
(in percent per day) due to
inefficient vertical profiles,
calculated as the difference
between the actual flown
trajectories (DDR m3) and
the optimal trajectories,
in total fuel consumption per
day inside TMA for the
month of February 2018

Fig. 8 Additional fuel burn
(in percent per day) due to
inefficient vertical profiles,
calculated as the difference
between the actual flown
trajectories (DDR m3) and
the optimal trajectories,
in total fuel consumption per
day inside TMA for the
month of July 2018

Similar computations have been made by using Opensky data for the month of
February and July 2018 (Figs. 9 and 10). While the fuel consumption is higher than
with DDR (usually the difference is between 1 and 10%), the additional fuel burn
with respect to CDO remains almost the same.

Absolute values for the fuel consumption are shown in Figs. 11 and 12, repre-
senting the average fuel consumption over the flights per day during the months of
February and July 2018.

Fuel consumption suffers significant changes throughout the month. First of all,
the calculation took into account wind components, which demonstrated the impact
on the efficiency of vertical profiles. Hence, we observe the decrease of the fuel
consumption during the corresponding days with the lowest gust values reported
(e.g. on February 17, Fig. 1, gust-average time flown level plot), and increase of
the fuel consumption during the days with the highest gust values (e.g. February
25–26). Moreover, the increase of the fuel burn during the days with low visibility
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Fig. 9 Additional fuel burn
(in percent per day) inside
TMA due to inefficient
vertical profiles, calculated
as the difference between the
actual flown trajectories
(Opensky tracks) and the
optimal trajectories, for the
month of February 2018

Fig. 10 Additional fuel burn
(in percent per day) inside
TMA due to inefficient
vertical profiles, calculated
as the difference between the
actual flown trajectories
(Opensky tracks) and the
optimal trajectories, for the
month of July 2018

Fig. 11 Average fuel
consumption over the flights
per day (in kg) for actual
flown trajectories (DDR m3
and Opensky tracks) and
CDO within TMA for arrival
flights in Stockholm Arlanda
during the month of
February 2018
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Fig. 12 Average fuel
consumption over the flights
per day (in kg)for actual
flown trajectories (DDR m3
and Opensky tracks) and
CDO within TMA for arrival
flights in Stockholm Arlanda
during the month of July
2018

(e.g. the same days February 25–26, visibility-time flown level plot on Fig. 1) can
be a result of Low Visibility Procedures and the connected changes in the descent
profiles because of the difficult weather condition.

The extreme CAPE values on 28–29 of July (CAPE curves on plot Fig. 2) result in
the increased time flown level (the figure is not presented here), and correspondingly
increases the fuel burn at the same days that can be explained by changed landing
procedures during the days with high convective instabilities.

Finally, it is important to highlight the advantages (and some disadvantages) that
Opensky data represents over DDR data. First, the better data granularity of Opensky
data makes it a better option to estimate fuel consumption inside TMA. While DDR
usually provides only 3 or 4 segments inside TMA, in Opensky there are about 60–
80 waypoints (depending on the trajectory), which makes it more reliable. However,
there are also some errors in Opensky data, which tend to cause very high values
when computing the fuel consumption. Several data outliers were found in Opensky
tracks. For instance, in some trajectories there are some repeated waypoints, even
with the time advancing (which would mean the aircraft remains still, which is not
possible). There are other situations where the latitude and longitude do not seem
to correspond to the trajectory we are dealing with, and some of the speed values
that could be extracted from Opensky tracks are wrong too. Since all these problems
were found in less than 1% of flights, in this work we chose to remove these flights
in order to have proper fuel consumption values. However, in future work it would
be interesting to find an outlier removal method in order to efficiently solve this
problem.
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4 Conclusions and Future Work

In this paper we studied how different weather phenomena influence arrival punctu-
ality and VFE on example of StockholmArlanda airport. We analyzed the dependen-
cies between certain KPI-weather metric pairs. Performance degradation during the
days when such weather events as low visibility, strong gusts or high thunderstorm
probability were detected, result in significant amount of additional fuel burn. Our
calculations show that CDO provide a reduction of fuel consumption around 60–
65%, which constitutes significant inefficiency of the vertical profiles actually flown
during the observed months. In addition, we shared our experience working with
DDR and OpenSky data sources and discussed their applicability for calculations
inside TMA, outlining the advantages and disadvantages of both.

The results of this work create a base for future studies of the impact of different
factors such as ATM automation or different weather conditions on the arrival per-
formance. In future work we plan to explore other sources of historical weather in
order to add more weather metrics (snow, icing, cloud ceiling), as well as variations
in the traffic intensity into our analysis.
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AcListant with Continuous Learning:
Speech Recognition in Air Traffic Control

J. Rataj, H. Helmke, and O. Ohneiser

Abstract Increasing air traffic creates many challenges for air traffic management
(ATM). A general answer to these challenges is to increase automation. However,
communication between air traffic controllers (ATCos) and pilots is still widely
analog and far away from digital ATM components. As communication content is
important for the ATM system, commands are still entered manually by ATCos
to enable the ATM system to take the content of the communication into account.
However, the disadvantage of this procedure is significant additional workload for the
ATCos. To avoid this additional effort, automatic speech recognition (ASR) can auto-
matically analyze the communication and extract the content of spoken commands.
DLR together with Saarland University invented the AcListant® system, the first
assistant based speech recognition (ABSR) with both a high command recognition
rate and a low command recognition error rate. Beside the high recognition perfor-
mance, AcListant® project revealed shortcomings with respect to costly adaptations
of the speech recognizer to different air traffic control (ATC) environments. Machine
learning algorithms for the automatic adaptation of ABSR to different airports were
developed to counteract this disadvantage within the MALORCA project, funded
by Single European Sky ATM Research Programme 2020 Exploratory Research
(SESAR-ER). To support the standardization of speech recognition in ATM, an
ontology for ATC command recognition on semantic level was developed to enable
the reuse of expensively manually transcribed ATC communication in the SESAR
Industrial Research project PJ.16-04. Finally, results and experiences are used in two
further SESAR Wave-2 projects. For the first time, this paper presents the evolution
from the idea of ABSR born in an academic environment, starting with the project
AcListant®, to industrialization ready research prototype of technology reediness
level (TRL) 4. In this course, relevant industrial needs such as costs and necessary
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standardizations supported by tailored European funding scheme are considered. The
addressed SESAR projects are MALORCA, PJ.16-04, PJ.10-96 HMI Interaction
modes for ATC centre, and PJ.05-97 HMI Interaction modes for Airport Tower.

Keywords Assistant based speech recognition ·Machine learning · AcListant® ·
MALORCA · PJ.16-04 · Ontology

1 Introduction

The increasing air traffic creates many challenges concerning safety, capacity, effi-
ciency, and environmental performance for ATM. Additionally, economic pressure
exists to increase productivity in ATC to keep flying affordable. The general answer
of themainATMdevelopment programs, such as SESAR (SingleEuropeanSkyATM
Research) [1] in Europe, NextGen (Next Generation Air Transportation System) in
US [2], CARATS (Collaborative Actions for Renovation of Air Traffic System) in
Japan [3] or CAAMS (Civil Aviation ATM Modernization Strategy) in China [4]
to fulfill these challenges is to increase digitization and automation considerably. In
this case, digitization means to transform analog data into digital formats, which, in
turn, is the basis for modern automation solutions. Already today, a high degree of
digitization exists in ATM. Radar trackers, flight data processing systems (FDPS)
as well as other systems represent the real world in digital environment. However,
one central element of ATC, the communication between ATCos and pilots, is not
digitized yet. The communication still relies on analog radio, which—independent
of CPDLC (Controller Pilot Data Link Communications) [5–7]—will exist during
the next decade or even longer.

The content of this communication is of utmost importance for the digital ATM
systems world. Hence, the spoken commands of the ATCos must be digitized to be
available in the digital world. Today, this is manually performed byATCos via mouse
or keyboard in parallel to their voice communication with the pilots. In this way, the
digital world understands the impact of human communication on a certain traffic
situation. As advantage of digitization, the controller can benefit from decision and
negotiation support systems. However, a huge disadvantage is the significant effort
for the ATCo concerning additional manual inputs into the digital system. Hence,
the question arises whether the advantages by support systems, such as an arrival
manager outweigh the disadvantages of additional controller workload.

An approach to avoid the above mentioned disadvantages is to use automatic
speech recognition (ASR). ASR enables to automatically extract the content of
uttered commands and digitize them for ATC systems without additional ATCo’s
workload. Therefore, such a technology seems to be very beneficial for further digi-
tization of ATC and will increase automation. Additionally, speech recognition tech-
nology gathered a high interest based on popular consumer applications, such as
“Siri” or “Alexa”. Based on such applications and the large market behind, it can be
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assumed that the technology will develop rapidly and can be adapted to ATC with
moderate effort.

This article describes for the first time the entire development process of assistant
based speech recognition (ABSR) in the academic environment and moving towards
an industrializable prototype aswell as first developments of standards in this context.
Furthermore this work presents the references to our original work describing the
algorithms, validation trials and the results. The special challenges presented in
Sect. 2, which are posed especially to speech recognition in operational air traffic
control environment, are the starting point for the novel approach to speech recogni-
tion are. In addition, Sect. 2 outlines the overall development process of the ABSR
in air traffic control with the associated work in various projects. In Sect. 3, the paper
discusses the novel approach utilizing predictions of ATCo behavior to improve
speech recognition. An innovative problem solution in the academic environment
is not always sufficient for the industrialization. For this reason, further research
activities accompanying the industrialization to reduce implementation costs were
necessary in order to utilize speech recognition in an operational environment. This
is the subject of Sect. 4. The basic approach at this point was machine learning
with the intervention that training of acoustic model, language model, and command
prediction model iteratively enhance each other. Finally, Sect. 5 describes the stan-
dardization efforts required for industrialization, which took place in an industrial
environment. This development was enabled by partially coordinated funding instru-
ments mentioned in the article. The resulting projects were AcListant® based on the
Helmholtz Validation Fund, MALORCA based on SESAR Exploratory Research
and PJ.16-04 based on SESAR Industrial Research. Section 6 closes and gives an
outlook.

2 Evolution of ASR in ATC

Based on the literature, speech recognition for ATC was used in some places with
medium success [8, 9]. First attempts to use standard speech recognition for the
controller working position in our labs led to disappointing results concerning the
recognition rate. Tests in the DLR research simulator ATMOS (Air Traffic Manage-
ment and Operation Simulator) with standard ASR systems—adapted to ATC envi-
ronment—resulted in recognition rates from 65 to 85% per controller command.
Such recognition rates will not be accepted by ATCos in an operational environ-
ment. It is known from other projects concerning Arrival or Departure Management
that ATCos put very high demands on the capabilities of their support systems. If
the system could not fulfill the expected abilities, the system will be rejected by
the ATCos. Then, it is very difficult to get a second chance to introduce this new
technology into ATC.

In order to avoid a rejection by the ATCos, it was assumed that high recognition
rates are necessary not knowing exactly what high means. Based on this reasoning
the first insight to solve the problem was to define a new assessment metric because
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the metric, word error rate (WER), to evaluate the performance of an ASR system
as used in the speech recognition domain [10], is not the deciding value for the
ATCo’s acceptance of the resulting system. More important is the correctness of
the recognition on command level and not of single words. This insight creates
a further considerable challenge for ASR, to deliver a high command recognition
rate (CRR). The CRR hereby is defined as the percentage of correctly recognized
commands divided by all given commands. An ATC command itself consists of
several elements (e.g., callsign, command type, and command value) each consisting
of several words, hence to achieve a low command recognition error rate (CER) is
much more challenging than just a low WER. Details on CRR and CER calculation
can be found in [11].

In discussions with ATCos from several European countries within the framework
of the SESAR 2020 Industrial Research project PJ.16-04 CWP HMI (Controller
Working Position Human Machine Interface), the requirements for ASR applica-
tions in ATM context were specified. Themost important one is a lowCER. Based on
statements of ATCos, the CER is especially important, because it causes additional
workload to detect an error. Hence, the ATCos prefer to manually input unrecog-
nized commands instead of detecting wrongly recognized commands with additional
manual correction effort. The decisive requirement follows from this that the CER of
an ASR system should be exceptionally low. On the other hand, an acceptable high
CRR is also indispensable.

To achieve both, high CRRs and low CERs, DLR together with Saarland Univer-
sity invented the AcListant® system [11], which will be detailed in the next section.
This system bases on a specific context, which is gained using the knowledge of
a controller assistant system. Hence, AcListant® (Active Listening Assistant) is
denoted as Assistant Based Speech Recognition (ABSR) system, which creates a
new class of speech recognition systems. AcListant® validation trials have demon-
strated that both, highCRRs (>90%) and lowCERs (<3%), are possible.Additionally,
it was shown that controller assistant systems, e.g. Arrival Managers, benefit from
the knowledge of the content of the communication between controller and pilot
[12, 13].

The follow-up project AcListant®-Strips, led by DLR, successfully validates
the hypothesis that ABSR reduces ATCo’s workload for radar label maintenance.
Beyond that, the reduced workload results in an increased controller performance. In
Düsseldorf approach scenarios of the validation trials carried out with German and
Austrian ATCos, the average flight time in the Terminal Maneuvering Area (TMA)
was reduced by 77 s per aircraft and a reduced average flight length of 5 nautical
miles was shown [14, 15].

The project also revealed an important shortcoming: The expensive adaptations
of ABSR to different environments and user groups with respect to airspace, airports,
dialects, local phraseology etc.After achieving the requirements of highCRRand low
CER, reducing adaptation costs was the next challenge, which needed to be fulfilled
for an industrialization of the research results. Hence, the next development step was
driven by the question on how to reduce the costs for deployment andmaintenance of
an ABSR system. The considerations concerning cost reductions resulted in the idea
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for the SESAR 2020 Exploratory Research project MALORCA (Machine Learning
of Speech Recognition Models for Controller Assistance), which was led by DLR
[16] The goal of this project was to substitute the expensive manual adaptation work
of AcListant® by automatic procedures. In MALORCA a first set of mechanisms
based on machine learning were developed by the project partners (Saarland Univer-
sity, Idiap, Austro Control, Air Navigation Service Provider of CzechRepublic (ANS
CR) and DLR) to enable an automatic adaption of AcListant® to a certain environ-
ment. These mechanisms were exemplarily applied to the approach areas of Vienna
and Prague using recorded real controller communications. The resulting CER after
learning for Vienna approach was 3.5%. For Prague a CER of 0.6% was achieved
[17, 18].

In parallel to the work in SESAR Exploratory Research, activities to foster speech
recognition in an industrial environmentwere performed in SESAR2020Wave 1with
theASRActivity in the Industrial Research solution PJ.16-04CWPHMI led byDLR.
The goal of this project was to increase the ATCos’ productivity and to support the
industrialization of speech recognition in ATC. The process of transforming an audio
signal to a sequence of words is called transcription, i.e. the voice to text process.
The transformation of the word sequence to the relevant ATC concepts is called
annotation. MALORCA has shown that different experts agree on the transcription
of a controller utterance, but their annotation results may be different. This creates a
problem concerning automatic understanding of controllers’ voice. Therefore, a set
of rules for annotating a sequence of words to ATC concepts was developed, i.e. an
ontology. This ontology was agreed in SESAR project 16-04 by 15 European ATC
partners setting the basis for a standard in this field [19]. After having presented
the evolution from AcListant® to an agreed ontology for command annotation the
projects AcListant®, AcListant®-Strips, MALORCA and PJ.16–04 are presented in
more detail.

3 AcListant® and AcListant®-Strips

Currently, ASR in ATC is only used in training, i.e. to replace pseudo-pilots. It
is reasonable for training purposes to let an ATCo repeat utterances due to unde-
sired deviations regarding the standard phraseology with resulting incorrect speech
recognition. Furthermore, training situations are not as critical as real life situations,
hence performance limits ofASR for training are acceptable, but not in an operational
environment.

To enable the digital ATCworld to understand the communication betweenATCos
and pilots is very beneficial, even more, if this requires no additional workload for
the ATCo, which is possible by using speech recognition. As mentioned above to
use ASR in operation, ATC specific requirements have to be taken into account, such
as high CRRs and low CERs to be successful. In order to be successful, the gold
standard in the ASR community, the WER, for assessment and evaluation has to be
extended, because this standard is not descriptive enough as metric for ATC. The
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specific ATC requirement is to know if the content of a controller command, the
concept, is recognized. For example, in the utterance “good morning lufthansa one
two three descend flight level one two zero” the meaningful concept from an ATC
perspective is “DLH123 DESCEND 120 FL”. Hence, to recognize “good morning”
is not necessary, because it contains no relevant information and thus misrecognition
is irrelevant. Taking this into account the new metrics CER and CRR [11] were
defined for ATC applications.

Thework concerningASR started at DLR and SaarlandUniversitywith a standard
ASRwith an acousticmodel adapted to real ATCo-pilot communication.Many hours
of speech samples were recorded, transcribed word-by-word, and annotated with
the included semantic content afterwards. Although already considerable effort was
spent it was decided to stop this approach of improving just a standard ASR engine.
A radical new approach was necessary.

The new approach—patented and developed by DLR and Saarland University—
bases on the intensive use of situational context to improve performance. ASR
systems, which use current context are known, but not those that take a prediction
of the situation into account. Possible sources for predictive context are controller
assistant systems. These systems, such as an arrival manager (AMAN), predict the
course of future situations to support the ATCo in planning his next actions. This
prediction is considerably dynamic based on changing situation elements.

Using an assistant system, see Fig. 1, results in the new ABSR concept. For
ABSR, theDLRAMAN4D-CARMA(4Dimensional CooperativeArrivalManager)
was used to provide the current and predicted situation of relevant air traffic. This
comprises static and dynamic knowledge of the traffic and airspace situation handled
by the 4D-CARMA—Core Components. Static knowledge considers e.g., airspace

Fig. 1 Components of assistant based speech recognition [11]
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structure with routes and waypoints, airspace sector frequencies, minimum separa-
tion, etc. Dynamic knowledge bases on the aircraft state vectors and flight phases
as well as relevant planning from AMAN modules such as aircraft sequences or
distances-to-go. Hence, commands should, e.g., only contain aircraft callsigns that
are currently flying in the relevant airspace. Furthermore, knowing an aircraft is in
its landing phase, descend and reduce commands are more probable than climb and
increase commands. With the knowledge of the airspace structure, also reasonable
heading values can be forecasted, because ATCo mostly follow certain routes or
direct to certain waypoints.

This above described context knowledge of the assistant system is used by the 4D-
CARMASpeechComponents, startingwith the “HypothesesGenerator” component.
The “Hypotheses Generator” does not know exactly which commands the controller
will give in the future, but it knows which commands have a higher probability than
others in the current and future situation.

These hypotheses are used as input for the “Speech Recognition” block, which
consists of the components: “Speech Recorder”, “Lattice Generator”, “Speech
Recognizer”, and “Command Extractor”. A microphone is connected to “Speech
Recorder” to record the signal as wave file. The “Lattice Generator” creates a search
space for the “Speech Recognizer” using the output of the “Hypotheses Genera-
tor”. Hypotheses are of good quality, if they are correct and if just a few commands
are forecasted instead of everything that is possible in theory. Hence, the lower the
number of hypotheses, the smaller the search space for the speech recognizer. The
extracted commands are sent back to the “Plausibility Checker” component, which
uses context knowledge and command hypotheses to reject recognized commands.
The “Plausibility Checker” divides the recognized commands into three sets:

• Commands immediately accepted, i.e. recognized commands being predicted and
also being plausible.

• Commands furthermonitoredwith respect to radar data, i.e. recognized commands
which are either predicted or have high plausibility values.

• Commands immediately rejected, i.e. recognized commands which are not
predicted and with low plausibility values.

The “Command Monitor” verifies commands monitored by continuous compar-
ison to radar data. If, e.g. a descend command to flight level 90 was recognized and
the aircraft did not descend after a predefined time, the command is transferred to
the set of “commands rejected”.

The validation of the ABSR system was performed in two related projects AcLis-
tant® and AcListant®-Strips. In AcListant® the recognized speech was used to
support an AMAN as well as the ATCo by avoiding manual inputs to maintain the
system. The flight information itself was documented on strips in electronic or paper
form or on the radar screen in the aircraft label, depending on the simulation run. The
information comprises of, e.g., callsign, destination, or route information, clearances
regarding altitude, speed, direction, or procedures, as well as special flight situations
like emergencies.

InAcListant® two dimensions of validation questionswere addressed (see Fig. 2).
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Fig. 2 AMAN functionality versus workload diagram

The first dimension concerns the functionality benefits for the AMAN depending on
the input. The second addresses the workload of the ATCo depending on the kind of
input. The difference between square 2 and 4 is the additional input for the AMAN
based on ATCos’ communication. The difference between square 3 and 4 is the
kind of input. To validate the increasing functionality, simulation runs with standard
AMAN (square 2) and runs with an AMAN supported by ASR creating additional
inputs (square 4), were conducted. To quantity the workload reduction, additional
runs with an AMAN, either with manual input device (square 3) or with ASR (square
4), were performed. Square 1 illustrates the situation without any controller support.

In the baseline scenario, i.e. square 2 in Fig. 2, for AcListant® trials the flight
information were handled with paper flight strips as usual at Düsseldorf approach.
In a second scenario, i.e. square 3, the ATCo had to manually input the clearances
by mouse and keyboard, which emulates the situation with an electronic flight strip
system.

The third scenario, i.e. square 4, based onABSR usage. In this scenario, theABSR
system listened to the communication between ATCo and pilots. After the speech
recognition, the ATCo had the possibility to confirm, correct, or reject the output
of the recognizer. Two special test scenarios were chosen to be able to quantify the
functionality benefits of a listening AMAN. The first one addressed an emergency
situation caused by a sick person on board, the second one a runway closure. In
these cases, an early re-planning of the AMAN was necessary to support the ATCo.
The re-planning can be triggered by observing the radar data, by manual input of
the commands or by speech recognition. Observing the radar data results in delayed
system reaction andmanual input results in additional ATCoworkload. Using ABSR
solves both issues by automatic and fast system input.



AcListant with Continuous Learning … 101

Fig. 3 Basic validation setup during final trials

The set-up for the validation trials consisted of a controller working position
(CWP), a traffic simulation and two pseudo-pilot stations. The CWP comprised
of radar screen, weather display, radar overview, speech log screen, mouse and
keyboard (see Fig. 3). To measure the workload, an instantaneous self-assessment
(ISA) test was used. For trials concerning speech recognition, it was necessary to
involve different kind of voices. Hence, the participating controllers were selected in
a way that there were male and female participants as well as speakers from different
countries to take different accents into account.

In AcListant®, it was shown that CRRs of more than 95% are possible using an
AMAN to reduce the search space of the speech recognizer. However, the CER was
still above 7% and without “assistant based” nearly 20%, which is assumed to be not
acceptable. Using also the knowledge from the assistant system to reject commands,
i.e. the “Checker” component, the CER was reduced below 2.5%.

The prize for the checker is a decreased recognition rate from 95 to 91%, because
correct recognitions were rejected also. The results in Table 1 are based on approx.
4,000 controller commands given in 23 simulation runs. The sum of CER and CRR
can be above 100% due to the Levenshtein distance definition [10]. This distance is

Table 1 Command
recognition and command
recognition error rates

Recognition rate (%) Error rate (%)

ASR without AMAN 84.0 19.7

ABSR/AMAN 95.8 7.4

ABSR with checker 91.0 2.5
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Table 2 Non-conformance of planned and flown trajectories when comparing different AMAN
support levels

Support Condition Baseline AMAN AMAN + ABSR

Average of 3 ATCos based on 69 aircraft (%) 18.7 19.9 8.5

defined here as the minimum number of deletions, substitutions, and insertions to
transform one sequence of commands into another one. Hence, if only one command
is really said, but three are accidently recognized, we have at least two insertions,
which results for this example in a CER of at least 200%.

Furthermore, it was shown that speech recognition improves the adaptation speed
of an AMAN on changes in the airspace situation. In the baseline, the AMAN output
was not visible to theATCo. Nevertheless, the AMAN runs in background generating
trajectories which are compared with the ones resulting from the ATCo’s commands.
Table 2 shows the percentages of non-conformance of those trajectories.

Column “AMAN” shows the non-conformance if the AMAN supports the ATCo,
but the AMAN gets no input from the speech recognizer. The column “AMAN +
ABSR” shows the results, when the AMAN could rely on ABSR. In the case of the
visible AMAN, the non-conformance increases from 18.7 to 19.9%. It seems that
ATCos tend to slightly deviate if they see AMAN recommendations. When AMAN
is supported by ABSR, non-conformance rate is decreased by more than 50%, from
19.9 to 8.5%.

Table 2 clearly shows that the internal plan of the AMAN is more conform to the
mental picture of the controller if the AMAN is able to listen to the ATCo. The main
results of AcListant® trials [11] are:

• AMAN adapts much faster if the ATCo deliberately deviates from the planning
of the assistant system.

• ABSR reduces significantly the deviation between the ATCo’s and the assistant
system’s plan.

• ABSR is able to achieve acceptable CRRs (>90%) and CERs (<3%).
• ABSR significantly reduces ATCo’s workload.

In AcListant®-Strips only the difference between the manual input of flight infor-
mation and ABSRwas taken into account. The goal was to quantify benefits of using
ABSR as input mechanism to maintain the digital ATC systems. Therefore, the focus
was on the workload of the ATCo and the work efficiency. Additionally to known
workloadmeasurement tools, we used a secondary task to be performed by theATCo.
The goal of the secondary task was to sort a deck of 48 cards into six decks for each
playing card type (9–10-Jack-Queen-King-Ace) and name at the end one to four
randomly missing cards. The test subjects were instructed to stay at the ATC task
as long as the task requires it. The time needed to sort cards and finally identify the
missing ones served as an objective value for user workload. Beside the hypothesis
to reduce the workload, it was further assumed that the working efficiency increases
based on avoiding head down times and more remaining time to guide the air traffic.



AcListant with Continuous Learning … 103

Hence, in one of the two validation scenarios, a very high traffic density was chosen.
Eight controllers from Germany and Austria performed different test runs with and
without ABSR support [14].

The following results were found in these trials: The ATCos were able to sort
twice as many decks of cards as without ABSR support and maintained flight infor-
mation more precisely. The ATCos invest 30% of their working time to input issued
commands by mouse, if no ABSR support is available. This effort is used exclu-
sively to enter known information into an electronic system without any effect on
efficiency and quality of the work of the ATCos. Using ABSR changes this situation
considerably. The results of the trials have shown that ATCos use only 10% of their
working time to maintain flight information when being supported by ABSR. These
10% of working time include the time to check, confirm, and reject outputs of the
speech recognizer.

The ATCos were very confident with command recognition rates and command
recognition error rates, i.e. they appreciated the automatic aircraft radar label input.
They even encouraged having a reaction time of a few seconds to visually check
the recognized commands in their HMI instead of actively acknowledging each
recognized label input. If ATCos did not intervene during this time, the ATC system
should automatically accept the displayed recognition output. It was further found
that manual ATC system input by ATCos via mouse and keyboard showed no better
quality with respect to accuracy of command values and completeness of inputs.

The trials have also shown that a significant reduction of ATCo workload has
an effect on throughput and ATCo’s efficiency. One to two inbounds per hour for
Düsseldorf are possible. Increased throughput and ATCo’s efficiency are possible,
because released cognitive resources can be used to better guide air traffic. For the
Düsseldorf TMA a benefit of 77 s reduced flight time was quantified. This addi-
tional flight time is mostly on downwind. If we assume flying in flight level 70 with
250 knots of calibrated air speed, an A320 consumes 2700 L per hour resulting in
roughly 50–65 L of reduced fuel consumption per aircraft. One liter of kerosene is
0.8 kg resulting in 3.15 kg of CO2. Therefore, application of speech recognition can
relieve the environment by about 130 kg CO2 per flight [15].

4 Implementation Costs

Even impressive results concerning ATC performance indicators by automatic main-
tenance of flight information are not sufficient to avoid critical questions concerning
costs. Speech recognition induces costs by procurement, introduction, and mainte-
nance. Procurement costs base on market driven company decisions. Introduction
costs occur, because an ABSR system has to be adapted to users and environments.
Maintenance costs are driven by adapting the ABSR system if environment changes.
According to changes in the user group, an adaption is only necessary if these changes
are significant. The main cost driver for the adaption is the manual work performed
by experts. Experiences in AcListant® have shown that adaptation and maintenance
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costs of about one million euros are reasonable adaptation cost for a midsize airport.
To reduce such costs the manual work has to be automated.

Cost savings further allow a large number of midsize airports to use ABSR tech-
nology because it becomes affordable for them. If they use ABSR for flight informa-
tion maintenance in the TMA, it is possible to save 130 kg CO2 per flight to relieve
environment, as outlined in Sect. 3. Collecting all additional airports, which are able
to afford such a system in case of strongly reduced costs, will have a noticeable
impact on the environment. Beside this benefit, additional benefits will occur, using
ABSR in ATC, like the increased performance of controller assistant systems as
shown above. Furthermore, the availability of transcribed and annotated controller
commands can also be used for many off-line analyses.

To enable thework to achieve cost reductions, an extended team around theAcLis-
tant® partners gained funding from Horizon 2020 SESAR Exploratory Research for
the,DLRcoordinated projectMALORCA.Thegoal of the projectwas to usemachine
learning algorithms to enable a generic, effective and especially cheap approach to
adapt ABSR to a specific environment. A major step to achieve MALORCA goals
was to separate environment and user dependent parts of the ABSR software from the
independent ones. To achieve this, the ABSR system was disassembled into concep-
tual modules for the specific tasks INPUT, TEXT, COMMAND, and USER. The
INPUTmodule supplies ABSR with voice signal input, surveillance data (e.g., radar
data) and static airport dependent inputs (e.g., waypoints, frequencies). Based on data
from INPUT, the TEXTmodule performs tasks related to the automatic speech recog-
nition, i.e., transcription resulting in different sequences of words for one utterance.
The COMMAND module translates sequences of words into controller commands
using the output command prediction. Finally, the USERmodule provides the output
of COMMAND to a user with an appropriate human machine interface or to another
system. The conceptualmodules consist ofmodels, which are application (area) inde-
pendent and models, which are application dependent. The models are automatically
learned by machine learning algorithms.

The acoustic model is based on deep neural networks (DNN) and is automatically
trained from transcribed and untranscribed data. If more than two hours of training
data were available, speaker dependent acoustic models already outperform speaker
independent models provided that the speaker is surely known. The lexicon, i.e. the
word list and their pronunciation was manually updated by adding waypoints and
some local words for greetings and good-bye. The language model consists of an
N-gram statistical langue model and was trained by supervised learning.

For each command type (e.g., DESCEND,HEADING) a prediction area is created
and subdivided into subareas of 1 nm by 1 nm. Additionally, a set of predefined rules
to each command type is added, e.g. IF flight type is arrival AND controller working
position is Feeder AND speed >220 knots. If the “Hypotheses Generator” detects
that a lat/long position of an aircraft is inside an area of a specific command type and
the rule condition for this area is true, the command values related to that flight and
command type are predicted for that aircraft. For each command type the areas are
learned by unsupervised learning, i.e. from automatically annotated commands.
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The inventionof theMALORCAprojectwas that acousticmodel, languagemodel,
and command prediction model iteratively enhance each other. The basic acoustic
model results in automatic annotations of controller utterances. These annotations
are used to train the command prediction model, which classifies the automatic
annotations into good and bad training data elements. An automatic annotation,
which is not predicted, is a bad training example. This classification is used in the
next iteration to improve the acoustic model, which results in better annotations to
improve the command prediction model etc. More details of model adaptation by
machine learning are provided in [18] and [20].

After adapting all models the basic ABSR system could iteratively be improved
with machine learning increasing the CRR from 80% to 92% for Prague, and from
60% to 83% for Vienna respectively. The 80% for Prague correspond to the case that
no automatically transcribed data was available and the 92% include the usage of
18 h, i.e. 100%, of the automatically transcribed data set. The starting point of 60%
CRR for Vienna data was on the one hand caused by worse audio quality and on
the other hand by the higher variability of deviations from standard phraseology by
Vienna ATCos. The CER could be reduced from 4.1 to 0.6% for Prague and from
10.9 to 3.2% for Vienna. For Vienna also 18 h of untranscribed and four hours of
transcribed and annotated data were available.

5 ASR Towards Industrialization

In the SESAR2020 Industrial Research project PJ.16-04 the ASR activity is fostered
on a broad basis bymany project partners. NineteenEuropean affiliations fromfifteen
different countries contributed to maturing the technology readiness level (TRL) to
TRL4. The overall aimof the projectwas to increaseATCo’s productivity. Supporting
companies consisted of European air navigation service providers, threeATMsystem
providers, and research/consultancy organizations [21].

One achievement of the ASR activity was the definition of an ontology for anno-
tation of ATCo commands [19]. The ontology is a set of rules on how to formally
understand the content of an ATCo utterance which can consist of multiple concepts.
Before extracting concepts, transcription of utterances is required. An example of
a transcription and the agreed annotation of concepts from this example are shown
in Fig. 4. Each utterance is annotated as a series of callsign-instruction pairs. The
instruction can consist of a mandatory command part and optional conditions. The
command itself is composed of a type (see example in Fig. 5) and in most cases of
a value, a unit, a qualifier and a condition as shown in the given example above.

The developed ontology currently consists of 120 different command types for
the en-route, approach and tower phase. It takes the ICAO phraseology and CPLDC
protocol into account. However, the ontology sometimes goes beyond or is more
general to satisfy the needs to harmonize integration of ASR into controller working
positions.
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Fig. 4 Basic scheme of the ontology for controller command annotation with sub-parts of an
instruction and example commands

Fig. 5 Sub-parts of command annotation; example: altitude commands

The PJ.16-04 partners conducted several different validation exercises in 2018
and 2019 concerning ASR. One exercise from THALES, DLR, ANS-CR, Integra,
and Austro Control (ACG) integrated different components to an ABSR system for
Prague and Vienna approach [22]. DLR provided the hypotheses generator to predict
controller commands and the checker component. They were used to improve the
commercial ASR engine used byTHALES.Validation trialswithCzech andAustrian
ATCos in the THALES SkyCentre proved that the hypotheses generator and the
command checker significantly reduced the CER and thus in an environment similar
to real ATC operations rooms.

Another exercise of PJ.16-04 compared issued clearances from Hungarian and
Lithuanian ATCos in multiple remote tower environments with controller command
predictions, developed by DLR [23]. To the best of our knowledge this was the
first time that controller command prediction has been developed for a tower CWP.
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Fig. 6 Multiple remote tower trials at DLR Braunschweig

Furthermore, it was the first to deal with a multiple remote tower environment fore-
casting controller commands for different airports in parallel. The command predic-
tion was tested in a set-up for the PJ.05-02 multiple remote tower trials at DLR
Braunschweig, see Fig. 6. The complete trials generated 107 recorded simulation
runs. The command prediction error rate for annotated trials was 7.3%, i.e. 93% of
the commands given by the ATCo were predicted [23].

6 Conclusions and Outlook

The paper presents the evolution of Assistant Based Speech Recognition (ABSR)
introduced by DLR and Saarland University. AcListant® project has shown that both
acceptable CRRs (>90%) and CERs (<3%) are possible.

AcListant®-Strips even improvesASRperformance (above 95%and below1.7%)
and quantifies the benefits of ABSR: Controllers’ “clicking time” is reduced by a
factor of three resulting in two landings more per hour and 60 L of kerosene saving
per inbound flight based on released cognitive ATCo resources. The command recog-
nition and error rates were classified as totally sufficient by ATCos that participated
in the ABSR trials.

MALORCA developed generic reusable modules and models. The latter ones can
automatically be trained bymachine learning algorithms. This result in reduced adap-
tation costs. SESAR2020sWave 1 funded project 16-04 enables exchange of training
data and reduced transcription and annotation effort, because the main European
ATM players agreed on an ontology for command annotation.

SESAR2020s Wave 2 further promotes activities on ABSR with solutions PJ.10-
96 and PJ.05-97 that were started end of 2019. Solution 97 foresees validation trials
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with an ABSR system integrated into a tower environment. This comprises trials at
DLR in Braunschweig and EUROCONTROL in Brétigny. ACG controllers will also
perform ABSR trials in the Vienna approach operation’s room in solution 96, the
first time that an ABSR system will be directly integrated into the ops room of an air
navigation service provider.
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A Data-Driven Approach for Taxi-Time
Prediction: A Case Study of Singapore
Changi Airport

D. T. Pham, M. Ngo, N. Tran, S. Alam, and V. Duong

Abstract The ground movement is one of the most critical airside operations. It
includes two sub-problems: routing and scheduling and serves the purpose of guiding
aircraft on the surface of an airport to meet the departure schedule while minimizing
overall travel time. To achieve that purpose, ground movement controllers manage
the taxi-route assignments and taxi-time estimation for each aircraft in arrival or
departure queue. A high-accuracy taxi-time calculation is required to increase the
efficiency of airport operations. In this study, we propose a data-driven approach
to construct features set and build predictive models for taxi-time prediction for
departure flights. The proposed approach can suggest the taxi-route and predict the
corresponding taxi-time by analyzing ground movement data. The controller’s oper-
ational preferences are extracted and learned by machine learning algorithms for
predicting taxi-route and taxi-time of given aircraft. In this approach, we take advan-
tage of taxiing trajectories to learn the controller’s decision, which reflects how
the controller had decided the routing for a given situation. Two machine learning
models, random forest regression, and linear regression are implemented and show
similar performances in estimating the taxi-time. However, since the random forest
is an ensemble method that has advantages in handling outliers, performing feature
selection, and assessing feature importance, it can provide more stable results and
interpretability, for real operations. The predictive model for taxi-time can predict
the taxi-out time with high accuracy with given assigned taxi-route. The model can
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cover the controller’s decision up to 70% in the top-1 and 89% in top-2 recommends.
The mean absolute error is less than 2.07 min for all departure flights, and root mean
square error is approximately 2.5 min. Moreover, the ± 3-minute error window can
cover around 76% of departures, while more than 95% of departures are within the
± 5-minute error window.

Keywords Routing · Taxi-time prediction · Surface movement · Machine
learning · Random forest · Linear regression

1 Introduction

In daily operations at an airport, the ground movement of aircraft is one of the most
critical airside operations. The ground movement problem, including two problems:
routing and scheduling, serves the purpose of guiding aircraft on the surface of an
airport to meet the schedule while minimizing overall travel time. In which, the
primary tasks of the ground movement controller are taxi-routes assignment and
taxi-time estimation for each aircraft in arrival or departure queue [1]. A controller
may select or modify taxi-routes based on his operational preferences or current
runway–taxiway constraints that will lead to difficulty in taxi-time estimation.

Moreover, in Airport Collaborative Decision Making (A-CDM) [2], a high-
accuracy taxi-time calculation is required to avoid generating and propagating delays
in the air traffic management system because of the gap in time between estimated
and actual taxi-time.

Several studies have focused on tackling taxi-time prediction [1, 3, 4] or taxi-
route routing [5] problems. Previously, the limited availability of ground movement
data such as aircraft surface movements, flight information, and airside operations
information is the challenge for all studies. The research focuses on some aspects of
the problem, such as taxi-out or taxi-in time prediction, considering traffic and data
from a small set of stands, taxiways, airlines, and aircraft types. Recently, surface
movement data from Advanced Surface Movement Guidance and Control System
(A-SMGCS) [6] provides more opportunities for better analyzing surface movement
at the system level and predicting aircraft route more accurately. However, extracting
features from the surface movement data require an innovative data structure to
capture the space and time dependency between airport airside traffic and airport
airside infrastructure. Furthermore, the recommended taxi-routes are usually the
output of a mathematical algorithm that does not consider controller preferences or
operational strategy. Finally, even though those works have provided sets of useful
explanatory variables for taxi-time prediction, data-driven features have not been
well studied in the literature.

In this study,we focus ondata-driven approaches to construct features set and build
predictivemodels for taxi-route taxi-time prediction. By analyzing groundmovement
data, the controller’s operational preferences can be extracted and learned bymachine
learning algorithms for predicting taxi-route and taxi-time of given aircraft. A set of
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features is also obtained from the airport traffic network, weather information, and
flight information.

The proposed algorithms can capture the existing pattern in movement data as
controller preferences in handling taxiing and predict the taxi-route and taxi-time for
each given departure aircraft. It is applied for Singapore Changi airport and evaluated
with one-month Advanced Surface Movement Guidance and Control System (A-
SMGCS) data.

This paper is organized as follows. Section 2 describes the overview of the
proposed approach for taxi-route recommendation and taxi-timeprediction. Section 3
discusses in detail our data processing steps, including data preparation, trajec-
tory standardization, and movement pattern extraction using clustering. Section 4
introduces the list of features that are considered in this study. Section 5 describes
our predictive models for predicting controller decision and taxi-time for departure
flights. Section 6 then discusses the experiments and results. Finally, Sect. 7 presents
our conclusions and future work.

2 Overview

Our proposed approach is presented in Fig. 1. The list of potential decisions is learned
from data. The departure flights must be assigned route in sequence. This assumption

Fig. 1 A schematic illustration of the proposed approach
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is made to ensure that at the decision time of a given flight, all previous departures
are assigned taxi-route; thus, traffic scores can be computed. Based on the current
information and predictions about future traffic, the list of options will be ranked
and suggested. The taxi-time for each option or decision can also be computed from
given features. When one option is chosen (the first ranked option in autonomous
mode), the traffic will be updated for the next flights.

There are four main steps in this study: (1) standardizing trajectories data; (2)
constructing a list of decision candidates (options); (3) extracting features from
airport data including traffic conditions, weather, etc.; (4) developing predictive
models for taxi-route and taxi-time for a given departure. Firstly, a map-matching
technique is applied to standardizing actual trajectories using the airside graph. After
this step, each trajectory is represented by a sequence of nodeswith the corresponding
timestamp. Secondly, we use Density-based Spatial Clustering of Applications with
Noise (DBSCAN) [7] technique to cluster trajectories to form the list of common
taxi-routes, called options. These options are what the controller will consider when
making a taxi-route assignment for aircraft. Thirdly, features are extracted from the
airport traffic network, weather data, and flight information data. The spatio-temporal
airport network (airside) traffic is computed for each flight given its departure time.
The traffic score will be computed for each option of that flight, which reflects how
the decision relates to current traffic. Extracted features from different sources will
be combined to form a set of input features for the machine learning model. These
features are essential in explaining the controller’s decision. Finally, the random
forest method is selected as the predictive model because of its interpretability. Two
predictive models are trained from preprocessed historical data to predict taxi-route
and taxi-time.

3 Option Extraction

3.1 Data Preprocessing

3.1.1 Parsing Data

Advanced SurfaceMovementGuidance andControl System (A-SMGCS) is a system
at airports having a surveillance infrastructure consisting of cooperative surveil-
lance (e.g., multilateration systems) and a non-cooperative surveillance (e.g., SMR,
microwave sensors, optical sensors, etc.). A-SMGCSdata contains information about
the movements of aircraft, including their trajectories.

The provided rawdata is inExtendedDataRecorder (EDR) extension, compressed
messages, which are not suitable for performing analysis or developing a learning
model. Thus, the first processing step is extracting and storing data into an analytical
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Table 1 List of extracted features from raw data

9 features

Gate, Longitude, Latitude, Velocity in longitude, Velocity in latitude, Time of track, Measured
flight level, Type of aircraft, Wake turbulence categorization

version. One month of data (October 2017) is extracted and stored in CSV (Comma-
Separated Values) format. The final data contains more than 30,000 trajectories. The
selected fields are listed in Table 1.

3.1.2 Preprocessing Data

The preprocessing process includes three steps:

• Detect different flights with the same ID: It is possible to have different flights
with the same ID on one specific day; we should detect and separate them for
further analysis.

• Detect whether the flight is arrival or departure.
• Determine the runway configuration.

Graph of Singapore Changi Airport Network: We construct and simplify Changi
airport graph from taxiway and runway coordinates from NLR Air Traffic Control
Research Simulator (NARSIM) [8].

3.2 Standardizing Trajectory

The original data based on the coordinates of airplanes through time is noisy and
not well structured to be inputted to a machine learning model. The training model
on noisy data can affect the accuracy of the model later. By matching the aircraft
coordinates to the route on an airport graph (using map-matching algorithm), we can
represent the trajectory of the airplane by the list of edge (taxiways); it helps to reduce
the noise in training data before putting to themodel. Besides, standardizing raw data
can also reduce the complexity of our following clustering and learning problems
since we only need to focus on a shared and well-defined graph with a finite number
of edges and nodes. Finally, the output of the program will be delivered to air traffic
controllers who are familiar with the list of taxiways that the airplane will follow,
rather than the coordinates. So, the map-matching is the key to build the bridge from
raw data to a more understandable data format for controllers.
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3.2.1 Map-Matching Algorithm

There are several studies onmap-matching. Themost common approaches are point-
to-point matching [9, 10] and point-to-curve matching [11] that map each point in
the flight to the “closest” node or closest curve on the graph. Another approach
is curve-to-curve matching [10, 11] that chooses the closest curve from the list of
candidates (oftenwas generated fromapoint-to-pointmatching) to the original curve.
We observed that the flight data are dense, so we implemented the point-to-point
matching with rule based to guarantee the result is a valid trajectory. The matching
algorithm includes two steps:

• In the first step, we assigned each point of the flight to the node in the airport
graph if the distance from this point to the nearest node is less than a predefined
threshold. The result of themap-matching algorithm is a sequence of node id from
the gate to first exit gate on the runway for departure flights and from the last exit
gate to the gate for arrival flights.

• This approach may lead to some logical mistakes. For example, after step 1, the
chosen trajectory can be: O → n1 → n2 → D, but on the airport graph node,
n1 and n2 do not have any connected edge. Thus, in the second step, we avoid
these errors by connecting two unconnected nodes by the Dijkstra’s shortest path
between them. Let say that the shortest path from n1 to n2 is n1 → n3 → n2.
The final trajectory is the sequence of connected nodes O → n1 → n3 → n2 →
D. The matching result is illustrated in Fig. 2. Figure shows a sequence of track
points (red dots) of a departure flight in Changi airport (gray segments), which
is mapped to the airport graph and converted into a standardized trajectory (blue
line).

3.2.2 Evaluate the Map-Matching Process

Noise trajectories can significantly affect the performance of themap-matching algo-
rithm. The performance metric for this step is the distance percent error between the
matched trajectory curves and original flight curves. The score is non-negative and
the smaller it is the better thematching result is. By investigating thematching results,
we can detect and remove the abnormal trajectories (Fig. 3). To maintain the quality
of the dataset, we set a threshold = 0.4 (40%) to remove those trajectories which
have high errors.

3.3 Clustering Using DBSCAN

We observe from historical data that the controllers have a pattern in assigning the
taxiway for each departure in similar situations. However, those decisions can be
affected by uncertainty such as weather, current airport traffic, etc. In general, they
are limited and form a set of potential taxiways for each departure. Therefore, we
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Fig. 2 An illustration of
map-matching. Red dots
represent real data points for
one trajectory, and the blue
line is the map-matching
result of that trajectory over
the graph of the taxi network
of Changi airport

Fig. 3 Total distance different ratio distribution
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can extract the pattern in the departure taxiway as controller’s options from historical
data by the clustering method.

We choose theDBSCANalgorithm as our clustering algorithm.One of the notable
advantages of DBSCAN is that we are not required for a predefined number of
clusters. It is an important feature because the number of options is different for each
group of flight. Another advantage of DBSCAN is that it is able to identify outlier
trajectories as noises so we can isolate those from processed data.

After the map-matching step, we can represent a trajectory as a list of nodes on
the airport graph. Then, those trajectories are vectorized to input into the DBSCAN
algorithm.We use Euclidean distance to define the difference between the two trajec-
tories. The neighborhood threshold is 2 which means that we consider trajectories
in one group are not different for more than two nodes. We only keep groups that
containmore than three trajectories.An example of a clustering result can be observed
in Fig. 4. Departure flights from gate B4 to runway 20C are grouped together for
pattern extraction. Only two clusters are found, while the remaining trajectories are
considered as noises.

Figure 5 shows the percentage of the clustered departures (after excluding the
flights identified as noise) over total departures in each group (Gate runway). Thirteen
groups keep less than 50%of the trajectories that reflect the high deviation of selected

Fig. 4 Example of the clustering result for departure flights from gate B4 to runway 20C
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Fig. 5 Percentage of remaining clustered flights

taxi-routes. The average percentage of remaining flights is 75%, which means that
the extracted options can cover 75% of the controller’s decision.

4 Feature Engineering

The featureswhich are considered in this study belong to four categories. The detailed
description of those categories is mentioned in this session. The summary of all
features is shown in Table 2.

Table 2 Summary of
extracted features in four
categories

Flight basic information

5 features Gate, runway, day-of-week, hour, aircraft_type

Selected option features

2 features estimated_travel_time (s), travel_distance (m)

Traffic features

N features traffic_score0, …, traffic_scoreN-1

Weather features

12 features visibility (km), pressure (mbar),
temperature (C), dewpoint (C), humidity (%),
wind_speed (km/h), wind_dir_degrees(o),
fog ([0,1]), tornado ([0,1]), thunder ([0,1]),
hail ([0,1]), rain ([0,1]),
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4.1 Flight Basic Features

Each flight is specified by the gate, runway, and aircraft type features. Because those
features are categorical, we encode them to the one-hot vector. Every value in an old
column is split into a new column with two values one (exist) and zero (non-exist).

4.2 Selected Option Features

In our approach, to predict the taxi-time for departure flight, we first assign taxi-route
for each flight and then estimate the travel time of each flight for given taxi-route.
In this work, we only consider two features which are the estimated travel time and
travel distance.

4.3 Traffic Features

Traffic features reflect the density of traffic of the airport at the time when the
controller makes the decision of taxi-route assignment considering future aircraft
movements. Given the flight plan of a departure aircraft which we want to assign
taxi-route, we assume that all taxi-route of other aircraft in that period of time is
fixed. Thus, we compute the traffic score for each option by computing the traffic
score. Firstly, we introduce a trajectory prediction model for each flight on a taxiway
based on combining the average travel time of road segments. Secondly, given a flight
departure time, the traffic features for each option of that flight will be computed.
In the given time window, we group the trajectory positions into multiple snapshots
based on their timestamps with time step is 10 s. For each snapshot, we compute a
traffic density map by mapping aircraft positions into a grid layer on the airport map
with grid size is 100 m. The score of each cell is estimated by the number of aircraft
in its area and the impact of neighboring traffic by spreading function.

4.4 Weather Features

The weather is also an important factor which affects controllers’ decisions. Thus,
we collect weather information at the airport updating every thirty minutes.
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5 Predictive Models

5.1 Random Forest

Random Forest (RF) is an ensemble learning method for both classification and
regression. It constructs multiple decision trees that are trained with different subsets
of features and samples. The trees learn different knowledge from data and then
vote for final prediction. It is highly robust with outliers/noises without skewing the
prediction results and avoids overfitting due to the diversity of trees. One of the key
advantages of RF, which suits our problem, is its capability to handle unbalanced
datasets and to work with different types of features and range of feature values.
Moreover, the interpretability of the model is also considered for understanding the
impact of various features in prediction.

5.2 Predicting the Controller’s Decision

A predictive model is built to predict controller decision in assigning a taxi-route for
each departure flight. The features in flight basic information, traffic, and weather
groups are used to predict the selected option of controllers in historical data. The
possible decisions of controllers for each flight are the list of N extracted options
in Sect. 4. The traffic scores are computed for N options to reflect the relationship
between each option and the surrounding traffic. With this formulation, RF classifier
is chosen as the predictive model. All the categorical features are encoded using a
one-hot vector encoder that makes the total number of features for this model is 543
features.

5.3 Predicting Taxi-Time for Departure Flights

A predictive model is built to predict the travel time for each departure flight with
assigned taxi-route. The features in all groups (flight basic information, selected
option, traffic, and weather) are selected for the training of a predictive model.
However, since the option is decided for a given flight, only the traffic score for
that selected option is considered. With this formulation, the RF regressor is chosen
as the predictive model. Similarly, a one-hot vector encoder is used for encoding the
categorical features, and the total number of features is 153 features.
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Table 3 Datasets and their
size after each processing step

Version of dataset Number of samples

Full one-month departure dataset 11,891

Preprocessing departure dataset 8128

Extracted option departure dataset 5875

Filtered departure dataset 4363

6 Experiments and Results

6.1 Dataset for Developing Predictive Models

From the original dataset, multiple processing steps have been performed on this
data for cleaning and standardizing. Table 3 shows a summary of four versions
of the datasets that we have produced. The total of departures in one-month data
is 11891 movements. After the preprocessing step, only 8128 samples are kept.
However, 2252 movements will be removed after the option extraction step since
they are considered as noises by a clustering algorithm (DBSCAN). Finally, for each
cluster, departures with abnormal taxi-time are removed. Thus, the final dataset only
contains 4363 samples (≈ 36.7% raw data). One of the future works is investigating
new preprocessing and clustering algorithms to increase this percentage.

6.2 A Predictive Model for Controllers’ Decision

To ensure the existence of departures from all pairs of gate and runway in both
training and testing data, the data is grouped with each pair and then partitioned. We
find the best RF model by applying grid search on the two main hyperparameters
(the max depth and the number of estimators). We evaluated 25 sets of parameters
which are combined from max depth in (50, 100, 150, 200, 250) and number of
estimators in (50, 100, 150, 200, 250). The fivefold cross-validation method is used
to assess the model performance for each set of parameters. Figure 6 shows the
result of the tuning process. When the number of estimators is greater than 100
and the max depth is greater than 100, the model is converged. The best accuracy
is 70.8% when max depth is 100 and the number of estimators is 150. This set of
parameters is chosen for training our predictive model. Figure 7 shows the coverage
of the controller decision for departures in top recommends. More than 70% of
controller decisions can be found at the first suggestion while approximately 90%
of the decision will be covered in the first two suggestions. This high coverage, like
in other recommendation systems, will increase the acceptance of users since the
relevant items are successfully retrieved within the top recommendations.

The list of themost important features is shown inTable 4. The features are ordered
by Gini importance, which can be considered as the percentages of the contribution
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Fig. 6 Model performance for a different set of parameters

Fig. 7 Coverage of controller decision in top K recommends
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Table 4 List of most
important features for the
taxi-route model

Index Features Gini importance (%)

1 Hour 3.30

2 Pressure (mbar) 2.96

3 Day-of-week 2.94

4 Wind_dir_degrees (°) 2.86

5 Temperature (°C) 2.81

6 Humidity (%) 2.75

7 Wind_speed (km/h) 2.72

8 Dewpoint (C) 1.97

9 Visibility (km) 1.76

10 Aircraft_type_H 0.74

11 Aircraft_type_M 0.73

12 Rain ([0,1]) 0.46

13 Thunder ([0,1]) 0.42

of each feature. Since we have several features and none of them dominates in
the contribution, the Gini importance for all features is small (maximum 3.3%).
However, the top 11 features have bigger contributions compared to the others. In
which, the hour-of-day and day-of-week are two of themost important featureswhich
affect the controller’s decision. The next ones are weather features such as pressure,
wind direction, temperature, etc. Besides, aircraft type is also in the top features for
predicting the controller’s decision. Even though rain and thunder features are very
important, their contributions are less than the others in our model. That happens due
to the nature of our data, in which only less than 150 cases are recorded with rain
or thunder conditions. With more dataset, which covers other seasons and weather
conditions, we believe their importance can increase significantly.

6.3 A Predictive Model for Taxi-Time

We select the Dead Reckoning (DR) method as a baseline model. The DR method
uses the tenth percentile value of taxi-time distributions for departures in the same
group (in our case is the same option) as the predicted taxi-time [1]. To assess
the performance of our predictive models for taxi-time, we apply the fivefold cross-
validationmethod. Two algorithms, chosen for comparison, are: RandomForest (RF)
and Linear Regression (LR). Table 5 shows the results of models with four metrics:
Mean Taxi-Time Difference (MD), Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Mean Absolute Percent Error (MAPE). Different metrics are used to
provide better observation and assessment of model’s performance.

TheMAPE of RF and LRmodels is 22.06 and 23.46%, respectively, while the DR
model error has higher error with 27.55%. The distributions of MAPE of RF and LR
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Table 5 Comparison of
performance metrics

Performance metrics LR RF DR

Mean taxi-time difference (min) 0.15 0.22 −2.8

Mean absolute error (min) 2.01 2.07 2.96

Root mean square error (min) 2.52 2.56 3.91

Mean absolute percent error (%) 22.66 23.46 27.55

models (shown in Fig. 8) have power-law shape and are skewed to zero. LR model’s
performance is better than RF model on flights which have an absolute percent error
of less than 10%. However, the difference between those two models is insignificant,
around 1.4%. Besides, the distribution of MAPE in the DR model is flatter and has
a high variance compared to those of the RF and LR models.

For more details, Table 6 compares the model performance by ± k-minute error
metric. There are 76.71% of the flight’s taxi-time predicted by the LR model, and
75.65% of the RF model has an error within 3 min, significantly better than DR with
58.9%. For the error range, ± 5-minute, that difference becomes more significant.
That error range covers most of predictions by LR and RF (95.36 and 95.29%)
while only 78.5% for DR. In conclusion, both models using RF and LR have similar
performances and are much better than the baseline model (DR).

The list of themost important features is shown inTable 7. The features are ordered

Fig. 8 Distributions of absolute percent error of taxi-time prediction

Table 6 Departures within ±
k-minute error window

Error window LR (%) RF (%) DR (%)

± 2-minute 56.30 56.02 45.11

± 3-minute 76.71 75.65 58.90

± 5-minute 95.36 95.29 78.75
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Table 7 List of most
important features for f
taxi-time prediction models

Rank Random forest Linear regression

1 DR Fog

2 Traffic score Tornado

3 Hour Aircraft type

4 Pressure Gate–303

5 Wind direction Hail

6 Estimated travel time Gate–202L

7 Day-of-week Runway

8 Wind speed Gate–D40R

9 Visibility Gate–462R

10 Temperature Gate–462L

by Gini importance for the RF model and by weight for the LR model. We notice
that although LR performs slightly better than RF, the list of feature importance of
RF is more explainable and more general. This is reasonable since LR tends to stress
the specific features related to rare events. Because RF combines the predictions
from decision trees that it can produce more generalized results. Consequently, the
most important features for taxi-time prediction include estimated travel time, traffic
scores of options, hours, day-of-week, and weather features.

7 Conclusion and Future Work

7.1 Conclusion

In this work, we have proposed an approach which can both suggest taxi-route and
predict the corresponding taxi-time. The taxi-route model is developed considering
controller preferences, which are learned from historical data. Moreover, we also
take advantage of taxiing trajectories to form the controller’s decision that not only
limits the potential options but also is more practical. As a result, the model can
cover the controller’s decision up to 70% in the top-1 and 89% in top-2 recommends.
The second predictive model for taxi-time can predict the taxi-out time with high
accuracy with given assigned taxi-route. The MAE is less than 2.07 min for all
departure flights, and RMSE is approximately 2.5 min. Moreover, the ± 3-minute
error window cover around 76% of departures while more than 95% of departures are
within the± 5-minute errorwindow.Twomachine learningmodels, RF andLR, show
similar performances in estimating the taxi-time; however, from our observations,
RF can provide a more stable result and interpretability due to its characteristics.
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7.2 Future Work

To increase the performance of both models, the preprocessing step will be inves-
tigated with a better map-matching algorithm for standardizing data. More surface
movement data will be collected and analyzed to propose new features for predictive
models. Finally, the integration of ground movement and other surface operations
will be investigated.
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Dealing with Adverse Weather
Conditions by Enhanced Collaborative
Decision Making in a TAM APOC

F. Piekert, N. Carstengerdes, R. Suikat, and S. Schier

Abstract This paper will provide an insight into enhanced collaborative decision
making being conducted in adverse weather conditions in a simulated Oslo airport
environment. This simulation is part of the Total Airport Management (TAM)
research in the Single European Sky ATM Research program (SESAR 2020) as
project PJ.04. SESAR2020 is operated in two defined program waves, wave 1
covering the years 2016–2019 and wave 2 following until 2022. This paper will
focus on a set of two out of seven V2 level validation exercises that are conducted
in wave 1 of PJ.04′s Solution 2 (PJ.04–02), addressing concepts for Collaborative
Airport Performance Management. The key objective of PJ.04–02 is to develop
multi-stakeholder decision support for airport management stakeholders especially
in adverse conditions (e.g. bad weather, union strikes or unforeseen events such as
runway blockages). In the Oslo airport environment winter conditions are a major
reason for performance degradation of airport operations. An enhanced integration
of stakeholder actions and collaborative operations planning is expected to provide
performance benefits. The philosophy of collaborative decision making advocated
by SESAR 2020 is that of ‘consensus’ building amongst the different airport stake-
holders through a common impact assessment and a structured solution finding
process resulting in mutually agreed actions. The objective is to raise situation
awareness and introduce a collaborative problem solving approach leading to better,
earlier and thereforemore stable solutions.Orchestrated by amoderator, the so-called
airport operations center supervisor, the global impact assessment is supported by
each stakeholder evaluating the consequences for their own operations, documented
in an electronic impact and corresponding solution message. The validation and

F. Piekert (B) · N. Carstengerdes · R. Suikat · S. Schier
Institute of Flight Guidance, DLR German Aerospace Center, Braunschweig, Germany
e-mail: Florian.Piekert@DLR.DE

N. Carstengerdes
e-mail: Nils.Carstengerdes@DLR.DE

R. Suikat
e-mail: Reiner.Suikat@DLR.DE

S. Schier
e-mail: Sebastian.Schier@DLR.DE

© Springer Nature Singapore Pte Ltd. 2021
Air Traffic Management and Systems IV, Lecture Notes in Electrical Engineering 731,
https://doi.org/10.1007/978-981-33-4669-7_8

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4669-7_8&domain=pdf
mailto:Florian.Piekert@DLR.DE
mailto:Nils.Carstengerdes@DLR.DE
mailto:Reiner.Suikat@DLR.DE
mailto:Sebastian.Schier@DLR.DE
https://doi.org/10.1007/978-981-33-4669-7_8


132 F. Piekert et al.

assessment of the underlying conceptual approach to collaborative airport perfor-
mance management in adverse conditions requests for an artificial airport environ-
ment. In contrast to a real airport the simulated environment allows for any neces-
sary changes in weather situation, traffic patterns or support system composition
while keeping the operators in the loop. The target level for the validation experi-
ments is V2 (referring to the European operational concept validation methodology),
requiring the simulator to allow for an operational concept feasibility assessment
while providing emulation of all airport processes and working positions of the
airport management. The objective assessment of benefits credited to specific opera-
tional improvements under consideration of the validation exercises PJ.04–02.V2.04
and PJ.04–02.V2.09 requires a stepwise approach in which the functionality and
system complexity is consecutively enhanced. The baseline was represented by the
results achieved by SESAR 1, providing an airport operations center (APOC), basic
processes and support system functionality. The functionality of the V2.04 setup
reflected the SESAR2020 solution regarding advanced decision support, providing
dynamic demand and capacity balancing alongside a guided enhanced collabora-
tive decision making process and enhanced meteorological forecasts by weather
alerts. The V2.09 solution setup provides additional information support by a perfor-
mance dashboard, taking into account probabilities for additional diverted traffic.
Two exercise simulation runs were executed for each setup, subjecting the Oslo oper-
ators with different meteorological phenomena and resulting operational challenges.
The PJ.04–02 validation objectives were broken down into exercise specific objec-
tives, allowing for an impartial feasibility assessment based on objective metrics and
qualitative human performance criteria. Preliminary exercise analysis results indi-
cate a well-received conceptual approach, the stepwise functionality enhancement
complying with benefit increase expectations.

Keywords SESAR · Total airport management · Collaborative airport performance
management · Collaborative airport decision making · Validation · PJ.04

1 Introduction

1.1 Total Airport Management Research

Total Airport Management (TAM) has a research history of more than twenty years.
Foreseen in the beginning as a multi-modal airport management approach [1], the
research of the German Aerospace Center (DLR) focused on airside, landside and
the combined approach in varying projects [2–7].

When the European research program SESAR started to address TAM nearly a
decade later, a focus on airside processes [8–10] had to be taken to not overlap with
ground based transport research being conducted by the European Commission’s
other research programs.
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Complementing the researchonTAM,variousDLRprojects focusedonevaluation
and validation techniques of how tomeasure the benefits credited to TAM and how to
build and operate adequate research environments [11–16]. DLR’s work resulted in
a simulated airport environment where all relevant parameters (e.g. traffic samples,
weather impact, and resource availability) can be fully controlled [17–20]. This
is used to study conceptual questions and is becoming more important due to the
collaborative approach between various stakeholders interacting in airport operations
centers (APOC).

1.2 The PJ.04 Total Airport Management Industrial
Research Project

The research described in this work was conducted under the framework of the
SESAR 2020 industrial research project PJ.04 Total Airport Management which
is structured into the two solutions “Enhanced Collaborative Airport Performance
Planning andMonitoring” (solution PJ.04–01) and “Enhanced Collaborative Airport
Performance Management” (solution PJ.04–02). The work program of PJ04–01 is
previously presented in [21] inmore detail, thework laid out in this article contributes
to PJ.04–02.

The work carried out by PJ.04–02 has to follow established processes and
guidelines prescribed by the SESAR Joint Undertaking (SJU) [22–24]. Projects
are expected to provide evidence of their claimed development success (concept
and/or prototypes) by conducting validation activities. These follow the European
Operational Concept ValidationMethodology [E-OCVM; 25,26]. Having achieved a
progressed project phase, PJ.04–02 is expected to provide evidence for its V2 matu-
rity (proof of operational feasibility) at the end of its project’s lifecycle. This guides
the approach of the experimental designs required to gather all necessary evidences.

1.3 Solution PJ.04–02 Enhanced Airport Performance
Management

The solution PJ.04–02 addresses four operational improvements regarding airport
operations:

• Enhancement of airside / landside performance management
• Proactive management of meteorological impacts
• Proactive management of capacity shortfalls by taking airline priorities into

account.
• Proactive management of environmental restrictions
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These four improvements aim at a better collaborative management of airport
processes and thus support the optimization of the airport’s performance, especially
in adverse weather conditions. The work that will be presented in this publication
addresses the enhanced airside/landside performance management and the proactive
management of meteorological impacts.

2 Deficiencies and Research Challenges

Regarding airside/landside performance management and proactive management
of meteorological impacts, there is optimization potential regarding the collabo-
rative decision making process [27]. Interviewing operational experts, this potential
is specially revealed in adverse weather conditions. Meteorological forecasts are
currently individually interpreted by each stakeholder of the airport management.
As such stakeholders might come to different conclusions and different action plans.
Hence situations might occur where airport and air traffic control plan to close down
operationswhile airlines try to keep up their full operation as they do not read the fore-
casts to significantly impact the operations. In consequence, an imbalance between
capacity and demand occurs.

Optimizing these operational situations requires a collaborative process where
the individual impact assessment is aligned and all stakeholders agree on a common
solution strategy. Ideally, this results in airport and air traffic control providing the
resources necessary to conduct the essential flight operations (intercontinental flights,
flights with multiple connections at other airports, etc.) while airlines try to delay or
reduce traffic of less importance (dead-end flights, less occupied flights, etc.). Last
but not least ground handling should align their resources to support a quick recovery
of the operations once the cause for capacity shortfall has passed.

This objective can only be reached upon sufficient support of the stakeholders.
As such three general improvements are focused within this paper [28, 33]:

• Meteorological impact assessment: Improved meteorological data must be
provided to all stakeholders including a standardized impact analysis which
considers agreed limits. Reaching those limits triggers the need for all stakeholders
to take collaborative actions.

• Collaborative procedure: A common procedure must be designed which all
stakeholders follow to assess the impact of a capacity shortfall and agree on
necessary actions.

• Demand capacity balancing: Demand and capacity of all relevant airport
resources must be constantly monitored, displayed to the airport management
stakeholders and discussed upon a noticed imbalance.

These three general improvements are addressed in PJ.04–02 by a set of technical
systems (cf. Fig. 1). The demand for a meteorological impact assessment is fulfilled
by the Weather Information System for Airport and Decision Making (WISDAS) of
LEONARDO.WISDAS provides detailedweather data and alerts to all stakeholders.
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Fig. 1 Technical tools addressing the aimed improvements

The collaborative procedure was developed by operational experts and researchers
within SESAR2020 contributed by EUROCONTROL’s total airport management
dashboard. This dashboard assures that all stakeholders are aware of the current and
future airport status. The demand capacity balancing (DCB) is assured by the so-
calledDCBTool of SINTEF. TheDCBTool constantlymonitors runways, stands and
ground handling capacities. It triggers the collaborative process once an imbalance is
detected. The process is supported by a centralmessaging systemand task assignment
within theDCBTool.Moreover a diversion prediction of theUniversity ofWarsawon
behalf of Polish Air Navigation Service Provider PANSA contributes to the demand
assessment. This tool alerts the stakeholders once a high likelihood for reduced airport
operations at one of the neighboring airports is detected. The diversion predication
analyses the flightplan and trajectories to provide the stakeholders with an estimate
number of diverting traffic.

The WISDAS, the dashboard, the DCB-tool and the diversion prediction
encounter the existing operational challenge of collaborative adverse weather
management in airport operations. This solution is designed as an enhancement
of existing airport processes (e.g. Airport Collaborative Decision Making, A-CDM)
and planning tools (e.g. Pre-departure sequencer and airport information sharing
platform). It was validated by DLR utilizing a Human-In-The-Loop simulation to
assess aspects like usability, trust and acceptance.
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3 Validation Design

As a basis for the validation, DLR’s ACCES facility (Airport Control CEnter
Simulator) was utilized [29, 30]. The ACCES provides a simulation of the airport
processes, close-to-reality user interfaces and the possibility to design multiple
working positions in several airport and airline operations centers. For this validation
the user interfaces and the simulation were adapted to Oslo airport.

3.1 Research Scenarios for Oslo

The exercise conducted a series of real-time simulation runs, covering Oslo Gaerde-
moen airport (OSL). The full cycle of aircraft operations from outstation departure
via approach, turnaround and the flight to the next station were simulated. The simu-
lation provides all A-CDM milestones and procedures as well as Air Traffic Flow
and Capacity Management (ATFCM). As such the stakeholders were able to apply
regulations to Oslo airport as well as to conduct pre-departure sequencing.

The essencewas to study the effects of the solution systems andprocedures applied
on strong wind and winter weather situations. Oslo was chosen since the operations
are heavily affected by adverse weather such as snow fall. The tools developed in
SESAR have a high potential to improve operations under the Oslo conditions.

The scenarios are real flight plans of a full operating day in Oslo (depicted in
Fig. 2). The impacting snow and wind events were designed in a way that they
hit the airport around 16:00 UTC and reduce capacity (dashed line in Fig. 2) by
approx 85%. The airport stakeholders were able to influence the traffic according to
the ATFCM and A-CDM procedures by changing flightplan times (e.g. Estimated
or Target Off Block Times—EOBT / TOBT) or resource capacities (e.g. runway
throughput, ground handling staff, stand assignment).

3.2 APOC Stakeholders

As shown in Fig. 3, the exercise placed five different operators from three stakeholder
groups in the APOC, consisting of two ground handler station managers acting as
airline representatives, one representative from the local air traffic control and two
representatives from the local airport, whereas one acted as the APOC supervisor
and the other one as the stand and gate allocation manager.

Additionally, three airline stakeholder operators where placed in a nearby room,
each representing the flight dispatcher in the airline operation center (AOC). Figure 3
depicts this setup. Communication between APOC and AOCs was possible through
electronic means (chat—messages, phone system); while within the APOC in
addition the direct verbal channel was encouraged.
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Fig. 2 Demand and capacity of the selected scenarios

Fig. 3 APOC stakeholder group

The different stakeholders have appropriate roles (cf. [28]).

• The APOC supervisor oversaw and coordinated the planning process and actions
among the other stakeholders.

• The air traffic control stakeholder was responsible for the runway management,
pre-departure sequencing and defined the actual runway capacity during the
degraded conditions in the scenario.

• The airport representative in this exercise conducted stand/gate allocation
planning and management.



138 F. Piekert et al.

• The two ground handlers were responsible to manage the turnaround processes,
control handling capacities and they acted as local representatives on behalf of
the airlines, communicating with the airline stakeholders.

• The airline stakeholders worked as flight dispatchers being responsible for
managing flight rotations plans.

In most APOCs, a representative of the local meteorological service provider
ensures the timely delivery of metrological information and partially the expected
impacts on operations. For the purpose of the exercise, this role was replaced by
a simulation staff member. Also the multiple roles within the flow management
chain have been replaced by simulation staff. The flow managers are responsible for
collecting the constraints of airport and airspace control units. They forward them
as traffic regulations to the central European network management in Brussels. The
NetworkManagement Operations Center (NMOC) applies the regulations by issuing
slots to flights which are designated to a constrained area or airport. Except for the
flow manager and the meteorologist, all roles were staffed by operational experts
from European airports or airlines.

The different stakeholder participants in the exercise were provided with different
systems, according to their role and responsibility in the APOC and exercise. Each
working position was equipped with a common data display and an individual
resource planning tool. The common data display was adapted to the look and feel
of the operational information display at Oslo airport. The resource planning tools
were provided by the simulation allowing the stakeholders to plan their resource (e.g.
runway, stand, ground handling staff, aircraft).

3.3 Simulation Environment

The simulation environment consists of the hardware (e.g. monitors, keyboards,
computers, phones, tables, and chairs), user interfaces and various simulation soft-
ware components. The entire exercise was driven by a sophisticated array of simu-
lation components [17, 19, 20, 31, 32] developed by DLR (Fig. 4). These provided
the data for the user interface applications and the support systems.

The main driver of this simulation array is the milestone simulation which is
a process simulation generating A-CDM milestones based on flightplan data and
resource availabilities. The flightplan and milestone data is stored in an airport
database (central element in Fig. 4). All user interfaces access this database for
updating the information in the corresponding tools, reflecting changes of the airport
processes’ durations or sequences. For instance flight schedules can be adopted using
the DLR airline rotation planner. The ground unit planner allows handling staff allo-
cation. The pre-departure sequencer calculates target takeoff and startup times and
the airport gate planner enables the stand and gate allocation. Moreover, systems to



Dealing with Adverse Weather Conditions by Enhanced Collaborative Decision … 139

Fig. 4 DLR simulation environment

be tested on basis of the DLR airport management simulation can be connected to
the platform either via operational or individual interfaces emulating real airport data
exchanges.

3.4 DCB & CDM Process

The collaborative decision making (CDM) process used for the demand capacity
balancing (DCB) was developed within SESAR 2020 and conducted according to
the PJ.04–02 OSED [33] (Operational Services and Environment Description—the
central concept document of Solution PJ.04–02). It was designed around the appli-
cation of a series of use cases. The use cases defined sequences of activities to be
executed by the appropriateAPOC stakeholders under various conditions and prereq-
uisites. It was used to capture the interactions between the operators in the APOC
when they collaborate to resolve situations in a more formal manner.

A-CDM and SESAR 1 [34–38] do not prescribe a distinct collaborative decision
making process. As such, a high level procedure as shown in Fig. 5 was assumed
and provided to the stakeholders as the common process for the baseline.

For the solution runs PJ.04–02 used a more detailed and structured approach,
targeted towards sustainable quality decision making routines. As shown in Fig. 6,
this approach relies on the definition of three official messages which are distributed
among all stakeholders. After the alert, an initial impact message is defined including
the moderator’s assessment of the situation. This initial message is enriched with the
impact evaluation of the other stakeholders to receive the agreed impact message.
Within the next step, the stakeholders develop a solution and publish a solution
message to agree in a strategy solving the operational challenge. Finally this solution
is implemented into the airport system.
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Fig. 5 The collaborative
process in the baseline

Fig. 6 The collaborative process in the solution

In SESAR 2020, it was prescribed to use a specific modelling tool for operational
and technical level process modelling. The tool orients itself around the use of the
Unified Modelling Language (UML) and expresses interactions between different
entities in a graphical way. The model charts generated can vary from simplistic
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towards very complex, depending on the task and the group of stakeholders/entities
to involve.

The tool suite provided in the APOC simulation has been designed to imple-
ment those decision making flows, to support the APOC supervisor in initiating the
most appropriate measures at the required moment and to start the discussion and
decision making process between the relevant stakeholders. Tasks and information
were exchanged electronically between the operators, the results were collected by
the APOC supervisor and an overall impact assessment communicated. Later in the
process the mitigation decision was communicated similarly, providing the agreed
solution approach to all involved parties, followed by the plan implementation by
the stakeholders.

4 Execution and Evidence

The validation exercise was executed over several consecutive days including
multiple sessions for a single run. A combination of real-time interactive phases
combinedwith fast-time based fast forwarding allowed the operators to take decisions
over given situations and events and then, after the fast forward, see the simulated
outcomes based on taken decisions.

This approach was considered necessary to assess the fulfillment of the high level
validation objectives, e.g. OBJ-AO0813-VALST2.001 “To validate that collabora-
tive recovery procedures and associated predictive and decision support when carried
out with appropriate tools assisting airport, network, Air Space Users and Air Navi-
gation Service Provider stakeholders to anticipate, understand and collaboratively
manage large scale disruptive adverse eventswill reduce impact and knock-on effects,
optimizing solutions whilst ensuring that users’ end-to-end processes are managed.”

After each session questionnaires were provided to the participants to obtain feed-
back used for post-exercise analysis and evidence gathering whether or not the exer-
cise success criteria have been met, e.g. CRT-04.02-V2-VALP-EXE4–0011 “Deci-
sion support tools taking into account MET impact assessments in adverse weather
conditions trigger appropriate pro-active CDM actions by the airport stakeholders.”

The entire exercise was designed as a staged approach that involved the proper
setting of a baseline result, going through a first enhancement evolution (named
V2.04) and then complementing with the second evolutionary step (named V2.09).
This approach was considered necessary to identify the different influences brought
by the support system evolution and increased sophistication.

In total seven operational experts took part in the exercise.
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4.1 Baseline and Solution Runs

To identify the effects that the introduction of the support systems and the concept
brought, a baseline composition of systems and procedures was defined. This was
based on previous SESAR 1 project results and the anticipated state-of-the-art
brought in the future by the sister solution PJ.04–01, on which the solution PJ.04–02
bases [27]. Two exercise runs were executed for each of the three settings, varying
between the two underlying central weather events that introduced the operational
problems.

4.1.1 Baseline Reference

The reference scenario assumes an APOC where A-CDM processes with current
procedures are employed as well as an advanced airport operation plan as defined in
SESAR 1 [37, 38] is operational at the airport. Hence general information sharing
between stakeholders is established and planning information (e.g. the target off-
block time—TOBT) is exchanged. Basic demand and capacity predictions are avail-
able in an aggregated form. The operational procedures regarding bad weather oper-
ations are the ones currently in use at OSL airport. Weather information is available
from standard forecast messages (TAF, METAR).

4.1.2 Solution Step 1: V2.04

The intermediate scenario comprised an established and controlled demand capacity
process to jointly plan the airport resources and advanced meteorological prediction
and alerting services to allow more precise forecasts and alert triggering based on
predefined thresholds. As such WISDAS and the DCB tool were activated for the
participants. WISDAS supported the APOC operators in assessing the operational
impact of the predicted weather situation and the DCB tool guided the stakeholders
through the structured DCB process and provided additional information on affected
Key Performance Indicators (KPIs).

4.1.3 Solution Scenario 2: V2.09

The target solution scenario featured additionally to the previous step the EURO-
CONTROL dashboard to show the airport status. Further, anticipated additional
demand due to diverted flights from neighboring airports due to weather is provided
by the diversion prediction tool. The established CDM process remained unchanged.



Dealing with Adverse Weather Conditions by Enhanced Collaborative Decision … 143

4.2 Evaluation Method

The evaluation of the new concept and systems is based on subjective and objective
data. The subjective data is gathered by questionnaires collecting operators’ feed-
back. The objective data is provided by the simulation engine which records the
generated flight data (A-CDM milestones, resource requests and clearances, etc.).

4.2.1 Questionnaires

Literature and state-of-the-art research offers a large variety of questionnaires that
can be used for a multitude of different assessment purposes. Several are consid-
ered as standard works and some are custom-shaped (bespoke questionnaires) for
singular purposes. In the exercise aspects of human performance, such as system
acceptability, performance and operational concept feasibility were targeted and the
operator responses captured in LimeSurvey.

To assess the human performance aspects of the exercise a subset of the EURO-
CONTROL SHAPE1 questionnaires [39] SATI (SHAPE Automation Trust Index),
AIM (Assessing the Impact of Automation on Mental Workload), STQ (SHAPE
Teamwork Questionnaire) and SASHA (Situational Awareness for SHAPE) were
used. Moreover the SUS (System Usability Scale [40]) and bespoke questionnaires
were answered by the participants.

4.2.2 Objective Data Analysis

Objective data analysis was based on the recorded simulation and tool system data.
The recordeddata encompassed for example the full set ofA-CDMevent data for each
flight operation, the updates to various data fields (e.g. the TOBT or stand allocation
changes), allocated resources (e.g. stand allocation plans or ground handling crew
assignments) or set capacities (for e.g. the runway or maximum handling capacities).

This data is analyzed according to the SESAR 2020 performance framework
methods. In this framework distinct calculations and criteria are defined to determine
and assess the KPIs like punctuality and predictability.

1https://www.skybrary.aero/index.php/SHAPE

https://www.skybrary.aero/index.php/SHAPE
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5 Results

This paper focusses on the results of the bespoke questionnaire to provide some
initial findings towards the major three improvements (meteorological assessment,
collaborative process anddemandcapacity balancing). The results of the standardized
questionnaires and the objective data are still under evaluation and will be presented
in future publications.

For each of the improvements one bespoke questionnaire with multiple items was
filled out by the participants. The feedback was given on a seven point Likert-scale,
as shown in Table 1.

5.1 Meteorological Impact Assessment

The meteorological impact assessment was evaluated by seven questions (“A”-“G”)
shown in Fig. 7. The answers indicate an increase in assessment ability based on
increased system support from reference via V2.04 towards V2.09 configuration.

Table 1 Likert scale rating
options

x-axis Description

0 strongly disagree

1 disagree

2 somewhat disagree

3 neutral

4 somewhat agree

5 agree

6 strongly agree

Fig. 7 Questionnaire results on usefulness of MET impact assessment
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Table 2 x-axis descriptions of Fig. 7

x-axis Description

A I was able to assess the likelihood of key meteorological conditions

B I was able to assess the intensity of key meteorological conditions

C I was able to assess the duration of key meteorological conditions

D I was able to assess the impact of occurrence of key meteorological conditions

E I have confidence in the data provided

F I have sufficient information on the impact of MET events

G I trust the MET data provided

Starting around between “neutral” and “somewhat agree”, the participants evaluated
their ability increased towards “somewhat agree” / “agree”. These results show that
the participants felt to be better able to understand and evaluate the weather infor-
mation regarding the anticipated impact on operations—as a team and on their own
(Table 2).

The element “E” additionally increases from reference to solution and supports
the feedback from the operators that the solution systems empower them to better
understand the impact and have a higher confidence in the results. The negligible
and not significant decrease from V2.04 to V2.09 configuration is a single feedback
answer.

Thefinal two items “F” and “G” follow the expected andobserved increase-pattern
and show that the new systems provide more and more trustworthy information.

5.2 Collaborative Process

Twelve questions regarding the collaborative process were posed. Selected four of
the questions and ratings are given in Fig. 8 (Table 3).

The answers in Fig. 8 for the items “H”, “I” and “K” showed an increase in
agreement, startingwith approximately “somewhat agree” for the reference, climbing

Table 3 x-axis descriptions of Fig. 8

x-axis Description

H The presented concept, procedures and tools facilitated a quicker solution finding

I The presented concept, procedures and tools facilitated better resource planning

J The presented concept, procedures and tools made savings in terms of human and
infrastructure resources possible

K The presented concept, procedures and tools improve situation awareness across
team members
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Fig. 8 Questionnaire results regarding the collaborative process

slightly towards “agree” with setup V2.09 always rated higher than or as high as
V2.04 results.

The feedback for “J” started with an average of “neutral” and slightly increased
to “somewhat agree” over V2.04 towards V2.09.

5.3 Demand Capacity Balancing

The operators were asked five questions and responded with any appropriate number
of the above scale.

The questionnaire’s answers in Fig. 9 clearly show a subjective improvement
regarding the awareness of capacity decreasing events. The ratings of the five

Fig. 9 Questionnaire results regarding usefulness of provided demand capacity balancing tools
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Table 4 x-axis descriptions of Fig. 9

x-axis Description

L I understand the predicted data

M I could detect any issue regarding the airport performance in advance

N I could identify the causes of airport performance issues

O The events were sufficiently accurately predicted

P The uncertainty of the operations was acceptable

elements “L” to “P” increased subsequently when the additional systems were
provided in first the V2.04 setup and second in the V2.09 solution setup (Table
4).

While the reference setup in the simulation environment already was assessed as
“somewhat agree” to the positively formulated statements, the introduction of the
novel support systems boosted it gradually to approximately “agree”.

5.4 Discussion

The evaluation of all three improvements by the bespoke questionnaires indicates an
improvement on the addressed challenges. Nevertheless it has to be considered that
the bespoke questionnaires are only one part of the results. Debriefing, simulation and
standard questionnaire data are still under evaluation. Moreover the results represent
the opinion of seven operational experts working together in one team. To gain
statistical validity additional simulation runs with other stakeholders are needed.
Concluding this evaluation, an indication for a positive effect of the designed systems
can be found, but needs to be confirmed by the other data sources and by additional
simulation runs with additional participants.

Further, first steps in simulation data analysis have been conducted. Those results
have been reported in the project’s validation report [41]. In conclusion, there is some
indication that the improvedMET forecasting and alerting aswell as theDCBprocess
lead to a reduced capacity loss in bad weather situations. It therefor is assumed that in
real operationswith betterMET forecasting and an adequately designed collaborative
decision making process it is possible to reduce the loss of capacity and to improve
the duration needed to recover from adverse weather conditions.

6 Outlook

The PJ.04–02 exercises addressed a great challenge in airport management: The
efficient management of adverse weather situations in a collaborative manner is one
of the important key capabilities to guarantee the stability of the European air traffic
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network. The initial analysis of the conducted simulations indicates that the designed
improvements are beneficial for the operations.

Beside the already discussed complete data analysis of the conducted exercise,
the feedback of the operational experts suggests two additional focus points for
future work. First, some of the stakeholders were challenged by assessing the future
impact of the applied actions. The participants of the exercise agreed on measures
like regulating the arrival traffic flow or cancelling a certain number of flights. As
the impact of these actions is multiple hours in the future and might affect certain
resources indirectly (e.g. ground handling staff), the impact is challenging to assess.
As such, the operational experts requested for a tool where different actions can be
played through and assessed before they are applied. This approach is called what-if
and will be focused by DLR, Oslo airport and SINTEF in SESAR 2020 wave 2.

Moreover the experts highlighted that the simulation session gave them the possi-
bility to align on each other and find detailed procedures to improve the airport
operations. As such, a training and learning environment like the airport manage-
ment simulation is highly needed. This gets even more important with Total Airport
Management and other concepts that introduce new tools and procedures which
need to be adapted to the local airport and then trained by the airport management
stakeholders.
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Precision Approach Procedures
with General Aviation Aircraft
and Helicopter at Braunschweig
Research Airport

T. Feuerle, T. Rausch, T. Lueken, and S. Schmerwitz

Abstract The European funded project “GNSS Solutions for Increased GA and
Rotorcraft Airport Accessibility Demonstration—GRADE” is a very large demon-
stration (VLD) project within the SESAR2020 program. In the context of this
VLD, several SESAR solutions are demonstrated in simulation and real flight test
campaigns. This paper presents the demonstration and evaluation of capabilities of
a common used general aviation (GA) aircraft, namely Cessna 172N, performing
different precision approach procedures. In parallel, an EC135 helicopter is demon-
strating the possibilities of point in space (PINs) approaches. The project team
consists of European partners representing different stakeholders involved in air
traffic. Initially, fast time simulations took place where air traffic controllers were
confrontedwith aircraft approaching on curved approaches paths using performance-
basednavigation (PBN)procedures.Aflight test campaignhas been conducted in July
and September 2019 in Braunschweig. The two project partners TU Braunschweig
(TUBS) and German Aerospace Centre (DLR) conducted several approaches in
parallel using a GA aircraft (TUBS) and a research helicopter (DLR) in order to
demonstrate a simultaneous non-interfering (SNI) approach to the Braunschweig
airport.
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1 Introduction

In the coming decades, general aviation (GA) aircraft and rotorcraft, especially the
small ones for personal transportation, will have an increasingly important role in air
traffic. These vehicles usually have basic on-board equipment, only some of them
are equipped for instrument procedures like the instrument landing system (ILS).
Therefore, in the terminal phases of the flight, they often fly according to visual
flight rules and perform non-precision approaches, significantly affecting the oper-
ations of the other airspace users. As already done for better equipped commercial
aircraft, the exploitation of Global Navigation Satellite System (GNSS) for naviga-
tion during instrument approach and landing could allow GA aircraft and rotorcraft
to improve their navigation (guaranteeing the required performance) and to increase
tasks automation (thus reducing pilot workload), while ensuring higher levels of
safety. For the application, the availability of affordable flight deck displays and
decision support tools is necessary. Consequently, it will facilitate the integration of
such aircraft in future air traffic scenarios and systems [1, 2].

Moreover, the exploitation of GNSS navigation procedures will allow the defini-
tion of more flexible approach procedures, providing benefits in terms of minimizing
the interference with commercial aircraft for landing on congested airports and the
avoidance of sensitive zones (e.g. due to obstacles, security and noise constraints)
for landing on small airports placed, e.g. in urbanized area.

One of the aims of the “GNSS Solutions for Increased GA and Rotorcraft Airport
Accessibility Demonstration (GRADE)” project is to demonstrate the capability of
GA aircraft, equipped with SBAS (space-based augmentation system) as well as
GBAS (ground-based augmentation system) receivers, to perform precision curved
approaches with required navigation performance (RNP) below 0.3 NM [3–5]. A
general overall overview of the project can be found in [6].

The project demonstration itself includes two steps, the first one consists of real-
time simulations (RTS) with human and hardware in the loop and the second one of
flight trials (FT) [7]. The paper [7] analyses the results of the first demonstration step
for fixed-wing GA aircraft, aimed at the fine adjustment up of the prototype systems
to be integrated in the flying test beds.

This paper summarizes the trials conducted in Braunschweig. Due to the nature
of the very large demonstration (VLD) project, the focus was laid on the demon-
stration of the technological achievements of previous SESAR projects. A detailed
explanation of the setup and the results will be given herein.
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2 Experimental Setup

This paper focusses on the flight trials at Braunschweig research airport (EDVE).
The two project partners TU Braunschweig (TUBS) and German Aerospace Centre
(DLR) have conducted several approaches with a GA aircraft (Cessna 172N) and
a helicopter (EC135). The procedures which have been flown will be explained in
more detail in Chap. 5.

The C172N is equipped with several high performance GNSS navigation equip-
ment, namely a prototype of a ground-based augmentation system (GBAS) receiver
for GA, a commercial off-the-shelf (COTS) space-based augmentation system
(SBAS) receiver, a GNSS reference unit and a prototype system of a human–machine
interface (HMI). The objective of the flight trials is the demonstration of different
SESAR solutions for GA from a technical perspective as well as the collection of
pilot feedback, i.e. collection of operational feedback. Procedures to be covered will
be SESAR 1 solution #51 “Enhanced terminal operations with LPV procedures”,
#55 “Precision approaches using GBAS CAT II/III based on GPS L1” and solution
#103 “Approach procedure with vertical guidance”.

The operational scope of the flight test campaign in Braunschweigwas the demon-
stration of the feasibility and benefits of the execution of the SESAR 1 solution
Sol#113 “Optimized Low-Level IFR routes for rotorcraft”, which covers the demon-
stration of standard point in space (PinS) helicopter procedures as well as low-level
IFR routes for helicopters. In addition, it has been demonstrated, that the PinS proce-
dure can be conducted independently fromapproaching fixed-wing traffic resulting in
a simultaneous non-interfering (SNI) operation. The same guidance tools as used in
the real-time simulation have been integrated into DLR’s research helicopter active
control technology / flying helicopter simulator (ACT/FHS). This included head-
down display prototypes of an enhanced primary flight display with course deviation
indicator (CDI), as well as a navigation display for presenting guidance information
to the pilot.

3 Research Aircaft Cessna C172N

The research aircraft is a standard Cessna C172N (see Fig. 1). It has been modified
with several additional sensors and antennas as well as pilot interfaces. It is certified
with a permit to fly which limits the flights to daytime and visual flight conditions.
Nevertheless, it can be used for experimental flight trials easily (see also [8]).

For the GRADE project and the trials described in this paper, a prototype of a
GBAS receiver has been installed. It is located in the middle part of the flight deck
below the GARMIN 430WAAS (see Fig. 2). Deviation indications from both devices
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Fig. 1 Research aircraft cessna 172N “D-EMWF”

Fig. 2 Cockpit of cessna 172N

can be displayed on the cross deviation indicator, which is also located in the middle
part of the cockpit panel. With this installation GBAS as well as SBAS approaches
can be performed using standard instruments. It has been used within the project to
assess the flyability and acceptability of novel approach procedures in conventional
cockpit layouts. Besides these conventional instruments, a portable moving map
device was installed into the aircraft as well. (Fig. 3).
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Fig. 3 DLR’s research helicopter active control technology / flyinghelicopter simulator (ACT/FHS)

4 Research Helicopter EC135

The ACT/FHS “flying helicopter simulator” of the DLR is based on a standard
Eurocopter EC 135 type helicopter, which has been extensively modified for use
as a research and test aircraft. The mechanical controls, for example, have been
replaced by a fly-by-wire/fly-by-light (FBW/FBL) flight control system. As a result,
the control commands are transferred by electric cables and fibre optic cables instead
of control rods.

The application portfolio of the FHS covers pilot training, trials of new open
and closed-loop control systems, up to simulation of the flight characteristics of
other helicopters under real-environmental conditions. The FHS is equipped with
two engines, a bearingless main rotor and a Fenestron tail rotor as standard; its
key features are notably quiet operation and high manoeuvrability and safety. The
fly-by-light control system is a ground breaking new system,where, in contrast to fly-
by-wire, the control signals between the controls, the flight management computer
and the actuators for rotor blade control are transferred optically via fibre optic cables
instead of electrically.

The advantages compared with electrical data transfer are the high transmission
bandwidth, high reliability and low weight. The fly-by-light flight control system
consists of a quadruple redundant computer and is designed such that the stringent
safety criteria of the European aviation authorities are met in full.

FHS is the first helicopter in the world with this flight control system. The cockpit
layout provides seats for a safety pilot, the test pilot and the flight trial engineer.
A comprehensive equipment line-up with sensors and systems for on-board data
recording and processing is used to record the data from the flight trials. This data
is available to users and engineers for analysis on board and—via telemetry—on the
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ground. Furthermore, additional vision systems and an experimental flight manage-
ment system (FMS) can be integrated in order to generate adequate head-down
symbology for PinS guidance.

At the end of 2016, DLR has designed an experimental graphics computer called
JCONV2 for high performance graphics calculations and presentations on a helmet
mounted display system. As part of the GRADE project, the ability of this computer
has been extended to allow the display of additional information to be displayed on
the evaluation pilot’s head-down display at the same time. To realize this capability,
a cable was laid between the JCONV2 and the side panel near the flight test engineer.
From there, the video signal was routed to the evaluation pilot’s head-down display.

5 Procedures Flown

Two independent flight test procedureswere designed:One for thefixed-wingdemon-
stration and one for the rotorcraft demonstration. The procedures described in this
chapter have been demonstrated in flights either by the Cessna 172 solely, the FHS
solely, or by both aircraft simultaneously.

Flight trials for the fixed-wing demonstration exercises consist of reference
scenarios (standard instrument RNAV arrival and approach procedures as published
in AIP) and solution scenarios designed for the flight exercises in the GRADE
project. These solution scenarios included shorter routes and additional turning
points compared to the reference scenarios. The additional turning points were set
to already available visual reporting points to ease the flight operations including air
traffic control and other traffic. The intention was to generate curved and segmented
pre-defined approaches as given in the different SESAR solutions (see Chapter 2).

Figure 4 shows, from left to right, the reference scenario for the runway 08, the
solutions scenario route for runway 08, solution scenario route for runway 26 and
the reference scenario for runway 26.

The pilot was supported by a GNSS-based navigation prototype on a portable
display (showing a map display and a course deviation indicator) during the whole
approach, and for the final approach of the solution scenarios additionally either by
GBAS or SBAS information. Off-nominal scenarios like simulated GBAS outage or
display outage were included in the exercises.

Flight trials for the rotorcraft demonstration exercises consist of an en-route
segment of a low-level route (LLR), a PinS approach and a PinS missed approach.
A LLR network in conjunction with SNI PinS procedures allows to circumvent the
problem of merging rotorcraft and fixed-wing traffic, or, in general, slow traffic from
fast traffic.
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Fig. 4 Reference and solution scenario routes for the fixed-wing demonstration exercises

At the airport, the rotorcraft flies a PinS procedure, which was designed to be an
SNI approach with fixed-wing aircraft approaching at the same time on conventional
RNP or ILS approaches. Final approach separation for the rotorcraft on the PinS is
assured by a visual procedure from the missed approach point to a dedicated helipad
on the apron. If visual reference is not established at the PinS, the rotorcraft will
execute a SNI missed approach procedure. The design of the PinS ensures that all
separation limits are respected according to SESAR 4.10 Deliverable 23. The low-
level route is designed at an altitude below minimum radar vectoring altitude. At
the same time, ATC surveillance is assured and the flight path is monitored by a
controller.

Figure 5 shows the LLR network for the GRADE project integrated into a depar-
ture chart for runway 26 at EDVE. The design altitude for all segments is 2200 ft,
roughly 2000 ft above ground level. The approach procedure (see also Fig. 6)
commences at point LELUH near Wolfenbuettel. The procedure as depicted can
be coded and flown as standard or advanced PinS, but is optimized using radius
to fix (RF) before the final approach point (FAP) and in the missed approach. The
final approach begins at the FAP and is a localizer performance with vertical guid-
ance segment (LPV) with a fictitious threshold point located such that the glide path
intercept point is exactly at the desired helipad. Vertical guidance is an ILS looka-
like guidance provided by the SBAS system using a 4.4° glide path angle. Minimum
descent altitude is 628 ftMSL (350 ft GND), thereafter proceed visually if the helipad
is in sight.
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Fig. 5 Possible low-level route network

The missed approach commences upon abortion of the approach procedure, i.e.
if no visual references are established by the time the aircraft reaches the missed
approach point (MAPt). The pilot must initiate a climb to 2200ft MSL and follow
the track as depicted. Upon crossing the MAPt, an immediate left turn to WP4 is
required. For advanced PinS, this leg is coded as a RF toWP4 with a radius of 1 NM.
In lieu of the RF, a fly-by waypoint FB5 can be used, but for track keeping accuracy
and separation assurance, we strongly recommend using RF. Upon reaching WP4,
a 1.5 NM straight leg follows to WP6. After WP6, if an advanced PinS is desired,
the leg from WP6 to WP7 can be coded as RF with a radius of 2.75 NM. If an
advanced PinS is not desired, FP8 can be used in lieu of the RF. After WP7, the
aircraft returns to LELUH with a track to fix of length 5.1 NM. We designed the
missed approach track along the track of the city tangent motorway to reduce noise
exposure of downtown Braunschweig.

As an example, with this network, it would be possible to transport patients from
whatever hospital required to the airport under IMC. In detail, there are six hospitals,
a federal police force heliport and the airport EDVE connected to this network. The
rotorcraft can follow a LLR network from one hospital to another or to a local airport
under IFR. This use case of urgent medical transport is just one of many, but for the
demonstration of LLR and SNI, it serves as the driving use case.
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Fig. 6 Possible simultaneous non-interfering approach

6 Results and Evaluation of the Trials

The fixed-wing flights have been carried out between 18th July and 12th September
2019; three different pilots were involved. 20 approaches and a total flight time of
about 7:30 h on 6 different days were executed.
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Fig. 7 Reference scenario flight path of the fixed-wing demonstration exercise (with ATC
intervention during RWY08 approach)

Figure 7 shows one flight with reference scenario approaches inbound runway
26 and runway 08. The complete flight trajectory is displayed with the outbound
trajectories in the middle and the approach trajectories to the right (for runway 26)
and left (for runway08). The approaches all started at the initialwaypoint south east of
Braunschweig airport. The approaches inbound runway 26 were flown without ATC
delays. The approach to runway 08 shows a small deviation due to ATC vectoring.

Figure 8 depicts the flight trajectories of solution scenario approaches. All three
approaches were flown on runway direction 26 with different length of initial
approach segment. The intermediate approach segments have been flown using
augmented GNSS while the final approach segment has been flown using either
SBAS or GBAS (as GBAS is not available for terminal approach path procedures so
far).

An inspection of the recorded flight path data showed that pilots were able to
follow the defined approach path closely. In all the executed approaches, values
lower than 0.3 NM for the deviation from the defined approach path were achieved.
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Fig. 8 Solution scenario flight path of the fixed-wing demonstration exercise, RWY26

For human performance analyses, questionnaires have been filled out, addressing
the objectives of acceptability of the tested operations by pilots, feasibility and flya-
bility of the designed procedures (accurate and efficient completion of operations),
cognitiveworkload (using theNASATaskLoad Index (TLX) assessment), situational
awareness (using the NASA Situation Awareness Rating Technique (SART) assess-
ment), and the capability of the HMI to provide the pilot with clear and complete
information to execute the landing procedures with a sufficient level of confidence
and precision.

The resulting subjective total workload of the fixed-wing pilots ranges from 38%
to 44%, the resulting subjective total situational awareness score ranges from 5.6 to
9.2 (on a scale ranging from −5 to 13). This shows a generally moderate workload
combined with a good situational awareness.

Figures 9, 10, 11 and 12 show some further pilots’ answers to the questionnaire
items.
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Fig. 9 Exemplary
questionnaire answers for the
fixed-wing flights
(procedure)

Fig. 10 Exemplary
questionnaire answers for the
fixed-wing flights (impact on
ATCO)

Comments to the procedure layout were also collected. Beside the fact, that the
final was quite short but manageable, no major findings were drawn. A rationale for
this statement is the fact that the procedure has been adapted especially for relatively
slow flying GA aircraft.

Regarding the helicopter flight trials, these exercises were supported by two
different types of flight guidance displays (Fig. 13). The standard PFD display has
been complemented by a course deviation indicator (CDI) and so-called bugs for
desired speed, barometric altitude, and heading. The final approach point “FAP”
defines the position where the display of the PFD is switched from RNP/VNAV
(green) to angular deviation of the LPV (magenta). A tunnel-in-the-sky synthetic
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Fig. 11 Exemplary
questionnaire answers for the
fixed-wing flights
(situational awareness)

Fig. 12 Exemplary
questionnaire answers for the
fixed-wing flights (workload)

vision system (SVS) was implemented as an alternative primary flight display. To
minimize the cross-track error especially, in curved segments, a flight path marker
and a flight director as parts of the tunnel display supported the pilot during turns.

The flight trials have been carried out from20th ofAugust until 18th of September.
With respect to the preparation of these flight trials, many different experts on
different focal areas have been involved in these experiments:
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Fig. 13 Solution scenario (Sol #113) of first helicopter demonstration exercise including tunnel-
(SVS), navigation- and PFD flight guidance displays.

• 4 technical experts / engineers (prototype implementation, flight trials preparation,
and demonstration day technical preparation and presentation);

• 3 DLR test pilots (same pilots who carried out preceded real-time simulations in
fall 2018) [9];

• 1 human factors expert.

In total, 2 shakedown runs and 24 repeated approaches during 10 h of flight time
on 6 different days were conducted during the flight trials.

Flight data records were made to subsequently provide quantitative statements
regarding e.g. tracking accuracy, cross-track errors, etc. For human performance
analyses, questionnaires have been filled out: 8 NASA TLX, 8 3D SART, and a
debriefing questionnaire by each pilot.



Precision Approach Procedures with General … 167

Fig. 14 Lateral profile of all runs per display type with RNP limits

Figure 14 depicts the recorded lateral profile for all runs with the RNP 0.3 limits
and a second limit of RNP 0.1. It can be seen that all pilots managed to stay within the
RNP 0.3 limits during the approach phase regardless of the guidance display type.
During the LPV approach between FAP and theMAPt, two runs under PFDwith CDI
configuration show deviations larger than the LPV allows. In both cases, the pilots
managed to capture the calculated localizer again. It can be observed that in general,
all flights under PFD with CDI configuration pilots tend to react later on deviations
from the route. With SVS guidance, the lateral accuracy was always significantly
better than RNP 0.1 except for two flights close to the start of the procedure.
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Table 1 Flight time within
RNP limits during the
approach phase in percent

PFD (%) SVS (%)

X ≤ RNP 0.1 95.50 99.81

RNP 0.1 < X ≤ RNP 0.3 4.50 0.19

X > RNP 0.3 0.00 0.00

Tables 1 and 2 show the percentage of flight time within or outside the lateral
RNP 0.1 or RNP 0.3 limits. It can be seen that during the approach phase more
than 95% of the flight time the performance was at least RNP 0.1 for both guidance
options. During the missed approach segment, the performance is 6% worse for the
PFD guidance and constantly good for the SVS guidance.

Figures 15 and 16 show the box-whisker plots from NASA TLX and 3D SART
questionnaire per display type. The PFDprovokedmuchmoreworkload for the pilots
than the SVS. Nevertheless the variation of the ratings for the PFD is very high. The
ratings for the situation awareness barely shows enough SA for the PFD and fair
ratings for the SVS. It can be argued that in comparision with the SVS display pilots
feel much less aware of their situation and what pilots state as being “behind” the
helicopter. As a result, pilots with CDI guidance always have to reduce an already
build up deviation. It is much easier with a tunnel-in-the-sky guidance to prevent a
deviation to build up at all.

Table 2 Flight time within
RNP limits during the missed
approach phase in percent

PFD (%) SVS (%)

X ≤ RNP 0.1 89.20 100.00

RNP 0.1 < X ≤ RNP 0.3 10.60 0.00

X > RNP 0.3 0.20 0.00
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Fig. 15 NASA Task load index, absolute index per display type

More details to the results of GRADE’s helicopter flight trial demonstration will
be presented on 46th European Rotorcraft Forum ERF 2020 in Moscow [10].
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Fig. 16 3D situation awareness rating technique, absolute score per display type

7 Conclusions

The GRADE project demonstrated that GNSS-based approach procedures are well
suited not only for business and transport aircraft but also for rotorcraft and general
aviation aircraft. With the performed study including demonstration flights into
Braunschweig research airport, the feasibility has been demonstrated.With the highly
flexible GNSS procedures and the corresponding avionic equipment approaches can
be flown with less impact on environment (e.g. circumnavigation of noise sensitive
areas) as well as separation between different kinds of traffic.
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An Optimistic Planning Approach
for the Aircraft Landing Problem

S. Ikli, C. Mancel, M. Mongeau, X. Olive, and E. Rachelson

Abstract TheAircraft Landing Problem consists in sequencing aircraft on the avail-
able runways and scheduling their landing times taking into consideration several
operational constraints, in order to increase the runway capacity and/or to reduce
delays. In this work we propose a new Mixed Integer Programming (MIP) model
for sequencing and scheduling aircraft landings on a single or multiple independent
runways incorporating safety constraints by means of separation between aircraft at
runways threshold. Due to the NP-hardness of the problem, solving directly the MIP
model for large realistic instances yields redhibitory computation times. Therefore,
we introduce a novel heuristic search methodology based on Optimistic Planning
that significantly improve the FCFS (First-Come First-Served) solution, and provides
good-quality solutions in reasonable computational time. The solution approach is
then tested on medium and large realistic instances generated from real-world traffic
on Paris-Orly airport to show the benefit of our approach.
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1 Introduction

The International Air Transport Association (IATA) expects 7.8 billion passengers to
travel in 2036, which represents nearly double the passengers recorded in 2016 [1];
this increasing demand on air transportation exposes the available infrastructure to a
risk of saturation. Constructing new infrastructures (runways, airports) is a solution
to increase the capacity, however, it may not always be feasible due to the huge cost
incurred. The alternative is to optimize the use of current infrastructure, especially the
runwaywhich is recognized to be the bottleneck of thewholeAir TrafficManagement
(ATM) system.

Since the runway sequence is one of the key factors that determines runway capac-
ity [2], several researchers were interested in the optimization of runway sequences,
which corresponds in the literature to the following problems:

• The Aircraft Landing Problem (ALP) aims at sequencing arriving aircraft on the
available runways and scheduling their landing times taking into consideration
several operational constraints.

• TheAircraft Take-off Problem (ATP) consists in scheduling take-off slots to depart-
ing aircraft

• The Aircraft Scheduling Problem (ASP) consists in sequencing and scheduling
simultaneously departing and arriving aircraft.

According to the survey [3] by Bennell et al., the ALP received much more
attention in the literature than the ATP or the ASP. Several approaches are proposed
in the literature for the three above-mentioned problems, and can be classified in two
main categories:

• Exact approaches, mainly MIP-based approaches [4–9] and Dynamic Program-
ming [6, 10, 11]

• Heuristic approaches [4, 9, 12] and Meta-heuristics, such as Simulated Annealing
[13–16], Tabu Search [8, 17], Genetic Algorithms [18, 19], Ant Colony Optimiza-
tion [20, 21], and Variable Neighborhood Search [13, 22].

Interested readers may refer to [3] for a comprehensive review of existing
approaches to the ALP.

In this work, we are interested in sequencing and scheduling aircraft landings
at the runway threshold. Each aircraft has a target landing time and an authorized
landing time window, expressed as an earliest and a latest acceptable landing time
based on fuel considerations. Deviations from the target times will cause a cost
that depends on each aircraft, and the aim is to minimize the total deviations from
target times, which is more general than minimizing only total schedule tardiness. To
model the problem,we propose a novelMIP formulation that takes into consideration
safety constraints by imposing separation between aircraft at the runway threshold
(Table 1). The proposed formulation is adapted to airports that involve multiple
independent runways. Due to theNP-hardness of the problem [4], solving directly the
MIPmodel for large realistic instances leads to redhibitory computation times, which
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Table 1 Final-approach separationmatrix (in seconds) according to ICAO’s basic wake-turbulence
categories (source [10])

Following aircraft

H M L

Leading aircraft H 96 157 196

M 60 69 131

L 60 69 82

is unsuited for the dynamic nature of the problem that requires air-traffic controllers
to make quick but good decisions. Therefore, we introduce a novel heuristic search
methodology based onOptimistic Planning [23], that provides good-quality solutions
in a negligible time.We then evaluate empirically our approach on realistic instances
generated from real-traffic data from Paris-Orly airport.

The remainder of this paper is organized as follows. In Sect. refsec:problem we
describe the ALP and highlight the operational constraints. Next, Sect. 3 presents our
proposed MIP formulation and the constraints taken into account. Then, in Sect. 4,
we explain our proposed solution approach. Section 5 presents computational results
that show the benefits of our approach, and finally in Sect. 6 we summarize the
contributions of this work and suggest some perspectives for future research work.

2 Problem Description

Given a set of aircraft near the terminal area of an airport, the ALP consists in
mapping each aircraft to a landing time such that a given criterion is optimized while
operational constraints are satisfied. When the airport has more than one runway,
a decision with respect to the landing runway has to be made by controllers; the
runway assignment depends on several factors such as the airport configuration and
the direction of arriving aircraft.

The most common approach used by controllers to sequence aircraft is the First-
Come First-Served (FCFS) rule, where aircraft land according to the order of the
scheduled times of arrival at the runway, and air-traffic controllers ensure only the
minimum separation requirements. This FCFS heuristic is easy to implement and
guarantees equity between aircraft. However, it is rarely optimal in terms of runway
throughput, especially in congested airports [10], simply consider the large sepa-
ration requirement in some scenarios where a heavy aircraft is followed by a light
aircraft (Figure 1). This motivates the development of efficient methods that compute
optimal sequences while satisfying several operational constraints such as minimum
separation, authorized time windows and constrained-position shifting.
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Fig. 1 Comparison of three landing sequences. Case 1 illustrates the FCFS sequence. In case 2,
the landing sequence is optimized with respect to wake turbulence separation, and in case 3 the
landing sequence is further optimized by runway assignment

• Theminimum separation constraint guarantees that no aircraft is affected by the
wake-vortex turbulence generated by a leading aircraft, especially during take-
offs and landings. The International Civil Aviation Organization (ICAO) classifies
aircraft in three main categories, namely Heavy (H), Medium (M) and Light (L),
and the separation requirements are defined depending on the category of both the
leading and the following aircraft. Separation requirements are given in Nautical
Miles (NM), but can be converted to seconds as explained in [2] and summarized
in Table 1.

• Time-windows constraints are defined by an earliest and a latest possible landing
times, based on fuel availability or on possible speed-ups. Indeed, once an aircraft
arrives at the boundary of airport control centers, decision-support tools compute
an Estimated-Time of Arrival (ETA) at the runway threshold. If the aircraft speeds
up, the Actual Landing Time (ALT) may be earlier than the ETA. On the other
hand, aircraft may be delayed after entering the radar range and, in this case, the
ALT will be later that the ETA and the latest possible landing time is limited by
the available fuel [24].

• The Constrained-Position Shifting (CPS) constraint limits the deviation from
the FCFS sequence for equity reasons. This constraint ensures that an aircraft is
not deviated from its initial position in the FCFS sequence by more than a given
number of positions called maximum position shifting and denoted m, which is
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usually small;m = 3 or 4 [10]. This constraint does not only ensure equity between
aircraft, but it also reduces the complexity of the problem.

In the following section, we introduce a MIP formulation for the ALP involving
one or multiple runways, and we show how we can incorporate different operational
constraints in the model.

3 Mathematical Modeling

Runway assignment and scheduling aircraft at each runway is formulated as a MIP
model which decides the landing dates at each runway threshold, while respecting
safety requirements so as to optimize a given objective.We leave the control problem,
i.e. how aircraft can be controlled so as to implement the solution of our decision
problem, for future research work.

3.1 Input Data

Consider a set of arriving aircraft A = {1, 2, ..., N }, and a set of available runways
K = {1, 2, ..., R}. Without loss of generality, let us assume that each aircraft index
i ∈ A represents its position in the FCFS sequence. Then, for each flight i ∈ A, the
given input data are presented in Table 2.

For each aircraft i ∈ A, the earliest acceptable landing times Ei is chosen to be
60 seconds before the target time Ti , because it is the most economic for arriving
aircraft according to [25]. The latest landing time Li is set to 1800 s after the target
time due to the limited fuel on board [25].

3.2 Decision Variables

Our proposed model involves binary optimization variables for sequencing and run-
way assignment, and continuous optimization variables for assigning times at the
runway threshold. The binary variables are defined as follows:

Table 2 List of input data

Notation Parameter

Ti Target landing time

[Ei , Li ] Landing time window ( Li > Ei )

Si j Minimum separation time (≥ 0) between aircraft i and j , where i lands before j

c−
i Penalty cost (≥ 0) per time-unit for landing before the target time Ti
c+
i Penalty cost (≥ 0) per time-unit for landing after the target time Ti
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• aik =
{
1 if aircraft i is assigned to runway k,

0 otherwise,

• δi jk =
{
1 if aircraft i and j are assigned to runway k, and i lands before j,

0 otherwise,

• yi j =
{
1 if aircraft i lands before j,

0 otherwise,

For each aircraft i ∈ A, the continuous variables are:

• ti : landing time
• t−i , t+i : deviations from the target landing time Ti (before and after Ti , respectively).

3.3 MIP Model

Our objective minimizes the total deviation cost from target times (Ti ) which is more
general than minimizing only the total schedule delay. The complete model is given
by (1)–(12)

min
δ,y,a,t

∑
i∈A

c−
i

t−i︷ ︸︸ ︷
max(0, Ti − ti ) +c+

i

t+i︷ ︸︸ ︷
max(0, ti − Ti ) (1)

ti = Ti − t−i + t+i i ∈ A (2)

Ei ≤ ti ≤ Li i ∈ A (3)

yi j + y ji = 1 i, j ∈ A : i < j (4)∑
k∈K

aik = 1 i ∈ A (5)

∑
k∈K

δi jk + δ j ik ≤ 1 i, j ∈ A : i < j (6)

δi jk + δ j ik ≥ aik + a jk − 1 i, j ∈ A : i < j, k ∈ K (7)

2(δi jk + δ j ik) ≤ aik + a jk i, j ∈ A : i < j, k ∈ K (8)

t j ≥ ti − M1(1 − yi j ) i, j ∈ A : i �= j (9)

t j ≥ ti + Si j − M(1 − δi jk) i, j ∈ A : i �= j (10)

i − m ≤ N −
∑

j∈A, j �=i

yi j ≤ i + m i ∈ A (11)

δi jk, yi j , aik ∈ {0, 1} i, j ∈ A : i �= j, k ∈ K (12)

In the above formulation, constraints (2) are introduced to linearize the objec-
tive function; constraints (3) represent the time window restrictions; constraints (4)
enforce the order precedence relationship between flights i and j at landing; con-
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straints (5) ensure that an aircraft is assigned to exactly one runway; constraints
(6) enforce the order precedence relationship between flights landing on the same
runway; constraints (7) and (8) enforce the logical relationship between δi jk and
aik ; constraints (9) relates precedence relationships between landings to landing
times; constraints (10) ensure the separation requirements between aircraft landing
at the same runway; constraints (11) impose the CPS constraint, and constraints (12)
enforce the binary restrictions of our discrete variables.

Before reporting numerical results obtained with this formulation, we shall first
present a novel alternate methodology to solve the ALP, since solving directly the
MIP leads to redhibitory computation times, as we shall show in Section 5.

4 Optimistic Planning

The dynamic nature of theALP requires air-traffic controllers tomake quick but good
decisions; the computation time of any solution is thereby a critical issue. Given
the complexity of the problem, the computation time to find an optimal solution
either with our MIP model or with other exact approaches is unsuited for real-time
applications. Therefore, we introduce a novel heuristic search approach based on the
Optimistic Planning (OP) paradigm [23, 26], capable of computing solutions that do
not deviate too much from the FCFS solution sequence and that are relatively close
to optimal solutions, within an acceptable computational time.

Our approach models the ALP as an environment defined by states, transitions,
actions, and costs where:

• each state denoted x , is a partition (I, Ī ) of the set of aircraft, where Ī is the
(ordered) set of aircraft that have already landed, and I is the set of aircraft that
have not landed yet.

• each action denoted u is an aircraft index i ∈ I that we decide to land, while
satisfying the CPS constraints.

• each transition is defined as follows. If we execute action u = i ∈ I from a given
state x = (I, Ī ), then the system generates the unique next state x ′ = (I ′, Ī ′),
where I ′ = I \ {i}, and Ī ′ = Ī ∪ {i} (aircraft i landed).

• when the environment transits from the state x to the new state x ′ defined above,
the estimated value c (cost) of the the new state is defined by

c = f ( Ī ′) + g(I ′), (13)

where f ( Ī ′) is the delay cost of the (landed) sequence Ī ′. Indeed, aircraft in the
set Ī are already sequenced. Thus, computing the landing times for aircraft in this
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Fig. 2 An OP tree illustration for |A| = 4 and m = 1

sequence is straightforward, and f ( Ī ) is simply the weighted 1 sum of aircraft
delays. g(I ′) is a function that estimates the lowest cost among all sequences
obtained from I ′ that satisfy the CPS constraints. In our numerical experiments,
the FCFS rule is chosen as the estimation heuristic g, i.e. m = 0.

Optimistic Planning is the method that incrementally explores this search tree so
as to identify an optimal branch as quickly as possible. Figure 2 illustrates an example
of this tree for 4 aircraft (A = {1, 2, 3, 4}), and a maximum position shifting of 1
(m = 1). Nodes are labeled by states, arcs are labeled by actions and costs. Near
the nodes, the update process of the two sets Ī and I and the estimated costs are
highlighted. Remark that the values of the costs in this figure are randomly chosen
for the sake of this illustration.

The algorithm starts from the initial state where the set Ī is empty, and I = A (all
aircraft available to land). At each iteration, its main loop seeks to determine which
aircraft to land based on the optimistic evaluation c, and it updates Ī by adding this
aircraft, until a stopping criteria is met, i.e., all aircraft are landed or a time limit is
reached. Only actions that satisfy the operational constraints are available in a given
state.

1These individual weights are provided with the data (e.g., delay cost in Table 3).
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5 Results and Discussion

In this section we report the computational results of the MIP formulation (1)–(12)
andof ourOptimistic Planning approach. Experiments are run on a personal computer
under GNU/Linux operating system, processor Intel(R) Core(TM) i7-4700M with 8
GB of RAM. The MIP model was implemented in DoCplex, and solved using IBM
CPLEX (version 12.8). Before reporting the computational results, we first present
the test instances used in this paper.

5.1 Test Instances

Our test instances are generated from data sets from a benchmark test-problem set
under construction at ENAC, obtained from real traffic in Paris-Orly Airport, that
features two runways (06/24 and 08/26 as shown in Fig. 3), which are considered
independent (runway 02/20 is rarely used for commercial traffic).

The test-problem sets are constructed from two traffic days obtained from the
OpenSkyNetwork [27]: one in July 2018 containingmostly data about landed aircraft
on runway 06/24, and one in April 2019 containing data about landed aircraft on
runway 08/26. We merge these two traffic days and artificially add light aircraft to
obtain larger and also more congested data sets.

We construct four data sets of 40 flights, named alp_40_1.txt, alp_40_2.
txt, alp_40_3.txt, and alp_40_4.txt. They contain data about aircraft
whose scheduled time of arrival (sta) lies between 07:00–08:10, 11:00–12:30, 15:00–
16:10, and 19:00–20:00. These data sets are available at [28]. A test instance of size
|A| is obtained by considering the first |A| lines of data from one of these data sets.

Table 3 shows an example from [28], which is the most congested data set among
the four, named alp_40_4.txt. In Table 3, the fourth and fifth columns, denoted
“sta” and “sta_s”, indicate the scheduled time of arrival in HH:MM:SS format and
in seconds respectively. The sixth column displays the delay cost per time unit of
each aircraft, that we computed following a similar approach to that used in [8].

Fig. 3 A representation of
Orly runways
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Table 3 Example of a data-set features with |A| = 40 aircraft

Index mdl category sta sta_s Delay cost

1 B738 Medium 19:00:00 68,400 7

2 A320 Medium 19:00:00 68,400 5

3 B738 Medium 19:00:00 68,400 7

4 – Light 19:00:00 68,400 1

5 B744 Heavy 9:00:00 68,400 22

6 B737 Medium 19:05:00 68,700 6

7 A320 Medium 19:05:00 68,700 5

8 B738 Medium 19:05:00 68,700 7

9 B738 Medium 19:05:00 68,700 7

10 - Light 19:10:00 69,000 1

11 A319 Medium 19:10:00 69,000 4

12 AT43 Medium 19:10:00 69,000 1

13 A320 Medium 19:10:00 69,000 5

14 A320 Medium 19:10:00 69,000 5

15 B744 Heavy 19:10:00 69,000 22

16 A320 Medium 19:15:00 69,300 5

17 A321 Medium 19:15:00 69,300 7

18 B738 Medium 19:20:00 69,600 7

19 A320 Medium 19:20:00 69,600 5

20 A318 Medium 19:25:00 69,900 3

21 AT45 Medium 19:25:00 69,900 1

22 A320 Medium 19:25:00 69,900 5

23 CRJX Medium 19:25:00 69,900 2

24 E145 Medium 19:30:00 70,200 1

25 A319 Medium 19:35:00 70,500 4

26 AT45 Medium 19:35:00 70,500 1

27 A320 Medium 19:35:00 70,500 5

28 – Light 19:35:00 70,500 1

29 B744 Heavy 19:35:00 70,500 22

30 CRJ7 Medium 19:40:00 70,800 3

31 A320 Medium 19:40:00 70,800 5

32 CRJX Medium 19:40:00 70,800 2

33 B738 Medium 19:45:00 71,100 7

34 E145 Medium 19:45:00 71,100 1

35 B744 Heavy 19:50:00 71,400 22

36 – Light 19:50:00 71,400 1

37 A321 Medium 19:50:00 71,400 7

38 CRJX Medium 19:50:00 71,400 2

39 A319 Medium 19:50:00 71,400 4

40 A320 Medium 19:55:00 71,700 5
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In particular, the delay cost for each aircraft is obtained bymultiplying the aircraft
average pax number (in hundreds of seats) by its fuel consumption (in ton/hour),
then round the results to the nearest integer. These individual delay costs are used as
weights to compute the total cost of a given fixed sequence of aircraft. In particular,
they are used in the computation of c from Eq. (13), as well as in the computation of
%improv in Eq. (14).

5.2 Computational Results

We first report results obtained from implementing our MIP model involving a
single runway (|K| = 1), for different values of the maximum position shifting
m = 2, . . . , 6. Figure 4 illustrates the evolutionof the computation time in seconds for
each value ofm and for a set of 8 test instances of various sizes |A| = 16, 18, . . . , 30,
obtained by simply considering the first |A| lines of the data set alp_40_4.txt,
presented in Table 3. We impose a time limit of 1800 s (30 min) in CPLEX.

Figure 4 exhibits the expected exponential growth of the computing time with the
size of the instance, |A|, and with increasing values of m, (recall that the ALP is an
NP-hard problem). The saturation effect than can be observed is simply due to our
time limit.

Table 4 reports the performance of the MIP model on various test instances,
obtained this time from the four data sets of [28], by considering the first |A| lines
of each of the four data sets. Results for each instance size are averaged over the
four tests. Throughout Table 4, column “|A|” represents the size of the instance,
column “m” shows the value of the maximum position shift parameter, column “%
improv (MIP)” displays the percentage improvement of the MIP approach, and the

Fig. 4 Computational time of the MIP approach for different maximum position shifting values
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Table 4 MIP-approach performance on different instances from the four data sets [28]

|A| m %improv (MIP) cpu (s)

18 2 22 1.3

3 34 12

20 2 21 3

3 32 17

22 2 28 3

3 37 26

24 2 26 4

3 37 40

26 2 25 5

3 36 45

28 2 26 8

3 35 68

30 2 27 30

3 37 164

32 2 26 46

3 37 410

34 2 25 70

3 36 550

36 2 24 208

3 34 974

38 2 24 482

3 35 1110

40 2 24 1090

3 33 1400

last column reports the computing time in seconds. The percentage of improvement
obtained by a method M (here M = MIP) is computed with respect to the FCFS
solution as:

%improv (M) = CFCFS − CM

CFCFS
× 100, (14)

where CFCFS and CM are the cost of the FCFS sequence and that of the solution
provided by the method M, respectively.

It can be concluded from Table 4 that significant improvements can be obtained
with the MIP approach, starting from m = 3, but this requires large computation
times, which make it non-adapted to the dynamic nature of our problem, especially
since the complexity scales exponentially with the number of aircraft, and since
future ATM systems will have to deal with very large ALP instances.
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Table 5 Algorithm performance details (average improvement) for one runway

|A| %improv (OP) m = 2 %improv (OP) m = 3

2s 5s 15s 2s 5s 15s

18 12 12 12 2 15 15

20 18 18 19 10 23 24

22 23 22 21 19 32 33

24 19 25 26 22 26 31

26 14 19 20 11 24 31

28 15 16 24 9 23 29

30 14 18 24 8 21 36

32 14 18 26 2 22 37

34 14 12 25 6 23 28

36 13 13 25 7 24 24

38 12 13 26 8 23 26

40 12 13 25 7 22 26

min 12 12 12 2 15 15

max 23 25 26 22 32 37

avg 15 16 20 28 23 29

We report the results of the OP approach on different instance sizes |A| =
18, 20, . . . , 40 involving a single runway (Table 5), and imposing each time a lim-
ited computational time-budget of {2, 5, 15} s. For each instance size, we evaluate
the approach on different instances of the same size—generated from the four data
sets [28]—and report the average, minimum and maximum improvement over the
FCFS solution.

Table 5 shows the average percentage improvement of the total cost given by Eq.
(14) for two values of the maximum position shifting parameter, m = 2 and 3. It can
be observed that large instances of sizes greater than 30 can benefit from a significant
improvement (on averagemore than 21%) for amaximumposition shifting ofm = 3,
within only 5 seconds.

Finally, Table 6 reports an example of the solution provided by our OP approach
on the instance given in Table 3with |A| = 22 aircraft, and imposing a computational
budget of 2 s. The first column displays the aircraft position in the solution sequence.
The “index” columns corresponds to the aircraft index from Table 3 occupying each
position. The “landing” columns report the landing times. For this example, the
percentage improvement of the FCFS sequence is 35%. Moreover, remark that for
this scenario, the utilization of the runway in terms of the makespan i.e. length of the
sequence is also optimized. Indeed, the last landing in the sequence for the FCFS is
7:41:20 while the last landing with our approach is at 7:40:45.
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Table 6 Example of solutions provided by FCFS and by our optimistic approach

Position FCFS OP

Index Landing Index Landing

1 1 7:00:00 3 7:00:00

2 2 7:03:16 5 7:01:36

3 3 7:04:16 4 7:03:12

4 4 7:05:52 1 7:04:48

5 5 7:07:28 2 7:08:04

6 6 7:10:05 6 7:10:00

7 7 7:15:00 8 7:15:00

8 8 7:16:00 9 7:16:36

9 9 7:17:36 7 7:19:13

10 10 7:20:13 10 7:20:22

11 11 7:21:22 12 7:25:00

12 12 7:25:00 13 7:26:09

13 13 7:26:09 11 7:27:18

14 14 7:30:00 15 7:30:00

15 15 7:33:16 14 7:31:00

16 16 7:34:25 17 7:33:37

17 17 7:35:34 20 7:35:00

18 18 7:36:43 21 7:36:09

19 19 7:37:52 16 7:37:18

20 20 7:39:01 18 7:38:27

21 21 7:40:10 19 7:39:36

22 22 7:41:20 22 7:40:45

Our computational experiments on the MIP formulation and the heuristic search
approach show that the latter ismore suited andmore promising to solve theALPwith
large congested instances, since it can provide good solutions in short computation
time.

6 Conclusion

Runway sequence optimization is an ongoing challenge for researchers and con-
trollers due to the dynamic nature of the problem and to the various operational
constraints that must be taken into consideration. In this work, we proposed an exact
approach (MIP) to solve the deterministic case of the ALP as well as a novel method
based on Optimistic Planning to solve medium and large challenging instances.
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Our computational experiments show that computation times for our MIP model
(and other exact approaches) are very high for large congested instances, whichmake
them unsuited to the dynamic nature of ALP. With the constrained-position shifting
restrictions, the complexity of the problem can be reduced, but the problem remains
untractable for increasing values of the maximum position-shifting parameter and
the number of aircraft. On the other hand, our proposed heuristic search approach
based on optimistic planning is able to find good quality solutions that significantly
improve the FCFS sequence within a limited time budget, making it a promising
method for solving the ALP in real time.

In future studies, we plan to extend our heuristic search approach to the multiple-
runway case. Furthermore, instead of using the First-Come First-Served rule as the
estimation heuristic, we are planning to construct more accurate functions to help the
search to explore the most promising nodes first, so as to identify an optimal branch
faster. Taking into consideration uncertainty on the arrival times is also a future track
of research, since the solutions of our two deterministic approaches (MIP and the
heuristic search) cannot be straightforwardly applied in the presence of uncertainty.
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of the US Air Transportation System
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Abstract This paper aims at investigating further the use of the social media Twitter
as a real-time estimator of the US Air Transportation system. Two different machine
learning regressors have been trained on this 2017 passenger-centric dataset and
tested on the first two months of 2018 for the estimation of air traffic delays at depar-
ture and arrival at 34 different US airports. Using three different levels of content-
related features created from the flow of social media posts led to the extraction
of useful information about the current state of the air traffic system. The resulting
methods yield higher estimation performances than traditional state-of-the-art and
off-the-shelf time-series forecasting techniques performed on flight-centric data for
more than 28 airports. Moreover the features extracted can also be used to start a
passenger-centric analysis of the Air Transportation system. This paper is the con-
tinuation of previous works focusing on estimating air traffic delays leveraging a
real-time publicly available passenger-centered data source. The results of this study
suggest a method to use passenger-centric data-sources as an estimator of the current
state of the different actors of the air transportation system in real-time.
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1 Introduction

The Air Transportation System is a complex interconnected system that carried more
than 631million passengers ondomestic flights in theUnitedStates in 2010 according
to the Bureau of Transportation Statistics (BTS) [1]. Flight delays are still a major
issue both in the United States with 27.0% of departing flights and 27.8% of arriving
flights experiencing delays in 2017 [1].

Most previous studies aimed at predicting or classifying flight delays were cen-
tered on flight-centric information coming from a variety of sources with different
levels of public availability, and using only very little passenger-centric data.Mueller
andChatterji [2] created a probabilisticmodel of delays byfittingPoisson andNormal
distributions to the historic delay data from 10 airports. Rebollo and Balakrishnan [3]
implemented a network model to classify and predict future delays on specific links
or specific airports using two years of flight-centric and weather-related data. Klein
et al. [4] and [5] focused on predicting short-term weather-related delays using only
past and current weather information. Aljubairy et al. [6] used Internet of Things
in order to analyze flight-related sensors in real-time and classify the delay of an
upcoming flight.

Over the past few years, NextGen [7] in the United States has been advocating a
shift from flight-centric metrics to passenger-centric metrics to evaluate the perfor-
mance of the Air Transportation System. The failures and inefficiencies of the air
transportation system not only have a significant economic impact but they also stress
the importance of putting the passenger at the core of the system [8, 9]. Several stud-
ies have highlighted the disproportionate impact of airside disruptions on passenger
door-to-door journeys. Flight delays do not accurately reflect the delays imposed
upon passengers’ full multi-modal itinerary. Cook et al. [10] designed propagation-
centric and passenger-centric performance metrics, and compare them with existing
flight-centric metrics. Wang [11] showed that high passenger trip delays are dis-
proportionately generated by canceled flights and missed connections. Nine of the
busiest thirty-five airports cause 50%of total passenger trip delays. Congestion, flight
delay, load factor, flight cancellation time and airline cooperation policy are the most
significant factors affecting total passenger trip delay. NextGen intends to not only
improve the predictability and resilience of the US Air Transportation System, but
also to reduce door-to-door travel time for passengers.

Passengers are at the core of this system and, yet, limited quantitative information
about passenger movements is publicly shared. Each aviation stakeholder only has
access to a partial view of the passenger-side of air transportation operations making
a system-wide data-driven picture of passenger behavior difficult to implement. The
BTS provides aggregated passenger data per market but no granular information.
Passenger surveys conducted by airports or airlines, while very detailed, remain
limited to small samples of passengers and short time periods, and may not be
representative.

Precursor work was made by Marzuoli et al. in [12] and [13] using mobile phone
data in order to analyze the performances of airports from the passengers’ perspective.
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These studies validated the use of passenger-centric data to better assess the overall
health of the Air Transportation System. However mobile phone data is proprietary
data and is not often publicly available. In order to operate in real-time, it is thus
necessary to also look into other sources of passenger data available on a national
scale.

Another popular source of data previously used for studying large-scale behaviors
with real time availability is social media, in particular Twitter. With more than
68 millions active users in the United States [14], Twitter is an important pool of
user-created data that is still not fully leveraged. Twitter has already been the main
focus of many studies focused on its real-time availability, especially during natural
disasters with multiple works by Palen et al. [15–17]. Terpstra et al. also studied
how a real time Twitter analysis could have provided valuable information for the
operational response of a natural disaster crisis management with the case of the
storm hitting a festival in Belgium [18]. Regarding the air transportation field, most
works mining Twitter data focus on how airlines are perceived by passengers by
means of sentiment analysis [19] or sentiment classification [20]. Though these
works give a good insight on how passengers perceive the state of some specific
actors within the air transportation system, it does not give a global idea of its health.
Monmousseau et al. in [21] used publicly available social media data created by
passengers to accurately estimate and predict the hourly aggregated status of the US
air transportation system.

This paper proposes to build on this previous work in order to estimate the state
of the air transportation system to a finer level. Rather than predicting the number
of delays across all the United States, the proposed passenger-centric models are
improved and tuned to accurately estimate the state of delays for each of the 35major
airports within the United States. The created models are based on three different
levels of content-related features created from the flow of social media posts. First
results indicate that these new models can estimate the number of hourly delays with
a mean absolute error of less than 3 flights for 26 of the considered airports, and of
less than 6 flights for the 9 remaining airports.

The rest of the paper is structured as follows: Sect. 2 describes the datasets and the
feature extraction process. The methodology and results of the training process are
shown in Sect. 3, before being analyzed and exploited in Sect. 4. Section 5 concludes
this study and discusses possible future steps.

2 Dataset description and feature selection

2.1 Dataset description

Following the initial work performed in [21], the goal here is to use passengers
behavior on social media - in particular on Twitter - in order to analyze and estimate
the flight-centric health of the US air-transportation system at an airport level. In this
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Table 1 Twitter handles used for gathering tweets

Category Twitter handles

Airlines @united, @Delta, @AmericanAir, @SouthwestAir, @SpiritAirlines,
@VirginAmerica, @JetBlue

Airports @JFKairport, @ATLairport, @flyLAXairport, @fly2ohare, @DFWAirport,
@DENAirport, @CLTAirport, @LASairport, @PHXSkyHarbor,
@MiamiAirportMIA, @iah, @EWRairport, @MCOAirport, @Official_MCO,
@SeaTacAirport, @mspairport, @DTWeetin, @BostonLogan, @PHLAirport,
@LGAairport, @FLLFlyer, @BWI_Airport, @Dulles_Airport,
@MidwayAirport, @Reagan_Airport, @slcairport, @SanDiegoAirport,
@flyTPA, @flypdx, @flystl, @flySFO,@HobbyAirport, @flynashville,
@AUStinAirport, @KCIAirport

study, the flight-centric health of an airport is described by delay related information
contained within BTS data. This data is publicly available usually with a two to three
month delay and this study limits itself with the BTS data from January 2017 to
February 2018.

The Twitter dataset available for this study is the same as in [21] and consists of
all the tweets found using a basic search for each handle of 7 major US airlines as
well as 34 major US airports (one of them having two Twitter handles). The full list
of handles can be found in Table1. Each entry consists of a timestamp, a user id,
the content of the tweet and the handle used to retrieve the tweet. This dataset spans
the entire period from January 1st 2017 to February 28th 2018. The extraction of
features from this dataset has been improved since the previous study and is described
in Sect. 2.2.

Figure1 plots the total number of tweets related to each handle over the year 2017
against the total number of flights flown by each airline or to and from each airport.
Airlines tend to gather more tweets than airports, and the number of tweets is not
necessarily correlated to the number of flights flown per airline. The handle “@Delta”
gathered the most tweets over 2017 even though Southwest Airlines carried out the
most flights in 2017. Most airports are regrouped around a cluster of 10k tweets and
200k flights over 2017, with Los Angeles International airport (LAX) and Hartsfield-
Jackson Atlanta International airport (ATL) being exceptions due to their higher
number of tweets.

In order to estimate the flight-centric health of each considered airport, this infor-
mation first needs to be extracted from the BTS dataset for each airport. Only two
types of delayed flights are considered here from a passenger’s perspective: Flights
departing with any amount of delay, and flights arriving with a delay greater than 15
minutes. Once all the flights departing an airport and all the flights arriving at the
same airport are selected, the following values can be aggregated per hour:
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Fig. 1 Number of tweets over the number of flights during the year 2017 for the considered airlines
and airports

• NumDepDelay: Number of flights departing with a delay
• NumArrDelay15: Number of flights arriving with a delay greater than 15 min

The aim of this study is to accurately estimate these two values for each airport at
every hour using a single passenger-centric dataset.

2.2 Feature Selection on Twitter Data

2.2.1 Volume Features

Features were extracted identically for all search handles presented in Table1, for
the exception of @MiamiAirportMIA, which does not gather enough tweets. In
addition to the raw number of tweets per hour per search handle, keyword related
information is also extracted from the Twitter dataset. In order to keep all the relevant
tweets without having to decline all the possible forms of the chosen keywords (e.g.
“delay”, “delayed”, “delays”, etc.), simple regular expression filters were created for
each keyword: Any tweet containing a word starting with the related keyword is kept
and the resulting tweets are then aggregated per hour. Five keywords were chosen
for this study: ‘delay’, ‘wait’, ‘cancel’, ‘hours’, ‘refund’.
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2.2.2 Topic Features

Another way of exploiting information from the content of these tweets is to perform
a topic analysis of the tweet database using Latent Dirichlet Allocation [22] (LDA).
In LDA, each document - here each tweet - is modeled as a finite mixture of topics.
A topic is defined as a distribution over the words composing the full set of consid-
ered documents. The topic distribution of each document and the word distribution
of each topic can be determined using variational Bayes approximations and was
implemented in Python by Rehurek and Sojka [23] within the Gensim library.

A first step in topic analysis is to clean the documents analyzed, here the tweets.
This cleaning process was already performed in [13] and [21] and consists of the
following steps: Any reference to websites or pictures was replaced by a correspond-
ing keyword. Every mention to another Twitter user within a tweet (@someone)
as well as most emojis were similarly replaced. Since this database contains many
replies from airlines to their customers, individual signatures of each agent were also
replaced by a keyword. Dates and times were also generically replaced by keywords
(e.g. “3rd Jan 2017” becomes “DATE” and “4pm” becomes “TIME”). Common
bigrams and trigrams, i.e. combination of two or three words, are also considered
as single words. The resulting text was then filtered from common stop-words and
from words occurring only once in the whole year of 2017.

For this study, the choice of 100 topic is made and the topic distribution deter-
mination algorithm is run five times and the best topic representation is chosen
using the coherence measures introduced in [24]. The aim of these coherence mea-
sures is to select topics with word distributions the more human understandable
possible for a better explainability. As an example, the top five words of a created
topic are: “toknowmeistoflywithme”, “nut_allergy”, “restrictions_apply”, “comfort-
able_journey” and “mins_secs”. The first word represents a hashtag for the phrase
“To know me is to fly with me” and the other words are actually bigrams. The com-
bination of these five words indicate a topic around passenger well-being aboard a
plane.

The topic mixture of each tweet is then calculated based on this choice of 100
topics. Topic related features are then created by averaging the distribution of each
topic per hour and per search handle. The hourly standard deviation of each topic
distribution is also extracted.

This cleaning process introduces two additional keywords that enables a quick fil-
tering of tweets, and therefore two additional features to add per search handle: tweets
containing a picture and those containing a website link. Thus seven keywords are
actually considered for feature extraction: ‘delay’, ‘wait’, ‘cancel’, ‘hours’, ‘refund’,
‘PICTURE’, ‘WEBSITE’.

2.2.3 Sentiment Features

Sentiment analysis is also used here to enhance the feature set considered. Two
different datasets and cleaning method were used to train three different regressors
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Table 2 Emoji sentiment association

Category Emojis

Positive “:)”, “=)”, “:-)”, “;)”, “;-)”, “:-D”, “:D”, “=D”

Negative “:(”, “:-(”, “=(”, “:-@”, “:’(”, “:-|”

each. The first dataset used was the labelled dataset used in a Kaggle competition
[25] and was cleaned using the same process as for the previous LDA learning.
The generic keywords from the cleaning process (e.g. ’WEBSITE’, ’DATE’) were
removed before creating the associated dictionary, as well as words appearing in less
than 20 tweets or in more than 75% of the full dataset. A second dataset and cleaning
process was generated based on the work of Read [26]. Emoji filters were used to
extract tweets from the initial dataset and automatically label them with a positive
or negative sentiment according to Table2. The text cleaning process is improved
by merging negation words (“no”, “not” and “never”) with the word that follows
it. The tokens used for the creation of the dictionary are the resulting bigrams, i.e.
combinations of twowords that follow each other in a tweet, with the same frequency
filter as the first method described.

For both methods, three classifiers are trained (a random forest classifier, a naive
Bayesian classifier and a logistic regressor) using the scikit-learn library [27]. A
sentiment score is then calculated for each tweet by averaging the output of these
classifiers, 0 meaning a unanimous negative sentiment and 1 a unanimous positive
sentiment. The hourly average of these scores are added to the Twitter feature set.

2.2.4 Summary

Given the temporal nature of the data analyzed, the following features were chosen
to keep track of the date: month of the year, day of the month, day of the week and
hour in the day. In summary the following 8484 features are considered:

• Hourly volume of tweets for each search handle (7 airlines and 33 airports giving
40 features): Num_tweets_handle

• Hourly volume of keyword-related tweets for each search handle (40 × 7 features):
Num_tweets_keyword_handle

• Hourly averageof tweets’ sentiment (40 × 2 features):Mean_sent_method_handle
• Hourly average of topic distribution for each search handle (40 × 100 features):
Mean_topic_handle

• Hourly standard deviation of topic distribution for each search handle (40 × 100
features): Std_topic_handle

• Month of the year, Day of the month, Day of the week and Hour in the day
(4 features)
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3 Estimating Delays

The aim of this section is to see how well it is possible to estimate per airport the
number of flights departing with a delay and the number of flights arriving with a
delay greater than 15 minutes using the features extracted from the Twitter dataset.
The dataset was split into a training set consisting of the data from the year 2017,
and a testing set with the data from January and February 2018.

3.1 Methodology

For each BTS value at each airport, two different machine learning regressors were
trained on the training data set: a Random Forest regressor and a Gradient Boosting
regressor. These regressors were implemented from scikit-learn [27] with identical
hyper-parameters. The maximum depth of each regressor was limited to ten, the
minimum number of samples for a split was fixed to two and the maximum number
of trees was fixed at ten. These parameters were chosen following the results from
the initial work performed in [21].

As a comparison benchmark, we used Facebook’s time-series forecasting tool
Prophet [28] on the 2017 BTS data to forecast the full two first months of 2018.
The Prophet tool is based on an additive model where non-linear trends are fit with
yearly, weekly, and daily seasonality [29]. It is described as robust to outliers and
missing data with no parameter tuning necessary, therefore the default parameters of
the Prophet tool was used for this forecasting benchmark.

Lastly, the standard deviation of the BTS values in the training set were calculated
to illustrate the added value of the trained regressors. The performancemeasures used
to compare the different regressors are presented in Sect. 3.2.

3.2 Estimation Performance Measures

In order to measure the performance of the different models, two different indicators
were used: the R2 score and the mean-absolute error (MAE).

The R2 score, also known as the coefficient of determination, is defined as the
unity minus the ratio of the residual sum of squares over the total sum of squares:

R2 = 1 −
∑

i (yi − fi )2
∑

i (yi − ȳ)2
(1)

where y is the value to be predicted, ȳ its mean and f is the predicted value. It ranges
from −∞ to 1, 1 being a perfect prediction and 0 meaning that the prediction does
as well as constantly predicting the mean value for each occurence. In the case of
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a negative R2, then the model has a worse prediction than if it were predicting the
mean value for each occurence and therefore yields no useful predictions.

Regarding the mean-absolute error, the smaller its value is, the more accurate the
prediction is. It is calculated using the following formula:

MAE = 1

n

∑

i

| fi − yi | (2)

where n is the number of values being predicted.

3.3 Estimation Results

Figure2 shows a comparison per airport of the mean-absolute error of the two trained
regressors along with the chosen benchmark for the estimation of the number of
flights departing with a delay. The standard deviation of the number of delayed
departing flights at each airport during the year 2017 is also included for comparison.
The Random Forest models have the best results in this case: they outperform the
Gradient Boosting models at all-but-one airports (LAX) and the Facebook Prophet
tool on 31 airports out of 34. For 26 airports, the Random Forest models are able to
estimate the hourly number of delayed departing flights with a mean-absolute error
of three flights or less, and with an error of less than six flights for the remaining
airports.

Figure3 shows a comparison per airport of the mean-absolute error of the two
trained regressors along with the chosen benchmark for the estimation of the number
of flights arriving with a delay greater than 15 minutes. The standard deviation of
the number of delayed arriving flights at each airport during the year 2017 is also
included for comparison. The Random Forest models also have the best results in this
case though their relative performance are not as important as for delayed departing
flights : they outperform the Gradient Boosting models at 27 airports out of 34 and
the Facebook Prophet tool on 28 airports out of 34. The absolute performance is
however better than for estimating the number of delayed departing flights. For 28
airports, the RandomForestmodels are able to estimate the hourly number of delayed
departing flights with a mean-absolute error of less than three flights, and with an
error of less than five flights for the remaining airports.

Figure4 shows a comparison per airport of the R2 score of the two trained regres-
sors along with the chosen benchmark for the estimation of the number of flights
departing with a delay. The Random Forest models still have the best results in this
case, but the model associated with LAX airport also shows the only negative score.
They outperform the Gradient Boosting models at 27 airports out of 34 and the
Facebook Prophet tool on 28 airports out of 34.
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Fig. 2 Comparison of the mean absolute errors per airport for the trained regressors for the esti-
mation of the number of delayed departing flights. The standard deviation of the BTS value on the
training set is included for comparison

Fig. 3 Comparison of the mean absolute errors per airport for the trained regressors for the esti-
mation of the number of flights arriving with a delay greater than 15 min. The standard deviation
of the BTS value on the training set is included for comparison
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Fig. 4 Comparison of the R2 scores per airport for the trained regressors for the estimation of the
number of delayed departing flights

4 Analysis and Applications

The aim of this section is to analyze the differences between the chosen models as
well as explore possible applications resulting from the extracted features.

4.1 Model Analysis

Figure5 shows the hourly prediction of the number of delayed departing flights at
Atlanta airport (ATL) over the period January 12th–16th for the two trained regressors
along with the benchmark and the actual values. This airport was chosen since it has
the highest BTS standard deviation for the number of delayed departing and arriving
flights, and the period was chosen to illustrate the high variability of the number of
delays from a day to another. In this example, January 12 has more than twice as
many delayed flights than any other day, as well as important hourly variations.

Figure5 illustrates themain differences between the differentmodels: TheProphet
tool predicts for each day a similar daily variation with three peaks during the day
yet with amplitudes varying depending on the month and the day of the week. It also
predicts negative values, which underlines some limitations of the model in this case.
The added value from passenger-centric data-sources is better seen on January 12 and
13, where only the Random Forest regressor is able to estimate the higher number
of delays on January 12 before correctly estimating the more usual levels of January
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Fig. 5 Predicted number of delayed departing flights at ATL by the trained regressor over the
period January 12th, 2018 to January 16th, 2018. The actual number of delayed departing flights is
indicated for comparison

13. The Gradient Boosting regressor doesn’t estimate outliers as well as the Random
Forest regressor due to the difference in their loss functions. That difference is also
illustrated by the non-zero minimum of the Gradient Boosting estimation during
night time.

4.2 Other Applications

4.2.1 Real-Time Sentiment Analysis

The extracted features can be fed to the trained models for accurately estimating the
number of delayed flights, but they can also be used directly in order to sense the
overall passenger mood. Once the sentiment analyses are conducted on the tweets,
it is possible to merge them into one score per airline and monitor their evolution.

Figure6 shows the hourly average mood for three major airlines during the North-
eastern bomb cyclone studied in [13]. These three airlines have a similar passenger
mood evolution at the beginning and the end of the period, yet United Airlines shows
a drop in passenger mood on January 4th, the day when the bomb cyclone actually
hit the East coast. Though all three airlines have hubs in New York, United Airlines
is the only airline with a hub at Newark International Airport (EWR) and not John F.
Kennedy International Airport (JFK) nor LaGuardiaAirport (LGA),whichwere both
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Fig. 6 Average passenger sentiment with respect to three major airlines over the period January
2nd, 2018 to January 6th, 2018, corresponding to a bomb cyclone hitting in the North-East of the
US

closed during the bomb cyclone, meaning that United Airlines probably had more
dissatisfied passengers to handle on site during these extreme weather conditions.

4.2.2 Airports Passenger Map

After training the Random Forest models, it is possible to search for the most impor-
tant features within the 8484 initial features for each airport. This is achieved by
using the Mean Decrease Impurity measure defined by Breiman in [30] and normal-
izing the obtained feature importances so that the sum of all feature importances
is equal to one. Table3 shows the ten features with the highest feature importances
for predicting the number of delayed departing flights in ATL. Besides date related
features, four of the top ten features are related to the volume of tweets containing
delay keywords.

Once the features gathering 99%of the total importance for estimating the number
of delayed flights are extracted, it is possible to group these features per origin in
order to gain some insight on how airports are related from a passenger perspective.
For example, once the most important features for estimating the number of delays at
ATL are extracted, it is possible to count how many of these features are issued from
tweets gathered using the handle of John F. Kennedy International Airport (JFK).

Figure7 shows how ATL is connected to the other airports from this perspective.
The larger the link between ATL and another airport, the more features were kept
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Table 3 Top ten features for predicting the number of delayed departing flights at ATL

Rank Feature Rank Feature

1 Hour 6 DayOfMonth

2 Month 7 delay_@SouthwestAir

3 DayOfWeek 8 num_ATL

4 delay_@Delta 9 delay_JFK

5 delay_ATL 10 mean_63_BWI

Fig. 7 Map of feature links between Atlanta airport (ATL) and the other airports for estimating
the number of delayed departing flights. The larger the link, the more features were kept among
the features gathering 99% of the total importance for estimating the number of departing delayed
flights at ATL

Fig. 8 Map of delay links between Atlanta airport (ATL) and the other airports. The larger the link,
the more flights departed with a delay during 2017 from ATL towards the connecting airport. Only
links with more than 1000 delayed flights in 2017 were considered
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among the features gathering 99% of the total importance for estimating the number
of departing delayed flights at ATL. Interestingly, this airport graph is different from
the graph built from the actual BTS values. Figure8 shows how ATL is connected
to the other airports using the number of delayed departing flights from ATL. For
example, although there are many delayed flights departing to Florida, few features
from Floridan airports are kept. The opposite observation can be made regarding
Portland (PDX): there were less than a thousand delayed flights from ATL to PDX,
yet features from PDX were kept.

This example illustrates the possibility of creating a yearly review of airport
relationship from a passenger point of view. Future studies should investigate more
thoroughly the possible correlation and relation between the passenger connection
map and the delay connection map.

5 Conclusion

This paper aimed at investigating further the use of the social media Twitter as an
estimator of the US Air Transportation system. Exploiting both raw volume infor-
mation as well as different levels of content information within the Twitter stream
enables to accurately estimate for each airport the number of flights departing with
a delay and the number of flights arriving with a delay greater than fifteen minutes.
This passenger-based estimation yields a better estimation performance for a major-
ity of airports compared to using a state-of-the-art and off-the-shelf forecasting tool
on the flight-centric data alone. Moreover, the methods used to extract relevant fea-
tures from this passenger-centric data-source can be used to gain additional real-time
insight on how passengers relate to the Air Transportation system.

This study confirmed that information contained in passenger-centric datasets
are useful for a better understanding of the different stakeholders within the air
transportation system, and have the added benefit of being more readily and publicly
available than flight centric datasets. Future studies should focus on analyzing cases
when the estimation is less accurate, implying differences between the handling of
passengers and that of planes. Another direction of study considered is to validate
this method to other countries or regions (e.g. the European Union) where sufficient
flight-centric data is available.
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A Human-In-The-Loop Simulation Study
on the Requirements of Air Traffic
Control Operations for Expanding
Continuous Descent Operations

H. Hirabayashi, N. K. Wickramasinghe, and D. Toratani

Abstract Continuous descent operations (CDO) is an efficient aircraft descent
procedure that results in minimal fuel consumption because aircraft descend from
their optimal top of descent (TOD) at idle engine thrust. To expand the implemen-
tation of CDO, we focus on enhancing the decision-making abilities of air traffic
controllers (ATCOs). We conducted a series of human-in-the-loop (HITL) simula-
tions to understand the issues involved in CDO approval decision making by ATCOs
and to provide effective inputs to support the decision making. From our initial
simulation results, we identified several issues that can affect ATCO CDO-specific
decisions. As a proposal to solve these issues, we then created support information
displays and evaluated them in follow-on simulations. Our support displays were
found to be increasingly effective if their information was sufficiently accurate to
avoid premature judgment. It was also found necessary to provide support informa-
tion to ATCOs to enable more proactive air traffic control (ATC) measures for CDO
execution.

Keywords Air traffic control · Continuous descent operations ·
Human-in-the-loop simulation

1 Introduction

Continuous descent operations (CDO), in which aircraft descend at idle engine
thrust from their top of descent (TOD), is an efficient aircraft descent procedure
[1]. Performing CDO affords minimum fuel consumption and also prevents early
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descent, leading to noise reduction at localities situated around airports, so it is
desirable for all descending aircraft to follow CDO from the viewpoints of efficient
aircraft operations and reduced environmental impact. Thus, CDO has been specified
by the International Civil Aviation Organization (ICAO) as one of the modules to be
implemented in its Global Air Navigation Plan (GANP) modernization program [2].

Efforts to enable more flights to conduct CDO are being made around the world.
In the USA, the introduction of Optimized Profile Descents (OPD) is being actively
promoted. OPD procedure design and post-implementation evaluation methods have
been studied [3], and OPDs are being introduced at many major airports [4]. An
OPD is specified as an RNAV (Area Navigation) standard terminal arrival (STAR)
procedure. OPD STARs contain upper / lower altitude limits and speed constraints
at several waypoints, so the descent is not completely free, but it is possible to
descend from cruise with fewer level flight segments than a conventional procedure.
In Europe, the Continuous Climb and Descent Operations (CCO/CDO) task force
was launched in 2015, and conducted a detailed analysis of actual traffic data. The
results showed that continuous descent from TOD had only been achieved by 24%
of flights in nominal CDO procedures, and task force activities to expand the use of
CDO are still ongoing [5].

In Japan CDO routes, which approve the entire flight trajectory from the TOD to
the end of the STAR, are currently designed and published for three airports [6–8],
but their operation time window is restricted to late-night when the air traffic volume
is low because of difficulties in maintaining the required separations between aircraft
in higher traffic situations. However, simple comparisons between radar track trajec-
tories and simulated CDO trajectories have demonstrated that there are sometimes
traffic gaps (intervals) in the airspace during which CDO can be implemented even
during day light hours when the traffic volume is heavy [9]. Enabling such potentially
CDO-capable flights to execute CDO can extend current CDO operations from light
traffic to regular air traffic scenarios.

The aimof our study is to expandCDOin Japan andmorewidely beyond its current
usage and limitations. Since CDO is initiated with air traffic control (ATC) approval,
we focus on assisting and enhancing the air traffic controller’s (ATCO’s) CDO
approval decision-making abilities. Therefore, to expand CDO beyond its current
usage and limitations, in this study, we conducted a series of human-in-the-loop
(HITL) simulations with the assistance of experienced former ATCOs to determine
the relevant issues and identify the requirements for ATC operation involving CDO
approval specific decision making. HITL simulation is very important for evaluating
the feasibility of a proposed operational procedure. HITL simulation has been used
to evaluate the support information required by pilots during CDO operations [10],
but prior to our study, there have been no published HITL studies focusing on ATC
procedures and ATCO performance during CDO operations.
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2 Cdo Procedures

2.1 CDO at Kansai International Airport

In our HITL simulations, we utilized certain target scenarios relevant to Kansai
International Airport (ICAO code “RJBB”), one of the three airports where CDO
routes are established. RJBB is a 24-h international airport located offshore on an
artificial island close to the highly populated Kansai region. There are two parallel
runways (RWY06R/L andRWY24R/L),which aremainly used as dedicated runways
for departure and arrival, respectively. The airport operator Kansai Airports reported
189,658 aircraft movements in fiscal year 2018 [11], an increase of 1.8 since fiscal
year 1995, the year after the airport was opened, mainly due to traffic connecting the
Asia region.

RJBB offers several CDO routes in the late-night to early-morning time window
[6]. During themost recent two years (1 Jan. 2017 to 31 Dec. 2018), the daily average
number of CDO requests was 2.6, and the approval rate of CDO requests was 78%
[12].

Each CDO route is set via a “transfer point” to the end point of the STAR. Here,
transfer point refers to a waypoints at which ATC responsibility for arriving flights
is transferred from en-route radar control to terminal radar control, indicated by the
star in Fig. 1 which shows the location of the transfer point in an airspace vertical
view.

The RJBBCDO routes are indicated by blue lines in Fig. 2. There are five transfer
pints (indicated by stars), and CDO routes are available from three of these. For each
of these transfer points, three CDO routes are defined depending on the landing
runway. In the RJBB procedure designs, the end point of the STAR is collocated
with either the Initial Approach Fix (IAF) or an Intermediate Approach Fix (IF) at
4000 ft.

The CDO procedure, triggered by pilot request, is as follows:

(1) A flight requests CDO from ATC at least 10 min before reaching TOD, giving
the TOD position and estimated time at the transfer point.

Fig. 1 ATC transfer from en-route radar to terminal radar
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Fig. 2. Outline of CDO routes at RJBB

(2) ATC issues CDO approval clearance if it is determined that the requesting
aircraft can fly the CDO route and that there will be no conflicting aircraft
during the CDO descent. This procedure is almost the same at the other two
airports.

Maintaining safe separation between aircraft is an essential part of anATCO’s role.
When approving a CDO, ATCOs must ensure adequate separation from other traffic
during the CDO descent, which we call “competing” traffic in this paper. Aircraft
flying along airways or departure routes that cross the CDO route and aircraft landing
at the same airport fromdifferent directions,may be candidates for competing aircraft
(Fig. 3). ATCOs must issue instructions to aircraft, including the CDO aircraft, in a
timely manner to ensure safe separation from the other traffic. However, as the traffic
volume increases, the number of competing aircraft and ATCO workload increases
correspondingly. To ensure a reasonable workload to maintain airspace capacity as
traffic volume increases, it becomes necessary to impose descent constraints that
deviate from the ideal, such as descending aircraft prior to their ideal TOD (early
descent).
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Fig. 3 Competing aircraft

Fig. 4 Vertical view of CDO procedure

Fig. 5 Horizontal view of
CDO procedure
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2.2 ATC Operation for CDO

Figures 4 and 5, respectively, show the schematics of a CDO route in vertical and
horizontal views. Since the TOD is located before the transfer point, CDO must
be requested within en-route radar control airspace. The gray dotted line in Fig. 4
indicates a conventional descent for comparison,which has a different vertical profile.

Figures 6 and 7 clarify the differences in the ATC processes between conventional
and CDO descents. For a conventional arrival, the en-route ATCO first provides a
descent instruction to the aircraft to cross the transfer point at the prescribed altitude,
andATC responsibility is transferred to the terminal radar ATCO at the transfer point.
The terminal radar ATCO then assumes responsibility for the flight until giving a
runway approach clearance. Both ATCOs proactively issue ATC instructions to the
aircraft to ensure adequate separation from other traffic by repeatedly searching for
potential “conflicts” with competing aircraft from a few minutes to tens of minutes
ahead. For en-route ATCOs, the major competing aircraft is aircraft on crossing
airways and other arrivals with the same transfer point. For terminal ATCOs, the
primary competing aircraft arrivals to the same airport and departure / arrival traffic
at nearby airports. For a CDO arrival, a pilot CDO request triggers a CDO-specific
conflict search by both the en-route radar ATCO and terminal radar ATCO (as indi-
cated by the red rectangles in Fig. 7) before the CDO can be approved. Since the
CDO clearance includes approval up to the STAR end point, a conflict search up to
about 30 min ahead is required. At first, conflict searches are conducted separately
by the en-route and terminal radar ATCOs to ensure that there are no conflicts along
the CDO route within their areas of responsibility, then coordination between the
ATCOs is required, as indicated by the area highlighted in yellow color in Fig. 7.
The crossing altitude at the transfer point varies for each CDO operations, which
forms another element of the coordination.

Although the ATC process for a CDO arrival is more complex than for a conven-
tional arrival with regards to conflict search and coordination, the CDO process
requires fewer communications between the CDO flight and ATCOs.With a conven-
tional arrival, ATCOs have to issue multiple instructions at the proper instances, but
a CDO arrival requires only a single CDO approval clearance to descend from the
TOD to the STAR end point.

Upon comparing the two ATC processes, it could be argued that the CDO-specific
ATC operation is a reactive task while conventional ATC operation is proactive. For
a conventional arrival, ATC instructions are issued actively according to minute-by-
minute predictions of the traffic situation. On the other hand, for a CDO arrival, it is
necessary to continually monitor whether the aircraft can fly as per long-term predic-
tions, and if a competing aircraft appears, the CDO is canceled and the procedure
reverts to the conventional descent.
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Fig. 6 ATC task flow
(conventional descent)

3 Human-in-The-Loop Simulation

In the CDO procedure, the en-route and terminal radar ATCOs have to judge whether
or not a requesting aircraft can execute the CDO; that is, whether or not CDO
is applicable to the aircraft. If the determination is made as “CDO-applicable”,
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Fig. 7 ATC task flow (CDO
descent)

CDO approval clearance is issued after coordination between the en-route radar
and terminal radar ATCOs. Since the CDO approval clearance is made through the
end point of the STAR, the ATCOs have to consider the entire aircraft trajectory
from the point at which the request was made to the IAF/IF point (corresponding
to approximately 30 min of flight time in the case of an RJBB arrival), and conduct
corresponding conflict searches within their airspaces of responsibility.

HITL simulations were conducted with experienced former ATCOs to determine
the relevant factors and necessary information pertaining to the “CDO-applicable”
decision making. That is, the main questions addressed through the simulations were
as follows: What are the relevant issues to consider, and what is the information
required for deciding on whether CDO can be applied when CDO is requested?
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Fig. 8 HITL simulation examination

3.1 Decision Support Tool for Simulation Experiments

In the HITL simulations, we utilized a decision support tool customized for CDO.
The tool was developed at ENRI, and has two functions: a fast-time simulation
function for CDO flight trajectory calculation, and a real-time air traffic simulation
function that reflects input ATC instructions. The tool presents the traffic situation on
simulated radar screens and has several support information displays. The real-time
simulation function was used for our experiments.

Figure 8 shows the setup for the simulation experiments. There were three simu-
lated controller-working positions (CWP) corresponding to en-route radar control,
terminal radar control, and traffic flow coordination. ATC instructions to aircraft
were input directly at the CWP user interface rather than by voice. The traffic flow
coordinator was also responsible for inputting system commands. Figure 9 shows
the radar simulation screen used in the experiments.

3.2 Participants and Scenarios

Three former ATCOs who were familiar with ATC operation in the target area partic-
ipated in our experiments. Two participants were utilized as the ATCOs directly
involved in the CDO procedure outlined in Sect. 2, that is in the roles of en-route
radar ATCO and terminal radar ATCO, while a third participant acted as the traffic
flow coordinator.

The simulation airspace range was approximately 200 NM from the target airport
(RJBB). The ATCOs input instruction commands to the tool to ensure adequate
separations between aircraft according to the following prerequisites:

• All aircraft arriving at RJBB request CDO.
• ATCOs can apply speed adjustment to the CDO aircraft. If an change to vertical

profile or flight course is required, CDO is cancelled.
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Fig. 9 Radar simulation screen

• The longitudinal separation between aircraft crossing the same transfer point must
be 10 NM or more.

• All actual operational restrictions (no-fly zone, STAR restrictions, etc.) are
applicable.

Ten simulation experiments were performed over a period of 7 days, including
familiarization with the tool.

Scenarios were created based on historical flight plan data. Two days in 2016
and 2017 were selected for the scenarios: One day was focused on RWY06 arrivals
while the other day was dedicated to RWY24 arrivals. On each day, traffic scenarios
for three time periods were created from corresponding flight plan data: (a) 0000–
0800 JST (Japan Standard Time), (b) 1000–1300, and (c) 2100–2400. Scenarios
(a) and (c) include several hours after and before the current CDO operation time
period at RJBB, respectively. The arrival rate during the CDO operation period was
0–1 flights every 10 min, but increased to 1–3 flights/10 min. During the one-hour
time periods immediately before and after CDO operation period. These scenarios
were prepared to examine the CDO operability during time periods spanning several
hours earlier and/or later than current CDOoperations. Scenario (b) includes the peak
traffic time period during each day, and was prepared to extract issues and to study
the feasibility of HITL simulation of CDO in heavy traffic environments. A total of
six scenarios was, therefore, prepared for two runway operation configurations and
three time periods. The simulations were conducted reflecting the wind conditions
during the selected days.
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To create realistic traffic flows, the time and altitude of entry of flights into the
simulation were set based on historical radar track data, and the subsequent flight
trajectories were calculated using an aircraft type-dependent performance model and
the wind conditions. In addition to RJBB arrival traffic flows from multiple transfer
points (refer Fig. 2), the RJBB departure traffic flows, crossing airway traffic flows,
and traffic flows at nearby airports were also simulated.

The scenarios were not arranged to be conflict-free; that is, loss of separation
could occur if all RJBB arrivals executed CDO, so participants had to give ATC
instructions to ensure separation. For example, eight arrivals in 30 min were set in a
time period during which traffic volume gradually increased. If all aircraft executed
CDO without speed restrictions or route stretching, two pairs of aircraft executing
CDOwould lose longitudinal separation prior to reaching the IAF/IF, and there were
other competing aircraft such as RJBB departures and crossing airway traffic.

4 Results and Discussions

4.1 Issues Concerning CDO-Specific ATC Operations

From the HITL simulation experiment, we identified several influences that affected
ATC CDO operations and considered the underlying issues. These influences and
issues are summarized in Table 1.

4.1.1 Wide Variation in CDO Trajectories

The first issue is the wide variation in CDO trajectories. Figure 10 shows the differ-
ences between conventional and CDO descent trajectories in vertical view. In a
conventional descent, an aircraft crosses the transfer point at a predetermined alti-
tude, whereas for a CDO descent, the speed and angle of descent are determined
by each aircraft, so the TOD position and the position of entry into the terminal

Table 1 Issues and their
influences in CDO-specific
ATC operation

Issues Influence

CDO trajectories vary widely Transfer operation occurs
outside airspace interest

Difficulty in predicting flight
trajectory (Particularly
altitude)

Inapplicable vertical
separation
Reduction in airspace capacity

Early CDO approval
estimation times

Difficulty of predicting
competing aircraft

Prioritization of CDO Increase in burden of both
CDO and competing aircraft
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Fig. 10 Differences conventional descent and CDO descent trajectories

radar airspace vary from flight to flight. Figure 11 shows the actual TOD positions
of CDO flights (the TOD positions of 56 CDO flights over 84 days in 2018 extracted
from radar data provided by the Japan Civil Aviation Bureau). The TOD positions
are widely spread, and the vertical profiles also vary significantly. Table 2 lists the
altitude-related statistics of CDO flights at their transfer points calculated from radar
data. In a conventional descent, an aircraft is instructed to descend to cross the transfer
point at 16,000 feet, but on the other hand, a CDO descent profile is optimized for
an idle thrust descent, and so the altitude at the transfer point varies widely. Another

Fig. 11 TOD positions of CDO flights
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Table 2 Statistics of transfer
point crossing altitude of
CDO flights

Transfer point for
RWY06

Transfer point for
RWY24

Number 41 12

Max 24328 24072

75% 17749 21358

Median 16744 18718

25% 15741 17368

Min 15607 15809

Average 17059 19289

SD 1706 2865

Altitude is expressed in units of feet

factor in the wide scatter of CDO transfer point crossing altitudes relative to conven-
tional descent operations is that ATC transfer occurs outside the airspace of interest.
This also requires additional coordination between the ATCOs.

4.1.2 Difficulty of CDO Trajectory Prediction

Thewide variation of CDO trajectories also causes difficulty forATCOs in accurately
predicting the flight trajectory. This difficulty is captured in Table 1 along with its
issues in the second row. In a conventional descent, ATCOs issue altitude instructions
as they desire. However, in the CDO case, these instructions are not provided because
CDO clearances involve aircraft descending as they wish. It is difficult for ATCOs
to accurately predict the descent trajectory based only on human experience and
judgement, and as a result, ATCOs could not apply vertical separation, which one of
the separation standards. Moreover, because of uncertainty of the trajectory, ATCOs
may need to set an extra buffer to maintain separation. This difficulty also leads to
reduction in the airspace capacity. Assistance from automation such as a trajectory
prediction function is required to enable ATCOs to estimate the crossing altitude
accurately.

4.1.3 Early Judgement for CDO Approval

The third issue involves the necessity of early judgement when issuing a CDO
approval. A CDO approval clearance is issued only when competing aircraft are
not predicted on the estimated CDO trajectory. However, it is difficult to carry out
this prediction precisely. In particular, when a departure is a competing aircraft, an
estimate of its relationship with the CDO profile must be made before it has even
become airborne, which is difficult even if the predicted take-off time is accurate.
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4.1.4 Prioritization of CDO

The fourth issue was whether or not to prioritize CDO flights. In the HITL simula-
tion experiments, the ATCOs ensured ATC separations to prioritize CDO flights to
the maximum extent possible. The HITL simulations were mainly of time periods
slightly outside the current CDO window, wherein the traffic volume increased
/ decreased gradually. It was necessary to issue speed adjustment (mostly speed
reduction) instructions to proceed with CDO in many of the cases considered.

4.2 Supporting ATC Operations for Expanding CDO

To enhance the ATCO judgement for CDO approvals, we integrated two decision
support displays basedon aground-based trajectory prediction function into theHITL
simulation tool at CWPs. One is a matrix display for the en-route radar ATCOwhich
displays the existence of potentially competing aircraft against CDO trajectories as
a time series, with altitude and time on the vertical and horizontal axes, respectively.
The other display is a timeline display for the use of the terminal radar ATCO, which
shows time intervals between landing aircraft on the vertical axis with the timeline at
specified waypoints or runways. Figure 12 shows images of these support displays.
As a result of comparing the experiment with and without supporting screens, we
found that these displays could facilitate proactive ATC operations and support the
CDO approval process.

In our interviews with the ATCOs participating in the HITL simulations, they
commented that our proposed displays would be feasible if the provided information
were accurate. It is widely expected that improvement of highly accurate trajec-
tory prediction will increase the effectiveness of ATCO support functions. Further-
more, the en-route ATCO commented that it would be easier for decision making
if competing aircraft were clearly indicated, rather than be shown as only a prob-
ability on the matrix screen. The terminal radar ATCOs stated that the timeline
display was effective for future predictions because it visualized the time intervals
between aircraft, but because it did not show distance intervals it could not be used
to judge whether the distance-based radar-separation criteria would be satisfied. It
was remarked that both these displays would be more useful for the flow coordinator,
who manages the traffic flow comprehensively, than for tactical radar ATCOs.

In this study, we attempted the following to prioritize CDO: (1) speed adjustment
(of both CDO and competing aircraft), (2) delaying the take-off of departing aircraft,
and (3) per-flight adjustment of the STAR before the TOD to avoid competing traffic.
Regarding (1), we note that speed adjustment has been implemented in actual CDO
operations, and is considered acceptable from the perspective of ATCOs because it
is effective in maintaining adequate aircraft separation. However, there were several
cases in the experiments when excessive speed adjustments had to be imposed to
avoid radar vectors and improve the CDO success rate (i.e., the rate at which an
approved CDO is successfully completed without being aborted). It is necessary to
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Fig. 12. ATCOs’ decision supporting screens
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consider aircraft operating efficiency to carry out speed adjustment to achieve overall
effectiveness. Regarding (2), take-off delay was considered for the CDO routes that
are mostly affected by departing aircraft. To ensure CDO success, competing depar-
ture aircraft required up to 7min of delay. Regarding (3), the probability of competing
aircraft existing on theCDO trajectory decreased and theCDOsuccess rate increased.
However, the STAR revisions involved path stretching to avoid competing traffic near
the runway. This caused an approximately 12.6 NM stretch to original CDO route.
For the issue of prioritization of CDO, both the advantages and disadvantages of
CDO become very important in considering its overall effectiveness and feasibility.

In cases (2) and (3), priority given to CDO resulted in inefficiency for other and
own aircraft. Further consideration is needed on acceptable departure delays, route
stretch, etc.

5 Conclusions

To determine the issues involved in CDO-specific ATC operations and the neces-
sary information pertaining to ATCO CDO-related decision making, the authors
conducted a series of HITL simulations with the assistance of experienced former
ATCOs.The results showed that sinceCDOis initiatedwithATCapproval, presenting
information relevant to potential CDO-capable aircraft at the appropriate instant prior
to TOD is effective for improving ATCO decision making. This can also expand the
scope of CDO implementation, resulting in several benefits. Based on this result, we
implemented controller support displays to aid the CDO-specific decision making,
and evaluated them in further HITL experiments.

The experiments identified several influences faced byATCOs pertaining to CDO,
and we considered four issues underlying these influences. The issues include a wide
variation in the CDO trajectories, difficulty in CDO trajectory prediction by ATCOs,
the early approval required for CDO procedures, and the prioritization of CDO over
conventional descents and other traffic to increase the success rate.We found that our
support displays could be increasingly feasible if their information was sufficiently
accurate. It is desirable to improve high accuracy trajectory prediction technology at
the same time for its effective use as support information. It is also found necessary
to provide such support displays to ATCOs to permit more proactive ATC measures
for CDO execution, which are otherwise conventional reactive measures.

A review of the disadvantages of CDO implementation is also important to eval-
uate its overall effectiveness. Three trials were conducted in attempts to improve
the CDO success rate. In each case, the constraints of speed adjustment, departure
delay, and path stretching were imposed on the CDO aircraft and/or other competing
aircraft. Among these constraints, speed adjustment appeared to be acceptable from
the perspective of ATCOs. However, it is necessary to consider the aircraft oper-
ating efficiency to carry out speed adjustment to achieve overall effectiveness. The
other constraints (departure delay and path stretching) need to be carefully examined,
which will form the topic of our future works.
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On the Use of Generative Adversarial
Networks for Aircraft Trajectory
Generation and Atypical Approach
Detection

G. Jarry, N. Couellan, and D. Delahaye

Abstract Aircraft approach flight path safety management provides procedures that
guide the aircraft to intercept the final approach axis and runway slope before land-
ing. In order to detect atypical behavior, this paper explores the use of data generative
models to learn real approach flight path probability distributions and identify flights
that do not follow these distributions. Through the use of Generative Adversarial
Networks (GAN), a GAN is first trained to learn real flight paths, generating new
flights from learned distributions. Experiments show that the new generated flights
follow realistic patterns. Unlike trajectories generated by physical models, the pro-
posed technique, only based on past flight data, is able to account for external factors
such as Air Traffic Control (ATC) orders, pilot behavior or meteorological phenom-
ena. Next, the trained GAN is used to identify abnormal trajectories and compare the
results with a clustering technique combined with a functional principal component
analysis. The results show that reported non compliant trajectories are relevant.
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1 Introduction

Accidents that occur during initial, intermediate and final approach until landing
represent every year 47% of the total accidents, and 40% of fatalities [1]. In nominal
operations, approach flight path safety management consists in procedures which
guide the aircraft to intercept the final approach axis, and the runway slope with an
expected configuration in order to land. Some abnormal flights are observed with
deviations from procedures and operational documentation.

The International Air Transportation Association (IATA) forecasts a growth of
air passengers worldwide from around 4 billion today, up to 8.2 billion in 2037 [2].
Consequently, the number of non-standard procedures will also increase if nothing is
done to mitigate them. This kind of trajectory generates difficulties for both crew and
Air TrafficControl (ATC) andmay induce undesirable events such asNon-Compliant
Approach and Non-Stabilized Approaches that can drive to ultimate events like Run-
way Excursion, Control Flight Into Terrain, and Loss of Control In Flight. Analyzing
and gaining a better understanding of these procedure deviations would be profitable
for both air traffic managers and flight operators. Besides, generating realistic trajec-
tories while data are not available can greatly benefit noise prediction simulation in
the context of air traffic growth, and in many other applications.

Anomaly Detection is a well-known problem, which has been investigated for
a long time. It consists in finding samples from a data set that do not comply with
the overall behavior. Among the various methods available, the Multiple Kernel
Anomaly Detection (MKAD) [3] technique is one of the most efficient algorithms.
It was developed to detect anomalies in aircraft flight data records during approach.

It was developed to detect anomalies in heterogeneous data (i.e. discrete and con-
tinuous data), and has been used to detect anomalies in aircraft approach parameters
from aircraft data.

Another kernel-based approach to study on-board aircraft parameters was detailed
in [4]. Neural network auto-encoder reconstruction error can also be used to detect
abnormal behavior [5, 6]. Other anomaly detection techniques using information
geometry and functional representation have also proven to be efficient. In her thesis
[7], the author presents different Outlier Detection in Space Telemetries. In [8, 9],
functional principal component analysis is used to develop a local anomaly detection
algorithm in aircraft landing trajectories.

This paper details the work conducted around the generation of trajectory and
the detection of atypical trajectories using a novel machine learning technique called
GenerativeAdversarial Networks (GAN).GANare recent neural network techniques
that have already provided successful results in various fields such as image or video
generation [10, 11], image resolution enhancement [12], drug discovery [13], text-
to-image synthesis [14] and many others. They enable learning the data distribution
by solving a min-max optimization problem between a data generator and a data
classifier. The data generator tries to generate realistic data while fooling the data
classifier. The classifier tries to distinguish real data from generated data. Recently,
GAN have also been applied to detect anomalies in imaging data [15].
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In the specific field of trajectory generation with GAN, some work has already
been conducted on learning and reproducing human motion behavior [16], on robot
navigation [17], or on vehicle-to-vehicle-encounters [18]. GAN do not require prior
knowledge on data to learn their distribution and are therefore well suited to applica-
tions where only physical model representation is available and little is known about
responses to uncertainties or external factors such as aircraft approach trajectories
analysis. Furthermore, to the best of the authors’ knowledge, no investigation has
been carried out on applying these techniques to aircraft trajectory generation or
anomaly detection, which motivates the use of GAN. This article aims at conduct-
ing experiments with GAN to generate realistic aircraft trajectories based on airport
approach and landing data. Classical trajectory generation is based on the physical
aircraft model whereas here, the generation is data driven and does not use aircraft
and flights physics. It can, therefore, account for external factors that impact real tra-
jectories such as Air Traffic Control (ATC) orders, pilot behavior or meteorological
phenomena. Further investigations on the use of the GAN to detect abnormal trajec-
tory patterns were carried out and compared with the results of a prior information
geometry based approach.

This paper only presents the first results of trajectory generation. Regarding the
generation process, the comparison with other techniques is visual and focuses on
obtaining a realistic aspect of the trajectories. In future works, more accurate metrics
could be developed to compare two generated data sets. Regarding, the anomaly
detection, the results of two different methods will be compared.

After introducing the principles of GAN, the application of GAN to generate
approach trajectories is shown and results are compared with other methods such as
geometric information techniques. The second part of the paper is dedicated to the
detection of abnormal or atypical trajectories using the distribution of data learned
by the network. The relevance of the results is discussed with operational criteria
and the performance of our algorithm in real operations is detailed.

2 Generative Adversarial Networks (GAN)

GAN have recently attracted much interest in the machine learning community [10,
19]. These models have the ability to learn the distribution pd of input data and
generate new data according to the learned distribution. This is achieved through the
use of a network that combines a generator G (usually a type of neural network)
and a discriminator D (a classifier function). The generator G takes input noise
vectors z from a low dimensional space so-called latent space, and generates new
sample vectors in the data representation space. The discriminator D is trained on a
given input data x to compute the probability of a sample being an input data rather
than being generated by G. The process, that can be seen as a two player game is
simultaneously repeated so that G minimizes log(1 − D(G(z)) (generated data that
could not fool the discriminator), and D maximizes log(D(x)) (real data correctly
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Fig. 1 GAN. It is composed of a generator G, that takes as input a noise vector from the latent
space to compute a trajectory, and a discriminator D, that classifies trajectories between real and
generated

classified). The process is initiated by drawing random noise vectors z. The two
player game can be summarized in the following optimization problem:

min
G

max
D

Ex∼pd

[
log(D(x))

] + Ez∼pz

[
log(1 − D(G(z))

]
(1)

Figure 1 illustrates this principle in the specific case where x belongs to a space of
trajectories. Initial vectors z are randomly generated in the latent space and mapped
into the trajectory space via the Generator G. The discriminant function D returns
a score value close to 1 if the generated trajectory belongs to the real trajectory
data distribution or close to 0 otherwise. Next, the training phase of G receives the
score feedback in order to generate a more realistic trajectory if the score is low.
The process is repeated several times until an equilibrium of the minmax game is
found. The next section gives more details on the architecture of the generator and
discriminator neural network maps used.

3 Trajectory Generation

The problem of trajectory generation is usually divided into two paradigms, model-
driven generation, and data-driven generation. The approach with GAN is a data-
driven generation. Since in model-driven generation, trajectories are generated with
physical and dynamical models, they cannot take into consideration real-time con-
straints such as Air Traffic Control or even pilot behavior. Data-driven generation is
supposed to provide more realistic generation considering all the parameters from
real data.Model-driven generation can use real aircraft models directly, or the BADA
(Base of Aircraft Data) model [20, 21] developed by Eurocontrol.
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3.1 Aircraft Landing Trajectories

This section illustrates howGAN can be used to generate aircraft landing trajectories
at Paris Orly (LFPO) airport. The dataset used is composed of 4401 A320 landing
trajectories on runway 26 from Flight Data Monitoring Records. The parameters
selected are the longitude, the latitude, the altitude and the ground speed for the last
25NM. The initial trajectory rate is one point every 4 seconds, but each trajectory
is resampled to obtain 256 uniformly distributed points which fit a neural network
structure. These parameters have been selected because they correspond to the basic
parameters available in ADS-B or radar data. Thus, the results obtained can be
reproduced with other data sources. Further experiments are in progress for models
taking into account more parameters.

3.2 Neural Network Structures and Learning Process

In order to generate aircraft trajectories, specific neural network structures were
built using 1D convolutional and transpose convolutional neural networks. The neu-
ral network of the discriminant consists of four convolution layers and one fully
connected layer. The neural network of the generator is built by symmetry: one fully
connected layer and four convolution transpose layers with upsampling. Additional
details about the dimension of each layer are given on Fig. 2

A uniform distribution of the noise z was arbitrarily chosen in a 4-dimensional
space since the output space considers 4 dimensions (longitude, latitude, altitude,
ground speed). In addition to convolutional structure, each layer is followed by a
batch normalization, max pooling, and dropout layers in order to regularize the
network.

The learning taskwasmade usingAdam optimizer [22] with a decay. The learning
rate starts from 10−3 and decreases to 10−7. Networks were trained during 30 000
steps on a multi-GPU cluster. The cluster is composed of a dual ship Intel Xeon
E5-2640 v4 - Deca-core (10 Core) 2.40GHz—Socket LGA 2011-v3 with 8 GPU GF
GTX 1080 Ti 11 Go GDDR5X PCIe 3.0.

3.3 Generated Trajectories

After the learning phase, the generator was able to compute new trajectories from
samplednoise distribution.However, the obtained trajectorieswere noisywithmainly
high-frequency noise. Therefore, a smoothing filter was applied. In particular, a cubic
smoothing spline interpolation was computed to remove the noise from the generated
trajectories. Figure 3 illustrates filtered generated trajectories for all the parameters.
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Fig. 2 Two network architectures; on the left a the discriminator structure, and on the right b the
generator structure. Both structures use convolution or convolution transpose layers

The overall shape anddistribution of the generated trajectorieswas satisfying since
they followed the original distribution. Nevertheless, one can see that the generator
was not able to capture some types of patterns. For the altitude profile, it is known that
aircraft follow levelled-off path before descending on the glide path, but this was not
captured by the generator. The same behavior was observed for the extended runway
centre line which should be followed from 10NM to the threshold, but the generated
trajectories barely followed the localizer path for the last nautical miles. This may be
linked to the difficulty of convergence in GANmodels. As a reminder, GAN models
solve a min-max problem, which implies a very unstable optimal saddle point. The
optimal solution in Eq. (1) may not be achieved, meaning that some information such
as the levelled-off pattern might not be learned during the training phase.
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Fig. 3 1000 generated trajectories at Paris Orly Airport. In blue are represented the original tra-
jectories and in green the generated trajectories. At the top, the longitudinal path is represented, in
the center, the altitude profile, and at the bottom the ground speed profile
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This effect is not problematic for anomaly detection. Even if the generator cannot
reconstruct data with high levels of accuracy, it has still learned the general distribu-
tion of the data. Thus data that does not have characteristics similar to the learned data
will have a large reconstruction error and will be detected as anomaly. Furthermore,
anomaly detection using the discriminator is not affected at all.

3.4 Comparison with Information Geometry

Information geometry also enables the generation of new trajectories by estimating
the Karhunen-Loève expansion [23] through the Functional Principal Component
Analysis process [24]. It consists in considering each curve � as the weighted sum
of a mean curve γ plus the principal components φ j by defining the orthogonal
basis that maximizes the explained variance in the first dimensions, as shown in the
following equation:

�(t) = γ (t) +
+∞∑

j=1

b jφ j (t)

Usually, the decomposition is truncated to retain a certain variance, which also
enables dimensionality reduction. To generate new trajectories, one must first esti-
mate the distribution of the principal coefficients b j . Then, one is able to generate new
trajectories using the decomposition basis. It is interesting to highlight that results
from FPCA generation with dimensionality reduction are similar to those obtained
with our GAN model. Indeed, applying dimensionality reduction in FPCA only pre-
serves the largest variation mode around the mean curve. Therefore, the levelled-off
flights are not captured with the truncated FPCA decomposition either.

4 Anomaly Detection

This section, illustrates how GAN provide solutions to the anomaly detection prob-
lem. As explained in Sect. 2, GAN combine a generator G, and a discriminator D.
After the learning task, the discriminator has been trained to recognize real data
from generated data. Consequently, the first approach to anomaly detection consists
in using the score of D. Indeed, the closer the score is to 0 , the less realistic the
data is supposed to be, or in other words, the less likely it is to belong to the original
distribution.

Another way to perform anomaly detection with GAN is to build an encoder E
(usually another neural network). The encoder embeds samples from the trajectory
space to the latent space. The encoder is illustrated in Fig. 4. It can be automati-
cally tuned during the GAN training (this setup is known as BIGAN), or after the
training (Encoder). The anomaly detection can be applied to a dataset with the fol-
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Fig. 4 This figure completes Fig. 1 with the encoder E. The encoder selects a trajectory and builds
the corresponding noise vector in the latent space

lowing process : first, encode each trajectory in the latent space with the encoder E,
next, rebuild the trajectories through the generator, and finally compute a distance
between the original and reconstructed trajectories. The most distant trajectories can
be considered as anomalies since the generator was not able to rebuild the trajectory
properly. Indeed, if a trajectory does not belong to the trajectory distribution learned
by the generator, the reconstruction error will be high. This approach is very similar
to auto-encoder anomaly detection [5, 6]. Nevertheless, GAN are richer since they
also provide trajectory generation. The encoder network structure is similar to the
discriminant network detailed in Fig. 2. However, the last layer is sized to correspond
to the latent space dimension.

4.1 Anomaly Detection Using the Discriminator

A first approach to performing anomaly detection is to use the discriminator. It is
trained to distinguish real samples from the original data set and generates samples
from the generator. Therefore, its natural behavior tends to give a score next to 1 for
trajectories that are similar to the original data set and a score close to 0 for atypical
trajectories.

This method of anomaly detection was applied to the original dataset of the Paris
Orly Airport trajectories and the results are shown on Fig. 5. Red lines correspond
to trajectories with the minimum discriminator score for the dataset, green lines to
the maximum discriminant score, and orange lines to intermediate values.

The anomaly detection with the discriminator shows interesting results for the
longitudinal trajectories and for the altitude profiles. The typical altitude profile
(in green) follows a levelled-off path before descending on the glide path, which
corresponds to the published procedure. On the other hand, the atypical profiles
present high altitude or even Glide Interception From Above. 2D trajectories are
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Fig. 5 Score given by the discriminator to the original dataset. The red lines correspond to the
minimumdiscriminator score obtained for the dataset, and green lines to themaximumdiscriminator
score (orange corresponds to intermediate scores). The longitudinal trajectories are illustrated at
the top, the altitude profiles in the centre, and the speed profiles at the bottom
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illustrated at the top of Fig. 5. It seems that typical 2D paths are approaches from
the south and east, while less typical come from the west and very atypical from the
north with holding patterns. The ground speed profiles, at the bottom of Figure 5, do
not show any specific results.

4.2 Anomaly Detection Using the Encoder

This section illustrates the use of the encoder to detect anomalies. The encoder
was tuned automatically after the GAN training phase. The encoder embedded the
trajectory samples to the latent space. The anomaly detection was performed in
three steps. First, each trajectory was embedded to the latent space with the encoder.
Second, all trajectories were rebuilt through the generator. Third, the reconstruction
error (L2 Norm) was computed between the original trajectories and the rebuilt
trajectories. Finally, trajectory with high reconstruction errors were considered as
atypical.

In order to be able to compare results with the functional principal component
analysis method explained in [8], the anomaly detection was applied to specific total
energy trajectories. The specific total energy is the sum of the potential energy and
the specific kinetic energy per unit of mass. Since the mass is not available in radar
data, the method developed in [8] considers an approximation of the total energy
considering a mass constant over the last nautical miles. Considering specific total
energy can be explained by the fact that safe approaches and landings are closely
linked to good energy management. Therefore, one may assume that atypical energy
management may induce safety events or incidents.

In this purpose, another network was trained to generate and encode specific total
energy trajectories extracted from Paris Orly landing trajectories. Figure 6 illustrates
the normalized distribution of reconstruction errors. The color variation is from green
for small errors to red for large reconstruction errors. This corresponding color (and
reconstruction error) is also used to represent the specific total energy trajectories in
Fig. 7.

Two groups of anomalies can be found. The first group is composed of low energy
profile trajectories, the second of high energy profile trajectories.However, the largest
reconstruction errors correspond to high energy profiles (in red at the top of the
figure). The flight with the highest reconstruction error was selected. The comparison
with the atypical coefficient algorithm using FPCA [8, 9] is detailed below. Figure
8 illustrates the altitude profile and the speed profile of this flight. The colored dots
correspond to atypical coefficients between 0 for typical and 1 for atypical. Between,
25 and 15NM, one can observe a large atypical area due to high energy (high altitude
and high speed). FPCA algorithm andGAN anomaly detection seem to be correlated.
This result is also observed for the 10 highest reconstruction error flights from the
GAN anomaly detection experiments.
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Fig. 6 Normalized distribution of the encoder-generator reconstruction errors for the specific total
energy trajectories at Paris Orly Airport. The color green is attributed to small errors and goes from
orange to red for larger errors. Trajectories corresponding to important reconstruction errors on the
right of the plot are considered as atypical

Fig. 7 Specific total energy trajectories at Paris Orly Airport. The color corresponds to the recon-
struction error. Trajectories with a small reconstruction error are represented in green, and large
errors in red

4.3 Latent Space Representation

The encoder enables the trajectories to be embedded in latent space. Each trajectory is
then represented as a single point in a low dimensional space. Therefore, this enables
a simpler representation of a group of samples with a dimensionality reduction. The
embedding of the original trajectories in latent space is represented at the top of
Fig. 9. The corresponding total energy trajectories are illustrated at the bottom. The
embedded data of the two groups were clustered around the line x + y = 0. The first
group in blue is above the line, and the second group in green is below the line.
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Fig. 8 Highest reconstruction score flight altitude profile (at the top), and speed profile (at the
bottom). The flight presents a glide interception from above with high ground speed, and a little late
power reduction. The colored dots correspond to the atypical FPCA coefficients of the total energy
defined in [8]. The dashed colored lines correspond to operational limits: nominal (green), warning
(orange), and critical (red). For more details see [8]
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Fig. 9 At the top, the embedding of the original total specific energy trajectories into the latent
space, and at the bottom the corresponding trajectories. Trajectories were clustered into two groups
(green and blue) around the line x + y = 0

This representation enables different applications such as clustering, data analysis,
or linear interpolation. For example, one may use this representation for approach
procedure detection. Suppose we focus on a QFU approach with separate published
procedures, a GNSS RNAV, a visual approach and a VOR/DME approach. These
three types of procedures have a characteristic footprint. Approaches of the same
type will be grouped together and will be easily discernible in the latent space.
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By linear interpolation,wemean continuous deformation between two trajectories
or objects of infinite dimension. It is a very complicated mathematical problem. The
use of GAN makes it possible as the latent space is a low-dimensional normalized
space. It would therefore consists in interpolating by a straight line the two points
representing the trajectories in the latent space

4.4 Discussion

In this section, operational and scientific insights are provided for this research.
There are several possible methodologies to detect anomalies on large dimensions
elements. The GAN had not been used for the moment in this aeronautical safety
framework. The operational objective is the analysis and identification of precursors
to potential safety incidents or events. Atypical energy managements have shown a
strong correlation with flight safety events [9], therefore GAN could be used post-
operationally to analyse trajectories.

In addition, it is easy to understand the use of the total energy. Flying an aircraft
consists in managing an altitude and a speed, and therefore its total energy. The final
approach phase is a phase of decreasing energy. The plane goes from high speed
at high altitude to landing where its potential energy and speed must cancel each
other out. Energy transfers generally imply that a decrease in potential energy results
in an increase in kinetic energy. On a standard 3◦ glide path, aircraft are facing
the constraint of simultaneously reducing kinetic energy and potential energy. This
constraint implies good energy management upstream, generally by configuring the
flaps and landing gear to increase the drag and decrease the total energy, or by using
a level-off deceleration flight to reduce the speed before descending on the glide
path. Some aircraft have aerodynamic characteristics such that deceleration on final
approach can be very difficult, especially in poorweather conditions such as tailwind.
Therefore, there is a real operational interest in detecting atypical energymanagement
that could lead to incidents or accidents such as the crash of Asiana flight 214 in San
Fransisco (high energy then low energy) or more recently the Pegasus flight 2193 in
Istanbul (high energy).

There are many similarities between GAN, auto-encoders and the FPCAmethod-
ology. The ultimate goal is to estimate a large dimension data distribution. GAN
bring the generative aspect and the possibility to use both the discriminator and the
generator for anomaly detection. However, like auto-encoders, they are subject to
the convergence of the learning phase (even stronger for GAN). The FPCA method-
ology has the advantage of being deterministic. The use of GAN model on a sliding
window as proposed in the FPCA methodology [8], seems much more complex and
involves ensuring the convergence of each model resulting from a sliding window.
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5 Conclusion

Generative adversarial networks have proven to be very effective in generating realis-
tic scenes and objects in computer vision. This article investigates their use in the field
of aircraft trajectory generation and abnormal or non-compliant trajectory detection.
Preliminary experiments show that the generated trajectories follow realistic pat-
terns. This confirms that GAN are promising alternatives to model-based trajectory
simulators. The resulting generated trajectories are based on past historical data and
therefore account for external factors that are often difficult to embed in physical
models. Further experiments were also provided with GAN to detect non-compliant
or atypical trajectories. A comparison with a technique based on functional princi-
pal component analysis also confirms that reported anomalies are relevant. To the
best of our knowledge, this work is the first attempt to generate aircraft trajectories
with such generative machine learning tools. There remains, therefore, much more
to investigate in this domain. Further work should include the analysis of tailored
network architectures and learning, or extensions to Wasserstein GAN [25] that can
learn data from multimodal distributions.
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RRT*-Based Algorithm for Trajectory
Planning Considering Probabilistic
Weather Forecasts

E. Andrés, M. Kamgarpour, M. Soler, M. Sanjurjo-Rivo,
and D. González-Arribas

Abstract Convectiveweather and its inherent uncertainty constitute oneof themajor
challenges in the air trafficmanagement (ATM) system, entailing both safety hazards
and economic losses. In the present work, we propose a stochastic algorithm for
trajectory planning that ensures feasibility and safety of the path between two points
while avoiding unsafe stormy regions. The uncertain zone to be flown is described
by an ensemble of equally likely forecasts. We design a scenario-based optimal
rapidly exploring random tree (SB-RRT*), and we able to dynamically allocate risk
during its expansion so that a safety margin is not violated. The solution is a safe
continuous trajectory that minimizes the distance covered. We present preliminary
results assuming weather to be the only source of uncertainty.We consider an aircraft
point-mass model at constant altitude and airspeed with manoeuvres being limited
by a minimum turning radius.

1 Introduction

Weather uncertainties represent a major issue that the air traffic management (ATM)
system needs to account for. In particular, areas of convective weather (also known
as thunderstorms) constitute a potential safety hazard, being responsible of a quarter
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of the en-route delays in Europe [1]. In order to enhance ATM’s safety, efficiency
and capacity, path planning techniques must take into consideration the inherent
stochasticity of these phenomena. The aim of this work is to develop a methodology
for safe aircraft trajectory planning considering the intrinsic uncertainties of the
stormy environment.

The design of avoidance paths that prevent flying through risky areas is a problem
of interest that has been covered in the literature using a wide spectrum of approaches
with different applications. A first approach is based on geometric procedures, see
e.g., [2]. They benefit from fast computing times at the cost of usually ignoring storm
evolution and their uncertainty, aircraft dynamics or trajectory optimality. A second
class of methods relies on robust optimal control [3]. The optimization problem
considering aircraft dynamics and uncertain thunderstormdevelopment can be solved
using nonlinear programming. However, the solution of the robust optimal control
problem is quite sensitive to the choice of the required initial guess. To this end, in
[3], a randomized initialization is proposed, obtaining a wide range of local optima
and identifying the best solution. A third possible approach is the so-called stochastic
reach-avoid [4, 5], which is based on dynamic programming. These techniques are
able to find optimal trajectories in uncertain and time-varying scenarios. Nonetheless,
they are often computationally prohibitive, because there is a need to discretize and
explore an entire state space. Therefore, the affordable dimension of the problem is
limited due to the so-coined by Bellman “Curse of Dimensionality".

In this work, we opt for an incremental sampling-based algorithm, the rapidly
exploring random tree (RRT) [6]. RRT-based algorithms are able to find feasible
trajectories in high dimensional problems, including system kinematics, dynamics
and constraints [7]. In addition, if the vehicle is moving in a constantly changing
environment, they admit online planning, meaning that once a vehicle is following
the planned trajectory they can incorporate new data and replan the route in almost
real-time [8]. In the literature, there are different versions of RRT that have been
applied to trajectory planning of autonomous driving cars [9–11] or UAV flights
[12–14].

With regard to the stochasticity of the unsafe regions, previous works on RRT
were built on chance constraint approaches with both linear [15] and nonlinear [16]
dynamics. Chance constraints provide the probability of being above or below a
safety margin for a particular state-space configuration [17], hence, these works only
checked the safety of discrete points along the trajectory. To the best of authors’
knowledge, RRT-based algorithms have not considered the safety of a continuous
path. Moreover, RRT techniques have not been used for aircraft flight planning in
areas of uncertain weather.

To assess safety during theflight, there is a need to developmodels of thunderstorm
evolution. Modelling thunderstorms for flight planning purposes are a challenging
task, because it is difficult to forecast their birth and evolution in timescales close
to flight departure. The main reason is that the atmospheric evolution is chaotic and
extremely sensitive to perturbations, so any change might lead to huge errors in a
prediction. In the numerical weather prediction (NWP) framework, the main trend is
to characterize weather uncertainties with an ensemble forecast [18]. An ensemble
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provides a number of realizations, typically between 10 and 50, that represent the
atmosphere assuming slight variations during its evolution. By analysing the ratio of
realizations that predict a storm, we can estimate how risky an area is.

Our main contribution and the purpose of this work are the design of a RRT-
based algorithm for aircraft flight planning in stochastic weather regions ensuring
the safety of a continuous trajectory. We propose a scenario-based rapidly exploring
random tree (SB-RRT*) for general nonlinear systems able to grow in an uncertain
environment which is described by an ensemble of discrete realizations. Unlike
previous techniques that only considered the safety of a discrete set of points, our
algorithm ensures that a whole continuous trajectory is safe. As the tree is expanding,
it is able to dynamically allocate risk wherever is needed in order to never exceed a
global safety margin.

The paper is structured as follows: we introduce RRT algorithms in Sect. 2. In
Sect. 3, we propose the SB-RRT*, an optimal RRT able to expand in stochastic and
hazardous regions.A case study and simulation results are included in Sect. 4. Finally,
some conclusions are drawn in Sect. 5.

2 RRT: Rapidly Exploring Random Trees

RRT algorithms are path planning tools that look for a feasible trajectory between
an initial and a final state configuration. From an initial state, RRTs are expanded,
iteration by iteration, driving the system towards randomly selected targets. RRTs
can deal with a static or dynamic environment made up of unsafe zones to be avoided.
RRT planners are able to handle several degrees of freedom with constraints [6].

2.1 RRT Algorithm

Let X ⊂ R
dx be the planning space inwhich the aircraftwillmanoeuvre. The constant

dx represents the dimension of the coordinate system, generally equal to 2 or 3. Let
Xstorm ⊂ X be the unsafe zones that must be avoided, which in this case represent
thunderstorms. The complementary set Xsafe = X \ Xstorm represents the safe areas.

The RRT algorithm defines an iterative process that grows a tree T = (A, E),
where A is the set of randomly selected nodes (also known as vertices) and E rep-
resents the collection of edges connecting pairs of nodes in A. Individual nodes and
edges are denoted by ai and ei , respectively, with the subscript i bounded by the
maximum number of iterations. A fixed position xi ∈ X obtained randomly defines
a node ai . An edge ei represents a continuous trajectory between two nodes ai and
a′
i . Note that not every node or edge created by the algorithm is included in A or E ,
some of them are rejected if there is an intersection with Xstorm. Let xstart, xgoal ∈ X
be the initial and goal state configurations, the nodes astart and agoal represent these
positions respectively in T .
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Let S ⊂ R
ds , with ds ≥ dx , be the state space and let U ⊂ R

du be the control
space. In general, the dynamics of our system will be represented by a state vector
s ∈ S that evolves according to a transition equation,

ṡ = f (s,u),

with u ∈ U the control input. Assuming the described setting, the RRT grows by
following the set of procedures detailed hereafter:

• RandomSample: this function takes a random sample xrnd ∈ X from the planning
domain and creates its associated node arnd .

• NearestNode: it returns the closest node to arnd , anearest , according to a predefined
metric, e.g. Euclidean distance, Dubins path length.

• Steer: this function drives the system from anearest to arnd minimizing the distance
covered or any other cost function, i.e. time and fuel consumption. The trajectory
between both nodes is represented by an edge ei .

• Safe: it checks if an edge goes through not allowed areas.
• AddNode, AddEdge: these functions include a node ai or an edge ei in the sets A
and E , respectively.

By using the procedures here listed, the RRT pseudocode is summarized in
Algorithm 1.

Algorithm 1 T = (A, E) ← RRT(astart )
1: T ← InitializeRRT ();
2: T ← AddNode(astart , T );
3: while i < Max I ter do
4: arnd ← RandomSample();
5: anearest ← NearestNode(arnd , T );
6: ei ← Steer(anearest , arnd );
7: if Safe(ei ) then
8: T ← AddNode(arnd );
9: T ← AddEdge(ei );
10: end if
11: end while
12: return T

In order to growa tree T , theRRTalgorithm is initializedwith the initial node astart.
For a predefined maximum number of iterations Max I ter , a random sample arnd is
taken from X and there is an attempt to grow an edge and connect it to the closest
node anearest in A. If the connection is successful and the edge does not go through
Xstorm, the sample and the edge are included in A and E , respectively. An example
of RRT expansion is shown in Fig. 1. If the number of iterations is sufficiently large,
almost every region in X can be connected with the initial position by a sequence
of tree edges [19]. In trajectory planning problems, the main goal is to add the node
agoal to A so that it is connected to astart.
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Fig. 1 Example of RRT expansion with 200, 500 and 1000 iterations (from left to right)

2.2 RRT* Algorithm

Despite being able to obtain a feasible trajectory between two state configurations,
the RRT does not ensure trajectory optimality. That means the solution will cover
almost surely more distance than required, leading to a higher and unnecessary cost.
An update for the RRT was introduced in [20], the optimal RRT, denoted RRT*. The
RRT* is a path planning technique that ensures feasibility and asymptotic optimality
of a trajectory between two given state configurations. The RRT* algorithm inherits
the main core from the RRT including three additional features:

• Near: it obtains the set of nodes Anear ⊆ A within a ball B(arnd; k log n
n ), with k a

constant that depends on the RRT and n the number of nodes in T .
• Parent: among the set Anear, this function finds the node amin that involves the
smallest cost from astart to arnd passing by amin. The node amin is selected as the
parent of arnd.

• Rewire: the rewiring process checks if the cost from the initial node to each of
the elements in Anear can be reduced going through arnd. It changes parent–child
relations, establishing new edges.

These functions are included after line 7 in Algorithm 1. Once the safety of a possible
edge has been ensured, the set of nodes Anear in the vicinity of arnd is obtained using
the Near function. Given anear,i ∈ Anear, the cost ci of the trajectory between astart
and arnd through anear,i is calculated for each i . The node with the smallest value of
ci is chosen as the parent of arnd and denoted by amin. The rewiring process takes
place afterwards, removing non-optimal connections, so that each node is connected
to the root of the tree with the smallest possible cost.

Parent–child relations are an important part of the algorithm, as one node can
have many children, but each node only has one parent. Consequently, if we select
an arbitrary node in A, we will be able to reach astart just by following the sequence
of parents. The aim of the RRT is then to find a parent for agoal so that we can connect
it to astart. The RRT*, which is based on the RRT, goes further and removes redundant
relations that involve longer trajectories between nodes.
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3 Scenario Based RRT*

SB-RRT* is an extension of the RRT* algorithm in which the uncertain unsafe areas
are provided as a set of possible scenarios. The tree growth is constrained in such a
way that the solution is a safe continuous curve.

3.1 SB-RRT* Expansion

The SB-RRT* presented in this work is an update of the RRT* considering that Xstorm

is uncertain and described by a finite number of possible scenarios, all ofwhich can be
treated as deterministic. We assume, without loss of generality, that all the scenarios
are equally weighted. However, the formulation can be extended to forecast members
of different weights, if such information is available (see, e.g. [21]). In addition, we
assume that, in each scenario, thunderstorms are objects described by closed curves.

Let the unsafe set Xstorm be uncertain. In [15], the authors proposed a chance
constrained RRT (CC-RRT), in which the probability of being inside Xstorm was
determined for each state configuration. In contrast toCC-RRT,we choose a scenario-
based approach in which the environment is characterized by an ensemble forecast.
The ensemble consists of different realizations, or scenarios, all of them possible.
The set Xstorm is composed of No different thunderstorms:

Xstorm = {C1(p1), . . . ,CNo(pNo
)}, (1)

(p j ) denotes a closed curve that describes the j-th thunderstorm and depends on an

uncertain vector of parameters p j ⊂ R
dp j , with dpj ≥ 1.We assume that Nsc discrete

realizations of Xstorm are available, being all of them equally likely:

Xl
storm = {C1(pl1), . . . ,C

l
No

(plNo
)}, with l = 1, . . . , Nsc, (2)

where Cl
j (p

l
j ) is a realization of the j-th thunderstorm obtained by sampling the

uncertain vector p j . As each curve C
l
j can be treated as deterministic, we can deter-

mine whether a point lies inside it or a curve goes through it. In consequence, the
SB-RRT* is able to work with a trajectory defined by a sequence of continuous
curves (or edges) or by a sequence of discrete states (or nodes).

Once the environment is defined, the SB-RRT* expands according to the pseu-
docode in Algorithm 2. The proposed algorithm is essentially a RRT* as described in
Sect. 2.2 that computes the safety of a sequence of edges and the following procedures
that will be covered hereafter in Sect. ssec:safety (Fig. 2).
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Algorithm 2 T = (A, E) ← SB-RRT* (astart)
T ← InitializeRRT ();

2: T ← AddNode(astart , T );
while i < Max I ter do

4: arnd ← RandomSample();
anearest ← NearestNode(arnd , T );

6: ei ← Steer(anearest , arnd );
if Safe(arnd ) and Safe(ei ) then

8: Anear ← Near(arnd , A);
amin ← Parent(arnd , anearest , Anear );

10: T ← AddNode(arnd );
T ← AddEdge(ei );

12: T ← Rewire(arnd , amin , Anear );
end if

14: end while
return T

Fig. 2 Schematic
representation of the
different possible
realizations of an unsafe
region

3.2 Safety of a Trajectory

Algorithm 2 includes the function Safe that determines the safety of either nodes or
edges. One of the key contributions of this work is the way the safety is computed
so that the solution of the SB-RRT* can be considered safe as a whole continuous
trajectory. In a planning in which the unsafe objects are described by deterministic
parameters, a node is safe if it lies outside Xstorm and an edge is safe if there is
no intersection with any thunderstorm. If the environment is uncertain, we can only
know that a node or an edge is safe up to a certain probability. In the present paper,
given an event Z , the probability of Z being safe or not safe is represented by (Z)s

and (Z)ns , respectively. If No > 1, (Z)ns, j denotes the event of Z being not safe in
the presence of the j-th thunderstorm. The different definitions of safety that are
used in our work are listed down below.
Safety of a node: We say that a node ai is safe if it is outside all the thunderstorms
in Xstorm with a probability of at least 1 − εa . In other words, it can only be inside
at most �εaNsc	 deterministic realizations of unsafe object Cl

j . That is,
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Pr((ai )
ns) = Pr

( No∨
j=1

(ai )
ns, j

)
≤ εa (3)

Safety of an edge: In a similar way, we say that an edge ei is safe if the probability that
it intersects with any of the thunderstorms in Xstorm is less than a safety margin εe.
It means that ei only can interact with at most �εeNsc	 realizations of unsafe object
Cl

j . That is,

Pr((ei )
ns) = Pr

( No∨
j=1

(ei )
ns, j

)
≤ εe (4)

Safety of a trajectory: Let E∗ = {e∗
1, . . . , e

∗
N ∗ } be the solution of the SB-RRT*,

formed as a concatenation of safe edges e∗
i . Let N

∗ be the number of edges in E∗.
The solution of the SB-RRT* will be safe, with a safety margin ε, if all the edges
from E∗ are safe at the same time [22]. That is,

Pr((E∗)s) = Pr

( N ∗∧
i=1

(e∗
i )

s

)
≥ 1 − ε. (5)

By using De Morgan’s law, which states that the negation of a conjunction is equal
to the disjunction of negations, (5) can be rewritten as,

Pr((E∗)ns) = Pr

( N ∗∨
i=1

(e∗
i )

ns

)
≤ ε. (6)

With Boole’s inequality, which states that for a finite number of events Zi , we have
Pr(

∨
i Zi ) ≤ ∑

i Pr(Zi ), and we can conservatively satisfy (6),

Pr((E∗)ns) ≤
N ∗∑
i=1

Pr((e∗
i )

ns) ≤ ε. (7)

Using (4) and Boole’s inequality, (7) is replaced by,

Pr((E∗)ns) ≤
N ∗∑
i=1

No∑
j=1

Pr((e∗
i )

ns, j ) ≤ ε. (8)

Combining equations (5) and (8), the safety constraint for the solution E∗ is,

Pr((e∗
i )

ns, j ) ≤ εi j , (9)

which must be satisfied for i = 1, . . . , N ∗ and j = 1, . . . , No. The elements εi j are
individual safety margins for the i-th edge in the presence of the j-th thunderstorm.
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Fig. 3 Example of dynamic
risk allocation

They must verify 0 ≤ εi j ≤ 1 and
∑N ∗

i=1

∑No
j=1 εi j ≤ ε. In addition, the safety margin

for the i-th edge considering the No thunderstorms is denoted by εi and verifies∑No
j=1 εi j ≤ εi . In order to allocate the risks εi j , it can be done in a uniform manner,

so that εi j = ε/(N ∗No). This kind of allocation is overly conservative. Moreover,
the value of N ∗ in any RRT is not known a priori as it is part of the solution and
should be estimated. In reality, some parts of the trajectory will go through areas of
no risk and as we get closer to the unsafe set the actual risk will increase.

This work proposes a dynamic risk allocation in which the risk is non-uniformly
assigned to the different edges as the SB-RRT* is growing. This non-uniform risk
allocation leads to a less conservative andmore optimal solution in terms of distance.
During the expansion, the probability of interaction with Xstorm of any trajectory
starting at astart ∈ A can be of, at most, ε. An example of the risk allocation with
ε = 0.1 is illustrated in Fig. 3. An arbitrary trajectory starts with an edge e1, which
is unsafe with probability 0. Then, the tree is able to grow in directions in which,
according to (7), the total sum of probabilities of being unsafe is bounded by 0.1.
Consequently, the edge e2, which is unsafe with probability 0.1 is accepted:

Pr

( 2∨
i=1

(ei )
ns

)
≤ Pr((e1)

ns) + Pr((e2)
ns) ≤ 0.1.

On the contrary, e′
2 is rejected, as the resulting sum of probabilities is higher than

0.1:

Pr

( 2∨
i=1

(ei )
ns

)
≤ Pr((e1)

ns) + Pr((e′
2)

ns) > 0.1.

The tree could continue growing from e2 provided that (7) is verified. The definitive
mathematical formulation of the dynamic risk allocation is in progress and will be
presented in future work
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4 Case Study

In this section, the SB-RRT* is tested considering a simplified point-mass model of
aircraft. We solve the problem in a simple environment formed by circular uncertain
unsafe areas that represent possible stormy regions.

4.1 Aircraft Dynamics

We assume that it is flying at constant velocity V and constant altitude. Let
s = (x, y, λ) be the state vector. The vector x = (x, y) ⊂ R

2 represents the air-
craft position and λ ∈ [−π, π ] its heading angle. The manoeuvres are limited by
the aircraft minimum turning radius Rmin or equivalently, its maximum yaw rate
umax = V/Rmin. For simplicity, only three control inputs are considered: no turn,
right turn or left turn (with umax or Rmin). The system dynamics is given by,

ṡ =
⎧⎨
⎩
ẋ
ẏ
λ̇

⎫⎬
⎭ =

⎧⎨
⎩
V cos λ

V sin λ

u

⎫⎬
⎭ , (10)

with controls, u ∈ {−umax, 0, umax}. Each time we want to expand the SB-RRT*
between two nodes and we must solve the system in (10) minimizing the distance
covered. Given two states s0 = (x0, y0, λ0) and s f = (x f , y f , λ f ), there exist an
analytical solution for this optimization problem, the Dubins path [23]. Dubins paths
are continuous and differentiable curves formed by one of the following:

• Three arcs of circle of radius Rmin.
• Two arcs of circle of radius Rmin with one straight line in between.

Dubins paths are included in two functions from the SB-RRT* algorithm:

• NearestNode: they are used as themetric.When looking for the closest node to arnd
from the tree T , it is appropriate to use the shortest Dubins path, as it considers the
heading of the nodes and the minimum turning radius Rmin . Using another metric,
such as the Euclidean distance, could lead to manoeuvres that violate the turning
constraint [10].

• Steer: this function drives the system from anearest to arnd with a Dubins path.

4.2 Problem Setting

As a case study, the SB-RRT* is tested in a domain X = [0, 200] × [0, 160] (in km),
with an aircraft flying between (0, 70) and (200, 80), andmanoeuvering with Rmin =
2 km. The unsafe set Xstorm is formed by No = 3 circular and static thunderstorms
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of known radii and uncertain centre positions sampled from a Gaussian distribution.
Mean positions of the centres are (60, 60), (150, 70) and (110, 115), with radii of
20, 15 and 12 km, respectively. In this example, circles are used because they admit
an analytical intersection with Dubins paths. The number of scenarios considered is
Nsc = 20. A maximum risk of 10%, or ε = 0.1, is allowed. In consequence, only
�εNsc	 = 2 intersections with the unsafe set are permitted. They can occur with the
same thunderstorm or be distributed between two. The algorithm is implemented
in Python (basic Python and Numpy library). The computations are performed in a
workstation equipped with an Intel Core i7-8550U CPU running at 1.8 GHz.

4.3 Results and Discussion

Figure4 displays the SB-RRT* evolution and solution in two stages of its expansion,
at the 500th and 1000th iterations. It can be seen that a higher number of iterations
involve less distance covered by the solution trajectory. This fact results from the
appropriate parent choice and the rewiring process, both of which keep optimizing
the tree structure as it grows, removing redundant connections and ensuring that
each point is connected to the root with the shortest possible trajectory. In addition,
it can be observed that the tree is successfully avoiding the discrete realizations of
uncertain thunderstorms. Each node, including the target, is connected to the starting
point with a trajectory that involves at most two interactions with the unsafe regions.
This fact guarantees that the flight would be safe in a 90% of the possible scenarios.

Figure5 shows the solution after the 2000th iteration. As the number of iterations
increase, the algorithm is able to find solutions through the corridor between the
thunderstorms reducing the total distance that is required. In Table1, the reduction
in the distance covered with the number of iterations is shown. As a lower bound,
the straight trajectory connecting the initial and target positions involved 200 km,
but it is not valid as it assumes a high risk. With 2000 iterations, a 207 km trajectory

Fig. 4 SB-RRT* expansion and solution (in red) for different maximum number of iterations
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Fig. 5 SB-RRT* solution after 2000 iterations

Table 1 Length of the solution trajectory and execution time for the SB-RRT* with the number of
iterations

Iterations Solution length (km) Execution time (s)

500 355 76

1000 291 283

2000 207 1160

was obtained, meeting the safety requirement. That is, a 3.5% increase in the total
distance meant a 90% rise in the safety of the solution.

However, the main drawback of the SB-RRT* is the asymptotic convergence.
That means there is no guarantee of optimality unless the number of iterations tends
to infinity. In this example, increasing the number of iterations above 2000 was
of little benefit, as it required an excessive computational time with no important
shortening of the solution trajectory. As can be seen in Table1, doubling the number
of iterations means that the execution time grows by a factor of approximately 4.
The main bottleneck in the SB-RRT* algorithm is Safe function, which checks if an
edge is safe before being added to the tree or during the rewiring step. It must check
if there is an interaction with any object in any scenario. The function is called in
line 7 from Algorithm 2 and recursively inside Parent and Rewire. In particular, the
safety checks from these two functions are what cause the exponential increase in
CPU time. Both evaluate multiple connections during each iteration, one per node in
the set Anear. As the iterations increase, the total number of nodes in A grows, and so
does the possible nodes in Anear. Adding, for the total number of iterations, the CPU
time associated with Safe function times the number of calls of the function leads to
an exponential trend. Further research will be required to reduce the execution time
of the algorithm, being able to work in timescales compatible with near-real-time
modification of trajectories.
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5 Conclusions and Future Work

We presented an incremental sampling-based algorithm for flight planning, the SB-
RRT* able to obtain safe trajectories in an environment formed by stochastic unsafe
regions. Provided that the uncertainties are characterizedwith an ensemble of discrete
realizations, the algorithm ensures that the trajectory between two state configura-
tions and never violates a predefined safety margin. The ability of the tree to grow,
constrained by a maximum number of interactions with the unsafe set, is demon-
strated. A RRT-based algorithm was chosen due to its versatility, and it can be easily
modified and updated. For the moment, the algorithm has been tested assuming con-
stant flight level, however, the extension to variable altitude considering 3D Dubins
paths is immediate, e.g. in [24]. Moreover, no operational constraints have been con-
sidered, but RRT algorithms are compatible with speed or spatial limitations (see
kinodynamic RRT algorithms, e.g. [25]). The main disadvantage of a RRT* is that
theoretically, an infinite number of iterations are required for optimality. Nonethe-
less, the RRT*-smart extension presented in [26] can be incorporated, leading to an
increase in the rate of convergence and significantly reducing the number of itera-
tions required to approach the optimal trajectory. In future, data from real weather
forecasts must be integrated in the algorithm. The thunderstorms to be avoided will
not be described by analytical expressions, requiring a strategy to obtain intersections
between tree edges and more general curves.
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Impact of Wind on the Predictability
and Uncertainty Management
of 4D-Trajectories

Á. Rodriguez-Sanz and M. Terradellas Canadell

Abstract The future Air TrafficManagement (ATM) systemwill depend on Trajec-
toryBasedOperations (TBO) to accommodate the growing demand in air traffic. This
system will expect aircraft to follow an assigned 4D-trajectory with high precision,
meeting arrival times over established checkpoints with great accuracy. These time-
constraints are called Target Windows (TWs). Wind is one of the greatest sources
of uncertainty and, consequently, a key point for the improvement of predictability
and, ultimately, the implementation of 4D-trajectories. The main aim of this paper
is to develop a methodology to characterize these TWs and to assess the uncertainty
on the evolution of 4D-trajectories due to the effect of wind. For such purpose,
4D-trajectories are modelled deterministically, using a point mass model and the
BADA(BaseofAircraftData)methodologyofEUROCONTROL. Inparallel,wind is
modelled with a hybrid approach, where the stochastic component captures the error
associated with weather forecasts. Through Monte Carlo Simulation, the variability
of the trajectory´s parameters is evaluated under different atmospheric scenarios.
Using these results, TWs are defined along the different stages of flight, quantifying
the uncertainty associated with the aircraft´s position under the effect of wind.

Keywords ATM · Predictability · Uncertainty · 4D-trajectories · Time constraint ·
Target windows · Monte carlo simulation

1 Introduction and Justification

The recent rise in demand for air traffic poses challenging operational conditions for
the existing Air Traffic Management (ATM) system [1]. While air traffic continues
to grow, achieving reliable trajectory predictions is a critical prerequisite for the
accurate identification and resolution of potential conflicts [2]. To ensure sustainable
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support of airspace usage, SESAR (Single European Sky Air Traffic Management
Research), CARATS (Collaborative Actions for Renovation of Air Traffic Systems)
and NextGen (Next Generation Air Transportation System) are changing the ATM
framework [3–5]. Enhanced predictability and reliability is one of the 11 objectives
for the Global ATMOperational Concept as established in ICAO (International Civil
Aviation Organization) Doc 9854 [6]. The optimization of trajectory synchronization
and conflict detection/resolution is also one of the requirements of SESAR, NextGen
and CARATS.

In this context, the upcoming ATM system is based on the Trajectory Based Oper-
ations (TBO) concept. TBO requires separating aircraft by defining a strategic (long-
term) trajectory, instead of the tactical (short-term) conflict resolution traditionally
practiced [6]. Under the TBO framework, airspace users (AUs)will negotiate a trajec-
tory with Air Navigation Service Providers (ANSPs) and airport operators (AOs) [7].
Aircraft systems will exchange information with ground systems, revising the evolu-
tion of the trajectory and the planned airspace capacity to ensure that flights meet
the assigned Controlled Time of Arrival (CTA) [4, 7, 8]. While this approach allows
operators to choose a practically unrestricted, optimal trajectory (with the associ-
ated benefits in efficiency, reliability, sustainability and cost-effectiveness of aircraft
operations [3, 9]), it also requires that aircraft do not deviate significantly from their
agreed reference trajectory and therefore are kept within very small volumes around
this trajectory [10]. The goal behind this condition is to ensure that safety separation
standards are met. Consequently, a fundamental requirement to TBO operations is
to achieve a greater precision on the real-time position of aircraft. To this purpose,
SESAR, NextGen and CARATS support the 4D-trajectory operational concept. 4D-
trajectories integrate time into the 3D aircraft trajectory, meaning that each point on
the flight track is defined by position (latitude, longitude and flight level) and time.
In exchange for a more optimal 3D flight path, the aircraft would be obliged to fulfil
with great precision an arrival time or position over a specified four-dimensional
checkpoint. Such time constraints or spatial constraints are called target windows
(TWs) and require the ability to produce accurate and reliable predictions of trajec-
tories [11]. Nevertheless, uncertainties such as the actual aircraft performance or
atmospheric/weather conditions affecting the flight, have a great influence in this
process [12, 13]. If not corrected, these uncertainties and its associated disruptions
can result in the deterioration of the intended trajectory, a degradation that increases
over time [14], directly impacting on the reliability and safety of operations. Thus,
uncertainty management becomes a keypoint in the future air traffic operations, as
adjustments in the trajectory need to be coordinated to ensure reliability.Meteorolog-
ical circumstances (wind, temperature), aircraft performance (phase of flight, weight,
speed), navigational constraints (holdings) and initial conditions are the factors with
the largest impact on the evolution of trajectories [15]. Nonetheless, the effect of
wind shear on optimum performance [16] has been identified as one of the most
important uncertainties in path deviation [17, 18]. For this reason, the quantification
of the uncertainty brought by wind constitutes the main focus of this paper.

Several studies have addressed the prediction of trajectories in different phases of
flight [19–22]. Most of the methods used in the trajectory prediction (TP) problem
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can be categorized as either deterministic or probabilistic [23, 24]. The traditional
approach is deterministic and deals with TP as a mathematical problem that explains
aircraft motion. This approach is heavily and fundamentally constrained by the accu-
racy of the models that describe the actual behavior of the aircraft and by the quality
and consistency of the inputs [25]. In addition, the assumptions and hypotheses of the
modelmight introducepotential inaccuracies or errors in the prediction, i.e. sources of
uncertainty that are not considered explicitly by such deterministic methods. Where
external factors or parameters (like aircraft performance, environmental conditions,
accuracy of navigation systems or traffic regulations) are uncertain or cannot be
reliably measured, the probabilistic approach turns the deterministic problem into a
stochastic one [12, 13].

The CATS (Contract-Based Air Transportation) project developed the idea of 4D
Target Windows (TWs), which the aircraft needs to reach during the flight execution
phase, as a way of managing uncertainty [10]. The multiple stakeholders involved in
the operation of a flight agree on the target windows definition and location, usually
in the areas of transfer of responsibility [26]. Han et al. [27] confirmed that, by
incorporating TWs at intermediate locations along a 4D-trajectory rather than just
at sector boundaries, these TWs can help in the management of en-route punctuality
and uncertainty. Additionally, TWs provide a useful balance between predictability
and maneuverability of air traffic [12]. In terms of the TWs geometry, while some
studies consider TWs to be circular cross-sections labelled with the expected times
of arrival [27], others model them as rectangles with time or space characteristics
[2, 28]. When considering the safety requirements associated to the 4D-trajectory
operational framework, it is more reasonable and more practical to predict space
intervals than exact aircraft positions [22]. This study focuses on TWs with a time
control: times of arrival at certain points are fixed, stating the space intervalswhere the
aircraft should be found when reaching these times (scheduled milestones). The idea
for reducing uncertainty about the future evolution of a flight is therefore associated
to the imposition of spatial constraints at various sections of the trajectory, i.e. TWs
that each aircraft will have to meet. Therefore, these constraints or TWs will help to
increase punctuality and safety during the flight [28]. Instead of precise and concrete
4D points, a TW is defined as a spatial window or interval, where the times of
checkpoints are given as a series of constant values. Hence, uncertainty management
is discussed in terms of spatial variability, and the analysis is approached as a spatial
reachability problem.

When associated to TBO and RBTs (Reference Business Trajectories), TWs
should be large enough to allow AUs and ANSPs to react flexibly to a variety of
flight conditions but small enough to improve certainty and increase capacity [2, 7].
An experiment with an Airbus A320 test aircraft flying from Toulouse to Stockholm
was performed by EUROCONTROL in 2012 and defined an achievable tolerance
window of between -2 min and +3 min over the route and ±30 s for CTA [29].
Moreover, pilots were subjected to conditions where the aircraft deviated from the
expected course. Results showed that compliance with 4D-trajectories (adherence
to planned paths) in the cruise phase was feasible, whereas the TW for CTA was
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more difficult to accomplish and needed additional cooperation between pilots and
controllers [29].

Themain goal of this paper is to design amethodology for characterizing TWs and
for managing the uncertainty associated with the evolution of 4D-trajectories due to
wind impact. The study uses a simplified flight path, which includes all phases (take
off, climb, cruise, descent, final approach and landing). In this study, it is proposed to
manage time-related uncertainty by setting multiple intermediate locations (check-
points) along a trajectory, where TWs can constrain space variability. 4D-trajectories
are modelled using a point mass approach and the Base of Aircraft Data (BADA)
methodology of EUROCONTROL [30, 31]. The BADA aircraft model relies on a
mass-varying, kinetic and kinematic view to aircraft performancemodelling. Despite
knowing the physics of the wind and its condition as one of the most influen-
tial agents in the degradation of the trajectory of an aircraft, many studies do not
include it in the equations of motion. However, they do include other atmospheric
variables such as temperature, pressure or density. This is due to the difficulty of
modeling this phenomenon of changing nature. For this reason, it was decided to
focus on the predictability implications of this less explored phenomenon, which is
modelled as a stochastic variable while the rest of agents are modelled deterministi-
cally. Several wind models were developed with increasing complexity, culminating
in a hybrid model in which the deterministic component is wind forecast data and
the stochastic component captures the error associated with those weather fore-
casts. Through Monte Carlo simulation, the variability of the trajectory parameters
in different atmospheric scenarios is evaluated. Based on the results of the simula-
tion, TWs are defined for several checkpoints (time-milestones) along the trajectory
to estimate and quantify the uncertainty associated with the position of an aircraft
under the effect of the wind. Consequently, this will enable us to provide the prob-
ability of an aircraft achieving the TW constraint as a function of a space interval.
Results are analyzed to draw lessons regarding 4D-trajectories predictability and
uncertainty management.

The key contribution of this study is the provision of a model to address uncer-
tainty in TP and improve predictability of flights, whilst offering a methodology
to evaluate the robustness and reliability of 4D-trajectories, by quantifying one of
its main perturbations (the impact of wind). The proposed methods may be applied
in a predictive manner, hence being able to foresee and anticipate the degradation
of the expected trajectory, in order to plan appropriate corrective actions. These
models improve traffic synchronization and potentially ease conflict resolution in
4D-trajectories, which are cornerstones in future airspace operational environments.

This section presented the problem and its characteristics and reviewed how
previous studies have approached this issue. The remainder of the paper is orga-
nized as follows. First, we develop a 4D-trajectory model for the specific scenario of
study (problem statement). This model is validated using actual flight data, obtained
from EUROCONTROL. Subsequently, we propose a model for the wind, as the
objective of the study is to understand its impact on 4D-trajectory prediction. The
wind model is calibrated with data obtained from the NOAA (National Oceanic
and Atmospheric Administration). We then use a stochastic approach to simulate
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4D-trajectories that allows us to evaluate variability in the control parameters (input
variables that affect the model outputs). This conceptual framework is the basis
for identifying TWs (space intervals) along different checkpoints (time constraints).
It represents a methodology to characterize uncertainty in 4D-trajectories due to
wind. Finally, results are reviewed, and novel insights related to 4D-trajectories
predictability and management are proposed. Please see Annex I for the meaning of
the acronyms presented throughout the paper.

2 Methodology

2.1 Scenario Characterization

The first assumption of this study is that the aircraft is flying a 4D-trajectory under the
new SESAR operational concept and its associated systems and functionalities [2,
32]. This implies that the aircraft follows an optimized path, avoiding the complexity
of traditional trajectories, which must use predefined airways, holding patterns and
structured operational procedures for take-off and landing. In this framework, the
trajectory consists on the following phases: take off, climb, cruise, descent and final
approach, and landing. The take-off phase (1) is initiated with the aircraft cleared for
take-off by the control tower, and the landing phase (11) finalizes after the aircraft
has fully decelerated at the end of the runway. This is justified by the fact that, during
the taxi phase, wind has little influence over uncertainty compared to other variables
such as traffic congestion. As the climb and descent phases have 3 distinct sections
(before passing the transition altitude and when changing to clean or non-clean
configuration), they have been modelled taking into account the different perfor-
mance equations under each of these conditions. The climb flight phase (2) starts at
35 ft and finishes when the aircraft reaches FL360. The cruise flight phase includes
4 stabilized horizontal flight sections (3, 5, 7, 9), an en-route climb section (4) and
a descent section (6) that represent a flight level change between FL360 and FL380,
and a levelled heading change at FL360 (8). The descent flight phase (10) starts at
FL360 and initiates the landing phase (11) at a height of 50ft.

Sections 3, 7 and 9 have a length of 50km. Section 5 length is 100km. The length
of the other sections is determined by the aircraft performance. Figure 1 and Table
1 schematize the described trajectory. Please note that the term “phase” refers to the
5 flight phases (take off, ascent, cruise, descent and landing), while the term “section”
is used to describe the different segments of the trajectory model.

The aircraft selected to model and simulate the flight was the Boeing 737-900ER,
as it is one of the most frequent aircraft used in short- medium range flights in Europe
[33] (similar routes to the one modelled in the study).

The atmospheric variables are modelled in accordance to the International Stan-
dard Atmosphere (ISA) model [34]. Pressure and density are calculated as a function
of the temperature, which is estimated from the flight altitude.
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Fig. 1 Simulated flight profile

Table 1 Scenario of study

Flight phase Section Description

Take-off 1 Take-off run

Climb 2 35 ft → FL360

Cruise 3 Stabilized horizontal flight section

4 En-route climb section (FL360 → FL380)

5 Stabilized horizontal flight section

6 En-route descent section (FL380 → FL360)

7 Stabilized horizontal flight section

8 Heading change

9 Stabilized horizontal flight section

Descent and final approach 10 FL360 → 50 ft height (threshold)

Landing 11 Landing run

2.2 The 4D-Trajectory Model

The 4D-trajectory is modelled using EUROCONTROL’s BADA 4.0 methodology
[30], which is developed based on the aircraft´s kinetic and kinematic parameters.
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BADA4.0 employs the so-called Total EnergyModel (TEM) to determine the perfor-
mance of the aircraft. It applies the equations of classic flight mechanics with some
coefficients which are specific to the aircraft type and to the flight envelope at each
phase of the flight [2].

The BADA aircraft model is structured on a mass-varying, kinetic approach to
aircraft performance modelling [35]. It can be considered as being a reduced point-
mass model. TEM equates the rate of work done by forces acting on the aircraft to the
rate of increase in potential and kinetic energy [30]. It is organized in three parts or
blocks: (a) Aircraft Performance Model (APM), that provides complete information
on the theoretical aircraft performance parameters for a number of different aircraft
types; (b) Airline Procedure Model (ARPM), that provides nominal speeds for the
climb, cruise and descent phases, assuming normal aircraft operations as provided
in the aircraft manufacturers’ documentation; and (c) Aircraft Characteristics Model
(ACM), that provides a set of coefficients which represent characteristics that are
intrinsic to the aircraft. These three elements, together with the Atmosphere model
(AM), represent the Aircraft Dynamic Model (ADM), which determines the inter-
dependencies between the modelling parameters. Therefore, each aircraft type in
BADA 4.0 is characterized by a group of coefficients, called Aircraft Characteristics
(included in ACM), which are used by the APM and ARPM [30]. These blocks allow
us to estimate aerodynamic and propulsive variables from the input/control param-
eters (including mass) with the functional relationships shown in Table 2 (based on
[2, 24, 30]).

The functional relationships and structural interdependencies between the param-
eters that shape the trajectory are directly obtained from the BADA manual [30]. A
series of simplifications are performed to adapt the generic trajectory model to our
scenario characteristics:

• The aircraft is considered as a point mass with three-degrees-of-freedom (3DoF)
[12, 23, 36, 37]. Variation in mass is due to fuel consumption only. The flight
is assumed to be symmetrical with all forces acting on the center of mass and
included in the plane of symmetry, except during the heading change. The rota-
tional equations are decoupled, the angular speeds are small, and the lifting
surfaces do not affect the forces [24].

• We estimate that the aircraft’s initial mass is 10% lower than the aircraft’s MTOW
(Maximum Take-Off Weight), following operational data and past studies [2].

• Themaneuver in section (8) (levelled heading change) consists of two consecutive
heading changes of 90° at a constant bank angle, μ, which is easily derived from
the equations of motion of the aircraft:

μ = tan−1

(
V 2
TAS

Rg

)
(1)

R = VT AS

χ̇ π
180

(2)
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Table 2 Modelling parameter

Block Parameter Dependencies Description

Atmosphere Model
(AM)

Pressure p = f [T (h), ρ(h)] T (temperature), ρ
(density) and h
(altitude)

Speed of sound a0 = f [k, R, T,M] M (flight Mach), R
(universal gas constant)
and k (adiabatic air
coefficient)

Wind w = f [ϕ, λ, h] ϕ (latitude) and λ

(longitude)

Aerodynamic forces
model (AFM)

Lift coefficient CL = f [δ, p0, k, S, M,
m, ϕ, g0]

δ (pressure ratio), p0
(pressure at mean sea
level), S (wing surface
area), m (aircraft mass)
and g0 (acceleration of
gravity at mean sea
level)

Lift L = f [δ, p0, k, S,M, CL] –

Drag coefficient CD = f [CL, δ, d1 …
d15, Mmax, p0, k, S, M,
m, ϕ, g0]

d1 … d15 (characteristic
parameters of aircraft)

Drag D = f [δ, p0, k, S, M,
CD]

–

Propulsive forces
model (PFM)

Thrust coefficient CT = f [ti1 … ti12, a1 …
a36, M, δ, δT]

ti1 … ti12 and a1 … a36
(characteristic
parameters of aircraft)
and δT (throttle ratio)

Thrust Th = f [δ, mref, Wmref,
CT]

mref,Wmref (aircraft
reference mass and
weight)

Fuel consumption
coefficient

CF = f [δ, θ, M, f i1 …
f i9, CT]

f i1 … f i9 (characteristic
parameters of aircraft)
and θ (temperature
ratio)

Fuel consumption F = f [δ, θ, mref,Wmref,
a0, Lhv, CF]

f i1 … f i9 (characteristic
parameters of aircraft)

where VTAS is the aircraft’s true airspeed at the moment of calculation, R is the
turn radius, g = 9.81 m/s2 is the acceleration of gravity and χ̇ = 1.5 º/s is the turn
rate.

• The selected aircraft type (Boeing B737-900ER) uses a turbofan engine, with idle
rating configuration for descent phase and non-idle rating for the rest of the flight.
During climb phases, thrust is estimated with the maximum available thrust in
climb (MCMB) while for the rest of the phases, thrust for maximum cruise is used
(MCRZ).
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• To determine the aerodynamic configuration of the aircraft at each stage of flight,
as well as the speed regime in each of the phases, the Airline Procedure Model
(ARPM) is used.

• The algorithm for trajectory prediction uses the ground speed of the aircraft (V gs),
which is the aircraft’s horizontal speed relative to the ground. V gs can be calcu-
lated, using vector addition, from wind speed (w), wind direction, heading angle
ψ and the aircraft’s true airspeed (VTAS).

The model considers deviation control measures along the transversal axis. The
automatic control will correct the lateral speed with the last measurement available
of transversal wind. Similarly, during cruise phases, the vertical component of wind
is compensated by the automatic pilot.

Considering these simplifications and operational adjustments, the 4D-trajectory
model was generated using the MATLAB software [38], allowing us to compute
theoretical 4D-trajectories. Themodel’s accuracy, was checked by performing a vali-
dation test which compares the MATLAB simulated trajectory with real data flights
extracted from the EUROCONTROL’s database and scenario-based modelling tool
DDR2–NEST (Demand Data Repository–Network Strategic Tool) [39, 40]. The
convergence between the modelled trajectory and real flights is evaluated using
different intra-European routes; particularly, the flights chosen for comparison were
those that present similar characteristics to the studied scenario (flight level changes
and rectilinear sections). The test error regarding time and position achieves an
average value of 7%, reaching less than 5% during the stabilized flight level sections,
which is in line with past studies [2, 24, 41]. As an example of the validation proce-
dure, Fig. 2 presents a real trajectory that was flown by a Boeing B737-900ER
between Madrid and Cologne; this trajectory is used to test and validate the model
[39, 40]. The vertical profile of the trajectory and the section selected for valida-
tion are given in Fig. 3 [39, 40]. The vertical axis shows the altitude (FL) and the
horizontal axis depicts the range (NM).

Fig. 2 Real flight between Madrid and Cologne by a Boeing B737-900ER used to validate the
model
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Fig. 3 Real trajectory (vertical profile) of a B737-900ER flight betweenMadrid and Cologne (left)
and section of the trajectory used to validate the model (right)

2.3 The Wind Model

In this study, the wind has also been modelled in 4D. Space has been discretized
in N layers of height, defining in each of these layers a grid in the horizontal plane
composed of Cx × Cy cells. Time has also been discretized in order to capture the
temporal variations of the wind in magnitude and direction. At any given time and
position in space not corresponding to a grid note, the model linearly interpolates
between the cells, layers and closest times to obtain the best wind approximation
at the desired point. The result of this interpolation is a wind vector specific to the
4D-position of the aircraft in its trajectory.

To define the components of the wind vector, the model implements a hybrid
approach, meaning that each vector component is the result of summing a determin-
istic and a stochastic wind value. The deterministic wind value is the weather forecast
for the negotiated 4D-trajectory. Then, the intrinsic uncertainty associated with the
wind is introduced by adding a stochastic variable that quantifies the expected error
in the weather forecast.

The deterministic wind component is, as mentioned, the weather forecast for the
negotiated 4D-trajectory. It is assumed that in the context of 4D-trajectory operation,
weather forecast detailing the predicted en-route wind by region will be available
during the trajectory planning phase, and it is reasonable to assume that this informa-
tion will be used to choose the optimal flight path. Therefore, the model developed
in this study uses real weather forecast data. In particular, wind data is obtained from
the RAP (Rapid Refresh), the NOAA (National Oceanic and Atmospheric Adminis-
tration) wind prediction tool for North America. This tool is selected because it stores
wind data in a convenient format: it is updated every hour and generates a weather
forecast stored in a 3D grid, with a resolution of 13 km and a vertical resolution of
50 mb. As the purpose of this study is exemplifying the potential methodology, the
specific magnitude of the wind is not relevant and data for a random region and date
is used.

In the wind model generated, the size of the grid and the cells adapts to that of the
RAP, as well as the temporal variability, which adjusts to the frequency of updating
of the aforementioned wind data tool. The code developed for this model loads the
RAP results for 3 consecutive hours and stores the wind speeds corresponding to the
heights of interest, between sea level and 14,000 m altitude, in a network formed
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by grids at various heights. As the first layer of height available in RAP is at 12 m
altitude, the hypothesis that this layer contains data at sea level has to be made. In
addition, as the RAP does not consider vertical speeds, since it focuses on levelled
flights, it has been decided to also take this approach and consider the vertical wind,
ωz , void [42].

The stochastic wind component is modelled as a random field, ω : �×�3 → �2,
where each value is calculated considering the correlation in space and in time of
the forecast data [42]. If ω(t, P) is the wind at a point P ∈ �3 at the time t ∈ �, we
assume that ω(t, P) ∈ �2 is gaussian, with void mean and with covariance matrix
defined by (3).

R
(
t, P, t ′, P ′) ∈ �2x2 (3)

The fact that the mean is zero reflects the hypothesis that all deterministic wind
information is contained in the weather forecast. In addition, it is assumed that the
wind field is isotropic (invariant to rotations) and that the north-south and east-west
components of the wind are not correlated. Under these hypotheses, the covariance
matrix R can be expressed by (4), with correlation given by (5).

R
(
t, P, t ′, P ′) = E

[
ω(t, P)ωT

(
t ′, P ′)] =

[
r
(
t, P, t ′, P ′) 0

0 r
(
t, P, t ′, P ′)

]
(4)

r
(
t, P, t ′, P ′) = σ(Z)σ

(
Z ′)rt(∣∣t − t ′

∣∣)rXY
(∣∣∣∣

∣∣∣∣ X − X ′

Y − Y ′

∣∣∣∣
∣∣∣∣
)

· rZ
(∣∣p(Z) − p

(
Z ′)∣∣)

(5)

p(Z) is the atmospheric pressure at a height Z and σ(Z) is the standard deviation
of the wind in m/s at height Z. The functions rt (s), rXY (s) and rZ (s) can be obtained
from the analysis developed by Cole et al. [43]. If s ≥ 0, then:

rt (s) = ct + (1 − ct − dt )e
− s

Gt + dt cos

(
2π

(s − et )

gt

)
(6)

rXY (s) = cXY + (1 − cXY )e− s
GXY (7)

rZ(s) = cZ + (1 − cZ )e− s
GZ (8)

According to these equations, the correlation between points (t, P, t′, P′)
decreases exponentially with the horizontal distance and with the difference in
height and time of the points. Cole et al. [43] defined the correlation parameters
(ct , dt ,Gt , gt , et , cXY ,GXY , bXY , cZ ,GZ ) on Eqs. (6–8) as given by Tables 3, 4 and
5, where a distinction is made between the correlation on the longitudinal component
of the wind (ωx ) and the transversal component of the wind (ωy). The parameters of
correlation in the horizontal plane are given in Table 3.
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Table 3 Parameters of
horizontal correlation

rXY ωx ωy

cXY 0.05 −0.06

GXY [km] 311 363

Table 4 Parameters of
vertical correlation

rZ ωx ωy

cZ −0.016 −0.041

GZ [mb] 153 273

Table 5 Parameters of
temporal correlation

rt ωx ωy

ct 0.14 0.10

Gt [min] 141 254

gt [min] 1275 935

et [min] 97 447

dt 0.06 0.05

The parameters of correlation in the vertical plane are defined in Table 4.
The parameters of correlation for the time domain are defined in Table 5.
These parameters allowed us to adjust the RUC (Rapid Update Cycle) prediction

tool properties to different functions: correlation data in horizontal and vertical planes
is best fitted by an exponential curve (Eqs. 7 and 8with parameters in Tables 3 and 4),
while time correlation is best fitted by a sinusoidal function (Eq. 4 with parameters
in Table 5).

Even though the parameters were calculated for RUC data (the predecessor to
RAP), this resulted in an acceptable approximation given the nominal variations used
in the simulation (of the order of seconds and less than 1km) versus the variations
used in the correlation (of the order of thousands of seconds and hundreds of km).
The value of the parameters suggests a strong correlation between the wind forecast
error for points in the same horizontal plane, a very strong correlation in time and
a weaker correlation between points at different heights. For variations in time of
between 30 s and 1 h, it is acceptable to simplify the temporal correlation (6) as
described by (9) [43].

rt (s) = e− s
Gt (9)

With this approximation, the covariance matrix becomes constant over time, and
then the wind matrices (Wx ,Wy) can be expressed with a linear Gaussian model with
the structure given by (10)–(11).

Wx (0) = Q̂vX(0) WX (k + 1) = a · Wx (k) + Q · vx (k) (10)
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Wy(0) = Q̂vY (0) WY (k + 1) = a · WY (k) + Q · vY (k) (11)

In these equations, vx (k) and vy(k) are random, independent and standard Gaus-
sian variables, meaning that they follow a normal distribution with zero mean and
identity covariance matrix. These two random variables will be different in every
simulation, making the variable stochastic. k is the current time step and a is a
parameter given by (12). Q and Q̂ are derived from Cholesky decomposition from
the covariance matrix R̂ [44].

a = e− dt
Gt (12)

The stochastic component of the wind can now be calculated by implementing
the previous equations in MATLAB. Figure 4 shows the evolution of the wind error
between two samples.

Then, when this stochastic component is added to the meteorological forecast
data (the deterministic component), the total wind that the model assumes is acting
at each point is obtained. Figure 5 illustrates the calculated error of the wind in a
given simulation -the stochastic component—(right) and the total corrected wind
when this error is added to the forecast data -hybrid approach—(left).

The wind model here presented acts as an input for the remainder of the study.
As the study deals with a prediction problem, weather forecasted data is used, since
projected data is what would be available in the pre-tactical time horizon. The more
accurate this weather forecast is, the more precise the model results will be. To
validate the wind model, the forecasted wind values were compared with actual data
and it was found that the maximum error is less than 10% inmagnitude and direction.
Therefore, the wind data used is accurate enough for the model to provide useful
scenarios.
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Fig. 4 Wind forecast error at the beginning (left) and at the end (right) of a one-hour period
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Fig. 5 Modeled error of the wind (left) and total corrected wind (right)

2.4 Monte Carlo Simulation

Monte Carlo simulation is a statistical technique tomodel the probability of a specific
result, in non-deterministic processes where randomness intervenes [45]. This tech-
nique is based on the generation of a set of runs (simulations) which rely on the vari-
ability of probabilistic inputs. These inputs are randomly produced from a probability
distribution that shapes the uncertainty associated with the defining parameters of the
process (control variables) [2, 24]. For each set of inputs, the deterministic problem
is solved, obtaining a bunch of outputs that are aggregated to obtain the stochastic
solution [2]. This methodology can handle many random variables in a single model
structure, several types of statistical distributions and non-linear dynamic models [2,
12]. Monte Carlo simulation completes a random sampling and eases the achieve-
ment of a large number of numerical experiments, which is essential in problems
where extensive physical experimentation is not feasible [46]. The Monte Carlo
technique has been widely used and proved effective in air traffic control for 4D-
trajectories management [2, 24, 41], conflict resolution [47], safety verification [48],
and to estimate the impact of wind uncertainty [49, 50].

In this specific study, we apply the Monte Carlo simulation technique to obtain a
set of possible trajectories byvarying thewind input in 1,000 consecutive simulations.

The first step of the Monte Carlo simulation consists on the determination of
the statistical distribution of the input variable (the wind, in this case). In previous
studies [13, 14, 25], a detailed analysis of the variables with the largest impact on
4D-trajectories (mass, temperature, pressure, wind and navigation systems precision)
was carried out. Results indicated that wind is one of the parameters with the greatest
influence. Therefore, in this study, to isolate the effect of the wind on the degradation
of the negotiated trajectory, we consider a deterministic approach for all the other
variables andmodify thewind values. Therefore, aircraft positions are the parameters
resulting in the use of different sets of weather forecast. As indicated previously, our
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intention is to capture the wind disturbance on the motion of the aircraft with a
stochastic dynamic model (aircraft positions are the output parameters resulting in
the use of different sets of weather forecast). Specifically, the wind has been modeled
as the sum of a nominal component that contains theweather forecast and a stochastic
component that quantifies errors in the weather forecast. As described in Sect. 2.3
‘The wind model’, the stochastic part of the wind is modeled as the correlation
between two 4D-points derived from the covariance matrix, multiplied by a random
variable that follows a normal distribution of null mean and standard deviation 1; i.e.
N(0, 1). By means of this random variable, the wind input will take a different value
in each simulation.

Figure 6 shows thewind acting along the entire trajectory for the 1000 simulations.
Then, themean of thewind acting on each simulation is calculated, and then thismean
is approximated to a normal distribution, which expresses the mean wind parameters
for the set of experiments. With this, it is obtained that the input variable of the
model follows a normal distribution of mean μ = 9.34 m/s and standard deviation
σ = 1.02 m/s. This distribution is represented in Fig. 7.

The stochastic approach used to forecast the impact ofwind on the trajectory intro-
duces variability in the deterministic model. Figure 8 represents the set of trajectories
resulting from the 1000 simulations. Because of the different wind scenario on each
of the simulations, a dispersion is observed in the trajectory followed by the aircraft.
In the following section, trajectory degradation is quantified through the estimation
of TWs.

The variance of the variables estimated by the Monte Carlo technique converges
to the inverse square root of the number of runs (N) [45]. Consequently, this method
has an absolute error for the estimation that decreases like 1/

√
N.

Fig. 6 Wind speed for the N simulations
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Fig. 7 Normal distribution
of the mean wind speed for
the N simulations
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Fig. 8 Representation in 3D of the trajectories for N simulations

2.5 The Estimation of Target-Windows

The4D-trajectory notion aims to ensure a practically unrestricted, optimum trajectory
for a flight (if possible), in exchange for enforcing the aircraft to meet with great
accuracy an arrival time over a designated control position (milestone) or checkpoint
(CP). These time constraints are evaluated in this section by defining TWs or spatial
limitations, where the aircraft is required to be found at specific flight times. The
Monte Carlomethodology is applied, having as input variable the error in theweather
forecast and as output variable the arrival position at each CP. Results reflect the
stochastic and time-changing nature of the progress of the flight. Moreover, the
variability in the output variable adds a more realistic approach to the deterministic
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model by including actual uncertainties in trajectory prediction [2, 24]. The required
TWs can be defined at all CPs of the agreed trajectory once the simulations are
performed and the width of the spatial constraints is established; thereby, providing
AUs, ANSPs and AOs with a framework for traffic synchronization and conflict
detection and resolution. For the practical application of the TW concept, the size
of these constraints on a RBT should at least represent the spatial interval within
which any aircraft arriving at the checkpoint can avoid conflicts with other aircraft
[27]. The first step to estimating the TW is setting the time (t) of the checkpoints
(CP) which represent the CTAs. Each aircraft must hit them while holding a position
versus the negotiated trajectory within the required precision [12]. Figure 9 shows
the position of these CPs over the modelled trajectory.

Checkpoint 1 determines the deviation at the end of the take-off phase (t = 41 s).
Similarly, Checkpoint 7 controls the deviation at the beginning of the landing phase
(t = 4441 s). Checkpoints 2 and 6 aim to determine the deviation on the phases of
climb (t = 750 s) and descent (t = 3350 s) respectively. Finally, checkpoints 3 (t =
1640 s), 4 (t = 2240 s) and 5 (t = 2800 s) will help us study the deviation from the
negotiated trajectory during the course of the cruise phase.

After several simulations, these arrival intervals conform a histogram that can
be fitted on a normal distribution for each checkpoint, given by the probability
density function (13) which provides the probability of an aircraft achieving the

Fig. 9 Checkpoints over the vertical plane of a simulated trajectory
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TW constraint as a function of a space interval centered at μ and the level of accu-
racy σ. Then, different TWs or intervals can be defined depending on the precision
requirements established. The width of the TW is an indication of how predictable a
flight is and how its progress can bemanaged. Setting longer space intervals increases
predictability and reduces uncertainty, although this can lead to a less efficient time
management. For this study, a sigma level of ±2σ is used.

fNORMAL(x, μ, σ ) = 1√
2π · σ

· e−( x−μ

2σ )
2

(13)

3 Results and Conclusions

The fitted probability curve for the longitudinal arrival position at checkpoints 2 and
6 is shown in Fig. 10.

The results for CP2 imply that there is a 95.44% (±2σ ) probability that an aircraft
will be found at Checkpoint 2 (750s) within a TW of ±6km centered at 97km.
Similarly, the arrival positions at Checkpoint 6 (3,350s) can be fitted to a normal
distribution with mean μ = 729 km and a standard deviation of σ = 4.5 km. There is
a 95.44% (±2σ ) probability that an aircraft will reach CP6 within a TW of ±9 km.
The values of σ and the Interquartile Range (IQR) are higher for CP6 than for CP2.
This first result implies that, as the flight advances, the uncertainty and data dispersion
are greater. The TWs calculated for the rest of these CPs can be found in Table 6.

The integration of time into the 3D trajectory becomes tangible by setting an
instant of time and estimating the 3D position of the aircraft (Fig. 11 shows the
aircraft’s potential positions around the different control points, represented along
the path followed in one of the simulations). However, it is necessary to note that, in
each simulation, the aircraft will follow a unique trajectory, as shown in Fig. 8. In this
context, the results of thework show that, for a time of 750 s, the aircraftwill be found,
with a 95.44% probability, within an ellipsoid defined by a longitudinal deviation of
±6000 m, a lateral deviation of ±4 m and a height range of ±276 m. Ultimately, the
windows on the three axes define some ellipsoids around the aircraft. The volume of
those ellipsoids may be used by ATM service providers to define security minimums,
improve synchronization and anticipate the resolution of conflicts to the pre-tactical
phase, increasing the predictability of the aircraft in its monitoring of the contracted
trajectory.

In general, the trajectory will experience gradual nonlinear degradation over time.
Results show a greater dispersion during the turn maneuver and the descent phase.
On the other hand, the dispersion is very low at the end of the take-off stage, and at
the beginning of the landing phase the dispersion is also reduced with respect to that
presented in descent maneuver. Extending the estimation of TWs (space intervals) to
several points of the trajectory shows that the relationship of the longitudinal position
window with the flight time is monotonously increasing, implying that the aircraft
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Fig. 10 Statistical
distribution of the aircraft´s
longitudinal position in m at
CP2 (upper) and CP6 (lower)
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suffers a gradual degradation of its ability to follow the contracted trajectory. Thiswill
have direct consequences on the operational procedures of the SESAR concept and a
maximum amplitude of the position window will have to be specified in accordance
with the requirements of the airspace. The dimension of the time window will then
determine the maximum flight time before updating the flight data.

Other conclusions can be extracted by evaluating the sensitivity of the results
to changes in the parameters that shape the case study (the modelled scenario). On
the one hand, the lateral deviations are small in relation to the longitudinal devia-
tion, since a simple control system that simulated the autopilot of the aircraft was
applied in this dimension; this system compensated in each instant of time the wind
measured in the immediately previous interval. However, even with this measure,
the aircraft experiences lateral deviations of up to 50 m. Therefore, it is necessary
to study the degradation of the trajectory, with the purpose of proposing the correc-
tive measures that guarantee that the aircraft does not deviate excessively from the



278 Á. Rodriguez-Sanz and M. T. Canadell

Launch window

Lateral deviation [km] Range [km]

He
ig
ht

[ft
]

0

Fig. 11 3D Position of the aircraft in the time-constraint control points

planned trajectory. Finally, the deviations in altitude are smaller than those suffered in
the longitudinal direction, although of similar relative magnitude when considering
the distances travelled in the respective axes. From this observation, future works
will conduct a sensitivity and causal relationships analysis, for example, through the
application of Bayesian Networks [24], in order to quantify the dependence of the
results obtained from the parameters defined in the model.

The presence of substantial uncertainties in the systems and models required
for trajectory prediction represents a major challenge for the future TBO concept.
Weather, and particularly wind, can be considered as one of the most relevant sources
of trajectory degradation. Understanding and managing the impact of wind is hence
necessary to increase the predictability of the ATM system. This study has presented
preliminary results on trajectory prediction inwhichwind is assumed to be the unique
source of uncertainty.

The main contribution of this paper regarding uncertainty management is the
provision of a methodology to generate TWs (ellipsoids around the aircraft) at

Table 6 Results summary Window-x (km) Window-y (km) Window-z (km)

CP1 0.514 0.010 0.004

CP2 5.966 0.004 0.276

CP3 7.240 0.002 0.000

CP4 7.700 0.002 0.000

CP5 8.006 0.050 0.000

CP6 8.982 0.034 0.438

CP7 6.500 0.030 0.072
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different checkpoints (time constraints) of the 4D-trajectory. These TWs are defined
considering wind variations and allow us to determine, with a 95.44% probability,
the position of the aircraft. Therefore, it increases the predictability of the aircraft
flight and enhances the trajectory robustness when assessing its evolution.

Key findings of the paper are concrete values (Table 6) for space variability due
to wind impact, which covers a gap in current literature and provides a rule of thumb
for airspace users and network planners when evaluating 4D-trajectory potential
deviations. The method also allowed us to appraise 4D-trajectories sensitivity to
wind variations.

In the future TBO concept, the RBT is the trajectory which the AUs agree to
fly and ANSPs and airports agree to facilitate (subject to separation provision) [3].
Therefore, an RBT is the representation of an AU’s intention with respect to a given
flight. This trajectory may be modified during the execution phase when constraints
are to be changed due to separation of traffic or weather hazards, i.e. if the airspace’s
requirements regarding safety, regularity and efficiency are not achieved. The provi-
sion of TWs eases the definition of trajectory requirements when significant wind
impacts are projected. The method can be practically applied in a predictive way to
anticipate the trajectory degradation and determine potential corrective actions. This
represents a move from reactionary (tactical) interventions to preventive (strategic)
interventions.

Moreover, in a pre-tactical phase, this methodology could be used as an input for
synchronization measures, and conflict detection and resolution algorithms. TWs
offer pilots and air traffic controllers a better awareness of the positions that aircraft
are projected to reach during the flight. It also provides intermediate objectives for
a flight execution, while TWs were traditionally understood as boundary objects for
coordinating timing between adjacent sectors in order to handle punctuality of aircraft
as they transit between these sectors, we have extended this operational concept and
presented a more flexible approach. We propose TWs distributed across the entire
4D-trajectory of an aircraft’s flight, and not just at sector boundaries. However, this
will demand additional procedures and tools to share the necessary information
and enable smooth coordination between pilots and controllers, as a higher number
of checkpoints and TWs will likely increase the amount of coordination required
between them.

Our results suggest that the definition of TWs associated to 4D-trajectorymanage-
ment will offer a promising balance between predictability and maneuverability. It is
concluded that uncertainty (in this case due to wind) can not only be quantified, but
also managed and reduced by establishing TWs. The proposed methodology could
prove useful for both airspace users and networks managers for the design of a more
resilient and robust ATM system.
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be liable for any direct, indirect, incidental or consequential damages arising out of or in connection
with this product or document, including with respect to the use of BADA.
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ANNEX I: List of Acronyms, Abbreviations and Parameters
for Calculations and Equations

Acronym Meaning

ACM Aircraft characteristics model

ADM Aircraft dynamic model

AFM Aerodynamic forces model

AM Atmosphere model

ANSPs Air navigation service providers

AOs Airport operators

APM Aircraft performance model

ARPM Airline procedure model

ATM Air traffic management

AUs Airspeed users

BADA Base of aircraft data

C Cells in the wind model

CARATS Collaborative actions for renovation of air traffic systems

CATS Contract-based air transportation

CP Checkpoint

CTA Controlled time of arrival

EUROCONTROL European organisation for the safety of air navigation

FL Flight level

g Acceleration of gravity

ICAO International Civil Aviation Organization

MCMB Maximum thrust in climb available

MCRZ Thrust for maximum cruise

MTOW Maximum take-off weight

NextGen Next generation air transportation system

NOAA National Oceanic and Atmospheric Administration

P Position

PFM Propulsive forces model

R Turn radius

RAP Rapid refresh

RBTs Reference business trajectories

RUC Rapid update cycle

SESAR Single European Sky Air Traffic Management Research

t Time

TBO Trajectory based operations

(continued)
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(continued)

Acronym Meaning

TEM Total energy model

TP Trajectory prediction

TWs Target windows

Vgs Aircraft’s ground speed

w Wind speed

VTAS Aircraft’s true airspeed

χ̇ Turn rate

ψ Heading angle

μ Bank angle
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Towards Automatic Trajectory
Modification for Reducing Air Traffic
Complexity Using an ATC Difficulty
Index

S. Nagaoka, H. Hirabayashi, and M. Brown

Abstract Monitoring performance is an essential part of an air traffic management
system and requires appropriatemetrics such as complexity and safety corresponding
to the monitoring objectives. We have proposed as a new metric an air traffic control
(ATC) difficulty index that quantifies the ’difficulty’ of an air traffic situation from
an air traffic controller workload perspective. Once a traffic situation with a poten-
tially high difficulty is predicted, it is desirable that an advisory should be provided
to controllers to enable the trajectory modification of key aircraft to mitigate the
difficulty. To investigate the feasibility of developing a controller decision support
tool that can provide candidate trajectory modifications to mitigate high difficulty
traffic situations, we have started a conceptual study based on simulations. This paper
reports preliminary results of the study.We first describe the background of the study
and briefly explain the proposed difficulty index. Then, we indicate the concept and
algorithm for automatic trajectorymodification anddescribe our approach formoving
forward and challenges.

Keywords Air traffic management · Air traffic control difficulty index ·
Complexity · Trajectory

1 Introduction

Recent increases in air traffic demand have accelerated themodernization of air traffic
management (ATM) systems worldwide. Aviation’s shift towards ’performance-
based’ approaches, and ’trajectory-based operations’ (TBO) [1] require appropriate
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indices formonitoringperformance, such as safety and airspace/air traffic complexity.
As air traffic control (ATC) shifts away from sector-based control with the introduc-
tion of TBO and ’free route’ concepts, and with further automation and tool support,
the tasks of air traffic controllers will change, and definitions of workload based
on sector counts will no longer be appropriate for the future ATM environment.
We therefore began investigating metrics such as the ’complexity’ of an air traffic
situation or the cognitive ’ATC difficulty’ associated with air traffic controller work-
load and safety. Our aim is to predict ’hot spots’ of airspace or air traffic based on
trajectory information which will give a significant level of workload to air traffic
controllers, and ultimately to allow alleviation of such hot spots before they arise
through strategic trajectory modification.

Various metrics have been proposed for traffic complexity and difficulty. [2–
6] Their methodologies vary from using only traffic data such as flight plan and
trajectory data from radar or other surveillance sources, to those requiring judgements
by air traffic controllers. Of the former approaches, most of these only evaluate the
traffic situation at the present moment in time, and we have seen none that evaluate
the spatial and temporal situations simultaneously. We have therefore proposed as a
new metric an ATC difficulty index (which we call DI) that quantifies the difficulty
of an air traffic situation [7–14] as it evolves into the future, taking into account
projected proximity situations and the time to such events based on current and
planned trajectory information. The metric is based on an aircraft pair-wise metric
that can be transformed to an airspace-wise metric when evaluating the difficulty in
volume of airspace.

Thenext step is to apply themetric.AsATMmoves towardsTBO in a collaborative
framework, new tools will be required that will enable controllers to detect problems
in the future traffic situation further ahead than mental projections allow, and in the
case of a potential conflict or high difficulty traffic situation, to proposemodifications
to trajectories that will be shared electronically and possibly negotiated with pilots.
We propose the application of the DI metric to create such a tool.

In this paper, we present the concept of a new controller assistance tool applicable
to a future TBO environment and report preliminary results of a simulation-based
study to investigate the feasibility of developing such a tool and the applicability
of the DI metric. We first describe the background of the study and briefly explain
the proposed difficulty index. Then, we indicate the concept and algorithm for auto-
matic trajectory modification and describe our approach for moving forward and
challenges.
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2 Difficulty Index

2.1 Motivation for Constructing a Difficulty Index

The purpose of an air traffic control service is ensure the safe, orderly and expeditious
flow of air traffic [15]. To prevent collisions, separation minima are designated for
ATC operations in various types of airspace. Air traffic controllers (ATCo) monitor
the traffic situation and intervene, where necessary to prevent proximity situations
fromarising.A significant part of theirworkload is detecting and preventing ’conflict’
events, where two or more aircraft experience or are predicted to experience a loss
of separation minima.

As trajectory-based and free route concepts are introduced, aircraft will fly less
on airways and more direct point-to-point routes, increasing efficiency by reducing
flight distance. This will result in less structured, more complex air traffic flows that
could increaseATCoworkload. In turn, this could reduce the volume of flightsATCos
can handle—in other words, increased traffic complexity could reduce ATMcapacity
unless workload can be alleviated. A metric of ATCo workload in the future ATM
environment, which could also be a surrogate for air traffic complexity, is therefore
desirable.

When considering ATCo workload in dealing with conflicts for constructing a
difficulty index of ATC, we came to recognize the importance of the remaining time
to the closest point of approach (CPA) as well as the distance at CPA; in other words,
the temporal as well as spatial aspects of potential proximity situations should be
taken into account. We suppose that the subjective difficulty of a traffic situation
increases as the time available to identify and resolve a conflict reduces. We have
investigated the possibility of using temporal and spatial parameters to define a new
index for evaluating ATC difficulty associated with proximity situations [7–14]. We
have proposed a method for calculating the ATC difficulty for a pair of aircraft
using trajectory information [8, 9] and expanded it from a pairwise index to multiple
aircraft (airspace wise) index [9]. Then, the calculation methods for predicting future
trajectory based on flight plan information were developed [13].

2.2 Pairwise Difficulty Index

ATCo decision-making is based not only on the current but also the predicted future
traffic situation. A predicted proximity and perceived need for intervention may
increase ATCo workload depending on the severity of the proximity event and the
time remaining necessary for resolving it. We adopt such proximity situations as the
basis of an ATC difficulty index (DI).

Let us consider a pair of aircraft A and B flying linearly at constant speeds at the
observation time t0 as shown in Fig. 1. The movement of trajectory can be described
by relative vectors,

−→
Rr (t0) and

−→
Vr (t0). A future relative position vector at time t can
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Fig. 1 Geometric
configuration of relative
motion

be estimated by linear extrapolation. The time duration from the observation time
(= t − t0) is called the look-ahead time, and T denotes transpose. We try to map the
difficulty of proximity situations onto a real value between 0 and 1.

We define that the pairwise difficulty index value at time t0 can be defined by

G(t0) ≡ max
t≥t0

exp[−C(t)] (1)

where

C(t) = [
xr (t)

2 + yr (t)
2 + k2z zr (t)

2 + k2t (t − t0)
2
]/

λ2
H (2)

where λH , λz ,λt are scale parameters for the horizontal, vertical and temporal
dimensions.xr (t),yr (t),zr (t) are the relative positions between the pair at time t in
the Cartesian X, Y and Z axes, respectively,

kz ≡ λH/λz (3)

and

kt ≡ λH/λt (4)

Our index Eq. (1) therefore looks at the maximum value of the function
exp[−C(t)] which is a function of the current time t0 and projected time t. Equa-
tion (2) is an objective function and a normalized four-dimensional (4D) distance
measure. This equation assumes that the effect of spatial distance between a pair of
aircraft at a given projected time on ATC difficulty can be dealt with equivalently
as the length of the projected time from the observation (current) time. Equation (2)
consists of the relative horizontal and vertical distances between the aircraft pair
and the temporal ’distance’ (the look-ahead time to the projected traffic situation).
Table 1 summarizes the formula for calculating the difficulty value in terms of 4D
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Table 1 Formula for
pairwise difficulty value ( �U2

and ( �U · �V ) stand for �UT �U
and �UT �V respectively)

Pairwise difficulty value G(t0) = Max
t≥t0

exp[−C(t)]

C(t) =
(
xr (t)2+yr (t)2

)

λ2H
+ zr (t)2

λ2z
+ (t−t0)2

λ2t
≡ �U (t)T �U (t)/λ2H

where �U (t) ≡ �U0 + �V0(t − t0)

�U0 ≡ [xr (t0), yr (t0), kzzr (t0), 0]T
�V0 ≡ [vr x (t0), vr y(t0), kzvr z(t0), kt ]T
kz ≡ λH /λz , kt ≡ λH /λt

G(t0) =

⎧
⎪⎨

⎪⎩

exp
(
− �UT

0
�U0/λ

2
H

)
for �UT

0
�V0 > 0

exp
{
−

[ �UT
0

�U0 − �UT
0

�V02/ �V T
0

�V0
]
/λ2H

}
oterwise

vector operations. The derivation of the explicit representation of G(t0) has been
given in our previous paper [14].

2.3 Expansion to Routes with TCP

An aircraft’s planned route can be modelled as a series of linear segments divided
by waypoints at which the azimuth of the route segment changes. Smooth changes
in flight path between the linear segments are ignored as transition time between
segments is small compared to the segment time, and it is assumed that the speed is
constant. The cruise portion of a flight usually has at least one such point (called a
trajectory change point: TCP) at which the aircraft changes its heading or performs
an altitude change manoeuvre (a transition between level flight and a constant rate
climb or descent). In such a case, a simple linear extrapolation of the trajectory of
the pair leads to improper estimate of the difficulty value if a TCP is encountered
within the look-ahead time. Therefore, predicting the future trajectory using flight
plan information is required. To address this issue, a method for calculating the
difficulty index using information on TCPs has been considered [13].

2.4 Modification of Difficulty Functions

To calculate DI values, a maximum look-ahead time τmax is introduced. In Eq. (1),
the domain of t , [t0,∞) is not actually used for calculating the difficulty value. As
reference [11] shows that Eq. (1) becomes less than 10−5 for the maximum look-
ahead time τmax ≈ 3.4λt , and it can be negligible for larger τmax values. Scale
parameters were determined taking into account ATCo cognitive thresholds (times
before CPA at which a conflict is recognized, and at which a resolution intervention
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Fig. 2 Trajectory change point configuration

is made) for λt (= 6 min) [12] and separation minima for λH (= 6 NM) and λz(1200
ft).

Figure 2 shows the concept of calculating the difficulty value for trajectories with
TCPs. The projection time range [t0, t0 + τmax] is divided into subintervals [tk ,
tk+1], (k = 1, 2, …, N), in which the start or end time of at least one subinterval is
the estimated time of arrival at a TCP. Herein, t1 = t0 is the current time and tN+1 =
t1 + τmax. If each position and velocity vector corresponding to the subinterval is
estimated, then the piecewise difficulty function for the subinterval can be expressed
as

Gk
max = exp

[
− min

tk≤t≤tk+1

Ck(t)

]
for t ∈ [

tk, tk+1
]

(5)

where Ck(t) is the evaluation function for the k-th subinterval. The modified
difficulty value for an aircraft pair with TCP information at time t0 is then given by

Gdif(t0) = max
[
G1
max,G2

max, . . . ,GN
max

]
(6)

This metric provides a more accurate estimate of trajectory than simple linear
extrapolation for aircraft flying a route with TCPs within the look-ahead time.
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3 Concept of an Automatic Trajectory Modification
Advisory System

3.1 Objectives

The main objective of this study on an ATC difficulty index is to predict ’hot spots’
of ATC difficulty (high traffic complexity) based on trajectory information to assist
in strategic traffic control and management. A secondary objective is to develop a
tool for resolving the hot spots. Aiming at this, we have started a conceptual study
based on simulations to investigate the suitability of the DI metric for this purpose.

In this section, we propose a concept of a controller decision support tool for
a future TBO environment which automatically generates suggestions for trajec-
tory modifications that will mitigate situations, where the airspace-wise DI value
at a given time is predicted to exceed a prescribed threshold. The suggested trajec-
tory modifications can then be shared with pilots via air-ground data link, allowing
collaborative decision-making.

The proposed system assumes that real time trajectory data obtained from surveil-
lance sources such as radar and flight plan information including TCPs are available
for each flight in a volume of airspace. The system uses these to calculate the DI
values for each aircraft pair and the airspace online.

3.2 Concept of Simulation System

Figure 3 shows the concept of a decision support system for trajectory modification
to mitigate higher DI values (e.g. greater than 0.5). The difficulty metric maps a
complex traffic situation in a volume of airspace onto a real number between [0, 1],
where a value of 1 corresponds to the case of midair collision (separation distance
at CPA = 0). The scale parameters of Eq. (2) are chosen such that a DI value of 0.5
is corresponds to a near-conflict case in which separation is close to being lost [12].
The conceptual system consists of the following processes:

(1) Difficulty index (DI) estimation,
(2) Threat detection and
(3) Trajectory modification.

The outputs of this system are proposed candidate trajectory modifications and
their effects on each flight to the operator (ATCo).
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Difficulty Index
Estimation

Threat detection

Trajectory Modification
(Proposal, Feasibility 
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Velocity, 

Time
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Data

Track
Data

Action

Automatic Trajectory Modification System

Fig. 3 Trajectory modification system configurations

3.3 DI Estimation Process

3.3.1 Data Pre-processing

Figure 4 shows the DI estimation process, which consists of data pre-processing and
difficulty value estimation steps. Trajectory data (3D positions, velocities and time)
are assumed to be extracted from radar data with a constant sampling period.

Timed 
Position, 

Velocity  Data

Trajectory Change 
Point (TCP) Data
(Flight Plan Info.)

Pairwise DI 
Di(t0) 

Airspace wise DI
Dall(t0) 

Difficulty
Index(DI) 
Estimation 
Process

#3

Create TCP
Data

time, 
Position, 
Velocity

#1 #2

Fig. 4 Difficulty index estimation process



Towards Automatic Trajectory Modification for Reducing Air … 293

yes

Pick up a pair m

Dall Th

0( )argmax
i

m tiD=

Choose* one of the pair, 
namely aircraft A

Modify* the trajectory of 
aircraft A

No
0 0t t t← + Δ

Trajectory modification Process

Threshold Th

Threat Detection Process#1 #2
#3

Fig. 5 Threat detection and trajectory modification processes

To simplify the calculation of the difficulty value, in the pre-processing step, the
individual radar observations of each aircraft pair, which have different sample times,
are adjusted to the same observation time. In addition, flight plan data on TCPs can
be used to improve future trajectory estimation. Based on flight plan information,
the spatial coordinates (latitude, longitude, altitude) of each TCP within the search
time range τmax are created for each aircraft. For descending or climbing aircraft,
altitudes can be determined by linearly interpolating between two given reference
points [13].

The velocity vectors at each TCP and the elapsed time to the next TCP were
estimated using a series of datasets on the coordinates of waypoints (TCPs) and the
current ground speeds.

3.3.2 Estimation of Airspace Difficulty Values

Using the datasets of trajectory information and TCP data created in the pre-
processing step, this process first estimates the pairwise difficulty values of each
pair of aircraft in the airspace (or sector) of interest and then calculate the airspace-
wise (or overall) difficulty value. The overall difficulty metric based on multiple
aircraft pairs at time t0 is calculated using each pairwise metric based on a reliability
approach. Assuming that pairwise difficulty values are mutually independent, we
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estimate the overall (or airspace wise) difficulty [9] of the system Dall(t0) by

Dall(t0) = 1 − Npair

Π
i=1

(1 − Di ((t0)) (7)

where Di (t0) is the pairwise difficulty value (= Gdif(t0)) of Eq. (6) for pair i ,
(i = 1, . . . , Npair). Npair is the number of aircraft pairs in the airspace.

3.4 Threat Detection Process

Process 2) compares the estimated overall DI value with a prescribed threshold value
Th (this may be set so as not to exceed 0.5, e.g. Th= 0.4). If the overall airspace
DI value exceeds the threshold, then the pairwise difficulty values are reviewed to
determine the dominant pair contributing to the proximity situation. After that, the
trajectory modification proposal process is invoked on the identified pair (Fig. 5).

3.5 Trajectory Modification Process

Once the dominant aircraft pair has been detected, we create a candidate trajectory
change for at least one of the pair from several possibilities of trajectory changes
(altitude, heading or speed). Then, we recalculate the new overall difficulty value
for the candidate trajectory modification and confirm that the value is lower than
the threshold before proposing to the operator. Several candidates could be proposed
ranked by DI reduction along with penalty information on each flight (e.g. flight time
or fuel burn).

4 Current Status and Future Works

4.1 Sample Simulation Scenario

The threat detection process looks at the overall airspace DI value and each pairwise
DI value. Figure 6 shows a simulation scenario of five trajectories over a 15-minute
period. Two conflicts occur, one horizontally and the other vertically. Figure 7 plots
the changes of calculated DI values over time. At each observation time t0, the latest
aircraft TCPs are obtained from flight plan data, and aircraft speeds and positions
are obtained from track data, and DI values are calculated for each aircraft pair
assuming that their speed will not change. Figure 7 indicates that the calculated DI
values corresponding to the pairs with conflicts increase with elapsed time as their
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Fig. 6 Example of
simulation scenario
(Trajectories of five aircraft
for 15 min)

B 

Fl
ig

ht
 L

ev
el

D 
C E  A 

Conflict2 

Conflict 11 0( )D t

2 0( )D t

Fig. 7 Calculated difficulty
values of ten pairs and
overall difficulty value for
the above scenario (D1(t0)
and D2(t0) correspond to
pairs with conflict 1 and
conflict 2, respectively)

=15 min.
λt=6 min. λH=6 NM
λz=1,200ft

0.5

1.0

0.0
27,30027,000

(07:30)
Observa on me (s)

Di
ffi

cu
lty

 V
al

ue

27,600

0( )allD t
2 0( )D t

1 0( )D t

3 0( )D t 0( ) 0
4

iD t
for i

≈
≥

10pairN =
maxτ

0.4Th =

0t

27,900
(07:45)

trajectories are predicted to converge. In this case, the pair with the largest value of
pairwise difficulty value, D1(t0), is chosen as a candidate for trajectory modification.

Figure 8 shows a PC screen shot of the sample simulation at observation time (t0
= 27,220 s), when the overall DI value exceeds the threshold Th = 0.4. The threat
detection process identifies the largest pairwise DI values and the corresponding
aircraft. (This simulation programme does not include the trajectory modification
process; that function is under development.) The graph in the screen shot indicates
the distributions of predicted DI values.

In the above scenario and other scenarios, the DI metric successfully identified
candidate aircraft pairs that will lead to high-complexity traffic situation in a suitably
long look-ahead time that might allow trajectory management (seven minutes ahead
in Fig. 7). Longer look-ahead timesmay be desirable and could be obtained by tuning
the DI metric parameters; however, trajectory uncertainty also increases with look-
ahead time, and too excessive a look-ahead time may therefore lead to unnecessary
interventions.
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Fig. 8 A PC screen shot showing the scenario simulation when the overall DI first exceeded the
threshold (Th = 0.4). DI values of each pair at present and future are plotted in the graph

4.2 Open Issues for Algorithms

In the above example scenario, the next step is to determine the criteria for the
trajectory modification process. The main open questions are:

(i) which aircraft of the identified pair should be subjected to intervention?
(ii) what kind of trajectory change should be made?

Controller acceptability of proposed trajectory changes will be key as to whether
this system will be practicable.

However, while studying airspace complexity, we found that ATCo reactions to a
given traffic condition vary slightly from person to person [12]. These variations in
strategies for handling traffic might depend on each ATCo’s individual level of expe-
rience, personal preference or workload level; for example, a busy controller might
wish to resolve potential conflicts early even though some of them may not actually
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be conflicts, while a less busy controller may wait for a potential proximity situation
to develop further before deciding whether to act in order to avoid unnecessary inter-
ventions. As a first step, we try to find an appropriate strategy for trajectory changes
which will mitigate the difficulty index at a given instance for a few simple types
of situation. Ultimately may be necessary to apply artificial intelligence techniques
such as a rule base derived from ATCo knowledge, or machine learning to propose
plausible candidates that controllers might themselves propose to resolve conflicts,
e.g. if one of the pair is already close to top of descent and the other is in cruise, then
initiating the descent of the arrival flight slightly early would be more operationally
acceptable than adjusting the trajectory of the other aircraft.

A computer simulation programme is under development for a feasibility study.
The scenarios will be based on the scenarios that were used for tuning the temporal
scale parameter of Eq. (2), namely kt [12]. The priory of selecting trajectory modifi-
cation must be considered taking into account current ATC practices and suitability
of computational logic for automatic assistance systems.

The development of the prioritization logic of trajectory modification and a simu-
lation programme for demonstrating the feasibility of the concept are our future
works.

5 Summary and Concluding Remarks

ATCo workload due to air traffic situation complexity may be a limiting factor of
capacity of a future trajectory-based free routing ATM system. Furthermore, the new
TBO environment will require new tools to enable ATCOs to strategically manage
trajectories in an electronically linked collaborative environment.

To evaluate the complexity, we firstly developed the difficulty index (DI) metric
for estimating air traffic control difficulty from aircraft trajectory data and flight
plan information. As a next step, we propose a controller decision support tool that
can provide candidate trajectory modifications to mitigate high-complexity traffic
situations.

In this paper, we briefly reviewed our past works and newly propose a conceptual
framework for such a tool. We then presented examples of simulations to investigate
the feasibility of the DI metric for this application. As a result, it appears that the DI
metric could be used to predict high traffic complexity sufficiently far ahead of time
to allow strategic intervention, but on the other hand, trajectory uncertainty allows
grows with time, so a trade-off is necessary to reduce unnecessary interventions.

For the other components of the tool, there are still many open issues such as
detailed criteria for creating and selecting candidate trajectory modifications. To
resolve these open issues are our future works.
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Air/Ground SWIM Integration
to Achieve Information Collaborative
Environment

X. D. Lu, K. Morioka, S. Egami, T. Koga, Y. Sumiya, J. Naganawa,
and N. Yonemoto

Abstract The current ground-based collaboration environment is not sufficient to
enable the full range of benefits defined in the ICAO Global Air Navigation Plan
(GANP). In order to achieve a safe, secure, high-performing, and sustainable global
air traffic management, the collaborative information exchange should be achieved
for not only ground operational systems but also connected aircrafts. However, it
is difficult for the current command-and-control Air-to-Ground (A/G) communica-
tion approaches to satisfy different and extensive information exchanges between
the aircraft and the air navigation service providers. To promote the implementa-
tion of information collaborative environment in pre-departure phase and improve
operational awareness and Collaborative Decision Making (CDM) through infor-
mation exchange, the Electronic Navigation Research Institute (ENRI) has devel-
oped a test system. Several practical experiments have been deployed based on
the integration of these systems to show the benefit of A/G SWIM (System-Wide
Information Management) integration. In this paper, the concept and the technical
framework of A/G SWIM integration are introduced. To provide timely, relevant,
accurate, authorized, and quality-assured information for high-assurance operation,
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the multi-layered system architecture and the collaborative information exchange
technology are proposed. Moreover, the development of practical validation system
for ground taxiing experiment is presented. Finally, the definition and comparison
of communication quality, information quality, and service quality for constructing
the collaborative operating environment to include interactions of A/G stakeholders,
systems, and services through the A/G SWIM integration are discussed.

Keywords System-Wide Information Management (SWIM) · Air Traffic
Management (ATM) · Collaborative information exchange · Communication
network

1 Introduction

With the rapid increase in local and global air traffic, the system-wide opera-
tional information exchange and life cycle management technologies are required
to improve the capacity, safety, and efficiency of global Air Traffic Management
(ATM). The System-Wide Information Management (SWIM) concept is to change
the conventional ATM information architecture from point-to-point data exchanges
to system-wide interoperability and to achieve life cycle management of data, infor-
mation, and service [1]. The main objective of SWIM is to achieve interoperability
and harmonization of global ATM operations through seamless information sharing
among the multiple stakeholders.

In addition, the Flight and Flow Information for a Collaborative Environment (FF-
ICE) is a SWIM concept-oriented operation. It has been developed by International
Civil Aviation Organization (ICAO) to illustrate information for flight planning, air
trafficflow, and trajectorymanagement associatedwithATMoperational components
[2].

The current collaboration environment focuses on the ground-based ATM service
providers and Flight Operations Centers (FOC) with little opportunity for flight deck
involvement in the collaboration process. The processes used to collaborate with
airspace users, especially those without dispatch operations, are not sufficient to
enable the full range of benefits defined in the ICAO Global Air Navigation Plan
(GANP) [3].

In order to achieve a safe, secure, high-performing, and sustainable global ATM,
the collaborative information exchange should be achieved for not only ground
operational systems but also connected aircrafts. Therefore, the concept of A/G
SWIM has been proposed to provide an environment for collaborative information
exchange between the aircraft and the air navigation service providers. Through
A/G data connectivity and aircraft on-board systems, the operational awareness and
Collaborative Decision Making (CDM) can be improved [1].

However, current A/G communication approaches, such as A/G voice,
Controller-Pilot Data Link Communications (CPDLC), and Automatic Dependence
Surveillance-Contract (ADS-C) data link, are mainly used for command-and-control
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information. These approaches are difficult to fully support the collaborative informa-
tion exchange between the aircraft and the air navigation service providers.Moreover,
because of the limitations of traditional data link mechanisms, such as communica-
tion methods, message formats, and associated avionics, it is difficult to satisfy the
requirement of the aircraft for real-time and rich information exchanges. Due to these
observed limitations, flight crews may not be available to access the ground SWIM
information sharing platform and get their required information in pre-departure and
post-departure phases. The difficulty for flight crews to obtain the required informa-
tion in real time prevents them from sharing information with related stakeholders
to make correct decisions [1, 4]. Therefore, it is difficult to satisfy the requirements
of CDM without the seamless A/G information sharing.

In this paper, the architecture of an A/G SWIM integration system and the collab-
orative information exchange technology to achieve interoperability is presented.
Moreover, the development of practical validation system for ground taxiing exper-
iments conducted by Electronic Navigation Research Institute (ENRI) is reported.
Finally, the communication, information, and service quality analysis and defini-
tion for constructing the collaborative operating environment to include interactions
of A/G stakeholders, systems, and services through the A/G SWIM integration are
discussed.

The paper is structured as follows. In the Sect. 2, the A/G SWIM concept is
introduced. In Sect. 3, the proposed system architecture and the collaborative infor-
mation exchange technology are presented. In Sect. 4, the development and analysis
of practical validation system for ground taxiing experiments at Sendai airport are
presented. The paper presents the conclusions in Sect. 5.

2 A/G SWIM Concept

2.1 Overview

The availability of low-cost data link capabilities significantly improves the uptake of
the aircraft and its automation to become a SWIM participant and obtain information
supporting air traffic management and advisory information exchange. A/G SWIM
will enable enhanced information exchanges, such as for advisory and trajectory
information, between Airspace Users (AUs) and ATM Service Providers (ASPs). As
a result of access to shared information, both AUs and ASPs can make improved
decisions. Information available on A/G SWIM is applicable to all flight phases,
including pre-departure, departure, airborne, arrival, and post-arrival phases.

The A/G SWIM concept envisions two separate phases, as shown in Fig. 1. Phase
1 focuses on non-safety-critical information, while phase 2 will extend the concept
to include safety-critical information [1].

The current document is focused on phase 1 of the A/G SWIM concept, which is
intended to be utilized for non-safety-critical information or command-and-control
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Fig. 1 Phases of A/G SWIM

functions, but rather to increase situational awareness. The use of A/G SWIM will
support FF-ICE by providing a mechanism for the flight crew to exchange flight
and flow information and become an integral part of the CDM and 4 Dimension
Trajectory (4DT) management processes.

2.2 Technical Framework

To ensure the various operational scenarios relative to the differing configurations,
the technical framework is organized based on the level of A/G SWIM connectivity
available to the airborne platform as well as the level of connectivity between the
flight deck application and the avionics on the airborne platform.

Figure 2 is a table showing various levels of A/G SWIM connectivity and avionics
interface [1]. There are three SWIM connection levels defined:

1. No connection to A/G SWIM
2. Connection toA/GSWIMuplink only (airborne platform can receiveA/GSWIM

information)
3. Connection to/from A/G SWIM uplink/downlink (airborne platform can

receive/send A/G SWIM information)

There are three avionics connection levels defined:

A. No connection to avionics
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Fig. 2 Technical framework of A/G SWIM

B. Connection from avionics only
C. Connection to/from avionics

The table represents progressively more sophisticated connectivity/equipage
down and to the right. It is not intended that this is the only equipage set inwhich these
operations can be completed, but different connection levels are available during the
transition period.

Interoperability is critical to widespread adoption of A/G SWIM. Applications
and the infrastructure on

A/G SWIM should be able to operate across Flight Information Regions (FIRs),
through the region, and as practicable, globally, without major modification. This
will reduce the AU requirements to equip and train, especially for AUs that operate
globally.

3 A/G Swim Integration

3.1 System Architecture

The A/G SWIM integration provides a collaborative environment that supports fully
connected aircrafts to exchange different and extensive information with air and
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ground systems. It requires two major communication network infrastructures to
support A/G SWIM integration (Fig. 3). One is the G/G communication network
to support ground SWIM for information exchange among ground stakeholders.
The other is the A/G communication network to provide data link functions for
information exchange with aircrafts [4].

It is expected that open Internet Protocol (IP) will provide the connectivity for
both networks.Many open standards for communications exist, and the use of propri-
etary networks should be transparent. On-board wi-fi systems, non-safety satellite
communications accessed using passenger networks, global system for mobile, etc.
would all allow IP-based access to information nodes.

According to different communication environments and capabilities, several
data link technologies have been developed and applied for A/G communications.
However, most of them are applied for special on-board devices without interoper-
ability. As the in-flight wi-fi service has been available for most airlines, the concept
of Data Link as a Service (DLaS) is proposed to achieve Aircraft Access to SWIM
(AAtS) for providing not only non-safety-critical information sharing but also safety-
critical information exchange according to the available communication capabilities
and qualities [4].

The A/G data layer provides the functionality of interoperable information
exchange to deliver right information to a right aircraft at right time via the connec-
tion of G/G and A/G communication network infrastructures. The aircraft connects
to Data Management Service (DMS) not only for accessing the required information

Fig. 3 System architecture
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Fig. 4 Validation system for A/G SWIM integration

from the ground SWIM but also providing the on-board information to related stake-
holders. The DMS is a main component of A/G data layer, and its functionalities are
to store, manage, filter, and deliver ground and air information. As SWIM imple-
mentation is based on the concept of Service Oriented Architecture (SOA), it is more
appropriate to consider the DMS as a SWIM-enabled service. To provide continuous
accessing service for the aircraft in different phases, the autonomy of each DMS is
required to control itself and coordinate with others. As shown in Fig. 4, the air data
management and ground data management are main functions of a DMS to enable
information exchange not only between aircraft and ground systems but also between
DMSs within A/G data layer [5].

3.2 Information Exchange

The SWIM is a loosely coupled architecture, in which each system should collabo-
rate with other systems for information exchange. Therefore, it requires a common
messaging infrastructure to support collaborative information exchange between
different systems. As a core service of SWIM technical infrastructure, the Enter-
prise Messaging Service (EMS) is able to assure that a message is transported from
its source to its destination by using the appropriate message format, communication
protocol, security policy, and business rule [6].

One operation needs heterogeneous informationwith different types, volumes and
real-time scales to be seamlessly exchanged between different systems and dynam-
ically converted according to different applications. By considering different condi-
tions and specific operational requirements, three communication approaches are
developed to achieve collaborative information exchange between G/G and A/G
applications [4].
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• Publish/subscribe (pub/sub) approach for dynamic and real-time information;
• Request/reply approach for static and non-real-time information;
• Push/pull approach for emergency information.

To assure required information quality for different applications, the data with
different time scales are divided into different logical layers, and the life cycle
management is applied. This approach is able to avoid the trouble of one application
affecting other applications and the data with low real-time priority interfering with
the applications in high real-time level. Moreover, in order to achieve the system
expandability, the EMS is configured in autonomous architecture to associate with
application systems according to their different information level requirements [4].

4 Practical Validation

4.1 Test System

To validate the services and functions of A/G SWIM integration system, the ground
taxiing experiments have been deployed in the Sendai airport (Fig. 4). The vehicle
used the Electronic Flight Bag (EFB) simulator to achieve information exchangewith
SWIM. The EFB simulator was developed to subscribe related flight information,
aeronautical information, and weather information for a certain aircraft; show related
information anddocuments on themap; generate takeoff and landing report according
to the on-board and ground information and submit it to the DMS; request Notice
to Airman (NOTAM), Meteorological Aerodrome Report (METAR), and Terminal
Aerodrome Forecast (TAF) information from the ground SWIM services.

The Aeronautical Mobile Airport Communications System (AeroMACS) has
been standardized by the ICAO to achieve information sharing on airport surface
[7]. Moreover, the prototype of AeroMACS has been developed by our research
group at the Sendai airport [8]. Therefore, the AeroMACS is applied as a media for
A/G communication to achieve effective information exchange between the vehicle
and the ground facilities.Differentwith current aeronautical communication systems,
the AeroMACS is an IP-based communication system to provide high-capacity data
transmission and higher communication link security with low system introduction
and application development costs. It can be effectively used to share a large and
varied amount of information among air traffic controllers, pilots, airline companies,
airport operators on both the airport surface and during takeoff and landing [4].

In the practical validation, ENRI local EMS facilitates data sharing between a
variety of services and applications. It provides themessage routing andmanagement
functions to different SWIM services and ATM applications for seamless informa-
tion exchange by using the standard aeronautical, flight, and weather information
exchange models (AIXM, FIXM, and IWXXM) defined message formats.

To achieve secure communication, the network connection between AeroMACS
and SWIM system is established on the Virtual Private Network (VPN) over Internet.
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In addition, the Secure Sockets Layer (SSL) is applied for the communication
between EFB and DMS. The communication standard of Advanced Messaging
Queuing Protocol (AMQP 1.0) is used for publish/subscribe messaging approach.

The simulators of JapanCivil AviationBureau (JCAB) and JapanAirlines (JCAB)
are serve as an ASP system and an AU system, respectively, to support the scenario-
based validation and demonstration. There is a set of services and applications devel-
oped that support both SWIM-based information sharing and FF-ICE-basedmessage
exchange [4].

• The Globally Unique Flight Identifier (GUFI) is a single reference for flight infor-
mation exchange. The GUFI service provides the generation, update, and lookup
functions to users and applications.

• The flight object service maintains all flight data of one operation with same
GUFI into a flight object. In addition, these data can be updated and queried by
FIXM-based messages.

• The data validation service provides validation and reporting on FIXM, AIXM,
and IWXXM messages conformance to schema and set of business rules.

• The Constraint Reference Service (CRS) provides aeronautical andweather infor-
mation in AIXM and IWXXM format to support continuous monitoring for
FF-ICE flight plans.

• The Flight Plan Filing Service (FPFS) evaluates the flight plan messages and
checks the constraints affecting the route. It provides continuous monitoring
functions for filed flight plans according to the updates of constraints.

• The flight surveillance service transforms airport surface and en route surveillance
data to FIXM format and publishes to other SWIM services.

• The JCAB simulator is an application to manage subscribed FIXM messages
from AUs and show trajectories on the map. It is also able to publish AIXM and
IWXXM messages included constraints to AUs.

• The JAL simulators is a graphical user interface to generate and publish FF-ICE
messages and submit new requests and updates according to subscribed responses
and constraints from ASPs.

4.2 Validation

To evaluate the information sharing via Pub/Sub among related stakeholders, the FF-
ICE messages defined in the pre-departure phase were exchanged between JAL and
JCAB.Theflight plan process in the FF-ICEpre-departure operation includes prelim-
inary phase and filed phase. In each phase, ASPs should reply to the AU regarding the
operational acceptability of their flight plans [9]. Thepreliminary andfiledflight plans
for JAL5 from Sendai airport (RJSS) to Inchon international airport (RKSI) were
submitted by the JAL that contains additional information including 4DT, aircraft
dynamics, weight, etc. According to the evaluation of format and constraint, the
FPFS replied CONCUR and ACCEPTABLE for planning status and filing status
to the JAL [10, 11]. As a subscriber of the information of JAL5, when the EFB
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connected to the DMS with JAL5 account, all published messages related to JAL5
were received automatically (Fig. 5). Moreover, when the vehicle started to move,
the track messages in FIXM format provided by the flight surveillance service were
subscribed by the EFB in real time (Fig. 6).

The latest weather information of the airport is required to generate the takeoff
report of the flight before departure. The EFB is able to send the request to the SWIM
service andget the reply of the latestMETARandTAF information fromCRS (Fig. 7).
Other constraints registered on the CRS are also available for Request/Reply access
via the EFB.

Each ASP is able to publish constraints, such as aeronautical information, traffic
flow management data, and severe weather conditions. For some emergency infor-
mation and constraints, the ASP is able to send a notification to a certain flight using
push/pull approach. It not only assists the flight in making decision by identifying the
operational environment and ATM constraints, but also enables the flight to obtain an
earlier, more detailed andmore accurate assessment of the anticipated traffic demand.
As shown in Fig. 7, the limited air space information near the Sendai airport was
pushed from JCAB to JAL5 in AIXMmessage and automatically shown on the map
of EFB.

Fig. 5 Pub/sub for flight plan messages
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Fig. 6 Pub/sub for track messages

Fig. 7 Test of request/reply and push/pull
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4.3 Analysis

Due to the fact that A/G SWIM integration includes several different systems, it is
difficult to evaluate its performance just with the Quality of Service (QoS). To eval-
uate the performance ofA/GSWIM integration, we divided theQoS into three impor-
tant dimensions: communication quality, information quality, and service quality.
The main objective of A/G SWIM integration is to improve the quality of commu-
nication, information, and service for meeting the information requirements of A/G
stakeholders.

The A/G communication has the critical role to assure information exchange
between air and ground systems and applications. The communication quality
consists of three factors: latency, packet loss ratio, and throughput. One of the advan-
tages of AeroMACS over other existing aeronautical radio system is the QoS control,
which enables high priority for critical information transmission.

The communication quality of AeroMACS was evaluated by transmitting
messages with high priority while downloading a large volume of non-critical files
via File Transfer Protocol (FTP). The results in Table 1 show that AeroMACS with
QoS control can not only improve the communication quality but also assure the
stable communication under dynamic changing environments [12].

The information that is transmitted to the consumer plays a critical role in the
service encounter. When information is incomplete or incorrect, severe inconsisten-
cies can arise and affect the service quality perceptions. To improve the information
quality that consists of accuracy, timeliness, and integrity, the message exchange
in XML format based on the standard information exchange models is applied.
Table 2 shows the comparison of information quality between text-based information
exchange and SWIM-based information exchange.

Table 1 Comparison of
communication quality

Communication
quality

Without QoS control With QoS control

Latency 622 ms 244 ms

Packet loss ratio 49.4% 0%

Throughput 2.80 Mbps 4.58 Mbps

Table 2 Comparison of
information quality

Information quality Current approach SWIM approach

Accuracy Low (difficult to
check)

High (easy to
validate)

Timeliness Low (difficult to
share)

High (easy to
process)

Integrity Low (difficult to
assure)

High (easy to
manage)
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The satisfaction level of a SWIM service encounter is a result of discrepancies
between the operational expectations and the actual performance. Due to the SWIM
governance and business rules thatmanage the interactions between service providers
and consumers, a “delicate balance between flexibility and safety” is required. In
regards to achieving collaborative decision making between ASPs and AUs, the
importance of service quality has been widely recognized. From the technical point
of view, the service quality deals with availability, response time, and reliability. In
the validation test, the calculations for these parameters of service quality are as
follows:

Av(s) = 1− (Disable Time)/(Total Time) (1)

Rt(s) = Receipt Time− Request Time (2)

Re(s) = Sucess Request/Total Request (3)

where Av(s) is availability, Rt(s) is response time, and Re(s) is reliability for service
s. In here, the service is the utilization of data management service.

Due to the unstable connection of A/G wireless communication, disconnection
and package lossmight occur in the real conditions according to the different network
conditions. In the validation test, the unstable network communication is the main
reason for the disable time of service utilization and the package loss of message
exchange. To solve this problem, the A/G synchronization technology by setting
the timestamps in the metadata of message header has been proposed and applied
in the test system. The efficiency of the proposal was proved in the ground taxiing
experiments by recovering the lost messages after the EFB reconnected to the DMS
via synchronization process. As shown in Table 3, the system with proposed A/G
synchronization technology can not only assure the service quality but also improve
the satisfaction of users’ requests.

Moreover, the A/G SWIM integration can enhance security from communication,
information, and service levels by using appropriate and standard technical proto-
cols. Therefore, the A/G SWIM integration is able to provide not only higher perfor-
mance but also more flexible and less costly for achieving information exchange and
interoperability at global, regional, and local levels.

Table 3 Comparison of
service quality

Service quality Without A/G
synchronization

With A/G
synchronization

Availability 98% 100%

Response time 325 ms 325 ms

Reliability 98% 100%
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5 Conclusion

In this paper, the A/G SWIM concept for achieving FF-ICE and Trajectory-Based
Operation (TBO) is introduced. Then, based on this concept, the architecture and the
collaborative information exchange technology of an A/G SWIM integration system
are presented. Moreover, the development of a practical validation system for ground
taxiing experiments by using AeroMACS as a A/G data link is reported. Finally,
to evaluate the performance of the proposed system architecture and technology,
the communication quality, information quality, and service quality are defined and
analyzed by comparison with or without A/G SWIM integration for constructing a
collaborative operating environment. The results and analysis of practical validation
show the efficiency of proposed system architecture and technology. In future, flight
trials enabling the quantitative evaluation of the A/G SWIM integration will be
conducted.
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A Simple Note on Shadowing Effects
and Multipath Propagation for CNS

R. Geise, J. Klinger, and B. Neubauer

Abstract This contribution discusses shadowing effects of large objectswith respect
to navigation and communication systems. Since the current practice for assessing
the impact of scattering objects on those systems is based on mainly quasi-optical
wave propagation, a simplified, but yet improved analysis of possible disturbances is
proposed. Based on scattering theory, a simple analytic formula is derived applying
fundamentals of the radar cross section concept. As for at least canonical objects,
such as metal plates or cylinders, for which an accurate analytic description for the
radar cross section is well known, simple shadowing examples are discussed. With
the derived formula a more sophisticated sensitive area layout can be developed than
it is currently recommended with an overall layout, i.e. typically a circular area with
a fixed radius. Finally, measurement results in a miniaturized anechoic chamber are
presented that give additional insight into the shadowing phenomena discussed in
this contribution. Further, measurement results are shown as examples for travelling
waves and shadowing effects.

Keywords Navigation systems · Communication systems · Radar cross section ·
Shadowing

1 Introduction

Multipath propagation or shadowing effects can affect the integrity of navigation and
communication systems such as radar, the VHF omnidirectional radio range (VOR)
or other directional communication links, e.g. the ’link 16’ standard [1]. Multipath
propagation phenomena are present, if additional propagation paths due to reflections
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Fig. 1. Sketch of shadowing scenario

on existing objects occur. Since this always is associated with a performance degra-
dation of the respective navigation or communication system, building restricted
areas are introduced to prevent disturbances. Actually, from academic point of view,
reflection properties of larger objects, such as buildings and wind turbines, can well
be described in terms of radar cross section (RCS). Though, guidance material on the
restricted area sizes, as, for example, provided by the ICAO, for practical reasons only
recommend a rough and overall layout according to the respective communication or
navigation system [2]. Such recommendations are mainly based on a solely optical
propagation behaviour and are actually not based on scattering theory. This contri-
bution develops practical guidance material for initial and individual dimensions of
building restricted areas as derived from scattering theory fundamentals.

Figure 1 is a simple sketch of a shadowing scenario and introduces relevant
geometrical measures. In fact, as scattering scenario a wind turbine is chosen. In
Germany, there are more than 4000 MW of installable wind power investments not
realized due to assumed, but not yet proven incompatibilities between wind turbines
and navigation systems, communication systems, respectively, [3].

In Sect. 2, fundamentals of shadowing effects and radar cross sections are
discussed, and Sect. 3 focuses on the relevance of shadowing effects in terms of prob-
abilities. Sections 4 and 5 present measurement examples to visualize themechanism
of shadowing effects and to present quantitative examples. Finally, a conclusion is
given in Sect. 6.

2 Shadowing and RCS

Usually, the scattering properties of an object are described by its radar cross section
[4],which canbe calculatednowadayswith a lot of commercially available simulation
tools, e.g. [5]. In particular, the calculation of complex multipath propagation with
such a numerical tool is time consuming and usually not done individually for an
object, applying a simple concept of building restricted areas of a given size. As, for
example, stated in [2] considerations of tolerable blockage are simply done by an
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optical test, if a ray reaches the wings of a wind turbine as it exceeds a certain height.
Such quasi-optical ways of testing are a priori neglecting edge diffraction effects and
systematically lead to an overestimation of the blockage attenuation. However, those
diffraction effects are part of an angular-dependent radar cross section description.
Consequently, in the following, the concept of radar cross section is used to derive
a simple blockage description by already known formulas that can be found in the
standard literature.

For a line of sight propagation in free space, the knownFriis transmission equation

Pr,direct = Ps · Gs

4π · (r1 + r2)
2 · λ2

4π
· Ge

= E2
direct

377Ω
· λ2

4π
· Ge (1)

applies, whereGs andGe are the gains of the emitting and the receiving antenna;Ps is
the emitted power; and Prdirect is the received power. Edirect denotes the field strength
as measurable at the observer’s location. The distances r1 and r2 are explained in
Fig. 1, and λ is the wavelength.

Likewise, the received power and field strength of a scattered path with an object,
Pr,indirect and Eindirect are given applying the object’s radar cross section RCS as:

Pr,indirect = Ps · Gs

4π · (r1)
2 · RCS

4π · (r2)
2 · λ2

4π
· Ge

= Eindirect

377Ω
· λ2

4π
· Ge (2)

The radar cross section relates the electric field strengths of a wave impinging on
an object Eat object and the scattered field strength at the receiver’s location Eindirect

and is defined as

RCS = lim
r2→∞ 4π · r22 · E2

indirect

E2
at object

(3)

The electric field strength at the object can be calculated applying Eq. (1) with:

E2
at object

377Ω
= Ps · Gs

4π · (r1)
2 (4)

Of course, these simple equations have to meet several conditions for their appli-
cability, such as fulfilling far field conditions both for the antennas and the scattering
object. Moreover, it is noted that ground reflections are currently not taken into
account. This might be feasible with image theory. However, the aim of these consid-
erations is not to develop an exact and complete method, but to improve the current
overall building restriction area layout concept substantially using the quantity of
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RCS, which describes the scattering properties of an object. Applying Eqs. (1)–(4),
a simple attenuation measure a is derived in the following. In the fundamentals of
scattering theory, the measurable field strength at receiver’s location is the superpo-
sition of the field strengths of the incident plane wave Edirect and the scattered field
strengthEindirect (with negative sign due to the 180° phase shift). For the field strength
in the shadowing scenario Eshadow, following expression is obtained:

Eshadow = Edirect − Eindirect

=
√
√
√
√ Ps · Gs · 377Ω

4π · (r1 + r2)
2 −

√

RCS · Ee
at object

4π · (r2)
2 (5)

Finally, applying Eq. (4) again the attenuation measure a is given by:

α = 1 −
√

RCS

4π
· (r1 + r2)

r1 · r2 (6)

Two special cases for r1 and r2 are discussed here. For example, if the receiver is
very far away, thus r2 � r1, a complete blockage for a= 0 requires thatRCS = 4π ·r21 ,
corresponding to a sphere with radius r1 completely enclosing the emitter. It is quite
obvious that such an object is hardly realizable. On the other hand, it is a good
example that the quasi-optical evaluation, that, if a single ray hits an object, then
a high blockage is achieved, is in contradiction to the concept of the radar cross
section. Further examples are given in Sect. 4 with measurements in a miniaturized
anechoic chamber. Before, in the following section, further scattering properties are
discussed.

3 Edge Diffraction and Blockage Probability

In the previous section, so far only the magnitude of the radar cross section is consid-
ered, in particular its maximum in a certain direction. However, a fundamental prin-
ciple of scattering theory should be considered here with respect to a sophisticated
compliance analysis, i.e. the distribution of the scattered fields in space, and associ-
ated with that, the probability of significant shadowing effects. In order to show this
fundamental principle, the scattering of a rectangular plate of given width and height
at a frequency of 1 GHz is discussed in the following. For non-grazing incidence
and an electrically large object, where the object’s dimensions are large compared
to the wavelength, the scattering properties can well be described with the method
of physical optics (PO) [4]. The maximum of the radar cross section in specular
reflection and shadowing direction can be calculated with:
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RCS = 4π
(width · height)2

λ2
(7)

Figure 2 describes the example scenario, where a metal plate is illuminated under
an incidence angleφin, and the scattering is describedwith the angle-dependent (φscat)
radar cross section. Additionally, Fig. 2 denotes the specular reflection direction and
the shadowing region.

In this simple example, an incidence angle φin of 20° is chosen. The angle-
dependent RCS is plotted against φscat in Fig. 3.

The maxima of scattered fields are in the specular reflection direction and in the
shadow region. Of course, the larger the object’s surface is, the larger its RCS is
as well in mentioned directions. However, with increasing size the main lobe of

Fig. 2. Sketch of a scattering scenario with a metallic plate as reference object

Fig. 3. Radar cross section of a metallic plate as calculated with the PO method
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Table 1. Summary of a metal plate’s scattering properties

Structure Max. RCS in
shadowing
direction
logarithmic

Max RCS in
shadowing
direction linear

Shadowed angular
range (10 dB width)

Transfer coefficient
a for r2 = r1 = r =
4 km

Plate (40 λ *
20 λ)

58 dBm2 6.3e5 m2 3,4° 0.88

Plate
(10 λ *5 λ)

34 dBm2 2500 m2 9° 0.99

scattered pattern always gets narrower, thus covers a smaller angular area. Thus, for
any shadowing scenario, especially for large objects, the probability of maximum
shadowing decreases. Following Table 1 summarizes major properties of these two
examples. Table 1 also shows the transfer coefficient a into the shadowing direction
as calculated with Eq. (6).

It is noted that though an optical propagation path would be considered to be fully
blocked, the transfer coefficient hardly decreases. For the larger metal plate, the loss
due to shadowing only is about 10%. The table also shows that large shadowing
effects only occur within a small angular range behind the object. This angular range
decreases with the size of the object.

In the following, a practical and easily reproducible academic measurement
example are presented to further confirm that shadowing effects are highly over-
estimated if solely considering optical wave propagation.

4 Example Measurements of Shadowing

To measure the attenuation due to shadowing, an object (DUT) is placed in between
a linear polarized horn antenna (Horn) and a receiving dipole antenna as Figs. 4

Fig. 4. Sketch of measurement setup within a miniaturized anechoic chamber



A Simple Note on Shadowing Effects and Multipath Propagation … 321

Fig. 5. Photograph of measurement setup within the anechoic chamber, (left) without shadowing
object (right) with shadowing object

and 5 show. Measurements were done in a self-built miniaturized anechoic chamber
as shown in Fig. 5.

A continuous wave signal at 9.45 GHz provided by a RF signal generator (PSG)
positioned outside the anechoic chamber is fed into a horn antenna. An output power
of 14 dBm is used. Since these measurements only deal with shadowing attenuation
as a relative measure, cable losses and antenna gains do not need to be taken into the
account. The transmit power level just provides sufficient dynamic level to have the
attenuated signal at least 20 dB above the noise floor.

A combination of a linear antenna, a semiconductor detector (URV-Z6) connected
to the millivolt metre (URV35) acts as the measurement receiver as Fig. 4 shows.
All shadowing measurements results are related to a reference measurement without
DUT; thus, all measurement results state the relative attenuation measure due to the
object’s shadowing.

Two reference objects are exemplarilymeasured. On the one hand, alumina coated
cylinders with different diameters and constant height and on the other hand rectan-
gular shaped copper plates of different width and constant height are chosen. The
variable sizes, i.e. diameter for the cylinder and width for the thin plate, are shown
in Table 2 together with the measurement results. The fix geometric dimension is
the height of 300 mm. The DUT is always placed in direct line-of-sight, where the
distance between the objects to the respective antennas is equal, i.e. 80 cm.Measure-
ments are done in vertical polarization as indicated in Fig. 5. From Fig. 5, it can
be seen that the large metallic plate completely blocks the line-of-sight; thus, a ray
of light would have a total blockage. However, the measured attenuation of those
large objects in direct line of sight has a maximum of 16 dB only. For a communica-
tion scenario, this can still be considered not critical, provided; there is a reasonable
margin for a dynamic range. As previously explained in Sect. 3, because of the
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Table 2. Measurement results

Diameter or width
in [mm]

Diameter or
width in
wavelengths

RCS of plate
[m2]

Measured
attenuation by
plate [dB]

Measured
attenuation by
cylinder [dB]

50 1.6 2.8 −2.58 −3.54

80 2.5 7.2 −2.93 −4.61

100 3.2 11.3 −3.71 −5.02

120 3.8 16.3 −4.14 −6.13

150 4.7 25.4 −6.01 −7.29

200 6.3 45.2 −10.28 n.a.

224 7.1 56.7 −16.18 n.a.

phenomenon of edge diffraction, induced current on the edges contribute to measur-
able, only partially shadowed field strengths. It can be seen that both for the cylinder
and the plate the shadow attenuation is comparable.

The attenuation behind the cylinders is about 1.5 times higher than shadowed by
metalized plates as Fig. 6 shows. Also, doubling the area leads to about twice the
attenuation. This is consistent considering Eqs. (6) and (7), because usually, the RCS
is a function squaring the geometrical area.

Figure 6 summarizes the measurement results and provides a least error fitting
function shown with Eqs. (8) and (9). For larger areas, that effect might change as
the graphs let expect. In the graph, the standard deviation between the optimized
functions and the measurement results are given as well.

Lcylinder

[dB]
≈ 2.3 + 129.5 · A, (σ = 0.17) (8)

Fig. 6. Measured losses due
to shadowing by area A in
[m2]
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Lplate

[dB]
≈ 2.4 + 0.15 exp(67 · A), (σ = 0.49) (9)

The shape of shadowing objects relates to the slope of the function. Based on the
measured value, Eqs. (8) and (9) are first approximations with a as the geometric
area, in squared metre.

Decreasing the shadowing area down to zero, which means no shadow appears,
the attenuation of course has to become to zero value as well. Equations (8) and (9)
do not follow this constraint. So the range of validity of these both equations has
to be considered as narrow, for larger values of the area A as well. The distance
between object and receiver (r2) is around 25 times of the wavelength, and the object
dimensions are up to ten times the wavelength.

It has to be stated that these functions are not meant to be directly applicable for
predicting shadowing scenarios. However, they show that defining, for example, a
strict height limit for structures according to optical wave propagation does neither
cope with the theoretical analysis nor with the measurement examples shown in this
contribution. In fact, the aim of defining height limits as proposed in international
guidance material [2] is to provide scenarios, where definitely no further testing is
necessary. Thus, if an object does not block the line-of-sight between emitter and
receiver, then no further testing is required at all. The reverse conclusion—often
applied by responsible authorities in Germany—if an object just slightly blocks the
line-of-sight, then there is a significant shadow effect, is both fundamentally wrong,
as exemplarily discussed in this contribution and not originally intended by the ICAO
itself.

5 Travelling Waves and Shadowing Examples

As explained in the previous section, the phenomenon of travelling waves, thus
induced currents flowing along objects, causes electromagnetic fields also radiated
behind the object’s shadowing region. As a simple example for illustrating this in a
similar context, measurement results are presented as performed in [6] investigating
wave propagation in a miniaturized scaled measurement setup.

Figure 7 shows the measurement setup at the open area test site at the national
metrology institute in Braunschweig, Germany.

A modular terrain topology is constructed and made conductive with a lacquer
coating. The manufacturing process and the material characterization is explained in
[6].

An emitting antenna is located in front of the hill structure, and receiving antennas
are placed directly behind it as indicated in the photograph for two different positions
at a distance of 3.2 and 5 m. Transfer functions between two antennas are measured
with a network analyzer ZVA24 in the frequency range from 1 GHz up to 24 GHz
using broadband horn antennas from Q–par Angus Ltd.
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Fig. 7. Wave propagation measurements along larger structures

In this case, it is obvious that the direct line-of-sight between emitting and
receiving antenna is blocked by the conductive hill structure. Following figures
present measured transfer functions both in frequency domain as obtained with
the network analyzer and in time domain after an inverse Fourier transform of the
measured data.

Figure 8 shows that the presence of the hill structure leads to an additional shad-
owing attenuation of about 20 dB. Of course, this scenario can be understood as an
example only for a demonstration of how larger objects or structures shadow wave
propagation. It cannot directly be adopted to shadowing effect of terrains with prob-
ably different conductivity. A deeper insight into the shadowing process becomes
obvious from the impulse response derived from the frequency measurement data by
applying inverse Fourier transform. These impulse responses are shown in Figs. 9
and 10.

The impulse response without the hill structure (blue line) shows a runtime of the
signal of 72 ns, which is the direct line-of-sight distance divided by the speed of light
(including runtime through the connecting cables). The presence of the hill blocks the
line-of-sight, and consequently, this propagation path does not occur in the impulse
response with the hill structure (red line). However, the induced currents obviously
form a travelling wave along the surface of the hill, so the time of arrival slightly

Fig. 8. Measured transfer
function in frequency
domain with receiving
antenna at position 1
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Fig. 9. Impulse response in
time domain after Fourier
transform with receiving
antenna at position 1

Fig. 10. Impulse response
in time domain after Fourier
transform with receiving
antenna at position 2

increases by the additional propagation way along the hill’s surface. Of course, this
travelling wave is attenuated as already visible in the frequency domain, but a total
blockage definitely does not occur. Corresponding observations can be made for the
other position of the receiver as shown in Fig. 10.

Figure 10 also shows the same effect of travelling waves, but for larger runtimes
due to the shifted antenna position. The relative shift in runtime becomes slightly
lower as clearly visible due to the changed geometric dimensions.

Presented shadowing scenarios with the hill structure are another example that
a detailed analysis is mandatory to quantitatively investigate shadowing effects. In
addition, the optical wave propagation as currently often applied does not comply
with presented measurement results presented in Sects. 4 and 5.

6 Conclusion

This contribution discusses shadowing effects of large objects in the context of navi-
gation and communication systems. A simple formula is derived from fundamentals
of scattering theory, which can be applied individually to scattering objects, rather
than defining an overall layout of building restriction areas. Moreover, example
measurements of shadowing effects are performed to demonstrate that shadowing
effects are currently overestimated, if solely optical wave propagation is considered.
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Whereas in current recommendations [2] only the height of an object is taken
into account, a more sophisticated but simple practice is recommended by applying
the real scattering properties, i.e. the radar cross section of an object that either
can be calculated numerically by nowadays software simulation tools or at least by
approximated canonical shapes of similar geometric size. The proposed method can
also be used by governmental authorities, which probably do not have access to
nowadays high-end numerical simulation tools.

These new method of estimating shadowing effects in the context of navigation
and communication systems will very likely lead to shrinking restricted areas around
CNS radio systems and reduce building height restrictions.
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ADS-B Coverage Design in Mountainous
Terrain
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Abstract This paper describes an approach to the ADS-B coverage design being
undertaken for the mountainous terrains of Bhutan. Existing ADS-B implementa-
tion studies have mostly focused on coverage design based on interference criteria.
There is a lack of ADS-B coverage design studies in challenging terrain like in the
Himalayan kingdom, where about 98% of the land cover is mountains. To account
for the unique environment, a physical optics-based deterministic channel modeling
methodology is adopted. A radio siting algorithm developed to determine the best
location of additional ADS-B receivers is outlined. The effectiveness of the algorithm
is demonstrated by applying it to determine the location of additionalADS-B receiver
at PARO control zone to improve coverage in areas critical to flight operations. This
study will be augmented by analysis of opportunistic ADS-B signal measurements
being carried out before the ADS-B receiver network is implemented for use in air
traffic management purpose.
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1 Introduction

More than 98% of Bhutan is mountains [1]. With elevation ranging from 97 meters
to 7570 m and average elevation of 3280 m above sea level—located in the eastern
end of the Himalayan mountain range—it is one of the most mountainous country
in the world. Figure 1 is the obstacles chart showing the contour lines of high terrain
on approach to runway 33 of Paro International Aerodrome. Due to the terrain,
implementation of conventional radar-based surveillance system is only feasible for
the en route phase, but not cost-effective given the lowdensity of traffic in the airspace.
On the other hand, ADS-B is an attractive and a viable solution for both En –route
and Terminal Area (TMA) surveillance. The representative cost of implementing
ADS-B in a TMA is lower by a factor of almost 16 compared to implementing
Mode S radar for the same purpose [2]. Existing ADS-B implementation studies
have mostly focused on coverage design based on interference criteria. Studies have
shown that the main factor to be considered in coverage design and conversely the
siting of terrestrial ADS-B receivers is interference from existing systems using the
1090MHz frequency [3]. As such, therewere no publicly available studies conducted
onADS-B coverage design in areas, where there are no existing 1090MHz terrestrial
systems, and coverage is affected primarily by the location of the receivers. In such
areas, the existing 1090 MHz propagation models used are not suitable. A more
robust propagation modeling methodology using terrain information for prediction
of the coverage area is necessary.

This study presents an approach to ADS-B coverage design using 1090 MHz
propagation channels simulated with Physical Optics (PO) based method and a radio
siting algorithm developed for the purpose. Using existing communication and navi-
gation aid station locations as initial state, the radio siting algorithm determines the
best location of additional ADS-B receivers to improve coverage in the required
coverage area.

The rest of the paper is organized as follows; Sect. 2 describes the coverage
design requirements, and Sect. 3 discusses PO-based simulation results. The radio
siting algorithm is outlined in Sect. 5, and the results of application of the algorithm
is discussed in Sect. 6. The summary and future work are presented in Sect. 7.
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2 Coverage Design Requirements

It will take an impractically large number of ADS-B receiver stations, on the ground,
to provide coverage in all the valleys in the country. This study will only target
to design ADS-B coverage on the published Air Traffic Services (ATS) routes, both
domestic and international, and around the aerodromes; containing the final approach
phase of a flight. Figure 2 shows theControl Zones (CTR) around the four aerodromes
in the country. Paro (ICAO: VQPR, PARO CTR) is the only international aero-
drome. Bumthang (ICAO: VQBT, BUMT CTR), Yongphula (ICAO: VQTY, YONG
CTR) and Gelephu (ICAO: VQGP, GELP CTR) are the three domestic aerodromes.
Currently, the CTRs are not formally designated; it is proposed to be established
soon. For this study, a volume of cylindrical airspace with a 10 NM radius from the
Aerodrome Reference Point (ARP) and extending till 16,000 feet Above Ground
level (AGL) is defined as the CTR. The ARP of each aerodrome is also indicated in
the figure. Of the four CTRs, the ARP of three CTRs; PARO, BUMT, and YONG
are at an altitude of 2580.2 m (8465.2 ft) Mean Sea Level (MSL), 2244.5 m (7363.8
ft) MSL, 2562 m (8405 ft) MSL respectively, and only GELP CTR is at 300.9 m
(987.2 ft) MSL. The figure also shows the published ATS routes [4]. Bhutan has
only two international routes connecting to the PRO VOR waypoint from BOGOP
and SUBSU designated as routes R598 and G348, respectively. There are six RNAV
5 domestic routes (Y1, Y2, Y3, Y4, Y5, and Y6) connecting the various aerodromes
within the country. The upper and lower limits on the international routes are 16,000
feet till Flight Level (FL) 460. For domestic routes, the upper and lower limits are
defined from 18,000 feet till FL 290.

For coverage design, we set out the following requirements:

i. All areas in the CTRs containing final approach and departure path should have
100% coverage;

YONG CTR
(90.51o E,27.25oN)

BUMT CTR 
(90.74o E,27.56oN)

GELP CTR
(90.12o E,26.88oN)

PARO CTR
(90.74oE,27.56oN)

A4

R598

G348

Y1
Y3 Y3

Y2

Y5Y5
Y5

Y4

SUBSU

BOGOP

Y6

A6

A1

A5

A3

A2

Domestic 
RNAV 5 routes
International routes   

Required coverage

CTR

Rx Location

Fig. 2. Required coverage area (shaded) and ADS-B receiver locations
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ii. International routes should have coverage from 16,000 feet MSL till FL 460
vertically and 10 NM on either side from the center line of the ATS track;

iii. Domestic routes should have coverage from 18,000 feet MSL till FL 290
vertically and 7 NM on either side from the center line of the ATS track.

The design problem can therefore be stated as maximizing coverage within the
required coverage areas, indicated by the shaded region in Fig. 2, utilizing minimum
number of receivers.

3 Physical Optics-Based Simulation

A stochastic channel model is generally preferred for use in designing mobile
systems; as it captures all possible channel states. However, for a fixed terrestrial
ADS-B receiver network, a deterministic channelmodelingmethodology that utilizes
the terrain information will be more accurate. In this study, the 1090 MHz ADS-B
signal propagation channel is simulated using a Physical Optics (PO) based method
utilizing a 90 m resolution NASA Shuttle Radar Topographic Mission (SRTM)
Digital Elevation Model (DEM).

Installing ADS-B receiver (Rx) ground stations at the existing Communication
and Navigation (Com/Nav) system stations is most practical and cost-effective from
implementation point of view. As an initial state, seven receiver locations coinciding
with existing communication and navigation aid stations and aerodrome control
towers are chosen. These Rx locations are labeled as A1 to A7 in Fig. 2. The coor-
dinates of these locations are obtained from the current Aeronautical Information
Publication (AIP) of Bhutan [4]. For receivers co-located with VHF radio antennas
at the aerodrome control tower, an antenna height of 15 m is used. For receivers
that are located at remote Com/Nav stations, antenna height of 10 m is used in the
simulation. Amodel of a 1090MHz vertically polarized, 9 dBi gain, omnidirectional
antenna is used for simulation.

The infovista mentum planet wireless access network planning and optimization
software [5], a popular simulation platformwith mobile RF planners, is used to carry
out the simulations. The simulator supports various access technologies and wireless
propagations models; however, the most suitable propagation model supported for
our purpose is the predict air model [6] that is based on physical optics and there-
fore deterministic in nature. It is highly dependent on the terrain information or the
DEM. The simulator environment and simulation parameters used are summarized
in Table 1.

In the actual simulation, the reciprocity of propagation channels is exploited.
Simulation is carried out by positioning transmitter antennas at the Rx locations
and calculating the received signal strength at gridded locations, of 50 m resolution.
According to ICAO Annex 10 volume IV chapter 5, Table 5-1 [7], the minimum
power at antenna feed for an airborne system should be 51 dBm; however, in this
study, only 40 dBm power at antenna feed is used mainly to account for losses in
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Table 1 Simulation environment and parameters

Simulator Infovista mentum planet 6.3.0

Propagation model Physical optics-based predict air

Receiver antenna coordinates Co-located with Com/Nav antenna as per AIP
Bhutan, second edition

Antenna height 10 m (Com/Nav stations),
15 m (Aerodrome control tower)

Antenna 9 dBi Omni antenna (Vertically Polarized)

Output power at antenna feed 40 dBm

Com/Nav system site coordinate and altitude A1 = (27.40 N, 89.42 E, 2590 m)
A2 = (27.30 N, 89.51 E, 3469 m)
A3 = (27.38 N, 89.33 E, 4095 m)
A4 = (27.57 N, 90.78 E, 3447 m)
A5 = (27.25 N, 91.51 E, 2528 m)
A6 = (26.88 N, 90.46 E, 310 m)
A7 = (27.56 N, 90.74 E, 2595 m)

signal path leading to the antenna feed. This is a very pessimistic but a practical
assumption given that we expect the ADS-B antennas to be positioned at significant
distances from the stations—for optimal coverage.

4 Simulation Results and Discussion

From an altitude of 16,000 feet to FL 490 on the international routes and from
18,000 feet till FL 290 on the domestic routes, the seven ADS-B receivers located at
existing Com/Nav stations and aerodrome control towers provide adequate coverage
on these routes. No additional ADS-B receivers are required. However, with only
the seven receivers, coverage at lower altitudes is patchy and not adequate; does
not cover whole of approach and departure paths. This is particularly severe within
PAROCTR, where areas along the published RNP-AR approach paths does not have
ADS-B coverage.

For determining coverage in the lower altitude areas in the CTR, areas with terrain
higher than the altitude at which the coverage is being determined should be excluded
from the coverage calculation. For instance, Fig. 1 shows the terrain on the approach
path to runway 33 at Paro International Airport, within the PAROCTR. It is clear that
even at an altitude of 8500 feet (2591 m) MSL, there are many areas where terrain
is higher than this altitude. Therefore, for determining the area over which coverage
is required at a particular altitude, areas with terrain higher than that altitude should
be excluded. At 8500 feet, these areas in all the CTRs are indicated by black shaded
region in Fig. 3.

From Fig. 3, we see that in PARO CTR and BUMT CTR, majority of the terrain
in the CTR are above 8500 feet. The figure also shows the signal strength of the
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Coverage = 80.02 %

Terrain below 8500 ft

YONG CTR
(90.51o E,27.25oN)

BUMT CTR 
(90.74o E,27.56oN)

GELP CTR
(90.12o E,26.88oN)

PARO CTR
(90.74o E,27.56oN)

Fig. 3. Simulated signal strength within the CTRs superimposed on coverage required areas

received signal, for transmitters located at various points in the coverage area and
receivers located at A1–A7, super imposed over the areas that require coverage. The
areas appearing shaded in black in the figure are areas that require coverage but does
not have coverage.

Coverage percentage P , taking into account the terrain can therefore be expressed
as:

P =
[
1 − R

(A − A′)

]
× 100 (1)

where A is the area in which coverage is required without considering the terrain; A′
is the area for which the terrain is higher than the altitude at which the coverage is
being determined; and R is the area within the required coverage region for which
signal strength value is higher than the threshold value. For this study, −82 dBm is
used as the threshold value, which is within the minimum receiver trigger threshold
level defined in Annex 10 Volume IV, chapter 5, Table 5-3 [7].

Using the expression in (1), the coverage percentage at 8500 feet in Fig. 3 is
found to be only 80.2%. More stations strategically located are required to fill in
this coverage gap. Coverage at higher altitudes is much better, with more than 90%
coverage at altitudes above 11,000 feet. It is clear that at lower altitudes within CTRs,
more strategically located receivers are required to satisfy the coverage requirements.



ADS-B Coverage Design in Mountainous Terrain 333

5 Radio Siting Algorithm

A simple radio siting algorithm to determine the best location of additional ADS-
B receivers to improve coverage in the required coverage area is developed. The
main component of the algorithm is a ray tracer, where the number of reflections
is set to zero, and strength of each rays is weighted not by the total path loss, as in
conventional radio propagation ray tracing algorithms, but set to one. The algorithm
finds the number of unobstructed rays, unobstructed by triangulated (using Delaunay
triangulation) faces obtained from DEM point clouds, originating from the point in
space, where coverage is required and directed toward the centroid of triangulated
terrain faces. We then determine the centroid of the triangulated terrain face that
receives the maximum power. This centroid location is, therefore, the best location
for the additional receiver as it has line-of-sight to maximum number of points,
where coverage is required. For simplicity of implementation, other propagation
mechanisms such as reflection and diffraction are not considered in the algorithm.

Figure 4 (Left) shows the outline of the receiver siting algorithm. Themost compu-
tationally intensive part of the algorithm is to determine if a ray is obstructed by the
triangulated terrain faces. In order to reduce the number of triangulated terrain faces
considered for the determination, only the triangulated faces whose centroids are
within the cylindrical Region of Interest (RoI) of radius r , and with its axis aligned
along with the ray is considered. In this study, r = 80 m is chosen since the longest
distance from vertices of the triangulated faces to their centroid is found to be 78 m.

The overall runtime of the algorithm is directly proportional to the number of
rays being considered. On carefully observing the location of approach paths and
departure paths from each aerodrome, particularly PARO CTR and BUMT CTR,
it is seen that flights approach and departs from the aerodrome along the valley in
which the runway is located. At lower altitudes coverage in valleys other than that
in which the runway is located, even if the valley is situated within the CTR, is not
necessary. For these aerodromes, we assume that only those triangulated terrain faces
that are facing toward the valley could be the next ADS-B receiver location. In Fig. 4
(Middle and Right), the curved line segment LM is the trace of the floor of the valley,
where the runway is located. Only those triangulate faces are retained, whose face

Fig. 4. (Left) Outline of the radio siting algorithm developed. (Middle) Trace of the valley in which
the runway is located. (Right) Illustration of a triangulated face facing the valley
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normal projected on to the XY-plane (Longitude—Latitude plane) makes an angle
θn < θmin with the all the vectors originating at the centroid and terminating at any
point on the curved line segment LM. For instance, in Fig. 4 (Right), the triangulated
terrain face Fi will be retained if the angle θn between the vectors n̂i and

−−→ci x j is less
than θmin ∀ j and x j located on LM; where ci is the face centroid, n̂i is the face
normal vector projected onto XY- plane, and x j is a point on LM. This is a reasonably
safe assumption as the triangulated faces with face normal facing away from the
valley are located on the other side of the ridges. θmin = 60° is heuristically chosen.

To determine if the rays are obstructed by the triangular faces, whose centroid
are located within the RoI, the Möller–Trumbore algorithm [8] is implemented
in Matlab™. To make the algorithm runtime practical for running on a desktop
computer, the number of rays is further reduced by resampling the coverage required
points in space and also removing adjacent triangulated faces. The algorithm is then
run separately for each CTR.

6 Coverage Improvement with Additional ADS-B Receiver
Locations

For PARO CTR, additional ADS-B receiver location is necessary to cover the final
phase of approach path on both ends of the runway; RWY 15 and RWY 33. These
regions are marked as R1 and R2 in Fig. 5. This is also observed in the test measure-
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Fig. 5. Comparison of ADS-B coverage with and without additional ADS-B receiver (additional
receiver location obtained from radio siting algorithm)
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ments takenwithADS-B receivers implemented on a software-defined radio platform
and with antennas located at A1 and A2 [9].

Applying the radio siting algorithm described above to PARO CTR, site A8 was
determined to be the best location for an additional ADS-B receiver in terms of line-
of-sight to areas, where coverage is required. As described in Sect. 5, for simplicity of
implementation, the algorithm does not take into account other propagation mecha-
nisms such as reflection and diffraction. Figure 5 shows the improvement in coverage
with the added ADS-B receiver location at various altitude for PARO CTR. At 8500
feet, there is a 3.5% improvement in coverage, 3.4% improvement at 9000 feet, and
1.6% improvement at 10,000 feet. At altitudes higher than 10,000 feet, the coverage
without the additional ADS-B receiver is already more than 90%, the additional
receiver improved the coverage by less than 1%. Although the percentage improve-
ment is not significant, with the additional receiver the critical region, marked R1 in
Fig. 5, which contains the final approach phase of the flight toward runway 15 at
Paro International Aerodrome, is now covered. However, there is no improvement in
another critical region, marked R2 and containing the final approach phase of flight
toward runway 33 at the aerodrome. Repositioning the antenna at receiver location
A2 might be able to improve coverage in region R2. Although the regions R3 and R4

contain large areas without coverage, they are not critical for actual flight operations
to and from Paro International Aerodrome as these regions are located on the other
side of the ridges that form the valley within which the aerodrome is located.

ForBUMTandYONGCTRs, additionalADS-B receiver location is notwarranted
given the low number of flights currently handled and forecasted in the future. The
coverage with receivers located at existing Com/Nav stations is adequate. There
are also no set approach procedures for these aerodromes. Locally repositioning
the antennas could be explored to improve coverage, if needed. GELP CTR will
not require any additional ADS-B receiver locations; the coverage with the receiver
located on the aerodrome control tower is adequate.

7 Summary and Future Work

In this paper, an approach to ADS-B coverage design using physical optics-based
simulation of the 1090 MHz ADS-B frequency, and a radio siting algorithm that
uses the local terrain information was presented. The approach has been developed
specifically for ADS-B coverage design in themountainous terrains of Bhutan. Using
simulated 1090 MHz propagation channel and the developed radio siting algorithm,
improved coverage in critical regions of flight operation has been demonstrated.

As future work, the results from this study will be compared with the results from
analysis of opportunisticADS-Bmeasurements to improve andvalidate the simulated
coverage. The measurement campaign using ADS-B receivers implemented on an
SDR platform is already underway. The improved coverage prediction thus obtained
will be used for implementation of ADS-B network in the Bhutanese airspace for
ATM purposes
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Nearfield Inspection of Navigation
Systems with UAVs—First Results
from the NAVANT Project

R. Geise, A. Weiss, B. Neubauer, T. Fritzel, R. Strauß, H. Steiner, F. Faul,
T. Eibert, and J. Honda

Abstract Regular flight inspection of navigation systems, such as instrument
landing system (ILS) and the VHF omnidirectional radio range (VOR), is an impor-
tant part of maintenance to ensure safe flight operations. Usually, this is done with
aircraft flying and measuring at trajectories according to international recommen-
dations from the ICAO. With the arising technology of unmanned aerial vehicles
(UAVs), such flight inspections could be performed in a much more economic and
efficient manner, in particular, if combined with nearfield measurement technology,
allowing farfield predictions anywhere in spacewithout limitations to particular flight
trajectories. This contribution discusses an innovative approach for such nearfield
inspections with UAV as research focus of the navigation aid antenna characteriza-
tion—next generation (NAVANT-NG) project with corresponding requirements and
first measurement results. In this contribution, both the dynamic range and the accu-
racy of phase measurements and stability are investigated. In particular, the accuracy
and stability of phase measurements are a crucial part in such nearfield measure-
ments. First measurement results with a test antenna and a UAV demonstrate the
feasibility of proposed nearfield measurements.
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1 Introduction

With the recent development in the field of unmanned aerial vehicles (UAVs), new
possibilities of radio wave measurements can be realized. With such UAVs a large
spatial area tomeasure electromagnetic fields can be covered very fast and accurately,
enabling new approaches of flight inspection, that are performed by real aircraft with
demanding flight trajectories so far. However, a decisive issue is the motion of the
UAV in flight, whichmay have influence on themeasurement quantities, in particular
on the phase that must be measured as well, if nearfield to farfield (NFFF) transforms
are to be applied. This contribution focuses on the navigation aids instrument landing
system (ILS), VHF omnidirectional radio range (VOR), and Doppler VOR (DVOR)
[1],whichboth operate atVHF frequencies at about 110MHz.Because thementioned
navigation systems are large antenna arrays, a large spatial area needs to be covered
by the UAV incorporating a long measurement time, which is beyond the avail-
able flight time of state-of-the-art battery-driven UAVs. Consequently, the proposed
measurement system uses a tethered UAV with theoretically unlimited flight time.
A preceding EMI compliance analysis has been carried out in [2]. With the tethered
setup, a fiber optical system is used both in order to anticipate propagation losses in
long cables and phase measurement errors due to the motion of the cables.

This contribution presents first measurement results, which show the feasibility
of the proposed setup in general. It is organized as follows. In Sect. 2, fundamental
properties of navigation systems are highlighted, which are not yet conform with
the current state of the art of antenna nearfield measurements with continuous wave.
Section 3 discusses the measurement architecture, and Sect. 4 focusses on measure-
ment requirements and corresponding features of the UAV. Section 5 presents the
validating measurement setup and its results, and finally, Sects. 6 gives a conclusion.

2 Nearfield Measurement of Navigation Systems

Whereas antenna characterization in the nearfield is well established in the scientific
community, nearfield characterization of navigation systems bears two fundamental
difficulties to be addressed. On the one hand, such installed navigation systems are
not accessible and cannot be fed individually for an inspection setup. On the other
hand, the mentioned navigation systems cannot be characterized by means of contin-
uous wave only, because the spatially varying navigation information is provided by
modulation properties that need to be measured as well. Basically, the fundamental
functional principle of most navigation systems is that the modulation properties
vary in space. Consequently, spectra must be measured and transformed into the
farfield. Another issue, when measuring navigation systems in the nearfield is that,
due to the required phase resolution of a minimum of 1/50 of a wavelength, there
are high demands on the frequency stability of the system. For the normal operation,
the navigation information is obtained within a few milliseconds by demodulation
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in the receiver, but the measurement time is much longer for the case of measuring
the nearfield pattern within several minutes or even hours. In this case, even small
frequencydrifts in the navigation systemcan cause phasemeasurement errors.Conse-
quently, a measurement system architecture is needed to cope with phase drifts, that
only depend on the motion of the receiving UAV, but not on the frequency drift of
the system itself.

Finally, it is quite clear that the measurement locations will not be located on
regular scanning surfaces like spheres, planes or cylinders due to the motion of the
UAV itself. The UAV itself will never reach a positioning accuracy as known from
sophisticated nearfield measurement ranges.

To cope with this, the UAV-position is measured by a laser tracker with submil-
limeter accuracy. The measured nearfield data are transformed to the farfield by the
fast irregular antenna field transformation algorithm (FIAFTA) [3]. FIAFTA includes
features, which are very suitable for in situ measurements like treating arbitrary
measurement locations and considering dielectric ground [4].

The following figures exemplarily show the contents of the instrument landing
system to be measured with the UAV. Since most navigation systems operate with
such modulations (AM and FM) that vary in space, it serves as a representative
example for the VOR as well. The presented examples have been synthesized by
the exciting amplitudes of a large aperture 24 antenna array ILS. Figure 1 shows
the carrier itself with a very small beam width of only a few degrees with the main
direction into themiddle of the runway. Very close to the ILS at a distance of 50m the
amplitude taper of antenna elements can be identified. Figure 2 shows ILS spectra
that vary with the horizontal observation angle relative to the middle of the runway.
According to the high directivity of the ILS array, the carrier signal strength decreases
to higher azimuth angles as well as the sidebands of the amplitudemodulation. These
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sidebands bear the navigation information andvarywith the azimuth angle. In fact, the
difference in degree of modulation (ddm) is the navigation information. It becomes
obvious that the whole spectrum of the navigation system needs to be measured
within nearfield inspection.

3 System Architecture

Figure 3 presents a sketch of the measurement principle, e.g., for the instrument
landing system. The ILS radiates amplitude modulated signals, while the degree
of modulation varies with the horizontal angle to the middle of the runway. The
inset graph in Fig. 3 shows a spectrum example of the ILS as measured at different
angles ϕ to the middle of the runway. The sideband intensities according to the
degree of modulation at 90 and 150 Hz change. It is noted that these modulation
frequencies are quite low and require a corresponding long measurement time to be
resolvable in the frequency domain. In order to measure phase shifts, only dependent
on the measurement location of the UAV, a stationary monitor is used, which serves
as phase reference. Thus, only phase changes are measured that occur due to the
motion of the UAV, which is compensated for phase drifts of the navigation system
or the measurement receiver. Flight tracks of the UAV are automatically flown. The
position of the UAV is recorded with a laser tracker system that is synchronized with
the measured field data. The data is recorded in the intermediate frequency band to
allow real-time streaming of the data without any losses or synchronization failures.

The RF is linked from the UAV with a fiber optic to the ground station, where
the down mixing and recording are performed. The detailed hardware concept is
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Fig. 3. Measurement setup for nearfield measurements of navigation systems

not presented in this contribution. In this study, fundamental investigations are
done on the phase measurement accuracy. Thus, proof-of-concept measurements are
conducted with a network analyzer. Measurement requirements and corresponding
features of the UAV are described in the following section.

4 Measurement Requirements and Features of the UAV

For the described RF-field measurements, the same UAV is used as the one planned
for the nearfield measurements of the ILS and DVOR installations at a next step
within the NAVANT-NG project.

The UAV is called Hercules-One (H1) [5], which is designed and operated by
Aeroxess Company in Munich/Germany. Since the H1-UAV is especially designed
for large-scale and complex RF-field characterization, it is also fully compliant with
the mission requirements of NAVANT-NG.

The described RF-measurements form the basis for nearfield measurements of a
DVOR installation and an ILS installation. In addition to classical nearfield antenna
measurements, two other major goals are set:

1. Transformation of modulated navigation signals of a DVOR/ILS installation
anywhere into the far-field, respectively, anywhere into the airspace based on
measured modulated signals in the close vicinity (nearfield) of the DVOR/ILS
installation.
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2. Localization of interferers from airport or surrounding of an ILS installation in
the region where aircraft touch the runway or at locations along the runway,
where signal deviations have to be reported, e.g., by flight inspections.

Since the DVOR operates over 360 degrees in azimuth by its rotating beams, the
nearfield data collection shall be captured along a vertical and cylindrical measure-
ment contour around the DVOR. In order to comply with the transformation needs
and the aimed farfield coverage, the planned measurement diameter of the cylinder
shall be 40 m and the height 50 m, as shown in Fig. 4 (left side). Considering a
sample density of nearfield measurement points of λ/2 the number of measurement
points results in 7600. Assuming an average continuous flight speed of the H1-UAV
of, e.g., 1.0 m/s the total measurement time results in about 1.5 h at a minimum.
For the RF-field characterization of the ILS installation, it is planned to sample the
radiating ILS RF-field along a vertical and planar measurement surface of 300 m in
width and 50 m in height as shown in Fig. 4 (right side) resulting in a total flight time
of about 3.1 h without any flight interruptions of the UAV.

Since the H1-UAV is a tethered UAV, the transmission of electrical energy, RF-
measurement signals, and control data occurs either by copper wire or fiber optic
cables and such providing sufficient scan dimensions and flight durations required
for DVOR and ILS RF-field measurements.

Further features of the H1-UAV promoting RF-field measurements are listed
below:

• Payload capacity: 8.0 kg
• Flight time: unlimited
• Large flexibility for integration of a wide range of different payloads
• Fully closed and EMC-shielded airframe accommodating all UAV and payload

equipment and components
• Compact dimensions with outer diameter of 2.1 m by tri-copter geometry and use

of coaxial 4-bladed rotors

Fig. 4. Proposed RF-measurement contours of DVOR (left) and ILS (right)
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Fig. 5. H1-UAV equipped with L-band probe antenna and 6D-RTK equipment

• Extreme agile flight dynamics allowing measurements also at rough weather
conditions

• Optionally a 2-axes gimbal unit can be provided to enlarge field of views of laser
targets when UAV positions shall be measured with laser tracker equipment.

• Optionally, a 6D-RTK system can be integrated providing up to 2.0 mm 3D-
position measurement accuracy and 0.2 degree 3D-orientation measurement
accuracy relative to the antenna under test within a test volume of 10 km.

• Back-up battery on-board in case of absence of line power ensuring safe landing.
• In case of failure of one of the 6 rotors, the H1-UAV remains fully operational.

Figure 5 shows the H1-UAV equipped with the 6D-RTK system. The system
comprises of three GPS antennas installed above the non-rotating centers of the
three coaxial rotor heads. Further, a dual-polarized L-band nearfield probe antenna
is integrated at the front of the UAV as an example antenna.

The H1-UAV is prepared for RF-field measurements up to 20 GHz and above, but
also for any other applications requiring large-scale operations, extreme long flight
durations and precise 6D information of the UAV or of the sensors mounted at the
UAV.

5 Measurement Setup and Results

Figure 6 shows a reference measurement setup as a feasibility study if, despite the
UAV motion, phase measurements are accurate enough for a NFFFT.

As antenna under test (AUT) a biconical VHF antenna is used and a self-built
VHF folded dipole is mounted on the UAV serving as probe antenna. A network
analyzermeasures the complex transfer functions from theAUT to the probe antenna,



344 R. Geise et al.

VHF antenna
at 110 MHz

power supply
and fiber optic

Lasertracker

folded dipole probe antenna

Fig. 6. Measurement setup with a reference antenna

which is connected to a fiber optic conversion module. The fiber optic signal is
converted into RF again on the ground and fed into the receiving port of the network
analyzer. The network analyzer is operated in zero span mode at a continuous wave
frequency of 110 MHz with a measurement bandwidth of 100 kHz. Measurements
are, respectively, done within a time span of 10 s.

In the following, measurements are presented to assess the measurement accu-
racy of the phase. The UAV is flown manually toward the antenna and away from
the antenna as presented in Sect. 5.1. In order to assess the influence of the flight
performance with respect to the phase a hover flight is done, the results of which are
presented in Sect. 5.2. The synchronization with the data acquisition and the laser
tracker is presented in Sect. 5.3. Finally, a gearing flight test is performed to measure
the probe radiation pattern.

5.1 Phase Variations

In order to assess the function principle of measuring the phase, flights are performed
toward the antenna and away from the antenna as presented in Figs. 7 and 8. Both the
magnitude and the phase are plotted. The flight toward the antenna shows a slightly
increasing amplitude over the flight time toward the antenna. Clearly identified is the
increasing phase that follows the product of wavenumber and distance. At this stage,
it is not yet synchronized with the laser tracker and the position of the UAV, but the
phase measurement results indicate, that both the measurement dynamics and the
conversion over the fiber optic yield reasonable results for a linearly increasing and
wrapping phase.
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Fig. 7. Measurement results with flight toward the antenna
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Fig. 8. Measurement results with flight away from the antenna

In the samemanner, it can be seen that the phase decreaseswith increasing distance
to the antenna under test. Both measurements demonstrate that the UAV can well
be controlled in the indoor environment slightly above ground. The measurement
power of the network analyzer was +10 dBm. Since the output power of navigation
systems is several 10 W, these measurements are a lower estimate for the dynamic
range, which clearly seems to be sufficient for the later application. The optical fiber
cable has a length of 50 m, and the phase information does not seem to be distorted
by the movement of the fiber with the UAV. These measurements demonstrate the
feasibility of measuring the phase via optical fiber conversion in a zero span mode.
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5.2 Hovering Flights of the UAV

Since measurement data is recorded with a UAV in motion the fundamental question
is, how the motion affects the phase stability. For example, in order to measure the
modulation content of the navigation system, for VORs with modulation frequencies
of 30 Hz the minimum measurement time is 33 ms. Thus, within such a time the
motion of the UAV should have negligible influence, especially on the phase. In order
to assess these properties, a hovering flight is conducted, the measurement results of
which are presented in Fig. 9.

On the time scale of 10 s amplitude variations of 6 dB and phase variations of
150° can be observed. This is due to the motion of the UAV, which slightly varies
both its distances to the antenna under test and its height above ground. However, the
timescale for measurements of navigation systems as stated above is much smaller,
i.e., roughly up to 100 ms only. In order to evaluate the phase stability on that
timescale, Fig. 10 shows the derivative of the phase with respect to time. This deriva-
tive has itsmaximumat a timeof 5 swith slightly above60° per second.Consequently,
with ameasurement time of 100ms themaximumphase uncertainty is only 6°, which
is suitable for nearfield measurements.

So far the ability to measure the phase of a transfer path from an antenna under
test with an optical fiber in the dynamic state of an UAV in motion has been
presented. In the following section, a measurement example is shown including
the synchronization with a laser tracker as localization system.

0

20

40

60

80

100

120

140

160

180

-58

-57

-56

-55

-54

-53

-52

-51

-50

0 2 4 6 8 10

Ph
as

e 
[°

]

S2
1 

[d
B]

me [s]

magnitude Phase

Fig. 9. Hovering flight at a distance of 10 m
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Fig. 10. Analysis of phase deviations due to the motion of the UAV, derivative with respect to time

5.3 Planar Scan Example

Figures 11, 12 and 13 show measurement results as recorded in front of the antenna
under test at a distance of about 12 m. Figure 11 shows the 3D-localization data as
recorded with the laser tracker system with the parameters distance, elevation, and
azimuth angle. Figure 12 plots the measured data in magnitude and phase that are
mapped to the same time stamp on the x-axis.

For better readability, the recorded data is post processed to show a planar plot in
front of the antenna under test. These results are shown in Fig. 13.

Fig. 11. Localization data of the UAV as recorded with the laser tracker system
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Fig. 12. Measured transfer functions in magnitude and phase

Fig. 13. Planar scan example with synchronization between network analyzer and laser tracker

The local coordinate system is described with w as the height above the laser
tracker level and v as coordinate tangential to the antenna under test, where v = 0 is
the main lobe direction of the antenna.

The antenna under test has a large beam width; thus, nearly a constant transfer
function is observed with respect to the v coordinate. The height scan with the
w-coordinate shows that ground reflections are present, which lead to variations
of around 10 dB. This is a successful demonstration of dynamic antenna nearfield
measurements including the phase with a corresponding synchronization of the UAV
and the localization system.
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Fig. 14. Measured probe antenna pattern by gearing the UAV

5.4 Assessment of the Mounted Probe Performance

Finally, dealing with nearfield to farfield transformations, it is essential to have a
probe antenna with a very broad radiation beam, because the navigation systems
to be measured in the NAVANT project have very large dimensions, i.e., for the
ILS more the 30 m. Consequently, during a flight of the UAV not only the dynamic
position itself might affect the measurement quantities but also the gearing of the
UAV.

Thus, in the following Fig. 14 measurement results are presented for a gearing
test of the UAV turning 360° around its own axis. Ideally, the pattern of the folded
dipole is obtained during this procedure.

Since at the current stage of the measurement setup the information of the heading
is not yet taken into account, the gearing angular information is obtained by the nearly
constant angular gearing speed. Figure 14 shows the folded dipole antenna pattern
with a maximum at around 40°, because the starting angle has not been adjusted.
Two minima of the dipole pattern are measured at angles around 90° and 180°. The
measured probe antenna pattern also shows that the presence of the UAV does not
significantly change the dipole characteristic of the antenna mounted on the UAV.
Anyhow, futuremeasurements will also take into account a probe antenna correction.

6 Conclusion

Fundamentals of nearfield measurements for navigation systems with an unmanned
aerial vehicle have been addressed. Two key issues have been discussed, i.e., the
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VHF reference
antenna

3.2m
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Fig. 15. Measurement setup with the VHF reference antenna for future measurements

necessity of measuring a spectrum of modulated signals, which vary in space as well
as the accuracy of phase measurements that needs to be better than 1/50 of a wave-
length. With first measurements of a VHF biconical antenna, a proof of principle is
given that UAV-based nearfield inspection of navigation systems is possible, since
the measured phase accuracy is satisfying the 1/50 wavelength condition, despite the
UAV motion and signal transmission over an optical fiber link. In ongoing work [6],
the authors in detail present the self-developed hardware that is capable of contin-
uously streaming the intermediate frequency band of both the mobile probe on the
UAV and the fixed reference monitor.

Future work will also show results of the nearfieldmeasurement transformation of
a large self-built VHF horn antenna as shown in Fig. 15. This VHF standard gain horn
antenna is an ideal reference antenna for evaluation purpose of the overall measure-
ment system and the corresponding post-processing. The manufacturing process
and the measurement results with an electro-optical nearfield probe in the aper-
ture are presented in [7]. Figure 15 shows a photograph of the reference VHF horn
antenna at the open area test site of the national metrology institute of Germany in
Braunschweig. The aperture of this horn antenna is 4.6 m × 3.2 m.

In the final stage of the NAVANT-NG project, nearfield measurements of the ILS
and the VOR are performed and compared to nowadays flight inspection results.
Ongoing work will also deal on the frequency expansion up to higher frequencies,
where the phase accuracy becomes even much more relevant.
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