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Abstract A class SD(«), @ > 0, of analytic functions is considered and functions
in this class are shown to be univalent and starlike of order (1 — é), for o > 1.
For functions f(z) to belong to the class SD(«), a sufficient condition is obtained.
For functions f(z) satisfying this condition, the functions F'(z) defined by several
integral operators on f(z) are shown to be in the class S D (). For a hypergeometric
function to belong to the class S D(«), a sufficiency condition is also obtained.

Keywords Analytic functions - Starlike function of order « - Integral operators

1 Introduction

Let A be the class of analytic functions
o0
f(z)=z+2anz" (1)
n=2

defined on the unit disk A = {z € C: |z] < 1}. Let S C A be the class of analytic
univalent functions. Ruscheweyh [22] considered a subclass D C S consisting of
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convex functions f for which Re{f’(z)} > |zf”(z)|. Motivated by the class D, a
family UC D(«), @ > 0, was introduced in [21] connecting various subclasses of
convex functions, especially, the subclass (UCV) of uniformly convex functions
(see, for example, [2] for an excellent survey on UC V). A function f given by (1)
isin UCD(x) if Re{f'(2)} = a|zf"(2)|, z € A, @ > 0. A family SD(«) related to
UC D(a) was introduced in [20]. Recently, this class has been studied in [9, 25].
Also several authors have considered different integral operators on functions in §
and its subclasses (see, for example, [1, 4, 5, 7, 11-14, 16, 17, 26]). In this paper,
functions in the class S D(«) are shown to be univalent and starlike of order (1 — é),
for ¢ > 1. For a function f to belong to the class SD(«) [20], a sufficient condition
is obtained. For functions f satisfying this condition, it is shown that the functions
F (z) defined by various integral operators on f(z) belong to the class SD (). Also,
for ahypergeometric function to belong to the class S D («), a condition of sufficiency
is obtained.

2 The Class SD ()

In [20, 21],aclass UCD(«), o > 0, consisting of functions satisfying the condition
Ref'(z) = a|zf"(2)|, z € A wasintroduced and various properties of this class were
obtained. Subsequently, this class has been considered by several authors [4, 5, 10,
24] in the context of different studies. A related class S D («) motivated by the class
UC D(«) was considered in [21], which is recalled here.

Definition 1 [21] A function f of the form (1) is said to be in the class SD(«) if

{f(z)} ‘f() f@ 2

fora > 0.
We note that f € UCD(«) if and only if zf'(z) € SD(«).

Remark 1 Chichra [6, pp. 41 and 42] has considered a class G(«) of analytic func-
tions f of the form (1) satisfying the condition

Re{(]— )&+ of (2 )} 3)

for @ > 0 and has shown that functions in G(«) are univalent, if & > 1. Hence the

functions f in SD(«) are univalent for o > 1, since Re{ 1@ } > —aRe <f’(z) —

“Z)) if f € SD(a) so that Re{(l o) 12 —i—af/(z)} > 0.

The class S*(«) of starlike functions of order « [19] is well-known and consists of

functions f satisfying the analytic condition Re{z}ﬂ((;)')} > «a, for
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0<a <1, ze€ A. The class SD(«) is now related with the class S*(«) in the fol-
lowing theorem.

Theorem 1 SD(x) € S*(1 — 1), a > 1.

Proof Let f € SD(«), > 1. Then f is univalent and

S @) Re{&}z f(z) ‘f(z) zf'(@) 1‘
z z f@
so that )
zf'(@) - 1_
f(@) T a
Now
{Zf(Z)} Re{(zf/(Z)—1>+1}31— d@ 1'31_1.
f@ f@) f@ o

Hence f € §*(1 —1).

The following theorem gives a sufficient condition for f of the form (1) to be in the
class SD(w).

Theorem 2 A function f of the form (1) is in the class SD () if

Dl +am—Dlla,] <1 )
n=2
Proof For |z] < 1,
R {f(z)} f(z) ‘f(z) ' f(z)
A,
Zz
>1= lad—a) (n=Dla =1=Y [1+a(—Dla, =0
n=2 n=2 n=2
by (4). Hence
R {f(z)} f@
e —
Z Z

which implies that f € SD(x).

Theorem 3 Let f € A be given by (1) and satisfy the condition (4). Then the function
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F()——/ frr=tde, y = -1

defined by the Bernardi operator belongs to SD() for all o > 0.

II\’Iroof Since f € A, F(z) = 2+ byz> + - - where b, = ;—Ean, n>2.
ow

_ B y +1
Z[1+a(n—1>]|b| Z[l—i—a(n 1)1( n)|an|

n=2 n=2

<Y +am—Dlla,| <1, sincey +1 <y +n.
n=2

Thus, by Theorem 2, F € SD(«), for all« > 0.

On substituting ¥ = 0 and y = 1 in the Bernardi operator, we obtain the Alexan-
der transformation and Libera operator, respectively, and so we have the following
Corollary of Theorem 3.

Corollary 1 Let f € A be given by (1) and satisfy the condition (4). Then
1. the function

F(2) = ) @dt

0

defined by the Alexander transformation belongs to SD (), for all a > 0.
2. the function

F(z) = z/ f(t)dt
Z Jo

defined by the Libera operator belongs to SD(«), for all @ > 0.

Theorem 4 Let f € SD(«) and

Fo =12t )
Then
ly F(2) + 2F'(2)| = a|Z F"(2) + y2F'(2) — y F(2)] (6)
Proof By (5),
r@=2ro+ @

and
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()= 2F"(2) ®)
Since f € SD(«),
R {f (z)} _f@
e
z z
which implies
‘f (2) _f@ ©)
< Z

Using (7) and (8) in (9), we obtain

) y F@) | F@
+
I+y z 1+y

‘)/F/(z) F'(@)  yF@)
1+y 1+y I+y

which is equivalent to
lYF() +2F'(2)| = alz’F"(z) + y2F'(z) — Y F(2)|

Corollary 2 If f € SD(), then

‘(Zagﬂ) ' < L forall z € A.
Z alz|

Proof By Theorem 4, (6) can be written as

22F"(2) + yzF'(z) — yF(2)

yF()+zF'(2) ~a
In terms of f(z), the above inequality becomes
f@ 11
f@  z| 7 alz
which implies
‘(log&> —— forall z € A.
Z a|

Theorem 5 Let f € A be given by (1) and satisfy the condition (4). Then the function

1 1 A—1
/ 1972 <log;) f(tz)dt,a > 0,1 >0
0

defined by the Komatu operator belongs to SD(«), for all o > 0.

F(z) =

(3
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s
Proof Here F(z) = z + byz> + --- where b, = <L) a,,a > 0,A>0.

a+n—1
Now - N N
a
;[1 +a(n = DIlb,| = ;[1 +an - 1)]‘a+n—_1 an]

<Y [+a@m—Dlla,| < 1.Va =0,

n=2
sincea <a+n—1 forn >2.Thus by Theorem 2, F € SD(x) forall ¢ > 0.

Theorem 6 Let f € A be given by (1) and satisfy the condition (4). Then the function

2)L z z r-1
ZF()»)/O (log;) f@®)dt,aa >0

defined by the Jung-Kim-Srivastava operator I belongs to SD(«) for all « > 0.

F(z) =

A
Proof Here F(2) =z + baz? + - - - wherebn=< 2 ) a,,a > 0.

n+1
Now
o0 o0 2 A
14+a@r—1]b,| = l4+am—1D]|——| |a,
;[ (n — 1)]|b,| ;[ ( )]‘n+1 ||

o0
<Y [+a@m—1Dlla,| < 1.Va >0,
n=2

since n > 2. Thus by Theorem 2, F' € SD(«) for all « > 0.
Theorem 7 Let f € A be given by (1)and satisfy the condition (4). Then the function

INACEY P NG
FO= ey nrges ), (175) s =0

defined by the Jung-Kim-Srivastava operator Il belongs to S D(«) for all
a > 0.

r r 1
Proof Here F(z) = z + byz> + --- where b, = %an.

Now

. R r+mre+p+1
;[Ha(n—1)1|bn|—;ma(n—1)]F(a+ﬂ+n)r(ﬁ+l)|an|
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r+n) I'@+pB) oa+p
regy ra+p+n B

=> [l +am-1)]

n=2
- B B+n—1D---(B+DB a+p
< lat = Dl e R B

B+n-DB+n-2)---(B+1D
(a+p+n—D@+p+n—=2)---(a+p+1)

=Y [l+a@—Dlla,|

n=2
<1, since+i<a+B+i, fori =1,2,3,--- ,n—1.

Thus, by Theorem 2, F € SD(«) for all « > 0.

Several studies on the problem of deriving conditions for different forms of hyper-
geometric functions to belong to various subclasses of analytic functions in the unit
disk have been done (see, for example, [3, 8, 15, 23, 24]). Here we consider the
Gaussian hypergeometric function F (&, n, ¢; z) given by

oo

Fn.8=)

n=0

E)n (D
" A
RO

(10)

where &, n, ¢ are complex numbers such that ¢ # —n, n € {0,1,2,---}, (§)o = 1,
for & # 0 and for each positive integer n, (§), =&+ D(E +2)---(E+n—1)is
the Pochhammer symbol. We derive a sufficient condition in terms of a hypergeo-
metric inequality for zF (&, n, ¢; z) to belong to the class SD(«). We make use of
the Gauss summation formula [18] given by

oo

©un  TE—E=nIQ)
FE, n, ¢ 1) = =
G eh =) S = Fe—HrG -0

if Re(¢ —& —n) > 0.

Theorem 8 Let &, n be two non-zero complex numbers and ¢ be a real number such
that { > |&| + |n| + 1. Let f € A be of the form given by (1). Then
zF(&,n,¢; 2) € SD(@) if the following hypergeometric inequality holds:

' =& —1Inl=DI'@)
(¢ = 15D —[nD

(¢ =18l =Inl =D +algn]] < 2. Y
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Proof In view of Theorem 2 and the series representation of zF (&, n, ¢; z) given by

N E)ut (M1,

Fé&,n¢2) = , A, 12
FEnGD=2+) e (12)
it is enough to prove that
= (&)1 (M1
S = 1 - 1) 1. 13
;( ol ))‘(g)nl(l)nl < (13

Using the fact that |(£),| < (]§]), and noticing that ¢ is a positive real number, we
have

(|s|)n—l(|n|)n—l
(g)n—l (l)n—l

Mg

(I +an—1)

3
1
S}

(§|)n 1(|n|)n 1 (|$|)n—l(|n|)n—l
Oy Z( O (D

(D1 (nD s & Dt (1D
Oy T Z Ont (Do

[
Mz

n

I
Mg

Il
S}

n

Thus using the property (£), = £(1 + £),—;, we have

N (EDa—1 (Dot €] o= (1 + EDu—a (L + I0])n—2
S
=2 T nme T A 0 DD

— F(EL g D) — 1+ @F(lﬂa L4l 1401

An application of the Gauss summation formula in (9) yields the result.
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