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Abstract We analyse the following average sampling problem over multiply gener-
ated spline spaces of polynomial growth: Let h be a nonnegative integrable function
supported in

[− 1
2 ,

1
2

]
. Given a sequence of samples {yn}n∈Z, of polynomial growth,

find a spline f having polynomial growth such that
∫ 1

2

− 1
2
f (n − y)h(y)dy = yn, n ∈

Z. It is shown that this problem has a unique solution for certain subspaces of the
multiply generated spline spaces of polynomial growth.

Keywords Multiply generated spline · Multiply generated spline space · Average
sampling

1 Introduction and Preliminaries

In signal and image processing, continuous signals need to be represented by their
discrete samples. A significant problem in signal processing is how to represent
a continuous signal in terms of its discrete samples. One of the important themes
of sampling theory is, to recover a continuous function from its discrete sample
values. The sampling theorems provide the reconstruction formulas and hence such
theorems become the most useful tool in the field of signal and image processing.
The famous Shannon sampling theorem states that finite energy bandlimited signals
are completely characterized by their sample values [2–5, 10]. Moreover, Shannon
gave the following reconstruction formula
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f (x) =
∑

k∈Z
f

(
kπ

Ω

)
sin(Ωx − kπ)

Ωx − kπ
.

In the Shannon reconstruction formula, sinc function is used and is in fact a scaling
function of a multiresolution analysis used in wavelet theory, since the bandlimited
condition forces the signal to be of infinite duration which is not always realistic.
Further, the sinc function itself is not very suitable for rapid communications. Some
of these constraints necessitate the need for investigating other function classes for
which the sampling theorem holds. Many generalizations of the classical Shannon
sampling theorem have been proposed. Moreover, in [2–5, 10, 14], the sampling
procedure in shift-invariant spaces as well as spline spaces has been analysed. The
requirement is that the signal to be bandlimited can be avoided by considering signals
in spaces like the wavelet subspaces, shift-invariant spaces and spline subspaces.

Recently, the sampling and reconstruction techniquewas investigated formultiply
generated shift-invariant spaces and spline subspaces in [1, 6, 9, 11–13]. In these
literatures, they consider finite energy signals. In this paper, we consider the space
of functions having polynomial growth. In [11, 12], the multiply generated spline
space is defined as

S =
{

f : f =
r∑

i=1

∑

n∈Z
ai (n)βdi (t − n)

}

with suitable coefficients ai (n), where βdi is the cardinal central B-spline of degree
di and is defined by

βdi = χ[− 1
2 , 12 ] � χ[− 1

2 , 12 ] � · · · � χ[− 1
2 , 12 ] (di + 1 terms).

We consider the following subspace of the multiply generated spline space:

SN :=
{

f : f =
∑

n∈Z
an

r∑

i=1

βdi (t − n)

}

If M = max{d1, d2, . . . , dr } and m = min{d1, d2, . . . , dr }, then f ∈ SN pro-
vided that f (x) ∈ C

m−1 and that the restriction of f (x) to any interval between
consecutive knots is identical with a polynomial of degree not exceeding M. If
di ’s are distinct, then

∑r
i=1 βdi (. − n) , n ∈ Z, are globally linearly independent

(Lemma 1).

Let
SN ,γ = { f (t) ∈ SN : f (t) = O(|t |γ ) as t → ±∞}

and
Dγ = {{yn} : yn = O(|n|γ ) as n → ±∞} .
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For γ ≥ 0, a given sequence of numbers {yn}n∈Z ∈ Dγ the following problem:
Find a spline f ∈ SN ,γ , satisfying f (n) = yn, n ∈ Z, has a unique solution. How-
ever, in many real applications, sampling points are not always measured exactly.
Sometimes, the sampling steps need to be fluctuated according to the signals so as
to reduce the number of samples and computational complexity. Therefore aver-
age sampling have been analysed in the literature [1, 2, 5, 7, 10–14]. In most of
these studies, the sequence of samples {yn} is assumed to be in �2 or �p. In [8], we
considered the average samples { f � h(n)} of polynomial growth and analysed the
following problem.

Problem:

Given a sequence of numbers {yn}n∈Z ∈ Dγ , find a multiply generated spline f ∈
SN ,γ , such that

f � h(n) = yn, n ∈ Z,

where h satisfies

supp(h) ⊆
[
−1

2
,
1

2

]
, h(t) ≥ 0, t ∈ R (1)

0 <

∫ 0

− 1
2

h(t)dt < ∞ and 0 <

∫ 1
2

0
h(t)dt < ∞. (2)

In [8], it is shown that this problem has a unique solution for d1 = 1, d2 = 2, d3 = 3
and d4 = 4. In this paper, we analyse all the possible cases for di ≤ 4 and show that
the solution to the local average sampling problem is unique.

Lemma 1 Let di ∈ N be distinct. Then the set

{
r∑

i=1

βdi (. − k) : k ∈ Z

}

of functions

is globally linearly independent on R.

Proof For N ∈ N, consider SN = {
f |[−N ,N ] : f ∈ S

}
. That is the restriction to

[−N , N ] of the functions in S. We shall show that the set

{
r∑

i=1

βdi (. − k) : k = −(N − M),−(N − M) + 1, . . . , N − M

}

is linearly independent on [−N , N ],where M = Max(d1, d2, . . . , dr ).Without loss
of generality, we may assume that d1 < d2 < . . . < dr . Let

N−M∑

k=−(N−M)

ck

r∑

i=1

βdi (x − k) = 0 (3)

for x ∈ [−N , N ]. For x = N − 1
2 and k = N − M, −dr < x − k < dr and
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r∑

i=1

βdi (x − k) = 0

for−(N − M) ≤ k ≤ N − M − 1 and hence by substituting this x in Eq. (3) we get
cN−M = 0.Similarly, by choosing suitable x and substituting in (3), we get ck = 0 for
−(N − M) ≤ k ≤ N − M . As S =

⋃

N∈N
SN , we get that

{∑r
i=1 βdi (. − k) : k ∈ Z

}

is linearly independent on R. �

2 Average Sampling Theorem for Multiply Generated
Spline Space

Theorem 1 (MainTheorem)Let di ≤ 4 and h(t) be an integrable function satisfying
conditions 1, 2. Then for a given sequence of numbers {yn}n∈Z ∈ Dγ , there exists a
unique f ∈ SN ,γ , such that

f � h(n) = yn, n ∈ Z. (4)

The Generalized Euler-Frobenius Laurent polynomial is defined as

Gh(z) =
r∑

i=1

Gh,di (z) =
r∑

i=1

∑

n∈Z
h � βdi (n)zn.

It is easy to see that

Gh,di (z) =
∫ 1

2

− 1
2

h(t)Υz,di (t)dt, (5)

where Υz,di (t) is the exponential Euler spline and is defined as

Υz,di (t) :=
∑

n∈Z
znβdi (n − t).

Therefore

Gh(z) =
∫ 1

2

− 1
2

h(t)Υz(t)dt,

where Υz(t) = ∑r
i=1 Υz,di (t).

We need some properties of exponential Euler splines.
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Lemma 2 [8] For di ∈ N, n ∈ Z and z ∈ C \ {0}, we have
(i) Υz−1(−t) = Υz(t),
(ii) Υz(t + n) = (z)nΥz(t),
(iii) d

dt (Υz,di+1(t)) = (
1 − 1

z

)
Υz,di

(
t + 1

2

)
,

(iv) Υ−1,di

(
1
2

) = 0 and Υ−1,di (t) > 0 for t ∈ (− 1
2 ,

1
2

)
.

In [8], it is shown that if the roots of Gh(z) are simple and there is no root on the
unit circle, then the local average sampling problem has a unique solution.

Theorem 2 [8] Let di ∈ N and h(t) be an integrable function satisfying conditions
1 and 2. If the roots of Gh(z) are simple and there are no roots on the unit circle
|z| = 1, then for a given sequence of numbers {yn}n∈Z ∈ Dγ , there exists a unique
f ∈ SN ,γ , such that

f � h(n) = yn, n ∈ Z. (6)

Moreover, the solution can be written as

f (t) =
∑

n∈Z
ynL(t − n),

where the reconstruction function L is given by L(t) := ∑r
i=1 Li (t) := ∑r

i=1∑
n∈Z cnβdi (t − n) and cn are the coefficients of the Laurent series expansion of

Gh(z)−1 . Further the reconstruction function L is of exponential decay.

3 Behaviour of Gh(z)

Proof (Main Theorem)
As a consequence of Theorem 2, it is sufficient to show that for di ≤ 4 all the

roots of Gh(z) are simple and none of them are on the unit circle |z| = 1.

The Generalized Euler-Frobenius Laurent polynomial Gh(z) = ∑r
i=1 Gh,di (z) can

be written as

Gh(z) =
r∑

i=1

z
−li
2 Pi (z)

where li :=
{
di + 1 if di is odd
di if di is even

and Pi (z) is a polynomial of degree li . Hence

Gh(z) = z
−m
2

r∑

i=1

z
m−li
2 Pi (z) = z

−m
2 P(z),

where P(z) is a polynomial of degree m = max(l1, l2, . . . , lr ).
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For di ≤ 4, we get m = 4 and we can write

P(z) = z2Gh(z)

= z4
{
h � βd4 (2) + h � βd3 (2)

} + z3
{
h � βd4 (1) + h � βd3 (1) + h � βd2 (1) + h � βd1 (1)

}

+z2
{
h � βd4 (0) + h � βd3 (0) + h � βd2 (0) + h � βd1 (0)

}

+z
{
h � βd4 (−1) + h � βd3 (−1) + h � βd2 (−1) + h � βd1 (−1)

}

+ {
h � βd4 (−2) + h � βd3 (−2)

}
.

We obtain P(0) > 0 and P(1) > 0.
We can write P(z) as

P(z) = z2
4∑

i=1

∫ 1
2

− 1
2

h(t)Υz,di (t)dt. (7)

By lemma 2 and Eq. (7), we obtain

P(−1) =
4∑

i=1

∫ 1
2

− 1
2

h(t)Υ−1,di (t)dt > 0.

Since limz−→∞ P(z) = ∞, it suffices to find z0 ∈ (−1, 0) such that

4∑

i=1

Υz0,di (t) < 0, for allt ∈
(

−1

2
,
1

2

)
, (8)

since for such a z0, we have

P(z0) = z20

4∑

i=1

∫ 1
2

− 1
2

h(t)Υz0,di (t)dt < 0, z0 ∈ (−1, 0)

and

P

(
1

z0

)
= 1

z20

4∑

i=1

∫ 1
2

− 1
2

h(t)Υ
z−1
0 ,di

(t)dt = 1

z20

4∑

i=1

∫ 1
2

− 1
2

h(t)Υz0,di (−t)dt < 0, z−1
0 ∈ (−∞, −1).

By solving
∑4

i=1 Υz0,di

(
1
2

) = 0, we get a unique z0 ∈ (−1, 0).
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In the next table, we obtain all possible cases of di ≤ 4.

S. No. d1 d2 d3 d4
∑4

i=1 Υz0 ,di

( 1
2

) = 0 Possible solutions

1 1 2 3 4 3
48 z

3
0 + 93

48 z
2
0 + 93

48 z0 + 3
48 z0 = −1,−15 − 4

√
14,−15 + 4

√
14.

2 1 – 3 4 1
16 z

3
0 + 69

48 z
2
0 + 69

48 z0 + 1
16 z0 = −1,−11 + 2

√
30,−11 − 2

√
30.

3 1 2 – 4 1
24 z

3
0 + 35

24 z
2
0 + 35

24 z0 + 1
24 z0 = −1,−17 + 12

√
2,−17 − 12

√
2.

4 – 2 3 4 1
16 z

3
0 + 69

48 z
2
0 + 69

48 z0 + 1
16 z0 = −1,−11 + 2

√
30,−11 − 2

√
30.

5 1 2 3 – 1
48 z

3
0 + 71

48 z
2
0 + 71

48 z0 + 1
48 z0 = −1,−35 + 6

√
34,−35 − 6

√
34.

6 – 2 – 4 1
24 z

3
0 + 23

24 z
2
0 + 23

24 z0 + 1
24 z0 = −1,−11 + 2

√
30,−11 − 2

√
30.

7 – – 3 4 1
16 z

3
0 + 45

48 z
2
0 + 45

48 z0 + 1
16 z0 = −1,−7 + 4

√
3,−7 − 4

√
3.

8 – 2 3 – 1
48 z

3
0 + 47

48 z
2
0 + 47

48 z0 + 1
48 z0 = −1,−23 + 4

√
33,−23 − 4

√
33.

9 1 – – 4 1
24 z

3
0 + 23

24 z
2
0 + 23

24 z0 + 1
24 z0 = −1,−11 + 2

√
30,−11 − 2

√
30.

10 1 – 3 – 1
48 z

3
0 + 47

48 z
2
0 + 47

48 z0 + 1
48 z0 = −1,−23 + 4

√
33,−23 − 4

√
33.

11 1 2 – – 1 + z0 z0 = −1.

By this table, we get a unique solution z0 ∈ (−1, 0). For such a z0 value, we obtain

4∑

i=1

Υz0,di (t) < 0, for allt ∈
(

−1

2
,
1

2

)
.

Thus all the roots of Gh(z) are simple and there are no roots on the unit circle for
di ≤ 4. �
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