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Preface: International Conference
on Mathematical Analysis and Computing

It is indeed a pleasure and privilege to introduce the proceedings of the selected
contributions of the participants of the International Conference on Mathematical
Analysis and Computing 2019 (ICMAC 2019) which took place at Sri
Sivasubramaniya Nadar College of Engineering, Chennai, India, during December
23-24, 2019.

The main goal of the conference was to provide a platform for experts in
mathematical analysis, geometric function theory, and soft computing to meet and
interact their results and ideas with each other. Mathematical analysis is one of the
most compelling areas of research because of its rich applications. Soft computing
is a main pillar of most of the recent research, industrial, and commercial activities.
The lectures in the conference were well received by the participants and discus-
sions were fruitful.

The main objective of this “proceedings” is to disseminate recent advances in the
studies of diverse areas of mathematical analysis, geometric function theory, and
soft computing. These are crystallized in the form of original research articles and
expository survey papers.

The papers included in this volume are based on a rigorous peer-review process
by the committee of experts in various disciplines. Every submitted paper was first
screened by the members of the editorial board, and once it clears the initial
screening, it was peer reviewed by at least two potential reviewers in the related
area of expertise from the pool of potential reviewers. The paper is accepted if at
least two reviewers recommend it for acceptance.

We thank all the invited speakers, reviewers, and the authors who made their
valuable contribution toward the success of the conference ICMAC 2019. We
would like to thank DST SERB and SSN Trust for the financial support rendered to
organize ICMAC 2019. Our sincere gratitude to Mr. Shamim Ahmad, Senior
Editor, Springer Nature for his collaboration and timely cooperation.

We express our sincere thanks and gratitude to Dr. Shiv Nadar, Founder, SSN
Institutions and Chairman, HCL Technologies; Ms. Roshni Nadar Malhotra,
Executive Director and CEO, HCL Corporation, Vice Chairperson, HCL
Technologies, Trustee, Shiv Nadar Foundation, Founder and Trustee, The Habitats
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Trust; Mr. R. Srinivasan, Director and CEO Redington Ltd. Global Management
and Business Leader, Chairman, SSN Institutions; Ms. Kala Vijayakumar,
President, SSN Institutions; Members of the Board of Management; Dr.
S. Salivahanan, Former Principal, SSN College of Engineering; Dr. V. E.
Annamalai, Principal, SSN College of Engineering; Dr. S. Narasimman, COE and
Professor, Department of Mathematics, SSN College of Engineering; and Dr.
P. Venugopal, Head, Department of Mathematics, SSN College of Engineering for
their continuous support and encouragement.

Orlando, USA Dr. R. N. Mohapatra
Kalavakkam, India S. Yugesh
Kalavakkam, India G. Kalpana

Kalavakkam, India C. Kalaivani
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B. N. Prasad Rao and M. Rangamma

Abstract Any number greater than one can be represented as a product of prime
numbers in a unique way, apart from the order in which the prime factors occur.
This is known as the Fundamental Theorem of Arithmetic. Thus, prime numbers
are solely used to represent prime numbers or composite numbers. There is a diffi-
culty to prove a number as a prime number by using the canonical representation of
numbers. We have put a small step in overcoming this difficulty. In this paper, we
made a basic and fundamental change in representing positive integers as the sum
of a composite number and a prime number. This basic and fundamental change
in the representation of numbers helps in testing the primality of numbers through
representation of numbers as the sum of a composite number and prime number. By
using this representation, we have also proved a theorem on twin primes. Goldbach’s
conjecture is about the representation of an even number greater than 4 as the sum of
two prime numbers. In this paper, we have proved that an odd number under certain
conditions get represented as the sum of two prime numbers.

Keywords Primality test + Twin primes + Representation of positive integers -
Composite number
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1 Introduction

A prime number is represented as a product of 1 and itself. A composite number
is represented as a product of two or more prime numbers. Thus, prime numbers
are used in representing integers. If a number is a prime number, then it will show
certain characteristics. For example, we have Wilson’s Theorem, which states as “If
p is a prime number, then (p — 1)! = —1(modp)”. The converse of this statement
is also true. AKS primality test [4] and Miller test [6] uses nature of a prime number
in testing the primality of a number. Lucas test [S] and Pepin primality test [7] are
based on the form of the given number n. Pocklington primality test [8] requires the
number n to satisfy certain conditions before it becomes a prime number. Goldwasser
and Kilian primality test [3] is based on Elliptic curves and this idea was modified by
Adleman and Huang [1]. Thus, to prove a number as a prime number, we have two
choices. The first one is the choice of using the definition of a prime number and the
second one is the choice of using the characteristics of a prime number. There are no
tests based on the definition of a prime number. Mostly, we prove the number as a
prime number by assuming the number as a composite number. Thus, the definition
of a prime number as the representation of the product of 1 and itself is not helping
in proving the number as a prime number. Thus, our paper aims at proving a number
as a prime number by representing the number as the sum of a composite number
and prime number.

The unsolved Goldbach’s conjecture states that, “every even integer greater than
4 is the sum of two odd prime numbers”. Thus, even numbers greater than 4 has
a prime number + prime number representation. This unsolved problem suggests a
need to study positive integers in terms of sum of two numbers, where either number
in the sum is a composite number or prime number or both numbers are prime
numbers or both numbers are composite numbers. This paper is the first step in this
direction. In Sect.2 of this paper, we have proved that every integer greater than 5
can be represented as the sum of a composite number and a prime number. Using this
representation to natural numbers, we proved in Sect. 4 a criterion for prime number
and a criterion for composite number. Clement [2] has given a criterion for twin
primes. His criterion is based on Wilson’s theorem. In this paper, we have proved a
theorem for twin primes, in terms of the representation of a number as the sum of
a composite number and a prime number. The theorem on twin prime shows that
an odd number under certain conditions get represented as the sum of two prime
numbers, which is contrary to Goldbach conjecture. In Sect. 3, we have introduced
new concepts in the form of definitions.

2 Representation of Positive Integers

Theorem 1 Letn > 5, n € N. Then n can be represented as a sum of a composite
number and a prime number.
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Proof Letn >5,n e N.

Case 1. Let n be any composite number and p be any prime factor of n. Then
n = pbwhereb e N,b > 1.
When b = 2 thenn = 2p.
n=2(p-1+1)

n=2p-1+2
when b > 2. Since n = bp, and hence
n=pb-1+1)

=pb-1)+p

Thus, any composite number 7 is represented as a sum of a composite number and
a prime number.
Case 2. Let n be any prime number and p be any prime number less than n. Then
n — p = 2k for some k € N.
Fork =1,wehave,n =p+2=(p—1)+3=2m+3 wherem > 1,m € N.
For k > 1 we have,
n—p=2%

n=2k+p

Thus, any prime number n is represented as a sum of a composite number and a
prime number.

3 Definitions

Natural numbers are represented as the sum of a composite number and a prime
number or sum of two composite numbers or sum of two prime numbers. In view of
this, we have the following new concepts in the form of definitions that follow.

Definition 1 Let the representation of a positive integer n be n = m + p, where m
is a composite number and p a prime number. We call this representation of n as
cp-representation of n.

Definition 2 Let the representation of a positive integern be n = p + ¢, where p, g
are prime numbers. We call this representation of n as pp-representation of n.

Definition 3 Let the representation of a positive integer n be n = m| + m,, where
m1, m, are composite numbers. We call this representation of n as cc-representation
of n.
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4 Theorem on Primality Test and Twin Primes

Let us consider the following example:

Example 1 Let us consider the natural number n = 17. We write various cp-
representations of the number 17 as follows:

17=15+2=14+3=124+5=10+7=6+11=4+13.Ineach cp-representation of
17, we observe that, no prime number divides the corresponding composite number.
This motivates us to the following theorem.

Theorem 2 Let g > 5, g € N. Then q is a prime number if and only if for each
cp-representation of q as ¢ = m + p, we have the condition p 1 m, where m is a
composite number and p a prime number.

Proof Letq > 5, q € N be a prime number.

Let us suppose that, for all cp-representations of q as ¢ = m + p,where m is a
composite number and p a prime number, the condition p { m is false.

Let g = m + p be a cp-representation of g such that p | m.

Then,q = kp + p where k > 1,k € N.

Thus, ¢ = (k 4+ 1) p and hence ¢ is a composite number.

This contradicts our hypothesis and hence our supposition is false and the theorem
must be true.

Conversely. Let ¢ = m + p be any cp-representation of g with the condition that
p t m. We prove that ¢ is a prime number.

Also, let p; < p, < --- < p, < g be prime numbers less than g.

Suppose, if possible, that g is a composite number, and hence it has some prime
factor p; < /g, where 1 < j <.

pj | q,and hence g =Ip;, wherel > 1,/ € N.

Ifl =2theng =2(p; — 1) + 2. (p; # 2, because g > 5)

If | > 2 theng = Ip;.

g=U-Dp;+p,

Thus, g is represented as a sum of a composite and a prime number where the prime
number divides the corresponding composite number in the sum. This contradicts
our hypothesis.

This completes the proof.

Corollary 1 Let g > 8, q € N has a cp-representation ¢ = m + p where m is a
composite number, p a prime number and p < ./q. Then q is a prime number if and
only if for each cp-representation of q as ¢ = m + p, we have the condition p t m .

Corollary 2 Let g > 8, g € N has a cp-representation ¢ = m + p where m is a
composite number, p a prime number. Then q is a composite number if and only if
there exists atleast one cp-representation of q as ¢ = m + p such that p | m.
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Example 2 Let us consider the odd number 19. The various representations of the
number 19 are as follows:

19=2417=34+16=5+14=7+12=94+10=114+8=13+6=15+4

We note that the number 19 has a pp-representation. Also, 19 and 17 are twin prime
numbers. When two numbers are not twin primes, then the biggest of the two odd
numbers has only cc-rpresentation and cp-representation. We also note that Gold-
bach’s conjecture states that every even number greater than 4 is the sum of two
primes. The same is observed for some odd numbers under certain conditions. We
have the following theorem in this regard:

Theorem 3 Let p, q be prime numbers where p > q,p > 5. Then p, q are twin
primes if and only if p has a pp-representation.

Proof Let p, g be twin primes. Then p = 2 + q and hence, the prime number p has
a pp-representation.

Conversely. Let the representation of a prime number p be pp-representation.

Let p; < p» <--- < p, < p be prime number less than p and p > q.

Since given that ¢ < p, and hence ¢ must be one of the primes p; € {pi, p2, ..., pr}
Since p > 5 is an odd prime number, and hence it has a cp-representation given by
p = 21 + p; for some prime number p; < p,k > 1.k, € N.

Since, given that the prime number p has a pp-representation, and hence this is pos-
sible only when k = [/ = 1 is substituted in above equation

Putting k = [ = 1 in the equation p = 2/ + p;, we get p = 2 + p, = 2 + g where
q = Dr-

This completes the proof.

Acknowledgements I thank Prof. P. V. Arunachalam, Dr. C. Goverdan, and Prof. V. Darmiah for
their encouragement and valuable suggestions. I also thank reviewers for reviewing this article.
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Choosing the Best Copula Function )
in Mathematical Modeling glectie

Pranesh Kumar and Cigdem Topcu Guloksuz

Abstract Multivariate distributions with any type of marginal distributions can be
easily constructed using Sklar’s theorem and copula functions. Precisely, a copula
function is a parametric representation of a multivariate distribution function which
is expressed in terms of marginally uniform random variables on the unit interval.
Copula functions possess some appealing mathematical properties, such as they
allow scale-free measures of linear/nonlinear stochastic dependence and are useful
in simulating families of multivariate distributions. The concept of stochastic tail
dependence refers to the clustering of extreme events. Extreme events, for example,
in economic systems and in natural hazards contexts generally exhibit tail depen-
dence, and thus it becomes very important to analyze the extreme behavior. Copula
functions can measure nonparametric, distribution-free, or scale-invariant nature of
dependence and extreme events. Over the past few decades, several examples of
copula functions and copula families with one or more real parameters are studied
and are applied in various disciplines like statistics, insurance, finance, economics,
survival analysis, information theory, image processing, and engineering. In this
paper, we aim to discuss copula functions, copula properties, copula families, and
simulations using copula functions. Given a large number of copulas available, we
will address an important question from the practitioner’s points of view as how to
choose the most appropriate copula from the family of Archimedean copulas, namely,
Clayton, Gumbel, Frank, and Guloksuz—Kumar for fitting the prediction models.
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1 Introduction: Copulas and Archimedean Copulas

Sklar [17] introduced copula function and copula in his article in 1959. Copulas
describe dependence structure among random variables and have some advantages
provided by copula modeling. One of the advantages is constructing the joint prob-
ability distribution function independent of its marginal. Further, copula functions
can model both symmetric and asymmetric dependence unlike linear correlation
measures. For more details about copulas, references are made to Frees and Valdez
[4], Matteis [15], Nelsen [16], Genest and Favre [7], Belgorodski [1], Cherubini et al.
[2]. In bivariate context, the dependence structure between two random variables is
completely described by known bivariate distributions. However, when different
types of dependence structures prevail, bivariate copula functions are used to obtain
more efficient models.

Precisely, a copula function is a parametric representation of a multivariate prob-
ability distribution function which is expressed in terms of marginally uniform
random variables on the unit interval. For any pair (X, Y) of continuous random
variables, the bivariate probability distribution function (H) can be expressed in
the form H(x,y) = C(u,v),u,v € (0,1). Equivalently, # and v can be consid-
ered as the continuous marginal distributions F(x) and G(y), respectively. Here, C
is the copula function with C : [0, 11> — [0, 1]. Thus, it can be rewritten that
H(x,y) = C(F(x), G(y)) and that copula function C is a joint probability distribu-
tion function with marginal also being probability distribution functions. It should
be noted that, if the marginal are continuous, there is a unique copula representation.

The joint probability density function f (x, y), in terms of copula, is expressed by

Fey) =T f() x f() x c(F(x), GB)), (1)

where f(x) and f(y) are the marginal density function of X and Y and coupling is
provided by the copula density

c(u, v) = c(F(x), G(y)) = 9*C(u, v)/dudv, 2)

if it exists. In case of independent random variables, copula density c(u, v) is iden-
tically equal to one. It may be noted that the importance of the above equation f(x,
y) is that the independent portion expressed as the product of the marginals can be
separated from the function c(u, v) describing the dependence structure or shape.
The dependence structure summarized by a copula is invariant under increasing and
continuous transformations of the marginals.

A special class of copulas which is being studied extensively is referred to as the
Archimedean copulas which can be generated from a function ¢, called a generator
function. For 0 < 7 < 1, the generator function ¢ is such that ¢ (1) = 0, fl_l)rglo (1) =

00, ¢'(t) < 0,¢"(t) > 0. Thus, ¢ is a continuous, strictly decreasing, and convex
function and always has an inverse, oL Additionally, every ¢ that satisfies these
conditions can generate a bivariate copula C, known as the Archimedean copula,
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C(F(),G() = ¢~ {o(F W) + o (GO} 3)

It may be noted that the different generator functions result in different
Archimedean copulas. The Archimedean copula is indexed by a parameter (9), called
copula parameter. Copula parameter can be real or multidimensional and is embedded
in the generator function ¢. For a given random sample data (X;, Y;;i = 1,2, ..., n),
the copula parameter 6 should be estimated to specify the copula function that
models the dependence structure. In literature, there exist various techniques to esti-
mate copula parameters [Nelson (16)]. The one-parameter Archimedean copulas
have another useful property about the relationship between the copula parameter
and nonparametric association measures like the Kendall 7, Spearman p. Scale-
invariant-dependent measures can be expressed as copula functions of random vari-
ables. Two standard nonparametric dependence measures expressed in copula form
are as follows:

Kendall’stau : 7 =4// C(u, v)dC(u,v) — 1 4)
12
Spearman’sRho : p = 12// C(u, v)dudv — 3. (®)]
12

Kendall’s t can be estimated from the data by

T = 2ZSign[(x,- —xj)(y,- — yj)]/n(n —1). (6)

i<j

It may be noted that the linear correlation coefficient is not expressible in a copula
form. For Archimedean copulas with generator function ¢, there is an alternative
expression for t:

1
r—4 /0 (@)@ 0))dr + 1. )

The asymptotic properties of this estimator are studied in Kojadinovic and Yan
[14]. Apart from rank-based nonparametric strategies, the maximum likelihood
methods to estimate the copula parameter are given by Genest and Rivest [6] and
Joe [11].

Copula functions, as scale-free measures of linear/nonlinear stochastic depen-
dence, are useful in simulating families of multivariate probability distributions.
One of the advantages of working with Archimedean copulas is that an Archimedean
copula can be uniquely determined by the function

Ko@) =1—((p))/(¢' (1)), for0 <t < 1. (8)
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K (1) is the distribution function of C(u, v) and a bivariate Archimedean copula
is determined by a univariate function Ky () which is also called Kendall distribution
function.

The empirical estimate of copula, K, (¢) from a random sample of size n [16] is
given by

_#Ti<1)
K.() = EPEE &)

where pseudo-observations 77s are defined as

"INX <X Y < V)
2 11X, d i=1,2,...n (10)

T; = Hn(Xi’ Yt) =
n+1
To select the suitable Archimedean copula function Ky4(¢) from the family of
Archimedean copulas, Frees and Valdez [4] considered the degree of closeness
between K, (#) and K (7) and suggested minimum distance measure

MD = / [K..(1) — Ky (0] dK,, (1) (11)

Other copula selection criteria are based on information measures such as Akaike
information criteria (AIC) and Bayesian information criteria (BIC), both being
dependent on likelihood functions and are

AIC = =2 "In[c(ui 1, uin): 0] + 2k, (12)

i=1

BIC = =2 "In[c(ui1. ui2): 0] + In(nk). (13)

i=1

The preferred copula is with the lowest AIC/BIC values. Also, some derivations
of AIC and other information criteria for model selection are given in Grgnneberg
and Hjort [8].

What follows now, the bivariate Archimedean copulas studied in this paper are
given in Table 1. The expressions of Kendall’s 7 in terms of copula parameters
are provided in the last column. The copula parameter in each case measures the
degree of dependence and controls the association between two variables. In Table 2,
the expressions of Archimedean copulas, their generator functions, and distribution
functions are given. As an example of the graphic representation of copula, the
scatterplot of the Guloksuz—Kumar (NewCop) copula [9] and its distribution function
are shown in Fig. 1.
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Table 1 Archimedean copulas and Kendall’s t

11

Family Bivariate copula Copula T
Cu,v),0 <u,v<l1 parameter space
Clayton (w400 - 1)_1/9 0>1 9%
0—1
Gumbel CXP[—[(— In u)@ +(=1In v)g]l/e] 0>1 =
Frank 1y 1 [ (=)= (=) ey | =00 < 0 <oo |1—3[1-D;®)]
(_é) n (1= %)
et
Guloksuz—Kumar |1 — %ln(eg(l*“) + 007 1) 6 >0 W +1+
1
D) =n/o" fog (efjiq)dr)’ n > 0 is a Debye function
Table2 Archimedean . Family Generator Distribution function
copulas, generator functions, b(1),0<1<1 b(0)
and Copula distribution : Ko@) =t-g5.0<t<
function 1
-0 P
Clayton 77 —1 t———
Gumbel (—Int)? t—
—0t
Frank —In &= In <=1
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pumel =
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o8| || //
o7t
08}
gﬂ&
04}
03}
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Fig. 1 Scatterplot and distribution function of the Guloksuz—Kumar (NewCop) copula

2 Copula Tail Dependence Measures

The concept of stochastic tail dependence refers to the clustering of extreme events.
Extreme events, for example, in economic systems and in natural hazards contexts
generally exhibit tail dependence, and thus it becomes very important to analyze
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the extreme behavior. The definition of tail dependence is the limiting probability
that a random variable exceeds a certain threshold, given that another random vari-
able already exceeds that threshold. Copula functions can measure nonparametric,
distribution-free, or scale-invariant nature of dependence and extreme events. Joe
[11] defines the upper tail dependence:

Ay = lin}[{l —2u+ C(u,w)}/(1 —u)] (14)

C(u, v) has upper tail dependence for Ay € (0, 1] and no upper tail dependence
for Ay = 0.
Similarly, lower tail dependence in terms of copula is defined as follows:

AL = lir%[C(u, u)/ul, (15)

and copula C(u, v) has lower tail dependence for A, € (0, 1] and no lower tail
dependence for A, = 0. This measure is extensively used in extreme value theory.
It is the probability that one variable is extreme given that other is extreme. Tail
measures are copula based and copula is related to the full distribution via quantile
transformations, i.e.,

C(u,v) = F(F{ '), F; ' (v)), (16)

for all u, v € (0, 1] in the bivariate case.

3 Copula Simulation

The following steps are used to simulate data from a bivariate copula. The procedure
mainly consists of first to estimate the marginal distributions and then to specify the
copula function. Marginal distributions can be estimated by empirical or parametric
ways. For simulation, let (U, V) be a random pair from a bivariate Archimedean
copula, ¢(¢) the generator function, and K(¢) the distribution function of copula.
Then, n-pairs of data (X;, Y;;i = 1,2, ..., n) from a bivariate Archimedean copula
can be simulated from the following steps:

(1) Draw two independent random numbers, p and g, from Uniform (0, 1).

(2) t=K"(g).

(3) u=¢ ' [pp(®] and v ="' [(1 = p)P(1)].

4 X =F'(w) and Y = F~'(v).

(5) Repeat the above steps n times to get n pairs of data (X;, Y;;i=1,2,...,n).
It should be also noted that for the step 2, when the inverse of K(¢) does not have

the closed form, the following equation can be solved by numerical methods, like
the Newton—Raphson method:
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lt=(@@)/(¢' 1)) —qg=0. (17)

4 Empirical Study

Several applications of copula functions and copula families with one or more
real parameters are studied in various disciplines like statistics, insurance, finance,
economics, survival analysis, information theory, image processing, and engineering.
We now address an important concern from the practitioner’s point of view as how to
choose the most appropriate copula as a model from the large family of Archimedean
copulas for a given sample dataset.

4.1 Modeling and Simulation

For this objective, we begin with fitting the linear model for making predictions and
analyzing the prediction errors for choosing the best copula among the Archimedean
copulas, namely, Clayton [3], Gumbel [10], Frank [5], and Guloksuz—Kumar copulas
[9]. For more details on copula-based prediction, refer to Kumar and Shoukri [12,
13]. The calculation steps are as follows:

i. Randomly generate 1000 pairs of (X,Y) data from the bivariate stan-
dard normal distribution and for the Pearson correlation coefficient =
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.75, 0.8, 0.85, 0.9, 0.95, 0.99.

ii. Calculate Kendall’s 7 and the copula parameter 6 using the expressions in the
last column of Table 1.

iii. For each copula, simulate 1000 pairs of (X, ¥) and repeat simulations 100 times.

iv. For the simulated data in the previous step (iv), obtain least squares estimates
aand b to fit the linear regression model to predict Y fromX, i.e., E(Y) = a
+BX +e.

v. The estimated intercept and slope coefficient values (a and b), of the parameters
(o and B), for the copula-based models are, respectively, the averages of the 100
(a and b) values from the fitted models in step (iv).

vi. Calculate the 95% confidence intervals (CIs) of the slope parameter and the
mean absolute prediction error (MAPE)

Vi — i

MAPE = Z 100
nyi

i=1

(18)

In Table 3, values of the Pearson correlation coefficient r, Kendall 7, and copula
parameters 6 of Clayton, Gumbel, Frank, and Guloksuz—Kumar copulas are provided.
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It is noted that for the range of values of the correlation coefficient r between 0.1
and 0.99, the range of values of Kendall t is between 0.0852 and 0.9132 and
the range of copula parameters are Clayton (0.1864, 21.0397), Gumbel (1.0932,
11.5198), Frank (0.717, 44.3712), and Guloksuz—Kumar (2.9798, 45.0566). Since
copula parameter is a measure of the dependence or association between two vari-
ables like Pearson correlation coefficient » and Kendall , the range of Frank copula
parameter (43.5995) is the maximum, followed by the range of Guloksuz—Kumar
copula parameter (42.0768) and is the minimum (10.4266) for the Gumbel copula
parameter.

4.2 Choosing Copula for the Prediction Modeling Using
Mean Absolute Prediction Error (MAPE)

We summarize fitted prediction models, 95% confidence intervals (CI) of regression
coefficients, and mean absolute prediction error (MAPE) of the models in Table 4.
It is clearly evident from the minimum distance measure (MAPE) values that the
Guloksuz—Kumar-copula-based prediction model has the minimum prediction error
for all the Pearson correlation coefficient (r) considered except r = 0.1, where the
Clayton-copula-based prediction model has the minimum prediction error (Table 4).

Table 3 Kendall t and copula parameters 0

Correlation r Kendall t Clayton 6 Gumbel 0 Frank Guloksuz—Kumar 6
0
0.1 0.0852 0.1864 1.0932 0.7717 2.9798
0.2 0.1199 0.2724 1.1362 1.0916 3.1721
0.3 0.1726 0.4172 1.2086 1.5920 3.4921
0.4 0.2319 0.6038 1.3019 2.1834 3.8991
0.5 0.3415 1.0373 1.5186 3.4046 4.8259
0.6 0.4190 1.4426 1.7213 4.4295 5.6764
0.7 0.4940 1.9524 1.9762 5.6278 6.7319
0.75 0.5252 2.2126 2.1063 6.2148 7.2666
0.8 0.5810 2.7732 2.3866 7.4430 8.4118
0.85 0.6587 3.8592 2.9296 9.7401 10.6144
0.9 0.7037 4.7493 3.3746 11.5815 12.4109
0.95 0.8060 8.3070 5.1535 18.8115 19.5602
0.99 0.9132 21.0397 11.5198 443712 | 45.0566
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Table 4 Models for prediction and mean absolute prediction error (MAPE)
Correlation | Data Intercept | Slope (std. error) | 95% CI (slope) MAPE
r=0.1 BiNormal (0, 1) —0.0444 1 0.1270 (0.0318) 0.0646-0.1895 1.3121
Clayton —0.0033 | 0.1380 (0.0312) 0.0768-0.1992 1.2090
Gumbel —0.0012 | 0.1399 (0.0311) 0.0789-0.2008 1.2109
Frank —0.0015 | 0.1218 (0.0314) 0.0602-0.1833 1.3096
Guloksuz—Kumar 0.1246 | —0.0952 (0.0315) | —0.1569-0.0336 | 1.5400
r=02 BiNormal (0, 1) 0.0300 | 0.1824 (0.0316) 0.1203-0.2445 1.7407
Clayton 0.001 0.1925 (0.0311) 0.1315-0.2534 1.7874
Gumbel 0.0020 | 0.1961 (0.0312) 0.1349-0.2573 1.8037
Frank 0.0035 | 0.1702 (0.0310) 0.1095-0.2310 1.6862
Guloksuz—Kumar 0.1029 | —0.0383 (0.0315) | —0.1000-0.0234 |1.3838
r=03 BiNormal (0, 1) —0.0194 | 0.2677 (0.0305) 0.2079-0.3275 2.0681
Clayton 0.0035 | 0.2778 (0.0305) 0.2180-0.3374 2.1367
Gumbel 0.0035 | 0.2801 (0.0306) 0.2201-0.3399 2.1475
Frank 0.0026 | 0.2443 (0.0307) 0.1840-0.3045 1.9797
Guloksuz—Kumar 0.0813 | 0.0471 (0.0315) —0.0146-0.1089 | 1.3641
r=04 BiNormal (0, 1) 0.0286 | 0.3636 (0.0284) 0.3078-0.4193 1.8016
Clayton 0.0010 | 0.3574 (0.0295) 0.2996-0.4153 1.7912
Gumbel 0.0047 | 0.3655 (0.0295) 0.3077-0.4233 1.8125
Frank 0.0073 | 0.3209 (0.0299) 0.2622-0.3797 1.6782
Guloksuz—Kumar 0.0578 | 0.1405 (0.0313) 0.0791-0.2019 1.2514
r=0.5 BiNormal (0, 1) 0.0324 | 0.4706 (0.0261) 0.4195-0.5217 2.8881
Clayton 0.0074 | 0.5017 (0.0275) 0.4479-0.5556 3.0339
Gumbel 0.0013 | 0.5037 (0.0272) 0.4504-0.5569 3.0441
Frank 0.0037 | 0.4708 (0.0280) 0.4159-0.5257 2.8890
Guloksuz—Kumar 0.0290 | 0.3395 (0.0298) 0.2811-0.3979 2.2896
r=20.6 BiNormal (0, 1) 0.0548 | 0.5927 (0.0242) 0.5453-0.6401 2.1512
Clayton 0.0023 | 0.6031 (0.0254) 0.5533-0.6529 2.1413
Gumbel 0.0004 | 0.6064 (0.0251) 0.5572-0.6556 2.1488
Frank 0.0016 | 0.5702 (0.0263) 0.5187-0.6216 2.0580
Guloksuz—Kumar 0.0144 | 0.4665 (0.0280) 0.4117-0.5213 1.8102
r=0.7 BiNormal (0, 1) —0.0081 | 0.7132 (0.0227) 0.6687-0.7577 2.9027
Clayton —0.0015 | 0.6773 (0.0233) 0.6316-0.7229 2.7072
Gumbel —0.0006 | 0.6936 (0.0227) 0.6491-0.7380 2.7499
Frank —0.0002 | 0.6522 (0.0241) 0.6050-0.6994 2.6106
Guloksuz—Kumar 0.0072 | 0.5814 (0.0256) 0.5312-0.6316 2.2993
r=0.75 BiNormal (0, 1) —0.0272 | 0.7293 (0.0210) 0.6880-0.7706 3.9980

(continued)



16

Table 4 (continued)

P. Kumar and C. Topcu Guloksuz

Correlation | Data Intercept | Slope (std. error) | 95% CI (slope) MAPE
Clayton —0.0003 | 0.7065 (0.0223) 0.6629-0.7502 3.9776
Gumbel —0.0015 |0.7192 (0.0218) 0.6764-0.7620 4.0356
Frank —0.0021 | 0.6870 (0.0231) 0.6417-0.7322 3.8765
r=0.8 BiNormal (0, 1) 0.0140 | 0.7801 (0.0189) 0.7430-0.8173 2.6190
Clayton 0.0012 | 0.7634 (0.0205) 0.7231-0.8036 2.5708
Gumbel 0.0009 | 0.7830 (0.0196) 0.7445-0.8214 2.6253
Frank 0.0034 | 0.7479 (0.0212) 0.7064-0.7895 2.5276
Guloksuz—Kumar 0.0044 | 0.7033 (0.0224) 0.6593-0.7472 2.4066
r=0.85 BiNormal (0, 1) 0.00001 |0.8514 (0.0162) 0.8197-0.8831 2.6908
Clayton 0.0009 |0.8217 (0.0180) 0.7864-0.8570 2.6088
Gumbel 0.0003 | 0.8498 (0.0166) 0.8173-0.8824 2.6861
Frank 0.0003 | 0.8138 (0.0185) 0.7776-0.8499 2.5881
Guloksuz—Kumar 0.0029 |0.7942 (0.0195) 0.7559-0.8324 2.5334
r=09 BiNormal (0, 1) 0.0146 | 0.9014 (0.0142) 0.8736-0.9292 1.4276
Clayton 0.0016 |0.8576 (0.0164) 0.8255-0.8896 1.3725
Gumbel 0.0011 | 0.8833 (0.0146) 0.8546-0.9120 1.4035
Frank 0.0010 |0.8469 (0.0167) 0.8142-0.8797 1.3613
Guloksuz—Kumar 0.0007 | 0.8339 (0.0175) 0.7997-0.8681 1.3468
r=0.95 BiNormal (0, 1) 0.0056 | 0.9654 (0.0096) 0.9466-0.9841 2.0714
Clayton 0.0016 | 0.9199 (0.0126) 0.8953-0.9445 1.9683
Gumbel 0.0001 | 0.9491 (0.0100) 0.9294-0.9687 2.0163
Frank 0.0001 0.9191 (0.0125) 0.8946-0.9436 1.9618
Guloksuz—Kumar 0.0015 |0.9172 (0.0128) 0.8922-0.9422 1.9603
r=0.99 BiNormal (0, 1) —0.0027 | 0.9899 (0.0043) 0.9815-0.9983 0.9086
Clayton —0.0008 | 0.9717 (0.0074) 0.9573-0.9861 0.8891
Gumbel —0.0008 | 0.9898 (0.0046) 0.9807-0.9989 0.9024
Frank 0.8405 | 2.1743 (0.0460) 2.0842-2.2644 5.7300
Guloksuz—Kumar | —0.0010 |0.9726 (0.0072) 0.9585-0.9867 0.8929

S Concluding Remarks

Copula functions and copula families with one or more real parameters have become
very popular recently for the modeling and simulation in various disciplines like
statistics, insurance, finance, economics, survival analysis, information theory, image
processing, and engineering. Since there are a large number of copulas available, we
investigated an important question as how to choose the most appropriate copula
from the family of Archimedean copulas, namely, Clayton, Gumbel, Frank, and
Guloksuz—Kumar for making the predictions from the linear models.
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We have focused at the bivariate normal population, N(0, 1), since most of the
application data do follow the exact or approximate multivariate normal distributions
and data can easily be standardized. Further, we have considered the bivariate normal
populations with the Pearson correlation coefficient » = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99. The Guloksuz—Kumar-copula-based prediction
models have attained the minimum prediction error for all the Pearson correlation
coefficient (r) values considered, except r = (.1, where the Clayton-copula-based
prediction model resulted in the minimum prediction error. However, it may further
be noted that when response and explanatory variable have a correlation of very
small magnitude like » = 0.1, it implies that there is almost no association and the
explanatory variable is of no use in making predictions about the response variable,
and hence no need for fitting the model.
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Abstract In the present article, we analyse the behaviour of a new family of Kan-
torovich type sampling operators (K¢ f),,~o. We obtain an asymptotic formula for
(K¢ f)w>0 involving the first and second-order derivatives of f and the moments of
the kernel ¢. We also give a quantitative version of asymptotic formula which shows
that when f belongs to C?(R) (the set of all f € C(R) such that f is twice differ-
entiable functions), the convergence is uniform. Finally, we give some examples for
the kernel to which the theory can be applied.

Keywords Generalized sampling series + Average Kantorovich type sampling
series * Pointwise convergence + Fourier transform * B-spline kernel + Graphical
representation
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1 Introduction

The theory of generalized sampling series was first initiated by P. L. Butzer and his
school [6] and [7]. In recent years, it is an attractive topic in approximation theory
due to its wide range of applications, especially in signal and image processing. For
w > 0, a generalized sampling series of a function f : R — R is defined by

> k
(TEHx) =Y go(wx—k)f(5>, x eR,
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where ¢ is a kernel function on R. These type of operators have been studied by
many authors (see, e.g. [2, 3, 12, 13, 16]). The Kantorovich type generalizations
of approximation operators is an important subject in approximation theory and
they are the method to approximate Lebesgue integrable functions. The Kantorovich
type generalizations of the generalized sampling operators were introduced by P.
L. Butzer and his school (see, e.g. [6, 8, 10, 18] etc.). In [4], the authors have
introduced the sampling Kantorovich operators and studied their rate of convergence
in the general settings of Orlicz spaces. Also, the nonlinear version of sampling
Kantorovich operators has been studied in [9] and [19].

We consider the generalized Kantorovich type sampling series. In this paper,
we analyse the approximation properties of the following type of generalized Kan-
torovich sampling series

1
00 k+5

(KENE)= 3 plwr —kow [} faodu.

k=—00 w

f € C(R) (The class of all uniformly continuous and bounded functions on R). The
above series represents the generalized sampling series in the L' setting, where we

considered the samples values as an average of f on a small interval around k/w,
k+(1/2)/w
that is, the mean value w / f (u)du, instead of the sampling values f(k/w).
k—=(1/2)/w
Usually, more information is known around a point than precisely at that point; this

procedure simultaneously reduces jitter errors.
Let ¢ € C(R) be fixed. For every v € Ny = NU {0}, u € R we define the alge-
braic moments as

o0
m, (¢, u) := Z @ —k)(k —u)”  and the absolute moments by

k=—00

My(g) :=sup Y low—k)lk—w)".

ueR k=—00

Also, note that for u, v € Ny with u < v, M, (¢) < 400 implies M, (¢) < +oo.
Indeed for 4 < v, we have

o0
Yoolpw—blik—wl = > lp@—hllk-wl"+ > lo@—kllk-uw]’

k=—00 lu—k|<1 lu—k|>1
|k —w)]”
<2 — k)| "=
< 2eloot D ol =Pl i
lu—k|>1

= 2[l¢llco + My ().

When ¢ is compactly supported, then we have M, (¢) < 400 for every v € Nj.
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We suppose that the following assumptions hold:

(i) for every u € R, we have

[ee]

Y =k =1,

k=—00

(ii) for every r > 0, there holds

. _ _ 2
rlggolg lp(u — k)| (k — u)> =0

uniformly with respect to u € R,
(iii) for every u € R, we have

o0

mi(p,u) =mi(p) = Y o —k)k—u) =0,

k=—00

(iv) for every u € R, we have

Ms(p) =sup Y lo(u —k)|(k —u)* < 400

ueR k=—o00

Ms(p) =sup Y lp(u —k)l|(k — u)]® < 400

ueR k=—00

We study here the behaviour of the point-wise convergence at a point in which
f is sufficiently regular, giving an exact order of approximation. In particular, we
obtain an asymptotic formula for (K¢ f),~0 involving the first- and second-order
derivatives of f and the moments of the kernel ¢. We also give a quantitative version
of asymptotic formula which shows that when f belongs to C?(R), the convergence
is uniform. An important tool in order to obtain this estimate is Peetre K-functional
(see [14, 15]). We remark that quantitative Voronovskaja formula has important links
with the theory of semi-groups of operators (see [1, 5]). Finally, we present some
examples of kernel ¢ which satisfy the assumptions used in the general theory.

Theorem 1 For f € L*(R), lim (K¢ f)(x) = f(x) at every point of x of conti-
w— 00

nuity of f. Moreover, if the function is uniformly continuous and bounded on R, then

Jim K5 f = flloo = 0.

Proof Let € > 0 be fixed. By the continuity of f at the point x, there exists § > 0
such that | f (1) — f(x)| < €, whenever |u — x| < §. We can write
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k+3

(KEN@ =@l D lews =B [y 170 = f(0)ldu
|k—wx|<dw/2 Two

kg
+ Y le(wx = k)| /71 |f () = F(0)ldu = I + I, (say).

|k—wx|>6w/2

By the continuity of f at the point x, we get

L<e Y lp(wx—k)| < eMy),

lk—wx|<dw/2

for sufficiently large w > 0. Also, let w be such that Sw/2 > R. Then

Z lp(wx — k)| <€, forevery x € R.
lk—wx|>0w/2

Hence, we get

L<2lflle Y. lpwx =k <e2lfllo

lk—wx|>8w/2

for sufficiently large w > O and hence the first part of the theorem follows. The
second part can be proved similarly.

Remark 1 Since the functions in L*°(R) are locally Lebesgue integrable, the gen-
eralized Kantorovich sampling series used in the above theorem are well defined for
f e L®(R).

Theorem 2 Let f € L®°(R). If f”(x) exists at a point x € R, then
f"(x)

wli_r)noowz[(K,‘ﬁf)(x)—f(X)]= o

Proof From Taylor’s theorem, we have

f = fx)+ f)w—x)+ (u—x)* + h(u —x)(u —x)%,

f(x)
2

for some bounded function £ such that lirr(l) h(t) = 0. Thus, we have
t—
(K§)(x) — f(x)

1 1

k+ K+

= f’(x) Z (p(wx—k)w/g(u—x)du_F fz(x) Z (ﬂ(wx—k)w/g(u—x)zdu

k=—o00 w k=—o00 w

Kt}

o0
+ Z (p(wx—k)w/; 1 h(u—x)(u—x)zdu =1+ DL+ 1.

T

k=—00 w
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First, we evaluate 1.

’ o0 2 2
o wfz(x) S s _k)[(k +w1/2 _x) ~ <k —w1/2 _x> ]

k=—00
_S® 3 plwx — k) (k — wx) = %ml((p) =0.
k=—o00

As to I, we have analogously

(X)) k+1/2 k=12 3
R (G )

k=—00

/'@ < f")
T 2 Pwx k=20
k=—o00
In order to obtain an estimate of /5, let € > 0 be fixed. Then, there exists § > 0 such
that |h(t)| < € for |t| < 8. Then, we have

k+5

D Sl ORI R

[k—wx|<dw/2 w
oo
+ Y lpwx — k)| ﬁ h(u — x)|(u — x)2du == J; + Js.
[k—wx|>8w/2 -
We have
Ky oo M)
w 5 € e.Mo(p
hswe Y ey =R [y @—0)?de< o 3 lpwr — )] = =25
[k—wx|<dw/2 w k=—00

Next, we obtain J;,. Let R > 0 be such that Z lo(u — k)| (u — k)2 < € uniformly
lu—k|>R
with respect to u € R. Also, let w be such that Sw/2 > R. Then

> le(wx —b)(wx —k)? <€

|k—wx|>8w/2

for every x € R. The same inequality holds also for the series

> le(wx —k)llwx —kl/ <€, for j=0,1.

lk—wx|>8w/2
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Hence, we get

k+5
wllh| =
h=—2 30 lewx =R, (0= x)du
[k—wx|>5w/2 w
17210 ellhlloe
< — k| < .
< o > le(wx —k)| < T
lk—wx|>8w/2

Hence, lim w?I; = 0. This completes the proof.

w—00
Remark 2 The boundedness assumption on f can be relaxed by assuming that there
are two positive constant a, b such that | f (x)| < a + bx?, for every x € R. We have

ket d

KENWI= D fetws —olw [} 1l

k=—00 w

e+l

= Z |¢(wx—k)|wﬁ7; (a + bu*)du
k=—00 w

<M
< o((ﬂ)(a t Tz

, 2bx b
+ bx +M1(¢)7+M2(¢)E7

and hence the series K¢ f is absolutely convergent for every x € R. Moreover, for a
fixed xg € R,

Py(x) = f(xo) + f'(x0)(x — x0) + (x — x0)°,

1" (xo0)
2

Taylor’s polynomial of second order centred at the point xg, by Taylor’s formula we
can write

J(x) = P(x)

o =,

where £ is a function such that lirré h(t) = 0. Then, & is bounded on [xy — §, xg + 8],
1—
for some § > 0. For |x — x¢| > §, we have

bx? P
M@—mﬂ§é+x | Pa()]

—x0)?  (x —xp)?’

and the terms on the right-hand side of the above inequality are all bounded for
|x — xg| > 8. Hence, h(. — x¢) is bounded on R. Along the lines of the proof of
Theorem 2, the same Voronovskaya formula can be obtained.
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Let C denote the set of all f € C(R) such that f is m times continuously
differentiable and || ||, < 00.Let$ > 0. For f € C(R), Peetre’s K -functional
is defined as

K@, £, ¢y :i=inf{]| f — glloc +8ll8llnc : g € CV}.

For a given § > 0, the usual modulus of continuity of a given uniformly continuous
function f : R — R is defined as

w(f.8) = sup |f(x) = fI.

[x—y|=d

It is well known that, for any positive constant A > 0, the modulus of continuity
satisfies the following property

o(f,A8) = (A + Do(f, §).

For a function f € C", xo, x € R and m > 1, Taylor’s formula is given by

m

(k)
fo =Yy T G0) (¢ o Ruf5 300 0)

= k!

and the remainder term R, (f; xo, x) is estimated by

m
o(f™, |x = xo).

lx — xol
|Rm(f;x07 X)| = —'

The following estimate for the remainder R,,(f; xo, x) in terms of w was proved
in [11].

Lemmal Ler f € C™ m e N°and xo, x € R. Then, we have

X — X m X —x
Ry (f; x0, x)| < Qa(ﬂm), g)

m! m+1

Theorem 3 For f € C(R) and for § > 0, we have

1 2
(K5 ) (x) = f(O)] = w(f, 5)((1 + —Mo(<p)> +5,M (w))-

Sw

Proof Since o(f,18) < (A + Do(f,8), for A >0 and |u — x| <2/x — £+ 1

k—1/2 k+1/2
forue[ / , 1l ],wehave
w w
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= s ]
[SHICENSTEEDY |w(wx—k>|wﬁ,'§ o(f.lu — x|du

k=—o00 w

e+l

= lu — x|
Z lpwx —k)w [_1 (14
k—— 2 8

)a)(f, 8)du

ket

< oM+ 3 |<o<wx—k>|w/,; (2‘5—x

k=—o00

1
+ —)du
w

) )
< w(f,8)Mo(p) + L(UJ; )M1(¢)+ (u};s )Mo(fﬂ)
and hence the result follows.

Remark 3 If we choose § = +

in the above Theorem 3, then, we obtain the estimate

1K) =

flloo < Coo(f, 1/w),
where C = 2(My(¢) + M,(p)).

Theorem 4 Let f € CP(R) be fixed. Then, for every x € R, we have

_ " 4B
= 24w<f ’ H)’
where A = My(p) + 12M,(¢) and B = My(¢p) + 6 M (@) + 12M>(¢) + 8M3(p)

Proof Let f € C?(R) be fixed. Then, we can write
WK N0 = f00] = L2

‘wz((K;‘if)(X) fx ))—f )

k+l k+1
w3 " 0 —=
= |w () Z pwx —k) [} @ —x)du+ UGS (p(wx—k)/kf% (u — x)2du
k=—o00 k=—00 Tw o
o k+% Y
+w’ k;mw(wx—k) ﬁ;: h(u — x)(u —x)zdu - %
Kt}
< w? Z |(p(wx—k)|/7%u h(u — )| — x)2du = J.
k=—00

Putting Ro(f;u,x) = h(u — x)(u — x)2, using Lemma 1, we obtain
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w & [T [ =]
J > =Z|(p(wx k)|—/;j (u x)a)(f, 3 )d

IA

ket

w’ Z |¢<wx—k>|/l (=) K(%f)d .

| /\

For g € C¥, we have

k+2
/7 | —.X'| "
J<uw? Z |¢>(wx—k>|/ (u — x) <||(f ) lloo + =g ||oo)du
k=—00
A+%
< l(f = &) lls Z |<o<wx—k)|ﬁ (= x)*du
k=—00 2
g =
w- g w
— Z o =0l Jy ju — xPdu = I + I,

. " Mo (e
Itis easy to see that I} < [|[(f — £)" |l B + My(p ).

k—1/2 k+1/2
Sinceforue|: / , +l },|u—x|§2|x—§|+%,weobtain
w w

I < ”g6 b (Mo () + 6My () + 12Ms(0) + 8Ms ().

Thus, we have

A " 2B I
—z(ll(f 8) lloo + ——-llg ”oo)

Taking the infimum over all g € C®, we get the desired result

We discuss the average sampling Kantorovich operators based upon the combi-
nations of spline functions. The B—spline of order & € N is defined as ([7, 17])

By (x) == x_ INIE P WIL Y (WIL -~*X|7%’%|,(htimes)

where

=

0, otherwise

. {1,if—§§x§
347

and * denotes the convolution.
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Let w € R and & € N. The Fourier transform of the functions By, (x) is given by
h h
sinw/2

§h(w) = X[—zl’;](U))) ol ey ) . Given real numbers g, Y| with ¥y < ¥

we will construct the linear combination of translates of By, with & > 2 of type

0(x) = aoBy(x — o) + a1 By(x — ¥1).

The Fourier transform of ¢ is ¢(w) = (aoe”/"’w + alei‘/"w>§h(w). Using the
Poisson summation formula, we obtain

[e¢] [ee]

Z (P(u _ k) — Z a(znk)eﬂnku.

k=—00 k=—00

We have

sin(nk))h B { 1,if k=0

Bu(2mk) = ( K 0, if k #0

and hence

—~ _ ag+a,if k=0
bk = {o, if k#0

Therefore, condition (i) is satisfied if ag + a; = 1. From Poisson summation formula,
we obtain

o]

(=) Y eu—ku—k= Y §Quke.

k=—00 k=—00

We have
¢'(w) = (—ivoaoe V" — ivrare™") By(w) + (ape P + are” ) By (w).
Since E;l (2mk) = 0, Vk, we get ¢’ (2k) = 0. Hence, we obtain
90) =ap+ar =1, ¢(0)=oao+ yia; =0.
Solving the linear system, we obtain the unique solution

L S £ N
v — o Vo — VY1

ap =
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It is easy to see that the support of ¢ is contained in the interval [y — %, Y
Since ¢(u — k) = 01if [u — k| > r for r sufficiently large, we have

lim > @ —k)(k—u)* =0.

|k—u|>r

Now, we have

Ylpw—bllk—wlP= > low—bllk—uw)

keZ lk—u|<R
+ ) e — bk —w).
lk—u|>R

We can see that sup |[{k : |[u — k| < R}| < Ny. Thus, we get

Ma() =) lou — )|tk —w)* < oo.
keZ

29

— %]'

Similarly, we can show that M;(p) = ZkeZ lo(u — k)||(k — u)|]® < co. Now, we
show the approximation of functions f;, f, by the average Kantorovich type sampling

series based on the B-spline kernel.

,if, —1<u<O0
Let fi(u) =

QN — n|—

Jif, O<u < 1
and

Z, if, u < -3

1, if, —3<u<-2
S, —2<u<-1
fow) =1 5

=if, —1<u<0

1, if, 0<u<l1

=2 if, u> 1.
u

Now, we show and compare the approximation of average Kantorovich type sampling

series (K¢ f)w~o for different values of w (Figs. 1 and 2).
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Fig. 1 This graph shows the
approximation of the
function fj on [—1, 1] by
average Kantorovich
sampling series K f; based
upon B-spline type kernel for
w=2515

Fig. 2 This graph shows the
approximation of the
function f, on [—3, 1] by
average Kantorovich type
sampling series Ky f; based
upon B-spline type kernel for
w=2,315

035

02

0.15

01
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C w=h ;
w=15 [:

2 Final Remarks and Conclusion

In this article, we introduce a new family of average Kantorovich type sampling
series. We have analysed the approximation properties of the operators, e.g. pointwise
convergence theorem, Voronovskaja type theorem and its quantitative version for
these operators. In the last section, we present some examples of kernel which satisfies
the assumptions of our theory. It is also observed that the average Kantorovich type
sampling series approximates f € C(R) in abetter way than the classical generalized
sampling series. Finally, we conclude that our operator (K f),,~0 gives the better
convergence as compared to the classical generalized sampling series (7, f)y>0-
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The Fekete-Szego Problem for Bazilevic )
Function crece

Sarbeswar Barik

Abstract In this paper, a new subclass of bi-univalent functions is introduced using
subordination and also the bounds for the Fekete-Szegd problem are obtained by
refining the well known estimates for the initial coefficients of the Carathé¢odory
functions. The method of proof is different, the results obtained in this paper are
improved and u varies from —oo to co.

Keywords Analytic function - Bi-univalent function - Coefficient bound -
Fekete-Szegd

1 Preliminaries and Definitions

Let A denote the family of functions f(z) represented by the following Taylor-
Maclaurin’s series:

f@ =2+ a7 (D

n=2

which are analytic in the open unit disc
U={zeC:|z] <1}.

A function f € Ais said to be univalent in U if f(z) is one to one in U. As usual,
we denote by S the subclass of functions in .A which are univalent in U. The function

f €8 is said to be star-like in U [5] if 9% (%) ~ 0 (z € U). The class of such

function is denoted by S*.
The function f € S has an inverse !, defined by
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' (f@) =z (zel)

and
F(f'(w)) =w, (w e rangeof f).

Itis well known that for every function f € S, the inverse function f~!(w) is analytic
in some disc |w| < ro(f), ro(f) > 41'1‘ Moreover, f~!(w) has the Taylor-Maclaurin
series expansion of the form:

Flw)y =w+ Y bw" (|w| <ro(f).ro(f) = i) .

n=2

For initial values of n, one can easily obtain the following:
by = —ay, b3 = 2a% —az, by =5aya; — 5a3 —ay

and so on. We say that the function f is bi-univalent in U if f~'(w) has analytic
continuation to U. The study of bi-univalent analytic functions on the unit disc was
initiated by Lewin [9]. Seminal work on bi-univalent functions can be found in [2,
3,9, 12, 20].

If F and ¢ are analytic in U, we say that F is subordinate to ¢ written as F' < ¢
if and only if F(z) = ¢(u(z)) for some function u(z) satisfying the conditions of
Schwarz lemma (u(z) is analytic in U, u(0) = 0, |u(z)| < 1).

The determination of upper bounds for the nonlinear functionals | a; — ,ua% | for
any given family F of a normalized analytic function is popularly known as the
Fekete-Szego problem for the family . Many authors [8, 11, 18] including [6]
studied the Fekete-Szego problem for different subclasses of S. We shall need the
following definitions for our investigation.

Definition 1 The function ¢ is said to be a member of the the family R if the
following conditions are satisfied: (i) ¢ (0) = 1, (ii) ¢ (z) is analytic and one to one in
U and (iii) The range of ¢ (z), i.e. ¢ (U) is a region in the right half plane containing
the point 1. We furthermore assume that functions ¢ € R are represented by the
following series:

¢(z)=1+Biz+ B +---,0<B,<B;, zel. 2)

The following are some examples of members of R, which are extensively discussed
in the literature.

Example 1
I+z
¢1(Z):1__Z:1+22+2Z2+"' (z el

maps U onto the right half plane. Moreover, the class P, consisting of functions p
satisfying p(z) < ¢1(z), is the well studied class of Carathé¢odory functions.
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Example 2

14z
1—z

¢2(z):< ) =1420z+20*>+--- O<ac<l, zel).

The function ¢, (z) maps U one to one onto the sector in the right half plane with
opening of angle amr at the origin and is symmetric with respect to the real axis.
Moreover, fora = 1, ¢2(2) = ¢1(2).

Example 3

1+ (1 -28)z

- =142(1=B)z4+20-p2+--- O0O<B<1, zel).

$3(2) =

The function ¢3(z) maps U one to one onto the region 9i(w) > . In the particular

case B =0, ¢3(z) = ¢1(2).
Example 4 [10, 17]

2 1+ .z : 8 16 ,
1 1 =14+ — - .
$a(x) =1+ — <0g1 ﬁ) + 2z+3 54+ (z el

The function ¢4(z) is the Riemann map of U onto the interior of the parabola
(w:w=x+iyand y* =2x — 1}
which has vertex at the point (% 0) in the right half plane.

Leth € S*afunction f € Ais said to be Bazilevi¢ of function type y with respect
to the function A [16, 21] if

2f'(2)
<(f(z))“y (h(z))y) >0 y>0, (zel). 3)

Itis well known that the functions that satisfy (3) are univalent. In the particular case,
h(z) = z. Let B(y) be the class of functions in A satisfying

z \'77
= / . 4
(f(z)) >0 (zel) 4

In the present paper, we introduce the following class of bi-univalent functions
using subordination And also obtain the Fekete-Sezegd inequalities for three sub-
classes of bi-univalent functions. Thus, we have the following.

Definition 2 Let ¢ be a member of the class R. The function f € A, y > 0, is said
to be in the class o B, (¢) if the following conditions are satisfied:
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-y
(%) @) <@ (e, )
and
w \'"77
(@) gw) <pw) (wel), ©6)

where g is the analytic continuation of f~! to U.

Taking y = 1, in Definition 2 we get the following class studied earlier in [19].

The problem of determination of bounds for the initial coefficients of functions
in different subclasses of bi-univalent functions has been widely investigated in
the literature. However, not much is known on the Fekete-Szegd problem for bi-
univalent functions. Recently, Orhan et al. [14] extended the work of Zaprawa [22]
and obtained bounds on | az — ua% | for some subclasses of bi-univalent functions.
Jahangiri et al. [7] also obtained bounds for the Fekete-Szego problem for the class
S:(@) and CV; ().

In this paper, we adapt a method of proof different from Zaprawa and Jahangiri
et al. and also find estimates on | a3 — uag | where w is real for the function class
Ho (¢) and S} (¢p). Our bounds improve upon results of Zaprawa for the class H, (¢).
Our method of proof can be adopted for the variety of subclasses of bi-univalent
functions studied in the literature. Recent works on the Fekete-Szegd problem for
some subclasses of S can be foundon [1, 4, 7, 13, 15, 18, 22]. We need the following
result for our investigation.

Lemma 1 (See [5].) Let p(z) € P where
PR =1+ciz+a?+ar’+ (zel).

Then
lca |12 (meN),

1 lc1|?
|C2—cf|§2 and |cz—§cf|§2—T.

2 Proof of the Theorem

The following calculations shall be used in the proof of our Theorem. Let # and v
be analytic functions satisfying the conditions of the Schwarz lemma. Define the
function p and g in R by the following.

I+ u)

pR)=———=1l4ciz4+a+--- (zel),
1 —u(z)

and
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14+ v(w)

— =14+ Lw+hbw+-- (wel.
1 —v(w)

qg(w) =

This gives an expansion for #(z) and v(z) in terms of coefficients of the corresponding
Carathéodory functions p and ¢. That is,

=%y 2 )24 (7)
u@ =t sfe-5)2 .
and 5

n 1 2\ ,

Taking the composition of the series (2) for ¢ and the series (7) for u(z), we have

1 1 5 1 c% )
¢(“(Z))=1+§Blclz+ ZBZC1+§B1 VI +oee )
Similarly, from the series (2) and (8) together, we get
1 1, 1 12 5
¢(v(w))=1+§B111w+ Zlel +§Bl 12—5 w - (10)

Theorem 1 Let the function f given by (1) be in the class o B, (¢). Then for —oo <
U < 00
(i) if © > &1 then

PRV BI2(14y)(Bi+By) Q) B} -
) 2B, Y e mna e 20 > Y =1
las — paj| <

A+y)Q2+y) | 4 BEANB204y) BB C4y)B]

201+ B; s =Ly =1L
(11)
and
2UnC+Y) BE2(14)(Bi+B))  (2+y)B?
B Ut SiemErd &6y 20005 > Ly =1
las — paz| <
2+y) - )
1+ n(2+y)Bi—2(1+y)(B1+B) (2+y)Bj <1 > 1
(+77B; e = YV =
(12)

(il) if 6 < u < &
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lay — pa3| < Gr<n<é). (13)

1
T 24y
(iii) if © < 8, then

2(14+y)(B:—B)—p(2+y)B}  Q+y)B}

2 By b Q) BI2047)(Bi—By)  2(141)B; Ly=<l
Tl =2 (14)
I | 4 2B-B-n@inBE CaB L, g
20+y) B 248 = LY =
and
40+y)(By=B)-2uQ+y)B  (2+y)B;
2 B, 1+ T () Bt2(49)(Bi—By)]  20+1)Bs — Ly >1
las —pal = 57 (15)
2(14y)(B,—By)—u(2+y) B? Q47) B2
t (+y)2B) l s = Ly =1
— 20+y)(Bi1+By) _2(14+y)(Bi—By)
where S = "o r s 2= Q+7)B]

Proof Let the function f be a member of class o B, (¢). Then by Definition 2, we
have the following:

I-y
(%) £1@) = ). (16)
and
w \'77
(M) g'(w) = ¢(v(w)), a17)

where u(z) and v(w) are members of the class .4 and satisfy the conditions of the

1—
Schwarz lemma. Now equating the coefficients of (%) ’ f'(z) with the coeffi-

cient of ¢ (u#(z)) from (9), we get the following:

1
(I +y)ay = 5 Bicy, (18)
e e A S S SR S G (19)
yvas ) 1= ghaTshila-5 ).
Similarly, a comparison of coefficients of both sides of (17) yields
1
—(+ya= 53111, (20)

6+5y+y*, 1, 1 2
- — @l =-Bl}+-B (L—-2L). 21
Q2+ y)az + > m =7 21+2 =5 (21)
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From Egs. (18) and (20), it is clear that

i =1
We add (19) with (21) and then use the relation ¢ = 2. After simplification, we get

B By — B
@+3y +yHa3 = (et b) - szcf. (22)

Again using (18), we get

3
2 Bl

T A @+ B +2(+ ) (B — By

(2 +1D). (23)

We, next, express a3 in terms of a% and the coefficients of p and ¢. For this, we
subtract (21) from (19) and then use the relation ¢? = /7. This gives the following
after simplification:

as (c2 — D). (24)

_2g D
2424 y)
Using (23) and (24), we get

as — pa; = (c2—b)+ (1 —pa;

B,
42+ vy)
_ B {( 2(1 — w2+ y)Bi +1) o
424+ y) N0+ {2+ y)Bf +2(1 +y)(B) — By)}

( 2(1 — w2 +y)B} ) }
+ 5 -1
(I+{Q+y)Bf +2(1 +y)(B| — By)}

B
=—-={(h 1 h(pw) — Db},
rrepnd (AORVERR DRI
2(1-p)(2+y) B}
(I+¥){Q+y) Bi+2(1+y)(Bi—By)}
The application of the triangle inequality and the estimate |c;| < 2 and |l| < 2
give

where h(u) =

By
— 2 < —_—
las — pay| = 20

o {1h () + 1]+ [h(u) — 11}

Since h(w) is real for all y > 0, the above simplifies to the following:



40 S. Barik

s —padl < 2 (1 <h( < 1)
3 — = -1 = =
= B (8 < <461)
= 2T Y 2SS M =01),
_ 2040(Bi+B) s 2(4y)(Bi—By)
where §; = == 0 8 = QB

This proves (13).
Now we shall obtain a refined estimate of |ci| for our use. Substituting a% =
4(23#12;,)26% from (18), in the relation (23) we get
o 2(1 + ) B,
(24 y)B} +2(1+y)(B| — By)

(c2 + ).

Now, using the well known estimate |c;| < 2 and |/;| < 2, we obtain

22 /() By QB
VB 2(14y)(Bi—By)  2UFVEB2
lei] < (25)
(24y)B?
2 s < 1
Using the relation (22) and (24), we get after simplification
202 + y)as = (6 +5y + Vz)Blcz Q2—y—v3)B L Q2+ y)Br — Bz)cg
T 2043y +9)) 2243y +9?) 243y +9? (216')
Using (18) and (26), we get
B+ y)B (1—-y)B
22+ as — pa’) = C
( v)(a3 — pnay) 201 7) 2 20 47) 2
_ (Bi— Bz)cz rQ2+ Y)B? ,
1+ L 20 +9)2 !
’ @7)

_ -B {2(1+V)(31—Bz)+ﬂ(2+y)31262
C2(14y) (1+y)B :

—G+ye-0- V)lz}-

The application of the triangle inequality in the relation (27) gives
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B 2(1 +v)(B; — By) + u(2 + y)B?
20+ plas — pad| < I ‘( Y)(Bi — By) + (2 +y) L2
2(1+y) (1+y)B;
—GB+yio—=0-=y)h
_ B, '2(1 +y)(B1 — By) +pn(2+ )/)Blzcz 42
2(1+y) (1+y)B ! !
—GB+y)a—ch)—-U—y)—1D
__ B ‘u<2+y)B%—2<1+y)<Bl+Bz>|C2
2(1+y) (1+y)B; !
+CB+y)e—cf|+I1—yl|L-1|. (28)

If > &; then u(2 + y)B]2 —2(1 4+ y)(By + By) = 0. Then applying Lemma 1
with refined bounds of |c;| from (25), we get

pQAY)Bi-2(149)(Bi+By)  (2+y) B} <
) 2B, U e m G-y 20nE > 17 =1
las — pa;| <

T A+y)2+y)

w@+y)BI=2(14+y)(Bi+B;)  (2+y)B}
I+ 20+ B; s =Ly =1L

This is precisely our estimate at (11).
For © > §; and y > 1, we can write (28) as

B n2+y)Bf —2(1+y)(Bi + By)
22+ p)las — pdd| < —— Yo YRR TP
20 +7) (I+7)B)

+B+y)|e—cf|+ly —1|L-1].

The application of Lemma 1 with refined bounds of |c;| from (25) gives

2u(2+y)Bi—4(1+y)(Bi1+B) (2+y)B} >
, B, + T BB 2ps > DY 2
az — pay| < ——
las — pay| < 24y . .
| 4 B B2y (Bt By) CHB o
(+77B; 2k = Y =

which is our assertion at (12).
Next, if u < §,, then we write equation (27) as
o, B ‘ ~ 2(1+y)(By — B) —u+y)B} ,
22 +y)(a3 — pay) = A+ G+y)e+U0 -y + Ty cif-
(29)
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Using triangle inequality with Lemma 1 and refined bounds of |c;| from (25), we get

2(14+y)(B;—B)—pu(2+y)B}  (2+y)B}

. 2B W Smatmei-m 20 > Y =1

az — (a,| <
las — pay| < 2+y | 4 2N BBy -pQiy)BE QB _ g
+ 2(1+7) B, 2B = 0V =1

This is precisely the inequality in (14).
For © < &, and y > 1, we can write (29) as

B 2(1+y)(By — B)) — w2 + y)B?
1 (3+y)62—(]/—1)12+( V)(B2 D—u2+y)By ,

2y _ _ b1
22 +y)(az — pay) = 20 +7) (1+y)By 1

Now, using triangle inequality with Lemma 1 and refined bounds of |c;| from (25),
we get

4(14+y)(Ba—B) —2u(2+y) B} Q+y)B} -
) B, U T atatme -5 200 > LY 2]
las — paz| <
P24y 2(14y) (Ba—B1)—pu (24 ) B2 24y)B?
1+ Y)(Ba—B1)—p(2+y) B (2+y) B Ly >1
()7, Wk = V=

which is our last assertion at (15). The proof of Theorem 1 is thus completed.

Corollary 1 If f represented by the series (1) is a bi-starlike function in U, then

21 n>1
las — pa3) < 11 O<p=<l
21— ) w<0O.

Proof By taking y =0 and ¢(z) = ¢1(z) = 1 +2z +2z> +... and putting the
value By = 2, B, = 2 in Theorem 1, we get the result after simplification.

Corollary 2 If f represented by the series (1) is a strongly bi-starlike function of
ordera (0 <a <1)inU, then

2pa—(1+a) 14o
1 + a+1 n=> 2a
2 1 l—o I+o
las — pay| < 2a 3 — o Sn= 5
a—1-2pa l—a
1+ a+l1 H< 2u

Proof By takingy = 0and ¢(2) = ¢»(z) = 1 + 20z + 2az> + ... and putting the
value B; = 2w, B, = 2¢% in Theorem 1, we get the result after simplification.

Corollary 3 If f represented by the series (1) is a bi-starlike function of order
BO<B<1)inU, then
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w ,u>1,,8<%
14+2u—D(0 =) p>1,8=3
las — payl <2(1—p)41 0<pu=<l
(1= p<0.p<3
1—2u(1—B) w<0.p=3

Proof Bytakingy = land¢(z) = ¢3(z) = 1 +2(1 — B)z +2(1 — B)z* + ... and
putting the value B; = 2(1 — 8), B, = 2(1 — B) in Theorem 1, we get the result after
simplification.

Corollary 4 If f represented by the series (1) is a bi-parabolic starlike function of
order in U, then

245 572
e e
2 1 2
_ <11
las Ma2|—n2 2 24—'“—24
_ﬂ3+224ﬂ w<-—%
b4 24

Proof By takmg y=0and¢(z) = ¢ps(z) =1 + n2Z + 3:1212 + ... and putting the
value B| = 7r2 , By = 317162 in Theorem 1, we get the result after simplification.

Corollary 5 If f represented by the series (1) is a bi-close-to-convex function in U,
then

12u—57~ —572 4o
5 1+ Tz M7
_ )1 a—1 14a
|a3 Hﬂ2| S 2 3 a S H/S o
4 1— 7212 < a—1
372 M o

Proof Bytakingy = 1 and P =ds(x) =14 Sz + 3n2z2 + ... and putting the

value B| = B, = in Theorem 1, we get the result after simplification.

8
n27 3%2
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Study of Absolute Cesaro Summable )
Factor with Quasi-f-Power Increasing oo
Sequences for an Infinite Series

Absolute Summable Factor for Infinite Series

Smita Sonker and Alka Munjal

Abstract In the present study, a wider class of sequence used for a least set of
sufficient conditions for absolute Cesdro ¢ — |C, «; J; I|;, summable factor for an
infinite series. Many corollaries have been determined by using suitable conditions
in the main theorem. Validation of the theorem done by the previous findings of
summability. In this way, the system’s stability can be improved by finding the
conditions for absolute summability.

Keywords Holder’s inequality - Abel’s transform + Indexed summable factor *
Minkowski’s inequality
1 Introduction

Let partial sums’s sequence of Y a, is given by s, = Y ;_, ax and nth sequence to
sequence transform of the sequence {s,} is determined by u,, s.t.,

00
Up = Zunksk (1)
k=0
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An infinite series Y _ a, is absolutely summable, if

lim u; =5 2)
11— 00
and
o0
D lu—ui | < oo (3)

i=1

Definition 1 [1] Let {na,} is a sequence. The nth Cesdaro mean of this sequence is
represented by ¢%. This mean is of order & (0 < @ < 1). The )_ a, is summable
|C, a; d|, ford > 0and k > 1, if

= k
> n* e < oo, 4)
n=1
where ;' is
1 .
= > A pay. (5)
n ]721
and
0 (%), for n > 0,
Ay =14 1, for n=20, (6)
0, for n < Q.

Definition 2 If sequence of means {¢{'} satisfies:

— ok
n (e}
E " [t " < oo, (7N

n=1

then > a, is ¢ — |C, «; §|, summable. Where {¢,} is a positive real number
sequence, 6 > 0 and k > 1.

Definition 3 If a sequence of means {z/} satisfies

o Sﬂl(k_]) ‘
n «
nl(k—5k) |tn | < o0, (8)

n=1
then > a, is ¢ — |C, «; 8; 1|, for [ is a real number, k > 1 and § > 0.

Bor [2-6] has determined various important results by using absolute summabil-
ity factors for infinite series with the application of different classes of sequences.
Ozarslan derived the theorems on absolute matrix summable factors [7, 8] and
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(K, 1, @) summable factor has been used by Parashar in [9]. Absolute product summa-
bility has been used by Chandra and Jain [10] for Fourier series. Various theorems
on absolute Cesaro summability have been established by Sonker and Munjal in
[11, 12] and they used triangle matrices for infinite series in [13].

2 Known Results

A positive sequence B = {B,,} is quasi-f-power increasing sequence [14] with K =
KB,f)>1foralll <m <ns.t.

KfuBn = fnBm €))

and
f =G m] ={n"Cogn)", 0 <s<1,17>0}. (10)

A wider class has been used in [15] and Bor [16] used absolute summable factor of
order « for the result.

Theorem 2.1 Let {B,} is a wider class (a quasi-f-power sequence), which is an
increasing sequence for ¢ (0 <g <I). Assume 3 a sequence {D,} s.t. it is &-quasi-
monotone with conditions:

> n&B,=0(1), (11)
AD, <&, (12)
[AX:| < |Dal, (13)
ZDan is convergent for all n. (14)
If the following two conditions
P ank
Z ﬂ =0 (B,,) as p — 0o, (15)
i
i=1
INi|Bi=0(1) as i— oo, (16)

are satisfied, then |C, «|, summable factor has been followed by infinite series
Sap  with0 < a < landk > 1.
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3 Main Results

Increasing sequences are very useful for establish a number of results on absolute
summable factor. In present study, quasi-f-power sequence is playing an important
role for summable factor of a generalized series. Conditions are determined on abso-
Iute summable factor which are sufficient for an infinite series to make it absolute
summable.

Theorem 3.1 Let {B,} is a wider class of sequence (A quasi-f-power sequence),
which is a increasing sequence for ¢ (0 <g <I1). Assume 3 a sequence {D,} s.t. it is
&-quasi-monotone with conditions:

> n&uBy=0(1), (17)
AD, <&, (18)
[AN,| < Dyl (19)
M|B,=0() as n— oo. (20)
If the following two conditions
> " DyB, < oo for all n, (1)
p I(k—1) avk
e i)
Z T =0 (B,) as p—> oo, (22)
m 1(k—1) [(k—1)
P _ ®
Z nla=16+Dk — 0 <v(0z Vzo+1)k—1> ’ (23)

n=y

are satisfied, then generalized summable factor ¢ — |C, «; 6, 1|, has been followed
by infinite series Y _ a,\,, where k > 1,0 <« < 1,6 > 0, [ be a real number and
wy s

max O<a<l,
we = { l<v=n (24)
|z;; : a=1.
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4 Proof of the Main Theorem

The Y a, A, will follow ¢ — |C, «; d, |, summable factor, if the n™ mean T for o
of {na,\,} satisfies the condition

0 k-1
[
l(k—ok)

n=1

1T < . (25)

The nth sequence to sequence transform 7' of {na,\,} is

n

1 —1
T = ye, AT vay A,
noy=]
)\ - _
R S W
” v=I noy=1

By taking modulus value of both side and using the concept of modulus,

Al

IZ Aal

Tl = e +—Z Zpa,,A;;p' 1AM
v=1 ” v=l1 [p=1
1 n—1
< A w +—Z|A)\ | ACw
” v=1
=Ty |+ 1T, (say).

With the use of Minkowski’s inequality’s concept,

Tt =2 (i + 1Tl (26)
It is enough to prove that
X k=)
l’(lk (5k)| n, r| OO, (27)
n=1

where r = 1, 2. By applying Abel’s transformation and Holder’s inequality, we
have



50 S. Sonker and A. Munjal

mo(k—1) 1(k—1)
(Pn a 1k ank Qpn
i Tl 0<1>Z|A KU
n=2 =
m I(k 1) m—1 n l(k 1)
_0(1)|)‘ |Z l(k 5]() n +0(1)ZA|>\ |Z l(k 5k)
n=1
m—1
= OBy [Aul +0 (1) Y By AN
n=1
m—1
= OBy |Aul + 0 (1) Y " B,ID,|
n=1
—0() as m— oo, (28)
m+1 1(k—1) n—1 km'H 1(k—1)

90 a k a. o Son 1
Z plte— oy | Tl (Z'A)‘VMVWV) an(k—6k> AN
n=2 v=1 n=2 n

m+1 l(k i n—1 n 1
ak
= Z n(a (a—16+Dk (Z |DV|> Zv IDy |
m+1 I(k—1)
_ ak a\k ¥n
—0(1)2" |Dv|(Wv) Z a—15+Dk
v=1 n=v+1

l(k 1)

UL « k
_O(I)Z - I(H-l)k i k|Dv|(Wv)

m l(k 1)

—0<1>Z i 100’

m k—1 v k—
= 0(ym D, Y L (v +0<1>ZA<v D) Y o (v
v=1 r=1
m—1
= O()mB,, IDy| +0 (1) Y |(v+1) AID,| — |D,|IB,
v=1
m—1 m—1
= O()m|Dy| By +0(1) Y IDy|B, +0 (1)) v|AD,|B,
v=1 v=1
m—1 m—1
= O(1)m |Dy| By +0(1) Y IDyIB, + 0 (1) Y vE,B,
v=1 v=1

=0() as m— oo, (29)
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Collecting (25)—(29), we have

ik
(Y
Z k=) |T < 0. (30)

Hence the proof of the theorem is completed.

5 Corollaries

Corollary 5.1 Let{B,}is awider class of sequence (quasi-f-power sequence), which
is a increasing sequence for s (0 < <1). Assume 3 a sequence {D,} s.t. it is £-quasi-
monotone with conditions (17-21) and

p (k=1) / ank
Pi W)
i—k=0(B,,) as  p— oo, 31)

i=1

14 (k—1) k—1
jlatDk T platDk—1 | °

i=v

then ¢ — |C, al;, summable factor followed by the series y_ a,\, with k > 1,0 <
a < landw is

max |t3, O<a<l,
w® = ] i<vzn (33)

" ’n, a=1.

Proof Use 6 = 0 and [ = 1 in the present result.

Corollary 5.2 Let{B,} is awider class of sequence (quasi-f-power sequence), which
is a increasing sequence for s (0 < <1). Assume 3 a sequence {D,} s.t. it is £-quasi-
monotone with conditions (17-21) and

Z( a) p) as p— o0, (34)

i=1

then |C, a|, summable factor followed by Y a,\, serieswithk > 1,0 < a < 1 and

wi is
N 1max O<a<l, 35)
Wn = =v=n
|r;;} a=1

Proof By usingl =1, ¢, = nand § = 0 in the present resent.
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6 Conclusion

Present work is on the absolute summability factor which makes the system stable. If
an impulse response be absolutely summable, then the system be BIBO stable, i.e.,

o0
BIBO stable <=> Y |h(n)| < co. (36)

n=-—00

With the help of a summable factor, the error can be minimized and the output can
be made stable. Absolute summable factor can be used to predict the input data and
the complete changes in the process.

Present work is very applicable in the rectification of signals in Filter. By finding
the corollary, we can be concluded that the present result is very important and gen-
eralized research on absolute summability which can be used to find various previous
results. Validation of present work is done by Corollary 5.1, which is established by
Bor [16] for infinite series to be absolute summable.
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Sensitivity and Stability Analysis in the )
Transmission of Japanese Encephalitis e
with Logistic Growing Mosquito

Population

Vinod Baniya and Ram Keval

Abstract In this manuscript, mathematical modeling for the spread of vector-borne
disease, Japanese encephalitis in humans with constant recruitment from a pig pop-
ulation through the mosquito population has been proposed and analyzed. In this
process, we assumed that the disease spread to the susceptible class is only due to
exposure to infected mosquitoes. It is also assumed that the population of mosquitoes
follows the logistic differential equation with a carrying capacity of mosquitoes,
where the pig population has a constant rate. In order to perform, equilibrium, sta-
bility, and sensitivity analysis, we find a threshold condition, R called basic repro-
duction number. If Ry is exceeded, there is currently an equilibrium with the disease
that is locally asymmetrically stable under certain conditions. A sensitivity analysis
of the model is performed to find out the relative importance of various parameters
responsible for the disease transmission.

Keywords Japanese encephalitis + Logistic growth model + Threshold condition -
Stability + Sensitivity analysis

1 Introduction

The major anxiety of the present time is the birth of a new infectious disease, one of
them is Japanese encephalitis (JE). JE is a viral infection of mosquito-borne disease
and caused by the Japanese encephalitis virus (JEV), World Health Organization
(WHO). The virus exists in a transmission cycle between vectors (mosquitoes) and
reservoirs (pigs) [1]. A human gets infected when bitten by an infected mosquito.
The JE disease cannot spread from men to men. The incubation period of the JE
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Fig. 1 Transmission cycle of Japanese encephalitis between mosquitoes and pigs, (WHO)
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virus is 5-15 days, Centers for Disease Control, (CDC). The transmission cycle of
Japanese encephalitis between mosquitoes and pigs is shown in Fig. 1.

Globally, 30,000-50,000 new cases of JE are reported every year and more than 3
billion people are at risk of developing the JE, National Vector Borne Disease Control
Programme (NVBDCP). At present, there is no specific treatment available against
JEV [1, 3, 7]. Therefore, the strategy for its control and prevention is necessary.
There are some research articles on mathematical modeling of JE that have been
published till now in which the first article was written by Mukhopadhyay et al.
(1993). They have discussed JE model and its stability properties [2]. Panja et al.
[2] have developed a mathematical model on JE and investigate their stability and
bifurcation with/without the effect of some controllable parameters. Naresh et al. [3]
presented a non-linear mathematical model for the spread of JE and analyzed their
stability with environmental effects. Tapaswi et al. [5] used the basic model to analyze
the transmission of JE in a 3-population to obtain an equilibrium, stability using
threshold condition, Ry. De et al. [7] formulated a mathematical model for optimal
control analysis and its dynamical behavior with humans, pigs, and mosquitoes.
Throughout the world, JE is a growing and dangerous public health problem. Since the
transmission dynamics of JE is still unclear, therefore due to this infectious disease,
many people die every year [2]. Therefore, it is necessary to study the dynamics of
JEV transmission and the strategy for its control. In this investigation, a JE disease
model is proposed by considering three-compartment of humans, two-compartment
of mosquitoes, and also two-compartment of pigs. Our objective of the present work
is to investigate the dynamical behavior of the model in the transmission of JE with
the logistic growing mosquito population. This is on the grounds that the size of the
mosquito population changes quickly in its size. While the number of inhabitants in
pigs that show no sickness side effects are commonly not dependent upon any savage
conditions due to JE and in this manner, it is considered in a consistent size.

In this manuscript, the remaining work is organized as follows. In Sect. 2, we
formulate a mathematical model which is based on some basic assumption. Section 3
contains the positivity and boundedness of the model. In Sect. 4, we have shown
that the dynamic behavior of the system. Numerical experiments are performed to
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validate our analytical results in Sect. 5. The sensitivity analysis of the model has
been discussed in Sect. 6. Finally, the conclusions of our present work are discussed
in Sect. 7.

2 Model Analysis

In this work, we considered that the total human population (N;) is constant, which is
divided into three sub-populations, susceptible (H;), vaccinated (H,), and infected
human population (H3), such that N, = H;(¢) + H,(t) + H3(t). In the human com-
partment, the recruited rate of susceptible population is @, (1 — v) N, where pw;, is
the decay rate of humans and v in vaccinated humans. Susceptible humans acquire
JEV at rate 522 *MZH‘ through contact with infected mosquitoes. y; is the recovery
rate from 1nfected humans to the susceptible class of humans. The transfer rate §
from vaccinated class to susceptible, this is because vaccination does not give 100%
protection. Non-treated infected humans die at a rate of €. The mosquito population
follows the logistic model r (1 - %) M, where r is intrinsic growth rate (difference of
birth (o) and death rate (cr;) of mosquito population) and K is carrying capacity of
mosquito population (M(t)). Sothat M (t) = M, (t) + M,(t). Susceptible mosquitoes
acquire JEV through contact with infected pigs at a rate of LM Py i P . Susceptible pigs
are recruited at a constant rate of w,N;, where i, is the death rate of pigs. The
total pig population (N;) is constant and is equal to sum of susceptibles (P;(¢)) and
infected pigs (P»(t)). Hence, the susceptible pigs are acquire JEV through contact
with infected mosquitoes at rate b ’%ZP L. Moreover, we accept that transmission of
the infection is conceivable just to the class of defenseless people in the whole dis-
playing process, for different classes JE spreads among those when they become just
helpless classes. Along these lines, we don’t consider direct JE transmission from the
immunized human class to the tainted human class. From the above considerations,
the dynamics of disease transmission obey the following differential equations as
follows:

dH, B3My H,

ar =un(l=vNy +H, — ———— — upH1 + o H (D
t N>

dH,

T v No — (up + 8) Hy 2)

dHy  B3M>H,

- == = H 3

o N, (Y2 + pn +€)Hs 3

dpP PiM

d—tII,U«pN1—'B2 2 —upPr+v1P2 “4)

dP, B PiM;

P R i il P 5

7 N, (p +v) P2 (5)

— Ole] (6)

dM, < rM)M—'BIPZMl
dt
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dM,  BiP,M,;
P — M 7
T i arM, @)
dM M

dt K

where,

H,(t) + H,(t) + Hs(t) = Ny(constant)
Py (t) + P»(t) = Nj(constant)
M (1) + Ma(1) = M (1)

3 Positive Invariance and Boundedness

In this section, the system of Eqs. 1-8 describes the population of human, mosquito,
and pig and therefore it is necessary to prove that all the state variables are non-
negative for all time ¢. This analysis guarantees that the system is well behaved,
therefore realistic in representing populations with non-negative values. This can be
proved by following theorem:

Theorem 1 If H,(0), H»(0), H;(0), Pi(0), P»(0), M(0), M(0) are non-
negative, then H(t), H,(t), Hs(t), Pi(t), P»(t), M(t), M,(t) are non-negative
for all time t>0. Moreover,
tl—lglo supz H;(t) < No(= Constant), t1—1>ngo supz P:(t) < Ny(=Constant)
lim sup Y Mi() < M(1) < K.
Thus, the feasible region Q = {(H,, H,, Hy, P\, Py, M, M,, M3)|M;(t) >

0, P(t)=0, H;>0, i=1,2, j=1,23:Y M) <K, Y P()<Ni,
2 Hj(t) < N2}

The proof is omitted. U

4 Dynamical Behavior of the System

4.1 Egquilibrium and Basic Reproduction Number

In order to find the equilibrium points of the system of Egs. 1-8, we equate to zero
the R.H.S. of system of Egs. 1-8, we get
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(1) Vector-free equilibrium point £y = (I-_Il L H, 1:13, Py, P,, M, Mz). where,

- No((I = v)(up, +68) +6v) - Noppv
H, = Hy = —,

M + 0 M+ 0
M, =0, M, =0.

Hy,=0, P,=N;, =0

The equilibrium Ej existif M =0

(2) Disease-free equilibrium point E, = (H,, H,, H;, P,, P,, M;, M,) where,

= No((=v)(up +8)+6v) =~ Noppv -
Hl = 5 H2 == 9
Hn + 8 wn + 8

M, =K, M,=0.

The equilibrium Eé) existif M = K.

To measure disease transmission potential, “the basic reproduction number (Rg)
can be established by using the next generation matrix approach”. The potent char-
acteristic root of matrix FV~!is Ry, [2]. It is calculated as

Ry = R\Ry = &
a2 (ptp + 1)
where,
R1 = ﬁl and R2 = &
Kp + 01 a

Biologically, R (R;) is the normal number of mosquito (pig) populace reached by
contaminated pigs (mosquitoes) during its hatching time of JEV [5]. Along these
lines, Ry is the normal number of auxiliary diseases produced by a solitary JEV
tainted individual, which has been presented in a susceptible population, in which
a few people have been immunized. If Ry < 1, the disease cannot run at population
and the infection will end over time. If Ry > 1, then a disease is present and the
disease can spread through the population.

(3) Endemic equilibrium point £, = (H}", Hy, HY, P}, P, M|, M3). where,

H* — No(up + y2 +€)SHS + Napup (1 — v)) « _ BMH]
DT (v  OWNap + M) — BsyaMET 7 T Na(us + 12+ €)
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b _ NG, AP KNG )R =D)L BIPEMS
1= g 2= =T

B M3 Ni(up+n)+ Bk =~ 7 Koy
M — K (aaNi(y1 + up) + Bran K) «_ Noppv
! B2(a2 K + B1Ny) T w48

The system of Egs. 1-8 has unique endemic equilibrium point E; if Ry > 1.

4.2 Stability Analysis Around Equilibrium Points

In this subsection, we have discussed stability analysis of equilibrium points.
Theorem 2 The vector-free equilibrium point (Ey) is saddle-node point.

Proof The Jacobian matrix J(Ej) of the system of Egs. 1-8 is given by

—mn 8 v 0 0 0RE
0 —(un+9) 0 0 0 0 0
0 0 —(r+un+e) 0 0 0 ﬁ*TT
JE)=1] o0 0 0 —y, W 0 0
0 0 0 0 —(up+y)0 0
0 0 0 0 0 rooo
0 0 0 0 0 0 —ay

The characteristic roots of J(Ej) are as

O1 =, P2 =—(up +8), 93 = —(Un + Y2+ €), s = —pp, ¢s = —(Up + y1)
P =71, ¢7=—0

Since all the characteristic roots of J(Ey) are real but have different signs, the equi-
librium point Ej is saddle-node point. (]

Theorem 3 The disease-free equilibrium point ( E(/) ) is locally asymptotically stable
if Ry < 1, unstable if Ry > 1.

Proof The Jacobian matrix J (E(')) of the system of Egs. 1-8 is given by

: Jin Ji2
J(Ey) = ( 0] 122)
where

—Mh s 2! OOO%ZHI
Ji = 0 —(un+9) 0 , Jp=]1000 0
0 0  —(u+nr+e 000 &4

N>
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—HKp Y1 0 %2:1
_ BaPy
Joy = 0 (Mp +7) 0 [2\/11
0 =B —r(a—2)
0 Bi 0 —a

From above, we see that all the characteristic roots of block matrix J;; are negative
where as the characteristic polynomial of the block matrix J»; is

(p + M+ + (1p + 11 +a)r +aa(up + )1 = R)I=0  (9)

The roots of characteristic Eq.9 of the Jacobian matrix J (E(')) are have negative real
part if Ry < 1. Thus, we have to prove that if Ry < 1 then equilibrium point (E(')) is
locally asymptotically stable (LAS) and unstable if Ry > 1. ]

Theorem 4 IfR, < land R, < 1, thedisease-free equilibriumpoint(E(’)) is globally
asymptotically stable in feasible region 2.

Proof To establish the global stability of E('), consider the Lyapunov function,

L(t) = (H, — H,InH)) + H + Hy + (P, — P|InP))
+P,+ (M, — Milan) + M,

vio— i (1™ e (1D
- 1 Hl 2 3 1 Pl

+P+ M M +M
2 1 M1 2

BsMrH, P}l
= Mh(l—U)N2+5H2—T—MhH1+V2H3 - —
2

H;
BsMrH,
+oup Ny — (up + 8) Hy + N (y2 + un +€)Hs
>
B P1M>
+<Mle_ ]\; _MpPl“‘VlPZ
1

P PM
—') + BRI P

N

d
M PoM
+ ((051 - r—)M— % —Ole1>

M, Bi1PoM,;
11— — oM
) + i ar M
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Using feasible region €2, above equation can be written as

’ ’

H, H
< —mp(l — v)NzF‘ — pnHy — Hy(ya + iy + €) — (SHZF‘ — My(1 — Ry)
1 1

- -2
H1) MpPl(Pl_P1>

H, PP,

P,
Uy + V1

(I = Ry) — unH,y (1 -

Thus, L(t) is negative if R; < 1 and R, < 1. Therefore, by LaSalle’s invariance
principle, [13] E(') is globally asymptotically stable in feasible region 2. (]

Theorem 5 The positive equilibrium point E| is LAS if Ry > 1 and 2M} < K in
feasible region Q2 (Fig.6).

Proof The Jacobian matrix J (E) of the system of Egs. 1-8 is given by

Jor Joz
J(E)) =
(Ev) ( 0 Jos
where,
M3 B H*
B )8 2 000 =40
Jor = 0 —(n + ) 0 Jo=]000 0
M; H
B 0 —(m+nrte 000 &%
M; g p
Gt n 0 L
M; b
B~ t ) 0 o
Joz = 0 BIM; 2r My +2M; 2r Mi+2M;
DY
0 .511‘/1*1 ( ]+(A,12T)fllwzz);ﬂl z — <(1€1}-ﬁM§‘2)2 + 0[2)

The characteristic equation of the block matrix Jp; is
xz—l—alxz—i—azx—l—ag =0 (10)

where

B3 M3
N

2

a; = +3up+68+e€

az B3 M3
az = (up +8)(up +€) + + + un ) (un +6)
Mn+9 N,

B3 M3
N>

az = (up + O)[(up +€) ( + Mh) + uny2l
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Table 1 Parametric values for human compartment in the model

Parameter Value Source
Wh 0.0153 WHO
Ny 350 Assumed
Bs 0.6 (7]
v 0.5 [7]

0.001 [3]
€ 0.2 [2]
2 0.3 (7]

The Eq. 10 has negative real roots if and only if a; > 0 and a;a, — a3 > 0.

After applying primary row and column operations, we obtain the following char-
acteristic equation of the block matrix Jy3:

(x +b)(x +b)(x +b3)(x +bs) =0 (1)
where
M*
by = ’3%2 + 1y +w
by = “p
by = QrM3; —kr)(Bi Py M3 + K*) + uK(K — 1)B, P
: B K Py M}
B Py M3
=R

Thus, from Eqgs. 10 and 11, the endemic equilibrium point E; if LAS if Ry > 1 and
2M; < K (Fig.6). [l

5 Numerical Illustrations

In this section, we illustrate the feasibility of our system of Eqs. 1-8, consider the
following set of hypothetical parametric values [2, 3, 7].

The equilibrium points and the basic reproduction number can be determined
numerically by utilizing the parametric qualities in Tables 1, 2, 3. The basic repro-
duction number (Ry) = 0.7 and the equilibrium points are shown in Tables 4, 5, 6
and 7.
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Table 2 Parametric values for mosquito compartment in the model

Parameter Value Source
o 2.3 [3]

o 1.5 [3]

r 0.8 [2]

Bi 0.9 [71

K 1000 [3]
Table 3 Parametric values for pig compartment in the model

Parameter Value Source
Hp 0.1 WHO
B2 0.7 (7]

Y1 0.5 71

N1 65 Assumed

Table 4 The vector-free equilibrium points calculated with respect to the parametric values are
given in Tables 1, 2, 3

H

H

Hj

Py P,

M,

M;

175.031

164.316

0

65 0

0

0

Table 5 The disease-free equilibrium points calculated with respect to the parametric values are
given in Tables 1, 2, 3

H,

H,

Hy

Py i)

M,

M,

175.031

164.316

0

65 0

1000

0

6 Sensitivity Analysis

Since JE is an infectious disease, therefore it can be controlled by decreasing the dis-
ease transmission rates 81 and §,. This can be obtained by controlling the population
of pigs and mosquitoes. Ultimately, our goal is to reduce Ry, so that Ry < 1 which
will result in the eradication of the disease. To know the mortality and morbidity of
the population, it is necessary to study the relative importance of various parameters

Table 6 The endemic equilibrium points exists if ap = 0.8 and Ry = 1.3125, calculated with
respect to the parametric values are given in Tables 1, 2, 3

HY

Hy

Hy

P} Py

My

M

95.1529

164.316

4.62154 50.3405 13.1935

983.776

14.6019
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Table 7 Sensitivity indices of R¢ calculated with respect to the parametric values are given in
Tables 1, 2, 3

N, Ne, N N N
1 1 —1 —0.167 —0.834
Ro
0.8} T
06f
— B
04l 5
02}
—_—
0.2 04 06 08 10 P P

Fig. 2 The diagram shows the variation of Ry with respect to 81 and >

for JE transmission. In this section, the sensitivity index of R, calculated for various
parameters related to disease transmission. The normalized forward sensitivity index
defined by [8]

ox «o
N} = —.—
do x
where x is a variable which depends on a parameter «. Sensitivity index N measures
the relative change in x when a parameter o changes. Now the sensitivity index of
Ro with respect to 1, B2, a2, (i, and 8 are as
The fact N ,‘2;) =land N ﬁg = 1, means thatincreasing 8 and 8, by 10%, R, always
increases by 10% (Fig.2). Similarly, N> = —1, NZ: = —0.167, N,Z:) = —0.834
means that increasing the parameters by 10%, R, always decreases by 10%, 1.67%,
8.34% respectively (Fig. 3). The parameters B, and 8, have positive and high sensi-
tivity index. Hence, the parameters 8; and $, are more sensitive in the transmission
of disease. Where as the parameters a;, (1 ,, and 6 have negative sensitive index. The
most negative sensitive parameter is o, with Nj‘éf) = —1. Thus, the parameter o, play
very crucial role for the eradication of disease from the population. The effects on
population are shown in Figs.4, 5, 6, 7.
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Qa
s
Fig. 3 The diagram shows the variation of Ro with respect to i, y1 and az
220
1
200 000 |
180 800 Susceptible mosquitoes (M1) —
i<l
2 140 400 .
&
o 0 50 100 150 200
© 120 )|
=)
S
8 100 E
(% Susceptible humans (H1)
80 —— Susceptible pigs (P1)
60 b
401 1
20 . . . . .
0 50 100 150 200 250 300

Time(t)

Fig. 4 The diagram shows the variation of susceptible population with respect to time, at endemic
equilibrium point, parametric values are given in Tables 1, 2, 3

7 Conclusions

In this work, we used the basic model in the transmission of JE with a logisti-
cally growing mosquito population and analyzed its dynamics. In order to study
the model’s dynamic like equilibrium, stability, and sensitivity, we find a threshold
parameter Ry, called basic reproduction number. If Ry < 1, then there exist two equi-
librium state. The mosquito-free equilibria state (Ey) which is always a saddle-note
point. Naturally, this implies, this mosquito-free state with no mosquito populace
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18
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—— Infected pigs (P2)

121
—— Infected mosquitoes (Mz)
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Infected population

4 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
Time(t)

Fig. 5 The diagram shows the variation of infected population with respect to time, at endemic
equilibrium point, parametric values are given in Tables 1, 2, 3
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Fig. 6 The diagram shows the non-linear local stability of (H, Hy) in H{-H; plane
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Fig. 7 The diagram shows the non-linear global stability of (M}, M}) in M}-M plane

can never be achieved. Another harmony state E(/), called disease-free balanced state
which is LAS if Ry < 1 and unstable if Ry > 1. When Ry > 1, then there is an
equilibrium state in which disease present, called endemic (or positive) equilibrium
whichis LAS if 2M} < K. To study the relative importance of various parameters of
the model in the transmission of JE disease, sensitivity indexes of basic reproduction
numbers were discussed. We believe that the work presented here for citizens affected
by Japanese encephalitis disease may have an impact on both epidemic prevention
and control.
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Abstract A new class of polynomials, namely, incomplete % (x)-B tri Lucas poly-
nomials, is defined. Some identities involving these new polynomials are proved. A
relation between incomplete /(x)-B tribonacci polynomials and incomplete % (x)-
B tri Lucas polynomials is obtained. Some identities involving derivatives of these
polynomials are also obtained.

Keywords #(x)-B tribonacci polynomials + 4 (x)-B tri Lucas polynomials -
Incomplete % (x)-B tribonacci polynomials « Incomplete /(x)-B tri Lucas
polynomials

Mathematics Subject Classification (2010) 11B39 - 11B37

1 Introduction

Fibonacci sequence is generated by a recurrence relation with seed values 0 and 1 and
subsequent terms are obtained by adding preceding two terms [8, 13]. This sequence
is extended and generalized in many ways, either by changing the recurrence equa-
tion or by changing seed values. Two such extensions to third order and gth order
recurrence relations are introduced in [2] and [5], respectively. Fibonacci and Lucas
polynomials [15] play a very important role in the theory of Fibonacci numbers.
These polynomials are extended to B-tribonacci and B-tri Lucas polynomials in
[1]. Identities of incomplete k-Fibonacci and k-Lucas numbers are obtained in [10].
The same author, in [12], has introduced the incomplete generalized Fibonacci and
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Lucas polynomials and studied identities related to them. Another type of extension
of Fibonacci numbers and polynomials called incomplete tribonacci-Lucas numbers
and polynomials are studied in [14]. Incomplete Fibonacci and Lucas numbers, and
incomplete tribonacci numbers are studied in [7] and [11], respectively. In [9], h(x)-
Fibonacci and % (x)-Lucas polynomials are introduced. These are further extended to
h(x)-B tribonacci polynomials and & (x)-B tri Lucas polynomials in [3]. We repro-
duce these definitions here.

(B)nni2(x) = B2(x) (B)pnt1(x) +2h(x) (B)yn(x) + (Blppu1(x),Vn > 1,
ey

with ('B)o(x) =0, (B)p1(x) = 0 and ('B),,(x) = I,
where (' B),,., (x) is the nth i (x)-B tribonacci polynomial, and
(LYps2(x) = B2 (x) (L)jpps1(x) +2h(x) (L)pn+ (L)pa1(x),Vn > 1, (2)
with ('L)p.0(x) = 0, (L)1 (x) = 2, and (L) (x) = h*(x),

where (‘L)j,, (x) is the nth h(x)-B tri Lucas polynomial. Observe that in (1) and in
(2) the coefficients on the right-hand side are the terms of the binomial expansion of
(h(x) + 1%

We list below some identities from [3]

(i) The nth term (* B),,(x) of (1) is given by

|. 2713—4 J

(n —4 —2r)"

(B)pa(x) = ; . h¥ =473 (x), Y > 2. 3)
(ii) The nthterm ("L), ,(x) of (2) is given by
L2n3—2
; _ 2n—-2) @2n—-2-2r)t*
(L) = ; ( T R )
_ _ r—2
—r(r — 1)%) B2 () Wn > 2.

(iii) The derivative of (' B);,,(x) with respect to x is given by

d d -
B ] =25 0) Y (A0 Bt 1) + (Bhpi () By o).

i=0
&)
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(iv) The derivative of (‘L) ,(x) with respect to x is given by

d d
E[(rL)h,n(x)] = 25[/1()6)] — [h ) (B)nn(x)+

+ 37 (A (D110 + (Dis0) B @] ()

i=0

Incomplete A (x)-B tribonacci polynomials [4] are the extension of incom-
plete i (x)-Fibonacci polynomials [12]. The A (x)- B-tribonacci polynomials [3] and
incomplete % (x)-B-tribonacci polynomials in [4] are extended to the gth order rela-
tions in [6]. We reproduce the definition of incomplete / (x)- B tribonacci polynomials
from [4] and list some identities related to these polynomials which are required to
prove results of this paper.

Definition 1 The incomplete 4 (x)-B tribonacci polynomials are defined by

1
—4-2 o —
(B, (x E AT iy, VOSZS{ .
=0

4
J and n > 2.
@)
Note that (fB)L () = (BYpn ().

For simplicity, we use (' B)), ,(x) = ('B)}, ,. (B)an(x) = (B)pn,
h(x) = h and list below the identities related to (7).

(1) Forn > 3,
(B =0 (B, +2h( B + (B, . (8)
0<l/=<[*2]
(2) Fors > 1,
2s)L . . 2n —2s — 4
> O s = OB 021 = === o
i=0 '
(3) Fors > 1,
s—1
Z <2 h25—l—2i (ZB)Z’F"]_;'_]_H‘ + h25—2—2i (TB)Z’}/H»I') (10)
i=0

. 3l+6
= (B — WP (B, Y > {TJFJ )
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In this paper, we introduce the incomplete / (x)- B tri Lucas polynomials and study
identities related to them. We also study their relation with the incomplete . (x)-B
tribonacci polynomials.

2 Incomplete h(x)-B Tri Lucas Polynomials

In this section, we define the incomplete 4 (x)-B tri Lucas polynomials and obtain
some recurrence relations involving these polynomials. We also obtain some identi-
ties for derivatives of these polynomials.

Definition 2 The incomplete 4 (x)-B tri Lucas polynomials are defined by

(L)}, (x)

_i<<%4>@w44w_m—mmr2

Qn—2-2n) l r—2)! ) BT, (1)

VOSISLZ"S—’ZJananZ.

L3J

Note that ('L), 7 " (x) = (‘L)p(x).

For simplicity, we use ('L)}, ,(x) = (L)}, ,, (L)p,n(x) = L)y, and
h(x) =h.

Following result gives a relation between incomplete s (x)-B tribonacci and
incomplete /i (x)-B tri Lucas polynomials.

Theorem 1 Forn > 4,
(L), = (B)j sy +2h (ZB)hn |+ ([B)hn 2 (12)

221 |22

Proof From (7), we have

(B, 1 +2h(tB)hn 1t (IB)hn 2

i , -1 ,
_ Z (2n =2 —2r)" p2=2-% 4 op Z (2n —6—2r)" j2n—6-3r
g r! g r!

4 — (27’1 —8- 27’) h2n—8—3r

r=0
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! — r —4—2pyt —4—2py2
Z |:(2n 2 —2r)t i ((Zn 4 —2r) 4 2n —4 —2r) )
£ . r — D) (r—2)!

_ (2n —4—2r)=2 J2n—2=3r
r—2)!

_ Xl: [(Zn —2-2r)" +2((2n —3- 2r)ﬂ) _@n-4- 2r)r2} R
(r—1)! (r=2)

r!
r=0

_ i [ 2n —2 2n—2— 2r)£) B 2n —4— Zr)ﬂ]hzn—z—&
2n —2 —2r r! (r=2)!

= ('L)}, ,,» from (11). O
Using (8) and (12), following corollary can be proved.

Corollary 1 Forn > 1,

2n —2
(LY, =2 (B, —h* (B, 0515{ ”3 J (13)

Following theorem can be proved by using (8) and (12).

Theorem 2 The recurrence relation of the incomplete h(x)-B tri Lucas sequence
(’L)éw is given by

(L) s =h (L), + 2hC L + (L)), (14)

0<l<|®%2]andn=>1.
Next, we have the following.

Theorem 3 Fors > Qandn > 2,

s (2s)l i 2n —2 —2s
(L) s = Z (L h,0<1< {fJ . as)
i=0 !

Theorem 4 Fors > 1andn > 3,
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s—1
(D =0 (LR = D0 QI L s + 177 (D))
i=0
(16)
0=l=|>2].

We need the following Lemma.

Lemmal Foralln > 2,

L252)

@n—2) @n-2-20" @n-4-2)2\ o 55
— ((2n—2—2r) r! (r=2)! )
_(@2n—-2)

2 n
 (Ln— 5 h {Z (h CLmmr1s + (LYt ) By — (fB)MJ

i=0
a7

Proof Differentiating both sides (4) with respect to x and using (6), we get
n
20 Y (1 s+ D) OBl = h (Bl
i=0

= (21’1 - 2)(tL)h,n

2n-2
R R R S
o "\en—2-2n" (r=2)!

Therefore, by rearranging the terms, we get the required result. ([

We use Lemma 1 to prove the next theorem.

Theorem 5 Foralln > 2,
5]
. 2n -2 2n =5
> (D, = (1751 = 75 (Do (1)
1=0

3 3

n

$2 R (B D+ (Do) B —h (B

i=0
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Proof From (11), we have

|_ z 2] — n— n—2)% n—
(L), = (|.2n3_2J + 1)(&5; e ) h=
— n— n—4)L —
+(|_2n3 2J)(E§n—i§ %) h2n 5+“'

2n—2 (2n—=2)  (2n—2-2r)- (2n—4-—2r)r=2 2n—2-3
+<LTJ +1- r)((zn—z—zm 7! )] ) h™ T

e =2 _
n @n=2)  (@n—2- 2r)L¥J C e g e p2n—2-31 252
@n—2-2122) (122! (1222 '

2n—
2m—2 (2n—=2) (2n—2-2r)" (2n—4-2r)"=2 2n—2-3r
=2, (L 5]+ 1 _r>((2n—2—2r) l - ) )h
n—2
Wm=2 T2 (2n=2)  (@n=2-2r"  (2n—4-2r)"=2\ 7124-2-3r
( ==+ 1)2 =0 ((2,1_2—2” ! ] )h

_ ZL“; 2 @n=2)  @n=2-2r" _ @n-4-2ry"2) pon-2-3r
=0 "\@i—2=2n~ -~ =)

= (12520 + 1 - 2201y,

+%h[ >ico (h (L)nnt1-i + ('L)h,n—i)(tB)h,i —h (’B)h,n]

= (1252 - 25 (L
+20| Xy (B CLnsri + CLonai ) CBYi = h (B -

]

Following identities involving derivatives of (' B)j, , and ('L)}, , with respect to x
can be proved using (8), (12), and (14).

Theorem 6 Forn > 3,

(1)
e (CB))
= Zs =0 ?Z ( dx* (hz)j:;. (CB)Z,n—l) dxA (h)dxk g ((ZB)h n— 2))

()
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2)
i (<’L>hn)
B (CBh) 1250 4 (i (o))
+i(CBi).
3)
(D))
=¥ si<dxa W)k (L) +2 = s (C D 2))
e ().
References

0O %

11.

12.

13.

14.

15.

. Arolkar, S., Valaulikar, Y.S.: Generalized bivariate B-tribonacci and B-tri-Lucas polynomials.

In: Proceedings of CPMSED-2015. Krishi Sanskriti Publications, pp. 10-13 (2015)

. Arolkar, S., Valaulikar, Y.S.: On an extension of Fibonacci sequence. Bull. Marathwada Math.

Soc. 17(1), 1-8 (2016)

. Arolkar, S., Valaulikar, Y.S.: i (x)-B tribonacci and /(x)-B tri Lucas polynomials. Kyungpook

Math. J. 56, 1125-1133 (2016)

. Arolkar, S., Valaulikar, Y.S.: Incomplete /(x)- B tribonacci polynomials. Turkish J. Anal. Num-

ber Theory 4(6), 155-158 (2016)

. Arolkar, S., Valaulikar, Y.S.: On a B-q bonacci sequence. Int. J. Adv. Math. (1), 1-8 (2017)
. Arolkar, S., Valaulikar, Y.S.: On two new classes of B-g bonacci polynomials. J. Int. Seq. 21

(2018). Article 18.4.1

Filipponi, P.: Incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo 45(2), 37-56
(1996)

Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley-Interscience (2001)
Nalli, A., Haukkane, P.: On generalized Fibonacci and Lucas polynomials. Chaos, Solitons
Fractals 42(5), 3179-3186 (2009)

Ramirez, J.: Incomplete k-Fibonacci and k-Lucas numbers. Chinese J. Math. (2013). Article
ID 107145

Ramirez, J., Sirvent, V.F.: Incomplete tribonacci numbers and polynomials. J. Int. Seq. 17
(2014). Article 14.4.2

Ramirez, J.: Incomplete generalized Fibonacci and Lucas polynomials. Hacet. J. Math. Stat.
42, 363-373 (2015)

Vajda, S.: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications.
Dover (2008)

Yilmaz, N., Taskara, N.: Incomplete Tribonacci-Lucas numbers and polynomials. Adv. Appl.
Clifford Alge. 25, 741-753 (2015)

Yu, H., Liang, C.: Identities involving partial derivatives of bivariate Fibonacci and Lucas
polynomials. Fibonacci Quart. 33(2), 19-23 (1997)



Hyers Stability of Additive Functional )
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P. Agilan, John M. Rassias, and V. Vallinayagam

Abstract The purpose of this paper is to determine the general solution and gener-
alized Ulam—Hyers stability concerning the additive functional equation in Banach
space by using direct and fixed point method.

Keywords Additive functional equations - Generalized Ulam—Hyers stability *
Fixed point

1 Introduction

The literature on the stability of functional equation is started in the year 1940
by posting the question of Ulam [16] in front of a Mathematical Colloquium at the
University of Wisconsin. D. H. Hyers [10] who is the first author to derive the answer
to the question of Ulam in Banach spaces. This stability problem was investigated
in various normed spaces by various authors [2, 8, 9, 12, 13]. We refer also other
researcher works [1, 5-7, 14, 15].

The following additive functional equations derive the solution and its Ulam
stability in Banach Spaces (see [3, 4]).
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(N + 1)f(e’”7"z9+e”?”w) + (V- 1)f(e#19+e"%)

+eFfW—w e T f @—0) =2 cos (T) FD) + F@) (1)
o () 50 ()] ¥4

o () —smn ()]s e Ve

+eFsinh (B0) fla =)+ sinh () F3 - a)

=2cos’h () Lf (@) + F(5)] @)

The main objective of this article is to derive the general solution and Hyers
stability of the additive functional equation

() s () £ v ()

(o) (o (F) ()

sl e () 5 (2)

— 6005 sin (50) £ x = y) = 6605 cos (5) fr = 2)
- (a0 () e () 10

+(9sin<?>+ez( >cos( )) £

+(e( )sm<3>+9cos( ))f(z) €))

where n € Z in Banach Spaces using direct and fixed point methods.

2 General Solution

We investigate the general solution of the additive FE (3) in this section. Let us
consider (X, Y) be vector spaces and Functional Equation as FE.

Lemmal Let f : X — Y be a odd mapping fulfills the additive functional equation

fx+y)=7fx)+ f) 4)
forallx,y € X if f : X — Y fulfills the additive mapping (3) forall x, y, z € X.

Proof Anodd function f : X — Y satisfies the FE (4). Considering (x, y) by (0, 0)
in (4), we obtain f(0) = 0. Let x by —y in (4), we reach f(—y) = — f(y) for all
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y € X. By interchanging y by x and y by 2x in (4), we arrive
f@2x)=2f(x) and f(x)=3f(x)
for all x € X. By induction of a, we have
flax) =af(x)

Replacing (x, y) by (x sin (%) Yy cos ( )) in (4) and using (6), we get

f(xsin (?)+ycos(?)) =sin< )f(x)—i—cos( )f(y)

for all x, y € X. Both sides multiply by (ez(%) + 6e(%ﬂ)) in (7), we arrive

(ez(%) + 66(%)) f (x sin (%) + ycos (?))

—(2( 7) + 6e(F ))sm( )f(x)+(2( ¥) 4 6e( ))COS( )f()’)

Replacing (x, y) by (ysin (%), zcos (%)) in (4) and using (6), we get

(50 () w20 (25)) =5 () 00+ () s

for all y, z € X. Both sides multiply by (9 — 66(%)> in (9), we arrive

(-6e)  ssn () 25 ()

(9 6e(s )>sm( )f()’)+<9 6e(s ))cos( )f(z)

Replacing (x, y) by (z sin (%) , X COS (%)) in (4) and using (6), we get

f(zsin(%)—i—xcos(?)) —sm( )f(z)—i—cos( )f(x)

for all x, z € X. Both sides multiply by 6e('¥) in (11), we arrive

6e("Tw)f (z sin (?) + x cos (?))

= 6e(F )sm< )f(z)+6e( )cos( )f(x)

for all x, z € X. Setting y by —y in (4), and using oddness of f we have

81

®)

(6)

€))

(10)

Y

(12)
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fa=y)=fx)—-fO) 13)

for all x, y € X. Both sides multiply by — —6¢("F) sin (’”r) in (13), we arrive

—6e(F )sm( )f(x—y) —6e(F )sm( )f(x)+6e( )sm( )f( )
(14)
for all x, z € X. Setting (x, y) by (y, —z) in (4), and using oddness of f we have

fO—2=FfO—-f@ (15)

for all y, z € X. Both sides multiply by —6¢('F) cos (%) in (15), we arrive

PG )cos( )f(y —7) = —6e(% )cos( )f(y)+6e( )cos( 3 )f( )
(16)

for all y, z € X. Adding (8), (10), (12), (14), and (16), we obtain (3).

3 Stability Results: A Classical Method

Let us assume X be a normed space and Y be a Banach space, respectively. The
mapping is defined as D F : X — Y by

D F(x,y,z2) = (ez(?) + 66(%)> f (x sm( 3 ) + ycos (n;r))
+ (9 - 66(%)) f (y sin (n?w) + z cos (?))
+ 66(%’7)]" (z sin (%T) + x cos (n%))
—6e(5 )sm< )f(x—y) e )cos( )f(y—z)
< 2(5) sin <n37r> — 6e( ¥) cos <n3 )) f(x)

- (osn () s () 10
(6T (75) 4908 () 10

where n € Z forall x, y,z € X.

Theorem 1 Let f : X — Y be a function fulfilling the inequality

1D Fx,y, 2l <Ay, 2) a7)
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forallx,y,z € X, where A : X3 = [0, 00) be a function such that

A(Tx, Ty, T"
fim A% Ty, T"2)

n—00 T

=0 (18)

forallx,y,z € X. There 3 only one additive mapping A : X — Y and fulfilling the
FE (3) such that

1 . A(THx, THx, THx)
5D

If(x) =AM < 4 (19)

T (e(’%“) + 3) P T

forall x € X with j € {—1, 1}. The function A(x) is defined as
A = tim L) (20)

n—soo TN
forall x € X.

Proof First, we prove when j = 1. Substituting (x, y, z) by (x, x, x) in (17), we

have
‘ (6(?) + 3)2 f ((sin (n;) + cos <n?7r)) x)
_ (e(%) + 3)2 (Sin (%) + cos (%)) fx)

forall x € X. Setting T = (sin (%) + cos (%)) in (21), we arrive

i 2
for all x € X. Both sides divide by (e(%) + 3) T in (22), we have

< Ax,x,x) 21

(e(?) + 3)2 Tf(x)— (e(”?"‘) + 3)2 f(Tx)

<A(x,x,x) (22)

Jf(Tx)
T

‘ < A(x, x,x) (23)

T (e(?) + 3)2

10

for all x € X. By considering x by Tx and dividing by 7 in (23), we get

H f(Tx)  f(T?x)
T T?

‘ o A(Tx,Tx, Tx)

T (e(% + 3)2 ey

for all x € X. In (23) and (24), we reach
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f(T%x) f(Tx) f(Tx)  f(T*x)
”f() ol I IO -0
1 A(Tx, Tx, T
DU S [A(x,x,x) + w} 25)
T (e(%) + 3)
for all x € X. Generalizing for a positive integer n, we reach
n—1
(T”x) 1 A(T*x, T*x, T*x)
”f( -1 ‘ — - (26)
(e(%) + 3) k=0
- 1 2 A(T*x, T*x, T*x)
= - 2 k
T (e(T) + 3) k=0 r
for all x € X. Hence
f(T"x)
™ |

is a Cauchy sequence and it converges to a point A(x) € X. Indeed, consider x by
T"x and dividing by 7™ in (26),for any m, n > 0, we obtain

f(me) _f@my) 1 m ST -1"x)
= — a2
T(ner) Tm n
1 n—1 A(Tk+’”x, Tk+mx’ Tk+mx)
< ur 2 Tk+m
T (e( ) + 3) k=0
_ 1 & A(Tk””x, Tk+’”x, Tkerx)
= Tk+m

T (e(Lf) + 3)2 k=0

-0 as m —> o©

for all x € X. Thus, we define mapping A : X — Y

J(T"x)
Tn

Alx) = vV x eX.

n—o00

Taking n — oo in (26), we get (19) that holds for all x € X. To show that A satisfies
(3), consider (x, y, z) by (T"x, T"y, T"z) and dividing by 7" in (17), we have

1
in |Df (T"x, T"y, T"2)| < 74 (T"x, T"y, T"z)
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for all x, y,z € X. Taking n — oo in the above inequality on both sides and by
applying the definition of A(x), we obtain

(1) a e () v ()
=) (i) e ()
o () e (1)

— el )sm( : )A(x—y) 6e(s )cos( : )A(y—z)
( ) sin (nsﬁ) +6e(% )COS( 3 )) A)
)+ e () 0

(6e( )sm< 3 >+9cos< 3 )) A(2)

Hence A satisfies (3) for all x, y, z € X. In order to prove the existence of A(x) is
unique, assume that B(x) be another additive mapping satisfying (3) and (19). Now,

1
IAG) = Bl = = |A(T"x) — B(T"x)||

IA

1
n {|A(T"x) — £(T )| + || f(T"x) — B(T"x)| }
2 0 A(TkJr"x, Tk“‘x, TkJrnx)
]~(e(%g +_3)2 pord T ()

-0 as n—> o©

for all x € X. This proves that A(x) = B(x). Therefore A is unique.
By applying the above procedure with j = —1, we reach similar type stability
result.

Corollary 1 Let us assume that H and s be nonnegative real numbers. Then the
mapping f : X — Y fulfilling the inequality

H7
HAUIE + 111+ 1120 s# 1
DF(x,y, < s s s
1D E ey DUS Y a0 F 1y 1F 21, 35 # 1;
NI + [P 4+ 1P + 10 3s # 1

27)

forall x,y,z € X. There 3 only one additive mapping A : X — Y such that
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H
2 9
() 43) T -1
3HIx|!

(
) 23 715
1 (x) — Al < <e Lflzni a
(
(

2 b
e() +3) T — 7%
4 H||x||*

4 Stability Results: Fixed-Point Method

P. Agilan et al.

(28)

In order to prove the fixed point stability results, we have to use the alternative of

fixed point theorem [11].

Theorem 2 Let f : X — Y be a odd function satisfying the functional inequality

ID F(x,y, 2l < A(x,y,z2)

(29)

forallx, y, z € X and a mapping for which A functions A, 3, A : X3 — [0, 0o) with

the condition

A x, piy, piz)

lim ; 0,
h—o0 ‘u,l.
where
i {T, i=0,
=1
! T i=1

Assume that there exists an L = L(i) < 1 such that the function

x = Ax) =

1 X X X
———A(p )
(e(%)+3>

we have the following the property

Ax)=L p; A <£)
Hi

(30)

€2y
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for all x € X. There 3 only one additive function A : X — Y satisfying the FE (3)

and
1—i

@) = A =

A(x) (32)
all x € X.

Proof Let us take the set X = {N/N : X — Y, N(0) = 0} and introduce the gen-
eralized metricon X,d(N, M) = inf{H € (0,00) ;|| N(x) — M(x) ||< HX(x),x €
X}.Itis easy to show that (X, d) is complete with respect to the defined metric. Let us
define the mapping D : X — X by DN(x) = N%L(,u,'x), Vxe X.Now N, M € X,

d(N,M) <K = || N(x) — M(x) ||< H\(x), x € X.

1 1
= H—N(/MX) — — M (u;x)
Hi i

1
< —HMuix),x € X,
L

1

< LHXXx),x € X,

1 1
= H—N(ﬂix) - —M(pix)
Hi Hi

= || DNx)—DM(x) |< LHXx),x € X,
=d(DN,DM) < LH.= d(DN,DM) < Ld(N, M).

for all N, M € X. That is, D with Lipschitz constant L and a strictly contractive
mapping on X.
In (23), we obtain

(Tx)
T

A(x, x,x)
T (e(%) + 3)2

Hf(X) . (33)

‘ =

where
A(x,x,x)

ey

for all x € X. Applying (31) for the case i = 0, which reduces to

< %A(x)

H%f(TX) - fx)
forall x € X.

1 .
e, d(Df, f)§?=L=LI_0=L1_’ < 0.

Again considering x = % in (33), we arrive
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1
o= (= e )

for all x € X. Applying (31) for the case i = 1, it reduces to

X
s 77 (2)] =300
forall x € X.
ie., d(f,Df)<1=L"=L""=L"" < 0.
By above two cases, we reach
d(f,Df) < L'

Therefore (F;) holds.
By (Fj;), there 3 a fixed point A of D in X such that

F(ulx)
i

1

A(x) = lim vV x € X. (34)
h—o00

In order to show A(x) is additive FE. Considering (x, y, z) by (ulx, pl'y, pl'z)
in (29) and dividing by uﬂ’, it follows from (30) and (34), A fulfilling the FE (3) for
allx, y,z € X.

By (Fji;), A is the only one fixed pointof DinthesetY = {f € X : d(Df, A) <
oo}, applying the alternative fixed point result A is the only one mapping such that

If(x) — Al = HA(x)

forall x € X and H > 0. At last (F;,), we arrive

d(f, A) =

1
——d(/.D)

which implies

d(f.A) = -

Therefore we conclude that

1—i

L
I fx) —AW) = Ax).

1-L

forall x € X.
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Corollary 2 Let f : X — Y be a mapping and there exist real numbers H and s
such that the inequality (27) for all x, y, z € X, then 3 a only one additive function

A : X — Y such that

H
nm 2 ’
() +3) 71
3H|x|®
2 b
((”7")+3) T — T
e
”f(x) - A()C)” < H||x||35
- 2 ’
(e()+3) 7 -1
4 H||x||*
2
(e(%)_p?,) T_T3s|

Proof Let us set

Alx,y,2) =

for all x, y, z € X. Now

AQulx, 'y, pl'2)

i

KR

H,

HAlxI + 1yl + 11zl )

H x| 1yl Nzl

H AN F Izl + AP+ IR+ 11z}

{11 4 1 1+ 1l 2l

H
JIIM?XIIS eyl 1l ),
i

H s s s A S A
et a1 2 (Dt P P+ Dz

1
— 0as h — o0,
— 0as h — oo,
— 0as h — oo,
— 0as h — oo.

Therefore, the inequality (30) holds. Then we get

(35)



" P. Agilan et al.

A(x) = e 1+3>z [A (%% %)]
Hence
H
(e(*)+3)2T’
3H
x|
() 4 3) 75
M= e(:)1+3)2 [2 (77 7)]= <e ;3) T ][
3 2 ’
(e(*)+3) T3
LINTNTE
<e(*) + 3)2 T3
Also,
H
() 13) 7
jZ (e 3H+3> T .
nm 2 s l ’
i)\(ﬂix)z M.<e(3;'(+3> ' 3
- (e(%) +3>2 T3s||Mix|| ,
H el
M.<e(?)+3>2 T3s g |
pr
(e +3)
p—2
’ (e(%)+3)2T
e —
l (e(?)+3>2 T3
- 4H x|
(e(* +3>2 = .
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1 M),

A ),
1A ),
1 A ).

Now, from (32), we prove the following cases for conditions:
Case:1 L=T"'ifi =0

Ll*i T—l 1-0 H
@ — Al < 2= 7).

LT )y

_ H
(e(?) + 3)2 T—-1)

Case:2 L=Tifi =1

Ll*i _ (T)lfl . H

If @) = AW = 7= A(x)

LT e ga)

H
() +3)2(1 _7y

Case: 1 L=T""ifi =0

Ll*i s—1)1-0 3H
f(x) — A < 1 LA(X) = (1 T)S—‘ 5
o o (e(%) —|—3> Ts
o o
T T —Ts ( (%) 2 s
e\s +3) T
SH||x|I®

(eC) + 3)2 (T —T5)

Case:2 L= -+ ifi=1

[lxll®

I8

91
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L= Ly 3H
1) = AW = T A = (7 ‘)1 — lIx|I*
- I= 7= (e(%”>+3) Ts
T 3H s
= — Il
(e(%)+3) Ts
3H||x||*
S : .
(e(%“) + 3) (T - T)
Case:1 L=T>"'ifi =0
Ll—i T3s71 1-0 H '
1f ) =AW = 772 = (1 T3)S_1 - —|lx[1*
o o (e(%) +3) T3s
T3 H )
= —lIx|I®
(e(T)+3> T3
B H||x|*
- a .
(e(%”) + 3) (T — %)
Case:2 L = ——ifi =1
L ) H
100 = AW = 77 M) = (7 ‘)1 - — x|
- I = gmer (e<"%> +3) T3
T3S
=577 o " — x|
(e(T) —|—3) T3s
Hl|x|*

() 43) (19— 1)

Case:l L=T*"1ifi =0
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1—i 35—1)\1-0
1L— M= (1T— T3)S_1 () TS)Z T3
T3 4H N
S T-T (e(%”) + 3)2 T3 |
4H||x||*

(e(%) + 3)2 (T - T3S).

3v
]

If(x) — A <

Case:2 L = ——ifi =1

) 1-1
If(x) — A < fi;k(x) = (1%);_ 7 = 2
75T (6(3)4-3) T3s
T3 4H B
T -T (e(“_%) + 3)2 T3
4H x|

(e(%) + 3)2 (T% — T)‘

3s
|11
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All Finite Topological Spaces are Weakly m
Reconstructible it

A. Anat Jaslin Jini and S. Monikandan

Abstract The deck of a topological space X isthe set Z(X) = {[X — {x}] : x € X},
where [Z] denotes the homeomorphism class of Z. A space X is topologically recon-
structible if whenever Z(X) = 2(Y) then X is homeomorphic to Y. A topological
space X is said to be weakly reconstructible if it is reconstructible from its multi-deck.
It is shown that all finite topological spaces are weakly reconstructible.

Keywords Reconstruction - Finite topological space + Homeomorphism

AMS Subject Classification (2010) Primary 05C60; Secondary 54A05

1 Introduction

A vertex-deleted subgraph or card G — v of a graph G is obtained by deleting the
vertex v and all edges incident with v. The collection of all cards of G is called the
deck of G. A graph H is a reconstruction of G if H has the same deck as G. A graph
is said to be reconstructible if it is isomorphic to all its reconstructions. A parameter
p defined on graphs is reconstructible if, for any graph G, it takes the same value on
every reconstruction of G. The graph reconstruction conjecture, posed by Kelly and
Ulam [1] in 1941, asserts that every graph G on n (>3) vertices is reconstructible.
More precisely, if G and H are finite graphs with at least three vertices such that
2(H) = 2(G), then G and H are isomorphic.

In 2016, Pitz and Suabedissen [2] have introduced the concept of reconstruction
in topological spaces as follows. For a topological space X, the subspace X is called
acard of X. The set Z(X) = {[X,] : x € X} of subspaces of X is called the deck of
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X, where [ X, ] denotes the homeomorphism class of the card X . Given topological
spaces X and Z, we say that Z is areconstruction of X if their decks agree. A topolog-
ical space X is said to be reconstructible if the only reconstructions of it are the spaces
homeomorphic to X. Formally, a space X is reconstructible if Z(X) = 2(Z) implies
X = Z and a property & of topological spaces is reconstructible if 2(X) = 2(Z)
implies “X has &2 if and only if Z has £?”. The multi-deck of a topological space
X is the multi-set 2'(X) = {X, : x € X}. In other words, the multi-deck not only
knows which card occurs, but also how often they occur. If a space is reconstructible
from its multi-deck, we will say that it is weakly reconstructible.

By order of a set, we mean the number of elements in the set. By size of a space,
we mean the number of open sets in the space. Terms not defined here are taken
as in [3]. Gartside et al. [2, 4, 5] have proved that the space of real numbers, the
space of rational numbers, the space of irrational numbers, every compact Hausdorff
space that has a card with a maximal finite compactification, and every Hausdorff
continuum X with weight w(X) < |X| are reconstructible. In their above paper, they
also proved certain properties of a space, namely, all hereditary separation axioms
and all cardinal invariants are reconstructible. All finite sequences are reconstructed
by Manvel et al. [6]. In this paper, we show that all finite topological spaces of order
n(>4) are weakly reconstructible. The condition n > 4 is needed because there are
non-reconstructible topological spaces of size 2 or 3. For n = 2, the set X = {a, b}
endowed with any of the three topologies 71 = {#, {a}, {b}, X}, » = {0, {a}, X} or
73 = {#, X} is not weakly reconstructible because all these topological spaces have
the same multi-deck (subspaces) {(X,, 7x,), (Xp, Tx,)}, where 7x, = {4, {b}} and
Tx, = {0, {a}}. Forn = 3, the set X = {a, b, c} endowed with any of the two topolo-
gies 7 = {¢, {c}, X}, » = {¢, {a, b}, X} is not reconstructible because all these
topological spaces have the same multi-deck {(X,, 7x,), (X5, Tx,), (Xc, Tx,)} where
Tx, = {¢, {c}, {b, c}}, x, = {9, {c}, {a, c}} and 7x, = {9, {a, b}}. Also, theset X =
{a, b, c} endowed with any of the two topologies 71 = {¢, {c}, {a, ¢}, {b, ¢}, X}, 7» =
{@, {a}, {b}, {a, b}, X} is not reconstructible because all these topological spaces
have the same multi-deck {(X,, 7x,), (X», Tx,), (X¢, 7x,)} where 7x, = {¢, {c},
{b, e}, 7x, = {9, {c}. {a, c}} and 7x, = {9, {a}, {b}, {a, D}

2 Finite Topological Spaces

Throughout the paper, we assume that X, where X = {x, x, ..., x,,}, is a finite
topological space of size n, where n > 4. It is clear that any set X endowed with
in-discrete topology is weakly reconstructible. The next theorem gives that every
discrete topological space is weakly reconstructible. So, we can assume that the
topology we consider after Theorem 1 is neither discrete nor in-discrete.

Theorem 1 Every discrete topological space is weakly reconstructible.
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Proof Clearly, the size of the subspace topology endowed with each card is 2",
Consider a subspace (Xj,, TXX’,) of X for some i, 1 <i < n. Now, the collection
{U : Uce TX,, JU{U U{x} : U € TX,, } is clearly the discrete topology on X.

Lemma 1 The property that whether a space X has an isolated point or not can be
determined from the multi-deck of X .

Proof 1If all the cards have no isolated point, then X has no isolated point since any
isolated point x, of X must occur precisely n — 1 cards except X, of X. So, we can
assume that at least one of the cards contains an isolated point. We claim that if an
isolated point x, of a card, say X, occurs as an isolated point in any other cards,
then x, is an isolated point of X. Suppose that the claim is not true and so x, is not
an isolated point of X. Then {x,, x;} is open in X and hence x, is an isolated point
of exactly one card, that is, {x,} could occur in only one card, namely, X, , giving
a contradiction and proving the claim. Therefore, if an isolated point of any card
satisfies the above claim, then X has an isolated point. If none of the isolated points
of any cards satisfy the claim, then X has no isolated point.

If only one among all the isolated points of all cards occurs as an isolated point
in any one of the remaining cards, then X has only one isolated point; if at least
two among all the isolated points of all cards occur as isolated points in any of the
remaining cards, then X has at least two isolated points. This proves the next lemma.

Lemma 2 The property that whether a space X has one isolated point or more than
one isolated points can be determined from the multi-deck of X.

3 Reconstructing a Topological Space with an Isolated
Point

A topological space X is said to have an ascending chain if all the open sets of X
together form an ascending chain. By an m-open set, we mean an open set of order
m. This section deals with a space with a unique isolated point, say x;.

Lemma 3 Ler X be a finite topological space. Then X has an ascending chain if
and only if every card has an ascending chain.

Proof Necessity is obvious. For sufficiency, in each card, assume that all the open
sets form an ascending chain. Suppose, to the contrary, that there exist two open sets
A and B in X such that none of them is contained in the other. Then none of A and
B is equal to X or ¢. Also there exist two elements x, and x; such that x, € A — B
andx; € B— A.If AU B # X, then A and B are open sets in the card X,,, where
x; € X — (AU B), and hence all the open sets in the card X,, would not form an
ascending chain, giving a contradiction. So, assume that A U B = X. Now, one of
A and B, say A has at least two elements; let x; be an element in A other than x,.
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Then, in the card X, , the sets A — {x;} and B — {x;} are open and none of them
contained in the other. Hence open sets in the card X, would not form an ascending
chain, again a contradiction to our assumption.

Lemmad4 Ler X be a finite topological space X of size n with a unique isolated
point. Then, fori = 1,2, ..., n, space X has only one open set of order i and X has
an ascending chain if and only if each card has an ascending chain and any two
cards are homeomorphic.

Proof Necessity: Assume that X has only one open set of order i, i =1,2,...,n
and it has an ascending chain. Then the open sets in X must be of the form
U C U, C...C U, whereU; = {x|, x2, ..., x;}. Now each card has only one open
set of order j, where j =1,2,...,n — 1. Now consider the cards X, and X, ,
where 1 <r <s <n. Then 7x,_ ={¢, U1, Us,..., U1 =U, = {x;},..., U, —
{x;}} and 7x, = {o, U, Us, ..., Us_1 = Ug — {xs}, ..., U, — {x,}}. The mapping
h: X, — X, defined by

X ift<randt >s . . .
hx;) = ! ] is a desired homeomorphism from X, onto X .
X ifr<t<s ’

Also, by Lemma 3, each card has an ascending chain.

Sufficiency: Assume that any two cards are homeomorphic and each card has an
ascending chain. By Lemma 3, X has an ascending chain. Clearly, X has an open
set of order 1 and n. We shall now prove that X has an open set of order i for
2 <i < n — 1. Suppose, to the contrary, that X has no open set of order i for some
i, 2<i<n—1andi is the smallest among such integers. Let j be the smallest
integer with j > i such that X has an open set of order j and it has no open set
of order i,i + 1, ..., j — 1. Now, we consider the two cards X, and X, where
x, € V; — V;_y and V; represents the i-open set in X and x; is the isolated point of
X. Then V;_, is an open set of order i — 1 in the card X . On the other side, since
X has an ascending chain, it follows that the element x; belongs to every open set
in X. This together with our assumption that the space X has no open set of order i,
where i < j implies that the card X, has no open set of order i — 1. Hence X, is
not homeomorphic with X, , which is a contradiction to our assumption.

Lemma 5 Let X be a finite topological space of size n with a unique isolated point.
Then X has an ascending chain and X has no open set of order i for some i, 2 <
i <n — lifand only if each card has an ascending chain and at least two cards are
non-homeomorphic.

Proof 1If all the open sets in X form an ascending chain, then it is clear that X does
not have more than one open set of the same order and hence the lemma follows by
Lemma 4.

Lemma 6 Letr X be a finite topological space of size n with a unique isolated point.
Then the isolated point belongs to all the open sets in X and X does not have an
ascending chain if and only if at least one card does not have an ascending chain
and in exactly n — 1 cards, the isolated point belongs to all the open sets.
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Proof Necessity: Assume that the isolated point belongs to all the open sets in X
and the open sets in X does not have an ascending chain. Then the card X,, does
not have an ascending chain. In every card X,,, where i # 1, the isolated point x;
belongs to all the open sets.

Sufficiency: Assume that at least one card does not have an ascending chain and in
exactly n — 1 cards, the isolated point belongs to all the open sets. Suppose, to the
contrary, that the isolated point of X does not belong to an open set, say A in X.
Since |A| > 2, the isolated point does not belong to all the open sets in the cards X,
where x, € A. Then at least two cards in X, the isolated point does not belong to all
the open sets, a contradiction. Also, suppose, to the contrary, that X has an ascending
chain. Then, by Lemma 3, each card has an ascending chain, a contradiction.

Lemma 7 Let X be a finite topological space of size n with a unique isolated point.
Then the isolated point of X does not belong to an open set in X if and only if the
isolated point does not belong to at least one open set in exactly n — 1 cards.

Proof Necessity: Assume that the isolated point x; of X does not belong to an open
set, say U in X. Since x; is the unique isolated point, we have |U| > 2. Then the
cards X,,, where i # 1 have two disjoint open sets, namely, {x;} and U N X,,.
Sufficiency: Assume that the isolated point does not belong to at least one open set
in exactly n — 1 cards. Suppose, to the contrary, that the isolated point belongs to all
the open sets in X. Then, by above Lemma, the isolated point belongs to all the open
sets in every card X, where i # 1, a contradiction.

Theorem 2 A finite topological space with a unique isolated point is weakly recon-
structible.

Proof Let X be a topological space of size n with unique isolated point x;. We
proceed by two cases depending upon the open sets in the ascending chain form or
not.

Case 1. Each card has an ascending chain.

Case 1.1. Any two cards are homeomorphic.

By Lemma 4, X has an ascending chain and fori =1, 2, ..., n, the space X has
only open set of order i and hence the collection {U U {x,} : U € 7y, } obtained
from any card X, is the desired topology on X.

Case 1.2. At least two cards are non-homeomorphic.

By Lemma 5, X has an ascending chain and X does not have an i-open set for some
i, 2 <i <n—1.Chooseacard X,,, thatis, the card which does not have the isolated
point x;. Since X has an ascending chain, the collection {U U {x,} | U € 7x_ }is the
required topology on X.

Case 2. At least one card does not have an ascending chain.

Case 2.1. The isolated point belongs to all the open sets in exactly n — 1 cards.

By Lemma 6, the isolated point belongs to all the open sets in X and they does not
form an ascending chain. Choose a card X,,, that is, the card which does not have
the isolated point x;. Since the isolated point belongs to all the open sets in X, the
collection {U U {x,} | U € 7, } is the required topology on X.
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Case 2.2. The isolated point does not belong to at least one open set in exactly n — 1
cards.

Now, by Lemma 7, the isolated point of X does not belong to at least one open
set in X and so the card, obtained by deleting a point in the open set containing
no isolated point, has the same size as X. Choose a card X, with maximum size
with the following condition; for an open set V in the card X,, such that V C W,
where W is an open set in the card X,,, which does not have the isolated point x;
and W — V = {x,}. Therefore, for a non-empty open set U in X, , U is open in X
when U NV = ¢; U U {x,}is open in X otherwise (thatis U NV = V). Thus, the
collection {UU{x,} : UNV =Vando#U €71y ,}U{U : UNV =¢ and
¢ # U € 7y, } is the desired topology on X.

Theorem 3 A finite topological space with more than one isolated point is weakly
reconstructible.

Proof We can assume that the topology 7x is not discrete. Let X,, be a card with
maximum number of open sets. Since X has at least two isolated points, every card
has at least one isolated point; let x; be an isolated point of X, . If {x;} is open in
precisely n — 1 cards, then it must be open in X. Otherwise, {x;} is not open in X
and so the set consists of x; and the deleted point x; is open in X. Repeat these
steps for the rest of the 1-open sets in X, to identify all the 1-open sets in X. Next,
consider a 2-open set {x;, x2} in X,. If {x;, x2} is open in precisely n — 2 cards, then
it must be open in X. Otherwise, {x1, x»} is not open in X and so the set {x;, x»}
along with the deleted point x; is open in X. Proceeding so on, in general, an m-open
set 3 <m <n —2)in X,, is open in precisely n — m cards of X, then it must be
open in X. Otherwise, the m-open set along with the deleted point x; is open in X.

If no cards other than X,, contains open sets of order at most n — 2 other than
the open sets in the card X,,, then all the open sets so formed from the card X,,
consists of all open sets in X of order at most n — 2 and possibly all open sets in
X of order n — 1. Now we shall find the remaining open sets, if any, in X of order
n — 1. In order to find the missing open sets (if any) of order n — 1 in X, we consider
a card, say X, such that the unique (n — 1)-open set X — x; in the card is not in the
collection so formed. Note that each (n — 1)-open set in a card contains at least one
isolated point of X.

Now, let €' (X,,) = {X — {x;, x,} : x, is an isolated point of X}.If anelement of
€ (X,,) does not belong to any card, then X — {x;} is not open in X, since the element
itself is not open in the space X. So, assume that each element of €’ (X,,) must be an
open set of at least one card of X. If some of the elements of the set €'(X,,) are open
in X, then the set X — x; is open in X. So, assume that no element of the set €' (X,,)
is not open in X. Then each element of ¢’ (X,,) along with the deleted point of the
card, in which the element is open, is open in X and hence X — {x;} is not open in
X. Now, all the open sets so formed is the desired topology on X.

Suppose that at least one card, say X,, contains open sets other than that in X, .
If an m-openset (1 <m < n — 2)in X,, is open in precisely n — m cards of X, then
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it must be open in X. Otherwise, the m-open set along with the deleted point x; is
open in X. We are continuing like this until all the distinct open sets in all the cards
are considered. Now, all the open sets so formed is the desired topology on X.

4 Reconstructing the Topological Space with No Isolated
Point

By X, we mean here a finite topological space with no isolated point. Now, the order
of the smallest open set of X, say [ is known from the multi-deck of X as [ equals to
one more than the order of the smallest open set among all cards of X.

Lemma 8 Forl > 2, the property that whether a topological space X has one open
set of order | or at least two open sets of order |, where | is the smallest integer can
be determined from the multi-deck of X.

Proof 1f precisely I cards have an open set of order / — 1, then the space has only
one open set of order /. For all other possibilities, the space has more than one open
set of order /.

Lemma 9 Ler X be a finite topological space of size n with no isolated point; let |
be the smallest integer such that X has a unique open set of order . Then each card
has an ascending chain and the difference between any two consecutive non-empty
open sets is just an element if and only if X has only one open set of order i, for
i=1,141,..,nand X has an ascending chain.

Proof Necessity: Assume that the difference between any two consecutive non-
empty open sets is just an element and each card has an ascending chain. By Lemma 3,
X has an ascending chain and so there cannot be more than one open set of same
order. Clearly, X has open sets of order / and n. We shall now prove that X has
an open set of order i for / + 1 <i <n — 1. Suppose, to the contrary, that X has
no open set of order i for some i,/ + 1 <i <n —1 and i is the smallest among
such integers. Let j be the smallest integer with j > i such that X has an open set
of order j and it has no open set of order i,i + 1, ..., j — 1. Now, we consider the
card X, where x, € V; and V; represents the /-open set in X. Then 7, = {p, V; —
{x:}, ... Vico = {x:}, V; — {x:}, ..., Vu — {x,}}. Note that the difference between the
two consecutive open sets V;_; — {x,} and V; — {x,}is (j —i) +1 > 1, whichis a
contradiction to our assumption.

Sufficiency: Assume that X has only one open set of order i, fori =1,/ + 1, ...,n
and all these open sets form an ascending chain. Then the open sets in X must be of
theformU; C Ujyy € ... € Uy, where U; = {x1, x2, .., xj}forj=11+1,...,n.
Let the /-open set in X be V. Then each card X, , where x, ¢ V, has only one open
set of order j, where j =1,1+41,...,n — 1 and each card X, , where x; € V, has
only one open set of order j, where j =1 — 1,1/, ...,n — 1. Also, by Lemma 3, each
card has an ascending chain.
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Lemma 10 Let X be a finite topological space of size n with no isolated point; let |
be the smallest integer such that X has a unique open set of order l. Then each card
has an ascending chain and in some card, the difference between two consecutive
non-empty open sets is at least two if and only if X has an ascending chain and X
has no open set of order i for somei, | +1 <i <n—1.

Proof 1f all the open sets in X form an ascending chain, then it is clear that X does
not have more than one open set of the same order and hence the lemma follows by
Lemma 9.

Lemma 11 Let X be a finite topological space of size n with no isolated point; Let |
be the smallest integer such that X has a unique open set of order 1. Then at least one
card does not have an ascending chain and in each card, all the non-empty open sets
have an open set in common if and only if the l-open set intersect all the non-empty
open sets in X and X does not have an ascending chain.

Proof Necessity: Assume that at least one card does not have an ascending chain and
in each card, all the non-empty open sets have an open set in common. Suppose, to the
contrary, that the /-open set, say U of X does not intersect at least one open set, say V
in X. Since U is the unique open set of order /, we have |V| > [ 4 1. Now, the cards
obtained by deleting a point x,, where x, € V has at least two disjoint open sets,
namely, U and V — {x,}, which is a contradiction. Also, suppose, to the contrary,
that X has an ascending chain. Then by Lemma 3, each card has an ascending chain,
a contradiction.

Sufficiency: Assume that the /-open set, say U of X intersect all the non-empty open
sets in X and X does not have an ascending chain. Then the open sets in the card
X,,, where x, € U, does not form an ascending chain. And the cards obtained by
deleting a point x,, where x, € U has the open set U — {x,} as a common open set
and the cards obtained by deleting a point x;, where x; ¢ U has the open set U as a
common open set.

Lemma 12 Let X be a finite topological space of size n with no isolated point; Let |
be the smallest integer such that X has a unique open set of order 1. Then the l-open
set of X does not intersect with at least one open set in X if and only if each card
has at least two disjoint open sets.

Proof Necessity: Assume that the /-open set, say U of X does not intersect with at
least one open set, say V in X. Since U is the unique open set of order /, we have
|V| =1+ 1 > 3. Now the cards obtained by deleting a point x,, where x, ¢ U U V,
has two disjoint open sets, namely, U and V and the cards obtained by deleting
the point x;, where x; € U U V has two disjoint open sets, namely, U, V — {x,} or
U—{x}, V.

Sufficiency: Assume that each card of X has at least two disjoint open sets. Suppose,
to the contrary, that the /-open set intersects all the non-empty open sets in X. Then,
by Lemma 11, the open sets in each card have an open set in common, a contradiction.

A topology 7 on X such that the union of all elements of order [ in 7 equals X,
then we say 7 is an /[-modulo topology on X.
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Lemma 13 Let X be a finite topological space with more than one l-open set for
some | > 2. Then X is not an l-modulo topological space if and only if at least two
cards are non-homeomorphic.

Proof Necessity: Assume that X is not an /-modulo topological space. Then there
exists a point, say x; € X such that it belongs to an (/ 4 i)-open set, wherei > 1. Let
A be an/-open setand let B be an (I 4 i)-open set. Theneither A € Bor AN B = ¢.
If A C B, then choose two points x, and x;, where x, € A and x;, € B — A. Now
consider the two cards X, and X, . Since the point x, belongs to an [-open set, the
card X, has an (I — 1)-open set. Since the point x; € B — A belongs to an (I 4-7)-
open set, the card X, has no (! — 1)-open set. Hence X, is not homeomorphic with
X,,.If AN B = ¢, then choose two points x, and x, such that x, € A and x; € B.
Then, in the corresponding two cards X, , Xy, the card X, has an (/ — 1)-open set
and the card X, has no (I — 1)-open set. Hence X is not homeomorphic with X, .
Sufficiency: Assume that at least two cards are non-homeomorphic. Suppose, to the
contrary, that X is an /-modulo topological space. Then the order of each open set in
X is ml, where m > 1. Consider any two cards X, and X, . Then, clearly these two
cards have exactly one (I — 1)-open set. Define a mapping from X, to X, by the
elements in the (! — 1)-open set in the card X, to the elements in the (/ — 1)-open
set in the card X, and the elements in an /-open set in the card X, to the elements
in an [-open set in the card X . It is clearly a homeomorphism from X, onto Xy,
which is a contradiction.

Corollary 1 Let X be a finite topological space having more than one l-open set
for some | > 2. If X is an [-modulo topological space if and only if any two cards
are non-homeomorphic.

Theorem 4 A finite topological space with no isolated point is weakly recon-
structible.

Proof Let X be a topological space of size n with no isolated point. We proceed by
two cases as below.
Case 1. The space X has only one /-open set.

Three subcases arise. First we consider the case that each card has an ascending
chain. Then, by Lemmas 9 and 10, X has only one open set of order i, for i =
[,1+1,...,nor X has no open set of order i for some i, [ +1 <i <n — 1 and all
these open sets form an ascending chain. Consider a card X, with unique (I — 1)-
open set. Now, the collection {U U {x,} | U € 7x,_, U # ¢}, is the desired topology
on X.

Next, we consider the case that at least one card does not have an ascending chain
and in each card, all the non-empty open sets have an open set in common. Now, by
Lemma 11, the /-open set intersects all the non-empty open sets in X and X does not
have an ascending chain. Consider a card X,, with unique (! — 1)— point open set.
Now, the collection {U U {x,} | U € 7x, , U # ¢}, is the desired topology on X.

Finally, we consider the case that each card has at least two disjoint open sets.
Then, by Lemma 12, the /-open set of X does not intersect with at least one open setin
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X. Consider a card X,, with unique (! — 1)-open set. Then, the (! — 1)-open set does
not intersect with at least one open setin X, as the [-open set of X does not intersect
with atleast one open setin X. Now, for all non-empty opensetsin X, ,ifU NV = ¢,
then U isopenin X; if U NV =V, then U U {x,} is open in X, where V denotes
the (I — 1)-open set in the card X, . Thus, the collection {U U {x,} : UNV =V
andp #U € 7x,,}U{U : UNV =¢gand ¢ # U € 7y, } is the desired topology
on X.

Case 2. The space X has more than one /-open set.

We proceed by two subcases as follows. We first consider the case that any two
cards are homeomorphic. Then, by Corollary 1, X is an /-modulo topological space.
Consider any one of the card, say X, . Now, for all non-empty open sets in X, if
UNV =¢,thenUisopenin X;if U NV =V, then U U {x,} is open in X, where
V denotes the (I — 1)-open setin the card X, . Thus, the collection {U U {x,} : U N
V=Vand¢#Uecrx, ,}U{U : UNV =¢and ¢ # U € 7x, } is the desired
topology on X.

Now, we assume that at least two cards are non-homeomorphic. By Lemma 13, X
is not an /-modulo topological space. Consider a card X,, with unique (/ — 1)-open
set. Then, the (! — 1)-open set does not intersect with at least one open set in X, as
the [-open set of X does not intersect with at least one open set in X. Now, for all
non-empty open setsin X, ,if U NV = ¢, then U isopenin X; if U NV = V, then
U U {x,}isopenin X where V denotes the (! — 1)-open setin the card X, . Thus, the
collection {UU{x,} : UNV =Vando#U €71y, ,}U{U : UNV =¢ and
¢ # U € 7y, } is the desired topology on X.
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Abstract The concepts of neighbourhoods of analytic functions are used to prove
several inclusion relations associated with the d-neighbourhood of a subclass of
uniformly spirallike functions.
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1 Introduction and Definitions

Let S denote the class of functions of the form f(z) = z + Z;’;z a,z", which are
analytic and univalent in the open unit disc U = {z € C : |z] < 1}. Also let S* and
C denote the subclasses of S that are, respectively, starlike and convex. Motivated
by certain geometric conditions, Goodman [3, 4] introduced an interesting subclass
of starlike functions called uniformly starlike functions denoted by UST and an
analogous subclass of convex functions called uniformly convex functions, denoted
by UCV. From [8, 10], we have

7" (2)
f@)

>

,z€eU.

feucv & Re{l + Zf”(Z)}

f@)

In [10], Ronning introduced a new class S, of starlike functions which has more
manageable properties. The classes UCV and S, were further extended by Kanas
and Wisniowska in [5, 6] as k — UCV («) and k — ST («). The classes of uniformly
spirallike and uniformly convex spirallike were introduced by Ravichandran et al.
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[9]. This was further generalized in [13] as UCSP(«, (). In [14], Herb Silverman
introduced the subclass 7' of functions of the form

f@=z2-) a3, (1)
n=2

which are analytic and univalent in the unit disc U. Motivated by [15], new sub-
classes with negative coefficients U CSPT (o, 3) and SP,T (o, 3) were introduced
and studied in [12]. A function f (z) defined by (1) is in U CSPT («, 3) if

7" ()

Re {e"”(l + M)} >
1@ 1@

la] < 2,0 < 8 < 1. For the class U CSPT («, 3), [12] proved the following lemma.

+ 5, @)

Lemma 1 A functionf(z) =z — Y o, ay2" is in UCSPT («, ) if and only if

Z(2n —cosa — Pna, <cosa — f3. 3)

n=2
Using (1), the functions f(z) € UCSPT («, 3) will satisfy

(cosa — 3)

“@ = 2(4 —cosa —f)’ @

The subclass UCSPT.(«, ) is the class of functions in U CSPT («, 3) of the form

_ c(cos o — B)z? > n
f(Z)—Z—m—;anZ, (5)

(a, = 0), where 0 < ¢ < 1 was studied in [1]. Let SP,T.(c, 3) be the subclass of
functions in SP,T (o, 3) of the form

B c(cosa — B)z> > n
f(Z)—Z—m—;anZ s

(a, = 0), where 0 < ¢ < 1 was studied in [2]. When ¢ = 1, we get
UCSPT\(a, B) = UCSPT (o, ) and SP, T (v, B) = SP,T(«, B).

Lemma 2 The function f (z) defined by (5) belongs to U CSPT.(«, [3) if and only if
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[0¢]
> (@n—cosa — Byna, < (1 —c)(cosa — ). (6)
n=3

The result is sharp.

Lemma 3 The function f (z) defined by (5) belongs to SP,T.(«, B) if and only if

[o¢]

Z(Zn —cosa— Ba, < (1 —c)(cosa — ).
n=3

The result is sharp.

Definition 1 If f(z) = > - a,2" and g(z) = > - b,2" are analytic in U, then
the Hadamard product of f and g is f * g = > -, a,b,2". Following the works of
Goodman and Ruscheweyh, we define the §-neighbourhood of f as

Ng(f)z{g(z):g(z)=z+anz”ande|ak—bk|55}. @)

n=2 k=2

For the identity function e(z) = z, we have

Ns(e) = {g(z) 8@ =z+ Zb,,z"and Zk |bx| < 6} . (8)

n=2 k=2

2 Inclusion Relations Involving the d-Neighbourhood Ng(e)

Theorem 1 UCSPT.(«, 3) C Ns(e), where

5:{6 1-c¢ + ¢ }(cosa—ﬁ).

—cosa—( 4—cosa—p3

Proof Using Lemma 2 for f € UCSPT.(«, 3),

Z(Zn —cosa — Bna, < (1 —c)(cosa — f3) )
n=3
which implies
ad (1 —c)(cosa — B)
gnanf 6 —cosa— (3 (19

or
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i oo < 2R D) an
Hence
e e e S
o

> (1 —c)(cosa — 3) c(cosa— )
;nmnli 6 —cosa— 3 4—cosa—ﬁ_5' (13)

= f € Ns(e) or UCSPT_.(a, B) C Ns(e).

Theorem 2 f € UCSPT.(«,31) and g € UCSPT.(an,(3;) then fxgE¢€
Ns, 5,(e), where

5 — 1—c n c
= 6—cosa;— (4 4—cosa;— [

} (cosa; — f31)

and

5 — 1—c n c
2 6—cosa; — B 4—cosay— [

} (cos ar — 32),

0<p,6 <1
Proof By Theorem 1, since f € UCSPT (a1, 31) and g € UCSPT (v, (32)

o0
1— — —
anmf( c)(cos o 61)+ c(cos o — 1) _ 5 (14)
= 6 —cosay — 4 —cosay — Oy
and
o0
an < (I —c)(cosar — 3) = c(cosar — 3) _ 5. (15)
2 6—COSQ2—,62 4—COSO£2—52
Hence
o0 o0 o0
D nlagbul <Y nlagl Y nlbal < 6165, (16)
n=2 n=2 n=2

:>f *g € N(S[,(Sz(e)-
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3 Some Properties of UCSPT:(c, 3) and SP,T (o, 3)

We discuss some properties of U CSPT.(c, 3) and SP,T.(c, 3) with the following
integral operators:

“f(t
H(z) = th (Alexander operator) a7
0

and

H,(2) = /Z(@)adt,f €. (18)
0

Theorem 3 Suppose f € SP,T.(c, B) then H(z) € UCSPT (c, 3).

Proof Givenf € SP,T (e, (3). Therefore Re {e’“(zj’;;g))} > “J’:éz)) - 1‘ + 3.
H(z) = Z]ﬁdt
o
gives
H'(z) = @,H”(z) _¥'®@ z—f(z)
z F4
and
ZH"(2) _ 7' (2) _q
H@ @
Hence
—ia H"(2)\]| _ _in?f' (@)
e {e (1 TG >} e {e f@ }
#f'(2)
—1 .
> [T 145
Zia ZH"(2) zZH"(2)
:Re{e (l-i— 00 )} > Heo + 5.

= H(z) € UCSPT (e, ).

Theorem 4 Suppose f € SP,T.(, B) then H,(z) € UCSPT.(a, 3).

The method of proving Theorem 4 is similar to that of Theorem 3.
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4 Integral Means Inequalities

In [14], Silverman found that the function f>(z) = z — 7 is often extremal over the
family 7. He applied this function to resolve his integral means inequality conjectured
in [16] and settled in [17], that

2T 2m
/ If (re)|" a6 < f 2 (re™)|" o,
0 0

forallf e T,n>0and0 <r < 1.

In [17], he also proved his conjecture for some subclasses of 7. Now, we prove Sil-
verman'’s conjecture for the class of functions U CSPT,(«, (3). An analogous result
is also obtained for the family of functions SP,T.(c, 3). We need the concept of
subordination between analytic functions and a subordination theorem of Little-
wood [7]. Two given functions f and g, which are analytic in U, the function f
is said to be subordinate to g in U if there exists a function w analytic in U with
w(0) =0, lw(z)| < 1(z € U),suchthatf (z) = g(w(z))(z € U). We denote this sub-
ordination by f (z) < g(2).

Lemma 4 [fthe functions f and g are analytic in U with f (z) < g(z) then forn > 0
andz =re®(0 < r < 1)

2m 2m
/ |g(re™)|" db < / If (re)|" ao. (19)
0 0

We now discuss the integral means inequalities for UCSPT.(«, 3) and
SP,T (v, 3).

Theorem 5 Letf € UCSPT, (o, B), la]l < 7/2,0< 0 < 1,0 <c < 1andf,(z) be
defined by
_ c(cosa — B)z?
PO = S csa )

Then for z = re'?,0 < r < 1, we have

27 27
If(@)1"do < [2@)1"do. (20)
0

Proof Whenf(z) =z — Y o, a,z", (20) is equivalent to

2r 27
/ df < /
0 0

) n

n=2

n

c(cosa — B)z 40,

= 2(4 — cosa — 3)
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By Lemma 4, it is enough to prove

| i -1 L c(cos o — B)z
-y ay -
e . 2(4 — cosa — f3)

0 n—1 _ 1 _ c(cosa—Bw(z)
Assume 1 — Zn:Z anZz =1 2(4—cosa—p3) *

By using ) -, (2n — cosa — B)na, < cosa — (3 with a, = 2&%‘:;_% we get
o0
2(4 — cos o — Ba,7*!
W@l = nZ:; (cosa — [3)
2. 2(4 — cosa — Bay
<laly
o (cosa — 3)
<lzl.

This completes the proof by Lemma 4.

Theorem 6 Let f € SP,T.(a, B), lal <7 2,0<8<1,0<c =<1 and f>(z) be
defined by
c(cosa — 3)z?

h@=z- (4 —cosa—f3)°
Then for z = re?, 0 < r < 1, we have
2w 2w

If (1"d0 < I 2)|"db.
0

Proof Proceeding as in the proof of Theorem 5, we get the required result.
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Analysis of a Dengue Model with Climate | m)
Factors e

Ananya Dwivedi and Ram Keval

Abstract Climate fluctuations in the environment displays a positive effect on
vector-borne diseases and prove favourable for the dispersion of dengue. In this
paper, we introduced a climate factor in the model of dengue and analyzed their
stability. Therefore, our discussion focuses on a dengue transmission model which
includes mosquito population and different classes of human population along with
the addition of climate factors. The human population is divided into two parts: (1)
Susceptible human at high risk, (2) Susceptible human at low risk. Biologically, fea-
sible equilibria and their stability properties have been discussed. On the basis of
these results, we concluded that change in climate is one of the greatest reasons for
dengue transmission.

Keywords Dengue model - Basic reproduction number (Ry) * Local stability -
Global stability + Lyapunov function

1 Introduction

During the twentieth century, research and development in medical sciences helped
in the eradication of infectious diseases. However, at the beginning of the twenty-first
century, the spread of infectious diseases due to unpredictable factors became painful
for developing countries. Among these diseases, Dengue is one of the major concerns
for the present era in tropical regions. It is caused by infectious bites of Aedes aegypti
and Aedes albopictus female mosquitoes from Flaviviridae family. DEN-1, DEN-
2, DEN-3 and DEN-4 are the reason behind the prevalence of dengue. Around 100
countries have become endemic, projecting half of the world’s population at risk with
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Cases and Deaths due to Dengue in India

Cases
"
fal
=

2009 2010 2011 2012 2013 2014 2015 2016 2017(P)

Year

Cases == Deaths

Source: Directorate of National Vector Borne Disease Control Programme, Dte.GHS, Ministry of Health & Family Welfare

Fig. 1 Number of cases and deaths due to dengue appeared on National Health Profile

50-100 million infections occurring annually. Last few years, The National Vector
Borne Disease Control Program-me (NVBDCP) and National Heath Profile 2018
[1], the increment in dengue was at extreme level. The dengue cases enhancement
from 60,000 in 2009 to 75,808 in 2013, and subsequently to 188,401 in 2017, which
shows the spike of dengue by 250% and 300%, respectively, as shown below in Fig.
1[1].

Some authors have discussed the dengue transmission model including climate
factors like rainfall, temperature humidity, etc. Nur et al. [2] discussed a SIR model
with climate factors for transmission of dengue fever. Zhu et al. [3] studied an SIS-SI
dengue model associated with a periodic environment to discuss temporal periodicity
and spatial heterogeneity. Gao et al. [4] discussed a mixed vaccination strategy of a
transmission model along with seasonal variations. Szu et al. [5] observed features
of an epidemic and recognized that a major risk is involved when transmission of
dengue occurs at 28 °C. Chavez et al. [6] discussed a control strategy with the help
of the use of pesticides and also described variations in weather and their effect in
every season. Feng et al. [7] analyzed the dengue epidemics model by varying the size
of the vector and observed the strong influence of rainfall and other environmental
factors.

From the above discussion, we conclude that seasonal effects are the greatest risk
for the increment of dengue. Thus, we discussed the seasonal effect on the SIR model
in climate change environments. In this paper, a dengue transmission model with
various climatic factors is presented and the local and global stability analysis of the
model with the help of Routh-Hurwitz criterion and Lyapunov function, respectively,
has been discussed.
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2 Mathematical Formulation and Its Description

Here, the total population of mosquito N,,(¢) is divided into two parts and human
population Ny (¢) into four parts which are equal to

Nm(t) = Sm(t)+1m(t)
Ny(t) = Su, () + Su, () + Iu(t) + Ry (t)

Based on transmission process of dengue, the following mathematical model has
been proposed. Already, Tewa et al. [8] discussed that the infection rate per indi-
vidual is given as (Ba, I,,)/(Ng + m) and infection rate per mosquito is given as
(BayIy)/(Ny + m). Where m is the number of alternative hosts available as blood
sources and [ is the biting rate of mosquito. The given model has been extended in
the present work by adding climate factor y in the model with the variable human
population. Susceptible human is divided into two parts: (1) Susceptible human at
high risk (Sg,) means in this case humans are highly in contact with the disease
(2) Susceptible human at low risk (Sg,), i.e. in this area, humans are aware of the
disease and can protect them by the use of control strategy. Recovered class does
not exist for mosquitoes because they end their life-cycle with death. Therefore, by
above assumptions, mathematical formulations for dengue model are

R ) B 1)
L m

dj—tH' =rm, — Suln (%) -ty SH, 3

djfz =1 —rm, —0SyIn (%) — 1, Sh, “4)

‘%H = (Sy, +6 Su) 1, (%) —(@q+ ) 3)

%:qIH_NHRH ©

The parameters and variables are non-negative positively invariant in the domain Ri.
Where
Sn(©0) > 0, I,(0) > 0, Sy, (0) > 0, Sy, (0) > 0, Ix(0) > 0, Ry(0) > O
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Table 1 Description of variables with respect to time (t)

Description Variables
Total human population Ny (1)
Susceptible human population at high risk Sh, (1)
Susceptible human population at low risk SH, (1)
Infected human Iy (1)
Recoverd human Ry (1)
Total vector population Ny (1)
Susceptible vector (mosquito) S (1)
Infected vector (mosquito) L, (t)

The system (1-6) can also be written as

ds,,
7=k—17115m1f1—55m @)
dhn _ Sply — 61, (8)
dt = P119mlH m
ds
_d;ll = A — puaSu In — by Sh, ©)
ds
dfz = B — p120Si, I — 11, S, (10)
dly
T P12(Su, + 0 Su) Ly — (g + ) I (11)
dRy
SR Iy —u R 12
ar q 1y —py, Ry (12)

where

Boy, +
P11=(—fv[:'f,,7), P12=(;H”+,,7), A=rm,, B=0-nrm,.

3 Positivity and Boundedness of the System

In various steps, we have discussed the positivity and boundedness of the system here

Theorem The existence region for all the solutions introducing oneselfin the positive
region is recommended by set §2.

2 = {8 St,» N, Ng) :0 < Ny < X1, 0< Sy, < X2, 0<Sg, < X3, 0< Ny < X4}

where
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Table 2 Biological significance of parameters

Significance Parameters Dimension
Birth rate of vector population k Day™!
Biting rate of vector per individual 15} Day ™!
Natural death rate of humans Ly Day ™!
Death rate of vector population ) Day~!
Mobilization rate from infected human to susceptible oy Day™!
mosquito

Mobilization rate of suspectible human population Ty Day~!
Intrinsic death rate of human q Day™!
Section of first time admitted person joining the r Day~!
susceptible class at high risk

Transmission rate from infected mosquito (vector) to [o T Day*]
susceptible human

Low risk susceptible with relative chance of infection at 0 Day~!
high risk susceptible

k rm,
Xl = max {59 Nm(O)} s X2 = max {_’ SH[(O)} i
My

{w, SHz(O)} , X4 = max {Z—H, NH(O)}

H

X3 = max

which is invariant and compact with respect to the system (1-6) [9].

Proof System (1-6) can be written as

ax =CX+D (13)
dr

X= [Sm’lmv SH[? SHzalHaRH]T and

p1 0 00 0 0
pr—50 0 0 0
c_|0oo0omo 0 0
00 0ps O 0
0 ps 00 —(u,+gq) O
0 00O q —l,

where



118 A. Dwivedi and R. Keval

pl=— |:5+ <(ﬂam +7)1H):| Py = <(ﬂam +7)1H) ’

NH+m NH+m
o (B, + Pl (Ba, + )01
p e ()| = o (5507
_ SH]+9SH2
Ps—ﬁa+)(NH+m)

The vector D = [k, O, rm,, (1 —r)m,, O, 0]7 have positive nature. All the off-
diagonal entries of D(X) are non-negative. Therefore, the Metzler Matrix D(X) is
obtained X € R?_ [10] which bounds in forever.

On adding the first two equations of the system (1-6) get

dN,,
=k — 0N,
dt

Using a standard comparison theogem [11], we have,
0<N,@® < % + (Nm(O) - ]?;) e . Thus, as r — 00,0 < N,,(r) < X, we have for
any t > 0,0 < N,, < X,, where X = max {%, N,,(0)}.

Assume that X, = max { , SH, (0)} Then 0 < Sy, < X,. Similarly, let X3 =
(1—r)m

max { L S, (O)} Then 0 < Sy, < X3. By adding last four equations of the

system(l 6) we get

dNpy

dt =Ty _:U’HNH

Assume that X4 = max { NH(O)] Then 0 < Ny < X4.

Therefore all the feas1ble solution of the system (1-6) enter in the region £2 means
this is attracting set in the region 2.

4 Disease-Free Equilibrium and Its Stability

For system (7-12) the Disease-free equilibrium point is Wy = (S_m, I, S;,l, S;Iz, Iy,
Rp), this equilibrium exist without any conditions [12].
Where

k- - A - B — -
Sm = g’ I, =0, SH1 = SHz =—, In=0, Ry =0.
i

H H
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4.1 Basic Reproduction Number

In this section using the next-generation matrix method [13, 14] found the basic
reproduction number of the matrix. The process to find the basic reproduction num-
ber through Jacobian matrix F' and V are given by [15]

OF, OF o o

oL, 81H ol, 01H

F = % % and V = % %

ar, ol a1, oI,
Bak

O Pm (S 0
S(Ny+i
F= (ﬂaH(A+9B) ¢ ’(') m and V = (0 v )
11y (N ) Hu T4

then (F.V~!) are defined as

B 0 s
FV™ =\ pa,@+08) 0
3y (N )

where, A =rm,,B=1—-r)m,.
The basic reproduction number Ry of the system (1-6) or (7-12) is defined by the
maximum eigenvalues of the matrix (F .V~ [16] and it is given by

B*a, a, k(A + OB)

_ _ pupnk(A+0B)
52(NH + m)zl’[’H (I’LH + CI)

OR Ry =
‘ &gy (o + Q)

Ry

4.1.1 Theorem

If Ry < 1 the disease-free equilibrium W is locally asymptotically stable and unsta-
ble if Ry > 1.

Proof The Jacobian matrix for the model system (7—12) corresponding to equilib-
rium W, is given by

k

= 0 0O o0 — bz 0
0o -5 0 o0 &t
A
. 0 -4 0 0 0
Tl o -0y, 0 0
pi2(A+0B) _
0 IZT 0 0 —(u,+g9) O
0 0 0o 0 q — I,



120 A. Dwivedi and R. Keval

On applying the elementary row operation we get:

50 0 0 - 0
0 =00 0 B 0
0 0 — 0 _ pupnAk 0
Vo = H gy 0
Tloo 0 —m — puslsk 0
0 0 0 0 —(u,+q)+2upadint g
00 0 0 0 s

which is upper triangular matrix, so the eigenvalues of Jacobian matrix V; are as:
¢1 = —0 (multiplicity 2), ¢, = —pu,, (multiplicity 3),

pupn(A+0B)k
1y 0 '

H

¢3 = _(:U’H +‘I) +

which is negative for all ¢;(i = 1,2, 3) < 0.

Then by, Routh-Hurwitz criterion [17] Jacobian matrix V, have a negative
real part of all the eigenvalues are negative if ¢3 < 0. Thus, the equilibrium
Vp is locally asymptotically stable if 2u22AH0BE () 4 4y and unstable if

fy O
pl]mfﬁ# > (u, + ¢). This condition can also be written in the form of Ry.
H

4.1.2 Theorem

If Ry < 1, the disease-free equilibrium Wy = (S,,, I, S'Hl, S'HZ, Iy, Ry) = (%, 0,
#i, %, 0, 0) € £2 is globally asymptotically stable in £2 with assumption.
p2(Sy, +605y,) =0
P11Sm = [y
Proof We consider the Lyapunov Function below

H(t) = (Sy — SulnSy) + Ly + (Su, — Sy, InSu,) + (Sg, — Sp,InSy,) + Iy + Ry

Differentiating with respect to time t, we get

S Su Sk
!’ / m ’ 4 1 !/ 2 / /

H'(t) = k= piiSula — Sm) (1 - S—”’) + p11Sula — In
m
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SH] SHZ
+(A = poaSaIn — pySa) |1 — —— | + (B — p120Suy Iy — 11y Suy) | 1 —
H SHZ
+p12(SHy +0 Suy) b — (@ + ) Iy +qly — py Ry
On solving further, we get
S ~ S _ _ S
=k (1 - l) + S (1 - i) + Ln(p12(Sa, + 081,)—) + A (1 - ﬂ)
Sm Sm SHl
S - s - N _
+B <1 - HZ) + 11y S, (1 - ﬂ) + 1y Sh, (1 - _—HZ) + I(p118m — 11y) — iy Rit
SHZ SH] SHZ

Based on disease-free equillibrium, we have

WO:(vaim9SH13SsziHvéH)=(k 0 A B,O,O)

505
and by assumption the above equation becomes

Sm S S N S s
quzk(z_:z_iﬂ)+A 2ot Sy gy S S gy
Sm m SHI SH] SH2 SHZ

T \2 G, )2 RV
—k (Sm __Sm) _ A(SHI __SHI) _B (SHZ __SHz)
SmSm Sm,SH, SH,SH,

— g RH

The result of H'(¢) < 0 By using Lasalle’s extension to Lyapunov’s method [8]
the limit set of each solution is obtained in the largest invariant set which Sy, =
S Hys SH, = S s Re =0and S, = S,, which is the singlten set W, and proves that
disease-free equillibrium is Globally asymptotically stable.

S Endemic Equilibrium and Its Stability

For the Eqs. (7-12), the Endemic-Equillibrium Point is W) = (S, I, S};l, S};z,
I}, R},), whose constituents are positive solutions of the equillibrium equation of
the system (7—-12).

k
st = (g + p,)k pr2+ uy,) —c (14)
p2(Apu+ g+ Bpub+ p,)

Ak piy pia+ Bk pn p129—52quH—52u

2

I = L_c, (15)
0 pi12(A p1i+9q+ B p11 0+ dp,,) 2
Sy = A =C; S5 = B =C (16)
Y E 3o P20+, !

I*
11 _ ¢ (17)

Sy +0Sp)ILx
Pi2( H, Hz) —Cs, R},; _

I =
" 1y +4q iy
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the Total human population can be given by

_A+B
o

N}, (18)

5.1 Theorem

For By, < (u, + g) the endemic equilibrium W; is locally asymptotically stable
and unstable if By, > (u, + g).

Where
piip2s, p12Si Ly p1255,0
By = ——* |:(S* + 0S8}, ) B3z + - B33 + 2B
) H 2 pill + 1, POl + 1,

I*
By = <] — M+)
plllH +§

Proof The Jacobian matrix for the model system (7—12) corresponding to equilib-
rium W, is given by

Al 0 0 0 —plls;:l 0
p]]l;k, ) 0 0 p]]S;';l 0
Vv, = 0 —pu2Sy —Ilpi2lm + pyl 0 0 0
0 —pnbSy, 0 —Lp12015 + iy ] 0 0
0 An pi2ly; p12ln0 —(uy+q)+Bxn 0
0 0 0 0 q — [y

where, Ay = — pil; — 0, An = pin(Sy, +60Sy,).

By applying elementry row operation the above system are:
By < (p, +¢g)and Byy > (p,, + g) thenputting the valuesof S, 1%, S;;l, 571:’ I}
we get upper triangular matrix, and the eigenvalues of Jacobian matrix V; are nega-
tive. By, Routh-Hurwitz criterion [12] Jacobian matrix V) have negative real part or
all the eigenvalues are negative. Thus, the equilibrium W is locally asymptotically

stable if By, < (i, +¢q) and unstable if By, > (u, +q).

5.2 Theorem

The endemic equillibrium is globally asymptotically stable in §2 provided the fol-
lowing inequalities hold:
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X 2 2 2 0 2 5
Max (p11X4) ’P12C3’ (p12C2) ’P12 C; <9 (19)

36 2 21, 2X, 3

2 2
Max {p11C1, (p12(C3 + 0C4))*} < 300, +a) (20)
2 2 2
Max {(pnX1)*.¢°} < 3 + @y (21)
2

Max {pn} < 3Xa(u, +9) (22)

Proof Let us Consider the following positive definite function of W; below

1 * \2 1 * \2 1 *\2 1 * \2
G(1) ZE(SHl - Su,) +§(SH2—SH2) +§(1H_IH) +§(RH_RH)

—i—l(S s*)2+1(1 1*)?
2 m m 2 m m

Differentiating with respect to time ‘¢’ along the solution

G'(1) = Sy, (St — Si1) + iy, (S, — Si) + Iy (I — I) + Ry (R — R}p)

On rearranging the terms in the form of —aX? 4+ bXY — cY?. We get:

(I3 — In)?

+
G'(t) =—pi1Xa(Sm — 2+ pri(y — Iy)(Sm — S5&) — “”6 1

1) 1)
— S = S30% + P Xa(Sm = S3) U = 1) — < U — 1)

_ (NH6+ q) (Iy — 1:1)2

1)
—¢Un ~ 5+ prCily — L) U — 1)
)
—p12X1 (S, — S5)% + p12C3(Shy — S ) Um — 1) — RUS In)?
% N2 * *
— gy (Sp, = S50 + p12aCa(Spy — iUy — 1) — =

o
—p120X1(Sp, — S}}Z)z + p120Ca(ly, — Inm)(SH, — Spp,) — 6(122 — In)?

Hy +4
6

— 11y Sty — S§p)* + P120X1 (SH, — S§p) Uy — Ir) — U}y — In)*

1)
—fraciuy +q6(j; — 15)* + p12(C3 + 0Ca) (I — 1)Uy = 1) = &l — 1)*

Hy +4q
— =g — 15 + 9 — Ij;) (R — Rfp) — iy (R — Rfyp)?

Using region of attraction £2, V(t) is Negative definite if the equation [9] —aX? +
bXY — cY? provided b* < 4ac.
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Fig. 2 Inside the region of attraction £2 global stability of endemic equilibrium in between S, —
Im - RH

Hence, from the above calculation, we made assertion that V(t) is Lyapunov
function for the model system (7—12), provided the conditions (19-22) hold.

To verify the above theorem numerically, we choose the following set of hypo-
thetical parameter values in the system (7-12) and the components of equillibrium
W, are found to be (Table 1 and 2).

k=3.1,=0.0006, p;; =0.101626, A = 0.0825, B = 0.0675, u,, = 0.00154, 6 =
0.85, p12 = 0.103659, g = 0.355, S, = 67.5855, I, = 449.081, Sy, = 0.0017722,
S, = 0.00170585, Iy = 0.4207, Ry = 96.9795. In Fig. 2 verifies the global stabil-
ity of endemic equilibrium state.

6 Conclusion

In this article, we discussed a dengue transmission SIR model with the inclusion of
climate as a factor along with a different class of human. For the discussion of local
and global stability, we use the Routh-Hurwitz criterion and Lyapunov function
which is a powerful technique for more than one-dimensional system. In general
discussion, we concluded that if the condition is Ry < 1, then the disease-free
equilibrium is asymptotically stable, the infected population is at the recovered stage
and if the condition is Ry > 1, then there is a single endemic equilibrium which
is globally asymptotically stable among all regions for which infection is present in
human population and it will persist.
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Abstract In this paper, we define a new class of mappings and prove a
common coupled fixed point theorem in the context of complex valued metric
spaces; we give an application to show the significance of theory in solving the sys-
tem of fractional differential equation with nonlocal multi-point integral boundary
condition.
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1 Introduction

Huang and Zhang [7] introduced the concept of cone metric spaces, by using a
Banach space over R, as the distance measure, instead of R. Following him, Azam
and Fisher [2] introduced the notion of complex valued metric spaces, which is a
particular version of cone metric spaces. Sintunavarat et al. [12] and Rouzkard et al.
[10] are some others who extended the results of Azam and Fisher, using various
classes of control functions.

Bhaskar and Lakshmikantham [5] introduced the concept of coupled points and
proved a fixed point theorem in the context of partially ordered metric spaces, using a
mixed monotone property. As a sequel, Ciric and Lakshmikantham [3] posted some
common coupled fixed points theorems in partially ordered metric spaces. Kutbi et
al. [9] extended the theory in the context of complex valued metric spaces.
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The system of fractional differential equations plays a vital role in building bio-
logical models like SIR epidemic models. Withal, a system of fractional differential
equations has its indispensable part, in constructing dynamic models, which are used
in the treatment of cancer. Many research papers are posted in the turf of fractional
differential equations involving fixed point theory (see [1, 4, 6, 8]).

In Sect.2, give all the definitions and the results which we need in the sequel.
In Sect. 3, we define a new class of mappings and prove a common coupled fixed
point theorem in the context of complex valued metric spaces. In Sect.4, we give an
application to emphasize the significance of theory in solving the system of fractional
differential equation with nonlocal multi-point integral boundary condition.

2 Preliminaries

Let us fix some notations here. N, R and C denote the set of all natural numbers, real
numbers and complex numbers respectively. Let z;, zo € C and let ‘X’ be a partial
order on C defined as follows:

(i) z1 2 zp ifand only if Re(z) < Re(zz), Im(z1) < Im(zp);
(1) z; < zp if and only if Re(z)) < Re(z2), Im(z1) < Im(z2).

Definition 1 [2] Let X be a nonempty set. The function d : X> — C is said to be a
complex valued metric if for all x, y, z € X,

(CM1) 0 2d(x,y)andd(x,y) =0 x = y;
(CM2) d(x,y) =d(y,x);
(CM3) d(x,y) 3d(x,2) +d(z,y).

If d is a complex valued metric, then the pair (X, d) is called a complex valued metric
space.

Definition 2 [2] Let (X,d) be a complex valued metric space. Then a
sequence {x,} in X is said to be

(i) convergent to x € X, if for every O < r € C there exists N € N such that
d(x,,x) <rforalln > N.

(ii) Cauchy, if for every O <r eC there exists N €N such that
d(x,, Xy+m) <rforallm > N andm € N.

Lemma 1 [2]Let (X, d) be acomplexvalued metric space andlet {x,} be a sequence
in X. Then

(i) {x,} converges to x if and only if |d(x,, x)| = 0 asn — oo.
(ii) {x,} is Cauchy if and only if |d (x,, Xy4+m)| — 0 as n — oo.

Definition 3 [10] Let F, G be mappings from X2 to X and f be a self map on X. A
point (x, y) is said to be a
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(i) coupled coincidence point of F, G and £ if

F(x,y) =G(x, y) = £(x) and F(y, x) = G(y, x) = £(y);
(i) common coupled fixed point of F, G and £ if

F(x,y) =G(x,y) =f(x) =xand F(y,x) =G(y,x) = £(y) = y.

3 Coupled Fixed Theorem

We start this section by defining a class of control functions as follows.

Definition 4 Let F, G : X?> — X be 2-variable mappings and f : X — X be a self
map. Let A be a class of mappings A : X* — [0, 1) satisfying the conditions:

(CO1) A(F(x,y),F(y,x),u,v) < Xfx, £y, u,v);
(CO2) A(G(x,y),G(y,x),u,v) < Xfx, £y, u, v);
(CO3) A(x,y,u,v)=Au,v,x,y) = Ay, x, v, u).

Example 1 Let X = [0, 1). Let F, G : X*> — X be the mappings defined by

X+y
F(x,y) =

for all (x, y) € X?

and

sin(x + y)

G(x,y) = for all (x, y) € X>.

Let f: X — Xand XA : X* — [0, 1) be the mappings defined by

X+y+u+v

f(x) =x and \(x, y,u,v) = )

Then, we have

AFGx, y), F(y x), i, v) = A (’“;’y, x;’y,u, v)

_X+y+u+v
N 4

= Ax, y,u,v)
= A£x, £y, u,v)

and
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AG(x. ). GOy ). 1, v) = A (S‘“("2+ D omeEEn v)
sinx +y)+u+v
4
X+y+u+v
B —
- 4
= )\(.X, ya u, U)
= M£x, £y, u,v).

Also by the construction of ), it follows that
Ax, y,u,v) = AMu, v, x,y) = Ay, X, v, u).

Thus, ) satisfies (CO1), (CO2) and (CO3).

Theorem 1 Let F, G : X> — X be two mappings. If there exist mappings \j € A,
5

i=1,2,...,5suchthat Y N\i(x,y,u,v) <1and
i=l

d(R(x, ), G, ) 3 Ai(x, v, u, v) (L)

d(x,F(x,y))du,G(u,v))
+ha(x, y, u, v) (l+d(x,F(x,y))+d(u,G(u,v))

I+d(x,G(u,v))+d (u,F(x,y))

Fhalx, v, 1, v) ( d(y,F(y.))d(.G(v.1))

Fa(x, you, v)( d(x,Gu,v)dw,F(x,y)) )
1+d(y,F(y,x))er(v,G(v,u)))

d(y,G,u))d(v,F(y,x))
TAs(x, v, u,v) (1+d<,v,c<v.,u>>+d<v,F<y,x)>) (1)

forall x,y,u,v € X, then F and G have a unique common coupled fixed point.

We will deduce Theorem 1 from a more general version which involves three
functions F, G, and £ in a symmetric fashion.

Theorem 2 Let F, G : X> — X be two mappings and let £ : X — X be an injec-
tive map such that F(X?) € £(X), G(X?) C £(X), and £(X) = £(X). If there exist
mappings \; € A, i =1,2,...,5 such that Z?:1 Ni(x,y,u,v) <1and
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d(F(x,y),Gu, v)) IAi(£x, £y, fu, fv) (W)

d(£x,F(x,y))d(fu,G(u,v))
+Xa2(£x, £y, fu, fv) <1+d(fx,F(x,y))er(fu,G(u,u))

1+d(£x,G(u,v))+d(fu,F(x,y))

T\ (£x, £y, fu, fv)( d(£x,6(u,v)d(£u,F(x,y)) )

d(£y,F(y,x))d(fv,G(v,u))
+As(£x, £y, fu, fv) (1+d<fy,F<y,x))+d(fv,G<v,u)>

d(£y,G(v,u))d(fv,F(y,x))
+As(£x, £y, fu, fv) (I+d(fy,G(U,u))-&-d(fU,F(y,x)))

forallx,y,u,v € X, then ¥, G, and £ have a unique coupled coincidence point.

Proof Let (xg, yo) € X 2. Since the range of F and G are contained in the range of £,
it is possible to construct two sequences {x,} and {y,} so that

£x2ms1 = F(X2m, Yam) and £y2,41 = F(y2m, X2m)

fx2m+2 - G()sz+1, y2m+1) and fy2m+2 - G(y2m+la x2m+l)-

We wish to show that both {fx,} and {fy,} are Cauchy sequence. By the given
contractive condition, we have

d(f)sz_H, fom) j )‘l(fXva f)’2m, fom—lv fyZm—l)
(d(fXZm’fom—])Jl'd(f,VZmafylm—l))
2

+X2(Ex2m, £yom, EX0m—1, £yom—1)
( d(Exomi1, £x0m)d (EXom—1, £Xom) )

1+d (£x2m41, Ex2m) +d (Ex25n -1, Ex2)
+Xa(Ex2m, £yom, EXom—1, £yom—1)

d(Eyom+1, Eyom)d(EYom—1,£yom)
1+d(Eyams1, £yom) +d(Eyam—1,E£y2m) ) *

By taking absolute value on both sides of the above inequality, we get that

|d(£x2m11, £x20)| < Mi(Ex20, £, EX2m—1, £y2m-1)
(|d(fx2m’ fom—l)| + |d(fy2ma fy2m—1)|>
2

+X(Ex2m, £y, EX2m—1, Eyom—)|d(Ex2m—1, £x2)]
+Xa(Ex2ms £y2ms Ex0m—1, Eyom—DId(Eyom—1, £yom)l.

Subsequently, by using (C 02), we have
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|d(fx2m+l ) fx2m)|

< M(Ex2m—1, £Yom—1, £x2m—1, £Yom—1)
<|d(fx2m, £xom—1)| + |d(£yom, fyZm—1)|>

2
+X(Ex2m—1, £yom—1, £x2m—1, £y2m—DId(Ex2m—1, £x2)]
FX(Ex2m-1, £y2m—1, £x2m—1, £y2m-DId(EY2m—1, £Y20)1.

By using (CO1), (C02) and (C O3) repeatedly as before, we get

ld(£x2m+1, £x0m)| < Ai(£x1, £y1, £x1, £31)
<|d(fx2m, Exom—1)| + |d(Eyom, f)’2m—1)|>
2
+A2(£x1, £y1, £x1, £y)Id(Exam—1, £x2m)]
+Aa(£x1, £y1, £x1, £yDId(Eyam—1, £yam)l-

Proceeding analogous to the above discussion, we get

ld (£, £xom—D)| < Mi(£x1, £y1, £x1, £y1)
<|d(fx2m—1, £xom-2)| + |d(£yam—1, fy2m—2)|>
2
+Xa(£x1, £y1, £x1, £y)Id (Exam—1, £xom—2)|
+(Ex1, £y1, £x1, EyDId(Eyam—1, £yam-2)I.

Using the above two inequalities, we get that

|d(£xn41, £x0)1 < A1 (£x1, £y1, £x1, £31)
(ld(fxn, £x,- )| + |d(£y, fyn—l)|)
2
+X2(£x1, £y1, £x1, £yDId (x4, £x0-1)]
+Aa(£x1, £y1, £x2, EyD)Id(Eyn, £ya-1)].

Similarly, we can prove that

[d(£ynt1, £yu)| < Ai(Ex1, £y1, £x1, £31)
(|d(fxn, £x,-1)| + |d(£y, fyn1)|)
2
+Ao(Ex1, £y1, £x1, EyD)Id(Eyn, £yn-1)]
+Aa(£x1, £y1, £x1, EyD)Id(Exp, £x0-1) 1.
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Now, by adding the above two inequalities, we get

|d(£xp41, £x)| + 1A (EYpr1, Ey)l < A1+ Ao+ M) (Exy, £y1, £x1, £31)
(Id(£xu, £ D] + 1d(£yn, £y0-1))-

Ifweleth = (A + A2 + A\g)(£x1, £y1, £x1, £y1), then it can be seen clearly that
h < 1. In addition, we have

ld (£xn41, £x0)| 4 [d (£ Ynt1, Eyn)l

< h (|d(£x0, £x0 )] + [d(Eyn, Eyai)])
< h? (|d(£xp—1, £x,-2)| + |d(Eyn_1, £yu_2)])

< k"N (ld(£x2, £x1)| + |d(Eya, £31)]) -
Letn < k, then

ld(£xp, £x0)] + |d(£yn, £yi)l

< (ld(fxp, £x,— D] + |d(Eyn, £ya—D])
+ (|d(£xp—1, £x4-2)| + 1d(£yp—1, £y2-2)])
+ -+ (d(Expt, fx)| + 1d(Eyr—1, £y0)D)

<P+ 4+ B (A (Exa, £x0)| 4 [d(Ey2, £31))
n—2
= 7= (d(Exa, £x) +1d(£ya, £0))).

By letting limit # — oo in the above inequality, we have
ld(£x, £x)] + |d(£yn, £y0)] = 0.
Since h < 1, it follows that

lim |d(fx,, fx;)] =0and lim |d(fy,, £y)| =0,

which in turn implies that both {fx,} and {fy,} are Cauchy sequences. Thus, there
exist some r, s € X such that

lim fx, =rand lim fy, =s.
n—oo n—0o

But since f£(X) is closed, there exist some x, y € X such that

f(x) =rand £(y) =s.
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Thus, it follows that

lim fxy, = lim G(xau—1, yam—1) = £(x)
m—0oQ0 m—00

lim £y, = lim G(yau—1, Xom-1) = £(y)
m— 00 m— 00

and
lim fxo, 1 = lim F(xzn_2, X2m—2) = £(x)
m—00 m—0o0
lim fyy,_1 = lim F(yau—2, X2m—2) = £().
m—00 m— 00

We wish to show that (x, y) is a coupled coincidence point of F, G, and £.
For consider,
d(F(X, y)’ G(x2m—l ) y2m—l))

j d(F(x9 y)’ fom)
M@ (Ex, £x0m-1) +d(£y, £y2—1))

2
d(fx,F(x, y)d(£xm—1, £x2,)
1 +d(fx, F(x, y)) + d(Exam-1, fom))
d(fx, txom)d(£x2—1, F(x, ¥))
1+d(fx, £x20,) + d(£x2,—1, F(x, y))>
d(£y, F(y, x)d(Eyam—1, £yom) >

N

+ A(2) <

+ \3(2) <

A
A (1 +d(£y, F(y. 1)) + d(Eyam—1. Eyom)

d(fy, fyZm)d(fyZm—l ) F(y, )C))
L +d(£y, £yom) + d(Eyon—1, F(y, x))

+ As(z) (

where z = (£x, £y, £x2,,—1, £y2m—1) and therefore

lim d(F(x,y), £x) =0,

m— 00
which implies that, F(x, y) = f£x. Similarly, we can prove that

F(yv'x) = fys G(xvy) = fx and G(yv'x) = fy'

Thus, (x, y) is the required coupled coincidence point of F, G, and £. To prove the
uniqueness, suppose (i, v) is an another coupled coincidence point of F, G, and £.
That is, if

F(u,v) =G(u,v) = fu

and
F(v,u) =G, u) = fu.
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Then, by the given contractive condition, we have

d(fx, fu) 3 M\ (Ex, £y, fu, fv) (d—(fx’f“);d(fy’f”))
d(fx,fu)d(fu,fx)
+A3(fx, £y, fu, fv) (1+d(fx,fu)+d(fu,fx))
d(£y, fv)d(fv,fy)
+As(£x, £y, fu, fv) (1+d(fy,fv)+d(fv,fy)) .

Taking modulus on both on sides,

|d(£x, fu)| < M\ (fx, £y, fu, fv) (—'d(fx’f”)‘?d(fy’f”)‘)

+X3(fx, £y, fu, fv)|d(fx, fu)|
+)\5(f-x3 fys fuv fU)|d(fy, fU)|

Similarly, we can prove that

2
+A3(f-xa fyv fuv fv)|d(fy7 fv)l
+Xs5(Ex, £y, fu, fv)|d(fx, fu)|.

d(fx, £ d(fy, £
d(Ey, £v)| < A\ (Ex, £y, fu,fv>(' (£x, fu)l + 1d(Ey ”)')

Adding the above two inequalities, we get

ld(£x, fu)| + |d(£y, fv)| = (A1 + A3 + As)(Ex, £y, fu, fv)
(|d(£x, fu)| + d(£y, £v)).

But we know that (A\; + A3 + As)(£x, £y, fu, fv) < 1, which implies
|d(£x, fu)| + |d(fy, fv)| = 0.

Thus, it follows that |d(fx, fu)| = 0 = |d(fx, fu)|. Hence, fx = fu and fy =
fv. Finally, since £ is injective, we get x = u and y = v, which proves the assertion.

Corollary 1 Let (X, d) be complete metric space and let F, G : X* — X be two
mappings. If there exists v € [0, 1) such that

2

d(F(x, ), Gu, v) 37 <w>

forallx,y,u,v € X, then F and G have a unique common coupled fixed point.
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Proof The proof follows instantly, if we let A;, i = 1,2,...5, to be the constant
functions, \; = vy and A, = A3 = Ay = As = 0 in Theorem 1.

Example 2 Let X = {a +ia : 0 < a < 0.5} be a complete complex valued metric
space with the metric d(x, y) = |Re(x) — Re(y)| + i|Im(x) — Im(y)|. Define F :

X2 5 X by F(x,y) = (1 +1) (% + %) forall (x, y) € X2, where x = a + ia and
y=>b+ib for some a,b € [0,0.5]. Let x =a+ia,y=b+ib,u=c+ic, and
v =d + id for some a, b, c,d € [0, 0.5], then

dEG, Y, F oy = (1|t Z L
Ly Ew ) =040 g+ 5 =175
dix,u) = +1i)la—c|

d(y,v) =1 +i)|b—d|

d(x,F(x,y)) = (1+1i) a—%—b;
2
d(u, Fu, v) = (1 + i) c—f—‘—d?
2
d(x, F(u, v)) = (1+1) a—%—%
du, B x, ) = (1 +1) c—%—b;
d(y, F(y, ) = (1 +1) b_§_§
2
d(v, F(v,u)) = (1 +1) d—%—%
d(y, Fw,w) = (1 +1) b_§_§
and
dw,F(y,x)) = (1+1i) d—Z—g .

Let \;,i =1, 2, ...5 be the constant functions defined by A\; = 0.7, A, = 0.1, A3 =
0.1, Ay = 0.05, and A5 = 0.04. Then clearly F satisfies the contractive condition (1).
Thus, by Theorem 1, F has a unique coupled fixed point.
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4 Application

In this section, we apply Theorem 1 to study the existence of a solution of nonlinear
fractional differential equations.

Definition 5 [6] The Riemann-Liouville fractional integral of order ¢ for a contin-
uous function f is defined as

L)
r@Jy «=st

qu(t): dS, q>07

provided the integral exists, where I'(.) is the Gamma function, which is
defined by I'(x) = [;° ¥~ e "du.

Definition 6 [6] For atleast n—times continuously differentiable function
f :10,00) — R, the Caputo derivative of fractional order ¢ is defined by

¢ 1 L)
qu(t):f'(n—q)/o (t—s)q“—”ds’ n—1l<g<n, n=[ql+1,

where [¢g] denotes the integer part of the real number q.

Lemma 2 [6] For g > 0, the general solution of the fractional differential equa-
tion Dix(t) = 0 is given by x(t) = co +c1t + -+ co_1t" !, where c; e R, i =
0,1,....n—1(m=1[q]l+ 1.

Lemma3 [6]If(3 > a > 0and x € L]0, 1], then

i. D*IPx(t) = I°~“x(t) holds almost everywhere on [0, 1], and it is valid at any
pointt € [0, 1]ifx € C[0, 1]; *D“I°x(t) = x(t), forall t € [0, 1].
ii. “DM ! = 78— and “D°1*! = 0, A < [a]

Let

“Dix(t) = f(t,x(1), y(t))
‘DIy(t) = g(t, x(1), y(1)), 1 <q <2, tel0,1] 3)

be the system of fractional differential equations with nonlocal multi-point Caputo
derivative and integral boundary conditions

‘D7 (x(§) + y(&) = Zai ‘DY (x(ni) + y(mi) “4)

i=1

i

x(DH+y(1) = Zﬂi /(X(S) + y($)ds + i (x (i) + y(1:) ®)

i=l1 0
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X =y1)=0 (6)

1
/0 (x(6) — y(e))dt = 0 )

where “D* is the Caputo fractional derivative of order p such that 1 < g <2,0 <
o,v<1,and f,g:[0,1] x R x R — R is a given continuous function, 0 < £ <
m<m<---<n, <landay, 5;,7,i = 1,2, ..., nareappropriate real constants.

To avoid repeated use of symbols and terminologies, we fix some notations here.
Throughout this section, these notations are used in the context defined below only.
Let

Ay =¢"TQ-v)=TQ—0)) ™

i=1

Ay =1=Y (Bmi+7)

i=1
Ay = =24 ni(Bimi +27)
i=1

G=TQ2-0)IQ2-v).

Here, note that none of the constants A;, A,, and A3 are zero. Let

1
/(t 8 0(s)ds

I'(q)
R
I, = —F(q ) 0(s)ds
0
I e
13 ﬁQ(s)ds

_ 1
10 = /(lp(s);f 0(s)ds

(Th' — )1

= m@(s)ds
0

s
li -1

Ig _ / (771 —S) Q(S)ds
) I'(g)

[=)}



A Theorem on Coupled Fixed Point and It’s Application 139

1
1 —s)¢
0 — —1(*(q :)l)e(s)ds
0
1
o [ (=572
= | —_04(s)ds.
8 T'g—1
) g-—1

Next, we present a lemma which states that, the solution of the system of
linear fractional differential equations (3), supplemented with certain
boundary conditions, is equivalent to the solution a system of the integral equations

).
Lemmad Leth, k : [0, 1] > R be continuous functions. Then, the solution of the

system of linear fractional differential equations

“Dix(t) = h(t)
‘Diy(t) =k(t), 1 <q<2, tel0,1] (8)

supplemented with the boundary conditions (4—7) is equivalent to the solution of the
integral equations

n
h o MG rhtk  phtk
IV + 7374 (ziallz I3 >
=

n n
x(1) = +3 (—1}*" + Y gLy 7[16”+k>
i=1 i=1
n
A 4 (et )

n
k A3G rhtk htk
If + 5% <Za,[2 — 1! )
1

yoy =1 +5g (—If”‘ + Y BT Y Ié”") ©)
i=1 i=1

n
1 7k—h 1 7k—h t Tk—h tG rh+k _ yh+k
_517 +ZIS _518 +E('21allz 13 )
i=

Proof From Lemma 2, we can reduce (8) to the system of integral equations

x() =19h(@) + co + 1t
y(t) = 1% (t) + ¢ + c3t

where ¢, ci, ¢2, c3 € R are arbitrary constants. Thus, the general solution of the
system of fractional differential equations (8) is given by
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_ 1

x(t) = /(t F(S);] h(s)ds + co + cit (10)
1

(t)—/( F(s): k(s)ds + c3 + cst. 1)

We wish to show that (10) and (11) are the required system of integral
equations, and hence all that remains is to find the constants ¢y, ¢, c; and c3. If
now, we compute the integral of the sum of the functions x (¢) and y(¢), from O to 7;,
we find that

Ni 2
htk i
/(x(S) +y(s)ds = I + (co + c)ni + (c1 + 03)?.

0

In follow, we compute the Caputo fractional derivatives of order v and o, of the sum
of the functions x(¢) and y(¢), as follows:

1—v

DY (x(mp) + () = 1B+ Fg—_y)(cl )
l—o

‘DO +y(©) =15+ %(q +e3).

Next by using the boundary conditions (4) and (5), it is easy to derive the following
expressions:
G n
crtes=— (Z o Ik — 13’”") (12)
U \i=i

and

L +eter+oate= Zﬂilsﬂk + (CO‘*'CZ)ZB"n[

i=1 i=1

n 2 n
i
+(c1 +¢3) Zﬁi? + ot
i=1 i=1

Heo+ ) Y v+ (cr+es) Yy vimie

i=1 i=1

Then, using (12), we have
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1
o + cy = A ( ]h+k + Zﬁzlh+k + Z Vi I/‘L+k>

i=1 i=1

A3G - h+k h
SR k) 13
+2A1A2 (2& 2 3 (13)

i=

From the boundary conditions (6) and (7), we get

ci—c3=1I§" (14)
and
1
/ 117 dt + (co — ¢2) + w =0. (15)
0
Therefore, we have
_ |
co—cy=1If h—zlé‘ k, (16)

Consequently, by adding (13) and (16), we get
htk htk htk
co = A ( L+ E Gils™ + E Yilg )
A3G - Btk Atk Voo 1o
-t Py Y M
i (Z )Tl 478
Next, by adding (12) and (14), we get

G - h+k h+k 1 k—h
Clzz—Al(Zailz —13 +§IS .

i=1

After all, by using (16) and (14), we get

1 h+k h+k h+k
e = ZA(I +Zﬂ,l +Z v

i=1 i=1

A3G =~ Uy 1
k) pkeh 2 pkeh
tia.4, (;O‘ 2 3 2 Tl
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and

G 1
Ik phek ) _ gk

as desired.

Theorem 3 Let f, g : [0,1] x R x R — R be continuous functions satisfying the
Lipschitz condition: there exists a constant L > 0 such that

Lf @ x@), y(@) — g(t, u®), v(t)| = L{|x(1) —u(®)| + [y() — v}

for each t € [0, 1] and x,y € R. Then, the system of fractional boundary value
problem (3) has a unique solution on [0, 1] if LR < 1, where

2 2 3 2a, Gay [ |As]
= + + + 2
'g+1) TI'(g+2) TI'(g) 142 |41 \4|A,]
with
q+l 1+Xi|%|77,q
| + ——
Z'ﬂ r( +2) " T(q+D
and
-V gq,g—
Z| i + : (17)
u—i— ) I'(g—oc+1)

Proof Let C be the complete metric space of all continuous functions from [0, 1] to

R with the metric d(x(¢), y(¢)) = sup |x(t) — y(¢)|. Let
t€l0,1]

1= 1f(s,x(5), y(s)) — g(s, u(s), v(s))|
o = |f(s,x(5), y(s)) + g(s, x(s5), y(s)) — f(s,u(s), v(s)) — g(s, u(s), v(s))|.

Let F : C x C — C be the function defined by

f . MG [+ I+ f+
I + 3% <Zo¢i12 &~ g>

Fr(). y0) =1 435 ( I+ Zﬁ ey Zw If“’)

i= i=

et S fre S
3 =T ST+ 3% (Zl aily =1 g>
=
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and let G : C x C — C be a function defined by

Ig 4G . 'If+g _ [f+g
+ 344 Zat 2 3

G(x @), y() = i (—I”g + Zﬂll”g + 3 If“”)
i=1 i=1

Lye—f o 1ye—f _ f. 16 (v I+ f+
A g et e (Zailz g g).

i=1

Then, we have

[F(x(2), y(1)) — G(u(), v(1))]

I+ s <§ i |1} + 1;“2)
< ok (Ifz +; 1S +121|%|1
HE L+ LI+ S (Z oy I + 1;"2) :
L(lx(@) —u(@)| + y@) —v(@®)])
|:11 + 4\‘AA13||\(A;2‘ (é loi| I + 13)
= ok (14+f|ﬁills+flwlle)
b+ L+ s+ 5 (Z i | I + 13>]
LUk ) = @l + Iy = v [ 73 + 22 + 510
<
B +ﬁ+#®+%®+ﬁgﬁ].
Therefore,

dEEW), y(©), G, vt) < LR (d(x(”’y (”);d(“(”’”(t”).

Now since LR < 1, we can conclude that F and G have a unique common coupled
fixed point, using Theorem 1. Thus, the system of fractional differential equation (3)
has a unique solution.

Conclusively, we give an example in order to enhance the understanding of the above
theorem.



144 A. Santhi and S. Muralisankar
Example 3 Consider the system of fractional boundary value problem given by

CD%x(t) =t+4+1’x+siny
CD%y(t) =t+1°x+siny
¢ D% (x(0.15) + y(0.15)) = 0.8 D73 (x(0.2) + y(0.2))
+1.4 D% (x(0.7) + y(0.7))

0.2 0.7
x(1) 4+ y(1) = 0.7 /(x(s) + y(s))ds + 1.2/(x(s) + y(s))ds
0 0

4+0.4(x(0.2) + y(0.2)) + 0.5(x(0.7) 4+ y(0.7))
x'(1) —y'(1) = 0 and

1
/ () + y(t)dt = 0,
0

where ¢ =15, n=2, a1 =08, o, =14, 3, =07, =12, v =04,
v = 0.5, m =0.2, m =0.7, £=0.15, v =0.75, oc=0.5,
f(t,x,y) =t+3x +siny, and g(z, x, y) = t + t?x + sin y. Then, we have

[f(t,x,y) —g(t,x,y)| = |t +2x +siny —t — t>u — sin v|
< |£?||tx — u| + | sin y — sin v|
< |llx —ul + 1y — vl

< lx—ul+1[y—uvl.

Also it is easy to see that A} = —1.2579, A, = —0.88, and A3 = —0.524, by some
simple calculation. Now by letting L = 1, we get LR = 0.7123 < 1. Thus, the sys-
tem satisfies all the conditions of Theorem 3 and hence has a unique solution.

Conflict of interest The authors declare that they have no conflict of interest.
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Neutrosophic G*-Closed Sets and Its )
Applications glectie

A. Atkinswestley and S. Chandrasekar

Abstract Salama and Alblowi [1] developed Neutrosophic topological spaces by
using Smarandache’s Neutrosophic sets. Arokiarani et al. [2] introduced NS(«)
closed sets. Ishwarya et al. [3] introduced and studied NS semi-open sets. Dhavasee-
lan and Jafari [4] introduced Generalized Neutrosophic Closed sets. The aim of this
present paper is we introduce and study the concepts of Neutrosophic (G*)-Closed
sets and Neutrosophic (G*)-open sets in Neutrosophic topological spaces. Also, we
study the application of Neutrosophic (G*)-Closed sets.

Keywords NS(G)CS - NS(G*)CS - NS(G*)OS

1 Preliminaries

In this part, we review the required essential definition and results of Neutrosophic

Definition 1 [5] Let N% be a non-empty fixed set. A Neutrosophic set Wy is an
object having the form
1= {w, vy (W), opyr (W), ywr (wW))w € N3},
pwr (w)—mean membership function
oy (w)—mean indeterminacy
Ywr (w)—mean non-membership function.

Definition 2 [5] Neutrosophic set
WE = {{ w, pyy; (), o (W), ywr (w)) : w € N3}, on N% and Vw € N%
then complement of Wy is
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WEC = {{w, Y (W), 1 = 0ur (W), pur (W) 1 w € N}
Definition 3 [5] Let W} and Wj are Neutrosophic sets, Yw € N%
WY = {({w, pw; (W), owy (W), Yy (w)) @ w € Ny}
Wy = {(w, pwy (W), ow; (W), Yy (w)) 1 w € Ny}
Then Wi C W5 & pw; (w) < pw; (), owy (w) < ows (w)
&yw; (w) = Yy (W)
Definition 4 [5] Let W/and W; be two Neutrosophic sets that are

Wi ={ <w, yr (), oy (W), Yur (w) >: w € Ny},
Wy ={<w, s (W), oy; (W), Y (W) >:w e Ny}
Then

WiNW; ={< w, P (w)N Jrs (w), Ot (w)N O (w), Y} (w) U g (w) > w e N}
WT U W; = { < w, ,U/u)’]‘ (w) Y /Lu); (w), o—w’]‘ (w) U Uu); (w), ’Vw’]‘ (w)N ’Yu); (w)>:we Nt\’}

Definition 5 [1] Let N%, be non-empty set and N be the collection of Neutrosophic
subsets of N%, satisfying the accompanying properties:

1. ONS’INS EN’;
2. NSy iNNSr, € Nf forany NSry, NSt, € N}
3. UNS7; e Nfforevery {(NSr;:i € j} € N

Then space (N%,, N¥) is called a Neutrosophic topological space (NS-T-S). The com-
ponent of N are called NS-OS (Neutrosophic open set) and its complement is NS-CS
(Neutrosophic closed set)

Example 1 Let N¥ = {w} and Yw e N%,,

) 6 6 5 . 5.7 9
W] - <wa Ev Es E>s W2 _<w1 E7 E? E>

. 6 7 5 . 5 6 9
W3—<w’m’m’m>’ W4—<“”m’m’m>
Then the collection N} = {Oyg, Wy, W3, W5, Wi lys} is called a NS-T-S on N%.
Definition 6 (N%,, N¥) be a NS-T-S and

Wik = { <w, ,uwf (U)) » Owy (UJ) , 711)]‘ (U)) >lwe N?c‘}
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Then Neutrosophic closure of W} is
NSCIOWy) =n{L: LisaNS-CSin N} and Wf C L}
Neutrosophic interior of WY is
NSIntOWV}) = U{J :JisaNS-OSin N% and J € Wi}

Definition 7 Let (N%,, N¥) be a NS-T-S and

Wi =1 < w. gty W) 0 (W) Y () > w0 € NY)
NS(S)intOV]) = U{ J/ J is aNS(S)OS inN%, and J € Wy},
NS(S)cl(Wy) = N{ L/ Lis aNS(S)CS in N,and Wj € L }.
NS(a)intOWV}) = U{ J/ J is aNS(o)OS in N¥,and J € Wy},
NS(a)elOWV;) = N{ L/ Lis aNS(«)CS in N3, and Wy C L}.

Definition 8 Let (N, NJ) be a NSTS and Wi=< w, pyr (W), oy (W), yuw: (w) >
be a Neutrosophic set in N%,. Then W is said to be

(i) Neutrosophic b closed set [2] (N S(b)CS) if NScl(NSint(WV)) N NS int(NScl

W) < Wy,

(ii) Neutrosophic a-closed set [2] (NS(a)CS) if NScI(NSint(NScl(WVy))) € Wy,

(iii) Neutrosophic pre-closed set [7] (N (P)CS) if NScl(NSint(WV5)) € Wy,

(iv) Neutrosophic regular closed set [5] (NS(R)CS) if NScI(NSint(Wf)) = WY,

(v) Neutrosophic semi-closed set [3] (NS(S)CS) if NSint(NScl(W)) € Wy,

(vi) Neutrosophic generalized closed set [4] (N S(G)CS) if NScl(W}) € J when-
ever Wy € J and J is NSOS.

2 Neutrosophic G* Closed Sets

In this section, we introduce Neutrosophic G*-Closed sets and studied some of its
basic properties.

Definition 9 A NS Wy in (N%,, N¥) is said to be a Neutrosophic G* Closed set
(NS(G*)CS in short) if NScl(W}) € K whenever W} C KC and K is NS(G)OS in
(N, N9).

The family of all NS(G*)C'S of a NTS (N%,, N¥) is denoted by NSG*C(N%,).
Example 2 Let NS% = {w;, wy} and let NS, ={Oys, KC, 1 ys}is NT on N%,, where
K=(w, (3% i 1) (55 15 16))- Thenthe NS Wi =(w, (35, 35 16) - (55 15 15))
is NS(G*)CS in (N%,, N¥).

Theorem 1 Every NSCS is NS(G*)CS.

Proof Let Wy be a NSCS in (N%,, N¥). Then NScl(Wf) = Wf. Let Wf C K and K
is NS(G) O S in (N%,, N¥). Therefore NSclOV{) = W} € K. Thus W} is NS(G*)CS
in N%,.
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Example 3 Let N% = {w;, wy} and let NS; = {Oys, IC, 1ys}is NT on N*%., where

Then the NS Wi = (w, (3. 3. %) . (5 3 15)) is NS(G*)CS but not NSCS in
N%.

Theorem 2 Every NS(G*)CS is NS(G)CS.

Proof Let W} bea NS(G*)CS in (N%,, N*). Let W} € K and K is NSOS in (N%,,
N¥). Since every NSOS is N S(G) O S and since Wy is NS(G*)C S in N*%,. Therefore,

NScl(Wy) € K whenever W} C K, K is NSOS in N%,. Thus Wy is NS(G)CS in
N%.

Example 4 Let NS = {w;, wy} and let N* = {Oyg, K, 1 s} is NT on N%,, where

3.5 6 75 3
K={w, | = — = || = = =)
< (10 10 1o> (10 10 10>>

Then the NS Wy =(w, (i

3.2 ). (2,3, 2))is NS(G)CS but not NS(G*)CS
in N%,.

0 10° 10

Slo
-

Theorem 3 Every NS(G*)CS is NS(aG)CS.

Proof Let Wf be a NS(G*)CS in (N%,, N¥). Wy is NS(G)CSS in N%,. Since NS «
clOV;) € NScl(WY) and Wy is a NS(G)CS in N%.. Therefore NS (o )cI(WV]) €
NScl(Wy) € K whenever Wi C IC, K is NSOS in N%.. Thus Wy is NS(aG)CS in
N%.

Example 5 Let N%, = {w;, wo} and let NI = {Oys, IC, 1 y5}is NT on N%,, where K

=(w, (%’ 15_0’ %) , (%’ 150’ 10)) ThentheNS Wi ( , (110’ 150’ 10) (140’ 150’ 150))1S
NSaGCS but not NS(G*)CS in N%..

Theorem 4 Every NS(R)CS is NS(G*)CS.

Proof Let W} be a NS(R)CS in (N%,, N¥). Then W{ = NS cl(NS intONVy)). Let Wy
C Kand Kis NS(G)OS in((N%,, N¥). Therefore NS cI(Wf) € NS cI(NS intOV))).
This implies NS clOV}) € Wy € K. Thus Wy is NS(G*)CS in N¥,.

Example 6 Let NS} = {w;, wy} and let N* = {Oyng, K, 1ys}is NT on N%,, where

3 5 6 7 5 3 75 3 675 4
K=(w. (55 % 16) (i 15 70))- Then NS Wy = (w. (5. 5. 15) - (6- 15+ 76))
is NS(G*)C S but not NS(R)CS in N%,

Remark 1 NS(G*)CS is independent from NS(a)CS, NS(S)CS, N(SP)CS,
NS(SG)CS, and NS(D)CS as observed from the subsequent example.
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Example 7 Let N% = {w;, wy} and let NI = {Ong, K, 1yg5}is NT onN% where
K= (w. (5 75 1) - (6 7o 15))- Then NS Wy = {w. (55 35- 15) - (56 10+ 1))
is NS(a)CS, NS(S)CS, N(SP)CS, NS(G)CS and NS(b)CS but not NS(G*)CS in
N%

Example 8 Let N%, = {w;, wo} and let NX ={O0ys, K, 1y5}is NT on N%,, where

4 5 6 3.5 7
K=(w, | = 7w ) w7
10°10° 10/ "\ 10" 10" 10
ThenNSW; = (w, (. 3. 5%5). (% 5 15))is NS(G*)CS but neither NSaC$ nor

/ 10° 10° 10
NS(S)CSin N%,.
Example 9 Let N% = {w;, wo} and let NI = {Oys, Ky, Ko, 1ns} is NT on N,

where
5 5 5 2 5 7
Klz w, PPRIEFTSETY KR ETSETR TS )
10" 10 10 10 10 10
8 5 2 8 5 3
’C2= w, TA’ 1n’ 1n |0 TAY 1N’ 11 .
10 10" 10 10 10" 10
Then,

NSW* 5 5 5 7 5 3
=\w, TAY TN 1A ) TAY TN 1
! 10°10° 10 10°10° 10

is NS(G™)C S but neither N(SP)CS nor NS(b)CS in N%,.
Example 10 Let N%,= {w;, w,} and let N¥ = {Oys, K, 155} is NT on N%,, where

05 5) (9 5 1
K=(w (= = =) (010
10°10° 10/ \10° 10" 10

Nswr=lw (22 7\ (22 7
=A™ \ 10710010/ 7\ 107 10”10

is N(SP)CS and NS bCS but not NS(G*)CS in N¥,.

Then

Example 11 LetN%, ={w;, w;} andlet NX={Oys, K1, Ko, 155} is NT on N*%, where

5 55 2 5 17
I(:l: w? ’ ’ b 9 b
10°10° 10/ 7\ 10" 10" 10

8 5 2 8 5 2
IC2= w9 ’ ’ b 9 k
10710710/ 7\ 10" 10" 10
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Then

NS 7 5 3 7 5 3
= w’ 9 9 b 9 9
! 10°10° 10 10°10° 10

is NS(G*)C S butnot NS(G)CS in N%,.
Theorem 5 The union of two NS(G*)CS’s is NSG*CS.

Proof Let W{ and Wj be the two NS(G*)CS’s in N%, and let W U W5 C K,
where K isa NS(G)OS in N%,hence W} € K or Wj C K or both € K. Since W}
and W5 are NS(G*)CS. NSclOWV;) € K and NScl(V;) € K. Therefore, NScl(W;
U W5) € K. Thus Wy UW; isNS(G*)CS.

Remark 2 The intersection of any two N S(G*)C S sisnota NS(G*)CS in common
use the next example.

Example 12 Let N% = {w;, w} and let N¥ ={0yg, K, 1ys}is NT on N%,, where

5 5 1 0 5 1
]C =\w, PPy K TAY TN 1 .
10 10 10 10 10 10

, 25 7\ (1 5 0
NSSWT: w, TAY A A TAY TN 1A
10 10" 10 10 10" 10
. 6 5 3\ /0 5 1

W2 _<w7 <E7 Ea E)s <E7 F)v m)>

are NS(G*)CS’s in N¥%, but Wi n W5 is not a NS(G*)CS in N%..

Then

Theorem 6 If Wy is NS(G*)CS in (N%,, NZ), such that Wy € W5 C NScl(WVf).
Then W5 is also a NS(G*)CS of (N%,, NX).

Proof Let K be a NS(G)OS in (N%,, N¥) such that Wy € K, Since W; € W,
Wi € K and K be a NS(G)OS. Also since Wy is NSG*CS, NScl(Wy) € K. By
hypothesis W € NScl(Wy). This implies NScl(W5) € (NS)cI(NS)cl(WV5)) € K.
Therefore NScl(WV5) € K. Hence Wj is NS(G*)C'S of N%..

Theorem 7 If W is both NS(G)OS and NS(G*)CS of (N%,, N¥), then W is
NSCS in N7,

Proof Let Wy is NS(G)OS in N%,. Since W} € WY, by hypothesis NScl(W}) C
Wy But using the definition, W} € NScl(OAV}). Therefore NScl(WVy) = W}. Hence
Wy is NSCS of N%..

Theorem 8 Let (N%,, N¥) be a NTS. Then NS(G)O (N%,) =NS(G)C (N%,) if and
only if every NS in (N%,, N*) is NS(G*)CS in NY,.
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Proof Necessity:

Suppose that NS(G)O (N%) =NSGC(N%,). Let Wy € K and K is NS(G)OS in
N*%.. This implies NScl(W}) € NScl(K). Since K is NS(G)OS in N%.. Since by
hypothesis K is NS(G)CS in N%., NScl(K) € K. This implies NScl(W;") Cc K.
Therefore Wy is NS(G*)CS in N%,

Sufficiency: Suppose that each NS in (N%,, N*) is NS(G*)CS in N%. Let K €
NSO(N%), then K € NS(G)O (N%). Since K € K and K is NSOS in NS%,
by hypothesis NScl(KC) € K. That is £ € NS(G)C(N?%,). Hence NS(G)O(N%)
NS(G)C(N%). Let Wi € NS(G)C(N?%,) then W*C isa NS(G)OS in N%,. But
NS(G)O (N%) € NSGC(N%). Therefore, W*C € NSGC(N%). That is W*
NS(G)O(N%). Hence NS(G)C(N%) NS(G)O(N%).

Thus NS(G)O(N%) € NSGC(N%).

Theorem 9 If Wy is NSOS and a NS(G*)CS in (N%,, N¥), then

(i) Wi is NS(R)OS in N%,
(i) W is NS(R)CS in N%,

Proof (i) Let W} be an NSOS and an NS(G*)CS in N%,.. Then NScl(OVf) Wy.
That is NS int(NScl(WVy)) Wy. Since Wy is an NSOS, W is NS(P)OS in N%.
Hence Wy NSint(NScl(Wy)). Therefore W} = NSint(NScl(Wy)). Hence Wy
is NS(R)OS in N¥%,.

(i) Let W be an NSOS and a NS(G*)CS in N%,. Then NScl(OVf) Wy. That is
NScI(NSint(OVy)) Wy. Since Wy is a NSOS, Wy is NSOS in NY%,. Hence
Wi NScI(NSintOVy)). Therefore, Wy = NSint(NScl(0Vy)). Hence Wy is
NS(R)CS in N7%,.

3 Neutrosophic g*-Open Sets

In this section, we introduce Neutrosophic g*-open sets and studied some of their
properties.

Definition 10 A NS W is said to be a Neutrosophic g*-open set (NS(G*)OS in
short) in (N%,, N¥) if the complement W*C is NS(G*)CS in N%,. The family of all
NS(G*)O0S’s of a NTS (N%,, N¥) is denoted by NS(G*) O (N%, )

Theorem 10 A subset Wy of (N%., N¥)is NS(G*) O S ifand only if W5 < NSintOV;)
whenever W is NS(G)CS in N%, and W5 C Wy.

Proof Necessity: Let W} is NSG*OS in N%,. Let WJ be a NS(G)CS in N%, and
Wj € W;. Then Wi€ is NS(G)OS in N% such that W€ € W3, Since Wi € is
NS(G*)CS, we have NScl(W;i€ ) € Wi€. Hence NSint(OWV}))¢ € Wi€. Therefore
Wi C NSint(WV5).

Sufficiency: Let W C NSint(V;) whenever W5 is NS(G)CS in N%, and Wy C
Wi, Then W€ € Wi€ and W3¢ is NS(G)OS. By hypothesis, NSint((W;))¢ C
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W;€, which implies NScl(W;i€) € W€, Therefore, W€ is NS(G*)CS of N¥,.
Hence W is NS(G*)O S in N%,.
Theorem 11 Every NSOS is NS(G*)OS.

Proof Let Wi be a NSOS. Then Wf‘c is NSCS. By Theorem 1, every NSCS is
NS(G*)CS. Therefore ch is NS(G*)CS. Hence W} is NS(G*)OS.

Example 13 Let N%, = {w;, wy} and let N} ={Oys, K, 1x5}is NT on N%,, where
5 5 7 3 5 8
KZ w, TAY TN 1 ) TAY AN 1
10" 10 10 10" 10 10

2 5 7 2 5 8
NSWTZ w, PPRETRETY KA ETRET TS
10 10 10 107 10 10

is NS(G*)OS but not NSOS in N%..

Then,

Theorem 12 Every NS(R)OS is NS(G*)OS.

Proof Let W beaNS(R)OS. Then ch is NS(R)CS. By Theorem 4, every NS(R)CS
is NS(G*)CS. Therefore WTC is NS(G*)CS. Hence W} is NS(G*)OS.

Example 14 Let N%, = {w;, wo} and let N* ={Oys, K, 1ys}is NT on N%,, where

o 35 6 7 5 3
“\""\J0°10°10) \10°10° 10/

NS 35 7 4 5 6
=\w, TA 1n an VS A A A
! 10°10° 10 10°10° 10

is NS(G*)CS but not NS(R)OS in N%.

Then

Theorem 13 Every NS(G*)OS is NS(G)OS.

Proof Let W be a NS(G*)OS in (N%, N¥). Then ch is NS(G*)CS. By
Theorem 2, every NS(G*)CS is NS(G)CS. Therefore W]*C is NS(G)CS. Hence
Wi is NS(G)OS.

Example 15 Let N, ={w, w,} and let N¥ ={0Oys, K, 1y5}is NT on N%,, where

o 5 5 4 2 5 2
“\"" \J010°10) \10°10° 10 )/

Then



Neutrosophic G*-Closed Sets and Its Applications 155

NSW* 4 5 6 2 5 6

=\w PPNEETRETN ) PPNEETRETS

! " \10° 10’ 10 10°10° 10

is NS(G)OS butnot NS(G*)OS in N%,.

Theorem 14 Every NS(G*)OS is NS(aG)OS.

Proof Let Wy be a NS(G*)OS in (N%,, NX). Then Wf‘c is NS(G*)CS. By Theo-
rem 4, every NS(G*)CS is NSaGCS. Therefore Wl*c is NS(aG)CS. Hence W is
NS(aG)OS.

Example 16 Let N% = {w;, wy} and let N* = {Oys, K, 155} is NT on N%,, where

4 5 2 6 5 7
IC: w, —, T, T < ) Ty Ty T
< (10 10 10) (10 10 10)>

Nswr = lw (&2 4) (2353
P7A" \10710010/ 7\ 107 10° 10

is NS(G*)O S but not NS(G*)OS in N%,.

Then

Theorem 15 Every NS(G*)OS is NS(GSP)OS.

Proof LetW;beaNS(G*)OS in (N%,,N*). Then W;*C is NS(G*)CS.By Theorem
5, every NS(G*)CS is NS(GSP)CS. Therefore ch is NS(GSP)CS. Hence Wy is
NS(GSP)OS.

Example 17 Let N%, = {w;, wy} and let N} = {Oys, K, 1y5}is NT on N¥%,, where

555 6 5 4
K={w, | = — = || = = =)
< (10 10 1o> (10 10 10>>

NS 5 5 5 3 5 7
=\w TAY 1N 11 ’ PPNEETRETS
! > \10° 10" 10 10" 10° 10

is NS(GSP)OS however not a NS(G*)OS in N¥%,.

Then

Theorem 16 The intersection of two NS(G*)OS is NS(G*)OS.

Proof LetW; and W be the two NSG*OS’s in N, Wi € and W3 € are NS(G*)CS.
By Theorem 5, Wi UW;€ is NS(G*)CS in N%. Therefore (W; NW3)C is
NS(G*)CS. Thus Wi N W is NS(G*)OS in N

Theorem 17 The union of any two NS(G*)OS’s isnota NS(G*)OS in general as
seen in the subsequent example.
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Example 18 Let N% = {w;, w,} and let N*={0ys, I, 1y5} is NT on N¥,, where

5 5 1 0 5 1
IC: w, TA’ 1n’ 1n |0 TA’ 1N’ 11
10" 10" 10 10" 10" 10

Ns’sw*=<w (l S 3) (E S L>>
! \10°10° 10/ "\ 10" 10" 10
W*:<w (i S E) (L S £)>
2 >\10°10° 10/ \ 10" 10" 10

are NS(G™)0S’s in N%, but WfUW5 is not a NS(G*)CS in N%..

Then,

Theorem 18 Let (N%,, N¥) be a NTS. If Wy is NS of N%, then the subsequent prop-
erties are equal

(i) Wy e NS(G*)O(N%,)
(ii)) V € NSint(Wy) whenever V C Wi and V is NS(G)CS in N%,
(iii) There exists NOS’s G and Gy suchthat G, €V C G, where G = N Sint W),
YV € Wy and V is NSCS in N,

Proof (i)=(ii):LetW} € NS(G*)O(N’jY).TheanCis NS(G*)CSinN?%,. There-
fore NScl(W;€) C K whenever W€ C K and K is NS(G) O in N%,. Taking com-
plement on each sides [NScl(Wf‘C)]C D UC whenever 4% €€ > UE. Therefore
Uuc c NSint OVY) whenever UC C Wi and UCis NS(G)CS in N?% . Replacing uc
by V,V C NSint(Wy) whenever ¥V C Wy and V is NS(G)CS in N,

(ii) = (iii): V € NSint OV}) whenever V € Wy and V is NS(G)CS in N%,. Hence
NSint(V) €V C NSint(Wy) then there exists NOS’s G and G such that G| C
VY C G, where G = NSint(Wf) and G| = NSint (V).

(iii) = (i): Suppose that there exists NOS’s G and G; such that G; €V C G.
That is V € N Sint OV;). Then NScl(W;€) € V¢ whenever W€ € VC and VC is
NS(G)OSinN%,.Hence Wf‘c is NS(G*)C S in N, Therefore Wi e N S(G*) O (N%,).

Theorem 19 Let (N%,, NX) be an NTS. If WY is NS of N*,. Then for every Wy €
NS(G*)O(N%)andeveryWs € NS(N%,), NSint ;) € Wi € Wy impliesWj €
NS(G*)O(N%.

Proof By hypothesis NSintOV]) € Wi € Wy. Apply complement on each sides,
we get Wi€ C W5€ C NScI(W;€). Let Wi€ € K and K is NS(G)OS in NS%.
Since W€ € Wi, Wi€ C K. Since Wi € is NS(G*)CS,NScl(W;€) C K. There-
fore NScl(W;€) € NScl(W;€) C K. Hence W3 € is NS(G*)CS in N, Therefore
Wi is NS(G*)OS in N¥,. Thatis Wi € NS(G*) O(N%,).
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4 Applications of Neutrosophic G*-Closed Sets

In this section, we introduce Neutrosophic 7} space, Neutrosophic *T% space and
2
applications of Neutrosophic G*—closed sets.

Definition 11 A NTS (N?%,, N¥) is said to be a Neutrosophic 7} space (in short
2
NSTY) if every NS(G*)CS of (N%,, N¥) is NSCS of (N%,, N¥).
2

Theorem 20 Every Neutrosophic T% space is Neutrosophic T} space.
2

Proof Let N,be NST" a space and let W} be a NS(G*)CS of (N%, N¥). Since
2
every NS(G*)CS is NS(G)CS. By hypothesis W} is NSCS. Hence N¥, is a NST'|
2
space.

Remark 3 Every Neutrosophic T';'space need not be a Neutrosophic T% space as
2

seen from the following example.

Example 19 Let N%, = {w;, wy} and let N} = {Oys, KC, 155} is NT on N%,, where

9 5 1 9 5 1
K={w, (= < <) |77 7))
107 10" 10 107 10 10

Clearly (N%,, N¥) is Neutrosophic T} space, but not Neutrosophic T% space.
2

Theorem 21 A NTS (N%,, N*) is Neutrosophic T} space if and only if NS(G*)OS
2
(N%) = NSOS(N%,).

Proof Necessity: Let W{ be a NS(G*)OS in N*%, then Wf‘c is NS(G*)CS in N%..
By hypothesis Wy € is NSCS of N?%, and therefore Wy is NSOS of N?%,. Hence
NS(G*)OS of N%, = NSOS(N%,).
Sufficiency: Let W be a NS(G*)CS in N%, the Wf‘c is NS(G*)OS of N%,. By
our assumption W;© is and NSOS in N%,, then W is a NSCS in N S%. Hence (N,
NZ¥) is Neutrosophic T} space.

2

Theorem 22 Let (N%,, N¥) be aNTS and N*, is a NST| space then:
2

(i) Any union of NS(G*)CS is NS(G*)CS in N,
(ii) Any intersection of NS(G*)OS is NS(G*)OS in N%,.

Proof (i) Let{A;}i € jisacollectionof NS(G*)CS’sin aNST} . By hypothesis
every NS(G™)CS is an NSCS in N%,. But the union of NSCzs is an NSCS in
N*%. Therefore {UA; };c; is aNSCS in N%,. Since every NSCS is an NS(G™)CS,
{UA;}icj is NS(G™)CS in N%,. Hence any union NS(G*)CS’s is NS(G*)CS
in N%,.
(i1) It1is obvious from (i) by taking the complement.
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Definition 12 An NTS (N%,, NY¥) is said to be a Neutrosophic *T% space (in short
NS*T%) if every NS(G)CS of (N*%,, N¥) is NS(G*)CS of (N%., N¥).

Theorem 23 Every Neutrosophic T% space is a Neutrosophic *T% space.

Proof LetN%, bea NST% space and let W} be a NS(G)CS of (N%,, N¥). By hypoth-
esis Wy is a NSCS. Since every NSCS of (N%,, N¥) is a NS(G*)CS of (N%,, N¥).
Hence N7 is a NS*T'i space.

Theorem 24 A Space (N, N7) is a NST1_ space if and only if it is both NS* T%
space and NST space. i
2

Proof Necessity: It follows from Theorems 20 and 24.

Sufficiency: (N%,, N¥) is both NS*T: space and NST* space. Let W, bea NS(G)CS
of (N*%,, N¥). Since (N%,, N¥) 1saNS*T1 space, then Wi is NS(G)CS of (N%,, NY).
Since (N%,, N¥)isa NST* space, then )/V1 is NSCS of (N%,, N¥). Thus (N%,, N¥) is
aNST% space.

Theorem 25 AnNTS (N, N7)isaNeutrosophic*T, space if and only ifNS(G*)OS
(N%) = NS(G)OS(N%). i

Proof Necessity: Let W} be a NS(G)OS (N%) in NS%, then W is NS(G)CS
in N%,. By hypothesis W* isa NS(G*)CS of N%, and thus W} is NS(G"OS of
N3 Hence NS(G)OS (N%,) = NS(GMHOS (N% )

Sufﬁc1ency. Let W be an NSCS in N7,, the W*C is NS(G)OS of NS%. By our
assumption Wf‘c isa NS(G*)O Sof N%,, which implies W} is a NS(G*)CS in N%,.
Hence (N%,, N¥)isa NS*T% space.
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Serving Israeli Queue on Single Product m
Inventory System with Lead Time for oo
Replenishment

J. Viswanath, C. T. Dorapravina, T. Karthikeyan, and A. Stanley Raj

Abstract Single Non-perishable product stochastic inventory system with maxi-
mum capacity of S items is served by a single server, which serves Israeli queue.
Reorder is placed only after the level of inventory reaches zero. Customers form an
Israeli Queue to get service with at most N different groups with the consideration
of unrestricted batch size service. Service time is independent of batch size. Markov
structure of the model is identified, and state probabilities are arrived by Numeri-
cal approach using MATLAB coding. Also arrived the performance measures like
first-order product density of replenishment, mean number of groups in the System,
System throughput depends on Inventory level, mean number of groups that are
bypassed by the arriving customer. Model validated by numerical illustration.

Keywords Single product inventory system - Lead time for replenishment *
Adjustable reorder policy - Israeli queue  Unrestricted batch size service
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1 Introduction

Stochastic analysis of continuous review inventory systems has been effectively
analyzed for the past several decades. The first systematic mathematical theory of
inventory and production system is provided in the monograph of Arrow et al. [1],
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and followed by Hadley and Whitin [2]. Analysis of continuous time inventory mod-
els with the consideration of stochastic lead time was done by Zipkin [3]. Exhaus-
tive account on the inventory management has been available in the monographs
of Zipkin [4] and Porteus [5]. A new class of single perishable as well as Non-
perishable product inventory system with the consideration of Compulsory Waiting
Period (CWP) was analyzed see Refs. [6] and [7]. Single product perishable stochas-
tic inventory system with compulsory waiting time for reorder was analyzed by
Yadavalli and Udayabaskaran [8]. In inventory maintenance, storing of frozen Vac-
cines like MMRYV, Zoster, and Varicella needs specific temperature conditions. Such
inventories never be filled unless all items in the inventory are sold. In such cases,
replenishment before the inventory level reaches zero may either harm the existing
items which are in the inventory or cause loss to the owner. Once the inventory is
filled with its maximum capacity, never be filled again in between the sale unless the
items in the inventory reach level zero due to several reasons like air conditioning of
items in storage or preservation facilities for quality maintenance of the product. In
such cases, the reorder is placed only after the inventory level reaches zero.

In Medical field purchasing, the most expensive Medical devices (MRI scanner for
soft tissue imaging, CT scan for bony lesion imaging machines, INUMAC MRI scan-
ner, PET scans, Surgical Robots, Premium CT scanners and Proton Beam Therapy
systems) customers who know themselves may club together before purchasing a
single item in partnership for their common usage. Service time not be affected to
serve a product to a single individual or a group of people who lead by a leader
(the one who initiated first). Therefore, service time need not depend on the number
of persons in each group. This character among the customer who wait for getting
service resembles Israeli queue was introduced by Boxma et al. [9] in their mono-
graph while studying single-server polling system with unlimited batch size. In the
literature of queue, unlimited batch service models as an application of end user
information system namely videotext, telex network, and Time-division multiple
access systems studied by Ammar and Wong [10], Dykeman et al. [11], Liu and
Nain [12]. In the past, variety of applications of Queueing-inventory models was
analyzed see Refs. [13-24]. But in the past literature, due importance is not given
to the stochastic models of single product inventory system serve by single server
on Israeli queue disciplined customers. To fill the gap, it is proposed a stochastic
Markov model which serves Israeli queue on single product inventory system with
lead time for replenishment.

This research article is organized as follows: In Sect.2, we give model description,
Sect. 3 covers Transition rate diagram which represents the dynamism of the model
and the governing equations of the model by using stochastic Integral equation tech-
nique. In Sect. 4, important performance measures were discussed and Sect. 5 deals
with the numerical illustration to validate the model. Section 6 concludes the article.
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2 Model Description

A Non-Perishable single product inventory system is considered. Maximum stor-
age capacity of the inventory is S. Reorder is placed when the inventory level falls
to zero. Stochastic lead time starts at the time of reordering. Adjustable reorder
policy is adopted at the time of replenishment. Lead time follows exponential dis-
tribution with rate 7. Israeli queue is maintained to serve the customers through the
single server facility. Israeli Queue is maintained with batch service, restricted to
N groups. Customer arrival follows Poisson process with rate A and service time
follows exponential distribution, which is independent of lead time distribution with
parameter ;. Assumed that batch size never affects the service time duration. New
arriving customer may find that there are N batches in the system, in which each
batch headed by a leader as a representative of their own group to get service for the
whole group. The new arriving customer check all the leaders and find any one of
the leader who is familiar to him then immediately he joins the group and waiting
for the service in the group till his group turn comes for service as a batch mode.
The probability for an arriving customer to know any leader who is already wait-
ing in the queue is assumed to be p. When the arriving customer finds that there
are k(1 < k < N) groups in the system (including the group getting service at the
epoch of his arrival), then the arriving customer either joins ith group (i < k) with
probability (1 — p)'~! p or may create a new group with probability (1 — p)*. Upon
the arrival of the new customer, if there are already N groups and at the same time
arriving customer does not know any one of the existing leaders, then he joints Nth
group with probability (1 — p)V=!.

3 Governing Equations

Let X (¢) be the number of groups in the Israeli queue at time ¢ and Y (¢) be number
of items in the inventory at time ¢. Then, the two-dimensional stochastic processes
{X(#), Y ()} is a discrete valued continuous time Markov process with state space
[G,j),i=0,1,2,..,N,j=0,1,2,..., S]. In Fig. 1, out flow of each state of the
system is represented and state probabilities are as follows:

Pr(, j;1) = PriX() =i,Y() = jIX(0) =0,Y(0) = §}, (D

By probability law with the consideration of Mutually exclusive and Exhaustive
cases, we get the following Integral equations.

Pr(0, ;1) = [1+nPr(0,0; 1)@e ], (2)

Pr(i, S:1) = (M1 = p) "' Pr(i — 1, ;1) + nPr(i, 0; )]@e " r+1=mA (3
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wherei =1,2,..., N — 1.
Pr(N, S;t) =\ — p)N’IPr(N —1,8t)+nPr(N,0;t)]@e ™ 4)
Pr(0, j:t) = pPr(l, j+1;)0e™, j=1,2,...,5 — 1, (5)
Pr(N,j;t) =1 —=p)"']A\Pr(N—1,j;0)0e™, j=1,2,...S—1, (6)
Pr(i, j;0) =[(1 = p)"'APr(i — 1, jst) + pPr(i + 1, j + 1;)]@e” 1=,
wherei =1,2,..,N—-1,j=1,2,...,8S— 1. ”

Pr(N,0;1) = (1 — p)VIAPr(N —1,0; )@e™ ", (8)

Pr(i,0;0) = [(1 = p) "'APr(i —1,0; 1) + pPr(i + 1, 1; 1))@ r+A=p/ A,

©)
wherei =1,2,..., N — 1.
Pr(0,0;1) = puPr(1, 1; 1)@e~ M+t (10)
By taking Laplace Stieltjes-Transform on both sides on (2)—(10), we get
@+ N)Pr 0, S;0) =[1+nPr*(0,0; 6)], (11)

0+ s+ X1 — p)HPre@i, $;0) = (A1 — p) = Pr*(i — 1, 5; 0) + nPr* @i, 0; )], (12)
wherei =1,2,..., N — 1.
@+ Pr(N,S;0) = [\(1 — p)V'Pri(N — 1, S; 0) + nPr*(N, 0; 0)], (13)
@+ NPr, j; 0) = pPr*(1, j+1;0),j =1,2,...,5 — 1, (14)
O+ WPrs(N,j; ) =X1 - p)V'Pr*(N —1,5;60),j=1,2,...5 -1, (15)
O+ p+2X1=p)HPriG, j;0) =M1 = p) 'Prei =1, j;0) + uPriG+1, j +1; 0)]1,
wherei =1,2,.. . N—1,j=1,2,...,§ — 1. (o
@+ n)Pr*(N,0;0) = X1 — p)V "' Pr*(N — 1,0;6), 17)
O +n+X1—p))Pre@,0:0) =M1 — p) " Pr( —1,0;0) + pPr¥i +1,1; 0)],
wherei =1,2,..., N — 1. e

O+ A+m)Pr0,0;0) = pPr(l, 15 0), 19)
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and applying final value theorem of Laplace Stieltjes-Transform in (11)—(19), we get
steady-state balance equations as follows:

A7 (0, S) = (0, 0), (20)
(w+ 21 =)@, = XA —p)~tai —1,8) +nr@G,0)],i =1,2,..,N — 1,
ur(N, 8) = X1 — p)V n(N =1, 8) +nn(N, 0), 8;;

M0, j) = pm(l, j+1),j=1,2,....,8 -1, (23)

pr(N, ) =M1 —=p)V Ia(N-1,)),j=1,2,...,5—1, (24)

(L+AA = p)Hml, ) =1 —p) 'xli =1, ) +prG+1.j+1), (25
wherei =1,2,..,.N—-1,j=1,2,..., 5 —1
nr(N,0) = A(1 — p)" (N - 1,0), (26)
N+ X1 =p))r@,0) = X1 = p) 7 —1,0) + pn +1,1),  (27)
wherei =1,2,..., N — 1.
A\ +n)m(0,0) = pr(1, 1), (28)

By law of total probability, we get

N S

YN wh gy =1, (29)

i=0 j=0

Above system of Egs. (20)—(29) were solved by Matrix method of solving system
of non-homogeneous linear equations by using mathematical software MAT LAB.

4 Performance Measures

4.1 Mean Stationary Rate of Events

Let £ be any one of the events either event of occurrence of Replenishment labeled
by r or event of occurrence of demand satisfied labeled by s.

Define f¢(t) = lim s_.o Pr{an £ event in the interval (¢, t + A)}/A. Then, f¢(¢) rep-
resents the first-order product density of the £ event by Srinivasan [25]. Therefore,
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t
Stationary mean of [N (&, 1)] = / fe(@®du, (30)
0
Mean stationary rate of the event £ is

fim EVGEOT / fe(uydu, 31)
0

—>00 t t—> 00

Let us derive expressions for the first-order product densities of the events to get the
mean stationary rate of events.

4.2 First-Order Density of Replenishment

By observation, replenishment can occur in (¢, + A) in the following way: The
system is in state (7, 0), i = 1, 2, ..., N at time ¢ and replenishment takes place in the
interval (¢,t + A).

Hence, we get

N
f@6)y =" Pr(,0; 0, (32)

i=0
From this, we obtain mean stationary rate of replenishment as

N

E(r)=_ (0. (33)

i=0

4.3 Mean Number of Groups in the System Depends on
Inventory Level

Mean number of groups in the system

N S

M(g) =) in(, ), (34)

i=1 j=0

4.4 System Throughput

N

S
T={1-> m0.j)=> 70 |p (35)
j=1

i=0
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4.5 Mean Number of Groups that Are Bi-passed by the
Arriving Customer

Consider the random variable Bg, where 0 < B < N — 1, which represents the
number of groups bypassed by the arriving customer when join for service.

N-1 §

N S
Pr(Bg=0)=) Y w6, Hpd—p) '+ Y ai, Hd—p), (36)

i=1 j=0 i=0 j=0

N N
Pr(Bo=ky= ) Y ni.ppl-p " 1<ksN-1 (37

i=k+1 j=0

N-1 N S
E[Bg = k] = Z Z Y wi, Hp(l—p) ", (38)
i=k+1 j=0

5 Numerical Illustration

5.1 Observation of State Probabilities by Maintaining the
Number of Items in the Inventory Are Less Than the
Number of Groups Allowed in the System for Service

We fix the parameters A = 8, u = 15, p = 0.4, N = 4, and § = 3. The state proba-
bilities are depicted in Table 1. We observe that the sum of probabilities of the states
@,0),3G, D, E2) and (i,3),i =0, 1,2, 3,4 are decreasing due to the considera-
tion of batch service, even if the lead time in replenishment with minimum level of
inventory for reordering is zero.

Table 1 State probabilities by fixing N =4 and S =3

GJj) | Pr G Jj) | Pr @ j | Pr Gj | Pr G, j) | Pr
0,00 [0.0790 |(1,0) [0.1248 |(2,0) [0.0939 |(3,0) [0.0426 |(4,0) |0.0603
0,1) |0.1119 |[(1,1) [0.0684 |(2,1) [0.0394 |(3,1) [0.0094 |4, 1) |0.0011
0,2) ]0.0831 |(1,2) [0.0597 |(2,2) [0.0307 |(3,2) |0.0251 |(4,2) |0.0029
(0,3) ]0.0494 |(1,3) [0.0443 |(2,3) [0.0345 |(3,3) [0.0175 |4, 3) |0.0221
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5.2 First-Order Product Density of Replenishment

Control on Arrival Rate: Fixing the parameters 4 = 15,7 = 5 and p = 0.4. Main-
taining the level of inventory and number of leaders in the queue as S = 4and N = 4,
respectively. By varying arrival rate A from 5 to 10 and obtained mean stationary
rate E (r) of replenishment. The variation is tabulated in first two columns in Table 2
and depicted in Fig. 2. It is observed that when arrival rate is increased quite natural
that the mean stationary rate of Replenishment too increased due to the reason that
the inventory reaches zero often and reordering process starts for next replenishment.

Control on Service Rate: Fixing parameters A = 8,7 = 5, and p = 0.4. Maintain-
ing the level of inventory and number of leaders in the queue as S =4 and N =4,
respectively. By varying service rate p from 12 to 17 and obtained mean stationary
rate E (r) of replenishment. The variation is tabulated in 3rd and 4th columns in Table
2 and depicted in Fig. 2. It is observed that when service rate is increased as an effect
the mean stationary rate of Replenishment too increased due to the reason that more
customers get service due that the inventory meets reordering point quickly as a result.

Control on Replenishment Rate: Fixing parameters A = 8, u =15, and p = 0.4.
Maintaining the level of inventory and number of leaders in the queue as S =4
and N = 4, respectively. By varying replenishment rate 7 from 2 to 7 and obtained
mean stationary rate E(r) of replenishment. The variation is tabulated in 5th and 6th
columns in Table 2 and depicted in Fig. 2. It is observed that when replenishment rate
is increased as a result the mean stationary rate of Replenishment is too increased
due to the reason that when rate of replenishment is increased it means that expected
lead time is decreased.

Table 2 First-order product density of replenishment

A E(r) I E(r) n E(r)

5 1.1452 12 1.5196 2 1.1316
6 1.3142 13 1.5457 3 1.3539
7 1.4608 14 1.5680 4 1.4932
8 1.5869 15 1.5869 5 1.5869
9 1.6948 16 1.6033 6 1.6536
10 1.7867 17 1.6175 7 1.7029
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Fig. 1 State out flow
transition rate diagram

Fig. 2 Mean stationary rate
of replenishment
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5.3 Mean Number of Groups in the System Depends on
Inventory Level

Control on Arrival Rate: By fixing the parameters 4 = 15,7 =5, p = 0.4 and vary-
ing arrival rate A from 5 to 10. It is arrived that mean number of Groups in the System
for three different cases namely for N = S, N < S,and N > § and listed in Table 3
and depicted in Fig. 3, and it is observed that mean number of groups in the system
is increased while increasing the arrival rate independent of number of groups in the
system and number of items in the inventory.

Control on Service Rate: By fixing the parameters A = 8, n = 5, p = 0.4 and varying
arrival rate p from 12 to 17. It is arrived that mean number of Groups in the System
for three different cases namely for N = §, N < S,and N > § and listed in Table 4
and depicted in Fig.4, and it is observed that in general mean number of groups in
the system is decreased while increasing the service rate it is quite natural that more
people got service as a result number of groups in the system tending to zero.

Control on Replenishment Rate: By fixing the parameters A = 8, u =15, p = 0.4
and varying Replenishment rate 7 from 2 to 7. It is arrived that mean number of
groups in the system for three different cases namely N =S, N < S,and N > S
and listed in Table 5 and depicted in Fig.5, and it is observed that mean number of
groups in the system is decreased while increasing the replenishment rate. Since rate
of replenishment is increased it implies that mean lead time is decreased as a result
customers will get service without waiting for long period in the system intern mean
number of groups in the system decreased. It is quite natural that more people get
served and number of groups in the system tending to zero.

Fig. 3 Mean groups in the o~ Mean number of Groups
system by control on arrival
rate 2t
18]
16f
14t i
2 *
=
121
*
1 .
08 " — = # N=S
4 i N<S
06} __— N>$
04

1 15 2 25 3 3.5 4 45 5 55 6
Arrival rate variation



Serving Israeli Queue on Single Product Inventory System ...

Fig. 4 Mean number of
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Table 3 Mean number of groups in the system by control on arrival rate

A M(g)for (N =S) |M(g)for(N <S) |M(g)for (N > S)
5 0.6727 0.5137 0.9957
6 0.8349 0.6343 1.2400
7 0.9928 0.7542 1.4734
8 1.1439 0.8718 1.6925
9 1.2868 0.9862 1.8960
10 1.4210 1.0966 2.0840
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Table 4 Mean number of groups in the system by control on service rate

J. Viswanath et al.

P M(g) for (N = S) M(g) for (N <S) | M(g) for (N > )
12 1.2380 0.9855 1.8901
13 1.1724 0.9246 1.7831
14 1.1147 0.8715 1.6881
15 1.0637 0.8249 1.6033
16 1.0182 0.7838 1.5273
17 0.9775 0.7472 1.4589

Table 5 Mean number of groups in the system by control on replenishment rate

n M(g) for (N = S) M(g) for (N < S) M(g) for (N > S)
2 1.7775 1.2981 2.3830
3 1.4501 1.0650 2.0238
4 1.2624 0.9439 1.8216
5 1.1439 0.8718 1.6925
6 1.0637 0.8249 1.6033
7 1.0064 0.7924 1.5382

5.4 System Throughput Depends on Inventory Level

Control on Arrival Rate: Calculated the system throughput by fixing the parameters
w=15,n=15, p = 0.4 and and controlling the arrival rate A for three different cases
namely for N = §, N < S,and N > S and listed in Table 6 and depicted in Fig. 6. It
is observed that system throughput is increased irrespective of the level of inventory
and the number of groups in the system while arrival rate is increased. It is obvious
that since no customer impatience is considered in our model as a result if arrival
rate increases then more people get service.

Table 6 System throughput by control on arrival rate

A M(g) for (N = S) M(g) for (N < S) M(g) for (N > S)
5 4.1687 4.2602 4.3857
6 4.7299 4.8993 49716
7 5.2070 5.4706 5.4620
8 5.6104 5.9795 5.8696
9 5.9504 6.4317 6.2069
10 6.2366 6.8332 6.4857
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Fig. 6 System throughput
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Table 7 System throughput by control on service rate

P M(g) for (N = S) M(g) for (N < S) M(g) for (N > S)
12 5.2701 5.6292 5.5109
13 5.3986 5.7616 5.6474
14 55111 5.8774 5.7660
15 5.6104 5.9795 5.8696
16 5.6986 6.0700 5.9605
17 7.5256 6.1508 6.0408

Control on Service Rate: Calculated the system throughput by fixing the parameters
A=38,7=5, p=0.4 and controlling the service rate y for three different cases
(N=S,N < §,and N > 9) listed in Table 7 also depicted in Fig.7. It is observed
that system throughput is increased while service rate is increased. It is obvious that
when service rate is increased (mean service time is decreased) as a result, more
number of demands will be satisfied and system throughput is increased.

Control on Replenishment Rate: Calculated the system throughput by fixing the
parameters A = 8, ;1 = 15, p = 0.4 and controlling the replenishment rate ) for three
different cases (N = S, N < §, and N > §) and listed in Table 8 and depicted in
Fig.8. It is observed that system throughput is increased while replenishment rate
is increased. While increasing the rate of replenishment, mean lead time is reduced.
Auvailability of the product in the inventory is ensured as a result more demand will
be satisfied by the server.
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Fig. 7 System throughput by control on service rate

Table 8 System throughput by control on replenishment rate

n M(g) for (N = S) M(g) for (N < S) M(g) for (N > S)
2 4.1155 5.0168 4.2079
3 4.8546 5.5251 5.0131
4 5.3087 5.8052 5.5226
5 5.6104 5.9795 5.8696
6 5.8230 6.0970 6.1190
7 5.979%4 6.1809 6.3057
Fig. 8 System throughput i System Throughput
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Fig. 9 Mean number of Mean number of Bipass
groups that are bypassed by ' ' ' '
the arriving customer

E(BG)

5.5 Mean Number of Groups that are Bypassed by the
Arriving Customer

Fixing the parameters A = 0.1, u = 1,7 = 0.2, and p = 0.4. First by Maintaining
the number of Israeli group in the system as N = 8 and varying maximum level of
the inventory from S = 8 to 3 then it is observed that mean number of bypass by
arriving customer is increased, secondly Maintaining maximum level of inventory as
S = 8 and varying the number of Israeli group in the system for service from N =8
to 3 then it is observed that mean number of bypass by arriving customer is decreased
due to the reason that while number of groups allowed is restricted and as a result
mean number of bypass by arriving customer will be reduced. Both are depicted in
Fig.9.

6 Conclusion

We considered Single Non-perishable product stochastic inventory system with sin-
gle server that satisfies Israeli queue with the assumption of independent lead time
and service time both follow exponential distribution. Reorder is placed only after
the level of inventory reaches zero. Arrival processes followed Poisson. Consid-
ered unrestricted batch size service and service time is independent of batch size.
By Ito-integral equations, transient state equations arrived. Using Laplace transform
technique and final value theorem of Laplace transform, we arrived steady-state
equation. By Matrix algebra and the use of MAT LAB software, the system of Non-
homogeneous equations was solved. State probabilities were calculated. Effective
performance measures like first-order product density of replenishment, mean num-
ber of groups in the System, System throughput depends on Inventory level, mean
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number of groups that are bypassed by the arriving customer were derived. Effec-
tiveness of the model in terms of performance measures based on the arrival rate,
service rate, and replenishment rate was analyzed by observing the figures and tables.
Mean number of groups bypassed by the arriving customer is varying according to
the variation on number of groups in the queue and number of items in the inventory.
Number of customers served in a unit of time is increased while increase of arrival,
service, and replenishment rates. By varying the arrival, service, and replenishment
rates, as a result Mean number of replenishment is increased. Mean number of groups
in the system is fluctuated.

Acknowledgements Authors would like to extend their gratitude to the reviewers whose comments
and suggestions greatly improved the paper.
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A Multi-criteria Decision-Making )
Framework Based on the Prospect e
Theory Under Bipolar Intuitionistic

Fuzzy Soft Environment

S. Anita Shanthi and Prathipa Jayapalan

Abstract This paper deals with multi-criteria decision-making (MCDM) problem
using prospect theory. The data set of | alternatives and r criteria of MCDM problem
is represented in terms of bipolar intuitionistic fuzzy soft set (BI F'SS). A score
function on BI FSS is defined. A procedure of prospect theory based on BIFSS
is framed and it generates the B F'S prospect values by which the alternatives are
ranked. Moreover, the B F S value function curve is depicted. Finally, an illustration
is given to show the applicability of the procedure.

Keywords Bipolar intuitionistic fuzzy soft set - Prospect theory - MCDM
problem - BIFS score function
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1 Introduction

Zadeh [1] introduced fuzzy set theory. Atanassov [2] developed intuitionistic fuzzy
set theory. Jana and Pal [3] introduced BI F'SS.

In areal-life decision situation, decision-makers often face uncertainties and ambi-
guities. To tackle these, Kahneman and Tversky [4] developed a theory using prospect
values. Thillaigovindan et al. [5] proposed score values on /VIFSSRT. Tian et al.
[6] developed prospect theory on / F'S for venture capitalists.

This paper deals with prospect theory based on BI F'S'S. A score function serves
as a tool in computing the weighing function of prospect theory. The value function
curve is depicted. The applicability of the procedure is explained by an example.
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2 Score Function of BIFSS

Definition of BI F'S set is given in [7]. Here, BI F'S score function is dealt with.

Definition 1  Score function for BI F'SS:
bs _ 1y () ) (O (=117 )+ (L1 (1)
F@OD = 2 i) () @) F VR ) F27 ) () T2y ()
where W’}(e)(x) =—-1- u’}p(e)(x) — V}’,(e) (x)
and 77, () = 1 = (X) = Vi, ().
7" and 77 denote the negative and positive hesitancy, respectively of x € U, e € A.

3 MCDM Problem Based on Prospect Theory Under
BIFSS

In this section, the concepts necessary for the development of prospect theory under
BIFSS are defined. Consider U={yy, y», ..., ¥}, [ alternatives, E = {ey, e, ..., €;},
r criteria. Each alternative y; is represented as BI F'SS over U, based on the crite-
rion e;. yi; = ((1;, uf}), (V;’j, l/,-’;-)). By using prospect theory, a MCDM problem
is solved under BI F'SS. Moreover, the ranking depends on the maximum value of
BIFSS prospect value from which the desirable alternative is chosen.

Definition 2 Givena BIFSS

(F, E)={x, (1 (o) (X)s o) (X)), Wiy (X), VE (y (x) : x € X}, the BIFSS is aggre-
gated to a single value, by finding the BI F'S fuzzy degree,

Aij=1-— |M?j — Vi"j —i—,ufj — Vil;l, Vi=12,..,1, j=1,2,...,r.

Definition 3 For a BI FSS, the variable y, ; is defined as

, 1
== HE A Y= 12r

Definition 4 The BIFS value function is denoted as Bv(y; j) and is defined as
follows.

Bu(y;) = p(y;,)’ if v; =0and —7(v,)" if y;; <O.

The BIFS value function is given in the form of a power function. Moreover, if
y;j > 0 then it is a gain, and if ylfj < O then it is a loss, where s and ¢ are the BI F'S
parameters of risk attitude, p and 7 are the coefficient of BI F'S gain and loss aversion,
respectively. The parameters are givenass = 0.93,t = 0.52,7 = 2.25,and p = 1.27
from [6, 8]. From prospect theory, it is proposed that the BI F'S value function curve
is concave and convex for gains and losses, respectively, and is S shaped.

Definition 5 The B/ F'S weighting function is defined as follows:

1y
+ N\ n(bs”-+1)‘
g (bs;) = bs, A1 +(1—bs; )
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- n(bs;;+1)°
g (bs;;) = Wbs,, A1 +(1—bs,, ) "
gt and g~ lie in [0, 1]. 7, v and J are constant parameters such that 1 = 1.08,
v =0.61 and § = 0.69, respectively, from [6, 8].

Definition 6 The B F S positive prospect Bv( flj) and negative prospect
Bv(fi;) are defined as follows:

Bu(f;l) = Y g*(bs;)Bu(y;,) + BT wl Bu(y,;)
j=1

Bu(f;;) = X & (bs;))Bu(y;) + B~ w}w/ Bu(y;), i=1,2,..,1
j=1

where 3% and [~ are positive and negative prospect parameters, respectively, such
that 5t = 0.62 and 3~ = 0.49 from [6]. For an alternativ,e y; corresponding to
each e; the positive prospect and negative prospect is denoted as Bu( flJ]r) and
Bu(f;;), respectively. Further, Bu( fl;’) consists of all positive outcomes with gains
and Bu(f;;) consists of all negative outcomes with losses.

Definition 7 The bipolar intuitionistic fuzzy soft prospect value Bv(f;) is defined
as

zf +_ v +
Bu(f;) = ==, where Z = }_ Buv(f};) and
F=Z ]

Z7 =Y Bu(fj) Yi=12 .1
j=1

4 Procedure

Procedure for MCDM problem on BI F'SS:

Step: 1 Construct a BI F'SS for the alternative k; and for the criterion e;.

Step: 2 Determine );; and ylfj by Definitions 2 and 3.

Step: 3 Calculate the value function Bv( y; ;) for each alternative y; by Definition 4.
Step: 4 Compute weighting function values g*(bs;;. )yand g~ (bsl.;), in accordance to
the values of bsl.“; and bs;; by Definition 5.

Step: 5 Obtain the B F'S positive and negative prospect value Bv( flJlr) and Bv(f;;)
by Definition 6.

Step: 6 Calculate the prospect value Bv( f;) by Definition 7.

Step: 7 The alternatives are ranked depending on B F'S prospect value. Alternative
with maximum prospect value is the best.

Example 1 An expert committee decides to evaluate a group of five companies
for selection of best emerging company among the following companies K =
{k1, ko, k3, k4, ks} where k1, ko, k3, k4 and ks are the alternatives. Criteria for decid-
ing the best company are E = {ey, e;, e3, e4}, where e;= Net profit, e;= Amount of
income tax, e3=Growth rate and e4,= market value, respectively. Depending on these
criteria, the best emerging company is selected.



182

Step 1. BIFSS(F, E) data set:

S. Anita Shanthi and P. Jayapalan

U

e

e

k1

((=0.2, 0.6)(=0.3, 0.16))

((=0.19, 0.7), (—=0.24, 0.16))

ko

((=0.22,0.37), (—0.25, 0.1))

((—0.36, 0.56), (—0.4, 0.29))

k3

((=0.38,0.5), (—=0.43, 0.26))

((=0.15, 0.23), (=0.17, 0.12))

kq

((—0.3,0.68), (—0.32, 0.08))

((—0.23,0.64), (—0.33,0.14))

ks

((=0.21, 0.45), (—0.35, 0.18))

((=0.18,0.37), (=0.21, 0.07))

U

€3

e4

k1

((—0.15,0.46), (—0.35,0.04))

((—0.22,0.46), (—0.32,0.2))

ka

((=0.3,0.62), (=0.29, 0.21))

((=0.34,0.6), (0.5, 0.32))

k3

((=0.19,0.5), (—0.21, 0.07))

((—0.42,0.7), (—0.4,0.3))

ky

((=0.14, 0.22), (—0.15, 0.02))

((=0.27,0.57), (=0.29, 0.19))

ks

((—0.38,0.67), (—0.4, 0.3))

((—0.28,0.46), (—=0.38,0.1))

Step 2. The results of y; ;-

Step 3. The BIFS values fu

U el e e3 ey

k1 —0.108 —0.198 —0.206 0.048
ko 0.132 0.082 0.014 —0.032
k3 0.142 0.262 —0.036 0.028
ky —0.188 —0.208 0.204 0.008
ks 0.022 0.062 0.024 —0.052

nction Bv(ylf ;) corresponding to the criteria e;.

U el 12 e3 ey

ki —0.707 —0.969 —0.989 0.08
ko 0.193 0.124 0.024 —0.375
k3 0.207 0.365 —0.399 0.046
ka —0.944 —0.994 0.289 0.014
ks 0.036 0.09 0.039 —0.484

The value function graph is shown in Fig. 1.

Step 4. The weighting function values g™ (bsg )and g~ (bsi; ) corresponding to the criteria e;.

U el e e3 ey

k1 0.6271 0.6507 0.6269 0.577
ko 0.5649 0.5687 0.588 0.5984
k3 0.5623 0.5393 0.604 0.583
ka 0.6353 0.6366 0.5504 0.5873
ks 0.5842 0.5709 0.5852 0.5949
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LOSSES GAINS

-0.3

Fig. 1 Value function

Step 5. The BI F S positive and B F S negative prospect value Bv( flj') and Bv( flj_) corresponding
to the criteria e;.

U el e e3 ey

k1 —0.4851 —0.681 —0.7415 0.05
ko 0.142 0.07 0.015 —-0.227
k3 0.122 0.295 —0.292 0.026
kq -0.59 —0.6509 0.256 0.009
ks 0.025 0.07 0.023 —0.323

Step 6. The BI F S prospect value Buv( f;) for each alternatives are
Bv(f1) =0.026
Bu(f2) = 0.503
Bv(f3) =0.897
Bu(fs) =0.175
Bu(fs) = 0.773.

Step 7. The alternatives are ranked. From the prospect values Bv(f;), Bv(f3) is the maximum and
thus the company k3 is best emerging company.

5 Conclusion

Here, we have dealt with the prospect theory under B/ F'SS environment. The score function defined
plays a vital role in computing the weighing function. The curve depicted reveals the profits and
losses in the value function.
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Equitable Power Domination Number )
of Generalized Petersen Graph, Balanced | @i
Binary Tree, and Subdivision of Certain
Graphs

S. Banu Priya and A. Parthiban

Abstract Let G (V, E) be graph. A set S € V is said to be a power dominating
set (PDS) if every vertex u € V — S is observed by certain vertices in S by the
following rules: (i) if a vertex v in G is in PDS, then it dominates itself and all
the adjacent vertices of v and (ii) if an observed vertex v in G has k > 1 adjacent
vertices and if k — 1 of these vertices are already observed, then the remaining one
non-observed vertex is also observed by v in G. A power dominating set S C V in
G(V, E) is said to be an equitable power dominating set (EPDS), if for every vertex
v € V — § there exists an adjacent vertex u € § such that the difference between
the degree of u and degree of v is less than or equal to 1, i.e., |d(u) —d(v)| < 1.
The minimum cardinality of an equitable power dominating set of G is called the
equitable power domination number of G, denoted by y,,q(G). An edge is said to be
subdivided if the edge xy is replaced by the path: x wy, where w is the new vertex.
A graph obtained by subdividing each edge of a graph G is called subdivision of G,
and is denoted by S(G). In this paper, we establish the equitable power domination
number of subdivision of certain classes of graphs. We also obtain the equitable
power domination number of the generalized Petersen graphs and balanced binary
tree.
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dominating set - Equitable power domination number + Generalized petersen
graphs - Balanced binary tree - And subdivision graph
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1 Introduction

Only simple, finite, undirected, and connected graphs are considered in this paper. A
dominating set of a graph G = (V, E) is a set S of vertices such that every vertex v
in V — § has at least one neighbor in S. The minimum cardinality of a dominating set
of G is called the domination number of G, denoted by y,;(G) [1]. A dominating set
S € Vin G(V, E) is said to be an equitable dominating set if forevery v € V — §
there exists an adjacent vertex u# such that the difference between degree of u and
degree of v is less than or equal to 1, that is, |d(u) — d(v)| < 1. The minimum
cardinality of an equitable dominating set of G is called the equitable domination
number of G, denoted by y,,(G) [2]. A set S C V is said to be a power dominating
set (PDS) of G if every vertex u € V — S is observed by some vertices in S using the
following rules: (a) If a vertex v in G is in PDS, then it dominates itself and all the
adjacent vertices of v and (b) if an observed vertex v in G has k > 1 adjacent vertices
and if k£ — 1 of these vertices are already observed, then the remaining non-observed
vertex is also observed by v in G. The minimum cardinality of a power dominating
set of G is called the power domination number of G, denoted by y,4(G) [3].

A power dominating set S € V in G(V, E) is said to be an equitable power
dominating set, if for every vertex v € V — § there exists an adjacent vertex u € S
such that the difference between the degree of u and degree of v is less than or equal
to 1, that is, |d(u) — d(v)| < 1. The minimum cardinality of an equitable power
dominating set of G is called the equitable power domination number of G, denoted
by yepd (G) [4]. For more results, one can refer to [5, 6]. In this paper, we obtain the
equitable power domination number of the generalized Petersen graphs and balanced
binary tree (Figs. 1, 2, 3).

Fig.1 GP(9,2)

as
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Fig. 2 Balanced binary tree

Fig.3 A graph G and
subdivision of G, S(G) g S
G S(G)

2 Main Results

For the sake of convenience, by EPDS and EPDN, we mean an equitable power
dominating set and the equitable power domination number, respectively.

2.1 Egquitable Power Domination Number of the Generalized
Petersen Graphs and Balanced Binary Tree

First, we recall the definition of the generalized Petersen graph for the sake of
completeness.

Definition 1 [10] The generalized Petersen graph G P(n, k) is defined to be a
graph with V(GP,,k) = {a;,b; : 0 < i < n — 1} and E(GP,, k) =
{a; aiy1,a; bi,b; birr : 0 < i < n — 1 where the subscripts are expressed as
integers modulo n(n > 5)andk(k > 1)}.

Note

1. GP(n, k) is isomorphic to GP(n,n — k).
2. Without restriction of generality, one may consider the generalized Petersen
graph GP(n, k) withk < [(n — 1)/2].

Theorem 2 Let G P(n, k) be the generalized Petersen graph.

2,fork=1,2andm >4
Then Yepa(GP(n. b)) = { 3,form>10andk >3 °
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Proof Let GP(n,k) be the given generalized Petersen graph with
\%4 = {a1,as,...,a,,b1,b2,...,b,} and edge set E(GP(n,k)) =
{aiaiv1, aibi, bibi1 : 0 <i < n —1}. To obtain the equitable power domination
number of G P (n, k), we consider the following two cases:

Casel Fork=1,2andm >4

Without loss of generality, we choose any one of b;’s, 1 <i <ntobein S, say b;.
Note that b; equitably power dominates b3, a;, and b,,_;. Now the observed vertices
b3, ay, and b,_; have more than one non-observed vertices and so fail to observe
their neighboring vertices which leads to choose another vertex to be in EPDS. Then
one can choose either b, or b, to be in S for the sake of minimum cardinality. Now
it is easy to see that all the remaining non-observed vertices are observed by their
respective neighbors and therefore |S| = 2.

Case2 Form > 10andk > 3

Construction of EPDS is similar to Case 1.

3 Equitable Power Domination Number of the Balanced
Binary Tree

We recall a few relevant definitions needed for this section for the sake of convenience.

Definition 3 [7] A graph without cycles is called an acyclic graph and a connected
acyclic graph is called as a tree.

Definition 4 [7] A binary tree is a tree in which each vertex has at most two pendant
vertices.

Definition 5 [7] A balanced binary tree is a binary tree in which the left and right
sub-trees of every vertex differ in height by no more than one.

Theorem 6 Let B(1,k) be a balanced binary tree. Then yepq (B(1,k)) =
S22,

Proof Let B(1, k) be the given balanced binary tree on k levels with vertex set

v laarana, a5, a5, a4, 01,05, a3, a4, a5, ag, ag, g, - ..
,aj,ay, a3, a;,a;s,ag, a5, ag, ..., d,
where ay, a5, a3, ay,as,ag,a7,ag, ..., a, are the pendant vertices. To obtain an

equitable power dominating set S, without loss of generality, we choose ag to be in
S. The vertex ag equitably power dominates a; and a,. Now the vertices a; and a,
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have two non-observed vertices a,, a,andas, a,, respectively. So one has to choose
any one between a, and az, say ai, then a, is observed by ay. Again as a has two
non- observed vertices ag and a4, so one has to choose any one between a3 and ay,
say a3 Also a; in S observes a, and a2 Proceeding in the same way, finally, we
need to choose af, a3, a3, ay, as, ag,ay, ag, . .., a, as they are the pendent vertices
and there are no adjacent vertices satisfying the desired equitable property. Thus, we
obtain the sequence of vertices, namely, ao, ai, ai, a3, a{, a3, as, a7, ... and so on.
That is,

Yepa (B(1, 1)) =1

Yepd (B(1,2)) =142

Yepd (B(1,3)) = 14242}

Vepa (B(1,4)) = 1+2+22+2¢

Yepd (B(1,5) = 142422423 425

n=k

Thus yepa (B(1,k)) = 3. 2" — 21,
n=0

3.1 Equitable Power Domination Number of Subdivision
of Certain Classes of Graphs

The concept of subdivision in graphs was introduced by Trudeau, Richard J in 1993.
We recall the definition of subdivision of a graph.

Definition 7 An edge is said to be subdivided if the edge uv is replaced by the path:
uwv, where w is the new vertex. A graph obtained by subdividing each edge of a
graph G is called subdivision of the graph G, and is denoted by S(G).

Theorem 8 Let G be graph on n vertices. Then Yepa(S(G)) = Vepa (G).

Proof Let G be the given graph with V = {v;, vp,...,v,} and edge set E =
{e1, ez, ..., e,}. Obtain the subdivision of G, denoted S(G), as follows: V(S(G))
V(G)UE(G) and E(S(G)) = {(vie), (ejv;):forl <i <nandi+1<j<m—1}.
We consider the following two cases in obtaining an EPDS of S(G):

Case 1 For a vertex v; incident with ¢; for which |d(v;) — d(e;)| > 1 for at least

I3

one “7”. Then one has to choose ¢; to be in S. Thus ,,q(S(G)) > Vepa(G).

Case 2 For a vertex v; incident with e; for which |d(v;) — d(e;)| < 1forl <i <n.
Then S remains the same. Thus ¥, (S(G)) = Vepa(G).

Theorem 9 [4] Let C,, n > 3 be a cycle. Then y,pq(Cy)= 1.

Theorem 10 Let C,, n > 3 be a cycle. Then yepq(S(Cy))= 1.
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Proof Let C, be a cycle with V(C,) = {v,vs,...,v,}. When one performs
the subdivision on C,, the resultant graph is again a cycle on 2n vertices. So by
Theorem 9, ,,q(S(C,)) = 1.

Theorem 11 [4] Let P,, n > 1 be a path. Then y.pq(P,)= 1.
Theorem 12 Let P,, n > 3 be a path. Then Yepa(S(P,))= 1.

Proof Let P, be a path with V(P,) = {vy, va, ..., v,}. An easy check shows that
when one performs the subdivision on P,, the resultant graph is again a path on 2n
— 1 vertices. So by Theorem 11, we deduce that y.,q(S(P,)) = 1.

Definition 13 [7] If any two distinct vertices of a graph G are adjacent, then G is
said to be complete graph and it is denoted by K.

Theorem 14 [4] For a complete graph K, Yepa(Ky) = 1.

Theorem 15 Let S(K,) be the subdivision of a complete graph K,. Then
Yepa (S(Ky)) =m +n, forn > 5.

Proof Let K, be a complete graph with V(K,) = {vy, vz, ..., v,} and E(K,) =
{ei, ea, ..., ey }. By the definition of a complete graph, the degree of each vertex v;,
d(v;) =n—1forl <i < n.Obtain the subdivision of a complete graph K,,, denoted
by S(K,) as follows: V(S(K,)) = V; U V,, where V| = V(K,,) = {vy, v, ..., Uy}
and V, = E(K,). One can notice that the subdivided graph of a complete graph K,
gives rise to the graph such that no two adjacent vertices with |d (1) — d(v)| < 1 and
violate the equitable property. So to obtain an equitable power dominating set, one
has to choose the entire vertex set to be in EPDS. Thus |S| = m + n.

Theorem 17 For a complete bipartite graph K, ,, m, n > 4,

mn+m-+n, iflm—n|>2;
Vepd (S(Kmn)) - f| . |
1, otherwise.

Proof Let K,, , be the given complete bipartite graph with V(K,,,) = Vi U V5,
where V| = {uy, us, ..., uy} and Vo = {v, vo, ..., v,} be the two partition sets of
K »n. When we construct the subdivision of K, ,, the number of vertices of S(K,, ,,)
becomes m + n + mn. Then the following two cases arise:

Casel |m —n| > 2.

It is clear that d (u;) = n for every u; in V| and d(v;) = m for every v; in V,. And
the degree of newly added vertices is two. Since |m — n| > 2, the equitable property
does not hold well between any two adjacent vertices. Then the entire vertex set of
S(K,, ») must be chosen to form the equitable power domination set.

Case2 |m —n| <2

Let S ={u;}. Choosing one vertex from one of the partitions with degree more than
one is enough to get an equitable power dominating set S. Therefore y,pq (K n) =
1, whenever |m — n| < 2.
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Note Yepa (S(K22)) = Vepa (S(K33)) = 1.

Definition 18 [7] The wheel graph with n spokes, W, ,, is the graph that consists of
a cycle C, and one additional vertex, say u, that is, adjacent to all the vertices of the
cycle C,,.

Theorem 19 [4] For a wheel graph Wn, n > 5, yepa (W) = 2.
Theorem 20 Let Wy, n > 3 be a wheel graph. Then yepa (S(W;,)) =n + 1.

Proof Let W, , be the given wheel graph on “n + 17 vertices with V (W, ,) = {vo,
v, Vo, ..., U, } Where vy is the central vertex (the hub) and v; : 1 < i < n are the
rim vertices, and E (W ,) = {v}, v}, ..., v, uy, us, ..., u,}, where uy, ua, ..., u,
represent the spokes of W ,. It is interesting to note that the number of vertices
in the subdivision of wheel graph, S(W; ,), is 3n + 1. Now to obtain an equitable
power dominating set S, one has to choose the central vertex which is of maximum
degree and no adjacent vertices equitably power dominate with it. Also from the
remaining vertices, without loss of generality, choose v; to be in S as v; equitably
power dominates v}, v,, and u;. For v} and v/, the only non-observed vertices are
vy and v, respectively, and hence are observed. For v, and v, there are two non-
observed vertices (one in the rim and another in the spoke). So we have to choose
any one of the vertices, for the sake of minimum cardinality, we choose u, and u,
to be in S. And proceeding thus, one has to choose all the vertices in the spokes of
Win. Thus S = {vg, uy, uz,...,u,}and ISI=n+ 1.

Definition 21 [7] The gear graph G, is obtained from a wheel graph W, , by
subdividing each edge of the outer n— cycle of W, , just once.

Note 1. Gear graph G, has 2n + 1 vertices.

2. Vepd (G3) = Vepd (Gy) = L.
Definition 22 [7] Let P, be a path. Then the n— ladder graph is defined as P, x P,.

We label the vertices of the first and second copies of P, as {vy, v,,...,v, }.and
{vy, vy, ..., v}, respectively.
We call aset W = {vy, v2, U}, Uy, ... Uy—1, U, _qs Uns Vs ).

Theorem 23 For the n-ladder graph

n—1,whenS = {ve W}
PZXPnsYepd(S(PZXPn)):{ . { }
n—2,otherwise.

Proof Let G = P,x P, be the given n— ladder graph. Note that
|[V(G)| = 2n. Obtain the subdivision of P,x P, with V( S (P, x P,)) =
{U17 U2, M vns U17 Uz, e v”_ls Urn U’/,l} U{uls u23"-,u11717 v]s Uza cec vn_17 wlv wzs

..., wy}. Now one can see that |[d(u) — d(v)| < 1foreveryu,v e S (Pyx P,).Let
S denote the required equitable power dominating set of G. Then the following two
cases arise:
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Case1l When S = {v; v € W}

Without loss of generality, let S = {v;}. It is easy to see that v; equitably power
dominates u#; and w; whereas u; equitably power dominates v, and w; equitably
power dominates v,. Moreover, the vertices v,andv, have two adjacent vertices that
cannot be observed and so one has to include one vertex w, to be in S. Proceeding
this way we get yepa (S(P2 x P,))=n — L.

Case2 WhenS C V—-W

Consider S = {vs3}, then v3 equitably power dominates w, u3, and u . Now there
are two non-observed vertices for the already observed vertices wy, u3, and u . None
of them equitably power dominate any other vertices. Hence, we must choose all the
vertices wy, wy,. .., W, to be in S. Hence yepa(S (P2 x P,)) =n — 2.

Definition 24 The n-barbell graph is obtained by connecting two copies of a
complete graph K, by a bridge.

Theorem 25 [4] Let G be a n— barbell graph. Then y.,q(G) = 2, forn > 2.

Theorem 26 Let G be a n— barbell graph.
Then Yepa(S(G)) = 2(m +n) + 1, forn > 6.

Proof Let G be the given n— barbell graph with (G) = {v,va,..., vy,
vy, V), ..., U, }. Note that when we perform a subdivision on n— barbell graph,
the resultant graphs have no adjacent vertices equitably power dominating any of
its neighbors. Therefore, we must choose all the vertices to be in S. Hence y,,q
(S(G)) =2(m +n) + 1.

4 Applications

The concept of domination helps in computer and in communication to route the
information between nodes [8, 9]. Eventually power domination plays a vital role in
PMU (phase measurement unit), by minimizing the number of units that are placed
in the nodes. It is desirable to minimize the PMU and at the same time it monitors the
entire system. Circuits with high voltage may get damaged when connected with very
low voltage, and for smooth conduction of entire system, nodes with equal or tend
to be equal may have better transmission. We believe that the concept of equitable
power domination would play a vital impact in the field of electric power companies
and ad hoc networking.
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Numerical Solutions of Bivariate )
Nonlinear Integral Equations glectie
with Cardinal Splines

Xiaoyan Liu

Abstract The main objective of this work is to develop an efficient technique for
solving bivariate linear or nonlinear Volterra integral equations. The method is based
upon the cardinal spline functions on small compact supports. We express the known
and unknown functions as linear combinations of translations of the spline functions.
The integral equation is reduced to a system of algebra equations. Since the coefficient
matrix for the algebraic system is nearly triangular. It is relatively straightforward to
solve for the unknowns and an approximation of the original solution with high pre-
cision is achieved. Comparisons are made between our schemes and other techniques
proposed in recent papers, and the improvement of our method is demonstrated with
several numerical examples.

Keywords Bivariate integral equations * Nonlinear integral equations * Spline
functions + Numerical methods

1 Introduction

Since the paper [1] by Schoenberg published in 1946, spline functions have gained
more and more popularity in a variety of applications. They are piecewise polyno-
mial functions with great approximation properties and excellent flexibility. They
are very useful in the construction of wavelet bases and multi-resolution approxi-
mations. They are also optimal in the sense that they provide the signal interpolant
with the least oscillating energy. Integral equations appear in many fields, including
dynamic systems, mathematical applications in economics, communication theory,
optimization and optimal control systems, biology and population growth, contin-
uum and quantum mechanics, kinetic theory of gases, electricity and magnetism,
potential theory, geophysics, etc. Many differential equations with boundary values
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can be reformulated as integral equations. There are also some problems that can be
expressed only in terms of integral equations. Abundant papers have appeared on
solving integral equations, for example, Polyanin summarized different solutions of
integral equations in [2]. In [3, 4], We discussed numerical methods using cardinal
splines in solving systems of linear and nonlinear integral equations of one variable.
In this paper, we are going to explore the applications of cardinal splines in solving
bivariate integral equations.
We are interested in the Volterra integral equations of the second kind

x py
ux,y)=gkx,y)+ / / K(x,y,s,t,u(s,t))dtds, (x,y) € [a, b] X [c, d]
a C (l)

where the kernel K (x, y, s, t, u(s, t)) and g(x, y) are known functions, and u(x, y)
is to be determined.

This paper is divided into six sections. In Sects.2 and 3, bivariate box splines
and interpolations are presented. In Sect. 4, the applications of cardinal splines on
solving integral equations are explored. The unknown functions are expressed as
linear combinations of horizontal translations of a cardinal spline function. Then a
system of equations on the coefficients is deducted. We can solve the system and a
good approximation of the original solution is obtained. The sufficient condition for
the existence of the inverse matrix is discussed and the convergence is investigated.
In Sect. 5, the numerical examples are given. The nonlinear system on unknowns is
solved and an accurate approximation of the original solution is obtained in each
case. Section 6 contains the conclusion remarks.

2 Bivariate Box Spline

Unlike theories of univariate splines, the theory of multivariate splines is far from
complete because of the arbitrariness of the region 2 and its partitions. Fortunately,
for our purpose, we just need to consider some simple cases. Let us introduce the
concept of Box Splines (cf. [5]) first. Box splines are the natural generalization of
univariate B-splines on the uniform mesh.

Let

X, = {x!,x%, ..., x"} C Z° \{0}
be a direction set with
SpanX, = R’

and consider the affine cube
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1 1
[X,,]:[xl,xz,...,x"]z{Zt,-x’:—Egti <5 i=12...n)
i=1

since SpanX, = R’, the s-dimensional volume of [X,], denoted by vol[X,] is
positive.

Rearrange {x', x?, ..., X"} if necessary, so that vol;[x!, x?, ..., x*] > 0, and we
have the following definition of the box spline M (-|X,,) with direction set X,,.
Definition 1 Set
2 x]

1 . 1
ME ... x) = | v X E XX
0 elsewhere

Then form = s + 1, s + 2, ..., n, define, inductively,
1/2
Mx|x', x%, ..., x") = M(X — tX, X', X2, ..., x" 1) dr )

—1/2

and set M (-|X,,) = M(x|x!, x?, ..., x").

Remark. Let s = 1 andx! = x> = ... =x" = 1, then M (x|X,,) = B,(x) is the n-
th degree univariate B-spline. Furthermore, if we choose x| = x, = --- =x,= €| =
(1,0)and X, | =Xy42="- = X,= €, = (0, 1), then M ((x, y)IX,,) = B, (x)B,—_,(y)

is the tensor product of two univariate B-splines.
Naturally, Box splines have a lot of similarities as the univariate B-splines. For
example, we have the following important propositions (cf. [5]).

Proposition 1 Let X,, C Z*\ {0} with (X,,) = R®. Then the box spline M (-|1X,,) has
the following properties:

(i) suppM (-|X,,) = [X,].

(ii) M (x|X,,) > O for x in the interior of [X,,].

(iii) Set Bx,={} ') c;xi+ Y bx'i: =1 <¢; <3 bj=%3 1<ij < <
in—l = n}
where {i‘;} denotes the complementary set of {ij}sf1 with respect to {1,2,...,n}.
(Clearly, vol;Bx, = 0 and Bx, C [X,].) Then the restriction of M(-|X,) to each
component of the complements of Bx, is a polynomial of total degree n-s. (Bx, is
called the grid partition of the box spline M (-|X,,).

(iv) Let

r(X,) = min{#Y : Y C X,,, (X,,\Y) # R’} — 2.

Then M (-|X,) € C"&)(R?).

Proposition 2 For any x € R*, write

n
X = E tx'
i=1
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where each t; = t;(X) is linear in X. Then

| 1, ; 1 1 ;
(n—s)MX|Xp) = Z{(E + [i)M(X‘FEX Xp\{x'}) + (5 - ti)M(X—EX 1Xn\{x' D}

i=1

3)
whenever each M (-|1X,,\{x'}) is continuous at X:E%Xi, i=1,2,...,n.
Proposition 3
Yo M(C—jiX,) =1 4)
jeRs
Proposition 4
M(IX,) f(R0dx = / £ txdnds..d, 5)
R [-1/2,1/2]" i=1
forall f € C(RY).
Proposition 5 The Fourier transform of M (-|X,,) is
~ - 2 osin(y -xt/2)
01X =MCX)0) =[] X2 (6)

i=1

Nevertheless, box splines do not have all the properties the univariate B-splines
posses. For example, box splines do not always have minimal supports as the uni-
variate B-splines do. A function in a multivariate spline space is said to have minimal
support if there does not exist a nontrivial function in the same space that vanishes
identically outside any proper subset of this support. A spline function with mini-
mal support is called a B-spline. A lot of research has been done toward bivariate
B-splines.

3 Interpolation by Bivariate Splines

Cardinal interpolation problem by bivariate box splines can be defined as follows.
Let ¢ be a compactly supported continuous function in R*, with {¢p(27j)} €l'(Z *).
Let S(¢) be a vector space of the box spline series

> g —).
MEA

The problem of cardinal interpolation from S(¢) can be stated as follows (cf. [6]):
for a given data sequence F = {fj}, j € Z*, determine a coefficient sequence C =
{cj},J € Z°, such that
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se(X) =Y _cip (- — )

jeZ’

from S(¢) satisfies
se(k) = fi, ke Z°,

orequivalently, let ® = {¢(j)}, using the notation C * & to represent the convolution
of C with ® on Z°, then the above equations can be written as

Cxd=F.

When s = 2, the interpolation of a function f(x,y) € {” by box splines in
S32 l’: ! (£2, Ay) or S3 1 (£2, Ay) can be implemented by the above scheme. However,
other than B (x, y) € SO(.Q, Ay), the amount of calculation involved in finding the
inverse of @ gets bigger as the partition gets finer. As for By (x, y) € SV(2, Ay),
since its value is 1 at one grid point and zero at other grid points, we have ® =1, a
unit matrix and

C=F+«d '=F.

4 Numerical Methods Solving Integral Equations

We are interested in solving the bivariate linear or nonlinear Volterra integral equa-

tions (1). For integers M and N, leth = 24 gl = dN‘,x,- =a-+ihandy; =c+ jl.

Letg(x, )= X1y o0y £ BC, 200 u(r. )= Tl gy B, 50,

K(x,y,s,t,u(s, t)) =
(M,N) (M,N)

S—X; t—Yyj X=X, Yy—Y
Z Z K (Xi, yjs8pslgs Cpg) B( h 3 ] L) B( h £, ] 1),
i,j=0 p,q=0
plug into (1):
M N f i vy
Y a2 =
i=0j=0
M N f—x v —yi
ZzgijB(ih , ] L) +
i=0 j=0
X(MN)(MN) S—xo f— o
- Y — X y y
/ / > B(—-L, q)K(xl,y,,sp,zq,cpqw( S = dsdt

i,j=0 p,q=0
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Let x =x;,y=1y;:

Vi Xi M N s — X t—
Y
C"":ﬁ’+/a / DD B =K (i g 8ty €pg)dsdi (S3)

¢ p=0¢=0
i=0,1,..,N,j=0,1,2, .., M.

Remark If the integral equation (1) has a unique solution, then the linear system (S3)
is consistent. Furthermore, u(x, y) = Z?io Z?}:O cij B(*3%, *5*) approximate the
solution of (1) to a convergence rate of h2.

5 Numerical Examples
Example 1 (cf. [7]) Let (x, y) € [0, 1] x [0, 1]

M(x’)’)=g(X,)’)+/yfx(x+y—t—s)u2(s,t)dsdt
0 0

1
whereg (x,y) =x+y— T (xy) (x3 + 4x2y + 4)cy2 + y3)

Kx,y,s,t,u(s,t))=x+y—1t— )u(s, 1).
(The exact Solutionisu (x,y) =(x+y).)

For integers M = N =8, leth =1 = %.

g, y) =21 Yy g BOGE, 2,

u(x,y) =ity Y gci BOEGE, I,
K@ y.s.tous.0) = X000 SN K (. yj.5p0 1. cpg) BOFE, S BEF, 2521
Applying the above method, we get

M N

X — X y—yj
> > cijB( w1 )
i=0 j=0

M N i Yy
ZZZ&';’B( Y 1,71 L)+
i=0 j=0

+ (M,N) (M,N)

4 —X; -y S—Xxp t—

f / SY ity sy — iR BC— I A L gy

0o Jo .5 h l h )
i,j=0 p,q=0
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Let x =x;,y=1y;:

. -8 8
Yio [ S—Xxp, t—Yy 2
cij =gi,-+/0 /O > B s ) (i ¥y = sy — tg)cp dsdt

p=0 g=0

i=0,1,...,8,j=0,1,2, ..., 8. Solving the system, we obtain

[co,0 Co,1, 0,2, C0,3, €04, C0,55 C0,65 €0,7, €085 C€1,0> C1,15 C1,25 C1,35 C1,45 C1,5, C1,65
C1,7,C1,8;5 €2,0,C23,C24,C25,€C26,C27,C28; C21,C22,C30,C31,C32,C33,C34,C35,
C3,6,C3,7,C3.8; €40, C4a1,C42,C43,C44,C45,Ca6,Ca7,C48; C50,C51,C52,C53,C54,
C55,C5,6,C5.7,C58; €60, C6,1,C6,25 C6,35 C6.4, C6.5, 6,6, C6,75 6,85 €70, C7.1, €7,2, €73,
€7.4, €15, C7,6, C1,7, C7.85 8,0, C8,1, C8,2, C8.3, C8.4, C8,5, C8.,6, C8,7, C8,8] =

[0,0.125,0.25,0.375,0.5,0.625,0.75,0.875, 1, 0.125,0.24999, 0.37497, 0.499945,
0.62490, 0.74985, 0.87479, 0.99971, 1.12463; 0.25, 0.37497, 0.49992, 0.62485,
0.74975, 0.87464, 0.99951, 1.12435, 1.24917; 0.375, 0.49994, 0.624859, 0.74972,
0.87457,0.99938, 1.12416, 1.24890, 1.37360; 0.5,0.62490,0.74975,0.87457,0.99934,
1.12406, 1.24874, 1.37336, 1.49792; 0.625, 0.74985, 0.87464, 0.999381, 1.12406,
1.24868, 1.37323, 1.49770, 1.62209; 0.75, 0.87479, 0.99951, 1.12416, 1.24874,
1.37323, 1.49763, 1.62193, 1.74609, 0.875, 0.99971, 1.12435, 1.24890, 1.37336,
1.49770, 1.62193, 1.74600, 1.86990, 1, 1.12463, 1.24917, 1.37360, 1.49792, 1.62209,
1.74609, 1.86990, 1.99346]

Error < 6.6x1073.

Example 2 (cf. [7]) Let (x, y) € [0, 1] x [0, 1]
ulx,y) =g,y + / / (xs? + cos)u? (s, t) dsdt,
o Jo

where g(x, y)=xsiny (1 — éxz (sin2 y)) + %x6 (% sin (2y) — y) . (The exact solu-
tionis u (x, y) = x siny.)
LetM =N =8h=1=ggx.y) =30 30 8y BOGE, ), ulx, y) =

M N —x Yoy
> izo ijo CijB(%’ )

(M,N) (M,N) s
(xs2+cost) =Y > (ush+cosig)ed, B(
i,j=0 p,q=0

—x; —y; X —X ) —
i )])B( p Y —Yq

ho ol h’l)
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M N X—X y—Y;
> aiBC =)

i=0 j=0

M N PR
=ZZ§1’;’B( b I,TJ)-F
i=0 j=0
yopx QR OR X—=Xi Y=Yj S—Xp t—Y
// >0 ) sy + costy)en, B(——, LyB(——L, —1)dsdt
o Jo h ! h !

i,j=0 p,q=0

Let x =x;,y=y;:

NS o S—Xp =Yy 2 2
Cij = 8ij —{—/(\) [) ZZB(T, T)(Xl‘sp +COStq)Cpqudt

p=0 g=0

i=0,1,..,N,j=0,1,2,..., M. Solving the system, we obtain

[c0,0, C0.1, €025 0,35 C0,4» €0,55 C0,65 €0,7, €085 C€1,0> C1,15 C1,2, 1,3, C1,45 C1,5, C1,65
C1,7,C1,85 €2,0,€2,3,C24,C25,C26,C27,C28; C2,1,C2.2,C30,C3,1,C3,2,C33,C34,C35,
C3,6,C3,7,C3.8, C4,0,C4,1,C42,C43,C44,C45,C46,C47,C48; C50,C51,C52,C53,C54,
(5,5, C5,65 C5,7, €5,85 €6,0, C6,15 C6,25 €6,3, C6,45 6,5, C6,65 C6,7, €6,85 €7,0, C7,1, €7,2, C7,3,
€7,4,€7,5, C7,6, €7,7, C7,85 €80, C8,15 C8,2, C8,3, C8.45 C8.5, 8,65 8,7, C8.8] =

[0,0,0,0,0,0,0,0,0; 0, 0.015585, 0.03093, 0.04579, 0.05994, 0.07316, 0.08524,
0.09599, 0.10525;0,0.03117,0.06186,0.09158,0.11989, 0.14632, 0.17048, 0.19199,
0.21050, 0, 0.04676, 0.09279, 0.13738, 0.17984, 0.21950, 0.25574, 0.28800, 0.31577;
0, 0.06235, 0.12374, 0.18320, 0.23981, 0.29270, 0.34103, 0.38405, 0.42109; 0,
0.07795, 0.15470, 0.22904, 0.29982, 0.36594, 0.42637, 0.48016, 0.52649; 0, 0.09357,
0.18568,0.27491,0.35987,0.43924,0.51179, 0.57639, 0.63202; 0,0.10920, 0.21670,
0.32084, 0.42001, 0.51266, 0.59736, 0.67280, 0.73780; 0, 0.12485, 0.24777, 0.36686,
0.48027, 0.58625, 0.68316, 0.76951, 0.84395]

Error < 2.5x1073

6 Conclusion

The proposed method is a simple and effective procedure for solving bivari-
ate Volterra integral equations of the second kind. The methods can be adapted
easily to the Volterra integral equations of the first kind, which have the form
u(x,y) = f fA K(x,y,s,t,u(s,t))dtds. The methods can also be extended to the
Fredholm and Volterra integral equations of the first kind or the second kind, where
the integral is on an infinite set. The higher degree cardinal splines could also be
applied to nonlinear integral equations; the resulting system of coefficients will be a
little more complicated nonlinear systems, which takes more time and effort to solve.
Compared with the recent paper [7], our method is more effective.
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for a Discrete Fractional-Order glectie
Prey—Predator System

A. George Maria Selvam, D. Vignesh, and R. Janagaraj

Abstract Allee effect relates to the fitness of an individual and the density of the
population in an ecosystem. This type of positive association may lead to a population
size below which the persistence of the species is not possible. In this work, we
consider a fractional-order discrete-time system representing interactions of predator
and prey involving Holling type II response and Allee effect. The existence results
of the equilibrium points together with the stability of the system are discussed.
The chaotic behavior of the system is analyzed with the bifurcation theory to prove
the existence of periodic doubling and Neimark—Sacker bifurcations. The control
strategy are employed to the system to study the containment of the chaos and
simulations are performed to support the results.

Keywords Population dynamics - Fractional order - Discrete + Equilibrium
points + Stability - Allee effect - Holling type II - Bifurcation

Mathematics Subject Classification (2010) 34A08 - 37N25 - 39A28 - 39A30 -
92D25

1 Introduction

The biotic and abiotic factors in the ecosystem have a great impact on the survival of
the species population. The presence of these factors also makes the modeling of the
system in the ecosystem more complicated. Not all of these factors can be considered
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while modeling an ecosystem but some factors that are crucial, predictable, and have
greater impact are taken into consideration. Apart from these factors, there are other
aspects that are to be considered are immigration, emigration, hunting, and natural
calamities. The construction of models of the ecosystem also takes account of disease
spread among the species, spread of virus and parasite, interaction between the same
and different species.

The basis of the mathematical modeling of ecosystem revolves around the con-
servation of the species from extinction. It was in the late eighteenth-century models
were developed on the growth of population and extinction [6]. According to Malthus,
the population of species grew in a geometrical pattern. One of the most important
breakthroughs in population biology was Verhulst’s logistic model in 1838. After the
origin of the logistic model, different types of models investigating the social and nat-
ural processes in the environment have been studied. Various qualitative properties
of the system have been analysed employing bifurcation theories and understanding
of stability, periodic orbits, attractors, control strategies.

The Allee effect is a phenomenon characterizing the interrelationship between
the population density and fitness. Warder Clyde Allee was the first to describe this
concept during the 1930s [3]. He observed the growth of goldfish in presence of more
individuals in the tank that lead to the origin of Allee effect. Allee effect study has
made notable contribution to the field of mathematical biology [2, 9, 11, 13, 17].
Biological facts on the Allee function are studied in [12]. The stability analysis of
biological population model of species interaction with or without Allee effect was
studied in [16, 20].

The development of the theory of arbitrary order calculus has brought about
radical changes in the study of physical, biological and chemical processes due to
the memory and hereditary effects considered in models [15]. The behavioral analysis
of the system is better understood with a model constructed with fractional order.
The discrete version of the factional calculus has recently gained attraction and are
widely used in modeling species interactions.

The paper is organized as follows: Discretization of the fractional derivative sys-
tem is illustrated in Sect.2. Section 3 analyses the stability results of the system at
equilibrium points and the bifurcations of the discretized system is carried out using
the bifurcation theory in Sect.4. Strategies of controlling chaos are implemented in
Sect.5. Examples with Numerical simulations are presented in Sect. 6 followed by a
conclusion.

2 Mathematical Description of the Model

The system of two species interaction with Allee effect and functional response of
Holling type Il is
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dx axy X
— =rx(1—x)—
dr l4+bx |m+x

dy  dxy
dr — 1+bx

—cy (1

Here x(¢) and y(¢) denote prey and predator populations. Parameters r, a, b, ¢, d, m
of the system (1) take positive values and represents the growth rate of prey, pre-
dation rate, consumption rate, rate at which the predator grows, decline of predator
population and Allee constant, respectively.

The non-local property of the fractional order systems have been of great impor-
tance as it considers present and past stages of a population. On generalization of (1)
to arbitrary order, we have

D‘,ﬁ(x) =rx —rx?— axy x
14+bx |m+x

dxy
1+ bx

D/ (y) = cy @)
with x(0) = xo & y(0) = yg, where 3 € (0, 1] with Caputo derivative of arbitrary

4 ") (1
order defined by , D p(¢) = F(ll—ﬂ) 1, (Zfﬂ;_iﬂ

dr,fork — 1 < 8 < k.

2.1 Discretization of (2)

The transformation of continuous models into its discrete counterpart has been carried
outin[1, 4, 8, 10, 14, 19]. The discretized prey—predator system of fractional order
with Allee effect imposed is

5]
x(+1) =x@)+ A [rx(t)(l —x(1) — ax()y(t) ( x(1) )}

ra+p

1+bx@) \m+x(t)
_ N Tdx@y()
y(t+1)—y(t)+r(1+6) [1+bx(t) —Cy(t)} (3)

where 3 € (0, 1] and A > 0 is defined as time interval.

3 Stability Results

This section establishes the existence results of the equilibrium points of the system
(3). The Jury conditions are employed to the analysis of stability using Jacobian
matrices.
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3.1 Egquilibrium Points of (3) and Their Existence

Non-negative equilibrium points of the system (3) are obtained from

rx(l —x)— axy ( al ):O

14+bx \m+x
dxy
—cy=0 4
1+ bx <y @)

The Equilibrium points are

1. ESyg = (0,0)

2. ES; = (1,0)

3B, = (v, mstiome—e)
where x* = d—ch'

Theorem 1 The existence of equilibrium points satisfy

1. The equilibrium points ESy and E S| always exists.

2. Interior equilibrium point E S, exists if m > =

and ¢ < %.

3.2 Stability Analysis

Discussion of stability of (3) is carried out using Jacobian matrices at equilibrium
points. The Jacobian matrix of (3) at (x, y) is

m—bx? ax?
T y) = |:1 +A [r(l —2x) —Alj (1 + [(m+x)(1+bx)]>] — A ] :| (5)
b y d
(1bx)? 1+ A[H)i;x - C]
where A = F(i\i 7 B = ™ +;)’Ef vl From (5), we have the characteristic polyno-

mial given by

Ow) =p* —Tpu+D=0 (6)

T=2+A[r(1—2x)—B<1+m)+%—c] and D=<1+A

m—>bx? d Aladx?y
[r(l—Zx)—B(l+m>])[l+A(H—’;x—c)]—i—m are the
trace and determinant of (5). We make use of the following lemma [18] to provide
the relation between roots and quadratic equation.

Lemma 1 Therootsof © (1) = 0be 1 2. Suppose © (1) > 0, then equilibrium point
(x*, y*) is
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asinkif|p] <1, |l <1 6(=1)>060) <1

a saddle point || < 1, || > 1 (or |p| > 1, |2l < 1) & O(—1) < 0.
a source || > 1, || > 1 O(=1) >0, ®0) > 1

lpil=—1 |w| #1 < O(-1)=0T #0and 2.

complex with || = || < T2 —4D < 0, ©(0) = 1.

LRk~

Theorem 2 The equilibrium point E Sy is a

1
: : 2ra+p) |
1. source, if || > 1, ie, A > [T] .

c

1
2. saddle point for || < 1, ie,0 < X\ < [M]j .

. _ [2ra+s 5
3. non-hyperbolic for A\ = [T] .

Proof For E S, the Jacobian is

EEp—t— 0
Jes, = J(0,0) = [ rasn " , ]

Az
0 I-rme

whose eigenvalues are 1 = 1 + ﬁid)r and pu, =1 — #jrﬂ)c

Since >0for0<p<1.

N
ra+p)

(i) Since, |m| > 1. Then E Sy is unstable for ‘1 - #iﬁ)c‘ > 1 which yields

c

\ - [21“(1 +B)]3'

(i) ESp is unstable (saddle) for )1 — #jrﬂ)c) < 1, that is

2r(1 5
0< )< [<_+ﬂ>} ‘
c
(iii) Proof follows (i) and (ii).
Theorem 3 The axial equilibrium point ES) is

1 1
1. stable for d < c¢(1 + b) and A < min {[2r(i+8)]d , [z(bH)F(Hg)]d };

c(1+b)—d

r

B 3
2. unstable for d > c(1 + b) and \ > max {[21‘(1+/3)] ’ , [Z(bjllli)(:;g)]d}
1 1

3. non-hyperbolic ford = c(1 +b)or A = [MT or\A= [%m]?
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Proof For ES,, Jacobian matrix is

1— N _ N a
Jgs, = J(1,0) = ra+s " 1“(1;;/3) (1+Z1+2b)
0 T+ (i —c
whose eigen values are pu; =1 — F(Hﬂ)rand o =1+ #jrd) (ldﬁ - c). Since
)\3 :
@ ESyisstableif |1 - 7mr| < Land |14 785 (545 — o) | < 1 which yields

r

d <c(l+byand A < min {[2””5)]’,[2“’“)””5)]’}.
c(1+b)—

d

(b) ES) is unstable if |1 - s (i

‘>1and‘1+ —c)‘>1,i.e.,

A,i
ra+mn’

r

d > c(1 +b)and X > max “:ZF(I +6)T , |:2(b+ bra +ﬁ)i|j}.
c(l1+b)—

(c) Proof is similar to (a) and (b).

Jes, = |:1 + Aa;; —Aayp, } )

Aa21 1+ .A1122

From Jgs,, we get © (u) = > — T+ D = 0, with
T=2+AK;and D =1 +AK1 + A%K,. where A = #iﬁ) K| =ay +an,

_ ax* _ m—bx*
K2 =apay + apazi, B = (m+x*)(l+bx*)’ app = r(l - 2X*) - B [1 + [(m+x*)(1+bx*)]:|’
a(x*)? dy* _ _dx* :
12 = Grearee @1 = Ty and ay = e —C The eigen values are

AK, A
2 2

—4K>.

Theorem 4 The equilibrium point E S, is a
1. sink if one of the following is satisfied:

(a) IT > 0and A < Ay,
(b) IT <0and X < )3,
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2. source if one of the following is satisfied:

(a) IT >0and \ > Aq,
(b) IT <0and X > ),

3. ES,is unstable (saddle) if
a. IT>0and \ < X < A\q,
4. ES, is non-hyperbolic if one of the following is satisfied:

(a) IT >0and A\ = Ajor A = )\,
(b) IT <Oand X\ = )3,

1

T = (K> — 4K>) and \; = {F(l +5) [‘“— V’“‘”(]r

K>

N = {F(l v B [—kl—M“” As = {[J(Hﬂ)xl]]f

K> K>

4 Bifurcation Theory

The qualitative nature of a model can be investigated by bifurcation analysis. The
occurrence of bifurcation is due to a change in the critical value of a parameter based
on which bifurcation analysis is carried out. The bifurcation of a parameter reveals
the chaotic behavior of the system. The point at which the bifurcation takes place also
known as the bifurcation point is identified by standard bifurcation techniques [5].

4.1 Periodic Doubling Bifurcation

The system with change in parameter A at equilibrium point E S, has flip bifurcation
if the eigenvalue of system passes through —1 another eigenvalue is neither 1 nor
—1 [7]. When the value is varied continuously there will be a cascade of periodic
doublings.

Quadratic equation obtained from (7) is

O = 1> — 2+ AKDpu+ (1 4+ AK, + A’K>).

If IT > Qand A = )\ or \,, then

AK | A
mi2 =1+ - + E,/K% —4K;.

are the eigenvalues of (3) at E S;.
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Theorem 5 Periodic doubling bifurcation at ES, occurs for IT >0 and \ =

Ayor )\ and pp = —1,
K1/ K} —4K, — K} + 3K,
£ +1.

K>

Mo =

4.2 Neimark—Sacker Bifurcation

If the system (3) at ES; has eigen values that are complex conjugate with absolute
value 1, then the occurrence of Neimark—Sacker bifurcation is ensured [11]. From
(7), the quadratic equation is given by

O =12 — 2+ AKDp+ (1 + AK, + A’K>).

If IT < Oand A\ = A3, then

K12 . Ky 2
/Al_zzl——:tl— 4K2—K1.
2K> 2K,

are the eigenvalues at E.S;.

Theorem 6 Ar E S, Neimark—Sacker bifurcation occurs if I1 < Oand A = A3, and

K12 . K, 2
o] =|1— = +i— /4K, — K;
’ 2K, 2K,

=1

S Control Strategies

Control system with control terms introduced in (3) is

8

x(r+1)=x<r)+A—[rx(r)(l—x(t))—“’“(”y(”( *(®) )]+S(r)

ra+p) 14+bx(@®) \m+x@)
_ A dx(t)y(t)
y(f+1)—Y(l)+F(1+ﬁ) |:1+bx(t) —Cy(l)} 3

where Feedback control force is S(¢) = —s;(x () — x*) — s2(y(t) — y*) with feed-
back gains s . The Jacobian of system (8) at (x*, y*) is

v x| 1+ Aay — s —Aap — 5
Ji (x’y)_|: Aa21 ]+A6122 ]’ (9)
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the variables A, a1, a2, as1, ax; are defined in (7). The quadratic equation of (9) is

pr— Q2+ AKy — s)p + (A*Ky + AKy + 1 — Aaxsi + Aaxisy — s1) = 0.
(10)
The eigenvalues of (10) be

[i12 = (2+AK1*Sl)i\/(2+AK1*31)274(./242K2+.AK1+17_Aa22s1+_,4a2152751) and

pipr = Aazi (Aan + s2) + 1 4+ Aan(Aaxn + 1) + Aapn(l —s1) —s1 (11)

The equations p; = £1 and p;pp = 1 confirms |p; 2| < 1. Suppose p o = 1, then
(11 yields

l] : AK] + A2K2 = .AL122S1 + S1 — Aa21S2
Suppose p; = 1 or u; = —1, then equation (10) yields
b : A2K2 = Aaxs| — Aaz1s52, I3 1 2AK| + A2K2 +4 =251 + Aaxsi — Aaziss.

The lines [, [, I3 bound the triangular region inside which the eigenvalues lie.
The control system with strategy to control Neimark—Sacker bifurcation is

B

_ _ 0N B B ax(0)’y(t) >]
x(t+1)=06x@) + Fa+5) |:rx(t)(1 x(1)) ((l NP y———

+ (1= 0)x()

3
Ta+9) [dx(®)y(@)/(1 + bx(1)) — cy(1)]

+ (1 =0y (12)

yE+1) =4y +

where 0 < 0 < 1. Neimark—Sacker bifurcation can be eliminated by appropriate
choice of \. The Jacobian of (12) at (x*, y*) is

1 + (5./4(111 —(S.Aﬂlz
* k)
J2 (x Y ) - |: A5a21 1 + (5.«46122 ’ (13)
where A, a1, a2, az1, ax are given in (7). The stability of the system (12) is guar-
anteed by the presence of the eigen values within unit disk.
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1+ 1(a)

o
@

Predator Population
(=]
o

Prey Population

=]
[x)

Fig. 1 Neimark—Sacker bifurcation diagram in (A, x); (A, y) planes of the system (3)

6 Numerical Examples

This section provides some numerical examples with simulations

Example1 With g=0.8,r=0.35,a=043,6=0.1,c=04,d =095, m =
0.1,and 2.5 < A < 4.6 in system (3) and initial values x(0) = 0.5, y(0) = 0.4, equi-
librium point is ES, = (x*, y*) = (0.4396, 0.5845).

Consider B =0.1962, K| = —0.1820, K, = 0.075, [T = —0.2677, A3 =
2.7713, A = 2.4267. Eigen values are p;, = 0.7742 +i 0.6278 with |,u1,2| =1L
Conditions of Theorem (4) are obtained at E S,.

Figure 1 illustrates the chaos in system with Neimark—Sacker bifurcation. The
transition of the system from stable position to chaos are presented in Figs. 2 and 3
for A > As. The equilibrium point E S, is asymptotically stable for A < A3 =2.7713
and bifurcates at A = 3.

Example2 Let [S=08,r=035a=043,6=0.1,c=04,d =095, m =
0.1, A =2.78, and x(0) = 0.5, y(0) = 0.4. Example (1) confirms the occurrence
of bifurcation varying A € [2.5, 4.6] and unstable closed orbit at A = 2.78 is given
in Fig. 4 with ES; = (0.4396, 0.5845).

System (12) with control terms for the above chosen values becomes

~ A7 il
X+ =x0+ 5 [rx(t)(l —x(1) —ax@)y(®)/(1 +bx (1)) (m - x(t))]

SAB
ye+1) =y@+ Ta+0) [dx(@®)y(®)/(1 + bx(t)) — cy(?)] (14)
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Fig. 2 Different periodic orbits of the bifurcation of the system

with3=0.8,r =0.35,a =0.43,b=0.1,c=04,d =0.95,m = 0.1, A = 2.78,and 0 <
0 < 1. Jacobian and characteristic equation of system (14) at E S, are

+ w_ (1-120555 —0.35885
2 (¥ )_< 1.2395 6 1 :

12 — (2 —1.2055 0)p1 + 0.4447 6% — 1.2055 § + 1 = 0. Stability of the system (14) with
control terms are illustrated in Fig. 5.
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7

Conclusion

The predator—prey interaction model with Allee effect and functional response of
Holling type II is considered and stability conditions are provided at all positive
equilibrium points. The bifurcation analysis is carried out using traditional techniques
and simulations supporting results are presented. The control strategy is implemented
and controlling of chaos is numerically confirmed with simulations.
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A Distinct Method for Solving Fuzzy )
Assignment Problems Using Generalized | @@
Quadrilateral Fuzzy Numbers

D. Stephen Dinagar and B. Christopar Raj

Abstract The purpose of this paper is to present a distinct method to solve Fuzzy
Assignment Problem by assuming that a decision maker is uncertain about the pre-
cise values of the assignment costs. In the proposed method, the assignment costs are
represented by Generalized Quadrilateral Fuzzy Numbers. A new method is intro-
duced to find an optimal solution of an Assignment Problem using a new ranking
function. Anillustration is provided to strengthen the proposed method. The decision
makers can easily comprehend this method and it also enables an easier platform for
real time applications.

Keywords Fuzzy Assignment Problem(s) (FAP) - Generalized Quadrilateral
Fuzzy Number (GQFN) + Ranking function

Mathematics Subject Classification (2010) 03E72 - 90C08

1 Introduction

To assign a task or a job to the most suitable with minimal cost is the real art of
Technology. An Assignment Problem is a special case of transportation problem, in
which the goal is to assign a number of origins to equal number of destinations at a
minimum cost or maximum profit.

Theoretically, the assignment costs involved in any Assignment Problem are taken
as crisp values but in real situations, the assignment cost cannot be precise values
due to several factors. To overcome this difficulty, fuzzy numbers were introduced.
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In this paper, the assignment costs are represented as Generalized Quadrilateral Fuzzy
Numbers. A new method is proposed to find an optimal solution for an Assignment
Problem using ranking function.

Fuzzy sets and fuzzy theory were introduced by Zadeh [12]. Chanas and Kutcha
[2] presented a concept of the optimal solution for transportation problem with fuzzy
cost coefficients represented as fuzzy numbers. Amarpreet Kaur and Amit Kumar [1]
introduced new methods to find the Initial basic feasible solution and fuzzy optimal
solution in which the transportation costs are generalized trapezoidal fuzzy number.
Chi-Jen Lin, Ue-Pyng Wen [3] proposed an efficient algorithm based on the labeling
method for solving the linear fractional programming. Laxminarayan Sahoo and
Santanu Kumar Ghosh [4] used a new defuzzification method based on statistical beta
distribution. Thorani and Ravi Shankar [10] developed new classical algorithms using
fundamental theorems for Fuzzy Assignment Problems and discussed variations in
Fuzzy Assignment Problems also. Nagoor Gani and Mohamed [5] presented a new
ranking method fuzzy numbers where the Fuzzy Assignment Problem is transformed
into crisp Assignment Problem in the LPP form and solved by using LINGO 9.0.

Stephen Dinagar and Abirami [7] presented new arithmetic operations for interval
valued fuzzy numbers. Studies have been done to solve fuzzy transportation problems
using Generalized Quadrilateral Fuzzy Numbers [6, 8, 9]. In the present study, an
attempt is made to extend these ideas.

In this paper, Sect. 2 gives the basic notions, related to the present study. In Sect. 3,
the Generalized Quadrilateral Fuzzy Number(GQFN) is proposed and its arithmetic
operations are discussed. A computational procedure is given in Sect.4. A relevant
illustration is provided in Sect.5. The conclusion of the work is briefed in Sect. 6.

2 Preliminaries

In this section, some basic definitions of fuzzy sets, fuzzy numbers and arithmetic
operations of Generalized Quadrilateral Fuzzy Numbers are recalled.

2.1 Fuzzy Set

A fuzzy set A={(x, ua(x),x € A, pa(x) €[0,1]}. In this pair {(x, ua(x))}, the
first element x belongs to the classical set A and the second element 1 4 (x) belongs
to the interval [ 0, 1], called membership function.
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2.2 Convex Fuzzy Set

A fuzzy set A is convex if Hi(Axr 4+ (1 — Axp)) > min (uz(x), nz(x)), x1,x € X
and A € [0, 1]. Alternatively, a fuzzy set is convex, if all « - level sets are convex.

2.3 Fuzzy Number

A fuzzy set A on it must possess at least the following three properties to qualify a
fuzzy number:

(i) A must be a normal fuzzy set;

(ii) A must be a convex fuzzy set;

(iii) A must be closed and bounded.

2.4 Trapezoidal Fuzzy Number

A fuzzy number A= (a, b, c, d) is said to be trapezoidal fuzzy number if its mem-
bership function is given by

EZ:Z;’ a<x<b
mix) =11, b<x<c
%, c<x<d

3 Generalized Quadrilateral Fuzzy Number (GQFN)

A new fuzzy number A= (a, b, c,d; wy, w) is defined as Generalized Quadrilateral
Fuzzy Number, if its membership function is given by (Fig. 1)

leZ:Z;’ a<x<b
(x—=b)wr+(c—x)w b<x<c
(c—b) ) =
pilx) = )
W2 =gy c<x<d

0, otherwise
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Fig. 1 Generalized '
Quadrilateral Fuzzy Number #a(x)
w3
ahy
0 >

3.1 Arithmetic Operations on GQFN:

In this section, the arithmetic operations between two Generalized Quadrilateral
Fuzzy Numbers are defined on the universal set of real numbers ).

Let A| = (a1, b1, c1, di; wp1, wp2) and Ay = (a2, ba, €2, dy; wp1, 042)
(i) Addition for GQFN:

A1 @ Ay = (a1 + ap. by + by, c1 + 2. dy + dos min(wyy, 01), min(wye, 02)).
(ii) Subtraction for GQFN:

A1 © Ay = (ay —dy, by — 2, ¢1 — ca,dy — by; min(wyr, wa1), min(wy2, ®42))

(iii) Scalar Multiplication for GQFN:

)\A‘ - )\.Cl], A,blA,Cl)\,dl; (C!)A}, (,()A%) A > 0
' Ay, AciAbihay; (a)A{,a)A?) A< 0.

3.2 Ranking Function for GQFN

We propose a new ranking function )t : F (%) — R, which maps each fuzzy number
into the real number. Let A=(a, b, ¢, d; w, w,), then

- b d
- (125 (25
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4 Fuzzy Assignment Problem

4.1 Fuzzy Assignment Problem in the Tabulated Form

Workers/Jobs Job 1 Job 2 Job 3 Jobn
Worker 1 i1 2 13 cin
Worker 2 1 n 3 Con
Worker 3 31 3 33 Cn
Worker n cnl 2 Cn3 Cnn

4.2 The Mathematical Formulation of Fuzzy Assignment

Problem
n n
Min Z = ZZCL’ ®X,'j
i=1 j=1
subject to
n
Y xy=1li=123...n
j=1
n
Y oxj=1j=123...n
i=1
1 if i’ person is assigned to j* job
where x;; = p. g I
' 0 otherwise

c;j = the cost associated with assigning i’ resource to j™ activity

4.3 Computational Procedure

In this section, a computational procedure is formulated to solve the Fuzzy Assign-
ment Problem with GQFN.

Step 1:  Check whether, the number of sources is equal to the number of destina-
tions; if it is not equal, add a dummy rows or dummy columns with zeros
in assignment matrix.
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Step 2:
Step 3:
Step 4:

Step 5:
Step 6:

Step 7:

D. Stephen Dinagar and B. Christopar Raj

Convert the fuzzy assignment cost into crisp values.

Locate smallest element in each column.

If each column and each row have only one assignment, optimal solution
is reached. Otherwise go to step 5.

If any row has more than one assignment, find the penalty.

Find the maximum penalty, choose the corresponding smallest element
and make the assignment then omit the corresponding row and column
values except assignment value. If there is a tie in maximum penalty, find
difference between the next smallest elements.

Continue the process until each column and each row have only one assign-
ment.

5 Numerical Illustration

In this section, the assignment is solved with Generalized Quadrilateral Fuzzy Num-
bers (Table 1).

Solution:

Since, the number of rows is equal to the number of columns, the given problem is
balanced Fuzzy Assignment Problem (Tables 1, 2 and 3).

Table 1 Assignment problem

Workers | Jobs

J1 12 13 J4
A (3,5,6,7;0.2,0.4) (5,8,11,12;0.3,0.5) | (9,10,11,15;0.2,04) | (5,8,10,11;0.3,0.5)
B (7,8,10,11;0.3,0.6) | (3,5,6,7;0.2,0.4) (6, 8,10, 12; 0.3, 0.6) (5,8,9,10;0.2,0.4)
C (2,4,5,6;0.2,0.4) (5,7,10,11;0.3,0.6) | (8,11,13,15;0.2,0.4) | (4,6,7,10;0.3,0.6)
D (6, 8,10,12;0.3,0.6) | (2,5,6,7;0.2,0.5) (5,7,10,11;0.3,0.5) (2,4,5,7,0.2,0.4)

Table 2 Convert the fuzzy assignment cost into crisp values

Workers Jobs
J1 2 I3 J4
A 1.575 3.6 3.375 34
B 4.05 1.575 4.05 2.4
C 1.275 3.7125 3.525 3.0375
D 4.05 1.75 33 1.35




A Distinct Method for Solving Fuzzy Assignment Problems ...

Table 3 Locate smallest element in each column
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Workers | Jobs

J1 2 13 J4
A (3,5,6,7;0.2,0.4) (5,8,11,12;0.3,0.5) | (9,10,11,15;0.2,0.4) | (5,8,10,11;0.3,0.5)
B (7,8,10,11;0.3,0.6) | (3,5,6,7;0.2,0.4) (6, 8,10,12;0.3,0.6) (5,8,9,10;0.2,0.4)
C (2,4,5,6,02,04) (5,7,10,11;0.3,0.6) | (8,11,13,15;0.2,0.4) | (4,6,7,10;0.3,0.6)
D (6,8,10,12;0.3,0.6) | (2,5,6,7;0.2,0.5) (5,7,10,11; 0.3, 0.5) (2,4,5,7,02,04)

Table 4 Make the assignment and delete the other values in the corresponding rows and columns

Workers | Jobs
J1 12 13 J4
A (3,5,6,7;0.2,0.4) (5,8,11,12;0.3,0.5) | (9,10,11,15;0.2,0.4) | *
B (7,8,10,11;0.3,0.6) | (3,5,6,7;0.2,0.4) (6, 8,10, 12; 0.3, 0.6) *
C (2,4,5,6;0.2,0.4) (5,7,10,11;0.3,0.6) | (8,11,13,15;0.2,0.4) | *
D * * * (2,4,5,7,0.2,04)

Table 5 Again locate the smallest element in each column

Workers | Jobs
J1 2 I3 J4
A (3,5,6,7;0.2,0.4) (5,8,11,12;0.3,0.5) | (9,10,11,15;0.2,04) | *
B (7,8,10,11;0.3,0.6) | (3,5,6,7;0.2,0.4) (6, 8,10, 12; 0.3, 0.6) *
C (2,4,5,6,02,04) (5,7,10,11;0.3,0.6) | (8,11,13,15;0.2,0.4) | *
D * * * 2,4,5,7;02,04)

Table 6 Delete all values in the rows and columns except assignment values

Workers | Jobs
J1 12 I3 J4
A * * (9,10,11,15;0.2,04) | =
B * 3,5,6,7;0.2,04) * *
C 2,4,5,6;02,04) * * *
D * * * (2,4,5,7,02,04)

Since 4" row has more than one assignment, optimal solution is not reached. Find

the largest penalty. The largest penalty is in the 4'" column. The smallest value is (2,
4,5,7; 0.2, 0.4) and make the assignment in (D, J4), then omit the other values in
the corresponding rows and columns (Tables 4 and 5).

Now, each column and each row have only one assignment. Therefore optimal
assignment is reached (Table 6).
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The optimal assignment and the corresponding assignment cost is given below

Worker | Job Assignment cost
9,10,11,15;0.2,04)
3,5,6,7,0.2,0.4)
(2,4,5,6,0.2,0.4)
(2,4,5,7,0.2,04)

ol O w| >
=] w

Minimum Assignment cost = (9, 10, 11, 15; 0.2,0.4) + (3,5, 6,7; 0.2, 0.4)
+(2,4,5,6;02,04)+(2,4,5,7,0.2,0.4)

Minimum Assignment cost = (16, 23, 27, 35; 0.2, 0.4)

Rank of minimum Assignment cost = 7.575.

6 Conclusion

In this paper, a distinct method is employed to solve Fuzzy Assignment Problem with
Generalized Quadrilateral Fuzzy Number(GQFN). The proposed method is a system-
atic procedure and it consumes less time, less iteration as compared to the existing
methods and it provides an optimal solution. This Technique may be extended to
solve problems like transportation problems, project scheduling problems and net-
work problems.
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Eigen Value Estimates for Fractional )
Sturm-Liouville Boundary Value ek
Problem

Anil Chavada and Nimisha Pathak

Abstract In this article, we consider fractional Strum-Liouville boundary value
problem containing Caputo derivative of order @, 1 < o <2 with mixed bound-
ary conditions. We establish Cauchy—Schwarz-type inequality to determine a lower
bound for the smallest eigenvalues. We give a comparison between the smallest
eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-
Schwarz-type inequalities. The result shows that Lyapunov-type inequality gives the
worse and Cauchy—Schwarz-type inequality gives better lower bound estimates for
the smallest eigenvalues. We then use these inequalities to obtain an interval where
a linear combination of certain Mittag-Leffler functions has no real zeros.

Keywords Lyapunov inequality - Caputo fractional derivative - Cauchy—Schwarz
inequality - Mittag-Leffler function

1 Introduction

The Lyapunov inequality [6] has proved to be very useful in the study of spectral
properties of ordinary differential equations. This inequality can be stated as follows
[1]:

The nontrivial solution to the boundary value problem u' (1) +qgOu) =0,a <
t < b,u(a) = u(b) =0, exists, where g : [a, b] — R is a continuous function, then
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The research on Lyapunov-Type Inequalities (LTIs) for Fractional Boundary Value
Problems (FBVPs) has begun since 2013. In [3, 4, 7], the authors have established
LTIs for FBVPs of order o, ae(1, 2] with different boundary conditions. In [9],
Pathak obtained the LTI for FBVP of order 2 < o < 3. Jleli and Samet in [4], con-
sidered a Caputo fractional differential equation with Sturm—Liouville boundary
conditions:

ED"wy(t) +qu(t) =0,a <t <b, 1 <a <2 (1)
pu(a) —ru'(a) = u(b) = 0, (2)

where p > O,% > z:‘f andgq : [a, b] — Risacontinuous function. They established

a Lyapunov-type inequality as follows:

b p I'a
fa lg@)lds = (1+ 2w —a))m (3)

In [8], the authors obtained LTI and Cauchy—Schwarz inequality(CSI) for frac-
tional boundary value problem with Hilfer derivative of order 1 < o < 2 and with
Caputo derivative of order 2 < « < 3. Furthermore, they applied these inequalities
to improve bounds for the smallest eigenvalues to obtain intervals where certain
Mittag-Leffler (M-L) functions have no real zeros. Motivated by the above works,
we consider the problem (1)—(2) and establish CSI. As an application, we then use
this inequality to obtain an interval where a certain combination of M-L functions
has no real zeros. Moreover, we give a comparison between the smallest eigenvalues
and its lower bounds obtained from LTI and CSI.

2 Preliminaries

In this section, we recall some basic definitions which are further used in this paper.

Definition 2.1 Leto > 0 and f be areal continuous function defined on [a, b]. The
Riemann-Liouville fractional integral of order « is defined by

GI°F)(®) = (1)
and

1

I (1) = @

/ (t —)* ' f(s)ds,a > 0,¢t € [a, b].

Definition 2.2 The Caputo derivative of fractional order o > 0 is defined by
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EDf)(1) = f()

and

C pa _;/t _ ym—a—1 rm
D) = Fon—a J, (t—ys) f"(s)ds,a > 0,t € [a, b]

where m is the smallest integer greater of equal to «.

Definition 2.3 The one and two-parameter M-L functions are defined, respectively,
by

[o¢] k

z
E = —_—, (@, R; 0
«(2) kEZO Tkt D (0,7 € R;a > 0)

and
k

00
Eyp(z) == gm, (a,B,z€ Ry, B > 0).
Definition 2.4 The Laplace transform of the function
¢ (t) = tP Eq g(£A1%)
is given by

seF

LH®) = o

and its inverse relationship is given as

a—p
L“[ a /\] = 1P B 5 (£01%)
s* F

for more details, refer [5, 10].

3 Main Result

The main result of this paper is given in Theorem 3.1.

Lemma 3.1 u € Cla, b] is a solution of (1)—(2) if and only if it satisfies the integral
equation [4]
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b
u(t) :/ G(t,s)q(s)u(s)ds,t € [a, b] 4@

where G is the Green’s function associated to (1)—(2) is given by

<1+t—a>(b—s)‘H
P (r ) — (-5 a<s<t<bh,
—+b—a
p
G(LS):F(O[) <£+t—a>(b—s)"H :
)4 (}" ) 7aftfsfb.
—+b—a
p

Lemma3.2 [4]Let]l <a <2, p >0, % > a% the linear combination of certain

l)
M-L functions is given by
pEut,Z(x) + qrEut,l(x)

have no real zeros for x € (—(1 + %)F(a), 0].

Lemma 3.3 [8] The Cauchy-Schwarz-type inequality is defined by

b b
15{] / |G(t,s)q(s)|2dsdt}. (6)

Now, we consider a Caputo fractional differential equation with Sturm—Liouville
boundary condition by replacing a = 0 and b = 1 in (1)-(2) as

(7

§Du)(t) +qut) =0, 0<t<1,1 <a <2
pu(0) —ru’(0) = u(1) = 0.

We are ready to state and prove our main results.

Theorem 3.1 If a nontrivial continuous solution of the problem (7) exists, then for
(7) the Cauchy-Schwarz inequality is

2
1 PV ()4t
/0 |Q(S)|ds>{(F(a))21<2a—1)[<p> (p> -+ 1]
IO
@y (%+1)

Gef ™
/(;1 (% +z)z°‘,3(1,a)2F1(l —a, Lo+ l,t)dl}_ )

®)

where, » Fi(a, b; c; t) is a hypergeometric function and B(m, n) is a Beta function.

=
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Proof Taking CSlin (4), we get

1 1
u@) < U |G(t,s)q(s)|2dsi| [/ uz(s)ds:|.
0 0

Integrating both the sides with respect to t from 0 to 1, we get

1 1 1 1 1
/uz(t)dtf[/ f |G(t,s)q(s)|2dsdt] [/ / uz(s)dsdt],
0 0 0 0 0

which after some simplifications give

1 1 pl -1
/ lg(s)|ds > [/ f IG(t,s)Izdsdti| . 9)
0 0 0

Using Eq. (5) witha = 0 and b = 1 gives

L)1 —s)*!
(” ) — (-1 0<s<r<l,

1 §+1
G(t,s) = —— (10)
F(Ol) r a—1
(5 +1)1—5) | o
§+1 - -

Substituting (10) in (9) and simplifying, we get

i [(2) +(5)+3 i

1
/ lg($)lds > { n
0 (I(@)?Qa - 1) . \2 o
(; + 1)
1
1 —_ =
- ;/ (1 +t)ta,3(1,01)2F1(1 —o, Lo +1, l)dl} 2
(r@?(5+1)J0 \p

which concludes the proof.

4 Applications

Taking g(t) =A,a=0,b=1,p =1,and r =2 in (1)-(2), we get the following
fractional Sturm—Liouville eigenvalue problem:
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GD%yn+Amn=Q0<t<L1<a<z (11)

u(0) — 2u’(0) = u(1) = 0. (12)

Next, we give three methods to estimate the lower bound for the smallest eigenvalue
of problem (11) with boundary conditions (12) by using the following definitions
given in [8]

Definition 2.1 A Lyapunov-Type Inequality Lower Bound (LTILB) is defined as
a lower bound estimate for the smallest eigenvalue obtained from Lyapunov-type
inequality given by (3).

‘We obtain a lower bound for the smallest eigenvalue of problem (11) with bound-
ary condition (12) is:

>§rm) (13)

Definition 2.2 A Cauchy—Schwarz Inequality Lower Bound (CSILB) is defined as
an estimate of the lower bound for the smallest eigenvalue obtained from the Cauchy—
Schwarz inequality of type given in Eq. (8).

We obtain the Cauchy-Schwarz-type inequality of (11) with boundary condition
(12) is

1 19 1
>l =+ —
{<F<a)>2<2a D) [27 2a}
(14)

(ST

W/ QC+ot*B(l,anF(l —a, l;a+1, [)d;}

In [2], eigenvalues A € R of (11)—(12) are the solution of the linear combination of
certain M-L functions is:

2Eq1(=A) + Eqp(—2) = 0. 15)

Now, comparing the non-zero solutions of Eq. (15) for 1.5 < o < 2 with CSILB
given by Eq. (14) and LTILB given by the Eq. (13), we get the following comparison
figure (See: Fig. 1). This figure clearly demonstrates that between the two estimates
considered here, the LTILB provides the worse estimate and the CSILB provide
better estimate for the smallest eigenvalues of (11). We use MATHEMATICA and
MATLAB code to find the smallest eigenvalue of the M-L functions.

We consider the integer-order case, i.e., « = 2. For this case, the LTILB and
CSILB for the smallest eigen value A of (11) are given as 1.5 and 3.3310, respectively.
(See Egs. (13) and (14)). For o = 2, the problem (11)—(12) can be solved in closed
form using the tools from integer-order calculus. Results show, the smallest A of (11)—
(12) is the root of equation (15), which give the smallest A as 3.3731. Comparing
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35
!
3 F 4
—v-CSILB
25 ;// 1
<~ LTILB
2r ——LE T
151
1 L L L L
1.5 1.6 1.7 1.8 1.9 2

Fig.1 Comparison of the lower bounds for A obtained from Lyapunov-type and Cauchy—Schwarz
inequalities with the lowest eigenvalue. (— o —: LTILB; —V—: CSILB; — x —:LE-the Lowest
Eigenvalue 1)

these A with its estimate above, it is clear that between LTILB and CSILB for the
integer o the CSILB provides the best estimate for the smallest eigenvalue.

5 Conclusion

In this paper, we established Cauchy—Schwarz-type inequality for fractional Strum—
Liouville boundary value problem containing Caputo derivative of order «, 1 <
a < 2 with mixed boundary conditions to determine a lower bound for the smallest
eigenvalues. We give a comparison between the smallest eigenvalues and its lower
bounds obtained from the Lyapunov-type and Cauchy—Schwarz-type inequalities.
Results showed that Lyapunov-type inequality gives the worse and Cauchy—Schwarz-
type inequality gives better lower bound estimates for the smallest eigenvalues. We
then used these inequalities to obtain an interval where a linear combination of certain
Mittag-Leffler function has no real zeros.
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Abstract We develop a ball convergence for a fifth-order method to find a solution
for an equation. Earlier studies used conditions on the sixth derivative not present
in the methods. Moreover, no error estimates are provided. That is why we used
conditions up to the second derivative. Numerical experiments validate the theoretical
results.

Keywords Steffensen’s method + Newton’s method
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1 Introduction

In this article, we find a solution ¢, of equation

g() =0, ey

with g : D € R — R and D is convex.
Chebyshev’s, Halley’s, Euler’s, Super Halley’s, [1-28] use the second derivative
g” making them expensive in nature. In the current work, we analyze the local con-
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vergence of the Steffensen-type method of order four defined foreachn =0, 1, 2, ...
by

N 2g(t)
T+ VT =2A)8(1)

2(g(ta)+8(sn))
8(tn)

fnt1 = = ) @) 1860
— 2 8 W) (gUn)TES))
I+ \/1 2 g(t)?

Sp =

(@)

where 1, is an initial point and A, = % Method (2) was studied in [17]. It was

shown that the order of convergence is five using the derivative of order six. Observe
that the iterative procedure (2) uses four functional evaluations per step. Therefore,
the efficiency index EI = pﬁ , where p gives the convergence order and m indicates
the number of functional evaluations, and E/ = 5% = 1.4953. Consider an example,
for ¢ on D = [—1, 3] like

Sns? 457 —s5% 5 #0

mn={QS=Q 3
Choose t, = 1. We have

@' (s) = 35 Ins? + 55* — 45 + 252, ¢'(1) = 3,
@ (s) = 6sIns> +20s> — 125> + 10s
¢"(s) = 61ns? + 60s> — 24s + 22.

But then function ¢ is not bounded on D. In this work, conditions only on the first

Fréchet derivative are used, so we can expand method (2). This is done in Sect.?2.
The experiments appear in Sect. 3.

2 Ball Convergence

Consider the parameters /; > 0,/ > 0, m; > 1 and m, > 0, and functions u; and
uy on [0, %) defined as

1 4m?m,

1) = l L ‘,

“O =it ain?
scalar R4 by

2
2+ 1

R4
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and
() =u;(t) — 1.

We have that 111 (0) = —1 < 0, and

4m3myR
i (Ry) = 2 > 0,
(1 —Lira)?
since 20’3’;}%“ = 1. By the Intermediate Value Theorem (IVT), u; has roots on

(0, R4). Denote by R; the minimal such zero. Moreover, let p and i, be on [0, E)
as
p(@) =2mimy(1 + uy ()t — (1 — L)’

and
u,(t) =p@) —1.
1

Then, it,(0) = —1 < Oandu,(t) — +ooast — ﬂ_' It follows that function i, has

a minimal zero in (0, ﬁ) denoted by R,,. Furthermore, let functions u, and i, be on
[0, +) by

_ 1 Zmzm%(l + uq(t))t
)=S0 B A

+ 2mqu (1)1}

and
uy(t) = up(t) — 1.

Then, we get again that 4,(0) = —1 < 0 and u(R4) > 0. It follows that function
> has aleast zero R, € (0, R,). Set

R = min{Ry, R2, R,}. 4)

Then, we get that for each ¢ € [0, R)

0<ui(t)<l, )

0=<p@® <1, (6)
and

0<u@) < 1. @)

Let the closed and open balls in R be denoted by B (v, p) and B(v, p), respectively.

Theorem 1 LetW : D C R — R be twice differentiable. If there exist t, € D, || >
0,1 >0,my > 1, and mp, > 0 so thatVt, s € D,
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g(t) =0, g(1) #0, ®)
lg(t) ™" (1) — g < lilt — 1., ©)
18t~ (g() — g())| < Lolt — 51, (10)
lgt) " ()] < m (11)
lg(t) '8 (O] < ma (12)
and i
B(t., R) C D, (13)

with R given by (4). Then, lim,_,,, t, = t, and for e, = ||t, — t.|l,
|sn - t*| =< ul(en)en <e, < R, (14)

and
|tn+1 - t*| =< MZ(en)en < éy. (15)

Moreover, if S € [R, %) with B(t*, S) C D, then t, is the unique solution of (1) in
B(,, S).

Proof The estimations (14) and (15) are shown using mathematical induction as
follows. Using the conditions #y € B(t,, R) — {t.}, (4), and (9), we obtain

|g(t) ' (8(t0) — gt < lieo < LR < 1. (16)

It follows from (16) that g(fy) % 0 and

lg(to) gt < (17)

1 —lleo.

We can write by (8) that

1
8(10) = g1o) — g(t) = / gt +y(to — t.)(to — t)dy. (18)
0

Notice that |t, + y (o — t.) — t.]| = yeo < R, for each y € [0, 1]. That is ¢, +
y(ty — ti) € B(t,, R). Then, by (11) and (18), we get

1
lg(t) " g(to)] < | fo g(t) gt + v (to — 1) (to — t)dy | (19)

= mjey.
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We also have by (12)
lg(t) g (to)| < mo. (20)

In view of (6), (17), (19), and (20), we have in turn the estimate

1240] < 2|Ao] < 2g(t) " g (t0)|1g(t) " g (ko)1 (t) " g (t0)| > (21)
- 2mimaeq
T (1 —1lie9)?
2mimo R
< ——7 <1,
(1 —15R)?

sol —2A( > 0. Hence, sg exists. Then, by (2), (4), (5), (8), (10), (17), and (19)—(21),
we get in turn

IS0 — t.] < |t — t. — g(t0) ' g(10)] (22)

+I1 - l1g(t0) " g(to)

2
14+ J/1-2A,
1
< lg(to) gl / g(t) (gt + vty — 1)) — (1)) (to — t)dy |
0
n 2| Ay|
[T+ /1 —2A0?
126(2) 2|A0|I’)11€0
- 2(1—[16‘0) 1—1160
lze(z) Zm%mze(z)
T 2(1—lieg) (1 —lep)?
=uji(eg)eyg < ey < R.

lg(to) " g(t)Ig(t) " g(t0)]

|Aol

Using (6), (17), (19), (20), and (22), we get the estimations

g'(10)(g(to) + g(So))|
g(t)?
8(t) '8 (1) (g(1) " g (o) + g ()~ g (50))
(g(t)~1g(10))?
2mima(eo + |so — to * |)
- (1 —l1e9)?
2mima(1 + uy(ep))eo
- (1 —l1e9)?
21’1111’112(1 +Lt1(R))R
(1—-11R)?

2|

=2

<1,

SO
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8 (t0) (g (to) + g(50))

By=1-2 2(10)? > 0. 23)
‘We need the estimate
2 +
1g(t0) — %ﬁﬁ’”n )] (24)
_ |g(t0)(\/BT)— 1) — 2g(so) ()|
1+ B, "
< |28 (fo)g(lo)(g(l;)) + gz(So)) ()]
(14 /Bo)?g(to)
g(so)
+2 1 +\/—|| gty

_ 2807 "¢/ (10)]1g(1.) " g (10)1(1g(10)| + 1g(s0)|1g (1) ™" ])
lg(t)~1g (1)
+2g(so)l1g(t) ™"
- 2m2ma(1 + uy (eo))e’
- (1 —Lep)?

+ 2myuy(ep)ep.

Moreover, we can write

1o —t, =ty — 1y — g(to) g (to) (25)
(g(o) + g(s0)), 1
-2 .
+(g(t0) 1+ /—BO g(tO)

Then, by (4), (7), (17), and (23)—(25), we get

ti — t] < lto — t. — g(to) " g (to)]
ety — 280+ 860)

B 8@ A {ORF]
< lzeg
- 2(1 —lle())
1 2mom3(1 +uj(eo))el
+1 —lieg (1 —l1ep)?
+2myu;(ep)eol

= uz(@o)e‘() <e) < R.

By simply replacing 1y, so, #; by #, Sk, tx+1 in the previous calculations, with
uz(ep) € [0, 1) we obtain estimates (14) and (15). Using the estimate |t — t,| <
It — 1] < R, we get that fi € B(t,, R) and limy o, 1 = 1. Let O = [ g(s. +
y(t, — sy)dy fors, € B(t*, S) with g(s,) = 0. By (8) we obtain
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1
1g(t) (0 — g(t))] < / Lilss +y (te — s0) — tldy (26)
0
1
< / (I =)t — s4ldy < l—lS <1,
o 2

so Q isinvertible. Hence form the identity 0 = g(#,) — g(sx) = Q(tx — 84), tx = Sx.
O

3 Numerical Examples

Example 1 Set D = R. Define function g on D by
g(t) = sin(zr). 27)
Hence, for ¢, = 0,1y =1, = m; = my = 1. The parameters are
R4 =0.6667, R =0.1935, R, = 0.3008, R, = 0.0892 = R.
Example 2 Set D = [—1, 1]. Consider function g on D by
gy =e —1. (28)
By (28)andf, =0, wehavel; = e — 1 <, = e,m; = my = 2. The radii are
R4 =0.3249, R; = 0.0451, R, = 0.1007, R, = 0.0104 = R.
Example 3 By 3, we get /|, = [, = 146.6629073, m; = m, = 2. The scalars are
R4 =0.0045, R; =0.0022, R, = 0.0059, R, =0.0012 = R.
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Discrete Fractional Sumudu Transform m)
by Inverse Fractional Difference e
Operator

M. Meganathan, S. Vasuki, B. Chandra Sekar, and G. Britto Antony Xavier

Abstract In this paper, our aim is to develop the discrete Sumudu transform using
generalized difference operator. As an application of this transform, the solutions
for fractional difference equations with initial conditions are derived. Also, we have
obtained discrete Sumudu transform of certain functions and properties are derived.

Keywords Generalized difference operator - Fractional difference + Sumudu
transform - Gamma function - Polynomial factorial

1 Introduction

Continuous fractional calculus has been developed by Miller and Ross [20], Oldham
and Spanier [23] and Podlubny [24]. Due to its extensive applications in the diverse
branches of science and engineering, the discrete fractional calculus has turned out to
be the object of many researchers [2—6, 16]. Lately discrete delta fractional calculus
has been extended by Atici and Eloe [1], Goodrich [17], and Holm [18]. FFor the
modern developments of the theory of discrete fractional calculus, applications of
Mittag-Leffler function and fractional integral inequalities can be referred [7-12, 15,
19, 21, 27].

By applying the integral transforms like Mellin, Laplace, Fourier, the solutions
of differential equations were acquired. These transforms were made use for the pos-
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sible effective changes by a signal in the time domain into a frequency s-domain in
the field of Digital Signal Processing (DSP) [26]. Recently in [22, 25], the applica-
tions of fractional Fourier transform in X-ray models and simulations are developed.

The article is organized as follows: In Sect. 2, the conceptual idea about delta
and its inverse difference operators are presented elaborately. Then we have moved
on to derive the discrete Sumudu transform and its functions in Sect. 3. In order to
validate, some applications of fractional difference equation with initial conditions
are discussed in Sect. 4. Finally in Sect. 5, we have presented the conclusion.

2 Discrete Fractional Calculus

In this section, we present some basic definitions and results on generalized difference
operator. Let
M,y ={r,r+h,r+2h,..}, wherer € R. (D

Definition 1 For the function u(t), the h-difference operator A, is defined by

Apu(t) = M, )

and its sum is given by

Al u(ty =hY u(t +ih), (3)
i=0

Definition 2 [14] (page 5, Definition 2.6) For & > 0 and « € R, the falling h-

polynomial factorial function is defined by

@ _pa LGHD

L N Oy @

where f” = land £ + 1, £ + 1 —a, ¢ {0, -1, -2, -3, ...).

Definition 3 Let u be defined on M, , and « > 0. Then the fractional sum of u is
given by

t/h—a
—a _ . (a—1) .
A ) = s j_Zr/h(t — oG u(hh, t € Moo (5)

In particular, when o = 0, we get

A u(t) = u(t), t € M,y (6)
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Definition 4 Let u be the function defined on M, ;, a > 0, then the Riemann—
Liouville fractional difference of u is given by

P Au(t) =AM ALY u(), £ € Mysar—an- (7)
Theorem 1 Let u be defined on M, , and a, B > 0, then we have
A% ATPu(t) = A Pu(t), t € Mygpim—an- (8)

Definition 5 Let u be the function defined on M, ;,, « > 0, then the a'"—order
Caputo fractional difference of u is given by

rCAhau(l‘) = A;(Mia)rAhMu(l‘), t e Mr+M—a,h- 9

3 The Discrete Sumudu Transform

Definition 6 The generalized Sumudu transform of the function u is given by

h oo
Sen {u} () == ;/ eon/n)(0 (1), u(t)Apt,r € R, (10)

In particular case for M, j, the discrete Sumudu transform is defined by

ha~( n V"
Sr,h{u}m):;Z(m) u(j+r). (1)

j=0

Definition 7 A function u on M, j, is of exponential order (o > 0)if 3 A > Osuch
that
lu(t)| < Ao’ for large ¢. (12)

Remark 1 Throughout this paper, we use the following sufficient condition in all
results, Vn € C {—1, 0} such that |(n + h/n)| > «.

Lemma 1 Letu and v are the two functions on M, _,, , and M, j, respectively. Then
we have

7 n/h hn/hfl ' " j+1
S (1)) () = <m> Sl )+ ;O w(jh+r —n) (m) (13)

n/h—1

h n/h h h n/h—1—j
Srin (0O} () = (%) St} o0 =2 3 v(+r) (%) (14)

j=0
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Proof Since

& . n j+l1
Sr—n,n u@®} ) = ;Z(:)u(]h +r—n) (m>
j+l1 hn/h 1 . 1
5 Z u(jh+r_")< +h> 7 Z M(Jh+r—n)< +h)
j=n/h
n n \Jtn/h hn/h 1 y O\
:*Zu(jhw)(—) + - Z u(jh-i—r—n)(i)
=0 nth [t n+h
n/h—1 o
U n/h h ) n J
Sy—n,p fu@®} () = (m) Sr,h{u(t)}(??)-l‘; ;} u(jh+r —n) (m>

Now,

Jj+1
Semn (WO} () = = Zu(;h +r—n) ( +h>

j—n/h+1
=- Z v(Jh+r)< >

j=n/h

n Jj—n/h+1
= —Zv(]h—i-r)( +h>

RS N
- — v(jh—i—r)(—)

1 Z(‘: n+h

n+h>” h & < n )f“
=|\— v(jh+r

( EOBLLED] by

n Jj=0

n/h—1 n/h—1—j
h h
- = Z v(jh+r) (i)
n = n
h n/h
S (0D} () = (%) Sen {0(0)} ()

n/h 1 +h n/h—1—j
- - Z v(jh +r)( )

Definition 8 The Bth-order Taylor monomial is defined by
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“—n® H®

hy(t,r) == RIS

M,. (15)
Lemma 2 Forry,r; € R andr, — r; = B, then we have

WS, g r} ) = (i + )P (16)

Proof From the binomial relation, we have

@+ =Y (‘;‘) o a7

j=0

)
(°f) =2 (18)
J J!
From the relation (17), we have

()= (23

1 7(1_00 ]+(X—1 j
T=o = (9+D —Z< w1 ), (20)

Jj=

fora € Rand |z] < 1.
Since r, — r; = B, then we have

hP+! 1

77+h | n B+1
(-()
_hﬂ+1°° j+,3><rl>j
_n+h§)< B n+h
_M s j+ﬂ>< L )"“
o ;( B n+

hﬂ+1 e j—}-ﬂ)(ﬂ)( )
o F(ﬂ+1) n+h

(n+h) =
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hﬂ+l x J+l
h )
; > hp(j+r2 rl)( +h>

j=0

(+ 1’ =nPHS,  {he(r} (n)
Definition 9 Define the convolution of two functions u, v on M, by

t/h—1
wxv)()=h Y u(jh)v(t —o,(jh) +r).t € M, Q1)

j=r/h
Lemma 3 Let u, v be defined on M.}, then
Sl xv)} () = (n + h)Spp {u} S (v} () (22)

Proof Since

Jj+1
Sen {u % v)} () = Z(u*v)(1h+a>( h) :

=0

h 00 n Jj+1 1+§1
=h-— <—> u(kh)v(jh +r — o,(kh) +r),
n j=0 n+th k=r/h
& J-1 Jj+1
Snf*v)}(n) = h; ZZ( ) u(kh +ryv(jh — oy (kh) +r).
j=0 k=0

Substitution jh — oy, (kh) = « yields
— jh—kh—h=a = jh=a+kh+h éj=%+k+1.

h o/ h+k+1
rh{<u*v>}<n)—hnzz(n+h) u(kh +ryvie +r),

a=0 k=0

& 7 k+1
=Mm+h) Ejg(;u(kh+r) <_77+h>

& 0 a/h+1
(e () )
Senlwxv)y () =+ h)S. ) {u} Sen {v ().

Theorem 2 For the function u and v, we have
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Srtan {r A5 ut (n )—@ Seon {u} () (23)

77M

W&,h {u} () (24)

$r+a—M,h {rA;au} (T]) =

]’l o0 Jj+1
Proof Consider, S,yq—mn{rA,%u} () == Z ( ) P A u(jh +r +
N j=0

oa— M)

M
Ui _
=\ — Sr o rA “
77+h> +,h{ h M}(n)+
h M—1 T) ]+]
- (—) A u(Gh4+r 4+ o — M) 25)
nig \n+th

n \" —a
= <m) Sr+ot,h {r ? M} (77)

taking M zeros of , A, *u into account. Furthermore, by (16), (21), and (22)

h& n J+l
7Z<m> rAR T UuGh +r +a)

Sr+a {rA;a”} = "
Jj=0

17/:0 n+h Pt F(a—h+1)

n& j+1Jtr/h

*Z( +h) Z hu(khYhg—1Gh+r —kh+r,r — (@ — 1))
iz N k=r/h

hz 00 j+l
- ( ) (U hg—1(,r = (@ = D)(h+7)
nop\n+h

=hSpp {ukhg_1(.r —(@—1)} (1)
=h+ S p (uy MSp.p {ha—1(,r — (@ — 1)}

-

h
=g+ 0+ mY* LS, {u) ()

(o +hn)*
ho—1

Sran {r A5 ul () = Sy lu} .

Then we obtain
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M e
= h) O ) )

7]M

= hoz—l(,7 + h)M—o:

Sr+a—M,h {rA;au} (77) = <
Sen {u} ().

Theorem 3 Let u be a function defined on M, ,, then

o h%(n +h)M_a = i—M a—M+j
Srim—an {rAfu} () = g Sl o) S ot Mo MU+ M — )
j=0

(26)

Proof Since « = M, the result is true. Therefore for @« # M, hence it follows from
(23) that

Srim-an (- A} ) = Srm-an {r AN A, ul G

n\M —(M—a)
= (;) Sr+M—ah {Ah u} ()

M—1
= TMALAT MU + M — )
j=0
ha
SrJerot,h {,«AZM} (77) = n—M(U + h)M_aSr,h {u} (77)
M—1
- Z nf_MAZ_MHu(r + M —a).
j=0

Theorem 4 Let u defined on M, ;, then we have

hotJrl 1 M—1 .
Seint—an (LA U} () = T 0+ WM Sl () = 557 D0’ Aju(r)
=0

27)

Proof Since @ = M, the result is true. If @ % M and hence it follows from (23) that

Seim-an {85} ) = Spiaran { A7 A} ()

_ (i

hM—o:—l Sr,h {A/I:/Iu} (T])

S

a+1 1 -1 ) .
Srim—an{y Aju} (n) = T 0+ WM S luy ) = 7 ) 0™ Apu)
J

Il
S
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Lemma 4 Let u on M, , be given. For any § € Mg and o > 0, we have

CAT Uty =€ AYAfu(r) (28)
Proof Since, we have

,CAha+€u(t) (M+E —a—§) A, M+€u(t)
= Ah(M DAM AE u(r)
= A, MMEE L ()
=AU

AU = C A AR ()

Corollary 1 For the function u, we have

N haJrl + h M—a
Sr+M—a {CAI'+$M} (77) = %
M+E-1
WS tuy () — — > w/ M A u@r) (29)
j=0

Proof Since o« = M, (27) is true. If @ £ M, then we have

Seet-an {0 uf ) = Srmrean { 4,0 40 w0} o

= Srm-an | 50 2w ) | an

( + h)M—ot
- "hMTSr,h [r a5 u@m)} ()
o haJrl( _}_h)Mfa
S M—-ah {f A, u} () = ;’M—%
M+£—1
hESen () — = Z M Au(r)

4 Applications

Here, we present the solutions of certain initial value problems using the Sumudu
transform.
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Example 1 For the function u, the unique solution to the IVP

WAy Z(@) =ut),t e M, (30)
Alz(r+a—M)=A;,je{0,1,...M—1}, A; € Ris given by

M—1

2t) =) it =T 4 ATUW), 1€ Myou, 31)
j=0
where
A% M+j J Jj—§ k . .
o a2 =D e (;) <J —s)
gj_F(a-i—]—M-i—l)_;kZ:; v ) )he O

Proof Since « = M, the result holds. If @ = M, we have

Sr h {hArJ,-a } (T)) = Sr,h {M} (7’) (33)

Then from (26), it follows

h* h M—a - a
AR o= S A ) = St ) G

n
and hence
M M-1 n/
_ Dt M+j
St (2) ) = por g S ) () + Z —ha i A7)
(35)
By (24), we have
M

W&,h {uy () = Srva—mn {r A, u} (). (36)

Using (13), we get

v 1 <L)’ (4 Iy
B+ e~ e\ +h

i
= (HLh) R ML, i {hasij—m(.r)} ()

— hj7M+l(Sr+o[—M,h {hj_M+o((-$r)} (n)
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5 k1
_n Z <_> hotj—mkh +r +oa — M, r)(n))
=h M, n B j—m (1)} ()
since hoyj-pkh +r+a —M,r)

_(kh o — M)
T4+ j-M+1)

kh - M
r(—“‘ + 1)
— hct+j—M h

kh+a—M . .
' ——m—+1l—-(@+j-—-M|)'(a+j—-—M+1)

Fkh+o—M+h)
F(k—j+Dh+@—M(A—-h)T(@+j—M+1)

a+j—M

=0
Consequently, we have S, {2} ()
= Srpam { A u}f ) + Y AT 2R TS, i (B jom ()} (1)
j=0
(37)
MU aeMt) i —a
= Or+a—-M Z Ar+a th Z(r)hot+j—M(~,r) +rAh u (77)

i=0

Since Sumudu transform is a one-to-one operator, we conclude that fort € M, 4y,

M—1 Ot M+]Z( )
_ r+a—M . (a+j—M) —a
() = ,2:0: (F((x—i—J _M+1)> (t=r) + AL u(), (38)
where
a—M+j J i—§ k . .
A, M) (=D . - —& i
+a— _ M=) (J)(J j _
Fa+j-M+1) _5220](2:0 v (E)( k )hA e,

(39

Example 2 Consider the IVP, Replacing Riemann-Liouville fractional difference
by the Caputo fractional difference as

A Z() = u(), t € My, (40)

Alzr+a—M)=A;,jel0,1,...,M —1},A; €R.
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Applying the Sumudu transform to both sides, we get
Sei {n A%z} () = S {u} (). (4D
Then from (27) it follows

a+1

1 M—1 '
i (Y S (2) ) = 57 DA | =Sl ). (42)
=0

By (24), we have

M—1
1 . nM
Srsa-m () = 2:; WA e 3 e o )
| M-l
= Z W A;Srva-m {r AL u} (),
j=0
and also we have
So i}y =nit', n e Mo, (43)
hence e
l «—  (t—r—a+MP _a
d0) = >4 i + A u(t) (44)
— !

5 Conclusion

In this work, we proved some results with the discrete fractional Sumudu transform
using inverse difference operator. We obtained discrete fractional Sumudu transform
of Taylor’s monomial and fractional sums for fractional order. The advantage of our
findings is we present some examples for solving the initial value problem using
discrete fractional Sumudu transform.
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Generalized Mittag-Leffler Factorial )
Function with Sums L

Jaraldpushparaj Simon and Britto Antony Xavier Gnanaprakasam

Abstract This research aims to express several functions, like trigonometric func-
tions, Mittag-Leffler (ML) function. For that we have introduced Generalized Mittag-
Leffler function factorial by which one can express certain functions as well as series
by sum of polynomial factorials. This model will be used to obtain solutions of
fractional difference equations also.

Keywords Difference equation - Mittag-Leffler function + Discrete Maclaurin
series

AMS classification: 39A10 - 33E12

1 Introduction

The ML functions plays a vital role during the last twenty years. Mittag-Leffler
functions are applicable in solving the problems in mathematical sciences, physical
sciences, life sciences, scientific engineering, and earth sciences [1]. The general
form of Mittag-Leffler function (ML function) of power series form is given by

o0 k
Z
E,5(z) = ; TGran © BeC, R >0,RB >0zeC. (1)

In (1), the polynomial z¥ can be replaced by polynomial factorial to obtain solution
of difference equations. For more details on ML function, one can refer Lang [2],
[3], Hilfer [4, 5], and Saxena [6].
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Recently, due to the vast potential of the applications in several applied fields in
practical problems such as Rheology, Fluid flow, Electrical, Diffusive transport akin
to Diffusion, Probability, and Statistical Distribution theory, we have introduced the
EMLF function (3) as

k+(a— 1)+ cjv)i»

T'(jv+1) ’ @

e\ ko)=Y N
j=0

where \ and ¢ are constants [7].

In this paper, we introduce new Generalized Mittag-Leffler Factorial (GMLF)
functions arrived from (2) with replacing the constants A and ¢ by functions \ and &
defined on N(0). By GMLF functions, we are able to express the Maclaurin series as
GMLF functions. This GMLF function satisfies certain type of fractional difference
equation, hence we are able to obtain solutions of fractional difference equations.

2 Basic Definitions and Related Theorems

In this section, we deals with the preliminaries which will be used in the subsequent
sections. Here we use the definition Ayu (k) = u(k + £) — u(k).

Definition 1 [8]Let?, k, v € (—o0, 00),ifk/€+1—v ¢ {0, —1, -2, ...} thenthe
£-polynomial factorial is defined as

rk/e+1)

k(l’) — Zl/ ,
¢ Tk/t+1—v)

3)

where I is the gamma function and k" = k(k — £)(k — 2€) - - - (k — (n — 1)€) if
neN.

Definition 2 [8] For —1 < ¢ < 1,£ #0 and k,v € R, the £-extorial function,
denoted as e, (k;), is defined as

®) @) 3v)
k@ k( k[

4oo. (@

If ¢ € (—o0, 00), £ # 0 and k is a multiple of £ and v € N, then (9) is defined, and
which case all except finite terms of e, (k;) are zero.

Definition 3 [7] For c €[0,1], [N\ <1, |¢| <1, jrv+1¢ N(), k€R. The
Extended Mittag-Leffler Factorial (EMLF) function is defined as

e\ ke, ¢) = i L(k —(a+10) +cj€u) 7

(
5
S TGr+D) ¢ ©®)
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The function e, (\, k_g, 1) is defined for A € (—o0, 0), £ > 0, if k — (a + £) is pos-
itive and multiple of ¢ and also e, (], k¢, 1) is defined if k — (a + ¢) is negative and
multiple of £.

Special Cases:

(i) Whent=0,a=—-1,A=v=1,e(1, ko, c) = e.
(i1) ey, (k¢, 0) = Extorial Function. (Newly defined function [7])
@iii) e, (A, ko, 1) is the existing MLF function.

Theorem 4 [7] The inverse difference of product of EMLF function e, (X, k¢, ¢) and
the polynomial factorial function ké") is given by

AT K e, O\ ke, )] = K AT e, (N ke, €) — A7 A e, O, (k + £)¢, ) Ak,

Also (6) is a solution of Agu(k) = kén)ey()\, k¢, c). ©
Theorem 5 [7]Ifm € N(1), £ € (0,00), k € [0, 00) and c € —N(1), then
] k I &
A "ey (N ke, ©) ) 2 Weu(Av (k—=rl)yg,c), j=k— [Z]E,
(7

which is a solution of the difference equation A} u(k) = e, (X, k¢, ©).

Definition 6 (Generalized Mittag-Leffler Factorial function) Let A and & be any two
real valued functions defined on N(0). Let v be the real number such that jv 4 1 ¢
N(0) for all j € N(0) and £ # 0. Then the GMLF function is defined by

oo

e\ ke, &)=y

j=0

A() G
— 7 (k). 8
FUV+D( 7 ()
Remark 7 (8) becomes EMLF function if S\(j) =M, |\ < 1and ¢(j) = cjlv —

(a+1¢),c €[0,1]. The GMLF function el,(/_\, ke, ¢) becomes discrete Maclaurin
AJ

0
J;( ),5(j) =0.

series when v = 1, S\(j) =—

3 Summation of EMLF Function

In this section, we obtain numerical solution of certain type of higher order difference
equations.

Theorem 8 Letm € N(1) and k € (m€, 00). Then we have
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[

~I=

L ym-D
—(r( D (= O O (k= r0, 0 = FP (0 — B (n = DE+ ),
m — :

9

r=m

where (k) = A;" (F | (k) — F ((m — 2)€ + j)), m = 2,3, - and
Fl(")(k) = A[l (ke(")e(/\, ke, c)). Also (9) is a numerical solution of the m™ order
L-difference equation Aju(k) = ke(")ey (A, kg, ©).

1
Proof From (5) and Azle()\, ke, c) = Xe(/\, (k —¢)¢, ),
(v+1)

Ak = neke)D, AT = (1—1)5 and also from Theorem (4) we have
1%

_ 1 ! -
A7 T e kg ) = K e k= ). 0) = A7 [ e\ (ke + £ = . mok(" V]
(10)

(4

. Ze()\, (k — 1), C).

J

Taking m = 1 in Theorem (5) yields A[le()\, ke, )

r=1

Applying the Theorem (5) to (10),

4
Y k=0 e\, (k= o). c) = F k) — F" (j), (1)
r=1

where Fl(")(k) =A4;" [ké")e()\, ke, ¢)] again operating A; ' on both sides of (11)
%1
- r—1 W n n n
> %(k —rO)e(\, (k —r0)¢, ¢) = F," (k) — F" (€ + ).
r=2 '

Similarly, if we proceed we get (9).

4 Discrete Maclaurin Series

The Maclaurin series for successively differentiable functions is given by
! 0 " 0 " 0
f()k+f()k2 f()k3+

fk) = f@0)+ +

open intervals. It is possible to obtain discrete Maclaurin series for k € (—00, 00).

---. Here k belongs to certain

Definition 9 The discrete Maclaurin series with polynomial factorial function is
defined by

A f(0)
21!

2 3
£ = 70+ 2T+ SO L SO )
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Example 10 For the function f(k) = a*, we have Aga* = a*(a, — 1), A2a* =
a®@ — k" @ - 1>k
b4 1! 14 2!

ak(a, — 1)?%, ...,and (12) becomesa* = a° +
a®(a’ —1)3 k) o . e ¢ ,
— v + --- which is the Discrete Maclaurin Series for a*. When k is
a multiple of £, (12) becomes finite series. If k =8, ¢ =4,a = 2, then we get
2% — 204 20t =8y’ 202t —1)?8

= 256.
4 1! 16 2!

Theorem 11 The fractional difference of sine and cosine functions are

%sink:Z” sin”(£/2) sin ((1/7r)/2+k+1/£/2). (13)
and %cosk =2"cos"(m/2 — £/2) cos ((1/71')/2 +k+ 1/£/2). (14)

Proof The trigonometric formulas of sin and cos functions are
sin(A + B) = sin Acos B + cos A sin B, sin(A — B) = sin A cos B — cos A sin B.
Simplifying the above formulas we get

sin(k + £) — sink = 2 cos(k + £/2) sin(£/2)

% sink = 2sin(€/2) sin(w/2 + k + £/2)

S}

% sink = ?[% sink] = 2sin(¢/2) %[sin(wﬂ +k+£/2)]

LSS}

Asink = 22 sin?(€/2) sin(2mw/2 + k + 2£/2).
4

Similarly, if we proceed we get (13) and in the same way, we can derive (14).

Theorem 12 The GMLF function of sine series is given by

. o A( Sln(O) 1) A% Sln(O) @)
sin(k) = sin(0) + 7an k, 0 k(™ +---. (15)
Proof From the definition of the GMLF function,
o0 N .
s A(J) -
e,(\ kg, ) = — L _(k+¢&j)Vv.
A ke, ©) ; TG+ ke
. . - . A; sinQ0 _ .
Now (15) is obtained by A\(j) = 7 ,c(j)=0andv = 1.

Theorem 13 The GMLF function of cosine series is given by

¢ cos(0)
21!

A A2 cos(0
cos(k) = cos(0) + kél) + @Zczozs‘( )kéz) 4+ (16)
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Proof From the definition of the GMLF function,

oo

_ A A
e\ ke &)= %(k +ej)um.
j=0

Now taking the function S\(j) = A cos0, c(j) =0and v = 1, gives (16).
¢

Example 14 If the function f (k) =sink and k =9, £ = 3, 7 = 22/7, we have
2sin(€/2) sin(r/2 + €/2) kP 22 sin2(€/2) sin((2m)/2 + (20)/2) kY
P J’_ P
¢ 1 2 2!
23 sin3(£/2) sin((3m) /2 + (30)/2) @

sink = sin0 +

£2 3!
041=04043-170+1.68 = 0.41 = 0.41.

Example 15 If the function f(k) =coskandk =6,¢ =3, 7w =22/7
2cos(m/2 — £/2) cos(m/2 + £/2) kP . 22 cos?(m/2 — £/2) cos((27m)/2 + (26)/2) k)
1 2 2

cosk =cos0 +

12 1!
0.96 =1—3.98 +3.94 = 0.96 = 0.96.

Corollary 16 The inverse fractional difference of the sine and cosine functions are
obtained by

v 1 .
%smk- mSlﬂ(k—ll@/z— (V7T)/2) (17)

RHS of (17)is a closed solution of the fractional order £-difference equation 2 u(k) =
¢

sin k. |
? cosk = ey (12— 1/2) cos(k —vl/2 — (vm)/2). (18)

Similarly, RHS of (18) is a exact solution of fractional order {-difference equation
2 u(k) = cosk.
¢

Proof The proof of the corollary follows from (13) and (14).

The following theorem shows that the inverse difference of product of polynomial
factorial and trigonometric function takes GMLF form.

Theorem 17 Let the cosine real function and the polynomial factorial real function
kém) be any two functions. Then we have

AR cosnk] =3 m Ok
t=0
y cos(n(k +18) — (t + DHmw/2 — (t + Dnt/2)
(—1D)12t+ cost (/2 — nt)2)

) 19)

which is a exact solution of the £-difference equation Au(k) = kém) cos nk.
3
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Proof Takingn = 1, and e, (), kg, ¢) = cosnk in (6) we get,

ATKY cosnk] = kP A7t cosnk — A AT cosn(k + £) Ak,

From equation (18), we arrive

Azl[kél) cosnk] = kél) cc;s(nk —nl/2 —7w/)2 _ Azl[cos(n(k +40) —nl/2 —7w/2 .Z]
cos(m/2 —nt/2) 2cos(m/2 —nt/2)

kg”[cos(nk —ne)2 - 7r/2:| Z[cos(n(k 0 —2ne/2 — 27r/2]

2cos(m/2 — nt/2) 22 cos2(m/2 — nt/2)
By product formula as given in (6) and iteration method we get (17).

Azl[kél) cosnk] =

Theorem 18 Let the sine function and the polynomial factorial function kém) be two
real valued functions. Then we have

AT sinnk] =3 mO g0k
t=0
| Sin(k +10) = (¢ + /2 = (¢ + Dnt/2)
(— 1) 2+ sin (/2 — nt/2)

; (20)

which is an exact solution of the {-difference equation A u(k) = kém) sin nk.
¢

Proof The proof follows by proceeding as the Theorem (17).

5 Fractional Difference of Trigonometric Functions

In this section, we derive the difference and inverse difference equations of the
sine and cosine functions. By using (x" + Xln) = 2 cos nf and the binomial function
(x + %)" =x" 4+ nC,x”_l}c + nCZ)c”_zx—l2 - -, we arrive the following theorems.

Theorem 19 The GMLF function of sin® k series is given by

Ay sin?(0) o) A?sin?(0)

sin?(k) = sin?(0) + 7 ' 5]

k2 4. 1)

Proof From the definition of the GMLF function,
o0 kY .
A()

ey ke, @) =y — = —(k+c(j)V”.
(A, ke, ©) 2 r(]V+1)( ()
. o= AésinZO _ . .
Now taking the function A(j) = — c(j)=0and v =1, gives (21).

Theorem 20 The GMLF function of cos’ series is given by

Ay cos?(0)
21!

A% cos?(0)

)
VTR AR (22)

cos?(k) = cos?(0) + kél) +
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Proof From the definition of the GMLF function,

oo

S AG) .y
ey ke, @) =y ————(k+cj)"".
S TGy

A} cos? 0

—— . ¢(j) =0and v = 1, gives (22).

Now taking the function A(j) = 7

Theorem 21 The fractional difference and the inverse fractional difference of the
cosine function are

14

I
Acos?k = 5(2” cos” (112 — £) cos(vm/2 + 2k + uz)). (23)
4

Also (23) is an exact solution of fractional (-difference equation 2 u(k) = cos’k
¢

and

—v 1 [cos(mr/Z —2k + Vﬁ)].

Acos’k = =
¢ 2V cosV(m/2 — £)

3 (24)

Proof We know that (x + 1) = x? + 2, x". 2 + 2,20 & = (x? + 5) +2
(x +1)? =2cos260 +2

20 + 1 1
(2cos0)? =2cos20 +2 = % = E(COSZQ + 1 cos 06)
1 1
%(cos2 k) = Ay (5 cos 26 + il cos 06)

%(cos2 k) = %[2 cos(m/2 — €) cos(m/2 + 2k + £)].

Similarly we can proceed up to Z(cos2 k) and we get the result. Replacing v by —v,
¢

we get (24).

6 Conclusion

From our findings it is possible to express functions as GMLF function. The GMLF
function contains polynomial factorial from which one can find higher order dif-
ference and its inverse which will be used to obtain solutions of several types of
fractional difference equations. When £ — 0, the difference equation goes to differ-
ential equation and this model is useful for solving differential equations also.
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Abstract A single server queue with Poisson arrival and exponential service times
subject to apolicy of single working vacation with customer impatience is considered.
The service times are different for an active phase and a working vacation phase. The
customer is allowed to leave the system during the working vacation phase. Catastro-
phes, when they occur, wipe out the system which results in the system being inactive
for a random period of time. Explicit expressions for the transient probabilities of
the close-down period, maintenance state, active state, working vacation state and
system size for active phase and working vacation phase have been obtained. The
corresponding steady-state analysis and performance measures are also obtained.
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1 Introduction

Queueing systems have been analysed on account of their wide range of applications
in computer systems, telecommunication systems, wireless networks, etc. An excel-
lent overview of the fundamental methods and results on queuing theory is given
in the monographs of [5, 8, 11, 14-16, 23]. Wireless Sensor Network has many
successful applications like automated factories, remote telemedicine, military area
protection and so on. Energy consumption is a very significant issue for battery-
powered mobile stations. The IEEE 802.16 e standard outlines sleep mode and idle
mode operations on the MAC layer to save the energy of the MSs. The performance of
the sleep mode and idle mode operations have been analysed by various researchers.
A few of them are [4, 13, 17-21, 24-27].

Catastrophic events are an important aspect of the dynamics of computer networks,
which are known as phase transitions. Dabrowski [10] gives a survey of the research
of phase transition in communication networks and discusses the characteristics. The
lifetime of a sensor can be increased by changing the sensor from the active mode
to the working vacation mode as it has a lower service rate than the active mode.
Boutoumi and Gharbi [6] proposed a policy for improving energy consumption and
a latency efficiency technique in wireless sensor nodes based on a combination of
normal vacation and working vacation policies.

Packet loss occurs when one or more packets of data travelling across a computer
network fail to reach their destination. It is caused by errors in data transmission,
typically across wireless networks. It is measured as a percentage of packets lost
with respect to packets sent. Wireless networks are susceptible to a number of factors
that can corrupt or lose packets in transit. In WSN, packet delivery performance is
of high importance in energy-constrained networks as it translates into a network
lifetime indicator. Packet losses are highly correlated over short time periods, but
are independent over longer periods. Packet delivery performance in WSN has been
studied in various papers [9, 22, 28].

Customer impatience (though voluntary) may be associated with packet loss in
WSN. Even though packet loss occurs during transmission, the fact that they are not
transmitted is considered as being lost from the system. Now, customers reneging
from a queueing system leave before being served. In effect, this means that though
the customers have been in the system for a period of time, their purpose of being
served is not achieved. Loss of data also effectively means that the packets have been
lost from the system. Hence, we look upon customer impatience as packet loss and
analyse the system subject to packet loss.

Queueing systems with customer impatience have been studied very extensively.
The concept of customer’s impatience is that a customer reneges the queue after
having waited for a sufficient time in the queue. The impact of customer’s impatience
has been analysed in [2, 3, 7, 12] for various queueing models.

This has motivated us to analyse the performances of an M/M/1 queueing system
with the server under maintenance, sleep mode, single working vacation with cus-
tomer impatience subject to catastrophe. This paper is structured as follows: Sect.
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2 contains the mathematical model description and transient state probabilities of
the system. Steady-state analysis is described in Sect. 3. In Sect. 4, some key perfor-
mance measures under steady-state conditions are obtained. Numerical examples are
explained to illustrate the effects of system parameters on the performance measures
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Model Description and Analysis

We consider an M/M/1 queueing system subject to a policy of single working vacation
with customer impatience. The server is in busy phase (normal busy mode), in slow
phase (working vacation mode), in sleep mode and in maintenance mode. The server
is said to be in state 1 if it is in busy mode, in state 2 if it is in working vacation mode,
state 0 if it is in sleep mode and state M if it is in maintenance state. Customers arrive
according to a Poisson process only to the busy phase with arrival rate A. During the
normal busy mode and working vacation mode, the service rates are, respectively,
w1 and po such that wy < wy. The server can switch from busy mode to working
vacation mode with a rate of » but not vice verse.

When there is no customer in the system during the busy period and in the working
vacation period, the server moves to sleep mode in order to save power. Once the
customer arrives, the system switches automatically to the busy phase. Customer
impatience is assumed to occur only in the working vacation phase with a rate &.
Catastrophes are assumed to arrive as a Poisson process with the rate y. Once a
catastrophe occurs, all the customers are wiped out from the entire system and it
enters the maintenance state. During the maintenance period, no customer is allowed
to enter the system. At the end of the maintenance period, the system moves to sleep
mode with the rate o.

Let X (¢) denote the number of customers in the system at time t when the server
is in a busy state and J(¢) denote the state of the server at time t. The joint process
{X (), J(t),t = 0} is Markov.

The state space of the system is given by

2 ={0,0, O, MUJ{A,H, 21,3 D,.. Ul1,2),2,2),3,2), ..}
From the state transition diagram, by using probability laws (Fig. 1)

pG, j.)=PX(t)=i,Y(@t)=j;t/i=0,1,2,..00,j =0, 1,2]

P00, n=e+[pA, L0 +pA, 2,00 +p M 0Dal©™ (1)
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Fig. 1 Transition diagram

pM.0)=3[pG 1,0y +p(i20yl0e )

i=1

p L1,y =[p(0,0,6)r+ p(2,1,1) 1@ Mty 3)
P, 1L,)=[pGi—1,0,0) A+ p@i+1,1,1) u]@e CTHtmni i >2 (4

P 2,0 =[pG LOn+pG+1,2,1 (u+i§)]@e WHEDEN i > (5)

Taking the Laplace transform of (1)—(5) with respect to time and denoting the trans-
form variable by s

(s+2)p*0,0,)=1+p" (L, L)1+ p* (1,2, 5) po + p* (M, s) o (6)

(s+0a)p*(M,s) =Y [p* (i, 1.5)y +p*(i.2,5) 7] )

i=1

GHrAtm+n+y)p L L) =p 0,09)r+p"QLom (8
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(S‘f‘)\‘f‘lll+77+V)P*(1’1a5)=P*(1—1,03S)A+P*(l+1,1,s)ﬂla
i>2 9

(s+tu+@—-DE+yY)p (.2,9)=p G, L)n+p (i +1,2,5) (u2 +ié),

i>1 (10)
Defining the Probability Generating Functions as
o0
Giu,s)=)Y p . 1s)u (11)
n=1
o0
Gy (u,s)=) p*Gi,2,9)u (12)
n=1
G* (u,s) = p*(0,0,5) + p* (M, s) + G} (u, s) + G} (u, 5) (13)

The system of equations (9), after some manipulation, yields

(S+r+pui+y+n[Gws)—p* (1, 1,9)] = G (u, s)
+% (Gt u,s) — p* (1, Ls)u — p* (1, 1,5) u?]

2l p*(0,0,5) —upip* (1,1, 5)
M tu(s+Hrituty+n—m

G} (u.s) = (14)

The system of equations (10), after some simplification, yields

. 0G5 (u, s " "
(s+u2+y—86G,(u,s) +Su23—u) =nGj (u,5) + %Gz (u, s)
0G5 (u, s) §

—ua2p*(1,2,5) + & [ 5 p*Q,2, s):| — =G5 (u,8) — p*(1,2,5) u]
u u

G} (u, s)
du

(su—s>+G§<u,s>[s+m+y—s—%%}

=nG7 (u,s) — pap* (1,2, 5) 15)
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3G§(u,s)_G*(u s)< s+y _(m—é))
du 2 EA —w) Eu

_ 2 % _ n *

“fa-w?’ (1,2,9) g-zfj:7;5(?1(u,S)

Atu =1, (14) and (15) reduce to

*(0,0,8) A — *(1,1,
G (1,s) = p*( s) n1p*( s)
s+y+n

Gi(l,s) — *(1, 2,
G§(1,s)=n 1L, s) — m2p*( s)
s+y

Adding (17) and (18), we have

s+ I[GT(1,s)+ G351, 9)]=p*(0,0,5) Ay — 1 p* (1, 1,5)

_sz* (17 27 S)
Using (6) and (7), the total probability law is confirmed.

1
Thatis, G (1,5) + G5 (1,5) + p* (M, s) + p* (0,0, 5) = —

The zeros of —Au” 4+ u (s + A+ 1 +y + 1) — u; = 0 are given by

LRty =V Aty ) -4
' 21
L GHRtmtyEn VEHAty ) -4
2:
21

These roots satisfy the conditions

S+HA+uty+n
Uy +uy; = ,

Ltlzl_ﬂ
142 2

lur] < 1, Jup| > 1

(16)

a7

(18)

19)

(20)

21

(22)

(23)
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u—u — UUA
—Au2+u(s+k+ul+y+n)—u1=( ‘)(5‘ 14) 24)
1
where 0 < u; <1 < us.
Invoking the analyticity of G} (u, s), we have
A
P L) = 2L 70,0, ) (25)
23!
Substituting (25) in (14), we obtain
" Ay "
Gl (u,s)=——p"(0,0,s)
— U
> (huug '
G (u,5) = Z( . ‘) p*(0,0,s) (26)
n=1
Equating the coefficients in (26), we get
* o _ iuil * .
pr1,s)=—"p"(0,0,5),i =1 (27)
My

Using (26) in (16) yields

3G§(M»S)_G§(M’S)< sty _(uz—&‘))
ou E(d—u) Eu
M2

n ind AUl i
=—" p*(,2,5) - ———— —— ) p*(0,0,5)(28
ga-n’ Y sa—u);(m)p( e

The integrating factor (IF) of (28) is

s+ (2=f)
IF=((1—-u)* u ¢

Multiplying both sides of (28) by IF yields

a s (up—%) s+ I3
o [Gz ) (1 —w) &% } - %(1 —u) TR (1, 2,s)
u

o0 i
A W sty
2 <ﬂ> WEIT A =0 T 0,0,5) 29)
: 231
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On integration, we have

sty (I»‘ ) +y "2
G3(u,s) (1 —u) w5 “2/ (=) 1% (1,2, 5)dv
N o= [ Au iopu (
1 L2 4i—1 Gtr)_
—— —_— v (1 —v) ¢ p(OOs)dv
§Z<M1> /0

G% (u, 5) = [’?/O 1—v) T Fp (1,2, 5) dv

S i
A o s+y 6ty (E-n2)
R () [ p*<o,o,s>dv} (1)
0

o1 \ M

(30)
In the limiting case as u — 1, we get
1 -
Gi(l,s) = [@/ (1 =) P 1% (1,2, 5) dv
§ Jo
n > au\[! +1)
1 B2 41 I i
_1 - VE (1—v) ¢ p*(0,0,s)dv

§ ; ( M > /o u=1

(31

Since G5 (1, s) = Z;’;l p*(n, 2, s) is well defined and

(31) reduces to

“2/ (1 =) P 181 (1,2, 5) dv —

0
2«
i=l1

/ dH-lg —v)u%y)_lp*(0,0,s)dvzo
0

m|3

By using Beta function, this can be written as

M2 2 Sty Nem (A (2 . s+y
— 1,2, — — — , *(0, 0,
e M(s § ) EZH<M1>5(E+I § )p( K
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Lo () B (241 )

pr(1,2,5) =
12 g (& S+V)
e P\E

p*(0,0,s)

where

1
B (a, b) :/ w1 —w)’du
0

On simplification, the above equation becomes

% 77 )\ul . M2+]€ *
p*(1,2,5) = Z( )H(S+)/+M2+J§) 0,0,5) (32

Substituting i = 1 in Eq. (10) gives

pr(2,2,5) =

/L2+E [(S+M2+V)P* (1’275) _r]p* (1’ l,S)]

Substituting Egs. (32) and (25) in the above equation, we obtain

“ n 1 Auy (M2 +JE) (s +y + u2)
2,2,5) = . —
P ) M2 +§& Mzz(m)g (s+y+u2+jé)

)\I/l]
]P 0,0,5) (33)
i
Substituting i = 2 in Eq. (10) yields

p*(3,2,5) = (s+p2+y+8p 2,25 —np*2,1,5)]

1
+2s[

Substituting Eqs. (33) and (27) in the above equation gives

P*(3.2,5) =

n Z(Am) 1—[ (M2 + jE) s+ ¥ + ) (s + ¥ + pp + &)
up + 2§ (s +y+u2+j& (u2+8)

j=1

1A pur )
Loty () g
141

In general
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.. U o ((hur\" T 1y + j&
25 = — el
PGB = e [m( 1) Q(s+y+m+js)
ﬁ(s+y+u2+l£)_"2<M)"ﬁ(s+y+m+ré)
-0 (2 +18) N\ ) L (e tré)
(}\.M])i_l} . .
- — p (0,0,5),i >3 (34)
231

Substitute Eqs. (27) and (34) in (7) to get

. v S VIR N s PR u2 + j§
M’ = E— +_ - 7
p*(M,s) |:Z<,u1> Mz;(m)n(s—ﬂ/-l-,uz-lﬂf)

s +o :
i=I j=1

L ii(m)”ﬁwzﬂsmwwz)_M}

H2t& | i\ ) s Gty +uetjg) i
S n o~ (M \" T Mtk
+ S — _
; p2+ (@ — 1§ (n=1< 1) ]1:[1(5+V+M2+j5)
ﬁ(s+y+u2+ls>_”2 <M>dﬁ(8+y+uz+r$)
(n2 +18) N\ ) L (i tré)

1=0 s
()\’ul >i_1> }} *
-\— p*(0,0,5) (35)
231
Using (27), (34) and (35), Eq. (6) becomes

* * l
p*(0,0,9) [l —H (s)]:m

o0

_ 1 1 R
= (s +}L) (1 — H*(S)) - (S +)\,) s (H (S)) (36)

where
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[0¢] n n .
H(s) = 20 4 1 Z(M) []—tets @« v
stAostriig N/ Gty tuet i) s+Asta
i(u)+ii(u)n Ha+ j
M1 me s\ /) 5 Gty 4 e+ j8)

" (ke O Gy F )

n | L (A
Z( >H (s+y+u+jé) M1

j=1

- n - Aul)" . o + j&

+ - —_
; p2 + (@ — 1§ ;(m Jl:[l(s+y+u2+j€)
— )‘“‘2 G+y+uatre)

i—2
(s+y+um+l1§) (M
Z 1_[ (2 +ré)

s —\u) !
i—1
) )l

=0
()»M]
Mn1

Taking the inverse Laplace transform [1] yields

L [(s _ Vst Z az)ki| =

k
]%Ik (at). (38)

Hence
L—l () = e—()~+lt|+}/+'l)f (ﬂ)l/z L (2 )Ll“[)
A t

r/2 rl, (2 Ault)

)
t

L7 (i) = e~ Ot (
A

By using the notation, we have
@y, (1) =L (uf),

Inversion of (27) gives

p.1,1) = (%) @1, (1) ©p(0,0,0),i =1 (39)
1

Inversion of (32), (33) and (34) gives
2\ - ,
) @1 () [ (12 + j&) O (1)Op(0.0,1)  (40)

o0
Ui
P2, =—>" (—
M1 i1

M2 =
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where
(1) = L7} _
1o 1:[5+M2+V+J§
— o 2ty +) @ o= (haty+20)1 @ = (Raty+30)1 @) @~ (Haty+jb)
I </ A\ ‘ ,
p2.2.1) = —Y (=) a2+ i)
M2 =\ M1 =1
A
()0, (1) — M—fpm (t)} ©p(0,0,1) 41)
1
T] o0 )\‘ n n
@2,)= ———— <—) Diu—it1 (DO | (2 + j&)
p G —DE ; s Ln—i+l ]1:[1“2 Jj§
i—2 i—2i-2 1 2 d
U (1) O, (1)©O... W (t — ) Drg_ry1 (¢
H( 1(HOW (1) (1) — ;Euws( ) tidrs1 (1)
A i—1
OV, _44r(1) — (M—> Dy (I)} ©p(0,0,1),i =23 (42)
1
where

l]/l([) _ L_] [ul (S + s + % + (l _ 2)5)] — e—()»-H/vl‘H/‘HI)T {I:i (ﬂ)l/Z

dt
L2/ Aut) Ml)l/z Il(zx/)hﬂlt)}
t

Jré(t)}r(mﬁt(i—Z)é—k—m—n)(A

b ) 2

Inversion of (35) gives
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oo )\, n
p(M,1) =ye*'© {Z (Z) By (1) + — Z ( ) G () [ [ 2 + 78
i=1

j=1

v (1) + 2+${ Z( ) D1, O] 2+ j) V1)
n=1

J=1

Y 0 7 0 A\
OY,(t) — E¢1;1 (l)i| + Z {m <Z (Z) Dip—ivr (1)

i=

i—2 i—2i-2 1 A d
© V()OO (1)0O...¥; —
ﬂ(mﬂé)]‘[( DO (1)O...% (1)) — ;Hm T (l“)

L\
Piia—r+1 (1) Oy, (1) — <E> Pyii-i (1)) }:| ©p(0,0,1)

(43)
Inversion of Eq. (36) yields
> l
p(0.0.1) =Y " (H"r) (44)
=0

where

[o.¢] )\‘ n n
H(t) = he Oy (1) +ne O (E) @1, (1) [ [ 2 + & O () +

n=1 j=1

~ ~ (o] A i n 00 A n n )
Moye o | ) <—> Dy — <—> @1 (O] ]
ae ye |:i:1 m 1 () + w2\ 10 (1) 1 (12 + j&)

©¥ (1) +

=1
©Y, (1) — ZQDI;I (I)] + Z {m (Z <Z> Ppiy1 (1)

i—2 i—2 i-2 d
© + V()0 (1)0O...Y;
]1_[1(uz Js>]"[< 1008004 - ) | duz+rs< )

S\
Prg—ri1 () OF_gyr (1) — (—) Dy (0) ”
M“1

(45)

1 oo n n
[M—Z( ) P10 OO | (w2 + j&) V1)
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3 Steady-State Distribution

The steady state probabilities are given by

(i, j) =t1ir£10p(i,j,t),i =1,2,.;j=0,M,1,2
From the final value theorem for Laplace transform, we get

(i, J) =}i£(1)sp* (i,j,8),i=12,..;7=0,M,1,2
From (27), we have

. <)»21>i .
(@, 1)={—) 70,0),i >1
o

1

where

GAm+y+n—vVo+uw+y+n? -4
2\

z1 = limu; =
s—0

From (32), we obtain

(1.2) n i(kzl)"ﬁ w2+ jé& 0.0)
7 (l,2)=— — ———n (0,
p2 =\ Y +u2+j€

j=1
From (33), we get
1 o A n n .
72,2) = —1 _Z(ﬂ> H(M2+15)(V‘!‘M2)
met& | paam \m /) i vt jE
A
—ﬂ]n<o,o>
231

From (34), we obtain
i-2

o n o (A \' M2t J§
TR G e Z( )H I

=\ j=1)/+M2+J§ —o

i-2 di-2 i-1

Yy +uma+1§ (KZ1) Y +pa+ré <)»Z1> .

PEREE S ) [T () 700,023
3 m\m /) oo, matré m1

From (35), we have

(46)

(47)

(48)

(49)
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00 n n
14 km) <AZ1> m2 + Jjé ( U V) >
M) =%+ = —
oD a{;(;u Z E[y+uz+]€ w2 mo(p2 +8)

() & n A \" oy Mo+ jE
+
M2+€< ) ;[M*—(l—l)é (n 1( ) HV+M2+JE

Jj=1

Pyt tlE & (ha Y +ua+rE (km)il 0.0
1—[ po +1& Z( )H no +ré 1 (0.0

1=0 d=1 r=d
(50)

By using the total probability, we get

TM)+7 0.0+ 7@ D+ Y 7@2)=1

i=1 i=1

7 (0,0) = 1+(1+ ) Z(M'> +Z<'\M—) yiz,;;f]g

i=1 n=1 j=1

(i L+ )
H“2

A’ o0
Mz(uz+$)> u2+s<m>+,2;{m+(z—1)s
n—l<

Azl>1—[ 1o + j& ﬁy+uz+lé
y+tumat+jE i matliE

231
2 i—1 -1
Az Y+ ur+ré Az
- adl 51
Z( ) ,l_!, ma +r§ <M1) )]H oY

4 Steady-State Performance Measures

4.1 Expected Number of Customers in Busy State

The mean number of customers in the busy state is denoted by E(B) as

o0 o] i

EB)=Y in (1) = ZiL?n (0, 0)
"

i=1 i=1 1
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A A -2
=4 (1—1—“> 7 (0,0)
231 231

AZ1H

SR L Vol 2
(/’Ll - )\121)27[ (O’ 0) (5 )

4.2 Expected Number of Customers in Working Vacation
State

The mean number of customers in the Working vacation state is denoted by E(WV)
as

EWV)=Y in(i.2) =n (1,2) +27 2.2) + Y _im (i.2)

i=1 i=3

(A" e+ jE [n 2 (y + p2)
=) (= 2T 7 (0,0) | — + 2
X_;(m) G rasm7 00 1 (12 £ )

=1 H2

30 (v + 1) (v + 12 +6) ]_(ﬁ) 00[ 21
Tt mrzn T )OO T

(v +ma+8) | Anly + 2+ 8 + pa +26) }_
(2 +8) (2 +28)  (n2 + 8E)(n2 + 28) (u2 + 38)
(E)zn(oyo)[ 30 _An(y + o+ 26)
p2+28 (2 +28)(u2 + 38)
5n(y + pa +25)(y + p2 + 38) }_
(M2 +28) (2 +38) (na +46)

M“1

— (a1 et -
= = ——————— 14+ ) (k+1
Z( >]l_[l(y+ﬂz+j§)ﬂz|: ,;( )

k 00 m
y+ur+ (1 —-1)§E <Az1> n
0,0) — — 1
E po + 1§ :|n( ) Z M M2+m§[(m+ )

m=1

[e's) k

Y+ o+ (I — 1)&]

+ E k+1) 7 (0,0) (53)
k=m+1 Zilm_[-‘rl 2 + 1§
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4.3 Expected Number of Customers in the System

The mean number of customers in the system is denoted by E(X) as

[o.¢]

E(X) = Zin G, 1)+ iin @i,2)

i=1

i=1

E(X)=EB)+EWYV)

where E(B) and E(W V) are obtained from (52) and (53).

5 Numerical Illustration

(54)

For numerical illustrations, the values A = 0.3, u; = 0.7 and u, = 0.3 such that
o < pypand y =0.5,n=4and ¢« =2 £ = 1 are chosen. The steady-state distri-

bution is tabulated in Table 1.

Using steady-state distribution, the values of some performance measures are

given in Table 2.

Figure 2 indicates that the values of p; decrease when the values of 7 increase.

Table 1 Steady-state distribution

(M) =0.1052 (0, 0) = 0.4741

(i, 1)

7w (i,?2)

(1, 1) =0.0260

w(1,2) =0.1550

(2, 1) = 0.0014

7(2,2) = 0.0152

(3, 1) =0.0000786

7 (3,2) = 0.0094

m(4,1) = 0.00000432

7w (4,2) =0.0017

w(i,1)=0,i>5 (5,2) = 0.000057
7(i,2)=0,i>6

Table 2 Performance measures

Probability that the server is in Maintenance 0.1052

mode

Probability that the server is in Sleep mode 0.4741

Probability that the server is in Busy mode 0.0276

Probability that the server is in Working 0.3931

vacation mode
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Fig. 2 Variation of p; versus n
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Fig. 3 Probability that the server is in sleep mode versus n
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0.4

0.35f 1

0.3 d

Fig. 5 Mean number of customers in busy state versus n

Figure 3 reveals that the probability 7 (0, 0) that the system is in sleep mode
decreases gradually when n increases for various values of p;; also the sleep mode
probability 7 (0, 0) increases when p; decreases.

Figure 4 illustrates that the probability 7 (M) that the system is in maintenance
mode of the system increases when the transition rate n increases for various values
of p;; also the maintenance mode probability 7w (M) decreases when p; decreases.
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0.014 T T T T T T T T
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0.002| T T - =-=-_-4

0 . . . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

Fig. 6 Mean number of customers in working vacation state versus 1

From Fig. 5, it is observed that the average number of customers in the busy state
decreases when 7 increases as expected for different values of p;; also the mean
number of customers in the busy state increases when p; increases.

Figure 6 shows that the average number of customers in the working vacation state
decreases initially before approaching a steady state when 7 increases for different
values of p;; also the mean number of customers in the working vacation state
increases when p; increases.

6 Conclusion

In this chapter, an M/M/1 queueing system with the server operating in three modes—
maintenance mode, sleep mode and active mode (busy state and working vacation
state where the working vacation state incorporates customer impatience)—subject to
catastrophes is considered. Explicit expressions are obtained for the transient proba-
bilities of the system in the three different modes. The steady-state probabilities and
some steady-state performance measures are obtained. Finally, graphical illustra-
tions are presented and the effects of various parameters on the system performance
measures are discussed.
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Generalization of Permutation on Infinite | M)
Kolakoski Sequence with Finite Number oo
of Strings

L. Vigneswaran, N. Jansirani, and V. R. Dare

Abstract The binary alphabet ¥ = {1, 2} can generate an infinite Kolakoski
sequence [K] by the concept of o and 0. A linear mapping K : R® — R3 over
the standard basis generates a Kolakoski array is established along with the possi-
bilities of string w, further the permutation of Kolakoski array with the string of
length |w| = 3 is discussed. Many communication networks require secure transfer
of Information, permutations are frequently used in communication networks and
parallel and distributed systems. Finally the properties of permutation Kolakoski
array in abstract algebra over the composition of function as operation are obtained.

Keywords Basis - Dimension - Kolakoski - Permutation - String
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1 Introduction

An infinite Kolakoski sequence [1, 2] over the binary alphabet X' = {1, 2} also known
as Oldenburger-Kolakoski sequence consisting of blocks and positions was recre-
ated by William Kolakoski who discussed about it in 1965. An one-sided infinite
Kolakoski sequence K = 12211212212211211221211212211211 ... can be gener-
ated in array [3] with the string of length |w| = 3 along with standard basis of R* over
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the binary alphabet ¥ = {1, 2}. In this paper we generate the permutation Kolakoski
array from a group of w, with degree n [4, 5]. Also the effect of transformation
of an infinite Kolakoski sequence of string into permutation array with degree n in
algebraic structure is discussed [6, 7].

2 Basic Definitions

Definition 1 A non-empty set X of symbols, called the alphabet. The strings are
finite sequence of symbols from the alphabet. If the alphabet ¥ = {1,2}, then w =
abab and w = aaabbba are strings on X

Definition 2 An infinite Kolakoski sequence K over the binary alphabet ¥ = {1, 2}

1 1
under two iterating operations oo and o are [1, 2], oo(Even) = 5 - 1
—
1—-2 e . .
01(0dd) = 5 9 If an infinite Kolakoski sequence with seed value as 1
N

under two iterating operations o and o, then the classical Kolakoski sequence
is K = 122112122122112112212112122112112122122112122121 . ...

Definition 3 A regular palindrome is a string of numbers or letters that is the same
forward as backward [8]. For an example, the string w = {121, 212} and w = abba
are palindrome.

Definition 4 AsetS = uy, us, ...u, of vectors is a basis of V if it has the following
two properties: (a) S is linearly independent (b) S spans V.

Definition S Let S be a non-empty set. A bijective function f : § — § is called a
permutation [7]. If S has n elements, then the permutation is said to be of degree n.
It is also known as symmetric group of degree n and O (S,) = n!.

3 Basis Vectors of R Over Standard Basis on Kolakoski
Strings

Suppose K : R® — R? is a linear mapping, then the basis vectors of Kolakoski
strings of array with dimension n = 3 will be K (u, us, u3) = (uy,2u;, u;) and
K@i, uz, u3) = (uy + 2up, 2uy + up, uy + 2u,). Let’s start with an initial string
122 of length |w| =3 from on an infinite Kolakoski sequence, then the basis
vectors will be K (uy, us, uz) = (uy + 2us + usz, 2uy + upy + 2us, uy + 2us + 2us3).
Further the standard basis of R? is K = (e;, e2, €3) = {(1, 0, 0), (0, 1, 0), (0, 0, D)}.
Then the image of basis vectors is K (1,0,0) = (1,2, 1), K(0,1,0) = (2, 1, 2) and
K(0,0,1) = (1, 2, 2).Hence,
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121
Ki=[212
122

Therefore for every string of length |w| = 3 of basis vectors in Kolakoski sequence
can be transformed into an array over the binary alphabet X' = {1, 2}. Also the
basis vectors of Kolakoski array from the next string of sequence, K (u1, us, u3) =
Quy, uy, 2uy), K(uy, up, uz) = Quy + uz, uy + 2uy, 2u; + u,). The next string of
an infinite Kolakoksi sequence is 112 then the basis vectors will be

KQui,uz,uz) = Quy +uz +usz, uy + 2uy +us, 2uy + up + 2us)
The standard basis of R? is

K(1,0,0)=(2,1,2)
K(@©0,1,0) =(,2,1)
K(©0,0,1)=(,1,2)

Hence,
211

K,=1121
212

Therefore for every string of length |w| = 3 of Kolakoski sequence can be trans-
formed into an array over the binary alphabet X~ = {1, 2}.

Theorem 1 If[a;jli=1,j=n = [aijli=j=n then every [a;j] of K has n — 1 dimensional
image.

Proof Let, the basis vectors of K : R? — R? as K(uy, ua, u3) = (uy, 2uy, uy),
K(uy,uz,u3) = (uy + 2uy, 2u; + uy, uy + 2uy). The palindrome string over the
binary alphabet ¥ = {1, 2} will be 121 and 212. If the basis vectors of R* are
K(uy, uy, u3) = (uy + 2up + us, 2uy + ur + 2us, uy + 2uy + u3) then the image of
basis vector is

K(1,0,0)=(1,2,1)
K(@©0,1,00=(2,1,2)
K(@,0,1)=(1,2,1)

121
K=|212 (1)
121
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101
~lo10 2)
000

Hence dim(Im(k)) =2 =n — 1.

If K(uy,uo, u3) = (uy, 2uy, ur), K(uy, uz, uz) = (1 + 2uz, 2uy + up, uy + 2uz)
then the basis vectors of R3 is K (u1, ua, u3)=(@u; + 2us + 2us, 2u; + s + uz, u; +
2u, + 2u3). Hence the image of basis vector is

K(1,0,0) =(,2,1)
K(@©0,1,0) =(2,1,2)
K(©0,0,1)=(2,1,2)

122
K=1[211 3)
122
100
~l011 “)
000
Hence, dim(Im(k)) =2 =n —1. ([l

Theorem 2 The inverse of every non-palindrome Kolakoski array is similar to the
change of basis of K.

Proof Let’s consider the Kolakoski string of length |w| = 3. If K : R> — R3 be
a linear mapping, then the standard basis is E = (ej, €2, e3) = {(1, 0, 0), (0, 1, 0),
(0, 0, 1)}. The inverse is exists on Kolakoski array only with non-palindrome string.
Hence the possibilities of string are {122, 112, 221, 211}. Let, K (uy, uz, u3) =
{(1,2,1),(2,1,2),(1,2,2)}. Then the change of basis is u; = (1,2,1) =e; +
2er + ez, ur = (2,1,2) =2e; + €3 + 2e3,u3 = (1,2,2) = e; + 2e, + 2e3. Hence,

121
K=|212 (5)
122
-1
K'=|100 (6)
-10 1

From K with standard basis of R3,

ur+2uy+us =1, u1 +2ur+u3 =0, u1 +2ur +u3 =0
2u1+u2+2u3=0,2u1+u2+2u3=l,2u1+u2+2u3=O
up +2ur +2u3 =0, u; +2ur +2u3 =0, uy + 2uy + 2uz =1
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Solving all these equations we get u; = l,up = l,u3 = —1,u; =1, u, =0,u3 =
0,u; = —1,u>, =0, uz = 1. Therefore,

er=(1,0,0) =u; +us —u3
e1 =(0,1,0) = uy; + Ouy + Ousy
e1 =(0,0,1) = —uy + Oup + u3

Hence,
1 -1
K=1100 (7
—-10 1
Equation (6) and (7) holds the proof of the statement. (]

4 Permutation on Kolakoski Strings

Let S be a non-empty set. A bijective function f:S—S§ is called a permutation
[9, 10]. If S has n elements, then the permutation is said to be of degree n. S,
is a group under composition of functions as operation. The group S, is called
the permutation group on n symbols [11]. It is also known as symmetric group of
degree n and O (S,)=n!. Let’s take the binary alphabet ¥ = {1, 2} in which we use
op and o) alternatively. To generate an infinite Kolakoski sequence, let oo(Even)=

1—>1 1—>2 . . .
and 0 1(0Odd)= Hence the classical Kolakoski sequence is
2—>11 2 — 22.
K =12211212212211211...
The total number of possibilities of strings to generate Kolakoski sequence over
the binary the alphabet X' = {1, 2} is 2" — (n — 1) for n = 3. Let the strings are w =
{122,112, 121, 212, 211, 221} = S. Hence the permutations of Kolakoski strings are

121212 121212 121212
P‘:<212121>P2:<122112) P3:(121212>

P, — 121212
*~\211221
Since we use binary alphabet ' = {1, 2} each of them repeating for twice so O(S,) =

2n! = 4.

Theorem 3 If w = {122, 112, 121, 212, 221, 211} over the binary alphabet ¥ =
{1, 2}, then (w-,, ) is an abelian group.

Proof The permutation of Kolakoski strings are
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121212 121212 121212
H=<N21N>&=G2NIJ &:QZMIQ

121212
fﬁ:(zllzzl)

Case (i)
121212\ /121212 121212
212121)\212121 121212
PP 121212\ /121212 121212
2= \212121)\122112 211221
b p 121212\ 121212\ (121212\ _
B = 212121)\121212) 7 \212121) ~
121212\ /121212 121212
Prby = <212121)<211221> (122112) P
Case (ii)
PP 121212\ /121212 121212
20 122112)\212121 211221
p.p 121212\ /121212 121212\ _
22=\122112)\122112 121212) ~
121212\ /121212 121212
PPy = (122112)(121212>=<122112>=P2
PP, 121212\ /121212 121212
2 122112)\211221 212121
Case (iii)
p.p 121212\ /121212 121212
30 121212)\212121 212121
PP, 121212\ /121212 121212\ _
3 121212)\122112 122112)~
121212\ /121212 121212
PsPs = <121212)(121212>=<121212):13q
PP 121212\ /121212 121212
3= 121212) 211221 211221
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Case (iv)

121212
211221

121212
212121

n=(iiza)(ian) = (32003
re= (130 (131119 = (13D -
(i21) (21300)=1i320) -
n=(iiza) (haad)=(2113)

121212
122112

PPy = 121212\/121212
211221)\121212 211221
121212\/121212 121212 _p
211221)\211221 121212) =73

Table 1 Cayley table for Kolakoski strings of permutation array

. Py P P3 Py
il Ps Py Py P,
Py Py P; P, P
P3 Py P P3 Py
Py P Py Py P3

Fig.1 Cayley graph for Kolakoski strings
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* Closure: The body of the Cayley table contains only the element of w, w is closed
with respect to e.

* Associativity: Composition of function is associative, w is associative.

x Identity: Pj is the identity element of wy,.

s Inverse: P, ' = Py, P! = Py, P;' = P53, ;' = P,. The inverse exists for every
element. (w,, @) is a group.

+* Commutative: From the Cayley table P;.P, = P,.P), etc., all the elements are
commutate to each other. Hence (w;, ®) is an abelian group. O

Theorem 4 [f X ={1,2} then every non-palindrome string of length |\w| = 3 gener-
ates a permutation array.

Proof Let, K (uy, us, uz)=( + 2uy, 2uy + uy, u; + 2u,). Aninvertible Kolakoski
array can be occured from non-palindrome strings {122, 112, 211, 221}. Then the
basis vectors of R? is

K@i, up, uz) = (g +2uy +usz, 2uy +up + 2usz, uy + 2uy + 2u3)

Then the image of basis vector is
K(1,0,0)=(1,2,1)
K(©,1,0)=(2,1,2)
K(©0,0,1)=(1,2,2)

Hence
121 100
K=1212]~1010
122 001

Here the image of basis vectors are generates standard basis of R® with
dim(Im(K)) = 3. Similarly, if

K (uy, uz, u3) = Quy + up + 2uz, uy + 2up + uz, 2uy + us + u3)
Then the image of basis vector is

K(1,0,0) = (2,1,2)
K(0,1,0) = (1,2, 1)
K(©0,0,1)=(2,1,1)

Hence
212 100

K=|121]~1010
211 001
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Then the image of basis vectors of non-palindrome string of length |w| = 3 generates
a permutation array. O

5 Conclusion

An infinite Kolakoski sequence over the binary alphabet X = {1, 2} of string with
length |w| = 3 can be transformed into an array of size (3 x 3) over the basis vec-
tors of R? is shown and its generating permutation array with standard basis of R? is
obtained. Furthermore, well-known properties of abstract algebra are extended to per-
mutation Kolakoski array. Future work focuses to find the applications of Kolakoski
array in matrix algebra, namely, Data compression, Image analysis, and security in
transfer of information.
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where 0 < € « 1 is the perturbation parameter and § is the delay parameter. Let
(e —d8a(x))>0Vxe[0,1],ax)>M >0, b(x) < —0 <0 where M and 0 are
positive constants, f(x), ¢ (x) are sufficiently smooth functions and f is a constant.

The numerical analysis of singular perturbation problems has always been far
from trivial because of the boundary layer behavior of the solution. The theory
and applications of singularly perturbed differential equations can be found in the
monographs [1-8]. Boundary value problems of delay differential equations occur
in the study of signal transmission with time delays in control theory [9], first exit
problems in neurobiology [10, 11], the study of optically bistable devices [12], in
describing the human pupil-light reflex [13], and in variety of models for physiolog-
ical processes or diseases [14, 15]. Lange and Miura [16, 17] gave an asymptotic
approach to solve boundary value problems for second-order singularly perturbed
differential-difference equations with small shifts. Extensive numerical work had
been initiated by Kadalbajoo and Sharma in their papers [18-21]. Some numerical
aspects of this type of problems with small shifts were considered in [22, 23]. Rao
and Chakravarthy [24] presented a tridiagonal finite difference method for singularly
perturbed differential-difference equations with small shift. Mohapatra and Natesan
[25] proposed finite difference method on a adaptively generated grid for singularly
perturbed delay difference equation with a small delay.

The brief overview of the present paper is as follows: In Sect. 2, some properties of
analytical solutions of the continuous problem are listed. In Sect. 3, we carry out the
discretization of the continuous problem whose solution exhibits a boundary layer at
the left end of the underlying interval, and thus obtain the finite difference scheme. In
Sect. 4, the convergence of numerical method is discussed. In Sect. 5, the numerical
method for problems with right end boundary layer is discussed. The efficiency of
our presented work is shown by carrying out numerical investigations on several
test problems which are stated in Sect. 6. Finally the conclusions follow in the last
section.

2 The Continuous Problem

We consider that the shift parameter (§) is smaller than singular perturbation param-
eter (¢). Now, to tackle the term containing delay, we use Taylor’s series as pointed
out by Cunningham ([26], p. 222) and Tian [27] in his thesis work. From the Taylor’s
series expansion of the term y’(x — §), we have

Yi(x —8) & y'(x) = 8y"(x).
Thus we have from Eq. (1) the approximating equation

(€ —8a(x)y"(x) +ax)y'(x) + b(x)y(x) = f(x), 0 <x <1, (3)
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y(0) = ¢(0) = ¢o(say),

4
y() = B. @

Some properties of the solution of (3) and (4) are shown below:
Let L be the operator corresponding to Eq. (3), i.e.,

L= - 8a)S +aw-L 1 bt
= (e —da(x))— +alx)— x)1.

dx? dx
The operator L satisfies the following continuous minimum principle and stability

estimate:

Lemma 1 Suppose w(x) be any sufficiently smooth function satisfying w(0) > 0and
(1) > 0. Then Lw(x) < Oforallx € (0, 1) implies that 7 (x) > 0 forall x € [0, 1].

Proof Let z € [0, 1] be such that 7 (z) = Ir%(i)nl]n(x) and assume that 7(z) < 0.
x€l0,

Clearly z ¢ {0, 1}, therefore 7’(z) = 0 and 7" (z) > 0. Now we have

Ln(z) = (€ — da(x))"(2) + a(x)7'(z) + b(x)7(z) > 0,
which contradicts our assumption, therefore we must have 77 (z) > 0 and thus 7 (x) >
0 Vx € [0, 1]. Now we are able to show the stability of solutions of the continuous
problem (3, 4).
Lemma 2 Let y(x) be the solution of the problem (3, 4), then we have

Iyl < 0~ "[1£1] + max(|gol, |B]),

where ||.|| is the o norm given by ||y|| = rn[g)i] [y (x)].
x€l0,
Proof Let us construct the two barrier functions ¥+ defined by
Y (x) = 07| £1] + max(lgol, 1B]) £ y(x).

Then we have

YE0) = 67| £1] + max(dol, |8]) £ y(0)
= 07| 1| +max(|¢ol, |B]) £ ¢o, since y(0) = ¢ > 0,

YE() = 07| £1] + max(|¢ol, |8]) £ y(1)
=071 fIl + max(|¢ol, |B]) £ B, since y(1) = B > 0,

and we have
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L™ = (e — 8a(x) (YT (x) +a(x) (YT (x) + b(x)(Y*(x))
= b)O I f]] + max(|gol, 1B)) £ Ley(x)
= b(x)(O 1] + max(|¢ol, |8])) £ f(x).

We have b(x)0~! < —1, since b(x) < —6 < 0.
Using this inequality in the above inequality, we get

Loy®(x) < (—lIf1] £ £(x)) + b(x) max(|ol, |B])
<0Vx € (0, 1), since ||f]|| = f(x).

Therefore, by the minimum principle [5], we obtain wi(x) > 0 for all x € [0, 1],
which gives the required estimate.

Lemma 1 implies that the solution is unique and since the problem under consid-
eration is linear, the existence of the solution is implied by its uniqueness. Further,
the boundedness of the solution is implied by Lemma 2.

Lemma 3 Ler y(x) = yo + zo be the zeroth-order approximation to the solution of
(3) and (4), where yq represents the zeroth-order approximate outer solution (i.e.,
the solution of the reduced problem) and z( represents the zeroth-order approximate
solution in the boundary layer region. Then for a fixed positive integer i,

lim y(ih) ~ yo + (#(0) — y0(0)) exp{—a(0)ip},

where P = m

Proof Let yo(x) be the solution of reduced problem
a(x)yo'(x) +b(x)yo(x) = f(x),
yo(1) = B and zo(¢) is the solution of the boundary value problem

20" (1) +a(0)zo (1) = 0, 29(0) = ¢(0) — y0(0), zo(00) = 0,

where t =

€ —8M

From the theory of singular perturbations it is well-known that the zeroth-order
asymptotic approximation to the solution (3) and (4) is (cf. [4], pp. 22-26)

X

_ a(0) a(x)
y(x) = yo(x) + ——(#(0) — y0(0)) x exp § — ——— | dx
a(x) € —da(x)
0
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As we are considering the differential equations on sufficiently small sub-intervals,

the coefficients could be assumed to be locally constant. Hence

0
y(x) =~ yo(x) + (¢(0) - yO(O)) X €xp {_ (%) x} .

So, at the nodal points we have

0
Y1) ~ yo(x1) + ($(0) — yo(0)) exp {— (L) xi} i=0,1,2..., N

€ — 8a(0)

€ —6a(0)

, . . a(0) .
i.e., y(ih) ~ yo(ih) + (¢(0) — y0(0)) exp {— <—) lh} :

Therefore,

lim y(ih) % yo + (#(0) — yo(0)) exp{—a(D)ip} fori =0, 1,2,.... N,

h
where p = m(cf. [5]; pp-93—94).

3 Exponentially Fitted Second-Order Central Difference

Method

Classical methods are not expected to perform well in the overall range of 4 (mesh
parameter) and € (perturbation parameter) values, since the numerical schemes may
contain exponentials as coefficients. We propose here an exponentially fitted second-

order central difference method for the boundary value problem (3, 4).

We divide the interval [0, 1] into N equal parts with constant mesh length

h. Let 0 = xq, x1, x3,...,x, =1 be the mesh points. Then we have x; = ih,
i=0,1,2,..., N. Using central difference formulae, the finite difference repre-
sentation of Eq. (3) may be written at a typical mesh point x;,i =0,1,2,..., N,

according to

i—1—2yi + i h? h
(e_aa,.)<yl—y+y“__ 4__yi6_...)+

2 127 7 360
Yi+1 — Yi—1 h? 3 h 5
i A7 T Vi T GAAE Tt bii:iv
( 2h 6" 120" by =

and a(x;) = a;; b(x;) = b;; f(x;) = fi; y(xi) = y;.
The boundary conditions become

®)
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Yo = ¢(x0), yy = B. (6)

Equation (5) provides the basis for a second-order method; however, at this stage,
the left-hand side of Eq. (5) is not tridiagonal, because it involves the difference y; .
Evidently tridiagonal estimate of y;® correct to O (k) is required and this estimate
is obtained as follows (cf. [28]):

Differentiating (3) once with respect to x, then using central difference formulae,
gives a tridiagonal O (k%) approximation for y;® as follows:

1
WY = (G —a)y" = (@' + by = bi'yi + ) (7)

and a’(x;) = a;'; ' (x;) = b5 f'(xi) = fi's y'(xi) = yi'.
By substituting (7) in (5) and simplifying, we obtain

1 a;  aida’'p  ai’p  aa’ph  abiph
;(yi—l_z}’i+yi+l)= <—l+ — = — — Yi-1

2 6 6 12 12
aida'p a’p  aibiph
- - —bih ) yi
+< 3 3 12 Y
n ai ada/'p a’p aa’'ph  aibiph
2 6 6 12 2 )7
a; fi' ph*

+ + hf; + R;, where R, = O ().

6
Here we introduced a fitting parameter o (p) in a finite difference scheme and it is
required to find o (p) in such a way that the solution of (5) converges uniformly in €
to the solution of (3, 4). Hence we obtain a finite difference scheme as follows:

Ei}’ifl_FiYi‘i‘GiYiJrlei“rTi; i=1725"'7N_19 (8)
where ) ) )
i i0a; ; ia;' ph ibiph
Ei:g_a__a ap+ap_aap_a p’
0 2 6 6 12 12
2 i8a;’ i ibi' ph?
F="0 G0hp LGP GPT o,
I 3 3 12
o a; aiSai’p aiz,o aiai’ph aibiph
G =—+— ,
P + 2 + 6 + 6 + 12 + 12
i fi' ph? . .
H; = af—p + hf; and T; is the truncation error of O (h?).

6
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3.1 Calculation of the Fitting Parameter

We consider & = O (e — §a;) such that is finite. Now, taking limitas 4 — 0O in
(8), using Lemma 3 and simplifying, we get the constant fitting parameter as

2.2
a(O)p> _plag ©)

o(p) = 2 th< > ¢

where p = ;ﬁl -

To obtain the solut10n of the original problem, we solve the tridiagonal system (8)
where o is given by (9) subject to the boundary conditions (6). We use Thomas
algorithm to solve the tridiagonal system.

4 Stability Consideration

The Numerical scheme (8) can be rewritten as

o 20 o
(-; + Mi) yi-1 + (7 + Ui> yi+ (—; + wi) yie1 +& + T =0, (10)

where

ai ada/'p a’p awa’'ph  aibiph

M=ot T Tt Tt
aida'p  a’p  aibph?
i = - bih,
V; 3 3 + 6 +
a; aida'p a’p aa’ph  aibiph
Wi =—— — - - - :
2 6 6 12 12
a,-f,-/,ohz

g = +hfi, Tr = O(hY).

6

Incorporating the boundary conditions yg = ¢(xg) = ¢(0), yy = B we obtain the
system of equations in the matrix form as

(D+P)y+M+Th) =0, (11)
where
2 == g .0
L —
|: o 20 —o] e P
D=|-—— — —|=|0 .
o p '
0...0 ==X
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and
V1 wq 0o ... 0

Uy v Wy ... 0
P =1luj,vi,w;]=1]0
0...0 Un—-1 Un—1

are tridiagonal matrices of order N — 1, and

T
o o
M= |:81 + (-; + M1> @0, 82,83, -, 8N-2, 8N—1 + (-; + le) ﬂi| ,

and y= [J’l» V2,00, nyl]T9 T(h) = [Tlv T2a ) TN*I]Tv 0=

the associated vectors of Eq. (11).

LetY =[Y;,Y,, ..., Yy_;]T = y which satisfies the equation

(D+P)YY+M=0.

[0,0,...,0]7 are

(12)

Lete; =Y; —y;,i = 1,2, ..., N — 1 be the discretization error so that £ = [e, e,

...,eN_l]T = Y—y.
Subtracting Eq. (11) from Eq. (12) we get

(D + P)E = T(h).

Let |a;| < Cy, |bi] < C
Let p; ; be the (i, j)th element of the matrix P, then

Bl = unl = S+ S1C2 4 O
il = Wil = 57 T AT g

c, C,C C\?
|Pi,i—l|=|ui|§71+ 2 l

2 "

Thus for sufficiently small 4 (i.e., as & — 0), we have
o
— 4+ |Piit1l <0,i=1,2,...,N =2,
0

o
—+|Pi,i_1|<0,i=2,3,...,N—1.
p

Hence the matrix (D + P) is irreducible [29].

h+ —p;i=1,2,...

h+ —p;i=2,3,...

13)

Let S; be the sum of the elements of the ith row of the matrix (D + P), then



A Stabilized Numerical Algorithm for Singularly Perturbed Delay ... 311

o a? a;b;yi a;b;_,
S;=— 4+ —h— —p>4 T p?
0 + 6e 12¢ + 12¢

i en i b;
G Gty | Gidiot, G0 gori= 1,
2 24¢ 24¢ 12¢
ibi ibi— .
§ = 20y GOty b fori=2,3,..., N —2,
12¢ 12¢
o a4 Qa4 a;a;_ apb; ,
§=2 44 Ay, 4 520
T2 24e 24e 12¢
2
a aibiy1,, ab;_
h
6¢ 12¢ + 12¢

—bih

LW2 _ bk, fori =N — 1.

Let Cy» = mm |a,| Ci = max |a,~|,C2*_ m1n |b| C; = max |b].
1< I<i<N—1

1<i<N-—1
Then 0 < Cl* S C1 < CI,O < Cpx <(Cy < C;
For sufficiently small /4, (D + P) is monotone [29, 30].
Hence (D + P)~ ! existsand (D + P)~! > 0.
From the error Eq. (13) we have

NEIN < I(D 4+ P)"1|[ - [IT]].

For sufficiently small h, we have

CiC
12

S; > hQ, fori =1, where Q| = — p—Cs, (14)

S; > hQ, fori =2,3,..., N —2, where Q, = —C3, (15)

C\C,
2’

S; > hQs3 fori = N — 1, where Q3 = —C» + (16)

Let (D + P)ifk1 be the (i, k)th element of (D + P)~! and we define

N—-1
-1 — —1
1D+ Pyl = max ;(D + P

and
IIT(h)II— nax |T].
<N-1

N-1
Since (D+ P)™' > 0and > (D+ P);} - Sy =1fori=1,2,..,N— 1.
k=1

we have
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1 1
(D + P);}, gs—k < }—lQ1 fork =1,
I
(D+P);} < — < —Q; fork=N — 1.
’ Sk h

Further

N-2 { |

Y D+P) s ———c < 0O fori=12.. N-1
a min Sy ~ h

n=2 2<k<N-2

From the error Eq. (13), using Eqgs. (14) and (15), we get

1
IEIl = 7101+ 02+ Qs x IT(W)] = O(h?).

This establishes the convergence of the finite difference scheme (8).

5 Right-End Boundary Layer Problems

Finally, we discuss our method for singularly perturbed two point boundary value
problems with right-end boundary layer of the underlying interval. When 0 < (¢ —
da(x)) < 1, a(x) <M <0, b(x) < 0 throughout the interval [0, 1], where M is
some negative constant, the boundary value problem (3) and (4) displays a boundary
layeratx = 1.

Lemmad Letr y(x) = yo + zo be the zeroth-order approximation to the solution of
(3) and (4), where y, represents the zeroth-order approximate outer solution (i.e.,
the solution of the reduced problem) and 7z represents the zeroth-order approximate
solution in the boundary layer region. Then for a fixed positive integer i,

. . 1 , h
hlin()y(lh) = y0(0) + (B — yo(1)) exp |:a(1) (m - lﬁ)] , wherep = c—sa(l)’
Proof The proof is based on asymptotic analysis (cf. [4], pp. 22-26), and similar to
the proof of Lemma 3.

Applying the same procedure as in Sect.2 and using Lemma 4, we will get the
tridiagonal system (8) with fitting parameter as

0 2,2
ot = Lo (402

2 6

and it can be solved easily by Thomas Algorithm.
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6 Numerical Results

To elucidate the importance and applicability of the present method, we have con-
sidered three boundary value problems for singularly perturbed linear differential-
difference equations where the boundary layer is to the left end of the interval [0, 1]
and also one problem in which the boundary layer lies in the right end of the interval.
Since the exact solutions of problems are not known for various § values, we use the
double mesh principle as stated below to discuss the maximum absolute errors for
the examples: )
N N

En = max |yi" =yl
The numerical rates of convergence for the presented scheme for the solutions of the
problems is given by
_ 10g|En/Eay]

R
N log2

Example 1 (17, pp. 254). €y”(x) + y'(x — 8) + y(x) = 0, subject to the interval
and boundary conditions y(x) = 1; -8 <x <0, y(1) = 1.

Example 2 ¢y”(x) + (1 +x)y'(x —8) — e *y(x) = 1, subject to the interval and
boundary conditions y(x) = 0; —6 <x <0, y(1) = 1.

Example 3 (20, pp. 699). €y”(x) + 0.25y'(x — 8) — y(x) = 0, subject to the inter-
val and boundary conditions y(x) = 1; —§ <x <0, y(1) = 0.

Example 4 (20, pp. 707). €y”(x) — y'(x — 8) + y(x) = 0, subject to the interval
and boundary conditions y(x) = 1; —§ <x <0, y(1) = —1.

Table 1 The maximum absolute errors for Example 1 when § = 0.5¢

el N— 100 200 300 400 500

271 1.1574e—05 |2.8917e—06 |1.2851e—06 |7.2287e—07 |4.6263e—07
272 4.8309e—05 |1.2084e—05 |5.3710e—06 |3.0213e—06 |1.9336e—06
273 1.7367e—04 | 4.3442e—05 |1.9308e—05 |1.0861e—05 |6.9512e—06
24 42672e—04 |1.0663e—04 |4.7389¢e—05 |2.6655e—05 |1.7059e—05
273 9.5159e—04 |2.3696e—04 |1.0525¢e—04 |5.9183e—05 |3.7874e—05
276 2.0626e—03 |5.0567e—04 |2.2387e—04 |1.2575e—04 |8.0429e—05
277 4.5963e—03 |1.0701e—03 |4.6795¢e—04 |2.6181le—04 |1.6711e—04
2-8 1.1106e—02 |2.3516e—03 |9.9313e—04 |5.4641e—04 |3.4610e—04
29 2.6720e—02 |5.6488¢—03 |2.2549e—03 |1.1945¢e—03 |7.3871e—04
2-10 5.8092e—02 |1.3695¢—02 |5.5310e—03 |2.8534e—03 |1.7161e—03
En 5.8092e—02 | 1.3695e—02 |5.5310e—03 |2.8534e—03 |1.7161e—03
Ry 1.9992 1.9999 1.9999 1.9999 1.9984
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7 Conclusions

In this paper, solution to the boundary value problems is presented with an exponen-
tially fitted tridiagonal finite difference method for singularly perturbed differential-
difference equations containing a small negative shift. The method is best suited for
problems with shift parameter smaller than the perturbation parameter. In order to
demonstrate the proposed method and to show the effect of shift parameter on the
boundary layer behavior of the solution, an extensive amount of computational work
has been carried out. The maximum absolute error is shown in the form of Tables 1,
2, 3, and 4 for the considered examples. The effect of shift on the boundary layer

Table 2 The maximum absolute errors for Example 2 when § = 0.5¢

€| N— 100 200 300 400 500
2-1 3.9728e—07 | 8.9797e—08 |3.8582e—08 |2.1340e—08 |1.3520e—08
22 1.8068e—06 | 4.2227e—07 | 1.8436e—07 |1.0289¢e—07 |6.5571e—08
23 6.9193e—06 |1.5513e—06 |6.7116e—07 |3.7347e—07 |2.3771e—07
274 2.3408e—05 |4.6241e—06 |1.9298e—06 |1.0580e—06 |6.6833e—07
273 8.6029¢—05 | 1.3524e—05 |5.1451e—06 |2.7013e—06 |1.6670e—06
276 3.6776e—04 |4.7216e—05 | 1.5343e—05 |7.3168e—06 |4.2531e—06
277 1.4411e—03 |2.0786e—04 |6.0108¢e—05 |2.5351e—05 |1.3350e—05
2-8 4.0018¢—03 |8.4262e—04 |2.7598e—04 |1.1582e—04 |5.7693e—05
279 8.3937e—03 |2.4117e—03 |9.8937e—04 |4.8293e—04 |2.6267e—04
2-10 1.4429e—02 |5.2338¢—03 |2.5278e—03 |1.4156e—03 |8.6852e—04
En 1.4429¢—02 |5.2338¢—03 |2.5278e—03 |1.4156e—03 |8.6852e—04
Ry 1.463 1.886 2.0213 2.0144 2.0108
Table 3 The maximum absolute errors for Example 3 when § = 0.5¢
€| N— 100 200 300 400 500
2-1 2.7948e—06 | 6.9878e—07 |3.1057e—07 |1.7469¢e—07 |1.1182e—07
22 8.2231e—06 |2.0558¢—06 |9.1371e—07 |5.1396e—07 |3.2893e—07
23 2.1202e—05 |5.3006e—06 |2.3558e—06 |1.3251e—06 |8.4809e—07
274 5.0721e—05 | 1.2675e—05 |5.6329¢e—06 |3.1684e—06 |2.0278e—06
273 1.1830e—04 |2.9529e—05 |1.3124e—05 |7.3823e—06 |4.7244e—06
276 2.6957e—04 |6.7189¢e—05 |2.9837e—05 |1.6772¢e—05 |1.0736e—05
277 5.9574e—04 | 1.4835¢e—04 |6.5530e—05 |3.6880e—05 |2.3573e—05
28 1.3553e—03 | 3.1834e—04 |1.4069¢—04 |7.8658¢—05 |5.0106e—05
279 3.5552e—03 |6.9622e—04 | 3.0240e—04 |1.6523e—04 |1.0489e—04
2710 8.3805e—03 | 1.8159e—03 |7.0948e—04 |3.5322e—04 |2.2308e—04
En 8.3805e—03 | 1.8159¢—03 |7.0948e—04 |3.5322e—04 |2.2308e—04
RN 1.9999 2.0000 1.9998 1.9992 1.9999
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Table 4 The maximum absolute errors for Example 4 when § = 0.5¢
el N — 100 200 300 400 500
2-1 6.6237e—06 | 1.6559e—06 |7.3594e—07 |4.1397e—07 |2.6495¢—07
272 2.7058e—05 |6.7646e—06 |3.0064e—06 |1.6911e—06 |1.0823e—06
273 7.3514e—05 | 1.8368e—05 |8.1627e—06 |4.5914e—06 |2.9385e—06
2-4 1.1141e—04 |2.7805e—05 |1.2354e—05 |6.9470e—06 |4.4461e—06
2-5 2.3101e—04 |5.7765e—05 |2.5674e—05 |1.4442¢—05 |9.2429¢—06
2-6 5.7268e—04 | 1.4300e—04 |6.3542e—05 |3.5740e—05 |2.2873e—05
277 1.2856e—03 |3.1881e—04 |1.4147e—04 |7.9536e—05 |5.0894e—05
28 2.8233e—03 |6.8255e—04 [3.0121e—04 |1.6899¢e—04 | 1.0805¢—04
279 6.5312e—03 | 1.4654e—03 |6.3334e—04 |3.5285e—04 |2.2473e—04
2-10 1.6202e—02 | 3.3468¢—03 | 1.3750e—03 | 7.4714e—04 |4.6989¢—04
En 1.6202e—02 | 3.3468e—03 |1.3750e—03 |7.4714e—04 |4.6989¢—04
Ry 1.9997 1.9999 2.0000 1.9999 1.9999
3 —7
—d&=0.0
—0=0.5¢
g25 —6=0.8¢ |
%
%]
= 2
]
S
215
1 . . . ! . :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |
X-axis
Fig. 1 Graph of numerical solution of Example 1 for € = 1072

of the solution has been analyzed from solution of the considered examples for dif-
ferent values of delay and are plotted as Figs. 1, 2, 3, and 4. From the figures, we
observed that as the shift parameter increases, thickness of the layer decreases in the
case where the solution exhibits layer behavior on the left side. Whereas thickness of
the layer increases in the case where the solution exhibits boundary layer behavior
on the right side of the interval. On the basis of the various numerical solutions of a
variety of illustrations, it is concluded that the present method provides significant
advantage for the linear singularly perturbed differential-difference equations.
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Fig. 2 Graph of numerical solution of Example 2 for € = 10~2
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Fig. 3 Graph of numerical solution of Example 3 for ¢ = 1072
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Fig. 4 Graph of numerical solution of Example 4 for ¢ = 102



A Stabilized Numerical Algorithm for Singularly Perturbed Delay ... 317

References

10.
11.

17.

18.

19.

20.

21.

22.

23.

24.

. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers.

Mc Graw-Hill, New York (1978)

Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, New York
(1981)

Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

O’ Malley R.E.: Introduction to Singular Perturbations. New York, Academic Press (1974)
Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with
Initial and Boundary Layers. Boole Press, Dublin (1980)

Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O'Riordan, E., Shishkin, G.I.: Robust Computational
Techniques for Boundary Layers. New York, Chapman & Hall/CRC (2000)

Miller, J.J.H., O'Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturba-
tion Problems. Singapore, World Scientific (1996)

Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential
Equations. Springer, Berlin (1996)

Glizer, V.Y.: Asymptotic solution of a boundary-value problem for linear singularly-perturbed
functional differential equations arising in optimal control theory. J. Optimizat. Theory Appl.
106(2), 309-335 (2000)

Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5(2), 173-194 (1965)
Tuckwell, H.C.: On the first-exit time problem for temporally homogeneous Markov processes.
J. Appl. Prob. 13, 39-48 (1976)

. Derstine, M.W., Gibbs, H.M., Hopf, F.A., Kaplan, D.L.: Bifurcation gap in a hybrid optical

system. Physical Rev. A 26, 3720(R) (1982)

. Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and

delayed feedback. Math. Biosci. 90(1-2), 183-199 (1988)
Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science
287-289 (1977)

. Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Mat. Stos.

6, 25-40 (1976)

. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for

differential difference equations: V. Small shifts with layer behavior. SIAM J. Appl. Math.
54(1), 249-272 (1994)

Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for
differential difference equations: VI. Small shifts with rapid oscillations. SIAM J. Appl. Math.
54(1), 273-283 (1994)

Kadalbajoo, M.K., Sharma, K.K.: Numerical treatment of a mathematical model arising from
a model of neuronal variability. J. Math. Anal. Appl. 307(2), 606-627 (2005)

Kadalbajoo, M.K., Sharma, K.K.: A numerical method based on finite difference for boundary
value problems for singularly perturbed delay differential equations. Appl. Math. Comput.
197(2), 692-707 (2008)

Kadalbajoo, M.K., Sharma, K.K.: Numerical analysis of singularly perturbed delay differential
equations with layer behavior. Appl. Math. Comput. 157(1), 11-28 (2004)

Kadalbajoo, M.K., Sharma, K.K.: Parameter-uniform fitted mesh method for singularly per-
turbed delay differential equations with layer behavior. Electron. Trans. Numer. Anal. 23,
180-201 (2006)

Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singularly perturbed
delay differential equations. Appl. Math. Comput. 187(2), 797-814 (2007)

Ramos, J.I.: Exponential methods for singularly perturbed ordinary differential-difference
equations. Appl. Math. Comput. 182(2), 1528-1541 (2006)

Rao, R.N., Chakravarthy, P.P.: An exponentially fitted tridiagonal finite difference method for
singularly perturbed differential-difference equations with small shift. Ain Shams Eng. J. 5,
1351-1360 (2014)



318 N. S. Kumar and R. N. Rao

25. Mohapatra, J., Natesan, S.: Uniform convergence analysis of finite difference scheme for sin-
gularly perturbed delay differential equation on an adaptively generated grid. Numer. Math.
Theory Methods Appl. 3, 1-22 (2010)

26. Cunningham, W.J.: Introduction to Nonlinear Analysis. McGraw-Hill Book Company Inc,
New York (1958)

27. Tian H.: Numerical treatment of singularly perturbed delay differential equations. Ph.D. thesis,
University of Manchester (2000)

28. Boqucz, E.A., Walker, J.D.A.: Fourth order finite difference methods for two-point boundary
value problems. IMA J. Numer. Anal. 4(1), 69-82 (1984)

29. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey (1962)

30. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)



Generalized Inverse of Special Infinite )
Matrix s

V. Subharani, N. Jansirani, and V. R. Dare

Abstract In this article, Special Infinite Matrix (SIM) and Complementary Special
Infinite Matrix (CSIM) are introduced and its basic properties are studied. Various
types of Symmetric Properties for SIM and CSIM are discussed. The existence
of Generalized Inverse and Special Inverses for SIM and CSIM are derived. The
complexity of SIM and CSIM are analyzed and suitable examples are provided.

Keywords Circulant - Drazin inverse + Generalized inverse - Symmetry
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1 Introduction

In Digital Image Processing, when recovering the original image from the degraded
image generalized inverse is used [4]. Robotic research the concept of generalized
inverse are contributed a lot [12]. Statistics, Numerical Linear Algebra are rapidly
handled the concepts via Generalized Inverse. The concept of Drazin inverse was
shown to be very useful in various applied mathematical setting [6, 10, 11]. This
has a lot of applications in Singular Differential Equation or Difference Equations,
Markov Chains, Cryptography, Iterative Method or Multibody System Dynamics. In
1920, Moore was first introduced the notion of the Generalized Inverse of a matrix for
any dimension. In 1955, unaware of Moore’s work, Penrose defined the Generalized
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Inverse. Both the definition is equivalent [1-3]. Since the Generalized Inverse called
as a Moore-Penrose inverse. If A is a square non-singular matrix then there exists a
unique matrix B, such that AB = BA = [, then B is called as an inverse of A. If
A is a singular or a rectangle matrix, no such inverse exists. If inverse of A exists,
then the system of linear equation has a unique solution. If the linear equations are
inconsistent, then least-square solutions are used. Generalized Inverse possesses the
property that it must reduce to inverse of A, when it is a non-singular matrix and
it should exists for a larger class. It should satisfy the properties of inverse such as
(A 1= A, (A")* = (A*)7!, etc. and should provide the answer to the question
such as consistency or least-square solutions. The second section contains the basic
definitions and preliminaries for this article. In third section the SIM and CSIM are
examined with the property of Circulant, Symmetry and Pascal symmetry. In fourth
section, the existence of Generalized Inverses of SIM and CSIM are analyzed and
examples are provided. In fifth section, the Special Inverses such as Drazin, Group
Inverse of SIM and CSIM are investigated and verified through the examples.

2 Basic Definitions and Preliminaries

Let A be a matrix over the field of real numbers. The dimension of the matrix is
the total number of rows and columns of a matrix, defined as m x n, where m is
a number of rows and 7 is a number of columns, which are positive integer. The
elements of the matrix are defined as a;; is the ith row and jth column a matrix,
where 0 < i <m,0 < j < n [7]. Throughout this paper the bottom-most row is the
first row and left-most column is the first column. The dimension (m x n) is represent
the first m rows and n columns of a given matrix.
am1 am2 ... Aun-1) Amn
Am-1)1 Am—1)2 - - - Am—1)(n—1) Am—1)n
Structure of The Matrix is A =

azy ay ... @m-1) ap
apy ap ... Aim-1) alp.
If A= (a;;) € R™*", then

— The transpose of A is defined as A” = (a;))" = a;;
— The secondary transpose of A is defined as AS = (a;}) = ay—j 11 m—i+1

A = (a;) € R™" is

— Symmetric if A = AT

— Secondary symmetric if A = AS

— N-symmetric if AAT = ATA

— SN-symmetric if AAS = ASA

— Orthogonal if AAT = ATA =1

— Secondary Orthogonal if AAS = ASA =1

— Pascal symmetric if a;; = a,, fori + j =r + s [8].
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If A is a Bi-symmetric then A is both symmetric and secondary symmetric matrix
and is a BN-symmetric if A is both N-symmetric and BN-symmetric matrix. A is
bi-orthogonal if A is both orthogonal and secondary orthogonal matrix. The left
boundary of A is defined as ajjaz1a31 ...Gin1 203 . .Gy and the right boundary of A
isdefined as ajajpa;3...a1,02,a3, ...y - If A is a primary diagonal symmetric matrix
then the right boundary and the left boundary are equal. The secondary left boundary
of A is defined as a,a1(—1)a1(n—2)...12G11021031 ...Aem—1)1am1 and the secondary
right boundary of A is defined as ay,a2,a3,...A(m—1)nGmnAmn—1)Amn-2) ---Gm2am1 . If
the secondary right boundary and secondary left boundary of A is equal then it is
said to be a secondary diagonal symmetric matrix. If A = (a;;) € R"*", is a tripotent
matrix then A3 = A and k-tripotent matrix if A* = (A3)* where k > 2 [13]. Any A
have the rank r if it has atleast one submatrix of order  which is non-singular [1].

3 Complexity of SIM and CSIM

In this section, SIM and CSIM are introduced and analyzed with the properties of
Circulant, Symmetry and Pascal symmetry. Various types of Palindromes are defined
and examined with the examples.

Definition 1 The Special Infinite Matrix (SIM) A = (a;;);,j>1 € R™*", is defined

_)J1G@+j—-1) mod 3=0
B =10 otherwise. ’

Then the corresponding SIM of A is 00100...

Definition 2 The Complementary Special Infinite Matrix (CSIM) A = (a;;);,j>1 €
R™ ", is defined as g;; = 0G+j-D m.Od 3#0 .
1 otherwise.

Then the corresponding CSIM Of A is 11o11...
0

Definition 3 A = (a;;); j=1 € R"™*", is Circulant if
P { aivj-1 if (+j)=<n+1
] —

. . where i, j,n,m € N.
Qivjn if 4+ ) >n+1,} J
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Structure of Circulant Matrix

a, ay ...dayp_p dy_q
ap—1 4y ... 03 Ap_2
Cir(A) =
a) asz ... day aq
ay ay ...dyp—1 dap
edbac
Example 1 Cit(A) = cedba is a circulant matrix of dimension 4 x 5.
acedb
baced

4x5
In this example a; = b, a, = a, a3 = ¢, as = e, as = d, consider as4 be the arbitary

position of A, which comes under the condition (i + j) > n + 1, (3 +4) > 6 then
as4 = Ag1j—n—1y, A7-6) = a1 = b.
Definition 4 A = (g;;); j>1 € R™*", is said to be a right (or left) boundary palin-
drome matrix if the right (or left) boundary of A and it’s reverse are equal. A is said to
be a secondary right (or secondary left) boundary palindrome matrix if the secondary
right (or left boundary) and it’s reverse are equal.

If the boundary palindrome of a matrix and the secondary boundary palindrome
of a matrix are equal then it is called as a palindrome matrix.

Definition 5 The primary left diagonal boundary of a matrix is the elements from
bottom left corner to top right corner. The primary left diagonal boundary is defined
as

a11a21a12a31a22a13 . . . Ap1A(n—1)2 - - - Qn—-1)A2n - - - Ap(n—1)A(n—1)n%nn-

The primary right diagonal boundary of a matrix is the element from top right corner
to bottom left corner. The primary right diagonal boundary is defined as

AnnA(n—-nAn(n—1) - - - AQ2nA2(n—1) - - - A(n—1)24n1 - - - A1342203141202141] -

Definition 6 The secondary right diagonal boundary of a matrix is the elements
from bottom right corner to top left corner. The secondary right diagonal boundary
is defined as

A1nA1(n—1)A2nA1(n-2)A2(n—1)A3p - - - A11422 . . .

Appd21432 . . . Ap(n—1) - - - A(n—1)14n24n1 -

The secondary left diagonal boundary of a matrix is the elements from top left corner
to bottom right corner. The secondary left diagonal boundary is defined as

An1ap2Q(n—1)1 - - - Au(n—1) - - - A324214py - . . A2204]1] - . .

A3p2(n—1)A1(n—2)A2n A1 (n—1)A1n-
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Definition 7 If the primary right diagonal boundary and left diagonal boundary of
a matrix are same then the matrix is called as a palindrome primary diagonal matrix.
If the secondary right diagonal boundary and left diagonal boundary of a matrix are
same then the matrix is called as a palindrome secondary 